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ABSTRACT

 

Geochemistry, microbiology, and water 
quality of the Magothy aquifer at a new supply 
well in Holbrook were studied to help identify 
factors that contribute to iron-related biofouling 
of public-supply wells. The organic carbon 
content of borehole sediments from the screen 
zone, and the dominant terminal electron-
accepting processes (TEAPs), varied by depth. 
TEAP assays of core sediments indicated that iron 
reduction, sulfate reduction, and undetermined 
(possibly oxic) reactions and microbial activity 
are correlated with organic carbon (lignite) 
content. The quality of water from this well, 
therefore, reflects the wide range of aquifer 
microenvironments at this site.

High concentrations of dissolved iron (3.6 to 
6.4 micromoles per liter) in water samples from 
this well indicate that some water is derived from 
Fe(III)-reducing sediments within the aquifer, but 
traces of dissolved oxygen indicate inflow of 
shallow, oxygenated water from shallow units that 
overlie the local confining units. Water-quality 
monitoring before and during a 2-day pumping test 
indicates that continuous pumping from the 
Magothy aquifer at this site can induce downward 
flow of shallow, oxygenated water despite the 

locally confined conditions. Average 
concentrations of dissolved oxygen are high (5.2 
milligrams per liter, or mg/L) in the overlying 
upper glacial aquifer and at the top of the Magothy 
aquifer (4.3 mg/L), and low (<0.1 mg/L) in the 
deeper, anaerobic part of the Magothy; average 
concentrations of phosphate are high (0.4 mg/L) in 
the upper glacial aquifer and lower (0.008 mg/L) at 
the top of the Magothy aquifer and in the deeper 
part of the Magothy (0.013 mg/L). Concentrations 
of both constituents increased during the 2 days of 
pumping. The 

 

δ

 

34

 

S of sulfate in shallow ground 
water from observation wells (3.8 to 6.4 per mil, 
or ‰) was much heavier than that in the supply-
well water (-0.1 ‰) and was used to help identify 
sources of water entering the supply well. The 

 

δ

 

34

 

S 
of sulfate in a deep observation well adjacent to the 
supply well increased from 2.4 ‰ before pumping 
to 3.3 ‰ after pumping; this confirms that the 
pumping induced downward migration of water. 
The lighter 

 

δ

 

34

 

S value in the pumped water than in 
the adjacent observation well probably indicates 
FeS

 

2

 

 oxidation (which releases light 

 

δ

 

34

 

S in 
adjacent sediments) by the downward flow of 
oxygenated water.

 

INTRODUCTION

 

High concentrations of dissolved iron in ground 
water can lead to screen encrustation and iron-related 
biofouling of wells and requires costly well-
reconditioning and replacement programs for water 
suppliers. This condition arises from the redox 
gradient created in the aquifer material surrounding 
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the well screen when a well is drilled and operated. 
The gradient typically forms between shallow, oxic 
ground water, and deeper, iron-rich ground water that 
is anoxic. 

Declines in the specific capacity of Suffolk 
County Water Authority (SCWA) supply wells on 
Long Island were correlated with elevated 
concentrations of iron in ground water (Walter, 
1997a) and are attributed to iron encrustation and 
biofouling of the well screens and surrounding aquifer 
sediments. The oxidation of ferrous iron and 
subsequent encrustation of iron on the well screen is 
catalyzed by highly resilient and nearly ubiquitous 
bacteria, which form a biofilm that also clogs the 
screen (Walter, 1997b). Methods to eliminate the 
bacteria problem are limited; therefore, emphasis is 
placed on preventive treatment. Factors related to 
supply-well pumping (such as pumping rates and 
frequency) also can affect the biofouling 
process—cyclic pumping or long periods of 
idleness can promote biofilm growth and 
associated encrustation (Smith, 1992); a 
biofouling study in Suffolk County by Walter 
(1997b) showed that most of the well-encrusting 
material is deposited when the wells are shut 
down. Recent work (Brown and others, 1999; 
2000) has shown that the concentrations of iron 
and other redox-active constituents in ground 
water are affected by (1) the organic carbon 
content of the aquifer material, which varies 
spatially, (2) microbially mediated redox 
processes within the aquifer, and (3) the 
distance of the screen from the source of 
recharge. Thus, the location of the well and the 
depth of the screened interval can affect the 
degree of biofouling.

Routine monitoring of water quality and 
supply-well performance is necessary to (1) 
detect deleterious water-quality changes and 
assess the potential for biofouling and 
encrustation, and (2) assess the need for 
maintenance and treatment to prolong optimal 
performance (Cullimore, 1986). For example, 
pumping from an anoxic aquifer can induce the 
downward movement of shallow ground water 
that may contain dissolved oxygen, phosphate, 
and other constituents that can promote well 
encrustation and bacterial growth. Dissolved 
oxygen promotes iron encrustation through the 
oxidation of ferrous iron, and phosphate can be a 

limiting nutrient for iron-bacteria biofilms (Cullimore, 
1986; Walter, 1997b). Thus, study of the effects of 
pumping practices and well placement on the chemical 
reactions and water-quality characteristics that are 
related to biofouling is necessary for understanding of 
the biofouling process.

In 1998, the U.S. Geological Survey (USGS), in 
cooperation with the SCWA, began a study of iron-
related biofouling at the Green Belt Parkway well field 
in Holbrook, N.Y (fig. 1) to examine the effects of 
well-screen placement and pumping on factors and 
chemical constituents that affect iron-related 
biofouling. The study focused on a new supply well 
screened in the Magothy aquifer, and on several 
nearby observation wells screened in the upper glacial 
and Magothy aquifers. The spatial extent of aquifer 
redox zones and their associated microbial 
communities in core sediments from the borehole at 
the proposed screen zone were examined to document 
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 Location of study area at the Green Belt Parkway 
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their effects on the quality of water that enters the 
well. The new supply well and the three adjacent 
observation wells were monitored before and during a 
2-day pumping test to detect changes in concentrations 
of selected constituents (including dissolved oxygen, 
iron, organic and inorganic carbon, and phosphorus) 
that are related to iron biofouling.

This report presents and interprets data on 
sediment microbiology and geochemistry of the 
Magothy aquifer at the new well site, and discusses the 
effects of pumping this well on water quality to 
determine the potential for iron-related biofouling.

Gratitude is extended to Richard Bova and Paul 
Kuzman of SCWA for assistance with drilling and 
coring, and coordination of water sampling.

 

HYDROGEOLOGIC SETTING

 

Long Island is underlain by a sequence of upper 
Cretaceous and Pleistocene sediments that were 
deposited on a southeastward dipping bedrock surface 
(figs. 1 and 2). The deposits reach a maximum 
thickness of more than 2,000 ft in southeastern Long 

Island. The principal aquifer on Long Island is the 
Magothy aquifer, which consists of the Matawan 
Group and Magothy Formation, undifferentiated, of 
Cretaceous age. Along the southern shore, the 
Magothy aquifer is unconformably overlain by the 
Monmouth Group (Monmouth greensand) of 
Cretaceous age; elsewhere in the southern part of the 
island, it is unconformably overlain by the Gardiners 
Clay (an upper Pleistocene interglacial unit) and by 
glacial deposits of Pleistocene age (upper glacial 
aquifer). Cretaceous deposits north of the Gardiners 
Clay are unconformably overlain by the upper glacial 
aquifer (Smolensky and others, 1989). The lateral 
extents of the Monmouth greensand and the Gardiners 
Clay appear to be south of the 6-acre study area.

