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Abstract

Methods and computer software are
described in this report for determining flow-
duration, low-flow frequency statistics, and August
median flows. These low-flow statistics can be
estimated for unregulated streams in Mass-
achusetts using different methods depending on
whether the location of interest is at a stream-
gaging station, a low-flow partial-record station, or
an ungaged site where no data are available. Low-
flow statistics for streamgaging stations can be
estimated using standard U.S. Geological Survey
methods described in the report.

The MOVE.1 mathematical method and a
graphical correlation method can be used to
estimate low-flow statistics for low-flow partial-
record stations. The MOVE.1 method is recom-
mended when the relation between measured
flows at a partial-record station and daily mean
flows at a nearby, hydrologically similar stream-
gaging station is linear, and the graphical method
is recommended when the relation is curved.
Equations are presented for computing the
variance and equivalent years of record for esti-
mates of low-flow statistics for low-flow partial-
record stations when either a single or multiple
index stations are used to determine the estimates.

The drainage-area ratio method or regres-
sion equations can be used to estimate low-flow
statistics for ungaged sites where no data are
available. The drainage-area ratio method is
generally as accurate as or more accurate than
regression estimates when the drainage-area ratio
for an ungaged site is between 0.3 and 1.5 times
the drainage area of the index data-collection site.

Regression equations were developed to estimate
the natural, long-term 99-, 98-, 95-, 90-, 85-, 80-,
75-, 70-, 60-, and 50-percent duration flows; the
7-day, 2-year and the 7-day, 10-year low flows;
and the August median flow for ungaged sites in
Massachusetts. Streamflow statistics and basin
characteristics for 87 to 133 streamgaging
stations and low-flow partial-record stations
were used to develop the equations. The stream-
gaging stations had from 2 to 81 years of record,
with a mean record length of 37 years. The
low-flow partial-record stations had from 8 to

36 streamflow measurements, with a median of
14 measurements.

All basin characteristics were determined
from digital map data. The basin characteristics
that were statistically significant in most of the
final regression equations were drainage area, the
area of stratified-drift deposits per unit of stream
length plus 0.1, mean basin slope, and an indicator
variable that was 0 in the eastern region and 1 in
the western region of Massachusetts.

The equations were developed by use of
weighted-least-squares regression analyses, with
weights assigned proportional to the years of
record and inversely proportional to the variances
of the streamflow statistics for the stations.
Standard errors of prediction ranged from 70.7 to
17.5 percent for the equations to predict the 7-day,
10-year low flow and 50-percent duration flow,
respectively. The equations are not applicable for
use in the Southeast Coastal region of the State, or
where basin characteristics for the selected
ungaged site are outside the ranges of those for the
stations used in the regression analyses.
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A World Wide Web application was devel-
oped that provides streamflow statistics for data-
collection stations from a data base and for
ungaged sites by measuring the necessary basin
characteristics for the site and solving the regres-
sion equations. Output provided by the Web appli-
cation for ungaged sites includes a map of the
drainage-basin boundary determined for the site,
the measured basin characteristics, the estimated
streamflow statistics, and 90-percent prediction
intervals for the estimates.

An equation is provided for combining
regression and correlation estimates to obtain
improved estimates of the streamflow statistics
for low-flow partial-record stations. An equation
is also provided for combining regression and
drainage-area ratio estimates to obtain improved
estimates of the streamflow statistics for ungaged
sites.

INTRODUCTION

Low-flow statistics indicate the probable
availability of water in streams during times when
conflicts between water supply and demand are most
likely to arise. Because of this, low-flow statistics are
needed by Federal, State, regional, and local agencies
for water-use planning, management, and regulatory
activities. These activities include (1) developing
environmentally sound river-basin management plans,
(2) siting and permitting new water withdrawals,
interbasin transfers, and effluent discharges,

(3) determining minimum streamflow thresholds for
maintenance of aquatic biota, and (4) land-use
planning and regulation. Low-flow statistics are also
needed by commercial, industrial, and hydroelectric
facilities to determine availability of water for water
supply, waste discharge, and power generation.

Low-flow statistics can be calculated from
streamflow data collected at locations where the U.S.
Geological Survey (USGS) operates data-collection
stations, but it is not possible to operate stations at
every site where the statistics are needed. Because of
this, methods are needed for estimating low-flow
statistics for streams for which no data are available.

In 1988, the USGS began the first of three
studies to develop and evaluate methods for estimating
low-flow statistics for ungaged Massachusetts streams

and to provide estimates of the statistics for selected
locations on ungaged streams. These studies were done
in cooperation with the Massachusetts Department of
Environmental Management, Office of Water
Resources (MOWR) and are referred to as the Basin
Yield studies. The MOWR uses the streamflow statis-
tics to develop water-resources management plans for
each of the 27 major river basins in Massachusetts
(fig. 1) and provides the streamflow statistics to other
State and local agencies to support their decision-
making processes.

Five other reports have been published as a result
of the Basin Yield studies (Ries, 1994a, 1994b, 1997,
1999, 2000). The first three reports describe studies
done to develop regression equations for use in
estimating low-flow statistics for ungaged sites. The
fourth report describes and provides data for a network
of 148 low-flow partial-record (LFPR) stations that was
established in 1988 at the beginning of the first Basin
Yield study and continued through 1996, during the
third Basin Yield study. The fifth report describes a
World Wide Web application that enables users to
select sites of interest on streams and then to obtain
estimates of streamflow statistics and basin characteris-
tics for the sites.

Purpose and Scope

This report, the final report of the Basin Yield
study series, presents methods that can be used to
estimate low-flow statistics for streams in Massachu-
setts, and describes the analyses done to develop and
evaluate the methods. Methods are presented for esti-
mating statistics for locations where various amounts
of streamflow data are available and for locations
where no data are available. Previously documented
and generally accepted methods are presented for
estimating low-flow statistics for locations where
streamflow data are available. Analyses done to
develop and evaluate methods for estimating stream-
flow statistics for locations where no data are available
are described. The physical setting of Massachusetts,
as it relates to the occurrence of low streamflows, is
also briefly described.

Equations that can be used to estimate the 99-,
98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, and 50-percent
duration flows; the 7-day, 2-year and the 7-day, 10-year
low flows; and the August median flow are presented
here. An evaluation of the accuracy of the equations
and limitations for their use is also provided, along
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with an example application. The equations provide
estimates of low-flow statistics for streams with
natural flow conditions, and supersede those from
earlier reports.

Previous Studies

Low-flow statistics for most streamgaging
stations and many LFPR stations in Massachusetts
were published by the USGS in a series of gazetteers
published as Water-Resources Investigations Reports,
in a series of Hydrologic Atlas reports (see U.S.
Geological Survey, 1987, for a complete listing of both
series), and in a series of ground-water assessment
reports published as Water-Resources Investigations
Reports (Olimpio and DeLima, 1984; Lapham, 1988;
Myette and Simcox, 1992; DeLima, 1991; Hanson and
Lapham, 1992; Persky, 1993; Bratton and Parker, 1995;
Bent, 1995; Friesz, 1996; Klinger, 1996). Statistics
provided in this report supersede those from the
previous reports.

Studies that used regression analysis to
regionalize low-flow frequency statistics in the
northeastern United States include those for
Connecticut (Cervione, 1982), central New England
(Wandle and Randall, 1994), Pennsylvania and New
York (Ku and others, 1975), Maine (Parker, 1977),
Massachusetts, New Hampshire, Rhode Island and
Vermont (Johnson, 1970), southeastern Massachusetts
(Tasker, 1972), and Massachusetts (Male and Ogawa,
1982; Vogel and Kroll, 1990; Risley, 1994). Studies
that regionalized flow-duration statistics include those
for Connecticut (Thomas, 1966), New Hampshire
(Dingman, 1978), southeastern Massachusetts (Tasker,
1972), and Massachusetts (Male and Ogawa, 1982;
Fennessey and Vogel, 1990; Ries, 1994a, 1994b).

Reports for the first two Basin Yield studies
(Ries, 1994a, 1994b) provided equations for estimating
the 99-, 98-, and 95-percent duration streamflows and
also provided estimates of the streamflow statistics and
measured basin characteristics for selected ungaged
streams in eastern Massachusetts river basins. The
equations were developed for these studies by use of
regression analyses, which statistically relate the
streamflow statistics to measured basin characteristics
for the stations used in the analyses. The studies
differed in the methods of regression analysis used to
develop the equations, the number of stations included
in the analyses (more stations were used in the second
study), and the locations of ungaged streams for which

estimated streamflow statistics and basin characteris-
tics were provided. The equations provided in the
second report superseded those from the first report.

The third Basin Yield report (Ries, 1997) pro-
vides an equation for estimating August median
streamflows. This statistic is used by the U.S. Fish and
Wildlife Service (1981) and some State agencies as the
minimum summertime streamflow required for mainte-
nance of habitat for aquatic biota in New England. The
report also provides estimates of August median
streamflows for sites on unregulated streams in Massa-
chusetts where the values could be determined from
available data, and describes how the August median
streamflow per square mile of drainage area varies
throughout the State.

The LFPR network described in the fourth Basin
Yield report (Ries, 1999a) was established to provide
additional data for use in the regression analyses and to
provide a better understanding of the physical
mechanisms that cause streamflow to vary in time and
space. The report provides streamflow measurements
collected systematically at the 148 LFPR stations in the
network between 1989 and 1996, and also includes any
historical streamflow measurements available for the
stations. In addition, the report provides estimated
streamflow statistics, basin characteristics, location and
other descriptive information for each of the stations.
The estimated streamflow statistics include the 99-,
98-, 97-, 95-, 93-, 90-, 85-, 80-, 75-, 70-, 65-, 60-, 55-,
and 50-percent duration flows; the 7-day, 2-year and
the 7-day, 10-year low flows; and the August median
flow. Basin characteristics measured include drainage
area; total stream length; mean basin slope; area of
surficial stratified drift; area of wetlands; area of water
bodies; and mean, maximum, and minimum basin
elevation. The basin characteristics were measured for
the stations from digital maps by use of a Geographic
Information System (GIS).

The fifth Basin Yield report (Ries and others,
2000), a fact sheet, describes a World Wide Web
application that includes (1) a mapping tool that allows
users to specify locations on streams where low-flow
statistics are needed, (2) a database that includes
streamflow statistics, basin characteristics, location,
and descriptive information for all data-collection
stations in Massachusetts for which streamflow
statistics were published previously, and (3) an
automated GIS procedure that determines the required
basin characteristics and solves the regression
equations provided in this report to estimate low-flow
statistics for the user-selected site. The World Wide
Web application is further described later in this report.
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Figure 1. Locations of streamgaging stations and low-flow partial-record stations used to develop equations for
estimating low-flow statistics for ungaged Massachusetts streams and locations of streamgaging stations outside
Massachusetts used for correlation with low-flow partial-record stations, and boundaries of the 27 major river
basins and three hydrologic regions in the State.
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Massachusetts used for correlation with low-flow partial-record stations, and boundaries of the 27 major river
basins and three hydrologic regions in the State—Continued.
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Physical Setting

Massachusetts encompasses an area of 8,093 mi?
in the northeastern United States. State environmental
agencies divide Massachusetts into 27 major river
basins for planning and regulatory purposes (fig. 1).
Some of these designated river basins are actually part
of larger river basins that extend into neighboring
states. The Millers, Deerfield, Chicopee, and Westfield
River Basins are part of the Connecticut River Basin.
The Nashua, Concord, and Shawsheen River Basins are
part of the Merrimack River Basin. Several designated
basins in coastal areas of Massachusetts were
comprised by grouping land areas drained by multiple
streams that discharge to the same receiving body of
salt water, such as Boston Harbor and Buzzards Bay.

The climate of Massachusetts is humid.
Precipitation is distributed fairly evenly throughout the
State and throughout the year, and averages about
45 in. annually. Average annual temperatures range
from 50°F in coastal areas to 45°F in the western
mountains. Average monthly temperatures range from
about 30°F in February to about 71°F in July in coastal
areas, and from about 20°F in January to about 68°F in
July in the western parts of the State (U.S. Commerce
Department, National Oceanic and Atmospheric
Administration, 1989). Average evapotranspiration
ranges from 19 in. in southeastern Massachusetts to
22 in. in the western Mountains (Randall, 1996).

Several physical characteristics vary from east to
west in Massachusetts. Elevations range from sea level
along the coast in eastern Massachusetts to almost
3,500 ft in the western mountains. Basin relief and
mean basin slope, which are highly related, also tend to
increase from east to west in Massachusetts. The extent
of lakes, ponds, and wetlands, as a proportion of total
basin area, generally decreases from east to west in
Massachusetts. The extent of coarse-grained stratified
drift, as a proportion of total basin area, also generally
decreases from east to west.

