

In cooperation with the Louisville and Jefferson County Metropolitan Sewer District

Hydrologic and Water-Quality Characterization and Modeling of the Chenoweth Run Basin, Jefferson County, Kentucky

Water-Resources Investigations Report 00-4239

U.S. Department of the Interior U.S. Geological Survey

COVER ILLUSTRATION: Shaded-relief image of landforms in the Chenoweth Run Basin, Jefferson County, Kentucky.

Hydrologic and Water-Quality Characterization and Modeling of the Chenoweth Run Basin, Jefferson County, Kentucky

By Gary R. Martin, Phillip J. Zarriello, and Allison A. Shipp

Water-Resources Investigations Report 00-4239

In cooperation with the Louisville and Jefferson County Metropolitan Sewer District

Louisville, Kentucky 2001

U.S. DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

For additional information write to:

District Chief, Kentucky District U.S. Geological Survey Water Resources Division 9818 Bluegrass Parkway Louisville, KY 40299–1906 Copies of this report can be purchased from:

U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225–0286

CONTENTS

Abstract	1
Introduction	2
Previous Studies	5
Description of Study Area	8
Climate	10
Geology	10
Physiography	
Soils	
Land Use	
Hydrology	
Methods of Data Collection and Analysis	
Historical Data	
Field Data	
Sampling Design	
Instrumentation and Equipment	
Sampling Procedures	
Laboratory Data	
Quality-Assurance Data	
Ancillary Hydrologic Data	
Meteorological Data	
Geographical Data	
Statistical, Mathematical, and Graphical Analysis	
Descriptive Statistics	
*	
Estimated Missing Values Box Plots	
Loads and Yields	
Analysis and Summary of Hydrologic Conditions	
Precipitation	
Potential Evapotranspiration	
Wastewater-Treatment-Plant Effluents	
Discharge	
Suspended Solids	
Total Phosphorus (TP)	
Total Orthophosphate (TPO ₄)	
Streamflow	45
Water Quality	
Instream-Constituent Load Estimates	
Model-Simulation Approach and Programs	
Hydrological Simulation Program—Fortran (HSPF)	
Pervious Land Segments (PERLND)	72
Impervious Land Segments (IMPLND)	74
Reaches and Reservoirs (RCHRES)	
Hydrologic Response Units (HRU)	75
Expert System HSPEXP for Model Calibration	75

Program GENSCN for Simulation of Scenarios	75
Model Development	
Model Elements and Selected Parameters	
Hydrologic Response Units (HRU)	
Analysis and Classification of Basin Characteristics	
Land Use and Land Cover	
Soils	
Land Slope	
Definition and Adjustment	
Prevalence of the Hydrologic Response Units	
Hydrologically Effective and Ineffective Impervious Areas	
Other Adjustment Factors	
Reaches and Reservoirs (RCHRES)	
Base-Flow Losses	
Lower Zone Evapotranspiration Parameter (LZETP)	
Model Input and Output Files	
Simulation of Streamflow	
Calibration and Verification	
Calibration Criteria	
Modifications of Model Parameters and Elements	
Results of Model Streamflow Calibration and Verification	
Total, Annual, and Seasonal Water Budgets	
Daily Discharge	
Stormflow Volumes and Peak Discharges	
Calibration Storms	
Verification Storms	
Nonuniform Storms	
Comparison of Simulated and Measured Discharge Near the Mouth of Chenoweth Run	
Sensitivity Analysis	
Discharge Characteristics of the Hydrologic Response Units	
Parameter Values	
Simulation of Water Quality	
Sediment	
Total Orthophosphate (TPO ₄)	
Model Applications and Limitations	
Summary and Conclusions	
References Cited	
Appendix 1: Results of analyses of field blanks for sampling in the Chenoweth Run Basin,	150
Jefferson County, Kentucky, in 1996–97	1/1
Appendix 2: Results of analyses of paired water samples collected by use of automatic samplers	
and manual, cross-sectionally integrated sampling, Chenoweth Run Basin,	
Jefferson County, Kentucky	143
Appendix 3: Arc Macro Language (AML) program for definition of Hydrologic Response	143
Units (HRU's), hru.aml	145
Appendix 4: Statistical summary of constituent concentrations and water-quality characteristics	14J
measured at selected locations in the Chenoweth Run Basin, Jefferson County,	
Kentucky, 1991–97	151
Appendix 5: Chenoweth Run Basin HSPF Model User Control Input (UCI) file	
Appendix 5. Chenowedii Kun dasin HSFT Model Osel Control Input (OCI) Ine	103

FIGURES

1.	Map showing location of the Chenoweth Run Basin, Jefferson County, Kentucky	3
2.	Map showing location of the Chenoweth Run Basin and nearby data-collection stations	9
3.	Graphs showing monthly normal temperature and precipitation (1961–90) at	
	Standiford Field, Louisville, Kentucky	11
4.	Graph showing annual precipitation at Standiford Field, 1988–97	11
5-9.	Maps showing:	
	5. Generalized geology of Jefferson County, Kentucky	12
	6. Generalized soils of the Chenoweth Run Basin	
	7. Locations of the streamflow-gaging, water-quality-monitoring, and rainfall-gaging	
	stations, and wastewater-treatment plants in the Chenoweth Run Basin	20
	8. Rain-gage locations and the Thiessen polygons used to assess areal rainfall	
	distribution in and near the Chenoweth Run Basin	31
	9. Approximate locations of the long-term precipitation, evaporation, and	
	streamflow-gaging stations in Kentucky and Indiana, used or referenced in	
	the study	36
10.	Scatterplot and regression for daily mean discharges at the Jeffersontown	
	Wastewater-Treatment Plant (WWTP) and Chenoweth Run at Gelhaus Lane,	
	Jefferson County, Kentucky, during the model calibration period,	
		38
11.	Hydrographs of daily mean discharge at the Jeffersontown Wastewater-Treatment	
	Plant and at Chenoweth Run at Gelhaus Lane, during the model calibration period,	
	February 1996–January 1998	39
12.	Circular-chart record of 7-day through-plant effluent discharge from Jeffersontown	
	Wastewater-Treatment Plant	40
13-27.	Graphs showing:	
	13. Sample and mean hourly percentages of daily mean effluent discharge at the	
	Jeffersontown Wastewater-Treatment Plant	40
	14. Comparison and regression relations of total phosphorus concentrations to daily	
	effluent discharge, and total phosphorus concentrations to bypassed-wastewater	
	discharge from the Jeffersontown Wastewater-Treatment Plant, during the model	
	calibration period, February 1996–January 1998	44
	15. Comparison and regression relations of total phosphorus concentrations to total	
	orthophosphate concentrations, and total orthophosphate concentrations to	
	effluent discharged from the Jeffersontown Wastewater-Treatment Plant (WWTP),	
	during the model calibration period, February 1996–January 1998	44
	16. Comparison and regression relations of total phosphorus concentrations to total	
	orthophosphate concentrations, and total orthophosphate concentrations to	
	bypassed-wastewater discharge upstream from the Jeffersontown Wastewater-	
	Treatment Plant, during the model calibration period, February 1996–January 1998	46
	17. Daily mean discharge and discharge on sampling dates at Chenoweth Run at	
	Ruckriegel Parkway and at Gelhaus Lane, during the model calibration period,	
	February 1996–January 1998	48
	18. Flow duration and discharge on sampling dates at Chenoweth Run at Ruckriegel	
	Parkway and at Gelhaus Lane, during the model calibration period,	
	February 1996–January 1998	49

	19. Daily range in discharge, water temperature, specific conductance, pH, and	
	dissolved-oxygen concentration at Chenoweth Run at Ruckriegel Parkway,	
	during the model calibration period, February 1996–January 1998	50
	20. Daily range in discharge, water temperature, specific conductance, pH, and	
	dissolved-oxygen concentration at Chenoweth Run at Gelhaus Lane, during the	
	model calibration period, February 1996–January 1998	51
	21. Hourly air temperature at Standiford Field, and observed and estimated hourly	
	water temperatures, Chenoweth Run Basin	53
	22. Diurnal dissolved-oxygen concentration, pH, and discharge patterns and oxygen	
	saturation at selected times at selected sites, Chenoweth Run Basin: (A) Ruckriegel	
	Parkway and (B) Gelhaus Lane	54
	23. Distribution of total suspended-solids concentrations at sampling sites in the	01
	Chenoweth Run Basin, during 1988–97.	56
	24. Distribution of total phosphorus concentrations at sampling sites in the	50
	Chenoweth Run Basin, during 1991–97	59
	25. Total phosphorus concentrations at selected sites during selected moderate- and	59
	low-flow periods in the Chenoweth Run Basin	60
	26. Comparison and regression relations of total phosphorus concentrations and	00
	total orthophosphate concentrations at selected sites in the Chenoweth Run Basin,	60
	during 1996–97 27. Comparison of total suspended-solids, total phosphorus, and total orthophosphate	00
		\sim
20	concentrations and discharge at streamflow-gaging stations in the Chenoweth Run Basin	62
28.	Schematic of the Hydrologic Simulation Program—Fortran (HSPF) model of flow in a	70
20	pervious land segment	73
29.	Map showing model subbasin and stream-reach designations for the Chenoweth Run	
20	Basin	77
30.	Graph showing approximate Chenoweth Run low-water profile based on 2-foot	-
	contour-interval data	
	Map showing areas draining to ponds and small lakes in the Chenoweth Run Basin	
	Map showing distribution of land covers in the Chenoweth Run Basin	81
33.	Graph showing estimated infiltration rates and lower-zone storages of the soil series	~ •
	and soil-series groups defined for modeling the Chenoweth Run Basin	83
34.	Map showing distribution of soil-series groups defined for modeling the Chenoweth Run	
	Basin	
	Map showing distribution of land slopes in the Chenoweth Run Basin	85
36-53.	Graphs showing:	
	36. Observed and simulated monthly mean discharge hydrographs at Chenoweth Run	
	at Ruckriegel Parkway and at Gelhaus Lane, during the model calibration period,	
	February 1996–January 1998	96
	37. Comparison of observed and simulated hourly, daily, and monthly mean discharges	
	in the Chenoweth Run Basin, during the model calibration period, February 1996-	
	January 1998	97
	38. Observed and simulated daily mean discharge at Chenoweth Run at Ruckriegel	
	Parkway, during the model calibration period, February 1996–January 1998	100
	39. Observed and simulated daily mean discharge at Chenoweth Run at Gelhaus Lane,	
	during the model calibration period, February 1996–January 1998	101
	40. Flow-duration curves with observed and simulated daily mean discharge at	
	Chenoweth Run at Ruckriegel Parkway and at Gelhaus Lane, during the model	
	calibration period, February 1996–January 1998	102

41.	Discharge during selected storms at Chenoweth Run at Ruckriegel Parkway, during the model calibration period, February 1996–January 1998	104
42.	Discharge during selected storms at Chenoweth Run at Gelhaus Lane, during the	
	model calibration period, February 1996–January 1998	105
43.	Comparison of the observed and simulated flow volumes in inches of water on the	100
	basin for the calibration, verification, and nonuniform storms in the Chenoweth	
	Run Basin	106
44	Comparison of the observed and simulated peak discharges for the calibration,	
	verification, and nonuniform storms in the Chenoweth Run Basin	109
45	Simulated surface runoff, interflow, and base flow for 17 types of pervious land	
10.	surfaces (PERLND) and 2 types of impervious land surfaces (IMPLND) in the	
	Chenoweth Run Basin: (A) Average monthly flow; (B) High-flow month,	
	March 1997; and (C) Low-flow month, July 1997	112
46	Comparison of the monthly ESTIMATOR suspended-solids loads and the monthly	112
40.	Hydrological Simulation Program—Fortran (HSPF)-simulated suspended-sediment	
	loads in the Chenoweth Run Basin, during the model calibration period,	
	February 1996–January 1998.	121
17	Hourly suspended-solids and suspended-sediment loads and 5-minute discharge	121
47.	and sampling discharge during selected storms, Chenoweth Run at Ruckriegel	
	Parkway, during the model calibration period, February 1996–January 1998	123
18	Hourly suspended-solids and suspended-sediment loads and 5-minute discharge	123
40.	and sampling discharge during selected storms, Chenoweth Run at Gelhaus Lane,	
	during the model calibration period, February 1996–January 1998	124
40	Comparison of total estimated suspended-solids loads and Hydrological Simulation	124
47.	Program—Fortran (HSPF)-simulated suspended-sediment loads for selected	
	storms in the Chenoweth Run Basin, during the model calibration period,	
	•	125
50	February 1996–January 1998	123
30.	Comparison of the monthly ESTIMATOR total orthophosphate loads and the	
	monthly Hydrological Simulation Program—Fortran (HSPF)-simulated total	
	orthophosphate loads in the Chenoweth Run Basin, during the model calibration	120
51	period, February 1996–January 1998	129
51.	Hourly total orthophosphate loads and 5-minute discharge and sampling discharge	
	during selected storms, Chenoweth Run at Ruckriegel Parkway, during the model	120
50	calibration period, February 1996–January 1998	130
52.	Hourly total orthophosphate loads and 5-minute discharge and sampling discharge	
	during selected storms, Chenoweth Run at Gelhaus Lane, during the model	101
50	calibration period, February 1996–January 1998	131
53.	Comparison of total estimated total orthophosphate loads and Hydrological	
	Simulation Program—Fortran (HSPF)-simulated total orthophosphate loads for	
	selected storms in the Chenoweth Run Basin, during the model calibration period,	100
	February 1996–January 1998.	132

TABLES

1.	Land-use distribution at selected locations in the Chenoweth Run Basin	16
2.	Land-cover characteristics at selected locations in the Chenoweth Run Basin	16
3.	Chemical constituents and physical properties analyzed for water samples collected	
	in the Chenoweth Run Basin, 1988–98	19
4.	Water-quality-sampling sites in the Chenoweth Run Basin used in the study	19
5.	Time-series data compiled for hydrologic analysis and calibration of the model	
	for Chenoweth Run Basin	21
6.	Methods used by the Louisville and Jefferson County Metropolitan Sewer District	
	laboratory for analysis of water-quality samples collected in the Chenoweth Run Basin,	
	1988–98	25
7.	Initially designated land-use and land-cover classes in the Chenoweth Run Basin	29
8.	Combined land-use/land-cover classes in the Chenoweth Run Basin	29
9.	Percentage areal coverages of the basin by the rain gages based on Thiessen polygons	
	at selected locations in the Chenoweth Run Basin	31
10.	Statistical summary of the rainfall data collected at selected locations in and near the	-
	Chenoweth Run Basin, during the model calibration period, February 1996–January 1998	32
11.	Statistical summary of storm rainfall at selected locations in and near the Chenoweth	
	Run Basin, during the model calibration period, February 1996–January 1998	34
12.	Mean nutrient concentrations in municipal wastewaters	37
13.	Estimated typical hourly through-plant effluent-discharge rates at the Jeffersontown and	0.
10.	Chenoweth Hills Wastewater-Treatment Plants in the Chenoweth Run Basin	41
14.	Estimated annual total suspended-solids loads in wastewater-treatment-plant effluents in the	
	Chenoweth Run Basin, during the model calibration period, February 1996–January 1998	42
15.	Influent and effluent phosphorus concentrations reported for the Jeffersontown	
10.	Wastewater-Treatment Plant	43
16.	Estimated annual total phosphorus loads in wastewater-treatment-plant effluents in the	
10.	Chenoweth Run Basin, during the model calibration period, February 1996–January 1998	44
17.	Statistical summary of observed and estimated daily mean effluent total orthophosphate	
	(TPO ₄) concentrations at the Jeffersontown Wastewater-Treatment Plant	45
18.		
	Chenoweth Run Basin, during the model calibration period, February 1996–January 1998	46
19.	Annual water budget for the Chenoweth Run Basin, during the model calibration	
	period, February 1996–January 1998	46
20.	Base-flow measurements in the Chenoweth Run Basin, in 1995	49
	Reported total suspended-solids, total nitrogen, and total phosphorus concentrations in flows	
	from point and nonpoint sources in the United States	57
22.	Estimated annual loads and yields of total suspended solids, total phosphorus, and total	
	orthophosphate in the Chenoweth Run Basin, during the model calibration period,	
	February 1996–January 1998	63
23.	· ·	
	in Jefferson County, Kentucky	63
24.	Reported total phosphorus yields from selected nonpoint sources in North America	64
25.		
	Jefferson County, Kentucky	65
26.		
	sampled storm periods in the Chenoweth Run Basin, during the model calibration period,	
	February 1996–January 1998	65
		55

27.	Computer code structure of Hydrological Simulation Program—Fortran (HSPF) components	
	used for modeling the Chenoweth Run Basin	67
28.	Hydrological Simulation Program—Fortran (HSPF) parameters used to model the	(0
20	Chenoweth Run Basin	
	Description of the soil-series groups defined for modeling the Chenoweth Run Basin	82
30.	Hydrologic response units simulated in the Hydrological Simulation Program—Fortran	0.6
~ 1	(HSPF) model of the Chenoweth Run Basin	86
31.		
	in the Chenoweth Run Basin	87
32.		
	in the Chenoweth Run Basin model	89
33.	Simulated water budget and measured rainfall and streamflow in the Chenoweth Run Basin,	
	during the model calibration period, February 1996–January 1998	94
34.	Statistics for the criteria used in the calibration of streamflow using the Hydrological	
	Simulation Program—Fortran (HSPF) model applied in the Chenoweth Run Basin,	
	during the model calibration period, February 1996–January 1998	95
35.	Model-calibration statistics for hourly, daily, and monthly streamflows at the two	
	streamflow-gaging stations in the Chenoweth Run Basin, during the model calibration	
	period, February 1996–January 1998	98
36.	Precipitation and streamflow data for selected calibration storms at streamflow-gaging	
	stations in the Chenoweth Run Basin, during the model calibration period,	
	February 1996–January 1998	103
37.	Model-calibration statistics for the volume and peak streamflow during storm periods	
	at Chenoweth Run at Ruckriegel Parkway, during the model calibration period,	
	February 1996–January 1998	107
38.	Model-calibration statistics for the volume and peak streamflow during storm periods	
	at Chenoweth Run at Gelhaus Lane, during the model calibration period,	
	February 1996–January 1998	108
39.	Comparison of simulated and measured discharge at Chenoweth Run at Seatonville Road,	
	Jefferson County, Kentucky	110
40.		
	expressed as a percentage change relative to the base calibration at Chenoweth Run at	
	Ruckriegel Parkway, during the model calibration period, February 1996–January 1998	114
41.	Sensitivity of simulated-flow characteristics to changes in selected model parameters	
	expressed as a percentage error relative to the observed flow characteristics at	
	Chenoweth Run at Ruckriegel Parkway, during the model calibration period,	
	February 1996–January 1998	115
42.	Sensitivity of simulated-flow characteristics to changes in selected model parameters	
	expressed as a percentage change relative to the base calibration at Chenoweth Run	
	at Gelhaus Lane, during the model calibration period, February 1996–January 1998	116
43.		
	expressed as a percentage error relative to the observed flow characteristics at Chenoweth	
	Run at Gelhaus Lane, during the model calibration period, February 1996–January 1998	117
44.		
	Run Basin, during the model calibration period, February 1996–January 1998	120
45.		
	(HSPF)-simulated suspended-sediment loads in the Chenoweth Run Basin, during the	
	model calibration period, February 1996–January 1998	121

46.	Estimated suspended-solids loads and Hydrological Simulation Program—Fortran	
	(HSPF)-simulated suspended-sediment loads for selected storms in the Chenoweth Run	
	Basin, during the model calibration period, February 1996–January 1998	122
47.	Simulated total orthophosphate yields by model hydrologic response unit in the Chenoweth	
	Run Basin, during the model calibration period, February 1996–January 1998	126
48.	Annual ESTIMATOR total orthophosphate loads and Hydrological Simulation Program—	
	Fortran (HSPF)-simulated total orthophosphate loads in the Chenoweth Run Basin,	
	during the model calibration period, February 1996–January 1998	128
49.	Estimated total orthophosphate loads and Hydrological Simulation Program—Fortran	
	(HSPF)-simulated total orthophosphate loads for selected storms in the Chenoweth Run	
	Basin, during the model calibration period, February 1996–January 1998	129

CONVERSION FACTORS, VERTICAL DATUM, AND ABBREVIATIONS

CONVERSION FACTORS

Multiply	Ву	To obtain
acre	4,047	square meter
inch (in.)	25.4	millimeter
square inch (in ²)	6.452	square centimeter
inch per hour (in/h)	0.0254	meter per hour
foot (ft)	0.3048	meter
square foot (ft ²)	0.09290	square meter
mile (mi)	1.609	kilometer
foot per mile (ft/mi)	0.1894	meter per kilometer
square mile (mi ²)	2.590	square kilometer
cubic foot per second (ft^3/s)	0.02832	cubic meter per second
gallon per day (gal/d)	0.003785	cubic meter per day
million gallons per day (Mgal/d)	0.04381	cubic meter per second
ounce, avoirdupois (oz)	28.35	gram
pound, avoirdupois (lb)	0.4536	kilogram
pound per acre (lb/acre)	1.121	kilograms per hectare
pound per acre per day (lb/acre)/d	1.121	kilogram per hectare per day
ton per day (ton/d)	0.9072	metric ton per day
ton per acre per year (ton/acre)/yr	2.243	metric ton per hectare per year

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

 $^{\circ}C = (^{\circ}F - 32) / 1.8$

VERTICAL DATUM

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

ABBREVIATIONS

The following abbreviations are used in this report.