The Magothy aquifer consists of alternating 
beds and lenses of clay, silt, sand, and some gravel, as 
well as some mixtures of these materials (Perlmutter 
and Geraghty, 1963); these sediments were deposited 
in a transitional fluviodeltaic environment (Lonnie, 
1982). The sand consists mostly of quartz but contains 
some lignite, muscovite, and iron concretions and 
contains about 2 to 3 percent heavy minerals by 

 

Figure 2.

 

 Vertical section A-A´ through central Suffolk County, N.Y., showing hydrogeologic units and location of 
study area. (Modified from Smolensky and others, 1989, sheet 1.)
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weight; it generally has no carbonate minerals and few 
other reactive minerals, although organic carbon in the 
form of lignite is a reactive electron donor in redox 
reactions (Pearson and Friedman, 1970). Lignite is 
typically present in silt and clay but may also be 
dispersed through the sand (Smolensky and others, 
1989). Much of the iron in the Magothy aquifer on 
Long Island is in the form of Fe(III) oxyhydroxides, 
iron-sulfide minerals (FeS

 

2

 

), iron-rich clay minerals, 
and other less soluble minerals, including hematite, 
leucoxene, ilmenite, and magnetite (Brown, Rakovan, 
and Schoonen, 2000).

The upper glacial aquifer, which contains the 
water table, is characterized mainly by coarse sand but 
also contains gravel, silt, and clay. The glacial deposits 
can contain the same minerals as the Cretaceous 
sediments but have a greater variety and abundance of 
heavy minerals such as amphibole, pyroxene, fresh 
muscovite, biotite, and chlorite, as well as rock 
fragments and unweathered feldspar (Suter and others, 
1949). In general, upper glacial aquifer sands are 
coarser grained and contain a smaller silt and clay 
fraction than Magothy sands. 

The Long Island ground-water system is 
recharged solely by precipitation. Most of the recharge 
that enters the water table moves laterally through the 
upper glacial aquifer and discharges to streams or to 
coastal waters. Precipitation near the mid-island 
ground-water divide (fig. 1) flows downward through 
the upper glacial aquifer, recharges the Magothy and 
Lloyd aquifers, then flows to either the north or the 
south shore. 

Water in the upper glacial aquifer generally is 
oxic and contains low concentrations of dissolved iron 
and other cations, except in areas of discharge near the 
south shore, where it has become anoxic through 
microbially mediated redox reactions along its 
flowpaths. Water in the Magothy aquifer generally 
contains higher concentrations of dissolved iron than 
water in the upper glacial aquifer and, therefore, can 
cause more pronounced iron-related biofouling of 
wells. Dissolved-oxygen concentrations in the 
Magothy aquifer in Suffolk County can be high (up to 
0.34 mmol/L) near the ground-water divide but 
decrease with distance southward along the deep flow 
path; dissolved iron concentrations, in contrast, are 
low near the divide and increase with distance 
southward (Brown and others, 1999).

The Magothy aquifer at the Green Belt Parkway 
well field (fig. 3) is locally confined by fine-grained 

 

Figure 3.

 

 Principal features of Green Belt Parkway well field 
(site GB), Holbrook, N.Y. (Location is shown in fig. 1. Section 
B-B´ is depicted in fig. 5.)
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units (varying mixtures of fine sand, silt, and clay) at 
the contact between the Pleistocene and Cretaceous 
deposits. An aquifer-test study conducted at the site 
(ERM-Northeast, 1991) reported that the pumping of 
supply wells screened in the Magothy aquifer had little 
effect on water levels in the upper glacial aquifer. 
Magothy transmissivity ranges from 6,000 to 14,000 
ft

 

2

 

/d (64 to 140 cm

 

2

 

/s), storativity from 10

 

-4

 

 to 10

 

-3

 

, and 
vertical hydraulic conductivity from 0.93 to 1.4 ft/d 
(3.3 to 5.1 x 10

 

-4

 

 cm/s) (ERM-Northeast, 1991).

 

STUDY METHODS

 

The borehole was drilled to a depth of 310 ft, 
and core sediments were obtained for geochemical and 
microbial analysis. The borehole was subsequently 
converted to a public-supply well (GB-1A, fig. 3). 
Water samples were collected from GB-1A and three 
adjacent observation wells (OW-1, 2, and 3), and water 
levels in these wells were monitored. 

 

Drilling and Sediment Sampling 

 

Split-spoon cores were obtained from Magothy 
sediments at borehole GB-1A with a reverse-rotary 
drill rig. Natural gamma-radiation and electrical-
resistance logs were collected from the borehole 
before the installation of casing material. Eleven cores 
from the borehole were selected for analysis and were 
designated C1 through C11. Sediment subsamples 
were collected from the center of a split-spoon core 
sample lined with a plastic sleeve, with a modified 
syringe under a stream of N

 

2

 

, as described by Chapelle 
and others (1987). 

The sediment samples for microbial analyses 
were placed in 20-mL serum vials and sealed with 
butyl stoppers and crimp caps. The headspace and 
interstitial space were purged by injecting N

 

2

 

 and 
venting purged gas through an exit needle. Part of each 
core sample was placed in septa vials and used for the 
extraction and analysis of pore water and iron 
coatings. Sediment (0.1 to 0.2 g) was later transferred 
from septa vials to 20-mL plastic scintillation vials 
within an anaerobic glovebox for iron-coating 
extractions. About 3 g of sediment subsample was also 
collected for organic carbon and total sulfur analyses. 
Pore-water samples were later inspected for drilling-
fluid contamination through a comparison of anion 
concentrations—chloride and sulfate concentrations in 

core samples were much higher than in the drilling 
fluid, and the ion ratios differed considerably. Some 
cores with a high sand content were contaminated with 
drilling fluid (that is, anion ratios were similar to those 
in drilling fluid); their chemical data (table 1) are 
flagged.

 

Ground-Water Sampling

 

Water-chemistry data were collected during 
sampling by standard procedures (Wilde and Radtke, 
1998). Colorimetric procedures (Hach Company, 
1993) were used onsite to measure concentrations of 
total dissolved sulfide (H

 

2

 

S and HS

 

-

 

), Fe(II) and 
Fe(III), and dissolved oxygen (< 0.025 mmol/L); a 
dissolved oxygen meter and the revised Winkler 
method were used to measure dissolved-oxygen 
concentrations exceeding 0.025 mmol/L. Dissolved 
SO

 

4
2

 

- in ground water was collected on an anion-
exchange resin column for sulfur-isotope analysis and 
was analyzed for BaSO

 

4

 

 precipitates by procedures 
described in Carmody and others (1998). Water 
samples for 

 

δ

 

13

 

C analysis of dissolved inorganic 
carbon (DIC) were collected in 1-L glass bottles, 
which were filled from the bottom up and sealed with 
a Teflon/silicon septa cap after 3 to 5 L had overflowed 
to eliminate oxygen.

 

Laboratory Analyses

 

Ground water, pore water, sediment bacteria, 
and sediment coatings were analyzed by the 
techniques described in the following paragraphs.

 

Ground Water

 

All ground-water samples were measured for 
alkalinity by incremental titration within a few hours 
after sample collection, and for major elements by 
Inductively Coupled Plasma-Atomic Emission 
Spectrometry and Ion Chromatography at the USGS 
National Water Quality Laboratory in Arvada, Colo. 
Sulfur-isotope analyses of water and iron disulfide 
samples were conducted at the USGS Geochemistry 
Laboratory in Reston, Va.; results are reported (in ‰) 
relative to the Vienna Canyon Diablo Troilite (VCDT) 
standard. Carbon-isotope analyses of water samples 
and lignite samples were conducted at the University 
of Waterloo, Ontario, Canada, and are reported (in ‰) 
relative to the Vienna Peedee Belemnite (VPDB) 
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standard. The uncertainty associated with 

 

δ

 

34

 

S and 

 

δ

 

13

 

C values for water is ± 0.2 ‰; the uncertainty 
associated with 

 

δ

 

34

 

S of iron disulfide is ± 0.4 ‰.