Except during and for a short time after storms,
summertime flow in Massachusetts streams comes
from ground water discharged by aquifers in
unconsolidated deposits adjacent to the streams. This
discharge is termed base flow. High-yielding aquifers
usually are in stratified drift, sand and gravel deposits
that are located primarily along the valley floors of
inland river basins and in coastal areas of southeastern
Massachusetts. The stratified-drift deposits usually are

surrounded by upland areas underlain by till with
exposed bedrock outcrops. Till is an unsorted glacial
deposit that consists of material ranging in size from
clay to large boulders. Till yields little water to adjacent
streams in comparison to yields from coarse-grained
stratified drift. As a result, during summertime, streams
in till areas tend to have less flow per unit of drainage
area than streams in areas of coarse-grain stratified
drift, and some small streams in till areas may go dry
(Wandle and Randall, 1994).

Ries (1997) defined three hydrologic regions in
Massachusetts based on differences in August median
streamflow per square mile of drainage area (fig. 1).
These regions were the Western, the Eastern, and the
Southeast Coastal regions. The Western region was
defined by all major basins that drain to the
Connecticut River plus those west of the Connecticut
River Basin (basins 1 through 8 on fig. 1). The Eastern
region was defined as all basins east of the Western
region except Cape Cod, the Islands, the southern part
of the South Coastal Basin, and the eastern part of the
Buzzards Bay Basin, which define the Southeast
Coastal region. August median flows per square mile
were significantly higher, on average, in the Western
region than in the Eastern region.

Differences in August median streamflow per
unit area between the Western and Eastern regions
appeared to be more a function of climate and
physiography than surficial geology. Percentages of
stratified-drift deposits were generally lower in the
Western region than in the Eastern region, but August
median streamflows were higher in the Western region
than in the Eastern region. The higher low flows per
unit area in the Western region than in the Eastern
region is likely explained by the combination of lower
mean annual temperatures, higher mean elevations,
higher relief, higher precipitation, lower evapo-
transpiration, and lower areal percentages of wetlands
and water bodies in western Massachusetts than in
eastern Massachusetts.

The Southeast Coastal region is underlain
entirely by stratified-drift deposits, which are mostly
coarse grained. Surface-water drainage boundaries in
this region often do not coincide with contributing
areas of ground water for streams in the area. In
addition, dam regulations, diversions, or controls by
cranberry bogs affect most streams in the region. As a
result, insufficient data were available to define the
natural flow characteristics of streams in this region.
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ESTIMATING METHODS FOR
DATA-COLLECTION STATIONS

The USGS operates three types of data-
collection stations for which low-flow statistics can
be estimated. These include (1) streamgaging stations,
(2) low-flow partial record (or LFPR) stations, and
(3) miscellaneous-measurement stations. Methods
used to estimate streamflow statistics at data-
collection stations differ depending on the type of
statistic and on the type of station. Continuous records
of streamflow are obtained at streamgaging stations.
Streamflow statistics generally are determined directly
from the records for these stations using methods
described in the section “Low-flow statistics for
streamgaging stations.”

Low-flow partial-record and miscellaneous-
measurement stations are often established where
streamflow information is needed, but either (1) it is
not physically or economically feasible to continuously
monitor streamflows at the location, or (2) the amount
or accuracy of the streamflow information needed does
not require continuous monitoring at the location. At
LFPR stations, a series of streamflow measurements
are made during independent low-flow periods when
all or nearly all streamflow is from ground-water
discharge. Usually about 10 low-flow measurements
are obtained systematically over a period of years. Ries
(1999) summarized a network of LFPR stations
operated in Massachusetts during 1989 through 1996

as part of the three Basin Yield projects. Data for many
of the network stations are used in the analyses
described here.

Miscellaneous-measurement stations usually are
established to obtain streamflow data for hydrologic
studies of limited regional extent and short duration.
The number and streamflow range of measurements
made at these stations varies depending on the
objectives of the study. High-flow as well as low-flow
measurements commonly are made at miscellaneous-
measurement stations. Low-flow statistics can be
estimated for miscellaneous-measurement stations
when the number and range of low-flow measurements
collected at the stations approximates the requirements
for measurements at a LFPR station.

Many stations in Massachusetts have been
operated at different times as both LFPR stations and
miscellaneous-measurement stations. Methods used in
this study to estimate low-flow statistics for LFPR
stations and miscellaneous-measurement stations were
the same and are described in the section “Low-flow
statistics for low-flow partial-record stations.” Because
the data and analysis methods were the same, both
station types are referred to as LFPR stations for the
remainder of this report.

Low-Flow Statistics for
Streamgaging Stations

Daily mean flows for all complete climatic
years of record are used to determine flow-duration
and low-flow frequency statistics for streamgaging
stations. A climatic year begins on April 1 of the year
noted and ends on March 31 of the following year.
Daily mean flows for all complete Augusts for the
period of record are used to determine August median
flows. Daily mean flows for USGS streamgaging
stations in Massachusetts can be obtained by
downloading them from the World Wide Web address:
http://waterdata.usgs.gov/nwis-w/MA/, or by
contacting the Massachusetts—Rhode Island District
information officer at the address provided on the
back of the title page of this report.

The USGS has established standard methods
for estimating flow-duration (Searcy, 1959) and
low-flow frequency statistics (Riggs, 1972) for
streamgaging stations. The computer software
programs [OWDM, ANNIE, and SWSTAT can be used
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to format input data, manage and display data, and
complete the statistical analyses, respectively, required
to determine flow-duration and low-flow frequency
statistics for streamgaging stations (Lumb and others,
1990; Flynn and others, 1995). These programs can be
downloaded from the World Wide Web address:
http://water.usgs.gov/software/surface_water.html.

Flow-Duration Statistics

A flow-duration curve is a graphical
representation of the percentage of time streamflows
for a given time step (usually daily) are equaled or
exceeded over a specified period (usually the
complete period of record) at a stream site. Flow-
duration curves usually are constructed by first ranking
all of the daily mean discharges for the period of record
at a gaging station from largest to smallest, next
computing the probability for each value of being
equaled or exceeded, then plotting the discharges
against their associated exceedance probabilities
(Loaiciga, 1989, p. 82). The daily mean discharges
are not fit to an assumed distribution. Flow-duration
analysis can be done by use of the USGS software
described above or by use of most commercially
available statistical software.

Flow-duration statistics are points along a flow-
duration curve. For example, the 99-percent duration
streamflow is equaled or exceeded 99 percent of the
time, whereas the 50-percent duration streamflow is
equaled or exceeded 50 percent of the time. Strictly
interpreted, flow-duration statistics reflect only the
period for which they are calculated; however, when
the period of record used to compute the statistics is
sufficiently long, the statistics often are used as an
indicator of probable future conditions (Searcy, 1959).

Vogel and Fennessey (1994) presented an
alternative method for determining flow-duration
statistics that indicate future conditions. This method
requires determining flow-duration statistics for each
individual year of record at a gaging station, then using
the median of the annual values to represent the long-
term flow-duration statistics. Median annual flow-
duration statistics determined by use of this alternative
method tend to be higher than those calculated from the
entire period of record by use of the traditional
approach. The advantages of using the alternative
method over the traditional approach are that
confidence intervals can easily be attached to the

statistics and probabilities of recurrence (recurrence
intervals) of individual annual values can be analyzed.
A disadvantage of the approach is that generally at
least 10 years of record are needed to determine the
statistics with reasonable confidence.

Low-Flow Frequency Statistics

Low-flow frequency statistics are determined for
streamgaging stations from series of annual minimum
mean flows for a given number of days. The statistics
can be computed for any combination of days of
minimum mean flow and years of recurrence. For
example, the 7-day, 10-year low flow is determined
from the annual series of minimum 7-day mean flows
at a station. The mean flow for each consecutive 7-day
period is computed from the daily records, and the
lowest mean value for each year represents that year in
the annual series. The 7-day minimum mean flows are
usually fit to a log-Pearson Type IlI distribution to
determine the recurrence interval for an individual
7-day minimum mean flow (Riggs, 1972), although
other researchers sometimes have used other
distributions (Vogel and Kroll, 1989). The value that
recurs, on average, once in 10 years is the 7-day,
10-year low flow. The 7-day, 10-year low flow is used
by the U.S. Environmental Protection Agency and by
many state and local agencies to regulate waste-water
discharges into surface waters.

The USGS has, to a large extent, automated the
process of determining low-flow frequency statistics
for streamgaging stations. The computer program
SWSTAT (Lumb and others, 1990, p. 141) determines
the annual series of minimum mean flows, ranks them,
fits them to a log-Pearson type III distribution, and
plots the resulting line of fit through the annual values.
How well the data fit the distribution, and the ultimate
low-flow frequency values to be used, are left to the
judgment of the individual hydrologist. Usually at least
10 years of record are needed to determine the statistics
with reasonable confidence. The annual series should
be checked for trends, and corrected if necessary,
before the log-Pearson analysis is done. The output
from the analysis should be checked for outliers, and
corrected if necessary, before the frequency curve is
finalized.
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August Median Flows

August median flows at streamgaging stations
can be determined by two methods. The U.S. Fish and
Wildlife Service (USFWS) (1981) recommends
calculating August median streamflows as the median
value of the annual series of August monthly mean
streamflows for the period of record at a gaging station.
The USFWS uses the August median flow calculated in
this manner as the minimum streamflow required for
summertime maintenance of habitat for biota in New
England streams.

Charles Ritzi and Associates (1987) suggested
calculating August median flows as the median of the
daily mean flows for all complete Augusts during the
period of record at a streamgaging station. Kulik
(1990) and Ries (1997) also used this method for
calculating August median flows. This method
typically results in values of August median flows that
are somewhat lower than those determined by use of
the method suggested by the USFWS. The monthly
mean values used by the USFWS to calculate August
median flows tend to be skewed by infrequent storm
events that cause the monthly means to be larger than
the medians, thus “the median is a more useful statistic
than the mean for describing the central tendency” of
the daily data (Kulik, 1990).

Streamflow Statistics for
Streamgaging Stations with Short Records

Streamflow statistics are often needed for
streamgaging stations with short records that may not
reflect long-term conditions, and thus may not be
useful as indicators of future conditions. Streamflow
record extension or augmentation can be used to adjust
the records for these stations to reflect a longer period.
This is usually done by developing a relation between
the daily mean streamflows or the streamflow statistics
at the short-term station and the daily mean
streamflows or the streamflow statistics for the same
period at a nearby and hydrologically similar gaging
station with a long record.

Vogel and Kroll (1991) demonstrated the value
of augmenting streamflow records to obtain improved
estimates of low- and peak-flow frequency statistics
for streamgaging stations. They also described methods
that can be used for augmenting records to estimate
these statistics. Searcy (1959, p.12-14) and Ries
(1994a, p. 21-22) described methods that can be used

to extend the records for short-term streamgaging
stations to estimate flow-duration statistics that reflect
long-term conditions for the stations. These methods
are similar to those described below for estimating
low-flow statistics for LFPR stations.

Low-Flow Statistics for
Low-Flow Partial-Record Stations

Streamflow statistics for LFPR stations are
estimated by relating the low streamflow measurements
made at the stations to daily mean discharges on the
same days at nearby, hydrologically similar
streamgaging stations. Lines or curves of correlation
are developed between the same-day discharges at
the LFPR stations and the selected streamgaging
stations, and then the streamflow statistics for the
gaging stations are entered into the relations to
determine the corresponding streamflow statistics for
the LFPR stations. A mathematical correlation method
described by Hirsch (1982) is used when the relations
are linear. A graphical correlation method described
by Riggs (1972) and Searcy (1959) is used when
the relations are nonlinear. These methods were
recommended for use by the USGS Office of Surface
Water in Technical Memorandum No. 86.02, Low-
Flow Frequency Estimation at Partial-Record Sites,
issued December 16, 1985. Both methods assume that
the relation between the discharges at the LFPR station
and the streamgaging station remains constant with
time, thus the relation between the same-day flows can
be used to estimate streamflow statistics that represent
long-term conditions.

Medium- to high-range streamflow measure-
ments made at some LFPR stations can be useful for
estimating flow statistics near the median flow.
Commonly, however, measurements made in these
ranges need to be excluded from the analyses because
the measurements were made at times when flow was
rapidly changing, thus the measurements correlate
poorly with same-day mean flows at gaging stations.