Abbreviation	Description
CV	Coefficient of variation
GIRAS	Geographic Information Retrieval and Analysis System
HRU	Hydrologic response unit
HSPF	Hydrological Simulation Program—Fortran
IMPLND	Impervious land segment
KDOW	Kentucky Division of Water (of the Department for Environmental Protection KNREPC)
KNREPC	Kentucky Natural Resources and Environmental Protection Cabinet
LOJIC	Louisville and Jefferson County Information Consortium
LOWESS	Locally weighted scatterplot smooth
MSD	Louisville and Jefferson County Metropolitan Sewer District
NPDES	National Pollutant Discharge Elimination System
PERLND	Pervious land segment
RCHRES	Reaches and reservoirs
UCI	User-control input
USEPA	U.S. Environmental Protection Agency
USGS	U.S. Geological Survey
WWTP	Wastewater-treatment plant
cm	Centimeter
CN ⁻	Cyanide
g	Gram
L	Liter
mg/L	Milligrams per liter
mL	Milliliter
mm	Millimeter
Ν	Nitrogen
NH ₃	Ammonia
NH_4^+	Ammonium
NO ₃	Nitrate
TN	Total nitrogen
Р	Phosphorus
pH	Negative log (base-10) of the hydrogen ion activity, in moles per liter
PO ₄	Orthophosphate
TP	Total phosphorus
TPO ₄	Total orthophosphate
µS/cm	Microsiemens per centimeter at 25 degrees Celsius
<	Less than
≤	Less than or equal

Hydrologic and Water-Quality Characterization and Modeling of the Chenoweth Run Basin, Jefferson County, Kentucky

By Gary R. Martin, Phillip J. Zarriello, and Allison A. Shipp

Abstract

Rainfall, streamflow, and water-quality data collected in the Chenoweth Run Basin during February 1996–January 1998, in combination with the available historical sampling data, were used to characterize hydrologic conditions and to develop and calibrate a Hydrological Simulation Program—Fortran (HSPF) model for continuous simulation of rainfall, streamflow, suspended-sediment, and total-orthophosphate (TPO₄) transport relations. Study results provide an improved understanding of basin hydrology and a hydrologic-modeling framework with analytical tools for use in comprehensive waterresource planning and management.

Chenoweth Run Basin, encompassing 16.5 mi² in suburban eastern Jefferson County, Kentucky, contains expanding urban development, particularly in the upper third of the basin. Historical water-quality problems have interfered with designated aquatic-life and recreation uses in the stream main channel (approximately 9 mi in length) and have been attributed to organic enrichment, nutrients, metals, and pathogens in urban runoff and wastewater inflows.

Hydrologic conditions in Jefferson County are highly varied. In the Chenoweth Run Basin, as in much of the eastern third of the county, relief is moderately sloping to steep. Also, internal drainage in pervious areas is impeded by the shallow, fine-textured subsoils that contain abundant silts and clays. Thus, much of the precipitation here tends to move rapidly as overland flow and (or) shallow subsurface flow (interflow) to the stream channels.

Data were collected at two streamflowgaging stations, one rain gage, and four waterquality-sampling sites in the basin. Precipitation, streamflow, and, consequently, constituent loads were above normal during the data-collection period of this study. Nonpoint sources contributed the largest portion of the sediment loads. However, the three wastewatertreatment plants (WWTP's) were the source of the majority of estimated total phosphorus (TP) and TPO₄ transport downstream from the WWTP's.

HSPF, a hydrologic model capable of simulating mixed-land-use basins, includes land surface, subsurface, and instream waterquantity- and water-quality-modeling components. The HSPF model was used to represent several important hydrologic features of the Chenoweth Run Basin including (1) numerous small lakes and ponds, through which approximately 25 percent of the basin drains; (2) potential seasonal ground-waterseepage losses in stream channels; (3) contributions from WWTP effluents and bypass flows; and (4) the transport and transformations of sediments and nutrients.

The HSPF model was calibrated and verified for flow simulation on the basis of measured total, annual, seasonal, monthly, daily, hourly, and 5-minute-interval storm discharge data. The occurrence of numerous storms during the study period permitted a splitsample procedure to be used for a model verification on the basis of storm volumes and peaks. Total simulated and observed discharge during the model calibration period differed by approximately -5.4 percent at the upper gaging station and 3.1 percent at the lower station. The model results for the total and annual water balances were classified as very good on the basis of the calibration criteria reported in other modeling studies. The model had correlation coefficients ranging from 0.89 to 0.98 for hourly to monthly mean flows, respectively. The coefficients of model-fit efficiency for daily and monthly discharge simulations were near the excellent range (exceeding 0.97). However, the model was calibrated for a comparatively short 24-month period during which flows were above normal. Increased model error might be expected during an extended period of nearnormal flows.

The model was calibrated for simulation of sediment and TPO₄ transport. The simulated mean-annual load (over 24 months) ranged from -33 to -28 percent of the estimated sediment load and within +/- 1 percent of the estimated TPO_4 load at the two streamflow-gaging stations. Sediment load was undersimulated, particularly during the year of major flooding (1997). Stream discharge and the sediment and TPO_4 loads tended to be oversimulated during the smallest storms sampled during summer and early fall low-flow periods. Annual and annual mean errors indicated a fair sediment simulation (25 to 35 percent error) and a good TPO_4 simulation (20 to 30 percent error). Percentage errors in simulation of individual storm sediment and TPO_4 loads were generally much larger than percentage errors in annual and total loads.

INTRODUCTION

Chenoweth Run Basin (16.5 mi²) is a rapidly urbanizing tributary to Floyds Fork in suburban eastern Jefferson County in north-central Kentucky (fig. 1). Alterations in water use, land use, and land cover associated with urbanization can drastically alter and adversely affect the hydrologic character of a drainage basin. As land is developed, there is, in general, a decrease in the amount of pervious land area available for infiltration of precipitation. Increases in the magnitude and frequency of peak discharges during periods of flooding as a consequence of urbanization have been well documented (Leopold, 1968; Sauer and others, 1983). An increase in the types and amounts of contaminants entering waterways also generally occurs with urbanization, which often has resulted in degradation of water quality.

Water quality downstream from many urbanized locations in Jefferson County has historically been adversely affected by a variety of point and nonpoint sources of contaminants, including wastewater-treatment plants; land dedicated to a variety of industrial, commercial, residential, and agricultural uses; and leachates from septic tanks and landfills. Most of the contaminants are anthropogenic in origin and include organic debris, sediments, nutrients, petroleum products, and potentially toxic chemicals, such as heavy metals and pesticides. Water-quality conditions are such that the Jefferson County Board of Health has recommended avoiding contact recreation in all streams in Jefferson County for protection of public health (Louisville and Jefferson County Metropolitan Sewer District, 2000).

Water-quality problems in the Chenoweth Run Basin have been reported by several agencies, including the Kentucky Natural Resources and **Environmental Protection Cabinet** (KNREPC)—Division of Water (KDOW), the Louisville and Jefferson County Metropolitan Sewer District (MSD), and the U.S. Geological Survey (USGS) (Logan and others, 1986; Leist and others, 1991; Louisville and Jefferson County Metropolitan Sewer District 1990, 1991, 1994, and 1996; Evaldi and others, 1993; Evaldi and Moore, 1994a and 1994b). The KDOW has previously listed 9 mi of Chenoweth Run as not meeting criteria for either aquatic-life or swimming uses because of organic enrichment, nutrients, metals, and pathogens discharged in urban runoff and wastewaters (Kentucky Natural Resources and Environmental Protection Cabinet, 1994).

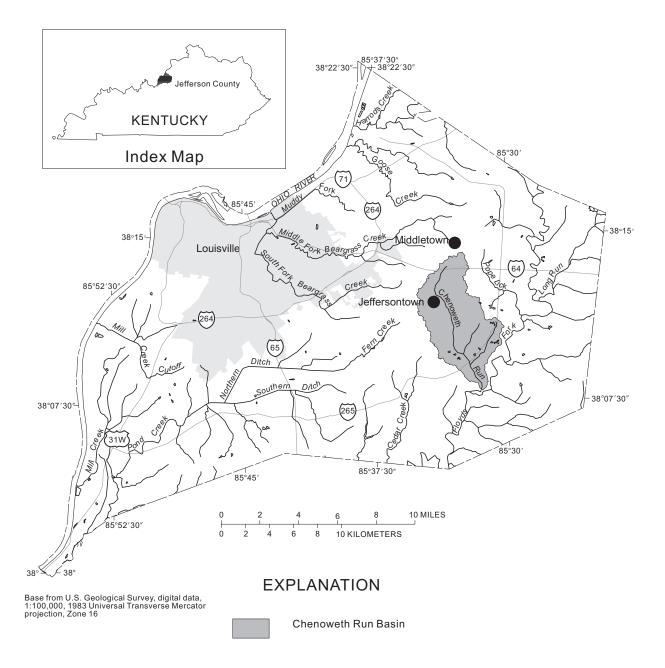


Figure 1. Location of the Chenoweth Run Basin, Jefferson County, Kentucky.

MSD is the lead water-resource-management agency in Jefferson County. MSD's responsibilities include wastewater collection, treatment, and disposal; storm-water management and flood control; and coordination of industrial-wastepretreatment programs. MSD operates—under National Pollutant Discharge Elimination System (NPDES) permits issued by KDOW—wastewaterand storm-water-management facilities in Jefferson County. MSD operates the three wastewatertreatment plants (WWTP's) in the Chenoweth Run Basin. MSD assumed operation of the largest of these from the original owner/operator, the city of Jeffersontown, Ky., in September 1990.

MSD has prepared master plans and developed strategies for effective wastewater and storm-water management. Components of these plans include (1) construction of sanitary sewers in unsewered areas to replace failing septic systems and (2) procurement and elimination of numerous, small, inefficient WWTP's serving individual developments. Instead, MSD routes wastewaters to regional treatment facilities, which can be operated effectively and efficiently.

Since 1988, MSD has conducted, in cooperation with the USGS, a program for the study of urban hydrology in Jefferson County. This program has incorporated systematic datacollection activities, including water-quality sampling and concurrent discharge measurements at approximately 25 stream sites countywide (one in the Chenoweth Run Basin at Gelhaus Lane, downstream from the three WWTP's in the basin) and operation of several streamflow- and rainfallgaging stations. Goals of the program have included characterization of hydrologic and water-quality conditions by collection and interpretation of baseline and long-term data that provide a technically sound, scientific basis for assessing changes in stream environmental quality over time and in response to selected water-resource-management strategies. The interpretive studies have assessed flood-frequency characteristics and water-qualityconstituent concentrations, trends (if any), and loads. The studies have permitted identification of land areas and stream reaches that have, or contribute to, significant water-quality problems. Focused studies of selected problematic drainage basins using a "watershed framework" were undertaken following the countywide, water-quality assessments. Development of continuous hydrologic models for simulations of complex urban basins, such as Beargrass Creek Basin (Jarrett and others, 1998) and Chenoweth Run Basin, was initiated in this latest phase of the urban hydrology program. The Hydrological Simulation Program—Fortran (HSPF) model has been applied previously in agricultural basins (Moore and others, 1988; Chew and others, 1991) and in urban basins (Dinicola, 1990; Duncker and others, 1995).

This detailed study of hydrologic and waterquality conditions in the Chenoweth Run Basin began in 1996. The basic study goal was to improve understanding of the hydrology of the Chenoweth Run Basin by collection and interpretation of representative streamflow and water-quality data and by development of a comprehensive hydrologic simulation model that would provide resource managers a reliable tool for prediction of the probable hydrologic effects of land-use changes and alternative water-resource-management options. An HSPF model for continuous simulation of flow, sediment, and orthophosphate transport was developed and calibrated to base (existing) conditions during February 1996–January 1998. The model defines the conceptual hydrologic relations between land- and water-use activities and the corresponding stream-water-quality and waterquantity characteristics, and provides a basis for assessing the probable results of various possible scenarios for modifications in the basin.

This report describes the study approach, methods of data collection and analysis, and the hydrologic characteristics of the Chenoweth Run Basin. The report also describes the modeling approach and the features, capabilities, results of simulations, and limitations of the Chenoweth Run Basin HSPF model.

The authors thank Patti Grace-Jarrett, who facilitated transfer of stream-water- and wastewatersampling results from the MSD laboratory; Kevin Ruhl, Brian Moore, and Paul Bruenderman, who coordinated USGS field data-collection work in Chenoweth Run; David Leist, who provided KDOW data collected in the Chenoweth Run Basin; Tom Jobes, of AquaTerra, Inc., who provided guidance on selected portions of the HSPF model coding; Jane Poole, who provided geographic data from the Louisville and Jefferson County Information Consortium (LOJIC); Michael Callahan, who provided selected data sets from the National Weather Service; Bonnie Stich Fink, for preparation of report tables, editing, and final layout; and Hugh Nelson, who prepared the report maps.

PREVIOUS STUDIES

Water-quality problems in the Chenoweth Run Basin have been described in several reports released by local, state, and federal agencies. Potential sources of the problems cited in the reports have included wastewater-treatment plants, agriculture (including livestock), construction activities, loss of stream-bank vegetation and stream-bank erosion, lawn-care and golf-coursemaintenance practices, and storm runoff from urban and industrial areas.

A KDOW study to determine appropriate stream-use designations in the Floyds Fork Basin (Logan and others, 1986) recommended classification of the main channel and tributaries under standards for warmwater aquatic habitat and primary and secondary contact recreation uses. The study report described adverse effects of constituent inflows from urban areas on aquatic biota in Chenoweth Run and on downstream from the confluence with Floyds Fork. Dense growths of algae and a sparse tree cover, which would provide shading to inhibit algal growth, were reported for Chenoweth Run. High values for dissolved-oxygen concentration (more than 20 mg/L) and pH (9.2), indicative of algal activity, were reportedly present during a low-flow period in 1986.

A series of three MSD reports described water-quality conditions and the physical, chemical, and biological data collected in 1989, 1990, 1991, and 1992 at a network of approximately 25 streamsampling stations in Jefferson County, Ky., including one in Chenoweth Run Basin (Louisville and Jefferson County Metropolitan Sewer District, 1990, 1991, and 1994). These reports indicated that all streams then being sampled in Jefferson County were "severely stressed" and had experienced a general deterioration in water quality associated with land disturbance and urbanization. Suspendedsolids, nitrogen, and phosphate levels were reported to be elevated and indicative of pollution problems. MSD (1990) reported that Chenoweth Run had the highest annual average of total phosphorus concentration of the 26 sites sampled in Jefferson County, Ky., in 1989. Probable sources of these countywide problems cited in the reports included a variety of point and nonpoint sources of contaminants, including numerous poorly performing WWTP's, failing septic-tank systems, and soil erosion and stormwater runoff from urban and agricultural areas. (Most of the WWTP's were small package plants serving individual residential developments, and most of these plants have since been acquired, deactivated, and flows diverted to regional wastewater-treatment facilities by MSD.)

Leist and others (1991) reported adverse effects on Chenoweth Run resulting from wastewater effluents and storm-water runoff. During certain periods of the year, wastewater discharges were reported to dominate streamflow in Chenoweth Run, resulting in nutrient enrichment. Soil erosion from construction sites leading to excess siltation in streams was reported, and excess fertilization and chemical application to lawns, golf courses, and other areas were reported as possible causes of nutrient enrichment and other problems. Dissolved-oxygen supersaturation, algal growth, and elevated pH observed in Chenoweth Run were reported to be indicators of nutrient enrichment. In 1991, KDOW proposed a moratorium on additional wastewater-treatment facilities in the Chenoweth Run Basin because of the existing water-quality problems. It was reported that in 1991, the Jefferson County government initiated new administrative procedures for review of development plans in the Floyds Fork Basin to provide additional protection of stream beds and banks from encroachment by the clearing of natural vegetation and earthwork.

Leist and others (1991) reported low-flow measurements in the lower reaches of Floyds Fork near the confluence with Chenoweth Run that indicated a gain in streamflow, probably caused by ground-water inflow. Data collection in the present study indicated probable losing stream reaches in Chenoweth Run, which may be supplying these observed inflows to Floyds Fork. Thus, contrary to the assumption that the ground-water inflows would help dilute nutrient-rich waters coming from wastewater facilities on the tributaries, such groundwater inflows may actually be supplied by wastewater effluents on Floyds Fork tributaries such as Chenoweth Run (see "Base-Flow Losses").

(Note: Chenoweth Run is also referred to as Lower Chenoweth Run in some previous studies because another stream named Chenoweth Run enters Floyds Fork upstream at approximately stream mile 47, which is approximately 23 mi upstream from the confluence of (lower) Chenoweth Run and Floyds Fork.)

Statistical summaries of water-quality characteristics and estimates of constituent loads and yields at the network of water-quality-sampling sites in Jefferson County, Ky., were reported by Evaldi and Moore (1992), Evaldi and others (1993), and Evaldi and Moore (1994a and 1994b). Median concentrations of nutrients including total phosphorus, total orthophosphate, and nitrate nitrogen in Chenoweth Run were among the highest values reported for the network. Yields of total phosphorus, total orthophosphate, suspended solids, and biochemical oxygen demand in Chenoweth Run were also among the highest values reported for the network.

The 1994 Kentucky Report to Congress on Water Quality (Kentucky Natural Resources and Environmental Protection Cabinet, 1994) listed 9 mi of Chenoweth Run as not meeting waterquality criteria for either aquatic life or swimming uses because of organic enrichment, nutrients, metals, and pathogens in urban runoff and wastewater effluents.

MSD (1996) described conditions in Chenoweth Run at Gelhaus Lane on the basis of data collected during 1991-94. Chenoweth Run was described as severely stressed: the KDOW streamuse designations for warmwater-aquatic habitat and the primary and secondary contact recreation designations were not being met. Forty-five percent of bacteriological sample counts exceeded contact standards. Quarterly water sampling for analysis of metals had indicated chronic-criteria violations for copper, mercury, nickel, selenium, and zinc and acute-criteria violations for chromium, copper, nickel, and zinc. Quarterly sampling for analysis of cyanide, pesticides, and herbicides indicated criteria violations for cyanide and lindane and the presence of 2,4-D. The data were reported as "clearly illustrating a significant level of influx of nutrients, erosional materials and very likely organic

contamination from animal waste and (or) human sewage." The report indicated "extremely abundant growths of filamentous algae develop during warmer periods." Excessive growth of algae was reported to lead to increases in stream pH such that ammonia toxicity increased. The report indicated that stream "habitat quality is generally degraded throughout the county by rapid fluctuations in flow, removal of riparian communities (the botanical community adjacent to stream), and channelization." Biological-sampling data indicated that approximately 90 percent of organisms sampled were species known to be tolerant of poor water quality, thus indicating a severe level of stress on aquatic life and elevated contaminant levels in Chenoweth Run.

Leist (1996), in reference to previous waterquality investigations in the Chenoweth Run Basin and other basins, reported "The most significant problems in Chenoweth Run and Floyds Fork downstream of Chenoweth Run were dense nuisance growths of algae, causing both aesthetic problems and water-quality criteria violations for dissolved oxygen, pH, and ammonia toxicity. Fueling this algal growth was an excess of nutrients, with phosphorus considered the nutrient of most concern." The primary source of phosphorus during low and moderate flow was reported to be the 4-Mgal/d capacity Jeffersontown WWTP. The report indicated the primary source for phosphorus during high flows was nonpoint sources including fertilized lawns. On the basis of available information concerning eutrophication in the basin, KDOW had imposed a phosphorus-removal requirement on a proposed wastewater-treatment facility in the basin, had begun requiring phosphorus monitoring at the Jeffersontown WWTP, and had initiated an investigation of the major sources of nutrients in the Chenoweth Run Basin (Leist, 1996).

The report also described continuing land development in the basin, including construction of a large church complex with a 50-acre parking lot in the basin headwaters. Much of the urban development in the basin, including Jeffersontown, Ky. and the Bluegrass Industrial Park, was located in the upper portion of the basin, upstream from the Jeffersontown WWTP. The lower portion of the basin, downstream from the Jeffersontown WWTP, remained mostly rural in character with some residential subdivision development in place and planned for the future.

Despite the continuing development, the report noted that fish were observed throughout the stream, including large sport fish (bass and bluegill) in pools downstream from the WWTP. Ducks were noted to be routinely present in Chenoweth Run.

Leist (1996) initiated data collection at five additional sites in the basin for a broad range of water-quality characteristics during a wide range of flows from January 1995 through January 1996. The report described the effects of the eutrophication process in detail: algae and other rooted aquatic plants can proliferate where nutrient concentrations and light intensities are sufficient. As the algae later die, decomposition can release foul odors and deplete dissolved oxygen, causing fish kills. Algal respiration at night, or during extended periods of cloud cover, can also deplete dissolved oxygen. It was reported that streams with low slopes and little riparian tree cover have the greatest potential for algal blooms. The thick algal blooms and dissolved-oxygen violations reported for previous summers did not occur during this 1-year data-collection period, possibly because of scouring high flows in combination with high temperatures. Indications of algal activities were noted by reported sharp increases in dissolvedoxygen concentration occurring after sunrise and dissolved-oxygen supersaturation. Also reported were the typical algae-induced changes in pH. During daylight, as carbon dioxide (CO_2) is taken up during photosynthesis, pH increases; at night, as CO_2 is released in algal respiration, pH decreases. High pH in combination with elevated temperatures causes ammonia toxicity for aquatic life. The report indicated that even a stream with relatively low nitrogen content might still experience algae blooms if excess phosphorus is available and nitrogen-fixing forms of algae, which obtain nitrogen directly from the atmosphere, are present. During the January 1995–January 1996 datacollection period, iron and lead concentrations were in excess of chronic criteria, and iron concentration was in excess of acute criteria.

Leist (1996) described research (Water Environment & Technology, 1995) indicating how shading affects algal communities: when shading is removed, the type of algal species changes from those that are eaten by insect larvae and snails to algal species with no natural predators. The report noted that because of uncertainties related to complexities of the eutrophication process, no specific state or federal numerical standards had yet been developed for phosphorus (P) in streams. The U.S. Environmental Protection Agency (USEPA) was working to develop criteria for nutrients because of the need to control nutrient enrichment. USEPA had previously suggested a limit of 0.1 mg P/L in streams for control of eutrophication (United States Environmental Protection Agency, 1986).