 

Pore Water

 

The inner, sampled part of core samples 
generally yielded insufficient pore water for analysis; 
therefore, 5 g of subsampled core material was mixed 
with 2 to 40 mL of deionized water for 1 to 3 min, 
followed by filter pressing with N

 

2

 

 (Lusczynski, 1961) 
as described in Brown and others (1999). The diluted 
pore water was measured for pH, then placed in plastic 
scintillation vials and refrigerated until further 
analysis. Pore water analyzed for dissolved iron was 
acidified immediately after extraction. Some ferrous 
iron in pore water may have been oxidized during 
pore-water extraction, however, because anaerobic 
conditions are difficult to maintain during extraction; 
further discussion is given in Brown, Schoonen, and 
Candela (2000). Moisture content of the sediments 
was measured by oven drying (to 110° C) a separate 
subsample of the same material; the resulting values 
were used to calculate the extent of pore-water 
dilution by deionized water. Concentrations of pore-
water constituents were then multiplied by the dilution 
factor for correction.

 

Sediment Bacteria

 

Subsamples of sediment cores from several 
depths were examined to identify the predominant 
anaerobic microbial populations through terminal-
electron-accepting process (TEAP)-identification 
assays. Sulfate-reducing bacteria (SRB), Fe(III)-
reducing bacteria (IRB), and methanogenic bacteria in 
sediment samples were qualitatively identified through 
[

 

14

 

C]-labeled acetate procedures as described by 
Lovley (1995) and Coates and others (1996a). In brief, 
soil samples (2 g) were transferred in duplicate into 
10-mL serum vials under a headspace of 95 percent N

 

2

 

 
and 5 percent CO

 

2

 

 by volume. The vials were sealed 
with thick butyl rubber stoppers, and the samples were 
amended with 1 µCi of [2-

 

14

 

C]-acetate. The 
production of 

 

14

 

CO

 

2

 

 and 

 

14

 

CH

 

4

 

 in each vial in the 
presence and absence of 10-mmol/L molybdate, which 
specifically inhibits the sulfate-reducing organisms, 
was monitored by gas chromatography with gas-
proportional counting of 1.0-mL-headspace samples. 
The profile of biogas production was used to identify 
the predominant microbial TEAP (Coates and others, 

1996b). Assays were described as “undetermined” if 
the 

 

14

 

C-amended sediment samples did not generate a 
measurable amount of 

 

14

 

CO

 

2

 

 and 

 

14

 

CH

 

4

 

 within an 8-h 
period.

 

Iron Coatings, Carbon, and Sulfur Within 
Sediments

 

Iron coatings on sediments were measured by 
0.5-M HCl and 6-M hydroxylamine extraction 
(Lovley and Phillips 1987), which indicates (1) the 
amount of poorly crystalline Fe(III), and (2) the iron 
fraction that is readily available to microbes in the 
sample (Heron and others, 1994). The detection limit 
of this method is about 0.1 µmol Fe(III) per gram of 
sediment. Percentages of carbon forms and total sulfur 
in sediments were measured by combustion 
(Arbogast, 1996).

 

AQUIFER GEOCHEMISTRY

 

The following sections describe (1) the 
lithology at supply well GB-1A and observation wells 
OW1, OW-2, and OW-3, (2) the concentrations of iron 
coatings, organic carbon, total sulfur, and constituents 
of pore water in borehole sediments, and results of the 
TEAP assays, and (3) water quality and water levels 
near GB-1A before and during the 2-day pumping test. 
Gamma-radiation and electrical-resistance logs, and 
lithologic descriptions are shown in figure 4, with 
depth profiles of organic carbon, total sulfur, and iron-
coatings concentrations in sediments, and of dissolved 
iron, sulfate, and dissolved organic carbon (DOC) 
concentrations in pore water. Where more than one 
subsample of the same core interval was analyzed for a 
particular constituent, average values were plotted 
with the measured values (figs. 4C, D, and E), so that 
connecting lines could be added.

 

Lithology

 

The contact between upper glacial aquifer 
sediments and Magothy aquifer sediments at the study 
site is characterized by interfingered layers of medium 
to coarse sand with lenses of fine sand, silt, and clay 
are present near the upper glacial-Magothy aquifer 
contact (figs. 4 and 5). The fine-grained units were 
informally named F1, F2, and F3 in a previous aquifer-
test report (ERM-Northeast, 1991) and are so 
designated here (fig. 5). The contact between the upper 
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Figure 4.

 

 Vertical profiles of borehole GB-1A at Holbrook, N.Y.: A. 
Gamma-radiation log and predominant TEAPs. B. Single-point 
resistance log showing position of clay lenses (F1, F2, and F3) and 
well screen intervals for GB-1A and OW-1A, OW-1B, and OW-1C. C. 
Concentration of sulfate and iron in pore water. D. Organic carbon 
and total sulfur content of sediment. E. Concentration of Fe(III) 
coatings and rate of 
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C oxidation in sediments. (Locations of 
borehole and wells are shown in fig. 3.) 

 

Aquifer Geochemistry



 

8 Aquifer Geochemistry & Effects of Pumping on Ground-Water Quality at the Green Belt Parkway Well Field, Holbrook, New York 

EXPLANATION
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glacial aquifer and the Magothy aquifer at well GB-1A 
is 186 ft below land surface (108 ft below sea level), as 
indicated by the lithology of the GB-1A borehole 
(table 1; figs. 4, 5). Unit F1 is a lens of silt and fine 
sand that lies near the bottom of the Pleistocene 
deposits between depths of 140 to 148 ft below land 
surface. Unit F2 is a fine-grained unit of silt and clay 
near the bottom of the Pleistocene deposits (upper 
glacial aquifer) between 171 and 180 ft below land 
surface. Unit F3 is a fine-grained unit of silt and clay 
at the top of the Magothy aquifer between depths of 
197 and 220 ft below land surface.

The lithology of borehole GB-1A is 
summarized in table 1. Public-supply well GB-1A is 
screened from 232 to 282 ft below land surface (table 
2), directly below F3 (fig. 5). Well GB-1 has two 
separate screen zones_the upper part is screened in 
Magothy aquifer sand between units F2 and F3, from 
187 to 210 ft below land surface, and the lower part is 

screened below, and partly in, unit F3, from 225 to 255 
ft below land surface. Three observation-well clusters 
(OW-1, OW-2, and OW-3, figs. 3, 5) each consist of 
three 2-in-diameter polyvinyl chloride (PVC) wells. At 
each cluster, the shallow well (A) is screened above 
F1, the intermediate well (B) is screened between F1 
and F2, and the deep well (C) is screened below F3 
(fig. 5). Observation-well cluster OW-1 is 82 ft 
southeast of GB-1A and is the only well that was 
sampled for water quality. Well OW-1A is screened 
partly in upper glacial sand and partly in the silt and 
fine sand of F1, from 130 to 140 ft below land surface; 
OW-1B is screened in the Magothy between units F2 
and F3, from 190 to 200 ft below land surface; and 
OW-1C is screened in the Magothy below F3; from 
245 to 255 ft below land surface (table 2). Observation 
well clusters OW-2 and OW-3 were used only for 
water-level measurements; OW-3 is 150 ft north of 
GB-1A, and OW-2 is 205 ft south of GB-1A.