Mathematical Method

A mathematical record-extension method known
as the Maintenance Of Variance Extension, Type 1
(MOVE.1) method (Hirsch, 1982) can be used to
estimate streamflow statistics for LFPR stations when
the relation between the logarithms of the same-day

Estimating Methods for Data-Collection Stations 9



A

_ s —
discharges at the LFPR station and a nearby gaging Y. =Y+ s—y(X —X), (1)

1

station is linear. The method is applied by first *

calculating logarithms-base 10 of the same-day flows

for the LFPR and gaging stations and graphing the and then retransforming the estimates by
values to ascertain the linearity of the relation. The exponentiating the values (107) to convert the

correlation coefficient is also computed as an indicator estimates into their original units of measurement.
of linearity. If the relation appears linear, the MOVE.1
method is used; if not, a graphical method is used, as
explained below.

The MOVE.1 relation between an LFPR station,
Hemlock Brook near Williamstown, Mass., and a

. streamgaging station, Green River at Williamstown,
When the graph of the data appears linear, the

means (Y and X) and standard deviations (s, and s,) of
the logarithms-base 10 of the same-day flows for the
LFPR and gaging stations and the logarithms-base 10
of the streamflow statistics (X;) for the gaging station

Mass., is shown as an example in figure 2. The line

through the data points was determined by inserting the
same-day flows for the gaging station into the MOVE.1
equation as the X; values to obtain estimated same-day

are calculated. Estimates of the streamflow statistics flows for the LFPR station, then connecting the points
(¥, ) for the LFPR station are obtained by inserting the to illustrate how the MOVE.1 estimates fit the original
calculated values into the MOVE.1 equation: data.

10

CORRELATION COEFFICIENT = 0.974

* SAME-DAY DISCHARGES
L 4 = MOVE.1 RELATION

HEMLOCK BROOK AT WILLIAMSTOWN, MASS.
DISCHARGE, IN CUBIC FEET PER SECOND

GREEN RIVER NEAR WILLIAMSTOWN, MASS. DISCHARGE, IN CUBIC FEET PER SECOND

Figure 2. Example MOVE.1 relation between a low-flow partial-record station, Hemlock Brook near
Williamstown, Mass., and a streamgaging station, Green River at Williamstown, Mass.
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Graphical Method

The graphical method (Searcy, 1959; Riggs,
1972) is used when curvature is apparent in the plot of
logarithms-base 10 of the same-day flows. The method
is applied by first plotting the original (non-log) values
of the same-day flows on log-log paper and drawing a
smooth curve through the plotted points that appears to
best fit the data. Next, the calculated streamflow
statistics for the gaging station are entered into the
curve of relation and corresponding values for the
LFPR station are read from the graph. Log-log plots
sometimes have extreme curvature in the very low
end of the relation. Because of this, it is sometimes
necessary to replot the data on arithmetic paper to
adequately define the relation in this range and to avoid
long downward extrapolations that would otherwise be
necessary with log-log plots.

The graphical relation between an LFPR station,
Hopping Brook near West Medway, Mass., and a
streamgaging station, West River near Uxbridge,
Mass., is shown as an example in figure 3. The curve
was fit through the data visually to minimize overall
differences between the observed and fit values.

100

Combining Estimates Determined
from Multiple Index Sites

Selection of individual gaging stations for
relation to a LFPR station is based on distance between
the stations and similarity of basin characteristics
between the stations. In Massachusetts, the measured
streamflows at a LFPR station usually will correlate
well with more than one gaging station. When this
happens, MOVE.1 or graphical relations between a
given LFPR station and each of several gaging stations
can be developed to estimate the streamflow statistics
for the LFPR station. This process results in multiple
estimates of the streamflow statistics for a single LFPR
station, when only a single best estimate is desired.

Tasker (1975) stated that when independent
multiple estimates of streamflow statistics are available
for a single station, the best estimate can be obtained
by weighting each individual estimate by its variance
and averaging the weighted estimates. This final
weighted estimate is best because its variance is less
than or equal to the variances of each of the
individual estimates.

10

0.1

HOPPING BROOK NEAR WEST MEDWAY, MASS.
DISCHARGE, IN CUBIC FEET PER SECOND

040 | I

] SAME-DAY DISCHARGES
== GRAPHICAL RELATION

—_

10 100

GREEN RIVER NEAR WILLIAMSTOWN, MASS. DISCHARGE, IN CUBIC FEET PER SECOND

Figure 3. Example graphical relation between a low-flow partial-record station, Hopping Brook near West
Medway, Mass., and a streamgaging station, West River near Uxbridge, Mass.

Estimating Methods for Data-Collection Stations 11



Calculated variances for each individual
estimate of the streamflow statistics for each LFPR
station were needed to obtain the final best estimates
for the stations. Variances were calculated by use of
the equation

Vg 1 M SEg o\2( M
= —|1 2
Vsu M{ +M—3+M—3+(SB’G)(M—3H

+b Vg, )

where:
Vsu is the sample variance of the streamflow
statistic at the LFPR station, in log units;
Vs is the sample variance of the streamflow
statistic at the gaging station, in log units;
Vr is the variance about the MOVE.1 or graphical
line of relation;
M is the number of base-flow measurements;
SEs  1is the standard error of the streamflow statistic
at the gaging station, which equals the square
root of Vg g:

b is computed as r(sp u/sB,G), where r is the
correlation coefficient between the low
streamflow measurements made at the LFPR
station and the same-day mean discharges at
the gaging station (the value of r can be set to
1 when MOVE.1 is used to obtain the
estimate), and sg ¢ is the standard deviation
of the logarithms-base 10 of the low
streamflow measurements made at the LFPR
station;

sp,c is the standard deviation of the logarithms-base
10 of the mean discharges at the gaging
station on the same days the low-flow
measurements were made at the ungaged
site; and

z is the number of standard deviation units
between the mean of the logarithms-base 10
of the same-day mean discharges at the
gaging station and the logarithm-base 10 of
the streamflow statistic at the gaging station.

Equation 2 is modified from an equation
developed by Hardison and Moss (1972) to determine
the variance of estimates of 7-day, T-year low flows
obtained from an ordinary-least-squares (OLS)
regression of the logarithms-base 10 of base-flow
measurements at a LFPR station to the logarithms-base
10 of same-day mean discharges at a nearby,

hydrologically similar gaging station. Modifications

to the Hardison and Moss equation were needed to
generalize its use for other streamflow statistics and to
allow for the MOVE.1 or graphical methods of line
fitting to be used rather than the ordinary-least-squares
method of line fitting. Assumptions for use of equation
2 are generalized from Hardison and Moss (1972):

1. The true relation between the logarithms of the
base-flow measurements at the LFPR station
and the same-day mean streamflows at the
gaging station is the same as the true relation
between the logarithms of the data from which
the low streamflow statistics are calculated. In
the case of the 7-day low-flow statistics, the
data are calculated from an annual series of
minimum 7-day mean flows. In the case of the
flow-duration and August median statistics, the
data are calculated from the daily mean flows.

2. The relation between the logarithms of the data
from which the low-flow statistics are
calculated is the same as the relation between
the flow statistics for the stations.

3. The time-sampling errors in the streamflow
statistics that are used to enter the regression
equation are independent of the variation in the
base-flow measurements used to define the
equation.

4. The logarithms of the measured streamflows at
the LFPR station and the same-day mean
streamflows at the gaging station follow a
bivariate normal distribution.

5. The M measurements made at the LFPR station
are statistically independent estimates of the
base-flow relation.

Hardison and Moss noted that the first four
assumptions appeared to be reasonable under the
conditions in which application of the original equation
2 was intended. These assumptions are reasonable for
the modified equation 2 as well. Hardison and Moss
also noted that assumption 5 could be satisfied by
applying criteria for using only those measurements
that can be reasonably assumed independent to define
the relation. The criterion usually applied is that the
base-flow measurements used in the relation should be
separated by significant storm events (Stedinger and
Thomas, 1985). Collection of low streamflow
measurements at LFPR stations in Massachusetts has
generally followed that criterion.
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When estimates are obtained for LFPR stations
from relations with more than one streamflow-gaging
station, the individual estimates, QOs, U (where i =1,
..., , and n is the number of individual estimates of
statistic S for LFPR station U) can be weighted by the
reciprocals of their variances, determined from
equation 2, to obtain minimum-variance estimates,

Qg , for each of the statistics from the equation
T w

> Qsu/Vsu)

Os u, = izln . (3)
> 1/Vsy)

i=1

Weighted variances, Vg ; , can be determined for the
. . W .
weighted estimates from the equation

Vsy =1/2(1/Vgy) (4)

i=1
Standard errors, SE¢ ;;, , in percent, for the weighted

estimates can be obtainéd from the equation (Stedinger
and Thomas, 1985, p. 18)

SEg v, = 100, /exp(5.3018V )~ 1 . (3)

Equation 2 does not account for errors inherent in the
discharge measurements made at the LFPR station or
in the mean daily discharges determined for the gaging
stations. In addition, the estimates obtained for an
LFPR station by use of the MOVE.1 or graphical
method with multiple gaging stations are not truly
independent because of cross correlation of the
streamflow records at the gaging stations. As a result,
the final estimates obtained using equations 2 and 3
may not truly be the best possible, and the true
variances and standard errors are somewhat larger than
those obtained using equations 4 and 5.

The equivalent years of record also can be
computed for estimates of streamflow statistics for the
LFPR stations. The equivalent years of record is the
length of time that a streamgaging station would need
to be operated at the location of the LFPR station to
obtain an estimate of the streamflow statistic with equal
accuracy. The equivalent years of record for LFPR
stations is computed from an equation developed by
combining equations 7, 8, and 9 in Hardison and Moss
(1972) and solving for the number of years of record.
The resulting equation is:

s 2
N = (85 (1))
' SB, G

2.,52,2
[lared) TRe)
MU K N; |

where all variables are as previously defined, and:

Ny is the equivalent years of record at the partial-
record station;

Ng 1is the years of record at the streamflow-gaging
station used in the relation,;

Isc 1is the standard deviation of the logarithms-base
10 of the observed flows (annual series for
frequency statistics or daily flows for
duration statistics) at the streamflow-gaging

station
k is from equation 9 of Hardison and Moss
(1972),
2 (M-4 20 .
k_Jr +(M_2)(1—r) ; and (7)

K is from equation 3 of Hardison and Moss
(1972),

K=(+7)
2 SE 2
1 M S.G M
/1 1+ + + : ; (8
{ M-3 M-3 (SBG](M—J} ®)
Rs is a correction factor that depends on the
streamflow statistic being estimated, and is
determined by combining the equation that

appears in table 1 of Hardison and Moss
(1972),

Rg = (SEg IN)/IgG s 9
with the equation

1+k5/2
SEs.6 =1Isg|—x— (10)

from Hardison (1969, p. D212) to obtain

2 2
Ry = 1+kg/2 . (11)

Subscripts have been changed from their original
appearance in equations 6 to 11 to generalize from
T-year statistics to other streamflow statistics. In
equations 10 and 11 above, kg is the number of
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standard deviation units between the streamflow
statistic and the mean of the data from which it is
calculated. From assumption 4 above, the annual series
of 7-day low flows and the daily mean streamflows
from which the flow-duration statistics and the August
median streamflows are calculated are distributed log-
normally, and thus kg can be obtained from a table of
standard normal deviates as appears in most statistical
textbooks. Values for the 99-, 98-, 95-, 90-, 85-, 80-,
75-, 70-, 60-, and 50-percent duration streamflows, the
August median streamflow, and the 7-day, 10- and
2-year streamflows are 2.3263, 2.0537, 1.6449, 1.2816,
1.0364, 0.8416, 0.6745, 0.5244, 0.2533, 0.0, 0.0,
1.2816, and 0.0, respectively (Iman and Conover, 1983,
p. 434-435). When estimates for LFPR stations are
obtained from relations with more than one
streamgaging station, the individual calculations of
equivalent years of record can be weighted by the
reciprocals of the variances of the estimated streamflow
statistics, determined from equation 2, then the
individual weighted equivalent years of record can be
averaged to obtain the final weighted equivalent years
of record for the LFPR station by substituting the
equivalent years of record estimates for the discharge
estimates in equation 3 above.

ESTIMATING METHODS FOR
UNGAGED STREAM SITES

Estimates of streamflow statistics often are
needed for sites on streams where no data are available.
The two methods used most commonly to estimate
statistics for ungaged sites are the drainage-area ratio
method and regression equations. The drainage-area
ratio method is most appropriate for use when the
ungaged site is near a streamgaging station on the same
stream (nested). Regression equations can be used to
obtain estimates for most ungaged sites. Additional
details on application of these methods is provided
below.

Drainage-Area Ratio Method

The drainage-area ratio method assumes that the
streamflow at an ungaged site is the same per unit area
as that at a nearby, hydrologically similar streamgaging
station used as an index. Drainage areas for the
ungaged site and the index station are determined from

topographic maps. Streamflow statistics are computed
for the index station, then the statistics (numerical
values) are divided by the drainage area to determine
streamflows per unit area at the index station. These
values are multiplied by the drainage area at the
ungaged site to obtain estimated statistics for the site.
This method is most commonly applied when the index
gaging station is on the same stream as the ungaged site
because the accuracy of the method depends on the
proximity of the two, on similarities in drainage area
and on other physical and climatic characteristics of
their drainage basins.