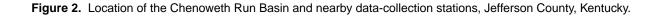
Leist (1996) recommended (1) a limit of 1 mg P/L for the Jeffersontown WWTP effluent, which may be lowered in the future if eutrophication continues to cause water-qualitycriteria violations, as the exact amount of phosphorus reduction needed at the plant to eliminate eutrophication problems could not be discerned from the existing data; (2) restoration of riparian vegetation for shading from solar radiation to limit the growth of algae species that have no natural predators; and (3) control of nonpoint sources of nutrients and other constituents in the basin.

An investigation of biological, chemical, and physical aspects of the eutrophication process in Chenoweth Run was conducted in conjunction with the study by Leist (1996). The purposes of this allied biological investigation were to define relations, if any, between nutrient concentrations (nitrate nitrogen, total orthophosphate, and total phosphorus) and algal biomass and also to assess the potential effectiveness of reductions of phosphorus concentrations for control of eutrophication in Chenoweth Run (Kentucky Natural Resources and Environmental Protection Cabinet, 1999). Samples of aquatic plants for measurement of biomass (chlorophyll a, dry weight, and ash-free dry weight) were collected periodically at five sites, all in unshaded reaches having limestone-bedrock channel bottoms. A control site was on the main channel, 0.8 mi upstream from the Jeffersontown WWTP, and three sampling sites were downstream from the plant on the main channel. One reference site unaffected by point sources was located on a relatively undisturbed tributary downstream from the Jeffersontown WWTP.

In April 1995, ideal environmental conditions (including abundant nutrient levels) led to heavy nuisance growth of filamentous green alga, *Cladophora glomerata*, in the Chenoweth Run main channel. Nuisance growth of algae was defined as a chlorophyll *a* level exceeding approximately 13.9 mg/ft² (150 mg/m²). Storms in May 1995, however, scoured away the benthic-algae growth that had been established earlier in the spring. No algal biomass samples collected after the May storms exceeded the cited nuisance threshold level.

Analysis of the sampling data identified no statistically significant mathematical correlations of the biomass measurements with any of the nutrient concentrations sampled; however, all three biomass parameters were found to be positively correlated with dissolved-oxygen concentration and negatively correlated with water temperature. The primary abiotic factors that appeared to have affected biomass were streamflow and temperature. Increased water temperatures exceeding 20°C that occurred after the scouring of the substrate in May 1995 may have inhibited algae regrowth later that year.


Although nutrient concentrations at the control site upstream from the Jeffersontown WWTP were much lower than nutrient concentrations observed downstream from the plant, the chlorophyll-a level at the control site remained above the reported nuisance level prior to the May 1995 storms. The reference site on the tributary had the lowest nutrient levels and the lowest biomass of any of the sampling sites-below any level of concern. Algal uptake of phosphorus was apparent on the main channel because total phosphorus concentrations declined progressively at the series of sampling sites downstream from the Jeffersontown WWTP. Total phosphorus concentrations downstream from the plant increased sharply following the May storms that scoured away the benthic algae, which was also indicative of algal consumption of phosphorus preceding the May storms. Consequently, additional nutrients were available for export from Chenoweth Run to Floyds Fork following the May storms.


The report from the biological investigation indicated that the observed nutrient concentrations, both before and after the May 1995 storms, were not limiting algal growth in Chenoweth Run, and excess nutrients were being exported downstream to Floyds Fork. The results of other studies were reported to indicate that nutrient concentrations were in excess (for aquatic-plant growth requirements) in Chenoweth Run. The report indicated that insufficient information was available (from the study) to determine whether control of phosphorus releases from the Jeffersontown WWTP would decrease the potential for nuisance growth of aquatic plants downstream from the plant. Controls of nonpoint sources of phosphorus were cited as a potential additional requirement to effectively limit excess algal growth during ideal environmental conditions for such growth. The report indicated that further studies were needed to determine accurately what instream nutrient limits would help maintain benthic-algal biomass at sub-nuisance levels in Chenoweth Run.

DESCRIPTION OF STUDY AREA

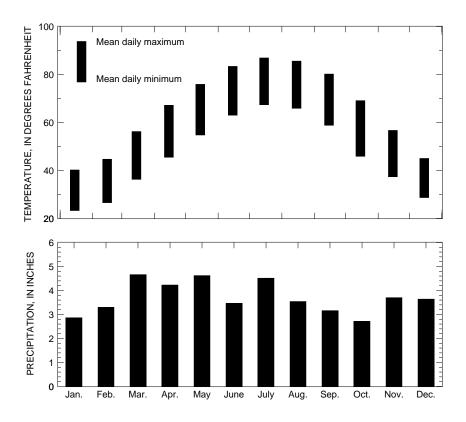
The Chenoweth Run Basin is in suburban eastern Jefferson County in north-central Kentucky (fig. 2). The basin is east of the city of Louisville, which lies along the banks of the Ohio River in northwestern Jefferson County. Louisville is the largest city and most densely populated area of the State. Parts of the city of Jeffersontown are located in the upper reaches of the Chenoweth Run Basin. The population of Jeffersontown was approximately 23,000 in 1990 and an estimated 28,000 in 2000 (Frank Greenwell, Jeffersontown City Hall, oral commun., 2000).

Chenoweth Run Basin has a drainage area of 16.5 mi². Chenoweth Run is a tributary to the Ohio River at a point downstream from Jefferson County, by way of Floyds Fork and the Salt River. Chenoweth Run flows about 9 mi to the confluence at stream-mile 24.2 of Floyds Fork.

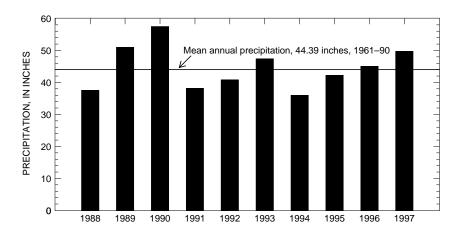
Climate

Jefferson County has a moist-continental climate with distinct seasonal variations and changeable weather patterns with generally short periods of extreme conditions. Winter temperatures are moderate, rarely below 0°F. Typical summer temperatures are warm and rarely above 100°F (fig. 3). The weather patterns are variably affected by the meeting of cold, arctic and continental air masses arriving from the northwest and warm, moist air masses moving up the Mississippi and Ohio Valleys from the southwest. Large amounts of precipitation have been associated with tropical cyclones or frontal systems originating from the primary source of regional precipitation, the subtropical Atlantic Ocean and Gulf of Mexico. Winter precipitation is associated with frontal activity; however, in summer, convective thunderstorms produce most of the precipitation. The thunderstorms can produce intense, shortduration rainfall over small areas; precipitation intensity is generally higher in the summer than in other seasons. The dry season occurs during the fall. The Bermuda High, which normally resides off the southeastern United States during summer, moves inland in the fall. In October, the normal position of the Bermuda High is over Kentucky and Tennessee. The High suppresses convective activity and inhibits the movement of fronts (Conner, 1982).

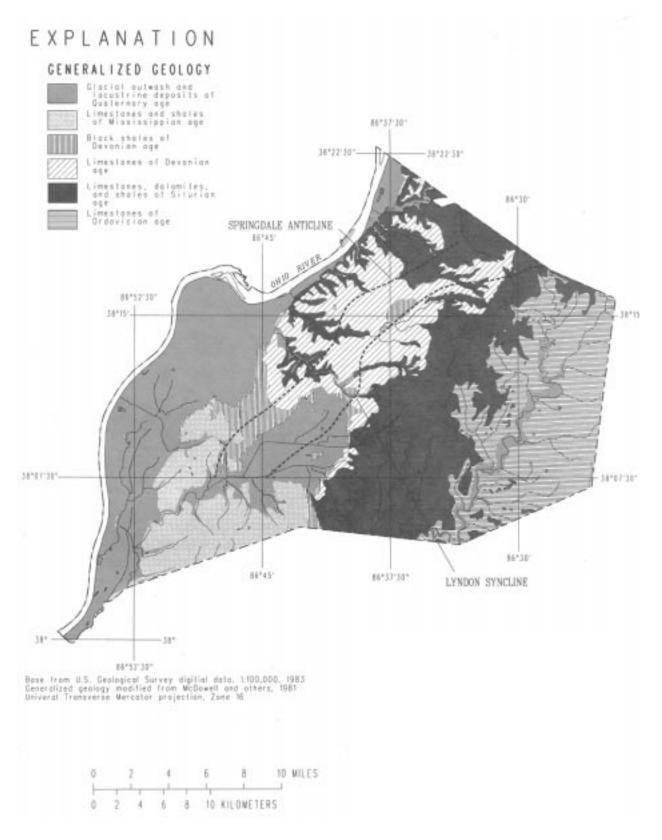
Mean daily minimum and maximum temperatures were approximately 35° and 43°F, respectively, in winter, and 65° and 85°F, respectively, in summer during 1961-90. The mean annual precipitation at Standiford Field at Louisville during 1961–90 was 44.39 in., ranging from 32.65 to 59.80 in. annually during this period (National Climatic Data Center, 2000). Annual precipitation extremes for the period of record include the maximum of 63.76 in. in 1996 and a minimum of 23.88 in. in 1930 (National Weather Service, 2000). Although precipitation in normal years is evenly distributed (fig. 3), the storm type and amount vary somewhat seasonally; mean seasonal precipitation is about 13.5 in. in spring (March through May), 11.5 in. in summer (June through August), 9.6 in. in fall (September through November), and 9.8 in. in winter (December through February). The wettest months are


generally March, May, and July, respectively; October is generally the driest month. Mean annual snowfall during 1961–90 was 17.5 in. Snows generally remained on the ground for only a few days before melting. Annual precipitation for the period of USGS hydrological data collection in the Chenoweth Run Basin used in the study (1988–97) is shown in figure 4.

Geology


Geological characteristics of a basin affect local hydrology. The extent and type of surficial deposits determines the amount and rate of movement of water and constituents in subsurface storage. Movement of the infiltrated water and constituents into ground-water flow is controlled by bedrock characteristics.

The geological characteristics in Jefferson County and the region in general are highly varied; consequently, local hydrological characteristics vary considerably. The geology of Jefferson County is generally characterized by layered, sedimentary deposits including limestones, dolomites, and shales of the Devonian, Silurian, and Ordovician periods with overlying alluvial and lacustrine deposits of the Quaternary period in selected areas (fig. 5). Jefferson County lies on the west flank of the Cincinnati arch, a regional uplift feature extending south from Cincinnati, Ohio, into central Kentucky that was formed following Ordovicianaged deposits; this gives the bedrock formations a slight dip to the west in the county. Thus, the age of rocks, which tend to crop out in bands running north-northeast to south-southwest, tends to progressively increase from west to east in the county (Evaldi and others, 1993; McDowell and others, 1981; and McDowell, 1986).


Bedrock in the Chenoweth Run Basin consists primarily of Silurian- and Late-Ordovicianage interbedded shales and carbonates (limestones and dolomites). Residuum of Devonian-age Sellersburg and Jeffersonville Limestones also may be present locally, overlying the Silurian-age Louisville Limestone, but is unmapped. (If this formation is present, then the thin layers in the upper and lower parts of the Sellersburg Limestone

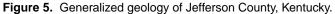


Figure 3. Monthly normal temperature and precipitation (1961–90) at Standiford Field, Louisville, Kentucky.

Figure 4. Annual precipitation at Standiford Field, Louisville, Kentucky, 1988–97.

containing phosphatic nodules would also likely be present in the basin.) Quaternary-aged alluvial deposits formed terraces along the Floyds Fork valley, and these alluvial deposits extend upstream to the middle reaches of Chenoweth Run, almost to Taylorsville Road (Moore and others, 1972).

There is a transition in hydrological characteristics in Jefferson County, which corresponds to the variation in the characteristics of the bedrock formations near the northern and western boundaries of the Chenoweth Run Basin. The Silurian- and Late-Ordovician-age interbedded limestones, dolomites, and shales in the Chenoweth Run Basin and on farther eastward into Shelby County, Ky., are more resistant than the Devonianage limestones prominent in the surficial geology to the west and north in the Beargrass Creek Basin in Jefferson County (fig. 2). For example, soils tend to be less than 5 ft thick on Silurian-aged limestones, while soils up to 25 ft thick may develop on Devonian-age limestones (Moore and others, 1972).

Small, shallow springs are common on top of the Waldron Shale and Osgood Formations, which underlay the Louisville Limestone and Laurel Dolomite, respectively, in upland areas of the Chenoweth Run Basin. Some sinkholes supply underground drainage within the Louisville Limestone. The Waldron Shale and Osgood Formations, however, tend to impede the movement of infiltrated water farther down into ground-water flow in these upland areas (Moore and others, 1972). Outcrop areas of the Waldron Shale and Osgood Formations appear to approximately delineate the eastern limits (near the center of Jeffersontown and Middletown, Ky., fig. 2) of the shallow aquifer in the Louisville Limestone that was rated adequate for a domestic-well-water supply, which provided at least 100 gal/d. The bedrock formations eastward of this point in the basin and farther eastward into Shelby County, Ky., (unless situated in a stream valley) were generally inadequate for a domestic-well-water supply (Palmquist and Hall, 1960; Hall and Palmquist, 1960). Numerous farm ponds and small lakes (several of which have been commercialized for fishing) have been constructed on top of outcrops of resistant, impermeable formations in Chenoweth Run (Waldron Shale, Osgood Formation, and the Saludia Dolomite and Bardstown members of Drakes Formation) (Moore and others, 1972).

Losses to ground water are, however, not uncommon where thin, fractured sections of clastic rocks (shales) are intersected in stream channels. Also, bedrock-fracture zones may tend to be concentrated in and (or) near stream channels in this geologic setting.

A tendency for regional-regression relations to underestimate observed peak-discharge frequencies in the eastern end of Jefferson County and adjacent counties farther eastward was noted previously (Martin and others, 1997, p. 25). At stream sites in Chenoweth Run, Fern Creek, Cedar Creek, and also at rural stream sites farther eastward in Oldham, Shelby, and Spencer Counties, observed peak-discharge frequencies were larger than were predicted by the best-fit regional urban-peakdischarge regression equations for Jefferson County. This was indicative of the limited potential infiltration and storage of precipitation that consequently leads to generally excessive runoff of precipitation. An analysis and mapping of average annual hydrologic response (ratio of annual direct runoff to annual precipitation) in the Eastern United States (Woodruff and Hewlett, 1970) indicated a relation to regional geologic formations, and the largest values determined (exceeding 24 percent) were in basins located in north-central Kentucky (Outer Bluegrass area).

Physiography

The Chenoweth Run Basin lies in the Outer Bluegrass physiographic region of Kentucky, as does most of Jefferson County. Physiographic regions in Kentucky coincide closely with the geology. The Outer Bluegrass lies mostly on limestones, dolomites, and considerable amounts of interbedded shales of Late Ordovician and Silurian Age. The relief in the Outer Bluegrass is gently rolling, except near major streams, where the terrain is dissected and rugged. Soils are deepest over limestones and thinnest over shales. Some subsurface solution has occurred in the Outer Bluegrass, and small sinkholes are fairly common; however, most of the drainage is on the surface (McDowell, 1986; Palmquist and Hall, 1961). Elevation in the Chenoweth Run Basin ranges from approximately 492 to 775 ft above mean sea level. Land slopes are steeper in the lower portion of the basin (in the areas approaching the confluence with Floyds Fork) than in the upper portion of the basin (see map on cover).

Soils

The Soil Survey of Jefferson County, Ky., (Zimmerman and others, 1966) describes soil development in the residuum and local alluvium derived from the sedimentary formations in the study area. In the level to moderately sloping upland areas and ridge tops, the soils developed in combination with a loess (windblown silt) mantle of variable thickness of up to 3 ft. Some soils that developed in the nearly level areas have a compact fragipan, generally from 1 to 3 ft deep, which impedes infiltration and root growth. Soils on the steep hillside areas tend to be rocky, readily erodible (if exposed), and thinner than the upland soils. Soils in the bottom lands along the small streams are subject to periodic flooding, but most are well drained.

The Soil Survey notes the large variability of soil parent materials (geologic formations) in the county. Thus, soil textural, chemical, mineralogical, and hydrological properties likewise vary significantly across the county. In the Chenoweth Run Basin, the Soil Survey estimates of the soil permeabilities ranges from 0.05 to 2 in/h.

Soils in the Chenoweth Run Basin are in the Crider-Corydon, Russellville-Crider-Dickson, and Beasley-Fairmount-Russellville soil associations (fig. 6). The Crider-Corydon and the Russellville-Crider-Dickson associations developed in residuum derived from high-grade limestones (Sellersburg, Jeffersonville, and Louisville limestones) of the Middle and Early Devonian and Middle Silurian periods. These soil associations are described as being well-drained to moderately well-drained at the surface; nearly level to moderately sloping in upland areas and ridgetops with typical depths to bedrock of 5 to 9 ft; and steep, shallow soils (1 to 3 ft deep) on hillsides. Russellville and Dickson, upland soil series, have a fragipan at a depth of 2 to 2.5 ft.

The Beasley-Fairmount-Russellville association, in contrast, developed in residuum derived from thinly bedded limestone and calcareous shale of the Middle and Early Silurian and Late Ordovician periods. This association is described as being moderately well to excessively well-drained at the surface; gently to moderately sloping on narrow ridges with typical depths to bedrock of 4 to 9 ft; and steep, shallow soils (1 to 3.5 ft) on hillsides. The Beasley series has slow to moderately slow permeability in the lower, finetextured subsoil and a soft, interbedded, calcareous shale and limestone formation at a depth of about 2 to 4 ft that impedes root growth and infiltration.

The most extensive soils in the basin are the Beasley and Crider series in the rolling uplands-each covering approximately 25 percent of the basin. These series' provide the most available-moisture-storage capacity among the soils in the basin because of the soil depths and the extensive area covered. Both soil series' have finegrained texture, with more than 90 percent by weight in the silt and clay soil-particle-size fraction (less than 0.00197 in., or 0.05 mm). However, these soils have different drainage properties because of the differences in the soil parent materials. The surface layer and the upper subsoil of the deep, well-drained Crider soil series developed primarily in loess, and the lower part of the subsoil developed primarily in residuum derived from the high-grade limestones (Sellersburg, Jeffersonville, and Louisville Limestones of the Middle and Early Devonian and Middle Silurian periods). The surface layer and the upper subsoil of the Beasley soil series developed primarily in loess and limestone residuum, and the lower part of the subsoil developed in residuum derived from calcareous shale (marl) and soft limestones of the Middle and Early Silurian and Late Ordovician periods. The Beasley series, thus, has lower moisture-storage capacity and permeability than the Crider series. Karst features (sinkholes) have developed in some areas of both the Beasley and Crider soils.

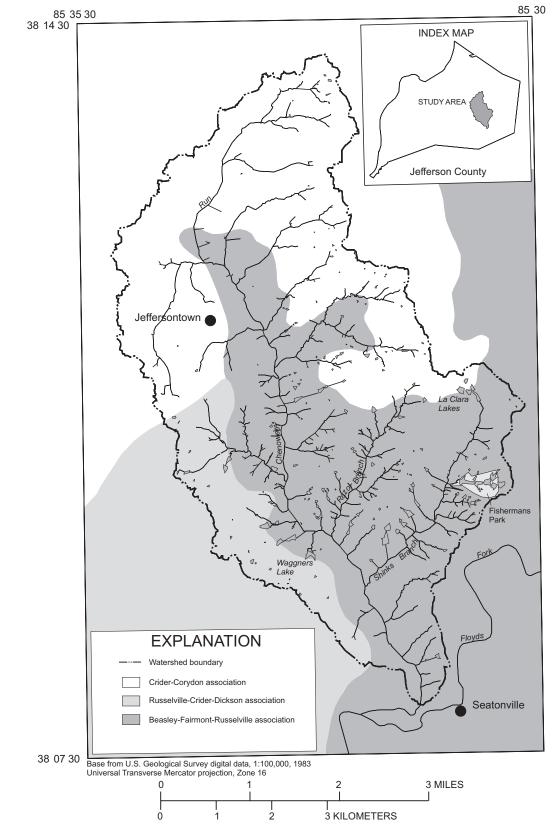


Figure 6. Generalized soils of the Chenoweth Run Basin, Jefferson County, Kentucky.

Land Use

Chenoweth Run Basin has undergone rapid urban development in recent years. The upper (north) third of the basin is the most developed portion of the basin at present (2000), and it includes areas of extensive residential, office, commercial, and light-industrial development in the city of Jeffersontown. This developed area within the upper basin includes portions of the Bluegrass Industrial Park, which extends south from Interstate 64 and contains businesses employing approximately 33,000 persons (John Cosby, Jeffersontown Development Council, oral commun., 2000). Also included is the large 9,100-seat church complex (Van Campen, 1998) constructed just north of Interstate 64 during the study data-collection period. Additional economic

and land development spurred by the industrial park and church complex is anticipated in the future in and around the basin.

Land development in the lower two-thirds of the basin, downstream from the 4.0-Mgal/d-capacity Jeffersontown WWTP, has also been increasing in recent years. Residential subdivisions have been developed among the largely rural and agricultural land uses.

The transportation improvements within and surrounding the basin have facilitated recent landdevelopment activity. Four freeway interchanges within or bordering the basin on the north, east, and west sides provide ready vehicular access.

Predominant land uses in the basin are listed in table 1. Land-cover characteristics in the basin are shown in table 2. See the section "Lane Use and Land Cover" for further description of land use in the basin.