 

Figure 5.

 

 Vertical section through study area at Holbrook, N.Y., showing hydrogeologic units, contact between upper glacial-
Magothy aquifers, silt and clay lenses F1, F2, and F3, and wells. (Well locations and trace of section are shown in fig. 3.)
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Table 1.

 

 Color, lithology, hydrologic unit, dominant TEAP (terminal electron-accepting process), and sedimentary organic carbon, total sulfur, and Fe(III) content of core 
samples from borehole GB-1A (S113812T) at Green Belt Parkway well field in Holbrook, Suffolk County, N.Y. 

 

[Depths and altitudes are in feet below land surface, numbers in parentheses are meters. 

 

µ

 

mol/g, micromoles per gram of sediment. UG, upper glacial aquifer; Mag, Magothy aquifer. 
F2 is a fine-grained unit near the bottom of the Upper glacial aquifer between depths of 171 and 180 ft; F3 is a fine-grained unit at the top of the Magothy aquifer between depths of 
197 and 220 ft. NM, not measured; IRB, Fe(III)-reducing bacteria, SRB, sulfate-reducing bacteria, UND, no activity observed after 10 hours. Dashes indicate no data available. 
Borehole locations are shown in fig. 3]

 

 

 

*Core sample had some contamination with drilling fluid

 

Sample 

Sampling 
depth 
(feet) 

Sampling altitude
 (datum is sea level)

 Color
(Geological Society of America

 rock-color chart) Lithology

Hydro-
geologic

unit  TEAP 

Sedimentary 
organic carbon 

(percent by 
weight )

Total S

 

(µ

 

mol/g) 

Fe (III), 0.5 mol/L  
HCl-extractable

 

(µ

 

mol/g) 

 

C1 180  -102 ft (-30.6 m) Dark yellowish brown (10YR 4/2) Very hard sand; some silt; trace clay, 
lignite, muscovite

UG (F2) NM -- -- --

C2-A* 185.0 -107 ft (-31.6 m) Brownish gray (5YR4/1) to medium
 dark gray (N4)

Fine to medium sand, some silt and 
clay

UG IRB 2.54 0.0066 15

C2-B 186.5 -108 ft (-32.8 m) Brownish gray (5YR4/1) to olive gray
 (5Y4/1)

Same, some silt and clay pockets UG IRB -- -- --

C2-C 185.7 -108 ft (-33.1 m) Olive gray (5Y4/1) and gray black (N2) Fine-medium silty sand, some clay;
lignite laminae; ferric oxide grains

UG IRB 2.3 .0019 29

C3-A* 195 -117 ft (- 35.7 m) Dark yellowish brown (10YR4/2) to 
medium gray (N5)

Medium to coarse, silty sand to sand 
with silt, some lignite laminae.

Mag IRB -- -- --

C3-B 196 -118 ft    (-36 m) Grayish black (n2) to black (N1) Fine silty sand Mag IRB 1.35 .0066 2.3

C4-A 205 -127 ft (-38.7 m) Medium gray (N5) Silty fine-to-medium sand, trace clay Mag (F3) IRB 1.00 .0031 1.2

C4-B 205.6 -128 ft (-38.9 m) Dark gray (N3) to medium gray Silty fine sand with clay Mag (F3) SRB 2.60 .0072 1.7

C4-C 206.2 -128 ft (-39.1 m) Medium gray (N5) Silty fine-to-medium sand, trace clay Mag (F3) UND 0.56 .0028 --

C5-A* 215 -137 ft (-41.8 m) Dark gray (N3) to grayish black (N2) Clayey sand, some silt Mag -- -- -- .41

C5-B 216 -138 ft (-42.1 m) Medium gray (N5) Fine-medium silty sand, trace clay Mag SRB 0.06 .047 --

C6 225 -147 ft (-44.8 m) Medium-light gray (N6) to medium gray 
(N5) to dark gray (N3)

Silty fine-to-medium sand to clayey 
sand, some lignite laminae

Mag UND 1.4 .013 4.4

C7* 235 -157 ft (-47.9 m) Medium gray (N5) Silty sand, trace clay, some pockets
of silt or sand

Mag UND -- -- .85

C8 245 -167 ft (-50.9 m) Medium dark gray (N4) to dark gray (N3) Medium-coarse sand, some silt Mag IRB 2.2 .031 .36

C9 255 -177 ft   (-54 m) Grayish black (N2) Silty very coarse to coarse sand, trace 
to some clay (layers), some silt

Mag IRB .84 .0022 .37

C10-A 265 -187 ft   (-57 m) Medium gray(N5) to medium dark gray 
(N5)

Medium-coarse to coarse sand with silt, 
with clay, some silt

Mag IRB/
SRB

.32 .0041 --

C10-B 266 -188 ft (-57.3 m) Medium-coarse sand with silt, some clay Mag UND -- -- 1.5

C11-A 285 -207 ft (-63.1 m) Grayish black (N2) to 
medium dark gray (N5)

Silty clay to clay (lignitic) with laminae 
of very fine to fine sand and silt

Mag UND -- -- 1.4

C11-B 286.5 -208 ft (-63.6 m) Dark gray (N3) to grayish black (N2) Very fine-to fine sand, some clay, 
some silt; laminae of lignitic silt

Mag UND 1.62 .0037 .78
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Table 2

 

. Well-construction data for wells at Green Belt Parkway well field in Holbrook, Suffolk County, N.Y.

 

[Borehole locations are shown in fig. 3.]

 

Well 
identifier Well number

Land-surface 
elevation, in 

feet above sea 
level

Well-construction and borehole details

Well depth,
in feet below 
land surface

Depth of screen 
interval, in feet 

below land surface

Elevation of screen 
interval, in feet 

below (-) sea level

Elevation of screen 
interval, in meters 
below (-) sea level

 

OW-1A S114872 78.3 140 130-140 -51.7 to -61.7 -15.8 to -18.8
OW-1B S114874 78.3 200 190-200 -111.7 to -121.7 -34.1 to -37.1
OW-1C S97070 78.3 255 245-255 -166.7 to -176.7 -50.8 to -53.9

OW-2A S114870 78.3 130 120-130 -41.7 to -51.7 -12.7 to -15.8
OW-2B S114875 78.3 205 195-205 -116.7 to -126.7 -35.6 to -38.6
OW-2C S114876 78.3 250 240-250 -161.7 to -171.7 -49.3 to -52.4

OW-3A S114873 78.8 137 127-137 -48.2 to -58.2 -14.7 to -17.7
OW-3B S114869 78.8 197 187-197 -108.2 to -118.2 -33.0 to -36.0
OW-3C S114871 78.8 250 240-250 -161.2 to -171.2 -49.1 to -52.2

GB-1A S113812 77.9 282 232-282 -154 to -204 -47.0 to -62.2
GB-1 S54730 77.7 258 187-210 -109.3 to -132.3 -33.3 to -40.3

225-255 -147.3 to -177.3 -44.9 to -54.0
GB-2 S59744 76.5 301 237.5-299 -161 to -222.5 -49.1 to -67.8
GB-3 S66183 78.1 543 425.5-454 -347.4 to -375.9 -105.9 to -114.6

463-473 -384.9 to -394.9 -117.3 to -120.4
507-532 -428.9 to -453.9 -130.8 to -138.4

GB-4 S66184 75.0 384 293-318.5 -218 to -243.4 -66.4 to -74.2
345.5-381 -270.4 to -305.6 -82.4 to -93.2

 

Geochemistry and Microbiology

 

Geochemistry and microbiology of core 
samples from the borehole sediments were 
characterized through analyses of iron coatings, 
sedimentary organic matter (SOM), and total sulfur 
content, and through TEAP assays. Concentrations of 
0.5-M HCl-extractable iron coatings in core sediments 
from the upper glacial aquifer were higher (as much as 
29 µmol/g of sediment; table 1; fig. 4) than in 
Magothy sediments at depths greater than 195 ft
 (0.36 to 4.4 µmol/g) and than in deeper Magothy 
aquifer sediments elsewhere in Suffolk County 
(<0.1 to 4.3 µmol/g, Brown and others, 1999). The 
comparatively low Fe(III) concentrations in Magothy 
sediment coatings reflect the Fe(III)-reducing and 
sulfate-reducing TEAPs, both of which can lead to the 
reduction of Fe(III) (Lovley, 1987; Coleman and 
others, 1993). 