Several researchers have provided guidelines as
to how large the difference in drainage areas can be
before use of regression equations is preferred over use
of the drainage-area ratio method. Guidelines have
been provided for estimating peak-flow statistics, and
usually the recommendation has been that the drainage
area for the ungaged site should be within 0.5 and 1.5
times the drainage area of the index station (Choquette,
1988, p. 41; Koltun and Roberts, 1990, p. 6; Lumia,
1991, p. 34; Bisese, 1995, p. 13). One report (Koltun
and Schwartz, 1986, p.32) recommended a range of
0.85 to 1.15 times the drainage area of the index station
for estimating low flows at ungaged sites in Ohio. None
of these researchers provided any scientific basis for
use of these guidelines. R.E. Thompson, Jr. (U.S.
Geological Survey, written commun., 1999), however,
recently completed a study that provides evidence
supporting use of ratios between 0.33 and 3.0 for
streams in Pennsylvania.

Because of uncertainty in an appropriate range
for use of the drainage-area ratio method for streams in
Massachusetts, an experiment was designed to
determine the ratio range in which the method is likely
to provide better estimates of low streamflow statistics
than use of regression equations. Five river basins with
one or more continuous gaging stations in each basin
were chosen for the experiment to represent the varied
topography, geology, and precipitation of
Massachusetts. Two basins, the Green and the West
Branch Westfield, are in the mountainous western part
of the State; two basins, the Quaboag and the
Squannacook, are in the foothills of the central part of
the State; and one basin, the Wading, is in the flat,
low-lying landscape typical of eastern Massachusetts.

A total of 25 LFPR stations were established
upstream and downstream from 8 streamgaging
stations in the 5 basins. Most of the LFPR stations have
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smaller drainage areas than those for the streamgaging
stations because historically most streamgaging
stations in Massachusetts have been established near
the downstream ends of rivers. Locations and drainage
boundaries for the streamgaging stations and LFPR
stations are shown for each basin in figures 4A to 4E.
Station descriptions for the stations are in table 1.

Seven to ten discharge measurements were made
at each of the LFPR stations during 1994 and 1995.
The measurements were published in the Mass. annual
data reports for those years (Gadoury and others, 1995;
Socolow and others, 1996, 1997). The measurements,
along with historical measurements available at three
stations, were used to estimate streamflows at the 99-,
98-, and 95-percent durations and August median flows
for the stations using the methods described above for
LFPR stations. Estimates of the flow-duration statistics
were also derived for the stations using the drainage-
area ratio method and the regression equations
developed by Ries (1994b, 1997). The regression
equations presented later in this report were not used
because they were not yet available at the time of the
analysis.

Two gaging stations were available in some
basins for the analysis (table 1). To increase the sample
size for the analysis of the drainage-area ratio method,
drainage-area ratio estimates and regression-equation
estimates were determined for the streamgaging
stations in addition to the estimates determined from
the records for the stations. The drainage-area ratio
estimates were determined for each streamgaging
station by applying the flow per unit area for one
streamgaging station to the drainage area for the other
streamgaging station. The longest common period of
record available for the streamgaging stations in each
basin was used to compute the streamflow statistics for
the analysis to avoid differences in the statistics due to
differences in record length.

The Wading River Basin, unlike the other four
basins used in the experiment, has water withdrawals
and regulated streamflows in parts of the basin (see
table 1, remarks). It was chosen for use in the
experiment because the unregulated part of the basin is
the largest unregulated area in southeastern
Massachusetts. Discharges, drainage areas, and other
basin characteristics used to solve the regression
equations were adjusted for stations downstream from
the diversions and regulation to correct for these
activities. Of the seven stations (including one active

and one discontinued streamgaging station) at which
streamflow measurements were made in the Wading
River Basin, only three of the stations (01108490,
01108600, and 01108700) were used to compare
results of the different estimation methods. Discharges
and basin characteristics from stations 01108440 and
01108470 were subtracted from station 01108490, and
station 01108500 was subtracted from 01108700 to
determine discharges and basin characteristics
representative of the naturally flowing areas above
those stations. The adjusted discharges and basin
characteristics were used to estimate unregulated
streamflow statistics for the stations. Station 01108600
was not affected by regulation or diversions.

The drainage area for the Wading River below
the West Mansfield streamgaging station (station
01108500) and above the Norton streamgaging station
(station 01109000) is not affected by regulation or
diversions, whereas the drainage area above the West
Mansfield station is affected by regulation and
diversions. Streamflow statistics for the West Mansfield
station were subtracted from those for the Norton
station to obtain the streamflow statistics for the
naturally flowing part of the drainage area above the
Norton station.

The four streamflow statistics (99-, 98-, and
95-percent duration and August median streamflows)
estimated by the three different methods (correlation,
drainage-area ratio, and regression equation) for each
of the LFPR and streamgaging stations used in the
analysis are presented in table 7 (back of the report).
The estimates derived by correlation, shown in the
column labeled “Correlation method estimate or
computed,” were considered the best estimates
available for the LFPR stations for the analysis,
and they were compared to the estimates derived by
the other methods. The correlation estimates were
considered the best estimates because they were
derived from actual streamflow data for the stations,
whereas the drainage-area ratio and regression
estimates were derived indirectly based on an
assumed or statistical relation between the basin
characteristics for the LFPR stations and stream-
gaging stations. Statistics shown for streamgaging
stations in the column labeled “Correlation method
estimate or computed” were computed from daily-
flow records.
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Figure 4. Locations and drainage boundaries of low-flow partial-record stations and gaging stations in the (A) Squannacook,
(B) Wading, (C) Quaboag, (D) Green, and (E) West Branch Westfield River Basins, Massachusetts.
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Figure 4. Locations and drainage boundaries of low-flow partial-record stations and gaging stations in the (A) Squannacook,
(B) Wading, (C) Quaboag, (D) Green, and (E) West Branch Westfield River Basins, Massachusetts—Continued.
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Figure 4. Locations and drainage boundaries of low-flow partial-record stations and gaging stations in the (A) Squannacook,

(B) Wading, (C) Quaboag, (D) Green, and (E) West Branch Westfield River Basins, Massachusetts—Continued.
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Figure 4. Locations and drainage boundaries of low-flow partial-record stations and gaging stations in the
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Absolute percent differences between the
drainage-area ratio estimates and regression estimates,
and the data-based estimates (correlation estimates for
LFPR stations and calculated statistics for gaging
stations) were determined for each of the streamflow
statistics for each station. These absolute percent
differences for the four statistics were averaged for
each station to obtain the average percent difference for
the estimation method at the station (table 7). The
average absolute percent differences from the data-
based estimates for the drainage-area ratio method and
the regression equations are plotted against the
drainage-area ratio for the station (the drainage area for
the LFPR station divided by the drainage area for the
index gaging station) in figure 5. Smoothed curves are
plotted through each set of data to indicate the range of
ratios in which the drainage-area ratio method provides
generally better results than the regression equations.
The smoothed curves were obtained by use of a
LOWESS (LOcally-WEighted Scatter plot Smoother)
algorithm (Minitab, Inc., 1998b, pp. 15-20 to 15-25,
Cleveland, 1979).

The LOWESS curves indicate that differences
between the data-based estimates and the drainage-area
ratio method estimates are generally smaller than the
differences between data-based estimates and the
regression equation estimates when the ratio of the
drainage area for the LFPR station is within about 0.3
and 1.5 times the drainage area of the index gaging
station. This range of drainage area ratios was used to
separate the data into four groups based on estimation
method and whether the drainage-area ratio for the
location was within the noted range. The groups were
(1) drainage-area ratio estimates for stations with
drainage-area ratios less than 0.3 and greater than 1.5,
(2) drainage-area ratio estimates for stations with
drainage-area ratios between 0.3 and 1.5, (3) regression
estimates for stations with drainage-area ratios less
than 0.3 and greater than 1.5, and (4) regression
estimates for stations with drainage-area ratios between
0.3 and 1.5. Medians and standard deviations of the
absolute percent differences are presented for each
group in table 2, along with the medians and standard
deviations for all of the estimates, for all drainage-area
ratio estimates, and for all regression-equation
estimates.

POINT OMITTED FROM PLOT AT RATIO = 0.0915,
REGRESSION DIFFERENCE = 6.41, DRAINAGE- - -
AREA RATIO DIFFERENCE = 11.05

ABSOLUTE PERCENT DIFFERENCE, DIVIDED BY 100

LOWESS CURVE THROUGH DRAINAGE-AREA RATIO ESTIMATES
LOWESS CURVE THROUGH REGRESSION ESTIMATES
DRAINAGE-AREA RATIO ESTIMATES

REGRESSION ESTIMATES

1 1 1 1
0.05 0.1 0.2 0.5

1 2 5 10 20 50 100

RATIO OF LOW-FLOW PARTIAL-RECORD STATION DRAINAGE
AREA TO GAGING STATION DRAINAGE AREA

Figure 5. Relation of drainage-area ratio to average absolute percent difference in streamflow
statistics between data-based estimates and estimates derived from the drainage-area ratio method
(solid curve), and from the regression equations (dashed curve).
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Table 2. Medians and standard deviations of absolute percent
differences between streamflow statistics estimated using
available data and by using the drainage-area ratio method
and regression equations

[<, actual value is less than value shown; >, actual value is greater than value
shown]

Drainage- Median
9 Number absolute Standard
Group area . L
. ingroup percent deviation
ratio range :
difference
All estimates All 72 40.3 151.6
Drainage- All 36 349 186.0
arearatio  <0.3and> 1.5 20 65.7 240.8
method 03to 1.5 16 15.5 37.7
Regression All 36 43.2 108.9
equations < 0.3 and> 1.5 20 40.3 140.4
03t 1.5 16 45.5 48.6

Table 2 shows that the median absolute percent
difference for the drainage-area ratio method is about 8
percent lower than that for the regression equations
when all the data are considered; however, the standard
deviation for the drainage-area ratio method is much
larger than that for the regression equations. When
drainage-area ratios for the stations are between 0.3
and 1.5, the median difference for the drainage-area
ratio method is about 30 percent less and the standard
deviation is about 11 percent less than the
corresponding values for the regression equations.
When drainage-area ratios for the stations are less than
0.3 or greater than 1.5, the median difference for the
drainage-area ratio method is about 25 percent greater
and the standard deviation is about 100 percent greater
than the corresponding values for the regression
equations.

Statistical tests were done on the grouped data to
test for significant differences in the variances and
medians of the groups. Differences in variance were
tested by use of Levene’s test for homogeneity of
variances (Minitab, Inc., 1998b, p. 3-48 to 3-51).
Levene’s test was used because the data were not
normally distributed, and this test is applicable for any
continuous distribution. Although there are substantial
differences in variance among the groups, none of the
groups could be considered significantly different from
the others based on the test. Differences in medians
were tested by use of the Mann-Whitney rank-sum test
(Minitab, Inc., 1998b, p. 5-11 to 5-13). This test
showed that the median difference for the drainage-
area ratio estimates is significantly larger (p=0.052)

than the median difference for the regression equation
estimates when the drainage-area ratio is less than 0.3
or greater than 1.5. The test also showed that the
median difference of the drainage-area ratio estimates
is significantly less than (p=0.003) the median
difference of the regression equation estimates when
the drainage-area ratio is between 0.3 and 1.5.

On the basis of the above analysis, it should be
expected that the drainage-area ratio method will
provide estimates of streamflow statistics that are, on
average, as good as or better than estimates obtained
using the regression equations tested when the
drainage-area ratio is between about 0.3 and 1.5. It
should be noted, however, that this finding is based on
a comparison of differences between two types of
estimates (drainage-area ratio estimates and regression
equation estimates) and a third type of estimate
(correlation estimates) for the LFPR stations used in
the analysis. It was not possible to test the estimation
methods against only observed statistics for
streamgaging stations, as would be preferred, because
there were too few streamgaging stations available for
the analysis that were located on the same, unregulated
streams. The finding was also based on a comparison of
drainage-area ratio estimates with estimates from
regression equations that are now superseded by the
equations provided later in this report. Results would
likely differ somewhat if the new equations were used;
however, time and funding were not available to update
the analysis.