 Table 1. Land-use distribution at selected locations in the Chenoweth Run Basin, Jefferson County, Kentucky

 [%, percent]

Site identifier (figure 7)	Location	Drainage area (acre)	Single- family residential %	Multi- family residential %	Commercial %	Industrial %	Public and semi- public %	Parks and open space %	Vacant or undeveloped %
401	Chenoweth Run at Ruckriegel Parkway at Jeffersontown	3,445	32.9	1.8	10.6	24.7	2.7	1.6	25.7
16	Chenoweth Run at Gelhaus Lane	7,327	42.5	1.3	5.3	12.3	1.7	10.8	26.1
403	Chenoweth Run at Seatonville Road	10,580	35.5	.9	3.7	8.5	1.3	9.2	40.9

Table 2. Land-cover characteristics at selected locations in the Chenoweth Run Basin, Jefferson County, Kentucky [USGS, U.S. Geological Survey]

0.4			_ .	Total	Pervio	us area
Site identifier (figure 7)	USGS station number	Location	Drainage area (acre)	impervious area (percent)	Open (percent)	Forest (percent)
401	03298135	Chenoweth Run at Ruckriegel Parkway at Jeffersontown	3,445	29.9	58.8	11.3
16	03298150	Chenoweth Run at Gelhaus Lane	7,327	18.4	71.5	10.1
403	03298160	Chenoweth Run at Seatonville Road	10,580	13.8	68.5	17.7

Hydrology

Streamflow and water-quality conditions reflect the integrated effects of numerous environmental processes and factors that affect the hydrology, including characteristics of the climate, physiography, geology, soil, and land use. The principal basin characteristics studied in Chenoweth Run that affect hydrologic response to precipitation and evapotranspiration included land use, land cover, land slope, and soils characteristics. External inflows and losses of water and constituents are also relevant to the hydrology of the Chenoweth Run Basin.

In the Chenoweth Run Basin, as in much of the eastern third of Jefferson County, relief is moderately sloping to steep. Also, internal drainage in the pervious areas is impeded by the fine-textured subsoils (silts and clays). Thus, much of the precipitation tends to move rapidly as overland flow and (or) interflow to the stream channels. Only a small amount of water infiltrates through the soil mantle to the underlying limestones (Bell, 1966); thus, stream base flows are generally low to zero.

Stormflow hydrographs, particularly in the developed upper third of the basin, have rapidly rising and receding limbs, and the time lag between rainfall and streamflow peaks is short. Urban development has reduced the pervious area available for the limited potential infiltration of precipitation. Drain pipes carry runoff from many impervious areas directly to the stream channels; frequent scouring stormflows result.

The stream channel in much of the upper third of the basin is confined by very steep, treelined banks with limited areas of riparian vegetation beyond the tops of the banks. In the lower twothirds of the basin, downstream from the Jeffersontown WWTP, stream banks are less steep than in the upstream third, and riparian vegetation beyond the tops of banks is also more abundant than in the upstream third. A tree canopy to shade and cool the stream is absent in many stream reaches. The channel bottom is exposed bedrock, except in pooled segments where sediments are deposited during peak-flow-recession periods. Main-channel slopes are moderate, averaging 13 to 18 ft/mi. Some base-flow seepage losses are possible in the fractured sections of the channel bottoms.

Three WWTP's—the Jeffersontown WWTP and two minor plants farther downstream—release to the main channel the water, remaining chemical constituents, and thermal energy discharged from domestic, commercial, and industrial customers of the WWTP's. At times, wastewater effluent makes up the majority of base flows.

Additional and variable nonpoint-source areas exist in the basin for chemical constituents. The fine-textured soils are highly susceptible to erosion when exposed, as is often the case during construction activity. Large sediment concentrations and loads have often been transported during stormflows. The sediments also carry sorbed constituents including nutrients and metals. Streets, parking lots, treated turf grasses, pastures, and crop areas also are potentially significant constituentsource areas.

Increased stream-water temperatures resulting from the runoff from impervious surfaces, the loss of riparian tree canopy, and thermal energy added by the WWTP's reduces the oxygen-carrying capacity of streams and adversely affects habitat for aquatic organisms. Oxygen-demanding sediments and nutrients further impair stream biological integrity.

The numerous ponds and small lakes in the Chenoweth Run Basin also affect streamflow and water-quality conditions. Approximately 25 percent of the basin area is drained through these ponds. This adds detention storage in the basin and delays and (or) reduces the movement of water and constituents to some degree, including some sediments and nonpoint-source nutrients, through the basin. Detention storage located in the lower portion of a basin may, however, tend to locally increase peak discharges on the main channel because delayed peaks from the downstream tributary channel may at times coincide with peaks from the upper portion of the basin.

METHODS OF DATA COLLECTION AND ANALYSIS

A large variety of data were gathered to characterize and model the basin, including waterquantity, water-quality, meteorological, and geographical data. Field data collected during the study to supplement the historical field data included several chemical constituents and physical properties of water (table 3) determined at several locations (table 4 and fig. 7). Continuous timeseries data (table 5) were either measured directly in the basin, estimated for the basin, or representative values were obtained for locations near the basin. Geographical data were used to develop selected model elements. In addition, several statistical, mathematical, and graphical methods were used to analyze the available data.

Historical Data

Historical sampling data compiled for this study included data gathered in two systematic water-quality-monitoring programs; data collected at Chenoweth Run at Gelhaus Lane during 1988–97 as part of a countywide MSD/USGS urbanhydrology program were compiled. Data for the KDOW Chenoweth Run study (Leist, 1996) were collected by the USGS during January 1995– January 1996 at sites CR5, CR4, 402, CR2, and 403 (table 4 and fig. 7) and compiled.

All samples, except selected qualityassurance samples and samples for state-lab tracemetals determinations, were analyzed by the MSD lab. The historical sampling data were collected by manual, cross-sectionally integrated, stream-watersampling techniques.

Field Data

Field data collection was designed to supplement and expand the utility of available data. A sampling design was developed to meet study goals by collection of representative samples with appropriate spatial, temporal, and hydrologic distribution.

Sampling Design

A variety of field data were needed to adequately characterize and model the highly variable streamflow and water-quality conditions in this mixed-land-use urbanizing basin. Data were needed to describe spatial, flow-related, and seasonal variability of water quality. Much of the historical water-quality data represented single, discrete water samples that had been collected during prescheduled sampling trips of routine monitoring programs. Relatively few samples had been collected during above-average flows.

Thus, sampling during this data-collection period was targeted primarily toward storms, when a large portion of the constituent load is normally transported. Series of discrete water samples were to be collected over the duration of the storms in order to characterize constituent-transport processes and storm loads. The series of discrete storm samples were available for development of plots of constituent concentrations over time and plots of constituent loads over time.

Four sites were selected for water sampling during the data-collection period: sites 401, 402, 16, and 403 (table 4 and fig. 7). Criteria for selecting the sites included provision of adequate accessibility, mixing of flow in the sampling reach, and spatial resolution by including sites located upstream and downstream from the wastewater inflows and also a site near the basin outfall at the confluence with Floyds Fork. Also, it was desirable to continue use of sites where the historical sampling data had been collected. Two sites (401 and 16) were selected as locations for collection of continuous-record streamflow and four-parameter water-quality data.

The set of constituents analyzed (table 3) was the same set as was analyzed routinely (monthly) in the MSD stream-sampling program—pH, alkalinity, total dissolved solids, total suspended solids, total volatile suspended solids, biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrate nitrogen, nitrite nitrogen, ammonia nitrogen, organic nitrogen, total orthophosphate (TPO₄), total phosphorus (TP), and fecal coliform and streptococcus. A filtered sample for total phosphorus analysis was also routinely submitted to the lab. As requested by MSD, samples for metals and chloride were also submitted to the lab when enough sample water was available.

The sampling goal was to collect a series of samples during 3 storms per year distributed seasonally at each of the 4 sampling sites, for a total of 12 storm-event samples per year. Also, low-flow samples were to be collected annually at each of these four sampling sites.

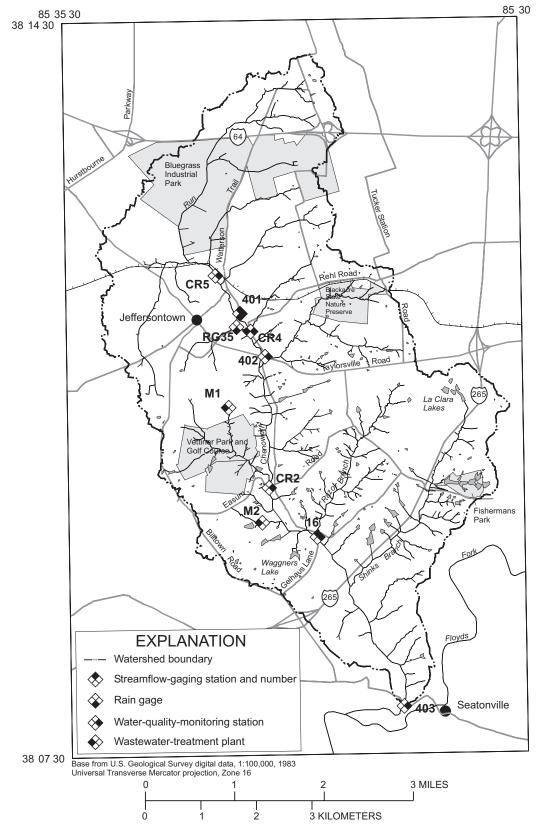

Alkalinity	Nickel, total
Arsenic, total	Nitrate, total
Barium, total	Nitrite, total
Beryllium, total	Nitrogen, ammonia, total
Biochemical oxygen demand, 5-day	Nitrogen, organic, total
Cadmium, total	Oxygen, dissolved
Calcium, total	pH
Chemical oxygen demand	Phosphorus, dissolved and total
Chloride, dissolved	Phosphorus, total orthophosphate
Chromium, total	Selenium, total
Copper, total	Silver, total
Cyanide, total	Specific conductance
Dissolved solids, total	Suspended solids, total
Fecal coliform	Suspended solids, total volatile
Fecal streptococci	Sulfate, dissolved
Iron, total	Temperature, air and water
Lead, total	Thallium, total
Magnesium, total	Zinc, total
Mercury, total	

Table 3. Chemical constituents and physical properties analyzed forwater samples collected in the Chenoweth Run Basin, Jefferson County,Kentucky, 1988–98

Table 4. Water-quality-sampling sites in the Chenoweth Run Basin, Jefferson County, Kentucky, used in the study[USGS, U.S. Geological Survey; WWTP, wastewater-treatment plant]

USGS Site identifier station (figure 7) number		Location	Period of record used		
CR5	03298129	Chenoweth Run at Old Watterson Trail at Jeffersontown	Latitude* 381205	Longitude* 853341	1995-97
401	03298135	Chenoweth Run at Ruckriegel Parkway at Jeffersontown	381141	853326	1996-97
CR4	03298138	Jeffersontown WWTP Effluent at Chenoweth Run	381133	853318	1995-98
402	03298140	Chenoweth Run at Taylorsville Road near Jeffersontown	381115	853311	1995-97
CR2	03298145	Chenoweth Run at Easum Road	381003	853305	1995-96
16	03298150	Chenoweth Run at Gelhaus Lane	380936	853232	1988-97
403	03298160	Chenoweth Run at Seatonville Road	380758	853131	1996-97

*Degree, minute, and second symbols omitted.

Figure 7. Locations of the streamflow-gaging, water-quality-monitoring, and rainfall-gaging stations, and wastewater-treatment plants in the Chenoweth Run Basin, Jefferson County, Kentucky.

Table 5. Time-series data compiled for hydrologic analysis and calibration of the model for Chenoweth Run Basin

[USGS, U.S. Geological Survey; ft^3 /sec, cubic feet per second; ---, not applicable; *, indicates data used for model input; WWTP, wastewater treatment plant; in., inches; NWS, National Weather Service; °C, degrees Celsius; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; mg/ L, milligrams per liter; °F, degrees Fahrenheit; locations shown in figures 2, 3, and 9]

		Site identifier					
Data type (units)	Location	Figure 2	Figure 3	USGS station number	Source	Time step	Period of record
Discharge (ft ³ /sec)*	Chenoweth Run at Ruckriegel Parkway		401	03298135	USGS ^a	5 minute	01/25/96-02/25/98
Discharge (ft ³ /sec)*	Chenoweth Run at Gelhaus Lane		16	03298150	USGS	5 minute	01/25/96-02/25/98
Discharge (ft ³ /sec)*	Jeffersontown WWTP		CR4	03298138	MSD ^b	1 day	01/25/96-02/25/98
Discharge (ft ³ /sec)*	Chenoweth Hills WWTP		M 1		MSD	1 day	01/25/96-02/25/98
Discharge (ft ³ /sec)*	Lake of the Woods WWTP		M2		MSD	1 day	01/25/96-02/25/98
Rainfall (in.)*	Chenoweth Run at Ruckriegel Parkway	RG28a	401	03298135	USGS	5 minute	12/01/95-02/25/98
Rainfall (in.)*	Jeffersontown WWTP	RG35	RG35		MSD	15 minute 5 minute	12/01/95-02/25/98
Rainfall (in.)	McMahon Fire Station at Taylorsville Road	RG8		381306085363601	USGS, MSD	5 minute	01/15/96-02/25/98
Rainfall (in.)	East County Government Center at Shelbyville Road	RG11		381457085315401	USGS, MSD	5 minute	01/15/96–02/25/98
Rainfall (in.)	Fire Station #3 at Routt Road	RG15		380739085281101	USGS, MSD	5 minute	01/15/96-02/25/98
Rainfall (in.)	Cedar Ridge Camp at Routt Road	RG17		381044085284201	USGS, MSD	5 minute	01/15/96-02/25/98
Rainfall (in.)	Standiford Field	А			NWS ^c , MCC ^d , NOAA ^e	1 day	01/01/48-05/13/98
Rainfall (in.)	NWS office at Theiler Lane	С			NWS	1 day	01/01/96-09/30/98
pH, water temperature (°C)*, specific conductance (μS/cm), dissolved oxygen (mg/L)	Chenoweth Run at Ruckriegel Parkway		401	03218135	USGS	30 minute	01/17/96–09/30/97

Table 5. Time-series data compiled for hydrologic analysis and calibration of the model for Chenoweth Run Basin—Continued

[USGS, U.S. Geological Survey; ft³/sec, cubic feet per second; ---, not applicable; *, indicates data used for model input; WWTP, wastewater treatment plant; in., inches; NWS, National Weather Service; °C, degrees Celsius; µS/cm, microsiemens per centimeter at 25 degrees Celsius; mg/

		Site identifier					
Data type (units)	Location	Figure 2	Figure 3	USGS station number	Source	Time step	Period of record
pH, water temperature (°C)*, specific conductance (μS/cm), dissolved oxygen (mg/L)	Chenoweth Run at Gelhaus Lane		16	03298150	USGS	30 minute	01/24/96–09/18/97
Pan evaporation (in.)*	Dix Dam, Danville, Ky. ^f				MCC	1 day	04/01/96-10/31/97
Pan evaporation (in.)*	Nolin River Lake, Ky. ^f				MCC	1 day	04/01/96-10/31/97
Pan evaporation (in.)*	Lake Patoka, Dubois, Ind. ^f				MCC	1 day	05/01/96-10/31/97
Potential evapotranspiration (in.)	Standiford Field	А			MCC	1 day	01/01/96-02/25/98
Potential evapotranspiration (in.)	Bowman Field	В			MCC	1 day	01/01/96-12/16/98
Air temperature (°F)*	Standiford Field	А			MCC	1 hour	01/01/96-02/25/98
Air temperature (°F)	Bowman Field	В			MCC	1 day	01/01/96-12/16/98
Dew point temperature (°F)	Standiford Field	А			MCC	1 hour	01/01/96-02/25/98
Dew point temperature (°F)	Bowman Field	В			MCC	1 day	01/01/96-12/16/98
Wind speed (mile per hour)	Standiford Field	А			MCC	1 hour	01/01/96-02/25/98
Wind speed (mile per hour)	Bowman Field	В			MCC	1 day	01/01/96-12/16/98
Solar radiation (Langleys)	Standiford Field	А			MCC	1 day	01/01/96-02/25/98
Solar radiation (Langleys)	Bowman Field	В			MCC	1 day	01/01/96-12/16/98
Cloud cover (tenths of sky)	Standiford Field	А			NOAA	variable hourly	01/01/96-02/25/98

^aU.S. Geological Survey (National Water Information System, electronic data)

^bLouisville and Jefferson County Metropolitan Sewer District (Rainfall Database, electronic data)

^cNational Weather Service (local forecast office, Louisville, Ky., electronic data)

^dMidwestern Climate Center (Illinois State Water Survey, Champaigne, Ill., electronic data)

^eNational Oceanic and Atmospheric Administration (National Climatic Data Center, Asheville, N.C., electronic data) ^fShown on figure 9

Instrumentation and Equipment

The two streamflow-gaging stations (sites 401 and 16, fig. 7) consisted of water-stagerecording devices that provided continuous stage (5-minute interval) records for use in computation of continuous discharge. Water-quality monitors at each streamflow-gaging station provided continuous (30-minute interval) records of water temperature, pH, specific conductance, and dissolved-oxygen concentration. Water-quality samples were collected by use of standard, manual, depth-integrating, isokinetic-nozzled samplers (Edwards and Glysson, 1988; Ward and Harr, 1990) and also by use of automatic, battery-poweredpump samplers equipped with 24 plastic 1-liter bottles. Water samples were composited and split into subsamples for laboratory analysis by use of a plastic churn splitter. The USGS-operated rainfall gages were the tipping-bucket type with a $50-in^2$ opening, the cumulative depth of which was recorded at 5-minute intervals by a digital data logger.

Sampling Procedures

Most of the historical water-quality samples were collected by use of cross-sectionally integrated sampling procedures. These procedures, originally developed for obtaining representative suspendedsediment samples (Guy and Norman, 1970; Edwards and Glysson, 1988; Ward and Harr, 1990; Shelton, 1994), provided an isokinetic, dischargeweighted, composite sample. Specifically, the equal-width-increment, equal-transit-rate (EWI/ETR) sampling procedure was used. The sampler, oriented parallel to the flow direction, was lowered from the water surface to the streambed at a series of sampling positions ("verticals") that were equally spaced across the sampling section. The sampler was lowered and raised at the same vertical transit rate in each sampling vertical. Because the volume of water collected at each vertical was proportional to the stream velocity at each vertical, and thus, to the flow within each width increment, a flow-proportioned, composite sample of the stream cross section was obtained by use of this procedure. The composite samples were subsampled for laboratory analyses by use of a plastic churn splitter. Most of the storm samples collected during 1996–97 for this study, however, were collected by use of portable automatic samplers. Use of automatic samplers was necessitated by the logistical difficulties of collecting the series of samples in a small, urbanized basin where discharge during storms was rapidly changing. Sampling at multiple sites during a given storm was also planned. Many of the storms sampled began in late afternoon and continued throughout the night.

The automatic samplers were deployed in advance of forecasted storms. Samples were pumped from the stream through a 3/8-in.-internal-diameter vinyl tube secured to a 2-in.-diameter polyvinyl chloride (PVC) pipe mounted to a bridge abutment or pier at the sampling site. The sampling tube extended from just above the pre-storm water-surface elevation to the ice-filled automatic sampler that was generally placed at the roadway level along the bridge railing. The samplers were programmed to fill four sets of six 1-liter bottles—one set of six bottles for each discrete sample collected at a given time. The sample sets were pumped automatically at preprogrammed intervals following activation of the sampler by a rise of the stream. The total stormrunoff durations, and consequently the samplingperiod durations (3, 6, 9, 12, or 15 hours), were projected on the basis of the latest weather forecasts at the time the samplers were deployed. The samplers were programmed to pump the samples more frequently in the early periods of a storm when concentrations of nonpoint-source constituents are often higher than in later periods of a storm. Ideally, there were four individual, discrete sample sets of 6 liters each collected during each sampled storm. The discrete sample sets (six 1-liter bottles) were composited and subsampled for laboratory analyses by use of a plastic churn splitter.

In 1996–97, there were 24 storm-sampling occasions at the 4 sites, and 79 discrete samples were collected, which was an average of 3.3 samples per storm. One cross-sectionally integrated, low-flow sample was collected annually in September at each of the four sites, for a total of eight low-flow samples.

Point samples, such as those pumped by automatic samplers, are often not fully representative of actual instream water quality, particularly for sediment-associated constituents (Martin and others, 1992). A cross-sectionally integrated stream-sampling procedure provides a representative sample of sediment-associated constituents. To assess the representativeness of the point samples, several paired point and crosssectionally integrated samples were collected for comparison. (See "Quality-Assurance Data.")

Laboratory Data

Laboratory analysis of water constituents (table 3), except for selected quality-assurance samples, was provided by the MSD lab. These samples were analyzed by use of methods approved by the USEPA (table 6).

Quality-Assurance Data

Quality-assurance data collected with the field data during the study included equipment blanks (rinses), split samples, and concurrent (paired) sampling replicates. Additional qualityassurance data were collected in association with evaluations of the MSD lab performance.

Equipment blanks, which were made from de-ionized water and inorganic-free blank water, were collected to assess potential contamination introduced during sample collection and processing. It appears some possible minor low-level contamination was introduced for selected N and P species and calcium, barium, copper, iron, zinc, and magnesium (Appendix 1, coded as station 03123499).

Two split samples were drawn from one storm sample (March 19, 1996, at 1005 at site 401) for suspended-sediment analysis by USGS methods for comparison to the suspended-solids concentration from the MSD lab. Suspendedsediment concentrations of the split samples were 378 and 401 mg/L, compared to a suspended-solids concentration of 380 mg/L determined by the MSD lab. The USGS suspended-sediment concentrations differed from the MSD suspended-solids concentration by 0.5 and 5.5 percent, respectively. Both split samples were 99.6 percent by weight in the <62 micrometer particle-size fraction. Thus, the total suspended-solids data collected in this basin were considered essentially equivalent to suspended-sediment data as defined by USGS methods.