Organic carbon (or) content of core-sample 
sediments ranged from 0.06 percent to 2.6 percent by 
weight (table 1), and total sulfur content ranged from 
0.0019 to 0.047 µmol/g of sediment. The SOM 
content of Magothy aquifer sediments in Suffolk 

County generally is positively correlated with the silt 
and clay content and the total sulfur content (Brown, 
Rakovan, and Schoonen, 2000). The SOM in core 
samples from the upper glacial deposits was higher 
than in other parts of Long Island (Brown and others, 
1999; Brown, Rakovan, and Schoonen, 2000) and may 
result from reworking of Magothy aquifer sediments 
during Pleistocene deposition of overlying glacial 
deposits. Sulfur content in Magothy sediments on 
Long Island generally is associated with iron-sulfide 
minerals (Brown, Rakovan, and Schoonen, 2000). The 
total sulfur content at the Green Belt Parkway site was 
positively correlated with the concentration of 0.5 M 
HCl-extractable iron coatings in Cretaceous 
(Magothy) deposits at GB-1A (fig. 6). The absence of 
a similar correlation in deep Magothy sediments in 
Suffolk County (Brown, Rakovan, and Schoonen, 
2000) suggests that Fe(III) oxyhydroxide coatings in 
the shallow, slightly oxygenated part of the aquifer 
originate from the oxidative weathering of iron sulfide 
(FeS

 

2

 

) and the subsequent oxidation of dissolved 
Fe(II). Evidence of iron-sulfide-mineral oxidation was 
found also in the shallow part of the Magothy aquifer 
of eastern Suffolk County (Brown and others, 1999; 
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Brown, Schoonen, and Candela, 2000). 
Concentrations of pore-water sulfate 
were higher in shallow cores than in 
deep cores and, thus, could indicate 
localized pyrite oxidation. The uneven 
distribution of Fe(III) concentrations, 
carbon, total sulfur, and TEAPs in 
Magothy aquifer sediments is consistent 
with that in intermediate and deep parts 
of the Magothy farther to the west in 
Suffolk County (Brown and others, 
1999). These geochemical data, together 
with the varied distribution of TEAPs in 
GB-1A sediments (table 1 and fig. 4A), 
indicate that localized 
microenvironments are prevalent in the 
shallow parts of the Magothy aquifer.

The TEAP assays indicated a 
range from iron reduction to sulfate 
reduction; the TEAPs in some samples 
were undetermined (table 1). 
Methanogenesis was not observed in any 
of the samples, probably because sulfate 
is ubiquitous in the pore water, and 
methanogenic bacteria cannot proliferate 
if preferred electron acceptors (Fe(III) or 
sulfate) are present. The undetermined 
TEAP results in samples can result from 
several factors, including locally oxic 
conditions (possibly sample C4-C), clay, 
which can inhibit the transport of 
nutrients and microbial waste 
(possibly samples C5-A, C11-A, -B), 
low concentrations of electron 
acceptors, or the absence or 
recalcitrance of an organic carbon 
electron donor (possibly samples 
C-5A); all of these factors can be 
inhibitory to anaerobic bacteria. 
Microbial activity, as measured in 
the acetate-amended core sediments 
by the rate of 

 

14C

 

 acetate oxidation 
(% 

 

14C

 

 oxidation/h), generally was 
highest in sediments with a high 
percentage of organic carbon; figure 
7 shows the square of the rate of 

 

14C

 

 
acetate oxidation in core sediment 
as a function of the square of the 
percentage of organic carbon. The 
0.5M HCl-extractable Fe(III) is the 

 

Figure 6.

 

 Concentration of total sulfur as a function of the concentration of 
0.5M HCl-extractable Fe(III) coatings in Magothy aquifer core samples from 
borehole GB-1A, Holbrook, N.Y. (Borehole location is shown in fig. 3.)
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Figure 7.

 

 Square of the 

 

14C

 

-oxidation rate in acetate-amended sediment as a 
function of the square of the organic carbon concentration in sediment cores from 
borehole GB-1A, Holbrook, N.Y. (Borehole location is shown in figs. 3 and 5).
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most microbially reactive iron fraction (Lovley and 
Phillips, 1987) and, therefore, should be favorable for 
Fe(III)-reducing bacteria. No correlation was observed 
between this Fe(III) fraction and iron-reducing TEAPs 
in sediments; this indicates that iron-reducing bacteria 
are limited by the pool of electron donor (organic 
carbon) available, as observed in a previous study of 
borehole sediments from the middle part of the 
Magothy aquifer about 10 mi southeast of the GB-1A 
study area (Brown and others, 1999). The greatest 
anaerobic microbial activity (0.9 percent acetate 
oxidized/h) was in a sample from a 216-ft depth (core 
C5-B in table 1). This sample had a low SOM content 
(0.06 percent); however, the predominance of a 
sulfate-reducing TEAP, together with the high total 
sulfur concentration in these sediments, indicates that 
iron-sulfide minerals have formed at this horizon. 
Although the SOM content was low in sample C5-B, 
dissolved organic acids could leach from lignite in an 
overlying clayey sand (fig. 4A) and provide an 
organic-carbon source for the iron-reducing bacteria.

Sulfate concentrations in pore water from GB-
1A (table 3) were from 2 to 50 times greater than in 
water from nearby wells (OW-1B and OW-1C) 
screened in the Magothy aquifer (table 4). High 
concentrations of sulfate in pore water have been 
observed in Magothy borehole sediments from other 
parts of Suffolk County and probably result from a 
seawater transgression in the past (Brown, 1998). 
These locally high sulfate concentrations can result in 
localized microbial and geochemical reactions that are 
not apparent in large-scale aquifer studies that depend 
solely on well-water analyses. Similar results were 
observed in this study and probably reflect the thin 
(<0.5-ft) interval from which pore-water samples were 
obtained, unlike the much wider (10- to 50-ft) 
screened intervals from which ground-water samples 
were obtained. Furthermore, the disturbance of the 
sediment samples, and the ion desorption that 
probably occurs during sediment dilution with 
deionized water, result in the release of pore water that 
is not represented in well-water samples because it is 
not removed by pumping (Brown, 1998). 

Dissolved iron concentrations in pore water 
ranged from below the detection limit 
(<1.8 µmol/L) in several cores to 6.5 µmol/L in 
sample C4-C. The low pH (4.93) and the absence of 
anaerobic microbial activity in sample C4-C may 
result from the local presence of dissolved oxygen in 

pore water and subsequent oxidation of pyrite, which 
would release dissolved iron and acidity.