The upper limit of the drainage-area ratio range
in which the drainage-area ratio estimation method is
recommended for use over use of regression equations
is poorly defined because there are only two data points
(at 4.33 and 4.67) between ratios of 1.42 and 15.9.
Absolute percent differences were larger for the
drainage-area ratio estimates than for the regression
estimates at the drainage-area ratios of 4.33 and 4.67,
but the upper limit of the recommended range of
drainage-area ratios could be anywhere between 1.42
and 4.33. In addition, users of the drainage-area ratio
method also should consider that potential errors of
estimates for individual sites cannot be quantified. If a
standard error of estimate or confidence intervals are
needed, then it may be useful to use the regression
equations to obtain the estimates.
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Regression Equations

Multiple linear-regression analysis (regression
analysis) has been used by the USGS and other
researchers throughout the United States and elsewhere
to develop equations for estimating streamflow statis-
tics for ungaged sites. In regression analysis, a stream-
flow statistic (the dependent variable) for a group of
data-collection stations is statistically related to one or
more physical or climatic characteristics of the drain-
age areas for the stations (the independent variables).
This results in an equation that can be used to estimate
the statistic for sites where no streamflow data are
available. Equations can be developed by use of several
different regression analysis algorithms. The various
algorithms use different methods for minimizing differ-
ences between the values of the dependent variable for
the stations used in the analysis (the observed values)
and the corresponding values provided by the resulting
regression equation (the estimated or fitted values).
Choice of one algorithm over another depends on the
characteristics of the data used in the analysis and on
the underlying assumptions for use of the algorithm.

Equations obtained by use of regression analysis
take the general form

Y, = by+b X, +b,X,+...+b,X,+¢g;, (12)

where Y is the estimate of the dependent variable for
site i, X1 to X, are the n independent variables, bg to b,
are the n + 1 regression model coefficients, and €; is the
residual error (difference between the observed and
estimated value of the dependent variable) for site i.
Assumptions for use of regression analysis are

(1) equation 12 adequately describes the relation
between the dependent and the independent variables,
(2) the mean of the ¢; is zero, (3) the variance of the g;
is constant and independent of the values of X, (4) the
€; are normally distributed, and (5) the €; are
independent of each other (Iman and Conover, 1983,
p- 367). Regression analysis results must be evaluated
to assure that these assumptions are met.

Streamflow and basin characteristics used
in hydrologic regression usually are log-normally
distributed; therefore, transformation of the variables
to logarithms is usually necessary to satisfy regression
assumption 2. Transformation results in a model of
the form

logY, = by+ b logX, + bylogX, + ...
+b,logX, +¢;. (13)

The algebraically equivalent form when logarithms-
base 10 are used in the transformations and the
equation is retransformed to original units is:

Y; = 100(xPy(x%)...(xby 105, (14)

The Generalized-Least-Squares (GLS)
regression algorithm (Tasker, 1989) was developed
for use in regression analysis of peak- and low-flow
frequency statistics, such as the 100-year peak flow
and the 7-day, 10-year low flow, because streamflow
data are correlated spatially and in time. Thus,
assumption 5 for use of regression is not strictly
satisfied in hydrologic regressions when the most
commonly used form of regression analysis, Ordinary-
Least-Squares (OLS), is used. Tasker and Stedinger
(1989) demonstrated that GLS analysis is theoretically
most appropriate and generally provides the best
results when used for hydrologic regressions. GLS
allows the weight given to each station used in the
analysis to be adjusted to compensate for spatial
correlation and differences in record length among the
stations. Because GLS was developed specifically for
use with flow-frequency statistics, however, it requires
substantial extra effort to use it for regression with
flow-duration statistics (Ries, 1994b)

Vogel and Kroll (1990) used GLS to develop
a regression equation to predict 7-day, 10-year low
flows for Massachusetts streams; however, they found
that the equation parameters (bg to b,) were nearly
identical when either OLS or GLS was used to develop
the equation even though OLS does not correct for
differences in record length or cross-correlation among
the stations used in the analysis. In addition, Vogel and
Kroll (1990) found that prediction errors obtained
when GLS was used were only marginally smaller than
those obtained when OLS was used.

Weighted-Least-Squares regression analysis
(WLS) was used to develop the equations presented in
this report for estimating the 99-, 98-, 95-, 90-, 85-,
80-, 75-, 70-, 60-, and 50-percent duration flows; the
7-day, 10- and 2- year low flows; and the August
median flow. WLS can compensate for differences in
record length, but it does not correct for cross-
correlation among the stations used in the analysis.
Stedinger and Tasker (1985) concluded that gains in
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model precision when GLS is used instead of WLS
increase with decreasing standard error of estimate and
increasing cross correlation. WLS and GLS models
with large standard errors and low cross correlations
were nearly identical. Because Vogel and Kroll (1990)
found cross correlation of data they used in their
analysis was only 0.35, equations for predicting low-
flow statistics for Massachusetts streams using WLS
should have model precision that is nearly the same as
equations developed using GLS. Additionally, the WLS
algorithm can easily be used to adjust the weights for
stations used in the analysis to compensate for non-
constant variance of the regression residuals when this
is necessary to avoid a violation of regression
assumption 3.

When several independent variables are being
considered for use in a regression analysis, usually a
variable-selection algorithm is necessary to aid in
determining which combination of the independent
variables provides the best estimates of the dependent
variable. Neter and others (1985, p. 421-429) describe
an all-possible-regressions algorithm that examines all
possible combinations of the independent variables and
ranks them according to some criterion. This algorithm
was used for the Basin Yield studies to select subsets of
the independent variables for inclusion in the final
regression equations, with minimization of Mallow’s
C)p used as the selection criterion (Neter and others,
1985, p. 426-428). These subsets were further
analyzed using WLS regression analysis to select a
final model for each analyzed streamflow statistic. The
final models were selected on the basis of the following
statistical parameters: (1) Mallow’s C), statistic;

2) Ri 4; - the percentage of the variation in the
dependent variable explained by the independent
variables, adjusted for the number of stations and the
number of independent variables used in the regression
analysis; (3) the mean square error (MSE), the sample
model error variance of the estimates for the stations
included in the analysis; and (4) the PRESS statistic, an
estimate of the prediction error sum of squares
(Montgomery and Peck, 1982, p. 255). Diagnostic
checks were done to test for model adequacy and
violations of assumptions for regression analysis. The
independent variables selected for the final models had
to be statistically significant at the 95-percent
confidence level, and the signs and magnitudes of the
coefficients had to be hydrologically reasonable.

Equation 13 provides unbiased estimates of the
mean response of the dependent variable, meaning that
the expected value of €; is zero. However, equation 13
yields estimates of the logarithm-base 10 of the
dependent variable when what is desired is estimates in
their original units of measure. Equation 14 is a
retransformation of equation 13 that produces
estimates in the desired units, but it predicts the median
rather than the mean response of the dependent
variable, and thus it is biased. In the case of streamflow
data, the median tends to be lower than the mean.

Several investigators have discussed the
problems of bias in retransformed logarithmic
equations and proposed various bias-correction factors
(BCF) as solutions (Bradu and Mundlak, 1970; Duan,
1983; Ferguson, 1986; Koch and Smillie, 1986; Cohn
and others, 1989; Gilroy and others, 1990). Duan’s
“smearing estimate” was used as the BCF in previous
Basin Yield studies (Ries, 1994a, 1994b, 1997) by
replacing the error term of equation 14 with the mean
error of the retransformed residuals. This BCF is
advantageous in that it does not require normally
distributed regression residuals and is simple to
calculate.

Cohn and others (1989) show that if the residuals
are normally distributed a BCF developed by Bradu
and Mundlak (1970) is optimal, in that it provides
Minimum Variance Unbiased Estimates (MVUE) of
the dependent variable. Gilroy and others (1990)
demonstrate that the MVUE estimator and Duan’s
smearing estimator are about equally effective at
eliminating retransformation bias, however the MVUE
estimator has the advantage of being unbiased
regardless of the number of stations used in the
analysis. Equations for computing the MVUE
estimator are provided in Cohn and others (1989) and
in Gilroy and others (1990). Because of their
complexity, they are not reproduced here. Cohn and
others (1989) also provided a FORTRAN program for
computing the MVUE BCEF. This program was used to
determine MV UE factors for the regression equations
provided later in this report. Smearing estimate BCFs
were also determined for the regression equations.
Estimated streamflow statistics for the stations used in
the regression analyses were determined from
equations using both types of BCFs, and the means of
the estimates were compared against the means of the
observed data. The means of the MVUE estimates were
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generally closer to the means of the observed data than
the means of the smearing estimates, thus the MVUE
estimates were used in the final equations.

Data Base Development

Streamflow statistics and basin characteristics
were included in the regression analyses for 37 gaging
stations and 107 LFPR stations. Streamflows at all of
the stations included in the analyses were essentially
unregulated during low streamflow periods. Thirty-four
streamgaging stations were in Massachusetts and three
were in bordering states (two in Rhode Island and one
in Connecticut) but had more than two-thirds of their
drainage areas in Massachusetts. Available records
through climatic year 1995 were used to compute the
streamflow statistics for the gaging stations. Record
lengths range from 2 to 83 years, with a median of 27
years (table 3). Streamflow statistics were also
computed for 14 other streamgaging stations that were
not used in the analyses but were used to estimate
streamflow statistics for the LFPRs. Names and
descriptions of the streamgaging stations are in table 3.
Locations of the streamgaging stations and the LFPR
stations are shown in figure 1.

All 107 LFPR stations used in the analyses were
in Massachusetts. Names and descriptions of the LFPR
stations are in table 8 (at back of report). The LFPRs
had from 8 to 36 streamflow measurements available
for relation to streamgaging-station discharge records,
with a median of 14 measurements. One-quarter of the
LFPR stations had 10 or fewer measurements, and one-
quarter had 18 or more measurements. Calculated
streamflow statistics in cubic feet per second for the
streamgaging stations and estimated streamflow
statistics for the LFPR stations used in the analyses,
along with variances in base-10 logarithms, standard
errors in percent, and years of record for streamgaging
stations or equivalent years of record for LFPR stations
are provided in table 9 (at back of report). These
statistics were calculated or estimated using the
methods described earlier in this report.

Basin characteristics measured for use in the
analyses were selected on the basis of their theoretical
relation to differences in flow magnitudes of streams,
results of previous studies in similar hydrologic
environments, and on the ability to measure them. The
characteristics measured were drainage area, in square
miles; areas of stratified drift, wetlands, and water
bodies, in square miles; total length of streams, in

miles; maximum, minimum, and mean basin elevation,
in feet; maximum, minimum, and mean elevation in
stratified drift, in feet; and mean basin slope, in
percent. The measured basin characteristics for the
stations used in the regression analyses are provided
in table 10 (at back of the report).

All basin characteristics were measured from
digital-map data using an automated GIS procedure
developed for the Basin Yield studies. The automated
procedure was created using the AML programming
language of the ARC/INFO GIS software
(Environmental Systems Research Institute, Inc.,
1990). The automated procedure determines the
drainage-basin boundary for any selected site on a
Massachusetts stream and creates a digital data layer of
the basin boundary. The procedure determines the
drainage-basin boundary for the site, then overlays the
boundary on the other digital data layers to determine
the other basin characteristics for the site. The digital
data layers used by the procedure include (1) drainage
subbasins at 1:24,000 scale, (2) hydrography at
1:25,000 scale, (3) surficial geology at 1:125,000 scale,
and (4) Digital Elevation Models (DEMs) at 1:25,000
scale and 1:250,000 scale. These data layers are
documented by and are available from MassGIS
(http://www.state.ma.us/mgis) as separate products.
They have also been packaged into a watershed library
(http://www.state.ma.us/mgis/ix_wat.htm), which also
contains several derivative data layers needed for using
the automated procedure.

The drainage subbasins data layer includes
drainage-basin boundaries for about 2300 locations in
Massachusetts and areas in other states that contribute
streamflow to Massachusetts. Subbasin boundaries for
most USGS data-collection stations are included in the
data layer. The subbasin boundaries were delineated by
the USGS and digitized by MassGIS, and average
about 4 mi? in extent.