Split samples were drawn on two occasions (September 26, 1996, at 1205 at site 16 and September 16, 1997, at 1155 at site 16) for comparison of results for nitrogen and phosphorus species at the MSD lab and the USGS lab. Results for total ammonia nitrogen plus organic nitrogen were 0.66 and 0.68 mg/L, respectively, at the MSD lab. Results were 0.70 and 0.63 mg/L, respectively, at the USGS lab. Thus, the results for total ammonia nitrogen plus organic nitrogen differed by 5.7 and 7.9 percent, respectively, and the mean difference was 6.8 percent. Results for total phosphorus were 2.0 and 1.6 mg/L, respectively, on the two sampling dates at the MSD lab. Results for total phosphorus were 1.8 and 1.54 mg/L, respectively, at the USGS lab. Thus, the results for total phosphorus differed by 11.1 and 3.9 percent, respectively, and the mean difference was 7.5 percent.

The MSD lab was approved by the USEPA for routine wastewater analyses including BOD and COD. The MSD lab also has participated in the USGS Standard Reference Water Sample Program, which includes approximately 150 labs nationwide. Results for MSD laboratory analyses for selected constituents were approved for use in USGS interpretive studies (Ruhl and Jarrett, 1999). Review of historical MSD lab data indicated that determinations for phosphorus species prior to 1991 may not be accurate (Patti Grace-Jarrett, Louisville and Jefferson County Metropolitan Sewer District, oral commun., 1998). These early phosphorus data collected prior to 1991 were, therefore, not used in this study.

To assess the representativeness of the point samples collected by use of the automatic samplers, seven paired (concurrent replicate) point and crosssectionally integrated samples were collected for comparison (Appendix 2). Comparisons indicated that the automatic samples underrepresented the total suspended-solids concentrations. The mean difference was 17 percent. Consistent differences were not observed for other sediment-associated constituents, such as total phosphorus. For load estimates, the total suspended-solids concentrations for samples collected by use of the automatic samplers were increased by 17 percent to compensate for this apparent bias.

Table 6. Methods used by the Louisville and Jefferson County Metropolitan Sewer District laboratory for analysis of water-quality samples collected in the Chenoweth Run Basin, Jefferson County, Kentucky, 1988–98

[USEPA, U.S. Environmental Protection Agency; mg/L, milligrams per liter; ---, not available; µg/L, micrograms per liter]

Constituent or property (units)	Method	USEPA method number	Reporting level
pH and alkalinity:			
pH	Electrometric, glass electrode	150.1	0.1
Alkalinity (mg/L as CaCO ₃)	Electrometric titration to pH 4.5	310.1	1
Dissolved solids and related water-quality constituents and characteristics:			
Dissolved solids (mg/L)	Residue on evaporation at 105 degrees Celsius, dissolved, gravimetric	160.3	.5
Specific conductance, in microsiemens per centimeter at 25 degrees Celsius	Wheatstone bridge	120.1	10
Calcium, total (mg/L as Ca)	Atomic emission spectrometric, induction- coupled argon plasma	200.7	.01
Magnesium, total (mg/L as Mg)	Atomic emission spectrometric, induction- coupled argon plasma	200.7	.01
Hardness, total (mg/L as CaCO ₃)	Calculation	200.7	
Suspended solids:			
Suspended solids (mg/L)	Residue on evaporation at 105 degrees Celsius, suspended, gravimetric	160.2	1
Residue, volatile nonfilterable (mg/L)	Volatile-on-ignition, suspended, gravimetric	160.4	1
Major metals, trace elements, and miscellaneous inorganic compounds:			
Arsenic, total (µg/l as As)	Digestion, graphite furnace, atomic absorption	206.2	5
Barium, total (μg/L as Ba)	Atomic emission spectrometric, induction- coupled argon plasma	200.7	1
Beryllium, total, (µg/L as Be)	Atomic emission spectrometric, induction- coupled argon plasma	200.7	.5
Cadmium, total (µg/L as Cd)	Atomic emission spectrometric, induction- coupled argon plasma	200.7	2
Chromium, total (µg/L as Cr)	Atomic emission spectrometric, induction- coupled argon plasma	200.7	3
Copper, total (µg/L as Cu)	Atomic emission spectrometric, induction- coupled argon plasma	200.7	2
Iron, total (µg/L as Fe)	Atomic emission spectrometric, induction- coupled argon plasma	200.7	5

 Table 6.
 Methods used by the Louisville and Jefferson County Metropolitan Sewer District laboratory for analysis of water-quality samples collected in the Chenoweth Run Basin, Jefferson County, Kentucky, 1988–98—Continued

[USEPA, U.S. Environmental Protection Agency; mg/L, milligrams per liter; ---, not available; µg/L, micrograms per liter]

Constituent or property (units)	Method	USEPA method number	Reporting level
Major metals, trace elements, and miscellaneous inorganic compounds— <i>continued</i> :			
Lead, total (µg/L as Pb)	Atomic emission spectrometric, induction- coupled argon plasma	200.7	20
Mercury, total recoverable (µg/L as Hg)	Atomic absorption spectrometric, flameless	245.1	.2
Nickel, total (µg/L as Ni)	Atomic emission spectrometric, induction- coupled argon plasma	200.7	5
Selenium, total (µg/L as Se)	Digestion, graphite furnace, atomic absorption	270.2	5
Silver, total (µg/L as Ag)	Atomic emission spectrometric, induction- coupled argon plasma	200.7	6
Zinc, total (µg/L as Zn)	Atomic emission spectrometric, induction- coupled argon plasma	200.7	5
Cyanide, total (µg/L as CN)	Colorimetric, barbituric acid	335.2	4
Nutrients:			
Nitrogen, ammonia, total (mg/L as N)	Electrometric, ion-selective electrode	350.3	.01
Nitrogen, nitrate, total (mg/L as N)	Cadmium reduction	353.2	.03
Nitrogen, nitrite, total (mg/L as N)	Colorimetric, diazotization, automated	354.1	.002
Nitrogen, organic plus ammonia (mg/L as N)	Titrimetric, digestion-distillation, electrode	351.3	.03
Phosphorus, total (mg/L as P)	Colorimetric, phosphomolybdate	365.2	.003
Phosphorus, orthophosphate, total (mg/L as P)	Colorimetric, phosphomolybdate	365.2	.003
Dissolved solids and oxygen demand:			
Dissolved oxygen (mg/L)	Winkler	360.2	
Biochemical oxygen demand (mg/L)	Dissolved oxygen depletion, 5-day at 20 degrees Celsius	405.1	2
Chemical oxygen demand (mg/L)	Titrimetric, 0.25 N dichromate oxidation	410.1	2
Fecal-indicator bacteria:			
Coliform, fecal (colonies per 100 milliliters)	Membrane filtered, M-FC medium at 44.5 degrees Celsius	None	1
Streptococci, fecal (colonies per 100 milliliters)	Membrane filtered, KF agar at 35 degrees Celsius	None	1

Ancillary Hydrologic Data

Wastewater-treatment-plant effluent discharge and quality data were obtained from MSD. Some of these data were available only at large time steps (daily and monthly), and data were sometimes unavailable for selected portions of the study period. Unavailable values of time series' needed for basin characterization and modeling were estimated by interpolation or regression based on available data or by use of literature values reported for similar facilities.

Meteorological Data

Several meteorological time series' (table 5) were acquired. Rainfall data were collected by the USGS and MSD; these data were screened extensively to eliminate any periods of record when a gage may have been plugged or otherwise inoperable. Representative meteorological data for the basin were obtained from the National Weather Service, the National Climatic Data Center, and the Midwestern Climate Center. Missing values of selected time series' were estimated by interpolation or averaging procedures. The USGS METCMP program (Alan Lumb, U.S. Geological Survey, written commun., 1995) was used to estimate daily pan evaporation during winter periods by use of the Penman (1948) equation and also to disaggregate daily pan evaporation to hourly values.

Geographical Data

Detailed geographical data for the basin were obtained from the Louisville and Jefferson County Information Consortium (LOJIC) in 1996. The LOJIC data were originally digitized from 1:100-scale aerial imagery. The LOJIC data included coverages for streams, water bodies, land uses, roads, buildings, parking lots, tree canopy, 2-ft-interval elevation contours, digital elevation data, and soils. The LOJIC coverages were supplemented with USGS 1:250,000-scale Geographic Information Retrieval and Analysis System (GIRAS) (Mitchell and others, 1977) landcover data that was used to identify crop, pasture, and forest land in the basin. Where significant changes in land use had made portions of the landuse covers obsolete (the Southeast Christian Church property and the Saratoga Woods residential development), recent imagery (spring 1997) showing the new developments was obtained from LOJIC for digitizing and updating the coverages or for later use in adjustment of the HSPF model elements.

The geographical data were prepared and analyzed by use of ARC/INFO and ARC/INFO-GRID (Environmental Systems Research Institute, 1991 and 1992). Vector data and arc polygons were converted into raster-based, "gridded" data (cell size of 13.1 ft by 13.1 ft or 4 m by 4 m) for the purpose of efficiently combining and intersecting hydrologically pertinent coverages.

A gridded digital elevation model (DEM) was developed by use of TOPOGRID (Hutchinson and Dowling, 1991). The DEM was subsequently used to develop a continuous land-slope grid coverage of the basin and also to delineate drainage-area boundaries for the numerous ponds and small lakes in the basin.

Extensive processing of some of the initial coverages, such as the stream and impervious-area features, was required before the coverages were in a form suitable for use in hydrological modeling. The stream cover was edited to make it continuous and "flowing" downstream. Several of the original LOJIC coverages having hydrological significance, such as the roads, buildings, parking lots, and tree canopy, were line coverages (vector data) from which areal information could not initially be determined. The LOJIC road coverage, for example, represented the road center lines. To estimate road areas, this coverage, in gridded form, was "expanded" in width on the basis of road class (residential, collector, arterial, etc.).

The LOJIC coverages for buildings, parking lots, and tree canopy were sets of unconnected vectors (arcs) defining the perimeters, or outer boundaries of these features. A detailed imperviousarea polygon cover was formed by combining and editing the building, parking-lot, and road coverages. Closed polygons of these three impervious covers were formed by extending arcs containing disconnected, "dangle" nodes (end points) and (or) by eliminating short, disconnected, dangle arcs. Most of the expanded road boundaries were narrowed to intersect, and thus, eliminate many dangle nodes at parking-lot entrances. The impervious-area polygons retained attributes describing the impervious type (building, parking lot, and road). The tree-canopy-perimeter coverage was similarly processed to closed polygons.

Selected combinations of the 7 LOJIC landuse classes, 3 LOJIC impervious classes, and 2 GIRAS land-cover classes (table 7) were combined manually in a series of steps to create a gridded land-use/land-cover coverage of 13 basic classes (table 8). The GIRAS pasture/crop and forest areas were added to the LOJIC land-use cover where each area overlaid, or intersected, the LOJIC vacant/undeveloped and park/open-space land-use categories only. Also, a buffer area, approximately 50 ft (15 m) in width, was defined around buildings in the single-family-residential and commercial/ industrial/multifamily-residential land-use categories only. This buffer was assumed to define the areal extent of disturbed soils within these landuse categories. The gridded land-use/land-cover coverage contained seven pervious classes and six impervious classes as listed in table 8.

A gridded soils coverage was also developed directly from the soils coverage provided by LOJIC, which had been digitized from the Jefferson County Soil Survey (Zimmerman and others, 1966). The gridded soils, land-use/land-cover, and land-slope coverages were further processed (classified) and combined by use of an Arc Macro Language (AML) program (*hru.aml* in Appendix 3) to define key HSPF-model elements, and the hydrologic response units (HRU). See "Model Development" for a description of this process.

Statistical, Mathematical, and Graphical Analysis

Several statistical, mathematical, and graphical methods were used to analyze data for this study. Graphical displays were used to analyze differences among data sets and to describe relations between variables. Graphical displays included hydrographs, scatterplots, and duration curves. The results for statistical analyses included estimates of associated errors. The HSPF model of the basin combines and integrates the available information to simulate hypothesized functional relations among the variables.

Descriptive Statistics

Water-quality data were described in terms of percentiles and extreme values during January 1991–December 1997. Discharge data during February 1996–January 1998 were presented as flow-duration curves, which display the daily mean discharge in terms of the percentage of time a given discharge was equaled or exceeded during the period.

Estimated Missing Values

Missing values of various meteorological data, water-quality constituent concentrations, and WWTP discharges were estimated by interpolation between available data or by use of ordinary leastsquares regressions.

Box Plots

The distributions of selected water-quality constituents were displayed and compared by use of box plots (Tukey, 1977), which depict the median, interquartile range, and extreme values. A box plot is constructed by drawing a box from the 25th percentile to the 75th percentile; thus, the box length is the interquartile range. A line is drawn across the box at the median. Lines (whiskers) are drawn from the boxes to the 'adjacent' values. The upper adjacent value is the largest data value less than or equal to the upper quartile plus 1.5 times the interquartile range. The lower adjacent value is the smallest data value greater than or equal to the lower quartile minus 1.5 times the interguartile range. Values beyond the adjacent values are plotted individually. Values from 1.5 to 3 times the interquartile range (outside values) are plotted as an asterisk. Values more extreme than 3 times the interquartile range (far outside values) are plotted as a circle.

Table 7. Initially designated land-use and land-cover classes in the Chenoweth Run Basin

Class	Description			
	LOJIC land uses			
1	Single-family residential			
2	Multi-family residential			
3	Commercial			
4	Industrial			
5	Public/semi-public			
6	Parks/open space			
9	Vacant/undeveloped			
	LOJIC impervious areas			
1	Roads			
2	Buildings			
3	Parking lots			
	GIRAS land covers			
1	Pasture/crop			
2	Forest			

[LOJIC, Louisville and Jefferson County Information Consortium; GIRAS, Geographic Information Retrieval and Analysis System]

[USGS, U.S. Geological Survey]

	Remapped USGS	
Class ^a	class ^b	Description
		Pervious areas
10	1	Pasture/crop
11	2	Forest
12	3	Disturbed soils; single-family residential
13	4	Disturbed soils; commercial, industrial, multi-family residential
14	5 ^c	Open; single-family residential, public/semi-public, parks/open space
15	5	Open; commercial, industrial, multi-family residential
16	6	Open; vacant, undeveloped
		Impervious areas
21	7	Roads; commercial, industrial, multi-family residential
23	7	Buildings; commercial, industrial, multi-family residential
24	7	Parking lots; commercial, industrial, multi-family residential
25	7	Roads; single-family residential, public/semi-public, parks/open space, vacant undeveloped
26	7	Buildings; single-family residential, public/semi-public, parks/open space, vacant undeveloped
27	7	Parking lots; single-family residential, public/semi-public, parks/open space, vacant undeveloped

^aIntermediate USGS classes of gridded coverages combined from separate land-use/land-cover classes shown in table 7 formed the input grid for the Arc Macro Language program (hru.aml, Appendix 3).

^bRemapped classes define combined land-use/land cover classes for the hydrologic response units.

^cFor example, class 5, open (grass-covered) space outside the hypothetical zone of disturbed soils, were classified the same in single-family, multi-family, commercial, industrial, and residential areas (developed uses).

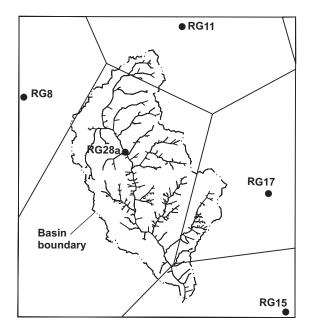
Table 8. Combined land-use/land-cover classes in the Chenoweth Run Basin

Loads and Yields

Loads (mass) and yields (mass per unit drainage area) of total suspended solids, total phosphorus, and total orthophosphate were estimated. Constituent loads discharged from WWTP's were estimated as daily mean constituent concentration multiplied by the daily mean discharge. Long-term instream loads were estimated by use of ESTIMATOR, a statistical, 'rating-curve' model that uses multiple regression to relate logarithms of constituent concentration to logarithms of daily mean discharge and, optionally, other explanatory variables that are available continuously (Cohn and others, 1992a; Cohn and others, 1992b). The regression relation was used to estimate constituent concentration at times when it was unknown. Daily constituent loads are estimated by multiplying estimated daily concentration times daily mean discharge; monthly and annual loads are summed from these daily loads. Instructions for the use of ESTIMATOR (G. Baier, T. Cohn, and E. Gilroy, U.S. Geological Survey, written commun., 1995) described details. Storm loads were estimated as the summation of the incremental storm runoff volumes times the representative constituent concentration during the incremental time period.

ANALYSIS AND SUMMARY OF HYDROLOGIC CONDITIONS

The available hydrologic data for the Chenoweth Run Basin were compiled, reviewed, and analyzed for improved understanding of basin hydrologic conditions and for development of modeling approaches and components. Precipitation, potential evapotranspiration, wastewater effluents, streamflow, and constituent concentrations, loads, and yields were characterized.


Precipitation

Most of the precipitation during the datacollection period was rainfall. Measurable snow totaling 26.3 in. fell in 22 days at the NWS office (fig. 2) during February 1996–January 1998. Thus, snowfall accounted for approximately 2 percent of total precipitation at this location during the datacollection period.

Errors in measurement of rainfall are often the major source of error in rainfall-runoff modeling. Rainfall measurement error can arise from mechanical deficiencies in the rain gage, poor rainfall capture by the gage, and spatial variability of rainfall over a basin.

Two rain gages were operated in the basin during the data-collection period: RG28a operated by the USGS at the streamflow-gaging station at Ruckriegel Parkway (site 403) and RG35 operated by MSD on a building at the Jeffersontown WWTP, about 500 ft from site 401 (fig. 7). Nearby rain gages surrounding the basin included RG8, RG11, RG15, and RG17 (figs. 2 and 8; table 5). On the basis of Thiessen polygons (fig. 8), rain gage RG28a provides from 80 to 93 percent coverage of the basin (table 9), depending upon the point of interest on the main channel. Continuous streamflow data were available at the Ruckriegel Parkway and Gelhaus Lane sites only. Thus, RG28a provided coverage of 85 and 93 percent, respectively, of the basin drainage area considering these two streamflow-gaging stations where model calibration data were available.

Monthly, quarterly, and annual rainfall totals and totals for the model calibration period (February 1996–January 1998) were computed (table 10). A short period of missing data at RG28a (part of a day) was estimated using data from RG35. Faulty or missing data at the rain gages surrounding the basin were substituted with data from RG28a. The standard deviation, mean, and coefficient of variation (CV, standard deviation divided by the mean) for the totals at RG8, RG11, RG15, RG17 and RG28a were also computed. The largest variability among the monthly totals at these rain gages occurred in the spring and summer periods (April-September). Quarterly, annual, and periodof-record totals were approximately equal at these rain gages in or near the basin.

Figure 8. Rain-gage locations and the Thiessen polygons used to assess areal rainfall distribution in and near the Chenoweth Run Basin, Jefferson County, Kentucky.