 

Ground-Water Quality

 

Water quality in the upper glacial aquifer in the 
study-site vicinity differs from that in the Magothy 
aquifer. Water from both aquifers generally can be 
characterized as a low ionic strength, sodium-chloride 
type, but the upper glacial aquifer is more prone to 
point- and nonpoint-source contamination. The 
Magothy aquifer at this location is confined by silt and 
clay layers at the top of the Cretaceous surface and at 
the bottom of the Pleistocene deposits (upper glacial 
aquifer). Water in the Magothy aquifer generally is 
older, contains more reduced species, such as 
dissolved (ferrous) iron, manganese, and sulfide, and 
contains less dissolved oxygen, than water in the upper 
glacial aquifer. 

Local water quality in the upper glacial aquifer 
and the upper part of the Magothy aquifer at the study 
site is reflected in the chemistry of samples from the 
pumping well (GB-1A) and the adjacent observation-
well cluster (OW-1A, OW-1B, and OW-1C; fig. 8; 
table 4). Concentrations of ions in the upper glacial 
aquifer (OW-1A) reflect effects of human activities 
and generally are higher than those in the Magothy 
aquifer (OW-1B, OW-1C, and GB-1A; fig. 8), 
although the concentrations of nitrogen species at 
Magothy wells GB-1A and OW-1C also reflect human 
activity (table 4). The presence of nitrate in GB-1A 
and OW-1C probably results from the downward flow 
of shallow water induced by pumping of supply wells 
in the Magothy aquifer. The presence of nitrate in GB-
1A (6.3 µmol/L) during a static period of nonpumping 
(April 20, 1999) indicates that ground water that 
contributes to this well is from a less reducing 
environment than that in OW-1C, where nitrate 
concentrations were below the detection limit (<3.6 
µmol/L). The part of the aquifer from which OW-1C 
obtains water is small compared to the part tapped by 
GB-1A, which has a much longer screen, is pumped at 
large rates, and, therefore, obtains much larger 
volumes of water. The low concentrations of nitrate in 
OW-1C, therefore, probably reflect local conditions.
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Table 3

 

. 

 

pH and concentrations of selected constituents in pore-water samples from borehole GB-1A in Holbrook, 
Suffolk County, N.Y.

[Concentrations in micromoles per liter. Diss, dissolved. NM, not measured. <dl, below detection limit. Borehole location 
is shown in fig. 3.]

 

Sample 
identifier

Sample depth,
in feet below (-) land 

surface

Sample altitude, 
in feet below (-) 

sea level

pH Iron, dissolved SO

 

4
2-

 

Cl

 

-

 

C1-A 180 -102 NM NM NM NM

C2-A 185 -107 5.7 0.46 2.5 410

C2-B 185.7 -107.7 5.9 NM NM NM

C2-C 186.5 -108.5 5.6 1.3 230 190

C3-A 195 -117 5.6 .67 2,800 240

C3-B 196 -118 5.2 <dl 1,000 200

C4-A 205 -127 5.3 <dl 1,300 200

C4-B 205.6 -127.6 5.3 NM NM NM

C4-C 206.2 -128.2 4.9 6.5 100 190

C5-A 215 -137 6.1 <dl 660 310

C5-B 216 -138 5.7 2.1 510 220

C6 225 -147 5.6 <dl 590 120

C7 235 -157 5.8 <dl 820 180

C8 245 -167 5.1 <dl 770 240

C9 255 -177 5.4 <dl 1,500 200

C10-A 265 -187 6.2 .71 760 310

C10-B 266 -188 5.4 <dl 570 98

C11-A 285 -207 NM <dl 810 84

C11-B 286.5 -208.5 6.8 <dl 210 110
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Table 4.

 

 Concentrations of major elements and chemical species, and 
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C, and 

 

δ

 

34

 

S of sulfate in water samples from wells at Green Belt Parkway well field in 
Holbrook, Suffolk County, N.Y., 1999.

 

[Dissolved concentrations in milligrams per liter (and micromoles per liter). Diss, dissolved. TOC, total organic carbon; DOC, dissolved organic carbon. 
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δ
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S in 

 

‰

 

.

 

Screen interval in feet (and meters) above or below (-) sea level. Dashes indicate data not available. Locations shown in fig. 1.]

 

Well site  
 screen interval

Date
time

Water 
temp. 
(˚C)

NH

 

4
+

 

 
as N

NO3
-   

as N

P Fe Mn

pH O2 Ca2+ Mg2+ Na+ K+ HCO3
- H2S SO4

2- Cl- Silica Total Diss PO4
2- Total Diss Total Diss TOC DOC δ13C δ34S

 GB-1A
(S113812) 

-154 to -204
(-47.0 to -62.2)

4/8/991  
12:40

1 Sample collected after well development; nearby supply wells were pumped intermittently at this time

10.7 5.8 0.21
(6.6)

3.8
(95)

1.5
(62)

4.3
(190)

0.56
(14)

8.2
(140)

-- 10
(100)

5.9
(170)

15
(250)

<.02
(<1.1)

<.05
(<3.6)

<.05
(<1.6)

<.05
(<1.6)

0.007
(0.23)

0.30
(5.3)

0.27
(4.8)

0.016 
(0.29)

0.017(
0.29)

0.1
(8.3)

0.2
(17)

-- --

 4/20/992  
16:00

2 Sample collected during static conditions

10.5 6.0 <.1
(<3.1)

4.0
(100)

1.8
(74)

4.7
(200)

.5
(13)

10
(166)

<.004
(<.1)

10
(100)

6.8
(190)

15
(250)

.024
(1.3)

.088
(6.3)

<.05
(<1.6)

<.05
(<1.6)

.006
(.19)

.19
(3.4)

.20
(3.6)

.022
(.39)

.022
(.40)

.3
(25)

.2
(17)

-- --

4/22/993  
16:30

3 Sample collected during pumping conditions

10.6 6.0 .18
(5.6)

3.5
(87)

1.6
(66)

4.4
(190)

.43
(11)

11
(180)

.004
(.12)

10
(100)

6.0
(170)

15
(250)

.034
(1.9)

.051
(3.6)

<.05
(<1.6)

<.05
(<1.6)

.013
(.42)

.35
(6.3)

.36
(6.4)

.018
(.32)

.018
(.33)

.1
(8.3)

.1
(8.3)

-19.8 -0.1

OW-1A
(S114872) 

-51.7 to -61.7 
 (-15.8 to  -18.8)   

 4/20/99 
10:00

12.1 6.2 4.8
(150)

5.5
(140)

5.8
(240)

20
(870)

1.2
(31)

29
(470)

-- 8.8
(92)

32
(900)

10
(170)

.042
(2.3)

2.3
(16)

.44
(14)

.48
(15)

.49
(16)

.26
(4.6)

.28
(5.0)

.51
(9.2)

.48
(8.8)

.8
(67)

.8
(67)

-22.4 6.4

4/22/99 
14:00

11.4 6.1 5.5
(170)

5.5
(140)

5.7
(230)

20
(870)

1.8
(46)

19
(310)

-- 9.3
(97)

34
(960)

10
(170)

.055
(3.0)

2.3
(160)

.30
(9.7)

.30
(9.7)

.32
(10)

.23
(4.1)

.22
(3.9)

.44
(8.0)

.42
(7.7)

.4
(37)

.4
(33)

-- --

 OW-1B 
(S114874)
 -111.7 to -

121.7
 (-34.1 to  -37.1)

4/19/99  
15:00

11.5 6.1 3.1
(97) 

6.6
(160) 

3.0
(120) 

5.7
(250) 

.54
(14) 

28
(460)

-- 6.4
(67)

8.8
(250)

17
(280)

.059
(4.2)