The hydrography data comprise three layers,
one each for streams, water bodies, and wetlands.
These data were scanned from Mylar separates of the
three types of blue-line features from 1:25,000-scale
USGS topographic quadrangle maps. The streams
were enhanced by adding centerlines through the
water bodies, wetlands, and streams represented on
the maps by double lines. This enhancement allows
accurate measurements of total stream length to be
obtained, and also creates a stream network that
enables flow routing.
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Table 3. Descriptions of streamgaging stations used in the regression analysis and for correlation with low-flow partial record
stations, or both

[Period of record: Periods of record shown are based on climatic years, which begin on April 1 of the year noted. The word “present” refers to the year of
publication for this report (2000). No., number]

Station Latitude Longitude . Period of
oy 7 Station name Remarks
No. ° ° record

Streamgaging stations used in the regression analysis and for correlation with low-flow partial-record stations

01096000 423803 713930 Squannacook River near West Groton,  1950—present Occasional regulation by mill upstream

Mass.
01096910 422704 71 13 43 Boulder Brook at East Bolton, Mass. 1972-82 -
01097300 423039 712425 Nashoba Brook near Acton, Mass. 1964—present --
01100700 4248 41 71 01 59 East Meadow Brook near Haverhill, 1963-73 -
Mass.
01101000 424510 705646 Parker River at Byfield, Mass. 1946—present Occasional regulation by mill and ponds
01105600 421125 705643 Old Swamp River near South 1966—present --

Weymouth, Mass.
01106000 41 33 30 71 07 47 Adamsville Brook at Adamsville, R.1. 1941-77 -
01107000 420341 71 0359 Dorchester Brook near Brockton, Mass. 1963-73 -

01109200 415246 711518 West Branch Palmer River near 1962-73 --
Rehoboth, Mass.
01111200 420617 713628 West River at West Hill Dam near 1962-89 Flood-control dam upstream

Uxbridge, Mass.

01111300 415852 714111 Nipmuc River near Harrisville, R.I. 1964-90, -

1994—present
01162500 424057 7206 56 Priest Brook near Winchendon, Mass. 1919—present  No daily record during August 1936
01165500 423610 722136 Moss Brook at Wendell Depot, Mass. 1917-81
01166105 42 3539 722141 Whetstone Brook at Wendell Depot, 1986-90 -

Mass.
01169000 4238 18 72 43 32 North River at Shattuckville, Mass. 1940—present Occasional small diurnal fluctuation
01169900 4232 31 72 41 39 South River near Conway, Mass. 1967—present Small diurnal fluctuation since 1982
01170100 424212 724016 Green River near Colrain, Mass. 1968—present --
01171500 421905 723921 Mill River at Northampton, Mass. 1939—present --
01171800 421809 724116 Bassett Brook near Northampton, Mass. 1963-73 --
01173260 422352 720851 Moose Brook near Barre, Mass. 1963-73 --
01174000 422842 722005 Hop Brook near New Salem, Mass. 1948-81 --
01174050 422849 721327 East Branch Fever River near Petersham, 1984-85 --
Mass.
01174565 422718 722256 West Branch Swift River at Shutesbury, 1984-85 --
Mass.

01174900 422008 722212 Cadwell Creek near Belchertown, Mass. 1962—present --
01175670 421554 720019 Sevenmile River near Spencer, Mass. 1961-present Occasional regulation by ponds
upstream

01176000 421056 721551 Quaboag River at West Brimfield, Mass. 1913—present Flood-retarding reservoirs upstream

01180000 421727 725215 Sykes Brook at Knightville, Mass. 1946-72 --
01180500 421531 725223 Middle Branch Westfield River at Goss  1910-89 Data for August 1965-66 not used due
Heights, Mass. to construction of flood-control

reservoir upstream

Estimating Methods for Ungaged Stream Sites 29



Table 3. Descriptions of streamgaging stations used in the regression analysis and for correlation with low-flow partial record
stations, or both—Continued

Station
No.

Latitude

orn

Longitude

orn

Station name

Period of
record

Remarks

Streamgaging stations used in the regression analysis and for correlation with low-flow partial-record stations—Confinued

01180800
01181000

01187400
01197015

01197300
01198000

01331400
01332000

01333000

421549
4214 14

420203
423112

422059
421131

423520
4242 08

424232

7302 48
72 53 46

72 5549
731348

73 17 56
732328

73 06 48
73 05 37

7311 50

Walker Brook near Becket Center, Mass.

West Branch Westfield River at
Huntington, Mass.

Valley Brook near West Hartland, Conn.

Town Brook at Bridge Street,
Lanesborough, Mass.

Marsh Brook at Lenox, Mass.

Green River near Great Barrington,
Mass.

Dry Brook near Adams, Mass.

North Branch Hoosic River at North
Adams, Mass.

Green River at Williamstown, Mass.

1963-76
1936—present

1941-71
1981-82

1963-73

1952-70, 1994,
1995
1963-73

1932-89

1950—present

Infrequent small diurnal fluctuation

Infrequent small diurnal fluctuation

Streamgaging stations used for correlation with low-flow partial-record stations, but not used in the regression analysis

01073000
01105730
01105870

011058837

01109000

01109403

01118000

01121000

01184490
01187300

01188000

01197000

01198500
01199050

43 08 55
4206 02
4159 27

413532

415651

41 49 51

4129 53

4150 37

415450
4202 14

414710

422810

420126
4156 32

70 57 56
7049 23
7044 03

7030 30

7110 38

7121 06

714301

7210 10

7233 00
725622

72 5755

731149

732032
732329

Oyster River near Durham, N.H.
Indian Head River at Hanover, Mass.
Jones River at Kingston, Mass.

Quashnet River at Waquoit Village,
Mass.

Wading River near Norton, Mass.

Ten Mile River at East Providence, R.I.
Wood River at Hope Valley, R.I.

Mount Hope River near Warrenville,
Conn.

Broad Brook at Broad Brook, Conn.

Hubbard River near West Hartland,
Conn.

Burlington Brook near Burlington,
Conn.

East Branch Housatonic River at
Coltsville, Mass.

Blackberry Brook at Canaan, Conn.
Salmon Creek at Lime Rock, Conn.

1935—present
1967—present
1967—present

1989—present

1926—present

1987—present
1942—present
1941—present
1962—present

1939-55,
1957—present

1932—present

1936—present

1950-71
1962—present

Some regulation by mills and ponds

Regulation by pond and cranberry bogs.
Ground- and surface-water drainage
boundaries do not coincide

Some regulation by cranberry bog.
Ground- and surface-water drainage
boundaries do not coincide

Regulation by lakes and ponds.
Diversions to and from basin for
municipal supplies

Regulations and diversions from
reservior

Seasonal regulation by pond since 1968.
Regulation at low flow until 1952

Occasional regulation by ponds

Regulation by reservoir and mill

Flow regulated by powerplants and
reservoir. Diversion for municipal

supply
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The surficial geology data layer includes seven
categories: (1) sand and gravel deposits, (2) till or
bedrock outcrops, (3) sandy till over sand, (4) end
moraines, (5) large sand deposits, where distinguished
from sand and gravel deposits, (6) fine-grained
deposits, and (7) floodplain alluvium. The automated
procedure determines the total area in each category
within the drainage-basin area. Each category was
tested separately as a basin characteristic and in
combination with other categories in preliminary
regression analyses.

The 1:25,000-scale DEM data were used to
define or aid in defining drainage-basin boundaries for
locations on streams where basin characteristics and
streamflow statistics were needed. The DEM data used
for the boundary delineations were processed so that
the stream network derived from the DEMs would con-
form exactly with the data layer of streams derived
from the USGS topographic maps. This was necessary
to assure correct automatic delineation of drainage
boundaries. When a user of the automated procedure
selects a location on a stream for which no boundary
exists in the subbasin boundary data layer, the modified
DEMs are used to determine the boundary for the loca-
tion up to the points at which the new boundary inter-
sects existing boundaries in the subbasin boundary data
layer. The previously defined boundaries are then used
to define the remainder of the boundary and the drain-
age area for the new location. This process minimizes
reliance on the DEMs for determining drainage bound-
aries for selected locations, however drainage bound-
aries for some small basins are determined entirely
from the modified DEMs. The original (un-processed)
1:25,000-scale DEMs were used to determine mini-
mum, mean, and maximum elevations in the drainage
basin and also in the stratified-drift areas in the basin.
The 1:250,000-scale DEMs were used to compute
mean basin slopes, in percent.

Some of the measured basin characteristics were
combined to determine additional characteristics for
use in the analyses. These characteristics included
(1) relief, in feet, computed by subtracting the mini-
mum from the maximum basin elevation; (2) relief in
stratified-drift areas, in feet, computed by subtracting
the minimum from the maximum elevation in the strat-
ified-drift areas within the basin; (3) GWHEAD, in
feet, a surrogate used in previous Basin Yield studies
for the effective head in the stratified drift, computed
by subtracting the minimum from the mean basin ele-
vation; (4) drainage density, in miles per square mile,

computed by dividing the total stream length by the
basin area; (5) percentage of water bodies, computed
by dividing the area of water bodies by the basin area,
and multiplying the result by 100; (6) percentage of
wetlands, computed by dividing the area of wetlands
by the basin area, and multiplying the result by 100;
(7) percentage of storage, computed by adding the
areas of wetlands and water bodies, dividing by the
basin area, and multiplying the result by 100; (8) total
percentage of stratified drift, computed by dividing the
total area of surficial geology categories 1, 5, 6, and 7
by the basin area, and multiplying the result by 100;
(9) total drift per unit stream length, in square miles per
mile, computed by dividing the total area of surficial
geology categories 1, 5, 6, and 7 by the total stream
length; (10) percent coarse-grained drift, computed by
dividing the area of surficial geology categories 1, 5,
and 7 by the basin area, and multiplying the result by
100; and (11) coarse-grained drift per unit stream
length, in square miles per mile, computed by dividing
the area of surficial geology categories 1, 5, and 7 by
the total stream length.

Several of the stations that were used in the
regression analyses were also used in the drainage-
area-ratio analysis described previously. In some cases,
the streamflow statistics shown for these stations in
table 7 differ from those shown in table 10, and the
basin characteristics shown in table 9 differ from those
shown in table 1. The streamflow statistics differ
because the regression analyses were done two years
after the drainage-area-ratio analysis was done, and
during that time period the methods for determining
streamflow statistics for the LFPR sites was improved,
and in some cases additional streamflow measurements
were made at the sites. The basin characteristics differ
because the data layers, GIS methods, and regression
equations used for the drainage-area ratio analysis were
those described by Ries (1994b, 1997), and they differ
from the data layers, GIS methods, and equations
described in this report. Values shown in tables 9 and
10 supersede those shown in tables 1 and 7.

Development of the Equations

Regression equations for predicting the 99-, 98-,
95-, 90-, 85-, 80-, 75-, 70-, 60-, and 50-percent
duration flows; the 7-day, 10- and 2- year low flows;
and the August median flow were developed using
WLS regression, as described above. The equations are
presented in table 4, along with the number of stations
used in the analysis and several measures of model
adequacy.
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Table 4. Summary of regression equations developed for estimating low-flow statistics for Massachusetts streams

[Statistic: Px is the xx-percent duration flow, Q7,y is the 7-day, y-year low flow, Augs is the August median flow, all in cubic feet per second.
Equation: DA is drainage area (square miles); SL is mean basin slope (percent); DR/ST is area of stratified drift per unit of total stream length (square miles
per mile); REG is region, O for eastern, 1 for western. Ra,%j: Coefficient of determination (percent). SE, and SEp: Average standard errors of estimate and pre-

diction, respectively (percent). MAD: Median absolute deviation (percent)]

Number
Statistic Equation of RZ; SE, SE, MAD

stations
Pso 0.955(DA)!-020 87 98.1 17.3 17.6 13.4
Pso 0.763(DA)-05%DR/ST + 0.1)0-123 97 97.6 19.2 19.8 15.5
P70 0.607(DA)Y-O7DR/ST + 0.1)0-357100-12L(REG) 115 96.7 22.7 23.5 17.8
P75 0.509(DA)-080(DR/ST + 0.1)0-432100-158(REG) 123 95.9 25.0 25.8 20.6
Pso 0.507(DA)!-060(SL)0- 191 (DR/ST + 0.1)0-693100- 145(REG) 129 95.2 27.3 28.4 18.8
Pgs 0.365(DA)-080(SL)0255(DR/ST + 0.1)0-746100-159(REG) 133 95.0 30.8 31.9 21.0
Poo 0.329(DA)1-080(S1,)0-396( DR/ST + 0.1)0-985100- 160(REG) 132 94.0 35.2 36.6 26.8
Pos 0.171(DA)129(SL)045T(DR/ST + 0.1)0-999100-190(REG) 126 92.1 43.7 45.6 31.0
Pog 0.116(DA)Y 13S0 2(DRIST + 0.1)1:030100-247(REG) 124 87.8 57.9 60.3 35.1
Pggy 0.082(DA)!-160(S1)0427(DR/ST + 0.1)1:050100-255(REG) 119 86.7 62.4 65.1 37.3
Q72 0.173(DA) ! 130(SL)O-272(DR/ST + 0.1)0-858100- 199(REG) 119 88.5 473 49.5 28.0
Q710 0.080(DA)Y70(SLYOSI4(DR/ST + 0.1)1-180100-260(REG) 114 84.4 67.7 70.8 36.7
Augso  0.418(DA)1-080(SLYO1TS(DR/ST + 0.1)0-745100- 192(REG) 131 95.1 315 33.2 23.1

The measures of model adequacy include (1) the
coefficient of determination, otherwise known as the
adjusted R-squared (Ri 4j )3 (2) the average standard
error of estimate, SE,, in percent; (3) the average
standard error of prediction, SE), in percent; and
(4) the median absolute deviation (MAD), in percent.
The Ri 4; 18 ameasure of the proportion of the variation
in the dependent variable that is explained by the
independent variables, adjusted for the number of
stations and the number of independent variables used
in the analysis. The SE, is a measure of the average
precision with which the regression equations estimate
the streamflow statistics for stations used in the
analyses, whereas the SE), indicates the average
precision with which the equations can be used to
estimate streamflow statistics for ungaged sites with
basin characteristics similar to those for the stations
used in the regression analyses. About 68 percent of
streamflows estimated by using regression equations
will have errors within the noted average standard
errors. Half of the regression-equation estimates for
stations used in the analyses had absolute errors, in
percent, that were greater than the MAD, and half of
them were less than the MAD.