Table 9. Percentage areal coverages of the basin by the rain gages based on Thiessen polygons at selectedlocations in the Chenoweth Run Basin, Jefferson County, Kentucky

0%			Ducinous	Coverages by rain gages					
Site identifier (figure 7)	USGS station number	Location	Drainage area (acre)	RG 8 (%)	RG 11 (%)	RG 15 (%)	RG 17 (%)	RG 28a (%)	
401	03298135	Chenoweth Run at Ruckriegel Parkway at Jeffersontown	3,445	0.3	14.3			85.4	
16	03298150	Chenoweth Run at Gelhaus Lane	7,327	.1	6.7			93.2	
403	03298160	Chenoweth Run at Seatonville Road	10,580	.1	4.6	3.9	11.4	80.0	

 Table 10.
 Statistical summary of the rainfall data collected at selected locations in and near the Chenoweth Run
 Basin, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998

			(Ra see figur	ain gage e 8 and t	able 5)				Statistics	
Year/month	RG28a (in.)	RG8 (in.)	RG11 (in.)	RG15 (in.)	RG17 (in.)	RG35 (in.)	Standiford Field (in.)	NWS office (in.)	SD (in.)	Mean (in.)	CV
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
1996/02	2.38	2.24	2.18	2.02	3.14	2.36	2.03	2.99	0.438	2.39	0.183
1996/03	5.58	5.5	4.98	5.75	5.66	5.36	4.99	6.54	.302	5.49	.055
Quarterly subtotals:	7.96	7.74	7.16	7.77	8.8	7.72	7.02	9.53	.592	7.88	.075
1996/04	6.22	6.32	6.29	5.04	5.45	6.41	5.65	6.37	.584	5.86	.100
1996/05	10.77	10.92	9.64	9.11	11.32	11.25	9.18	10.98	.933	10.35	.090
1996/06	4.35	3.82	4.53	5.76	4.91	4.25	3.84	5.21	.723	4.67	.155
Quarterly subtotals:	21.34	21.06	20.46	19.91	21.68	21.91	18.67	22.56	.707	20.89	.034
1996/07	5.07	4.88	6.16	5.71	6.69	5.51	2.86	5.11	.752	5.70	.132
1996/08	1.72	2.68	1.01	3.16	2.17	1.85	1.31	2.97	.835	2.15	.389
1996/09	5.64	6.46	6.43	5.64	6.00	6.00	5.66	6.55	.403	6.03	.067
Quarterly subtotals:	12.43	14.02	13.6	14.51	14.86	13.36	9.83	14.63	.943	13.88	.068
1996/10	2.42	2.15	2.17	2.37	2.54	2.6	2.59	2.42	.167	2.33	.072
1996/11	3.74	3.83	3.62	3.61	3.59	4.35	3.35	3.8	.103	3.68	.028
1996/12	5.04	5.24	4.94	5.11	5.51	4.89	4.56	5.47	.220	5.17	.043
Quarterly subtotals:	11.2	11.22	10.73	11.09	11.64	11.84	10.50	11.69	.326	11.18	.029
1997/01	3.88	3.54	3.71	3.95	4.36	4.16	3.35	3.57	.308	3.89	.079
1997/02	3.31	3.37	3.04	3.78	3.76	3.9	3.39	3.75	.316	3.45	.092
1997/03	13.15	12.9	12.99	14.17	16.83	13.33	12.58	17.52	1.658	14.01	.118
Quarterly subtotals:	20.34	19.81	19.74	21.9	24.95	21.39	19.32	24.84	2.194	21.35	.103
1997/04	2.00	1.90	2.00	1.93	2.23	2.13	2.01	2.23	.129	2.01	.064
1997/05	5.23	4.66	6.42	5.24	5.54	5.68	6.01	6.99	.644	5.42	.119
1997/06	9.82	9.70	7.65	10.31	8.14	10.57	8.11	8.15	1.158	9.12	.127
Quarterly subtotals:	17.05	16.26	16.07	17.48	15.91	18.38	16.13	17.37	.678	16.55	.041
1997/07	.68	1.05	1.93	.47	.14	.71	1.74	1.51	.686	.85	.804
1997/08	3.33	1.52	3.98	5.31	5.36	3.52	3.70	4.31	1.590	3.90	.408
1997/09	4.22	4.28	3.28	1.45	2.64	4.52	1.28	2.25	1.182	3.17	.372
Quarterly subtotals:	8.23	6.85	9.19	7.23	8.14	8.75	6.72	8.07	.919	7.93	.116
1997/10	1.35	1.57	1.61	1.6	1.45	1.46	1.41	1.43	.113	1.52	.074
1997/11	3.67	4.11	4.03	4.23	4.08	3.31	3.63	4.34	.211	4.02	.052
1997/12	2.75	2.75	2.88	2.81	2.59	3.19	2.50	3.32	.107	2.76	.039
Quarterly subtotals:	7.77	8.43	8.52	8.64	8.12	7.96	7.54	9.09	.351	8.30	.042
1998/01	3.82	3.79	4.04	3.94	4.13	4.3	2.88	4.68	.144	3.94	.037
Annual subtotal, 02/1996–01/1997:	56.81	57.58	55.66	57.23	61.34	58.99	49.37	61.98	2.147	57.72	.037
Annual subtotal, 02/1997–01/1998:	53.33	51.60	53.85	55.24	56.89	56.62	49.24	60.48	1.997	54.18	.037
Grand total, 02/1996–01/1998:	110.14	109.18	109.51	112.47	118.23	115.61	98.61	122.46	3.762	111.91	.034

[RG, rain gage; in., inch; NWS, National Weather Service; SD, standard deviation; CV, coefficient of variation (SD/mean)]

Totals for the rain gage at the Standiford Field airport (about 10 mi west of the basin, fig. 2) tended to be lower than the totals at RG8, RG11, RG15, RG17, and RG28a. Totals for the NWS office in the southern part of the county (fig. 2) tended to be higher than totals measured near the basin. (The NWS office had a standard rain gage, whereas all others were tipping-bucket rain gages.) The normal annual precipitation (the mean for 1961-90) at Standiford Field was reported as 44.39 in. (National Climatic Data Center, 2000). The annual mean of the 24-month total rainfall at Standiford Field during the model calibration period exceeded the normal mean by 11 percent (table 10). Similarly, the wetter-than-normal conditions prevailed in the Chenoweth Run Basin during the model calibration period; mean-annual rainfall during the period was 55.07 in., approximately 11 in. above the long-term normal annual precipitation reported for Standiford Field. Calender year 1996 was reported as the wettest on record for Louisville, Ky., by the NWS (63.76 in. at the NWS office in southern Jefferson County, fig. 2).

Seventy-nine storms exceeding 0.4 in. at RG28a were identified (table 11). The standard deviation, mean, and CV (coefficient of variation) of the total storm rainfalls were computed; missing storm data are shown as dashes. CV had a median of 0.16 and mean of approximately 0.25. The spring and summer storms had the largest areal variability in rainfall. A CV value of less than or equal to 0.25 was used to classify the storms that had reasonably uniform areal distributions of rainfall. CV was less than or equal to 0.25 for 52 of these 79 storms. Review of temperature and snowfall records indicated that storm 5 occurred as rain, changing to snow, and storm 44 may have occurred on frozen ground, since the preceding overnight temperature was 15°F. Thus, 50 rain storms were classified as uniform in areal distribution (excluding storms 5 and 44). The other 27 storms, which occurred mostly in spring and summer, were considered to have nonuniform areal distribution of rainfall.

The 50 storms classified as uniform were selected for use in model calibration and verification for the peak-flow periods. A splitsample approach was used to select the storms for model calibration: the 25 "odd" alternate storms (1, 3, 5...) taken in chronological order were selected as the model calibration storms and the other 25 "even" alternate storms (2, 4, 6...) were selected as the verification storms (table 11). The model calibration and verification storm sets were compared in terms of rainfall depth, average and maximum storm intensity, and antecedent 7-day rainfall. No statistically significant differences between the model calibration and verification storms were observed.

One of the model calibration storms (number 47) spanned the wettest day on record for the NWS in Louisville, Ky.—March 1, 1997—when 10.48 in. of rain fell at the NWS office in southern Jefferson County. Widespread flooding with loss of life occurred in Kentucky during this period; one drowning death occurred in Chenoweth Run Basin during the flood that resulted from this storm.

The continuous 5-minute and hourly rainfall time series at RG28a only were used for model simulations. The 5-minute simulation was used for comparison of observed and simulated storm volumes and peaks. The hourly simulation was used for comparison of hourly, daily, monthly, annual, and total flows and for calibration of suspended sediment and total orthophosphate transport.

Potential Evapotranspiration

Potential evapotranspiration (PET) for the model calibration period was estimated by use of available regional daily pan-evaporation data for the growing season (fig. 9 and table 5). Daily pan evaporation was estimated for the winter period by use of the Penman (1948) equation and daily meteorological data at Bowman Field (fig. 2 and table 5). The daily pan evaporation was disaggregated to hourly values by use of the USGS METCMP program. PET was estimated as 0.77 times the hourly disaggregated panevaporation values, based on data presented by Kohler and others (1959). Total estimated PET for the February 1996–January 1998 model calibration period was 70.30 in.—an annual mean of 35.15 in., which was below normal.

Table 11. Statistical summary of storm rainfall at selected locations in and near the Chenoweth Run Basin, Jefferson

 County, Kentucky, during the model calibration period, February 1996–January 1998

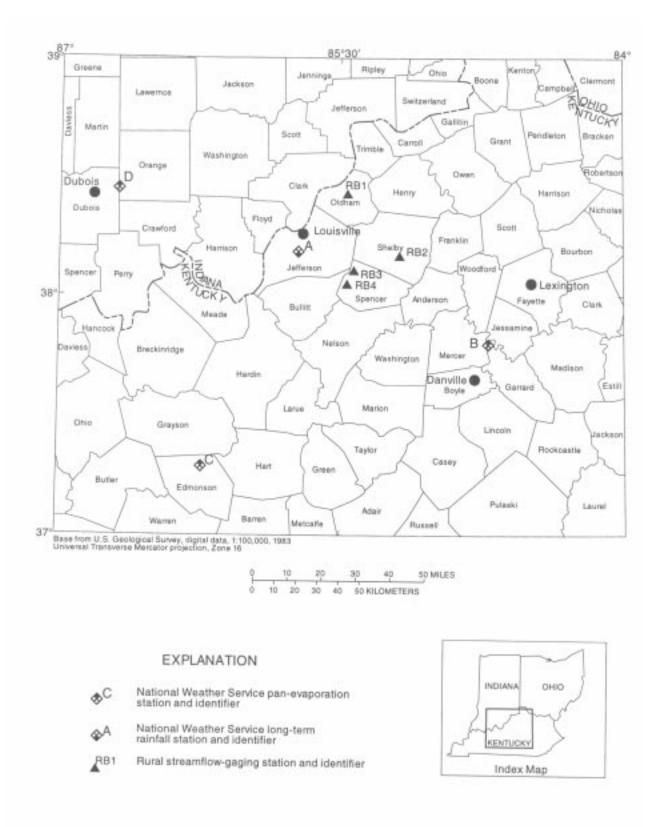
				(see fig	Statistics					
Start End		End	RG8	RG11	RG15	RG17	RG28a	SD		
Storm	date	date	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	cv
^a 1	02/19/96	02/20/96	1.11	1.10	1.14	1.11	1.17	0.028	1.126	0.025
2	02/27/96	02/28/96	.50	.41	.45	1.40	.68	.411	.688	.598
^b 3	03/05/96	03/07/96	1.25	.95	1.67	1.43	1.35	.263	1.330	.198
^a 4	03/15/96	03/15/96	1.11	.93	.97	.83	.95	.101	.958	.105
°5	03/19/96	03/20/96	1.41	1.34	1.47	1.50	1.25	.101	1.394	.073
^b 6	03/31/96	04/02/96	1.11	1.07	1.11	.86	.86	.132	1.001	.132
^a 7	04/13/96	04/13/96	.64	.65	.55	.47	.50	.081	.562	.144
^b 8	04/20/96	04/20/96	1.15	1.04	1.26	1.11	.97	.110	1.106	.100
^a 9	04/22/96	04/24/96	1.09	1.42	1.19	1.15	1.70	.251	1.310	.192
10	04/28/96	04/30/96	1.97	1.79	.63	1.45	1.69	.524	1.506	.348
11	05/03/96	05/04/96	.93	.36	.30		1.23	.449	.704	.638
12	05/05/96	05/06/96		.54	.88		1.33	.396	.917	.432
^b 13	05/08/96	05/08/96		1.00	.74		.61	.199	.783	.255
14	05/10/96	05/11/96		2.66	1.12		1.33	.835	1.703	.490
^a 15	05/14/96	05/16/96		.90	.75		1.02	.134	.889	.150
16	05/26/96	05/26/96		1.18	2.40		1.53	.628	1.703	.369
17	05/27/96	05/27/96		1.31	.62		1.29	.393	1.073	.366
18	05/28/96	05/29/96		1.13	1.48		2.02	.448	1.543	.291
^b 19	06/02/96	06/02/96		.54	.56		.53	.014	.544	.027
20	06/06/96	06/07/96	.39	.61	1.28	1.16	.61	.387	.810	.479
21	06/08/96	06/09/96	1.01	1.30	2.39	1.86	1.22	.563	1.555	.362
22	06/10/96	06/11/96	1.23	1.03	.33	.76	.92	.339	.854	.397
23	07/02/96	07/03/96	.90	.62	.40	1.47	1.00	.406	.878	.463
24	07/07/96	07/08/96	.42	1.18	1.04	1.53	.69	.431	.972	.444
^a 25	07/14/96	07/15/96		1.94	1.63	1.77	1.61	.154	1.736	.089
26	07/21/96	07/21/96		.42	1.20	.68	.56	.340	.715	.476
27	07/29/96	07/29/96		1.07	.01	.30	.62	.454	.499	.909
28	08/08/96	08/08/96	.62	.14	1.32	1.42	.51	.549	.803	.684
29	08/21/96	08/21/96	.56	.00	.00	.23	.67	.310	.291	1.067
^b 30	09/09/96	09/09/96	.95	.50	.70	.90	.87	.184	.784	.235
^a 31	09/15/96	09/16/96	1.43	1.58	1.56	1.56	1.25	.140	1.476	.095
^b 32	09/21/96	09/21/96	.63	.64	.56	.65	.66	.039	.627	.062
^a 33	09/27/96	09/29/96	2.72	2.43	2.39	2.60	2.28	.175	2.484	.070
^b 34	10/17/96	10/18/96	1.09	1.02	1.11	1.29	1.23	.109	1.147	.095
^a 35	11/07/96	11/09/96	.61	.65	.78	.91	.76	.118	.742	.159
^b 36	11/25/96	11/26/96	1.31	1.12	1.02	.83	1.05	.174	1.065	.163
^a 37	11/29/96	12/01/96	1.35	1.32	1.25	1.29	1.33	.039	1.308	.030
^b 38	12/12/96	12/12/96		1.00	1.02	1.19	.96	.102	1.042	.097
^a 39	12/16/96	12/18/96		1.92	1.98	2.13	1.88	.110	1.978	.055
^b 40	12/23/96	12/24/96		1.14	1.46	1.35	1.26	.136	1.303	.104
^a 41	01/04/97	01/06/97		.61	.61	.60	.55	.028	.593	.048
42	01/22/97	01/23/97	.45	.40	.57	.69	.86	.185	.593	.311
^b 43	01/24/97	01/25/97	.64	.66	.89	.92	.66	.139	.753	.185

[RG, rain gage; in., inch; SD, standard deviation; CV, coefficient of variation (SD/mean); --, not available]

Table 11. Statistical summary of storm rainfall at selected locations in and near the Chenoweth Run Basin, JeffersonCounty, Kentucky, during the model calibration period, February 1996–January 1998—Continued

[RG, rain gage; in., inch; SD, standard deviation; CV, coefficient of variation (SD/mean); --, not available]

				(coo fir	Rain gage		Statistics			
	Ctant	F and				Statistics				
Storm	Start date	End date	RG8 (in.)	RG11 (in.)	RG15 (in.)	RG17 (in.)	RG28a (in.)	SD (in.)	Mean (in.)	с٧
^c 44	01/27/97	01/29/97	1.44	1.53	1.38	1.61	1.33	0.113	1.458	0.07
^a 45	02/03/97	02/05/97	1.14	1.16	1.71	1.36	1.24	.234	1.321	.17
^b 46	02/26/97	02/26/97	.43	.46	.41	.49	.48	.033	.453	.07
^a 47	02/28/97	03/02/97	8.48	8.40	8.85	11.47	8.78	1.286	9.196	.14
^b 48	03/03/97	03/04/97	.86	.82	.99	1.19	.85	.154	.941	.16
^a 49	03/09/97	03/11/97	.47	.41	.55	.53	.46	.057	.483	.11
^b 50	03/13/97	03/15/97	.51	.48	.49	.51	.42	.038	.482	.07
^a 51	03/18/97	03/19/97	1.95	1.75	2.22	2.31	1.93	.229	2.032	.11
^b 52	03/25/97	03/26/97	.52	.59	.69	.76	.53	.104	.618	.16
^a 53	03/28/97	03/29/97	.98	1.02	.83	.79	.81	.106	.886	.12
^b 54	04/27/97	04/28/97	.45	.47	.54	.57	.50	.049	.507	.09
^a 55	05/02/97	05/03/97	1.25	1.19	1.05	1.41	1.20	.130	1.219	.10
^b 56	05/08/97	05/09/97	.98	.87	.82	.90	.78	.077	.870	.08
57	05/19/97	05/20/97	.28	.45	.36	.61	.45	.123	.429	.28
58	05/24/97	05/26/97	.99	2.40	1.47	1.41	1.41	.520	1.535	.33
59	05/28/97	05/29/97	.07	.77	.42	.66	.82	.308	.547	.56
^a 60	05/30/97	06/02/97	1.24	.93		.91	.80	.189	.970	.19
^b 61	06/08/97	06/09/97	.92	1.02	1.32	1.14	1.30	.174	1.140	.15
^a 62	06/13/97	06/13/97		2.07		2.59	2.18	.275	2.279	.12
63	06/16/97	06/16/97		.85		1.64	1.96	.570	1.482	.38
^b 64	06/17/97	06/18/97		1.73		1.11	1.43	.310	1.422	.21
65	06/21/97	06/21/97		.31		.15	1.23	.580	.562	1.03
66	07/23/97	07/24/97	.00	.93	.30	.04	.42	.375	.338	1.11
67	08/09/97	08/09/97	.74	2.49	2.91	3.35	1.89	1.014	2.276	.44
68	08/19/97	08/20/97	.26	.51	.77	.67	.43	.201	.528	.38
69	09/09/97	09/10/97		2.61	.72	1.65	3.37	1.152	2.088	.55
^a 70	10/13/97	10/14/97	.75	.67	.74	.58	.57	.085	.662	.12
^b 71	10/24/97	10/24/97	.63	.71	.77	.74	.64	.062	.697	.08
^a 72	11/01/97	11/02/97	.79	.82	.55	.55	.66	.128	.673	.19
^b 73	11/13/97	11/14/97	.80	.88	.96	.91	.76	.081	.862	.09
^a 74	11/21/97	11/23/97	.55	.53	.69	.7	.52	.089	.599	.14
^b 75	11/29/97	12/01/97	1.70	1.55	1.71	1.61	1.52	.086	1.618	.05
^a 76	12/09/97	12/10/97	.78	.83	.85	.77	.83	.035	.811	.04
^b 77	12/21/97	12/22/97	.65	.70	.63	.67	.62	.033	.654	.05
^a 78	12/24/97	12/25/97	.88	.93	1.03	.76	.82	.104	.883	.11
^b 79	01/05/98	01/09/98	3.12	3.31	3.03	3.20	3.07	.111	3.146	.03


Mean: .256
Median:

.159

^aCalibration storm.

^bVerification storm.

^cNonrepresentative storm affected by snow and (or) ice.

Figure 9. Approximate locations of the long-term precipitation, evaporation, and streamflow-gaging stations in Kentucky and Indiana, used or referenced in the study. [see table 5]

PET was estimated from the pan-evaporation data because NWS calculated values of PET at Standiford Field and Bowman Field appeared abnormally low in 1997: 28.46 in. at Standiford Field, which was almost 14 in. below the mean annual PET (42.2 in.) during the available period of record (1949-97) and 8.5 in. below the lowest of all previous annual PET values during the period of record. NWS calculated PET at Standiford Field totaled 67.56 in. for the full model calibration period, February 1996-January 1998, just 2.74 in. less than the PET estimated from the panevaporation data. These unusually low panevaporation and PET values, though seemingly contrary to the above-normal rainfall amounts, may have been a consequence of the unusual intensity and seasonal distribution of the rainfall in 1997. Annual moisture delivered in intense, flooding rainfalls that flowed quickly out of the basin during storms in certain periods of the year was not available for evapotranspiration at other times of the year. Indeed, rainfall in March 1997 accounted for 23 percent of the annual total for 1997, and rainfall in the months of March, May, and June accounted for 50 percent of the annual total for 1997 (table 11). A more uniform distribution of rainfall than this, which would be available for potential evapotranspiration evenly throughout the growing season, has been the typical pattern for the region (fig. 3).

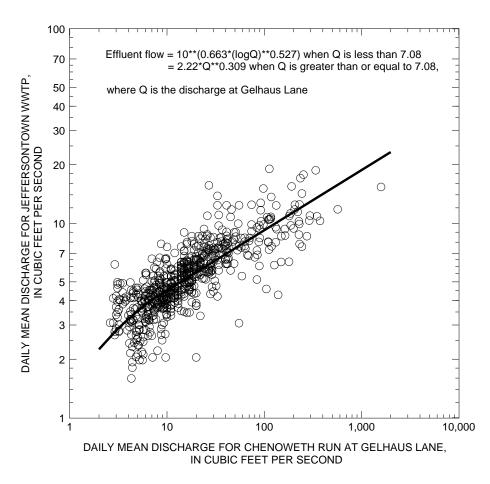
Trends in the regional pan-evaporation data were not investigated. The paradoxical relation between increased precipitation and reported decreasing pan evaporation is discussed further by Brutsaert and Parlange (1998).

Wastewater-Treatment-Plant Effluents

Three permitted WWTP's are in the Chenoweth Run Basin (fig. 7). Jeffersontown WWTP, the largest in the basin, had approximately 4,600 residential, 670 commercial, and 40 industrial sewer-service connections and had a treatment capacity of 4 Mgal/d. This plant provides wastewater treatment for the commercial and industrial customers in the Bluegrass Industrial Park located in the upper third of the basin. Two small plants, Chenoweth Hills WWTP and Lake of the Woods WWTP, serve residential communities farther downstream. These plants have treatment capacities of 0.2 and 0.04 Mgal/d, respectively. All three plants provide secondary-level (microbial) treatment of wastewater. MSD assumed responsibility for operation of these WWTP's after acquisition from the original municipal or private owner-operators.

The Jeffersontown WWTP had been identified as a source of excess nutrients contributing to eutrophication of the stream and had been subject to periodic capacity exceedences that cause overflows of untreated or undertreated wastewater to the stream. Inflows to the plant during and following storms were estimated to be two to four times the design treatment capacity of 4 Mgal/d (Wade, 1999). The Jeffersontown WWTP was upgraded following the data-collection period for this study; a phosphorus-removal process and an ultraviolet-disinfectant unit were added. Also, work was done to reduce the rainwater inflows to the sanitary-sewer system. Typical nutrient concentrations associated with municipal wastewater influent and effluent, as reported by Thomann and Mueller (1987), are shown in table 12.