.79
(56)

<.05
(<1.6)

<.05
(<1.6)

.015
(.48)

<.012
(<.22)

<.010
(<.18)

.0078
(.14)

<.003
(<.05)

.9
(75)

.2
(17)

-22.3 3.8

4/22/99  
13:00

11.4 6.1 5.5
(170)

8.3
(207)

3.6
(150)

6.3
(270)

.95
(24)

32
(520)

-- 5.0
(52)

11
(310)

17
(290)

.033
(2.4)

1.2
(86)

<.05
(<1.6)

<.05
(<1.6)

.001
(.03)

<.012
(<.22)

<.010
(<.18)

<.003
(.14)

<.003
(<.05)

.2
(17)

.1
(8.3)

-- --

OW-1C
(S97070)

-166.7 to -176.7
(-50.3 to  -53.9)

4/19/99   
11:45

11.0 5.9 <.1
(<3.1)

3.0
(75)

1.3
(53)

4.3 
(190)

.39
(10)

8.0
(130)

.010  
(.29)

11
(110)

5.0
(140)

15
(250)

.059
(1.7)

.79
(56)

<.05
(<1.6)

<.05
(<1.6)

.008
(.26)

.16
(29)

.17
(30)

.032
(.59)

.032
(.58)

.3
(25)

.3
(25)

-21.1 2.4

4/19/994  
11:46

4 Replicate analysis

-- -- -- 3.0
(75)

1.3
(53)

4.3
(190)

.40
(10)

8.2
(130)

.010
(.29)

11
(110)

5.0
(140)

16 
(260)

.059
(1.8)

.79
(56)

<.05 
(<1.6)

<.05 
(<1.6)

.008
(.26)

.16
(28)

.17
(31)

.031
(.56)

.034
(.62)

.2
(17)

.2
(17)

-- --

4/22/99  
10:00

11.0 5.9 <.1
(<3.1)

3.2
(80)

1.3
(54)

4.4
(190)

.42
(11)

7.2
(120)

.012
(.35)

12.1
(120)

5.3
(150)

15
(250)

.031
(1.7)

<.05
(<3.6)

<.05 
(<1.6)

<.05 
(<1.6)

.022
(.71)

.16
(28)

.16
(29)

.028
(.52)

.029
(.53)

.1
(8.3)

<.1
(<8.3

-- 3.3
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EFFECTS OF PUMPING ON GROUND-
WATER QUALITY

Pumping of supply well GB-1A lowered water 
levels in nearby observation wells and altered the 
water quality. All supply-well pumping at the site was 
stopped on April 17, 1999 for 2 days to achieve static 
water-level conditions. Well GB-1A was then turned 
on and pumped for 2 days at a rate of about 700 gal/
min. Water samples were collected from GB-1A and 
from OW-1 wells A, B, and C during the nonpumping 
period (GB-1A was sampled about 20 min. after its 
pump was turned on), and at the end of the 2-day 
pumping period. Water levels in all nine observation 
wells were monitored before, during, and after the test 
(fig. 9). The water level in GB-1A generally was stable 
at 37.2 ft above sea level before the test, then declined 
to 3.4 ft above sea level once pumping began (fig. 9). 
Water levels in nearby Magothy aquifer observation 
wells OW-1B and -1C and OW-3B and -3C also were 
steady before the test, then declined almost 
immediately in response to pumping in GB-1A. Water 
levels in wells screened in the upper glacial aquifer 

(OW1-A, -2A, and -3A) showed little, if 
any, decline in response to the 
pumping—the water levels in OW-1A and -
2B did not decline at all, and the water level 
in OW-3A declined from 38.46 ft above sea 
level before pumping to 38.33 ft above sea 
level during the pumping. This indicates 
that extended pumping in the Magothy 
aquifer during the nonsummer months has 
little or no effect on water levels in the 
upper glacial aquifer. The summer demand 
often requires pumping of more than one 
supply well, however. For example, total 
combined pumpage from wells GB-1 
through GB-4 for July 1999 ranged from 
1.4 to 6 Mgal/d, whereas the combined 
pumpage for the preceding January ranged 
from 0.02 to 0.17 Mgal/d. Water levels 
measured in Magothy wells OW-1C and 
OW-3C on July 20, 1999, at a time when 
GB-1, - 2, and -3 were pumping 
simultaneously, were 26.96 and 31.71 ft 
above sea level, respectively—nearly 3 ft 
lower than water levels measured during 
the pumping of GB1A alone on April 22, 
1999. Water levels measured in upper 
glacial wells OW-1A and OW-3A on July 
in 1999 were 35.20 and 35.75 ft above sea 

level, respectively, and also were nearly 3 feet lower 
than water levels measured on April 22. Water-table 
fluctuations generally are caused by variations in the 
amount of water entering or discharging from the 
aquifer, such as from precipitation or pumping 
(Busciolano and others, 1998). Precipitation had been 
low in the 4 months preceding the test and probably 
provided little ground-water recharge and, thus, led to 
water-level declines. Intensive pumping of the 
Magothy aquifer during the summer probably lowered 
water levels in the upper glacial aquifer as well.

Chemical analyses of ground-water samples 
collected from well GB-1A during pumping indicate 
that the water originated from a wide range of depths. 
Dissolved oxygen concentrations increased from <3.1 
µmol/L on April 20 to 5.6 µmol/L on April 22, and 
phosphate concentrations increased from 0.19 to 0.42 
µmol/L as P (fig. 10A); these increases probably 
resulted from the induced inflow of water from 
shallow depths, such as near the well screens of OW-
1A and 1B (fig. 9A). Phosphate concentrations in OW-
1C increased also (fig. 10A). Dissolved iron 

Figure 8. Stiff diagrams representing ion concentrations in water samples 
from public-supply well GB-1A and observation wells OW-1A, OW-1B, 
and OW-1C, at Green Belt Parkway well field, Holbrook, N.Y., during 
static, nonpumping conditions of April 19-20, 1999 (Well locations are 
shown in fig. 3.)
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Figure 9. Water levels in the Magothy aquifer (for wells screened below clay lens F3) along Section B-B´ at the Green Belt 
Parkway well field, Holbrook, N.Y., during static, prepumping conditions and the pumping period, April 19-22, 1999: A. 
Drawdowns along B-B´. B. Water levels in pumping well (GB-1A) and two observation-well clusters (OW-1 and OW-3). (Trace 
of Section B-B´ is shown in fig. 3.)
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water samples from pumping well GB-1A and 
observation well OW-1C, Holbrook, N.Y., during static, 
prepumping conditions and the pumping period, April 19-
22, 1999: A. Phosphate and dissolved oxygen. B. 
Dissolved iron and bicarbonate. C. Total organic carbon 
(TOC) and dissolved organic carbon (DOC). (Well 
locations are shown in fig. 3.)
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glacial aquifer through clay unit F3 to the well 
screen. (Well location is shown in fig. 3.)
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concentrations in samples from GB-1A (fig. 10B) 
increased during the pumping and may reflect inflow 
from anoxic, high-iron horizons such as near the 
screen zone of OW-1C; this trend is consistent with the 
increase in other reduced species such as ammonium 
and sulfide during pumping. Bicarbonate 
concentrations in GB-1A also increased during 
pumping, possibly from an increase in the percentage 
of water pumped from shallow depths, such as near the 
screen zones of OW-1A and OW-1B (fig. 9A), where 
bicarbonate concentrations are much higher than in the 
Magothy and (or) in pristine settings (table 4).