The number of stations used in the analyses
ranged from 87 (34 streamgaging stations and 53 LFPR
stations) for the equation for the 50-percent duration to

133 (34 streamgaging stations and 99 LFPR stations)
for the equations for the 85- percent duration. The
number of stations differed because limits were placed
on the standard errors of estimate allowed for the LFPR
stations used in the analysis, and because some stations
were removed from the analyses because they were
outliers. Limits of standard errors of estimate set for
inclusion of LFPR stations in the analyses were 30
percent for the 99-percent duration flow and the 7-day,
10-year low flow; 25 percent for the 98-percent
duration flow; 20 percent for the 95-percent duration
flow and the 7-day, 2-year low flow; and 15 percent for
all other statistics. The limits were set higher for the
lower flows because, for the same error in flow in cubic
feet per second, the percentage error increases as the
actual flow decreases. Streamflow statistics were
omitted from table 9 for stations not used in the
regression analyses.

Weighting Procedure

According to Montgomery and Peck (1982,
p- 99), when observations of the dependent variable in
a regression analysis have different accuracies, the
individual observations should be assigned weights that
are inversely proportional to their variances. Because
of this, weights for the stations used in the regression
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analyses were initially assigned as the reciprocal of the
variances of the streamflow statistics, shown for each
statistic for each station in table 9. However, weighted
residuals from initial regression analyses using these
weights were not normally distributed, as stations with
very large or small variances relative to the others
tended to be outliers. Plots of the weighted residuals
showed that the LFPR stations mostly formed a large,
dense cluster, whereas the gaging stations were more
scattered. This clustering of LFPR stations was more
pronounced for the lower (in flow) flow-duration
statistics than for the higher flow-duration statistics;
this was caused by the fact that variances for the flow-
duration statistics for the LFPR stations were mostly
substantially higher than those for the streamgaging
stations. Variances for the streamgaging stations and
the LFPR stations were similar for the 7-day, 2- and
10-year low-flow frequency statistics, but very high or
low variances for individual stations still caused those
stations to be outliers, thus causing non-normal
residuals. Because of this, another weighting scheme
was needed that was theoretically reasonable, would
reduce the number of weight-induced outliers, and
would not cause the weighted residuals for the LFPR
and streamgaging stations to form separate clusters.
Record length often has been used in hydrologic
regression analyses as an easily calculated surrogate to
weight the stations according to differences in the
accuracy of their streamflow statistics. Record length is
used to adjust the weights for the stations in the GLS
regression algorithm (Tasker, 1989). Record length can
be used for the weights because the variance of a
streamflow statistic at a streamgaging station is highly
inversely related to the record length for the station.
When LFPR stations are used along with streamgaging
stations in a regression analysis, however, appropriate
weighting of the LFPR stations becomes a problem.
Equivalent years of record, computed using
equation 6, could be used to weight the LFPR stations
used in the regression analyses, but equivalent years of
record is not highly related to the variance of a statistic
for a LFPR station. For example, based on a linear
regression, the reciprocal of the variance of the
75-percent duration flow explains about 80 percent of
the variation in the years of record for the streamgaging
stations used in this study, but it explains only about
17 percent of the variation in the equivalent years of
record for the LFPR stations. The other parameters in
equation 6 explain most of the remaining variation in
equivalent years of record for the LFPR stations. As a

result, the variances of a statistic for two LFPR stations
can be the same, but their equivalent years of record
can be very different.

Equation 6 tends to produce estimates of
equivalent years of record that are higher, on average,
than the actual years of record for a streamgaging
station with the same variance as that of the LFPR
station. Because of this, if years of record (actual and
equivalent) were to be used alone as the weights in the
regression analysis, the LFPR stations would have
larger influence in the analysis than the streamgaging
stations in relation to the accuracies of the statistics for
the stations.

Several potential weighting schemes were tested.
The weights used in the regression analyses for the
flow-duration statistics and the August median were
computed using the equation

_ N/mean(N)

B V ./mean(V ) (1)

where W is the weight, N is either the actual years of
record for streamgaging stations or the equivalent years
of record computed using equation 6 for LFPR
stations, and V. is the variance of the streamflow
statistic for the station computed from regression
equations that relate the variance to the magnitude of
the streamflow statistics. A separate regression
equation was computed for each statistic. Dividing N
and V. by their means removes differences in the scales
of the variables, yet maintains their spread. Use of
variances computed from regression equations in place
of the actual calculated variances resulted in (1) similar
variances for a given magnitude of streamflow for both
the streamgaging stations and the LFPR stations, (2) a
single population of weighted statistics rather than
separate populations for streamgaging stations and
LFPR stations, (3) elimination of outliers created by
some stations having much larger or smaller variances
than the others, and (4) correction for non-constant
variance of the regression residuals resulting from
greater spread of the data for stations with small flows
than for stations with large flows.

The weights used in the regression analyses for
the 7-day, 2- and 10-year low flows were computed by
use of the equation

W = 1/(V./mean(V,)) . (16)
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These weights proved to be adequate for
developing the equations for the 7-day, 2-
and 10-year low flows because the
variances of the flow statistics for the
LFPR stations and the streamgaging
stations used in the analyses were similar,
and clustering of the weighted LFPR
stations did not occur.

Prediction Intervals

Prediction intervals at the 90-percent
confidence level can be calculated for
estimates obtained from the regression
equations. Prediction intervals indicate the
uncertainty inherent in use of the
equations. Assurance is 90 percent that the
true value of the streamflow statistic for an
ungaged site will be within the prediction
interval.

Tasker and Driver (1988) have
shown that a 100(1-0) prediction interval
for the true value of a streamflow statistic
obtained for an ungaged site by use of
weighted regression equations corrected
for bias can be computed by

%(1%:) <0< T(B—gF) (17)

where Qis the streamflow statistic for the
site, BCF is the bias correction factor for
the equation, and 7' is computed as:

[t _ S
T =10 @>"=P70 (18)

In equation 18, 7(g/2,n-p) 18 the critical value
from the students t-distribution at alpha-
level o (0. =0.10 for 90-percent prediction
intervals); n-p is the degrees of freedom
with n stations used in the regression
analysis and p parameters in the equation
(the number of basin characteristics plus
one); and S; is computed from equation 19
below. Critical values from the students t-
distribution are contained in many
introductory statistics textbooks.

The value of S; is computed using the equation

2 0.5
S, = [y +x;Ux;] (19)

where 72 is the model error variance; x; is a row vector of the
logarithms of the basin characteristics for site i, augmented by a 1
as the first element; U is the covariance matrix for the regression
coefficients; and x;” is the transpose of x; (Ludwig and Tasker,
1993). The values of BCF, #(/2,n-p), 72, and U needed to determine
prediction intervals for estimates obtained from the equations in
table 4 are presented in table 5.

Example Computations

The procedure necessary to obtain the estimates is explained
by an example computation of the 95-percent duration low flow for
the selected site on the Hawes Brook at Norwood, Mass. (LFPR
station number 01104980). First, the necessary basin characteristics
for the site are measured from the various GIS data layers. Values
for drainage area, mean basin slope, area of stratified drift, total
length of streams, and region are 8.64 mi2, 2.27 percent, 2.20 mi2,
15.5 mi, and zero (eastern region = 0), respectively. DRT/TST is
computed by dividing the stratified-drift area by the total stream
length, and adding a constant of 0.1, to obtain a value of 0.242 mi.
Substituting these values into the equation to predict the 95-percent
duration low flow (table 4) yields

Q95 = 0.171(8.64)1120(2.27)0-457(0.142+0.1)0-9991 00-190(0)
=0.675 ft3/s.

To determine a 90-percent prediction interval for this estimate, the
Xx; vector is

xi = {1, log;((8.64), log,((2.27), log,((0.242), 0},

the model error variance from table 3 is ¥ = 0.03302, and the
covariance matrix, U, for the 95-percent duration low flow is

0.154371 —-0.038763 0.024844 0.178711 0.016523
—0.038763 0.045306 -0.026013 —0.010435 —0.009947
U = |0.024844 -0.026013 0.215936 0.141923 —0.060291
0.178711 —0.010435 0.141923 0.386539 0.015753
0.016523 —0.009947 -0.060291 0.015753 0.071684

The standard error of prediction computed from equation 19
is S; =[0.03302 + 0.0255]°3 = 0.2419, and T computed from
equation 18 is 7= 101:6540-2419) = 2 512 The 90-percent prediction
interval is estimated from equation 17 as

1 (0.675 0.675
2.512(1.017) < Qs < (m)2.512 , or,

0.264 < Qg5 < 1.67 .
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Table 5. Values needed to determine 90-percent prediction intervals for estimates obtained from the equations

[Dependent variable: Py, is the xx-percent duration flow; Q7 is the 7-day, y-year low flow; Augso is the August median flow. BCF: The bias correction factor
used in equation 17. #: The critical value from the Students t distribution used in equation 6. y2: The regression model error variance used in equation 19.
U: The covariance matrix used in equation 19]

Dependent
variable

BCF

,YZ

P50

Peo

P70

P75

Pgo

Pgs

Pgo

Pos

Pog

Pyg

1.003

1.003

1.005

1.006

1.007

1.009

1.011

1.017

1.028

1.031

1.662

1.660

1.657

1.656

1.655

1.654

1.654

1.654

1.655

1.656

0.00556

0.00684

0.00944

0.01141

0.01360

0.01706

0.02202

0.03302

0.05447

0.06196

0.0854720 -0.0560165
-0.0560165 0.0424162

0.207555 -0.037260 0.210624
-0.037260 0.041084 0.019092
0.210624 0.019092 0.326740

0.163451 -0.038750 0.179908 0.029080
-0.038750 0.042838 0.005409 -0.014309
0.179908 0.005409 0.321624 0.064405
0.029080 -0.014309 0.064405 0.054811

0.149847 -0.041152 0.157830 0.026810
-0.041152 0.043708 0.002937 -0.013412
0.157830 0.002937 0.284083 0.059967
0.026810 -0.013412 0.059967 0.051001

0.118875 -0.038593 0.009972 0.124035 0.019158
-0.038593 0.046913 -0.024336 -0.006071 -0.006589
0.009972 -0.024336 0.183858 0.099280 -0.057213
0.124035 -0.006071 0.099280 0.284838 0.020611
0.019158 -0.006589 -0.057213 0.020611 0.067052

0.136687 -0.034752 0.018759 0.159536 0.018791
-0.034752 0.039592 -0.015993 -0.005497 -0.011277
0.018759 -0.015993 0.192606 0.135772 -0.053629
0.159536 -0.005497 0.135772 0.366356 0.016069
0.018791 -0.011277 -0.053629 0.016069 0.065965

0.114435 -0.032504 0.004651 0.120264 0.019455

-0.032504 0.039590 -0.013401 -0.001500 -0.012562
0.004651 -0.013401 0.183669 0.112504 -0.053751
0.120264 -0.001500 0.112504 0.300342 0.018315
0.019455 -0.012562 -0.053751 0.018315 0.068902

0.154371 -0.038763 0.024844 0.178711 0.016523
-0.038763 0.045306 -0.026013 -0.010435 -0.009947
0.024844 -0.026013 0.215936 0.141923 -0.060291
0.178711 -0.010435 0.141923 0.386539 0.015753
0.016523 -0.009947 -0.060291 0.015753 0.071684

0.146494 -0.039856 0.024356 0.169566 0.019479
-0.039856 0.047367 -0.027332 -0.010335 -0.009705
0.024356 -0.027332 0.220827 0.140684 -0.063551
0.169566 -0.010335 0.140684 0.374380 0.017814
0.019479 -0.009705 -0.063551 0.017814 0.073700

0.155123 -0.041195 0.027513 0.180199 0.019040
-0.041195 0.050395 -0.033160 -0.011029 -0.008574
0.027513 -0.033160 0.251192 0.159684 -0.067073
0.180199 -0.011029 0.159684 0.402732 0.016396
0.019040 -0.008574 -0.067073 0.016396 0.074477
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Table 5. Values needed to determine 90-percent prediction intervals for estimates obtained from the equations—Continued

Dependent
variable BCK d v v

Q72 1.019 1.657 0.03810 0.158738 -0.046861 0.027795 0.181537 0.018992
-0.046861 0.058491 -0.031551 -0.005478 -0.006372
0.027795 -0.031551 0.223389 0.145159 -0.065982
0.181537 -0.005478 0.145159 0.407552 0.016782
0.018992 -0.006372 -0.065982 0.016782 0.072663

Q7,10 1.036 1.658 0.07122 0.165118 -0.044475 0.027261 0.193316 0.022249
-0.044475 0.054996 -0.029584 -0.004231 -0.008217
0.027261 -0.029584 0.248129 0.168050 -0.069078
0.193316 -0.004231 0.168050 0.452158 0.019891
0.022249 -0.008217 -0.069078 0.019891 0.077525

Augso 1.009 1.656 0.01785 0.148786 -0.037505 0.015571 0.169781 0.024324

-0.037505 0.039103 -0.017540 -0.011161 -0.011969
0.015571 -0.017540 0.192826 0.127179 -0.053990
0.169781 -0.011161 0.127179 0.364703 0.024260
0.024324 -0.011969 -0.053990 0.024260 0.069070

Thus, the most probable estimate of the 95-percent
duration low flow for station 01104980 is 0.675 ft3/s,
and there is a 90-percent probability that the true value
of Qos is between 0.264 and 1.67 ft3/s.