Table 12. Mean nutrient concentrations in municipalwastewaters


[mg/L, milligrams per liter; --, not available; from Thomann and Mueller, 1987, p. 391]

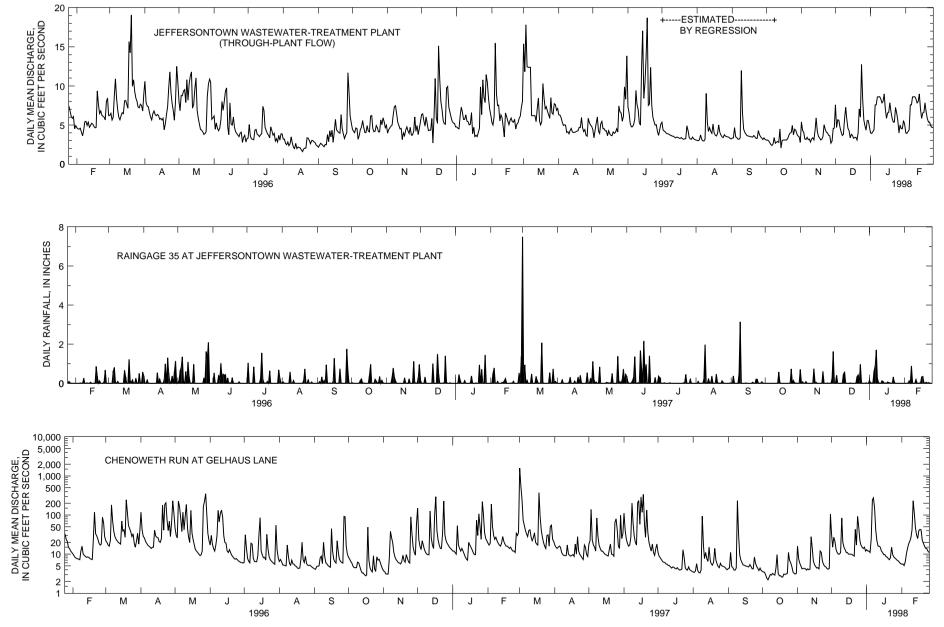
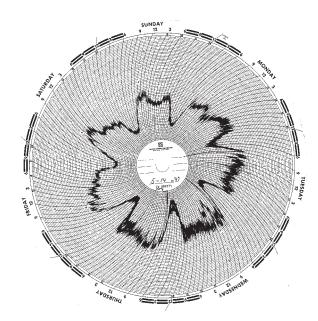
Nutrient form	Influent (mg/L)	Conventional secondary treatment effluent (mg/L)	After phosphorus removal processes (mg/L)		
	Phosphe	orus (as P)			
Total phosphorus with detergent	5–10	7	1–3		
Total phosphorus without detergent	2–5	4			
Total orthophosphate with detergent	2–5	5	1–2		
Nitrogen (as N)					
Total nitrogen	50	18	14		
Inorganic nitrogen	30	8	7		

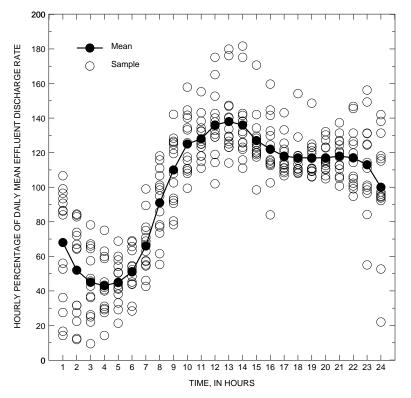
Discharge

Daily WWTP effluent discharge data were obtained from MSD by use of monthly dischargemonitoring reports to the KNREPC–KDOW. At the Jeffersontown WWTP, total effluent discharge included (1) the through-plant flow released by the principal effluent pipe and (2) bypass flow at an overflow point approximately 1,000 ft upstream from the principal effluent pipe. Bypass flows occurred during and following rain storms of about 0.5 in. or greater when infiltration and inflows to the sanitary-sewer system caused the WWTP inflow capacity to be exceeded. As a consequence, some untreated wastewater bypassed the WWTP and was discharged directly to the stream. Bypass flows, though not directly measured at the plant, were estimated to have occurred at a constant rate of 7.74 ft³/s (5 Mgal/d) (Cliff Bristow, Louisville and Jefferson County Metropolitan Sewer District, oral commun., 1998) for the bypass periods (59 days) listed in the monthly discharge-monitoring reports.

Measured daily through-plant flows were not available at the Jeffersontown WWTP for the period July 2–October 7, 1997, during a repair of the effluent-flow meter. Therefore, daily through-plant flow during this period of missing data was estimated on the basis of regressions relating observed daily through-plant flow to daily mean flow at the streamflow-gaging station downstream from the WWTP's at Gelhaus Lane (figs. 10 and 11).

Figure 10. Scatterplot and regression for daily mean discharges at the Jeffersontown Wastewater-Treatment Plant (WWTP) and Chenoweth Run at Gelhaus Lane, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.


Figure 11. Daily mean discharge at the Jeffersontown Wastewater-Treatment Plant and at Chenoweth Run at Gelhaus Lane, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

39

Continuous through-plant effluent-discharge records at the Jeffersontown WWTP were incomplete and such continuous records were unavailable at one of the minor WWTP's. Representative hourly WWTP effluent flow rates were needed for developing the basin hydrologic model; therefore, hourly through-plant effluent flows were estimated by use of the daily throughplant flows and estimates of the typical hourly distribution of the daily through-plant flows. The typical hourly distribution of the total daily through-plant flows were estimated by averaging the observed hourly distributions of flow (figs. 12 and 13) during selected, representative, dry-weather flow periods at the Jeffersontown and Chenoweth Hills WWTP's (table 13). Continuousflow-meter records were not available for the Lake of the Woods WWTP; therefore, the hourly distributions of daily flow observed at Chenoweth Hills were assumed adequately representative for the Lake of the Woods WWTP, as well.

Figure 12. Circular-chart record of 7-day throughplant effluent discharge from Jeffersontown Wastewater-Treatment Plant, Jefferson County, Kentucky.

Figure 13. Sample and mean hourly percentages of daily mean effluent discharge at the Jeffersontown Wastewater-Treatment Plant, Jefferson County, Kentucky.

Table 13. Estimated typical hourly through-plant effluent-discharge rates at the Jeffersontown and Chenoweth HillsWastewater-Treatment Plants in the Chenoweth RunBasin, Jefferson County, Kentucky

• •••••	Percentage of daily mean discharge rate					
Time (hour)	Jeffersontown	Chenoweth Hills				
1	68	65				
2	52	41				
3	45	37				
4	43	34				
5	45	35				
6	51	68				
7	66	154				
8	91	145				
9	110	121				
10	125	114				
11	128	100				
12 (noon)	136	104				
13	138	100				
14	136	89				
15	127	97				
16	122	104				
17	118	101				
18	117	118				
19	117	128				
20	117	123				
21	118	143				
22	117	153				
23	113	133				
24 (midnight)	100	93				

In the case of the two minor WWTP's, the reported total daily flows were based on once-a-day observations of flow rate, which varies during each day. The reported total daily flows were adjusted systematically (generally decreased) to compensate for the variation in the time of day at which the single daily observation of flow was made.

Suspended Solids

Effluent loadings of total suspended solids (considered essentially equivalent to suspended sediment in this study) were estimated by use of relevant wastewater-discharge and water-qualitysampling data. At the Jeffersontown WWTP, periodic total suspended-solids analyses (299 samples) of the effluent were available throughout the model calibration period. Both influent and effluent suspended-solids concentrations indicated only a weak correlation with the daily effluent discharge rate; therefore, daily suspended-solids concentrations were estimated by linear interpolation of concentrations between the available sampling dates. Total suspended-solids effluent loads were estimated as the interpolated solids concentration times the daily flow. Estimated through-plant total suspendedsolids loads ranged between 0.0006 to 1.28 ton/d and averaged 0.064 ton/d. Estimated bypass loads from the Jeffersontown WWTP ranged between 0.04 to 2.54 ton/d and averaged 0.96 ton/d during the 59 days that bypass flows were reported to have occurred.

At the two smaller WWTP's, monthly total suspended-solids sample concentrations and loading estimates were available from MSD discharge-monitoring reports. Daily total suspended-solids loadings were estimated as a uniform daily average of the reported monthly loads. For model application, hourly total suspended-solids loadings were estimated as a uniform hourly average of the estimated daily loads.

The combined annual and mean-annual model calibration period estimated loadings of total suspended solids in the WWTP effluents were determined (table 14).
 Table 14.
 Estimated annual total suspended-solids loads in wastewater-treatment-plant effluents in the Chenoweth

 Run Basin, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998

[WWTP, wastewater-treatment plant]

	Jeffersontov	n WWTP				
Period	Through-plant (tons)	Bypass (tons)	Chenoweth Hills WWTP (tons)	Lake of the Woods WWTP (tons)	Total (tons)	
02/1996-01/1997	25.4	19.5	3.92	0.55	49.3	
02/1997-01/1998	18.5	25.0	3.58	.62	47.7	
Mean	21.9	22.3	3.75	.58	48.5	

Total Phosphorus (TP)

The Jeffersontown WWTP daily throughplant and bypassed TP loads were estimated by use of the approximately bimonthly, 24-hourcomposite-sample (approximately 200 mL drawn every 15 minutes) data reported by MSD (table 15). To obtain daily through-plant TP load estimates from the bimonthly samples, the 45 bimonthly sample concentrations were regressed with the daily WWTP effluent discharge. The effluent TP concentrations were inversely correlated ($r^2 = 0.43$) with the log of effluent discharge (Q). That is, when effluent discharge increased, the TP concentration decreased, probably because of dilution. Daily TP concentrations were calculated as TP = 10.71 - 3.91 Log Q (fig. 14). Errors calculated as the difference between discharge-regressionestimated TP concentrations and observed TP concentrations indicate a mean error of 16 percent and a root mean square error of 53 percent. Estimated daily through-plant effluent TP loads ranged from 23 to 70 lb P/d and averaged 62 lb P/d.

TP concentration in the bypassed flow was estimated from three influent samples that were available when bypass flows were reported to have occurred. Daily TP load estimates during periods of bypassed flow (Q_B) were calculated by the relation TP = 6.39-2.34Log Q_B (fig. 14), which also indicates an inverse relation between TP concentration and discharge. Estimated daily bypass TP loads ranged from 7.5 to 45 lb P/d and averaged 34 lb P/d during the 59 days bypass flows that were reported to have occurred during March 1996–February 1998.

Phosphorus sampling data were unavailable for the minor WWTP's. Therefore, effluent TP loads were estimated by use of a typical TP effluent concentration (5.7 mg/L) for WWTP's of similar treatment level (Thomann and Mueller, 1987; Hammer, 1975; and Leist and others, 1990). Estimated daily minor WWTP effluent TP loads ranged from 0.98 to 28 lb P/d at Chenoweth Hills and 0.26 to 4.8 lb P/d at Lake of the Woods. TP loads averaged 6.7 lb P/d at Chenoweth Hills and 0.99 lb P/d at Lake of the Woods.


The combined annual and mean-annual model calibration period estimated loadings of total phosphorus in the WWTP effluents were determined (table 16).

Total Orthophosphate (TPO₄)

The Jeffersontown WWTP daily throughplant and bypassed TPO₄ loads were also estimated by use of the phosphorus-sampling data reported by MSD (table 15). In 1996, only TP concentrations were reported, but 22 samples of both TP and TPO₄ reported in 1997–98 indicated these constituents were highly correlated ($r^2 = 0.97$). Thus, TP concentrations were used to estimate by regression the TPO₄ concentrations for the samples collected in 1996 (TPO₄ = TP * 0.99 - 0.19) (fig. 15). A large portion (approximately 90 percent) of the total phosphorus content for the Jeffersontown WWTP
 Table 15.
 Influent and effluent phosphorus concentrations reported for the Jeffersontown Wastewater-Treatment Plant,
 Jefferson County,
 Kentucky
 Kentucky

[ft³/s, cubic foot per second; mg/L, milligrams per liter; P, phosphorus; --, not available; *, outlier, not used in regressions]

	Effluent	Int	fluent	Ef	fluent
Date	daily discharge (ft ³ /s x hours)	Total phosphorus (mg/L as P)	Total orthophosphate (mg/L as P)	Total phosphorus (mg/L as P)	Total orthophosphate (mg/L as P)
Date		(119/2 431)	(ilig/2 d3 1)	(119/2 431)	(119/2 431)
02/07/1996	105.09			2.12	
02/22/1996	163.02			1.19	
03/07/1996	201.63			1.38	
03/22/1996	258.82	1.54		1.31	
04/05/1996	157.07	2.73		1.30	
04/19/1996	123.65	2.35		1.69	
05/08/1996	259.19	2.64		.96	
05/21/1996		4.80		*.10	
06/06/1996	110.29	5.90		2.51	
06/20/1996	99.15	5.28		2.66	
07/08/1996	106.20	4.91		3.69	
07/19/1996	88.75	6.29		3.11	
08/07/1996	62.01	5.05		2.21	
08/21/1996	49.02	6.15		3.69	
09/06/1996	53.10	7.24		4.21	
09/19/1996	96.55	3.63		2.27	
10/08/1996	105.46	5.00		3.61	
10/21/1996	100.63	4.37		2.89	
11/07/1996	176.38	4.65		3.85	
11/21/1996	112.51	5.04		4.03	
12/06/1996	124.03	3.50		2.63	
12/19/1996	167.84	3.73		1.31	
01/07/1997	137.02	3.59	2.97	2.19	2.14
01/22/1997	236.54	5.04	2.96	3.25	3.18
02/06/1997	179.73	*38.4	*11.4	3.26	3.26
02/00/1997	137.77	3.72	2.82	2.50	2.15
03/06/1997	297.07	2.41	1.65	1.53	1.11
03/21/1997	176.01	1.89	1.74	1.35	
04/07/1997	119.57	3.63	2.24	1.55	1.52
04/21/1997	142.59	3.05	1.80	2.14	1.32
05/07/1997	93.95	5.91	4.44	3.01	3.01
05/22/1997	108.06	5.23	3.84	3.65	3.34
06/05/1997	114.74	3.50	2.28	2.54	2.32
06/19/1997	180.10	1.12	.613	.725	.680
00/19/1997 07/08/1997	88.96	7.73	5.57	3.90	3.41
07/08/1997 07/21/1997	77.21	7.41			3.51
	70.67	8.02	5.24	3.56 4.43	
08/07/1997 08/21/1997			5.05		4.19
	97.04	4.41	2.16	2.71	2.55
09/05/1997	81.27	5.72	4.55	2.41	2.41
10/07/1997	62.70	6.14	4.78	4.65	4.46
10/21/1997	89.12	6.01	3.90	3.43	3.25
11/06/1997	82.06	7.21	4.76	3.83	2.10
11/20/1997	84.29	6.36	3.34	2.59	2.17
12/05/1997	113.63	3.59	2.04	1.06	1.05
01/08/1998	206.09	.99	.61	.59	.45
01/22/1998	128.85	4.63	2.57	1.92	1.51

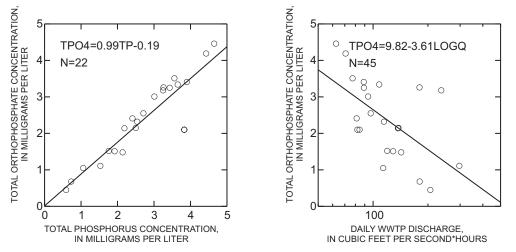


Figure 14. Comparison and regression relations of total phosphorus concentrations to daily effluent discharge, and total phosphorus concentrations to bypassed-wastewater discharge from the Jeffersontown Wastewater-Treatment Plant, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

 Table 16.
 Estimated annual total phosphorus loads in wastewater-treatment-plant effluents in the Chenoweth Run
 Basin, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998

	Jeffersontown WWTP				
Period	Through-plant (Ib as P)	Bypass (Ib as P)	Chenoweth Hills WWTP (Ib as P)	Lake of the Woods WWTP (Ib as P)	Total (Ib as P)
02/1996-01/1997	25,200	796	2,320	399	28,700
02/1997-01/1998	24,100	853	2,670	331	28,000
Mean	24,600	824	2,500	365	28,300

[WWTP, wastewater-treatment plant; lb, pound; P, phosphorus]

Figure 15. Comparison and regression relations of total phosphorus concentrations to total orthophosphate concentrations, and total orthophosphate concentrations to effluent discharged from the Jeffersontown Wastewater-Treatment Plant (WWTP), Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

effluent was the orthophosphate form (table 15). Also, effluent sampling data collected in 1995 indicated that dissolved phosphorus concentration was on average about 94 percent of the total phosphorus concentration. Thus, most of the phosphorus content of this wastewater was typically in the dissolved orthophosphate form.

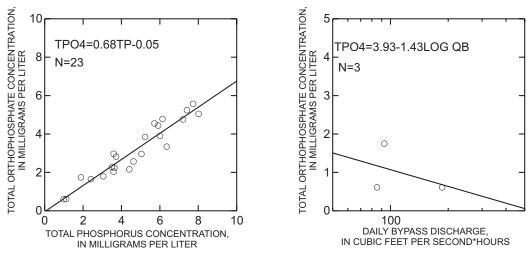
To obtain daily through-plant TPO₄ load estimates from the bimonthly samples, the 45 bimonthly sample concentrations were regressed with the daily WWTP effluent discharge. The effluent TPO₄ concentrations were moderately inversely correlated ($r^2 = 0.39$) with the log of effluent discharge (Log Q). That is, when effluent discharge increased, the TPO_4 concentration decreased, probably because of dilution. Daily TPO₄ concentrations were calculated as $TPO_4 = 9.82 - 3.61 \text{ Log } Q$ (table 17 and fig. 15). Errors calculated as the difference between discharge-regression-estimated TPO₄ concentrations and observed TPO₄ concentrations (including the "observed" TPO₄ concentrations estimated by regression with TP) indicate a mean error of 19 percent and a root mean square error of 57 percent. Estimated daily effluent TPO₄ loads ranged from 22 to 68 lb P/d and averaged 60 lb P/d.

TPO₄ concentration in the bypassed flow was estimated from three influent samples that were available when bypass flows were reported to have occurred. One of the influent samples was obtained in 1996 when TPO₄ was not analyzed. The influent TPO₄ concentration for this sample was estimated from the relation of 23 influent samples of both TP and TPO₄ reported in 1997–98. Again, influent TPO₄ concentrations are highly correlated $(r^2 = 0.90)$ with influent TP concentrations (TPO₄ = TP * 0.68 - 0.05) (fig. 16). Daily TPO₄ load estimates during periods of bypassed flow (Q_B) were calculated by the relation TPO₄ = 3.93 - 1.43 Log Q_B (fig. 16), which also indicates an inverse relation between TPO₄ concentration and discharge. Estimated daily bypass TPO₄ loads ranged from 6.8 to 30 lb P/d and averaged 25 lb P/d during the 59 days bypass flows that were reported to have occurred during March 1986–February 1998.

Phosphorus sampling data were unavailable for the minor WWTP's. Therefore, effluent TPO_4 loads were estimated by use of a typical TPO_4 effluent concentration (5.5 mg/L) for WWTP's of similar treatment level (Thomann and Mueller, 1987; Hammer, 1975; and Leist and others, 1990). Estimated daily minor WWTP effluent TPO_4 loads ranged from 0.95 to 27 lb P/d at Chenoweth Hills and 0.25 to 4.6 lb P/d at Lake of the Woods. TPO_4 loads averaged 6.5 lb P/d at Chenoweth Hills and 0.96 lb P/d at Lake of the Woods.

The combined annual and mean-annual model calibration period estimated loadings of total orthophosphate in the WWTP effluents were determined (table 18).

Streamflow


The water budget (table 19) at the Ruckriegel Parkway and Gelhaus Lane sites on Chenoweth Run reflects the wetter-than-normal conditions during much of the 24-month data-collection period.

		ant effluent ns per liter)	Bypass effluent (in milligrams per liter)		
Statistic	Observed ^a	Estimated	Observed	Estimated	
Number	45	763	3	59	
Mean	2.32	2.32	1.16	1.54	
Minimum	.45	.22	.61	.66	
Maximum	4.46	4.11	1.75	3.93	

Table 17. Statistical summary of observed and estimated daily mean effluent total orthophosphate (TPO₄)

 concentrations at the Jeffersontown Wastewater-Treatment Plant, Jefferson County, Kentucky

^aTPO₄ concentrations for 22 samples were estimated by regression with total phosphorus concentrations.

Figure 16. Comparison and regression relations of total phosphorus concentrations to total orthophosphate concentrations, and total orthophosphate concentrations to bypassed-wastewater discharge upstream from the Jeffersontown Wastewater-Treatment Plant, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

 Table 18.
 Estimated annual total orthophosphate loads in wastewater-treatment-plant effluents in the Chenoweth Run Basin, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998

 [WWTP, wastewater-treatment plant; lb, pound; P, phosphorus]

	Jeffersontov	vn WWTP				
Period	Through-plant (Ib as P)	Bypass (Ib as P)	Chenoweth Hills WWTP (Ib as P)	Lake of the Woods WWTP (Ib as P)	Total (Ib as P)	
02/1996-01/1997	22,000	595	2,240	386	25,200	
02/1997-01/1998	21,500	658	2,580	319	25,100	
Mean	21,800	626	2,410	352	25,200	

Table 19. Annual water budget for the Chenoweth Run Basin, Jefferson County, Kentucky, during the model

calibration period, February 1996–January 1998

[WWTP, wastewater-treatment plant; ---, not applicable; percentages reflect combined inflows to the basin as precipitation and wastewater effluents]

	Rainfall	WWTP effluent	Total streamflow		Estimated evapotranspiration and other losses	
Period	(inches)	(inches)	Inches	Percent	Inches	Percent
		Chenow	eth Run at Ruckrie	gel Parkway		
02/1996-01/1997	56.81		34.71	61	22.10	39
02/1997-01/1998	53.33		35.60	67	17.73	33
Mean	55.07		35.16	64	19.91	36
		Chen	oweth Run at Gelh	aus Lane		
02/1996-01/1997	56.81	7.23	36.06	56	27.98	44
02/1997-01/1998	53.33	6.79	35.34	59	24.78	41
Mean	55.07	7.01	35.70	58	26.38	42

Mean-annual rainfall during the period was 55.07 in., approximately 11 in. above the long-term normal annual precipitation reported for Standiford Field. The WWTP inflows to the stream (an interbasin transfer of water supplies withdrawn from the Ohio River) contributed the equivalent of about 7 in. of water on the basin annually, or approximately 20 percent of all the water that entered the basin upstream from the Gelhaus Lane site. The WWTP's provided the majority of flow in the stream at times during low-flow periods. The relative proportions of water leaving the basin as streamflow and evapotranspiration (about 60 percent as streamflow and 40 percent as evapotranspiration and other losses) were almost reversed from the normal proportions for this region, which are about 40 percent as streamflow and 60 percent as evapotranspiration).