Water from the upper glacial aquifer could flow 
downward to the Magothy aquifer through gaps in the 
confining units or through coarse parts of the confining 
unit. The downward flow of shallow ground water 
could be enhanced by the sand pack around the outside 
of the screen and casing and the gravel-filled annulus, 
which continues from around the screen upward to a 
depth of 215 ft (fig. 11); together, these could provide 
a direct pathway for water from the upper glacial 
aquifer to flow downward through clay unit F3.

The δ13C of DIC and the δ34S of sulfate 
generally were measured in the observation wells 
before the pumping test and in the supply well 
(GB-1A) at the end of the pumping test. The stable-
isotope values were not measured in GB-1A before 
pumping, but the available δ34S data were sufficient to 
identify changes in the contribution of water to GB-1A 
from the depths represented by the observation-well 
screens. The δ13C values of DIC in ground water at the 
site ranged from -22.4 ‰ to -19.8 ‰ (table 4) and 
were heavier than the δ13C of a lignite sample 
(-22.9 ‰) from 280 ft below land surface (shallow 
Magothy). The δ13C of lignite from the intermediate 
and deep parts of the Magothy aquifer elsewhere in 
Suffolk County range from -24.3 ‰ to –22.5 ‰ 
(Brown, Schoonen, and Candela, 2000). The relatively 
light δ13C of -22.4 ‰ in DIC from OW-1A may be 
caused by aerobic heterotrophs, which can deplete 13C 
through oxidation of organic carbon (Blair and others, 
1985). The δ13C of DIC became enriched with 
increasing depth in samples from OW-1B (-22.3‰), 
OW-1C (-21.1‰), and GB-1A (-19.8‰) (fig. 12A). 
Similar trends in 13C enrichment were observed in the 
Magothy aquifer in western Suffolk County (Brown, 
Schoonen, and Candela, 2000) and in deep coastal-
plain aquifers in South Carolina and probably result 
from some form of fractionation associated with 
lignite oxidation (McMahon and others, 1992). TOC 

and DOC, which probably had built up from the 
oxidation of SOM and detritus released from 
microbial activity, decreased in all wells during 
pumping as the organic carbon was evacuated from the 
vicinity of the redox gradients around well screens.

The δ34S of sulfate in ground water at the well 
field ranged from –0.1 ‰ to 6.4 ‰ (table 4). Sulfate in 
shallow ground water collected from OW-1A during 
nonpumping conditions had a δ34S of 6.4 ‰, which is 
the heaviest of the samples collected and reflects the 
high δ34S values in atmospheric deposition (0 ‰ to 
20 ‰; Coplen, 1993) and in shallow ground water in 
areas of recharge on Long Island (13 ‰; Brown, 
Schoonen, and Candela, 2000). The δ34S values in 
ground water from deeper wells (OW-1B and OW-1C) 
during prepumping conditions indicated a decrease 
with depth—3.8 ‰ and 2.4 ‰, respectively (fig. 12B). 
The δ34S of sulfate in OW-1C increased to 3.3 ‰ after 
pumping and indicates that sulfate of heavier δ34S was 
drawn down from shallower depths by the pumping of 
GB-1A. Water from well GB-1A, which was sampled 
only once after the 2-day pumping period, had the 
lightest δ34S (–0.1 ‰) and indicates FeS2 oxidation. 
The δ34S of sulfate along a southward flow path 
farther west in Suffolk County becomes “lighter” with 
depth through the oxidation of FeS2, but gradually 
becomes “heavier” with distance from the recharge 
area and at depths greater than 350 ft along deep 
Magothy flow paths as a result of (1) mixing with 
“heavier” sulfate that originates from seawater anion 
complexes sorbed in poorly permeable sediments, and 
(2) sulfate reduction and the subsequent formation of 
FeS2 (Brown, 1998). The depths of wells sampled at 
the Green Belt Parkway site are less than 300 ft below 
land surface, and the lightest δ34S value-in water from 
GB-1A-is equivalent to that at a depth of about 500 ft 
below the zone of deep recharge in wells in 
southwestern Suffolk County (Brown, Schoonen, and 
Candela, 2000). The δ34S of iron-sulfide cemented 
sand, which was collected from a depth of 280 ft 
below land surface at GB-1A, was –41.3 ‰. The δ34S 
of iron-sulfide minerals at other depths (intermediate 
and deep) in the Magothy aquifer elsewhere in Suffolk 
County ranged widely-from -44.1 ‰ to 10.6 ‰. The 
δ34S ranges of iron sulfide minerals typically are 
“heavy” in isolated aquifer environments, where 
sulfate reduction and the formation of iron-sulfide 
minerals leave the remaining sulfate enriched in 34S, 
which subsequently forms heavy iron-sulfide minerals 
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(Canfield and others, 1992; Brown, Schoonen, and 
Candela, 2000).

Supply-well pumping in the Magothy aquifer 
probably causes downward flow of oxygenated water 
from the upper glacial aquifer and contributes to 
biofouling at the site by promoting the oxidation of 

ferrous iron and the growth of iron-oxidizing and 
heterotrophic bacteria. This is supported by the 
increased concentrations of oxygen and phosphate in 
the sample from GB-1A after the 2-day pumping 
period, despite the locally confined nature of the 
Magothy aquifer at this site.
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Figure 12. Isotopic composition of water from the Green Belt Parkway well field, Holbrook, N.Y.: 
A. δ13C of dissolved inorganic carbon. B. δ34S of sulfate. (Well locations are shown in fig. 3.)
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CONCLUSIONS

Aquifer lithology, geochemistry, microbiology, 
and water quality at a new supply well screened in the 
Magothy aquifer at the Green Belt Parkway well field 
in Holbrook were studied to help identify factors that 
can contribute to iron-related biofouling and well-
screen encrustation. Concentrations of sedimentary 
organic matter, and the terminal electron-accepting 
processes (TEAPs), in core-sample sediments from the 
screen zone varied from well to well. The principal 
TEAPs were iron reduction, sulfate reduction, and 
undetermined (possibly oxic); microbial activity was 
positively correlated with organic carbon content. 
Water quality was monitored at the supply well and in 
nearby observation wells screened in the upper glacial 
and Magothy aquifers.

Ground-water quality in the supply well (GB-
1A) and in an adjacent observation-well cluster 
indicates that pumping of the supply well can cause 
downward flow of shallow, oxygenated water from 
overlying aquifers; this, in turn, probably contributes 
to iron-related biofouling and well-screen encrustation 
at the site. Concentrations of dissolved oxygen and 
phosphate were higher after 2 days of pumping of GB-
1A than before the pumping, probably as a result of 
the downward flow of shallow water, which contains 
high concentrations of dissolved oxygen and 
phosphate. The δ34S of sulfate in the nearby deep 
observation well (OW-1C) increased from 2.4 ‰ 
before pumping to 3.3 ‰ after pumping; this confirms 
that water with heavier δ34S was drawn down from 
shallower depths by the pumping of GB-1A. The 
gravel-filled annulus, which extends from around the 
screen upwards to a depth of 215 ft, provides a 
potential flowpath downward through clay unit F3. 
The increase in the iron concentration of water from 
GB-1A during pumping may reflect an increased 
contribution from the deep, anoxic, iron-rich horizons, 
such as those near the screen zone of well OW-1C. 
Extended pumping from the Magothy aquifer in April 
1999, when water demand was low, had little effect on 
water levels in the upper glacial aquifer, but the 
increased water-supply pumping of more than one 
supply well at a time during the summer could lower 
water levels in the upper glacial aquifer. The induced 
downward flow of shallow ground water by intensive 
pumping probably aggravates iron-related biofouling 
and well-screen encrustation.
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