Limitations for Use of the Equations

Regression equations can be used to estimate
streamflow statistics for ungaged sites with natural flow
conditions in most of Massachusetts. If the equations
are used to estimate streamflow statistics for sites
where human influences on streamflows are present,
such as water-supply withdrawals and dam regulations,
the user should adjust the estimates for the human
influences.

Applicability of the equations is limited by the
range of data used to develop the equations and by the
accuracy of the estimates. Ranges of applicability for
each equation are shown in table 6. The measures of
model adequacy listed in table 4, and the prediction
intervals calculated using equations 17 to 19, indicate
potential errors that can be expected when basin
characteristics for the selected sites are within the
ranges of those for the sites used in the regression
analyses.

The equations generally are not applicable in
almost all of the South Coastal Shore subbasin of the
South Coastal Basin, the eastern part of the Buzzards
Bay Basin, Cape Cod, and the islands of Martha’s
Vineyard and Nantucket. These areas, which are almost

entirely underlain by coarse-grained stratified-drift
deposits, are not adequately represented by sites in the
regression analyses. Streams in these areas

commonly have ground-water drainage divides that
are not coincident with topographic drainage divides.
Estimates obtained by use of the regression

equations for selected sites in these areas could

have substantial errors.

World Wide Web Application for
Use of the Equations

The automated procedure for measuring basin
characteristics, described in the Data Base
Development section, was modified for use in a World
Wide Web (Web) application that serves streamflow
statistics for user-selected stream sites. The Web
application (http://ma.water.usgs.gov/streamstats) was

Table 6. Ranges of basin characteristics used to develop the
regression equations

[mi, mile; miz, square mile; --, not applicable]

Name  yrini. Maxi-
Basin characteristic in Mean
. mum mum
equations
Drainage area (mi2) ................. DA 1.61 149 149
Total basin stream length (mi)... -- 1.79 279 319
Mean basin slope (percent) ....... SL 32 528 24.6

Area of stratified drift per DR/ST .00 .144 1.29

unit stream length (mi%/mi) ...
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developed jointly by the USGS and MassGIS and it
incorporates a data base of previously published
streamflow statistics as well as the automated
procedure for measuring basin characteristics and
obtaining regression equation estimates of streamflow
statistics for ungaged sites. The previously developed
automated procedure was translated from an AML
script to an Avenue script (Environmental Systems
Research Institute, Inc., 1996a) to enable it to function
in the Web application, and a subroutine was added to
solve the regression equations and calculate the
prediction intervals presented in this report.

A user interface was developed for the
application by Syncline, Inc., of Cambridge, Mass.,
under contract to the USGS. The user interface is a Java
applet that delivers interactive maps to users using the
ArcView Internet Map Server (Environmental Systems
Research Institute, Inc., 1996-97) software
extension to ArcView (Environmental Systems
Research Institute, Inc., 1996b). Users locate sites on
streams for which they want streamflow statistics by
using the interface to add various digital map data and
to move around and zoom in to the area of interest.
Users can obtain streamflow statistics for a data-
collection station by selecting its location marker on
the map. The data base provides any previously
determined streamflow statistics for the selected site,
including peak-flow statistics not discussed in this
report. Users can also obtain estimated streamflow
statistics for any location along a stream (within the
areas of applicability) by running the automated
procedure. Further documentation for the Web
application is provided in a fact sheet (Ries and others,
2000), and in help pages and other links within the
application.

COMBINING ESTIMATES DETERMINED
BY DIFFERENT METHODS

Improved estimates of streamflow statistics for
LFPR stations can be obtained by combining the
weighted correlation-based estimates determined from
equation 3 with those obtained from the regression
equations. The estimates are weighted by the
reciprocals of their standard errors and averaged by
using the equation

(Qs,u, /(SE)) +(Qs,y /(SE,))

Cs, Uy ~ (1/(SE,)) + (1/(SE,)) » (20)

where the terms are as previously defined, except

Qg 1s the regression equation estimate of
streamflow statistic S for the LFPR station and SE, is
the standard error of the regression equation estimate
determined for the station from (a) equation 19, (b) the
regression equation standard error of estimate from
table 4 if the station was used in the regression
analysis, or (c) the regression equation standard error
of prediction from table 4 if the station was not used in
the regression analysis. The standard error of estimate
determined from equation 19 will provide the most
precise weighted estimate, but it is difficult to calculate.
Use of the standard errors from table 4 should be
adequate for most needs.

When an ungaged site is on the same stream as a
streamgaging or LFPR station and the drainage area for
the ungaged site is between 0.3 and 1.5 times the
drainage area of the streamgaging or LFPR station,
improved estimates of the streamflow statistics for the
ungaged site can be obtained using a weighting
procedure to combine the estimates from regression
equations with the streamflow statistics determined for
the data-collection station. The procedure is modified
from that of Pope and Tasker (1999, p. 16) and
Choquette (1988, p. 42). The estimates are combined
by first computing the correction factor,

CD = QS,DW/QS,Dr > (21)

where Cp is the correction factor for D, the data-
collection station (streamgaging or LFPR station),

Os, p,, 1s the streamflow statistic S determined from
available data for the data-collection station, and

Qg p s the streamflow statistic determined from the
regreésion equation. Next, a correction factor, Cy, is
determined for the ungaged site. If the drainage area
for the ungaged site (DAy) is less than 1.5 times larger
than the drainage area for the data-collection station
(DAp), use the equation

c ADA(Cp—-1) 22
U= "b T 05DA, (22)
where ADA is the absolute value of the difference
between DAy and DAp. If DAy is smaller than and
within 0.3 times DAp, use the equation
ADA(Cp-1)
= S 23
Cv=Co~—57pa b 23)
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The effect of the correction factor is that more weight
is given to the streamflow statistic for the data-
collection station the closer the ungaged site is to it. If
DAy is greater than 1.5 times or less than 0.3 times
DAp, no correction is necessary.

SUMMARY

This report is the sixth and final report of the
Basin Yield series of reports prepared in cooperation
with the Massachusetts Department of Environmental
Management. The report provides methods for
estimating low-flow statistics for Massachusetts
streams. Different methods are provided depending on
whether the location of interest is a streamgaging
station, a low-flow partial-record station, or an ungaged
site where no data are available. Standard USGS
methods and computer software are described for
determining flow-duration and low-flow frequency
statistics for streamgaging stations. Two methods are
described for determining August median flows for
streamgaging stations. References are provided to
reports that describe methods for extending or
augmenting records for streamgaging stations with
short records to reflect long-term conditions.

Mathematical and graphical correlation methods
are presented for estimating low-flow statistics for low-
flow partial-record stations. The MOVE.1
mathematical method is recommended for use when
the relation between measured flows at the low-flow
partial-record (LFPR) station and daily mean flows at a
nearby, hydrologically similar streamgaging station is
linear. A widely used graphical method is
recommended when this relation is curved. The report
contains equations for computing the variance and
equivalent years of record for estimates of low-flow
statistics determined using the two methods. Estimates
of low-flow statistics for LFPR stations can be
improved by combining estimates determined from
multiple index stations. The report contains equations
for calculating combined estimates and the variances,
standard errors, and equivalent years of record of these
estimates.

Two methods are presented for estimating low-
flow statistics for ungaged sites where no data are
available -- the drainage-area ratio method and use of
regression equations. The drainage-area ratio method is
applied by dividing the streamflow statistics for a
nearby, hydrologically similar index streamgaging

station by the drainage area for the station, then
multiplying these values by the drainage area of the
ungaged site of interest to obtain estimates of the
streamflow statistics for the site. A comparison of
streamflow statistics estimated using the drainage-area
ratio method and regression equations to those
determined from available data for 25 LFPR and 8
streamgaging stations in 5 Massachusetts river basins
indicated that drainage-area ratio estimates generally
are as accurate or more accurate than regression
estimates when the drainage-area ratio for an ungaged
site is between 0.3 and 1.5 times the drainage area of
the index data-collection site. Regression equations can
be used to obtain estimates for most ungaged sites.

Regression equations were developed to estimate
the natural, long-term 99-, 98-, 95-, 90-, 85-, 80-, 75-,
70-, 60-, and 50-percent duration flows; the 7-day,
2-year and the 7-day, 10-year low flows; and the
August median flow for ungaged sites in
Massachusetts. As many as 37 streamgaging stations
and 107 LFPR stations were included in the analyses.
Streamflow statistics and basin characteristics for these
stations were presented in the report. The number of
stations used to develop the individual equations
ranged from 87 for the 50-percent duration flow to 133
for the 98-percent duration flow. The gaging stations
had from 2 to 81 years of record, with a mean record
length of 37 years. The LFPRs had from 8 to 36
streamflow measurements, with a median of 14
measurements.

All physical characteristics of the basins for the
stations used in the regression analyses were
determined from digital data bases using GIS computer
software. Drainage area, the area of stratified-drift
deposits per unit of stream length plus 0.1, mean basin
slope, and an indicator variable that was O in the
eastern region and 1 in the western region of
Massachusetts were used in 9 of the 13 final regression
equations. Mean basin slope was not used in the
equations for the 50- through 75-percent duration
flows. The indicator variable for region was not used in
the equations for the 50- and 60-percent duration flows.
Only drainage area was used in the equation for the
50-percent duration flow. All basin characteristics that
appeared in the equations were positively correlated to
the streamflow statistics used as the dependent
variables.

The equations were developed by use of
weighted-least-squares regression analyses. Weights in
the analyses were assigned proportional to the actual
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(for streamgaging stations) or equivalent (for LFPR
stations) years of record and inversely proportional to
the variances of the streamflow statistics for the
stations. Standard errors of prediction ranged from 70.8
to 17.6 percent for the equations to predict the 7-day,
10-year low flow and 50-percent duration flow,
respectively. The proportion of the variation in the
dependent variables that is explained by the
independent variables (Ri ;) ranged from 84.4 to 98.1
percent for the 7-day, 10-year low flow and 50-percent
duration flow, respectively. The equations are not
applicable in the Southeast Coastal region of the State,
or where basin characteristics for the selected ungaged
site are outside the ranges of those for the stations used
in the regression analyses. If the equations are used to
estimate streamflow statistics for sites where human
influences on streamflows are present, such as water-
supply withdrawals and dam regulations, the user
should adjust the estimates for the human influences.

A World Wide Web application is described that
enables users to obtain streamflow statistics for most
stream locations in Massachusetts. The Web
application provides streamflow statistics for data-
collection stations from a data base and for ungaged
sites by measuring the necessary basin characteristics
for a selected site and solving the regression equations.
Output provided by the Web application for ungaged
sites includes a map of the drainage-basin boundary
determined for the site, the measured basin
characteristics, the streamflow statistics estimated
from the equations in this report, and 90-percent
prediction intervals for the estimates.

Finally, the report presents an equation that
can be used to combine regression and correlation
estimates to obtain improved estimates of the
streamflow statistics for LFPR stations. The report
also presents equations that can be used to combine
regression and drainage-area ratio estimates to obtain
improved estimates of the streamflow statistics for
ungaged sites. These equations are applicable when
the drainage area of the ungaged site is between 0.3
and 1.5 times the drainage area of a streamgaging or
LFPR station.
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