Though rainfall and discharge were above normal for much of the period, there were wide variations in the flow regime (figs. 17 and 18). The record flood discharges in March 1997 (which scoured much of the bedrock main-channel bottom clean) were followed by low base flows in late summer and early fall of 1997. Urban development and the associated impervious land cover, which was most dense in the upper portion of the basin upstream from the gage at Ruckriegel Parkway, will, in the absence of storm-water-control measures, typically tend to increase the volumes and rates of streamflow during storms (compared to predevelopment conditions), and streamflow recession and base flows may consequently be decreased.

Base-flow measurements available in the basin (table 20) indicated possible losing-stream conditions during low-flow periods. Some baseflow losses were hypothesized and represented in the calibrated basin model (see "Base-Flow Losses").

Water Quality

Water quality can be described in several ways, and it is affected by many factors. Although this study focused primarily on aspects of sedimentation and eutrophication processes in the Chenoweth Run Basin, many other physical and chemical characteristics (table 3) were determined for water samples. Data compilation included approximately 8,500 physical- and chemicalparameter determinations for discrete water samples collected at seven sampling sites (fig. 7) during 1988–97. Data were also compiled for over 230.000 continuous-record determinations of stream temperature, specific conductance, pH, and dissolved-oxygen concentration measurements made at 30-minute intervals at the Ruckriegel Parkway and Gelhaus Lane sites during 1996–97.

A total of 103 discrete environmental water samples were collected in 1996–97 over a wide range of flows in each season of the year at the four sampling sites on the main channel (fig. 7). The distribution of samples collected in 1996–97 at the two gaging stations is shown in figures 17 and 18. During the full sampling period, which extends back to 1988 at Gelhaus Lane, water-quality samples have been collected for daily mean discharges of 117 ft³/s at Ruckriegel Parkway and approximately 300 ft³/s at Gelhaus Lane. These sampled discharges exceed flow durations of 2 percent and 1 percent, respectively, at these sites.

A statistical summary (Appendix 4) indicates large variability in some measurements, several orders of magnitude of variation in selected cases. Much of this variability in water quality derives from variations of the influx of the water, chemical constituents, and solar radiation into the stream. Daily variations of discharge, water temperature, specific conductance, pH, and dissolved-oxygen concentration at the Ruckriegel Parkway and Gelhaus Lane sites for February 1996– September 1997 are shown in figures 19 and 20.

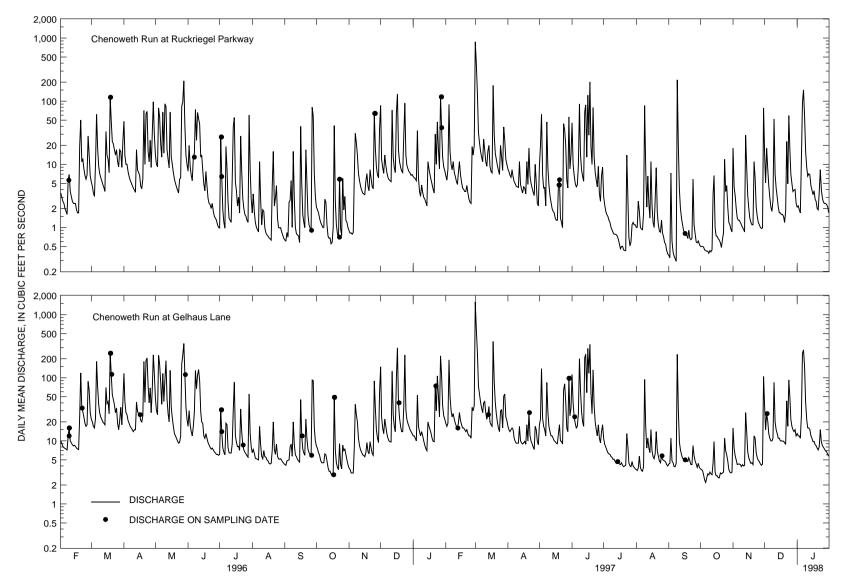


Figure 17. Daily mean discharge and discharge on sampling dates at Chenoweth Run at Ruckriegel Parkway and at Gelhaus Lane, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

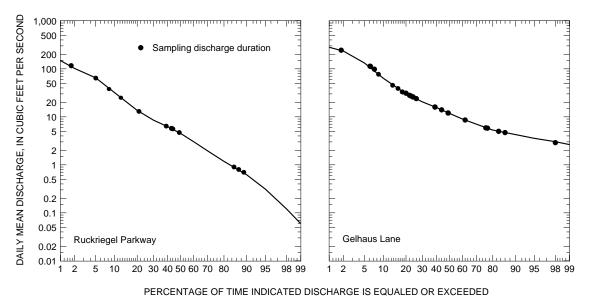


Figure 18. Flow duration and discharge on sampling dates at Chenoweth Run at Ruckriegel Parkway

and at Gelhaus Lane, Jefferson County, Kentucky, during the model calibration period, February 1996– January 1998.

Site USGS			Drainage		July 1	July 11, 1995		per 5, 1995
identifier (figure 7)	station number	Location	Stream mile	area (acres)	Time (HHMM)	Discharge (ft ³ /sec)	Time (HHMM)	Discharge (ft ³ /sec)
CR5	03298129	Chenoweth Run at Old Watterson Trail at Jeffersontown	6.012	2,862	0840	0.76	1040	0.13
CR4	03298138	Jeffersontown WWTP effluent at Chenoweth Run	5.219		0940	4.66	0930	3.98
402	03298140	Chenoweth Run at Taylorsville Road near Jeffersontown	4.870	4,150	1045	4.47	1150	4.02
CR2	03298145	Chenoweth Run at Easum Road	3.309	6,523	1135	4.65	1155	3.58
16	03298150	Chenoweth Run at Gelhaus Lane	2.456	7,327	1020	3.42		
403	03298160	Chenoweth Run at Seatonville Road	.111	10,580	1225	3.09	1355	1.81

Table 20. Base-flow measurements in the Chenoweth Run Basin, Jefferson County, Kentucky, in 1995 [USGS, U.S. Geological Survey; HHMM, hours and minutes on 24-hour clock; ft³/s, cubic foot per second; ---, not applicable]

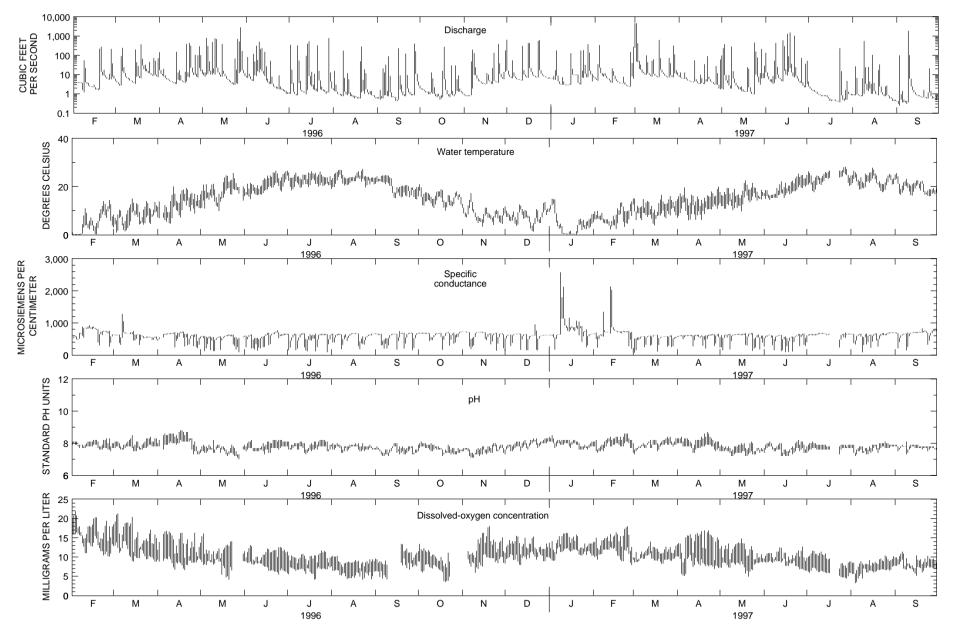


Figure 19. Daily range in discharge, water temperature, specific conductance, pH, and dissolved-oxygen concentration at Chenoweth Run at Ruckriegel Parkway, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

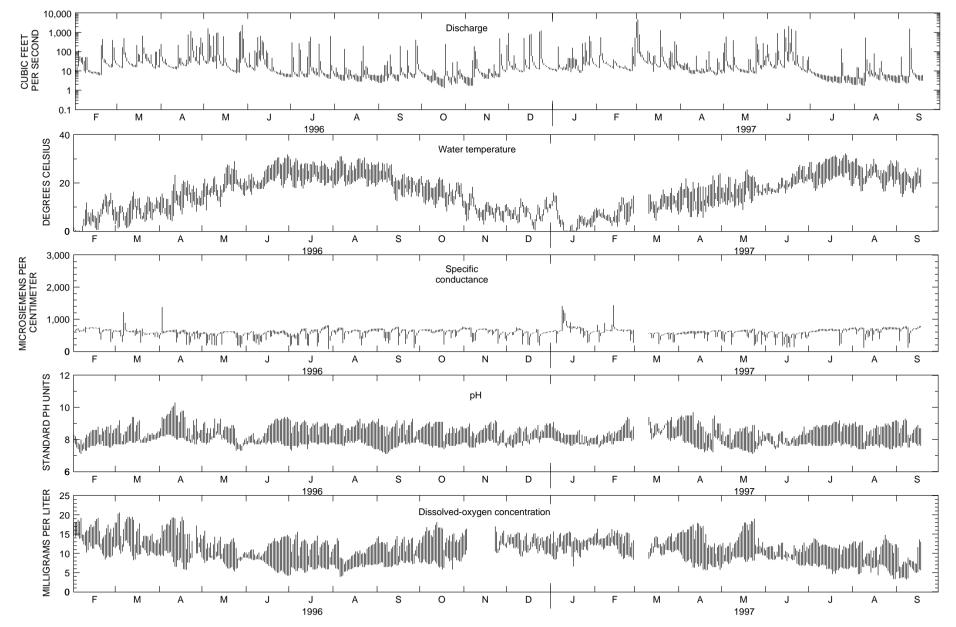


Figure 20. Daily range in discharge, water temperature, specific conductance, pH, and dissolved-oxygen concentration at Chenoweth Run at Gelhaus Lane, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

5

Stream water temperature was measured at the Ruckriegel Parkway and Gelhaus Lane sites at 30-minute intervals from January 24, 1996, to September 19, 1997, excluding periods of missing record (March 1-10, 1997, at Ruckriegel Parkway; July 16-23, 1997, at Gelhaus Lane; and after September 19, 1997, at both sites). Transformations of nutrients in streams are dependent upon water temperature; therefore, the periods of missing record were estimated by linear regression with air temperature for use in the water-quality modeling (see "Simulation of Water Quality"). Hourly average water temperature was determined for model input. Air temperature was a strong predictor of water temperature at both sites (r^2 of 0.85 and 0.88, respectively, at Ruckriegel Parkway and Gelhaus Lane). The regression equation was adjusted using the difference between predicted values and adjacent observed values for short periods of missing record. After September 19, 1997, the estimated stream temperature was smoothed by a 24-hour running average of temperature values. On average, measured water temperatures at the Gelhaus Lane site were 0.8°F warmer than at the Ruckriegel Parkway site, probably because of thermal energy in wastewater inflows downstream from the Ruckriegel Parkway site. Air temperature and observed and estimated stream water temperature during the model calibration period are shown in figure 21.

Specific conductance, a measure of the ability of water to conduct an electrical current, is related to the types and concentrations of solids dissolved in water. Mean and median values of the continuous-record, daily mean specific conductance were 600 and 615 μ S/cm, respectively, at the Ruckriegel Parkway site, and 598 and 608 µS/cm, respectively, at the Gelhaus Lane site. Specific conductance of natural waters typically reach maximal values during base-flow periods (owing to the background, geologic sources of the dissolved solids in ground water), and values are minimal (by dilution) during high-flow periods. In the urban setting of the Chenoweth Run Basin, maximal values of specific conductance were in winter storm periods (figs. 19 and 20), probably because of inflows of chloride in snow melt and (or) storm water following road-salt applications. Typical concentrations of chloride in rivers of North America are reported to range from 5.75 to

24 mg/L, in comparison to seawater chloride concentrations of 19,000 mg/L (Hem, 1989). None of the reported chloride-sample concentrations of the 83 samples collected in Chenoweth Run exceeded the KDOW warmwater-aquatic-habitat criteria for chloride concentration (600 mg/L). The maximum reported chloride concentration was 475 mg/L at the Ruckriegel Parkway site on March 19, 1996.

Diurnal patterns in dissolved-oxygen concentration and pH during low to moderate flows in spring 1996 show indications of the effects of aquatic-plant respirational and photosynthetic activity commonly associated with eutrophication of water bodies (fig. 22). At night, plant respiration (which proceeds continuously, night and day) consumes dissolved oxygen and releases carbon dioxide, which in turn lowers pH as carbonic acid is formed from water and the released carbon dioxide. The minimum dissolved-oxygen concentration is typically reached in the early morning hours before dawn. During daylight periods, aquatic-plant photosynthesis consumes carbon dioxide (which raises pH) and produces a sharp increase in dissolved-oxygen concentration. Maximum dissolved-oxygen concentrations are typically reached around mid-day. Pure oxygen is produced within the water column by the aquatic-plant photosynthesis. In comparison, the oxygen content of the atmosphere at the water surface where reaeration occurs is 21 percent. These oxygen-rich conditions during photosynthesis can lead to oxygen supersaturation with dissolved-oxygen concentrations of 150 to 200 percent of the saturation concentration not uncommon (Thomann and Mueller, 1987).

Suspended-solids and suspended-sediment concentrations were essentially equivalent for this study basin. Two suspended-sediment subsamples were drawn from the churn splitter when a paired suspended-solids subsample also was drawn. Concentrations for the two suspended-sediment subsamples were within 5.5 percent of the concentration of the suspended solids. Almost all of these two suspended-sediment samples (99.6 percent by weight) were in the clay/silt size fractions less than 0.00244 in. (0.062 mm) particle size.

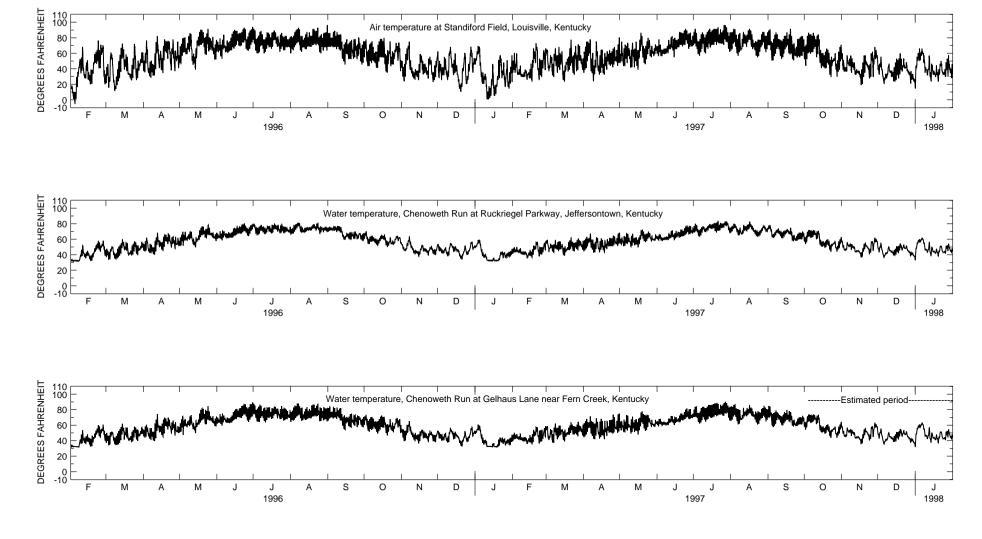
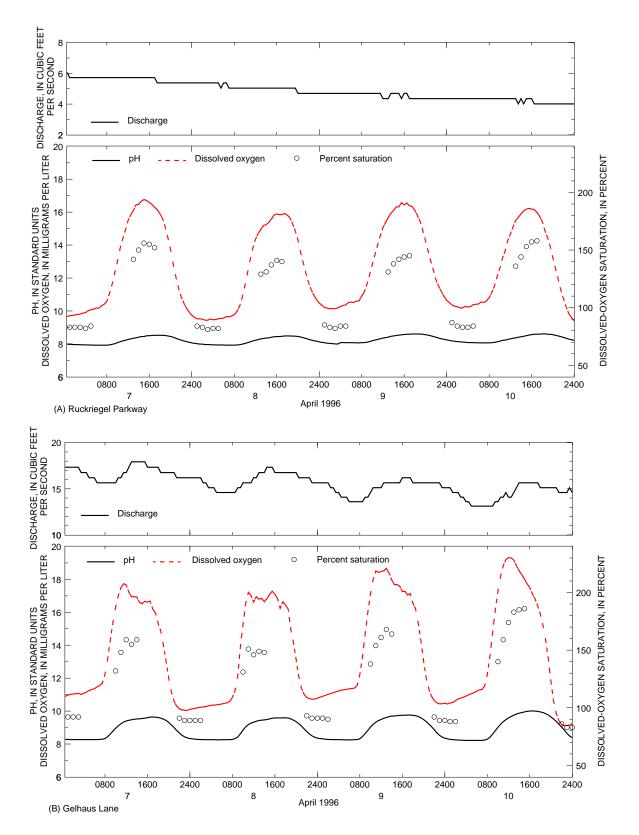



Figure 21. Hourly air temperature at Standiford Field, Louisville, Kentucky, and observed and estimated hourly water temperatures, Chenoweth Run Basin, Jefferson County, Kentucky.

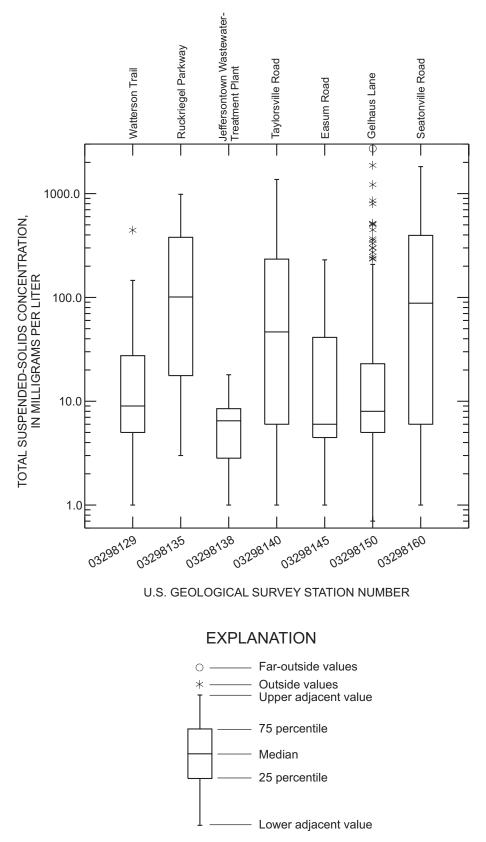
53

Figure 22. Diurnal dissolved-oxygen concentration, pH, and discharge patterns and oxygen saturation at selected times at selected sites, Chenoweth Run Basin, Jefferson County, Kentucky: (A) Ruckriegel Parkway and (B) Gelhaus Lane.

The flows coming from the abundant impervious surfaces in the upper portion of the basin may generally have low suspended-sediment (soils) loads initially, and thus have relatively large sediment-load-carrying and scouring capacity when entering the channels. Eroded sediments can (1) reduce channel capacity and reservoir capacity when deposited, (2) have deleterious effects on aquatic life, (3) introduce a dissolved-oxygendemanding substance, and (4) provide a transport vehicle for nutrients and some metals, such as phosphorus and iron, respectively. Differences in the distribution of suspended solids shown in (fig. 23) most likely result from the different sampling periods for each site, rather than actual differences in sediment yield over the basin. Many of the suspended-solids samples at Ruckriegel Parkway, Taylorsville Road, and Seatonville Road were collected during high-flow conditions during 1996–97, whereas the majority of the samples at the other sites were collected during low and moderate flows.

Eutrophication is the excessive growth of aquatic plants caused by enrichment of a water body with nutrients such that water quality is adversely affected and water use is thus impaired. The major nutrients contributing to eutrophication are nitrogen and phosphorus. Potential sources of these nutrients include municipal and industrial wastewater, agricultural and urban runoff, atmospheric deposition, and geologic formations and the overlying soils. Some reported concentrations of total suspended solids, total nitrogen, and total phosphorus from point and nonpoint sources are shown in table 21.

Approximately one fourth of the earth's nearsurface nitrogen content is contained in the crustal rocks and approximately three fourths is in the atmosphere (Hem, 1989). Most of the atmosphere is nitrogen. Nitrogen content of the hydrosphere and biosphere is much smaller than that of the crust and atmosphere.


The nitrogen cycle includes several complex chemical and biological processes that transfer nitrogen between the lithosphere, atmosphere, hydrosphere, and biosphere. Nitrogen fixation refers to the several energy-intensive processes by which N_2 gas is transformed in oxidation state to other nitrogen compounds. Biological fixation of nitrogen is done by blue-green algae and related organisms that draw energy from photosynthesis and also by certain species of bacteria. Production of synthetic fertilizers such as ammonia and other nitrogen compounds is a significant component of total world-wide nitrogen fixation (Hem, 1989). Nitrification refers to the process by which bacteria convert nitrogen in reduced forms (ammonium and organic nitrogen) into nitrite and nitrate. Denitrification refers to the processes by which certain bacteria reduce nitrate and nitrite to nitrous oxide or nitrogen gas.

Nitrogen oxides in the atmosphere, generated in part during combustion of fossil fuels, undergo chemical transformations leading to nitrogen as nitrate, which is available for deposition on earth. The atmospheric nitrate lowers the pH of precipitation. Ammonia nitrogen is generally in rainfall as well.

The major nitrogen-containing compounds in water include nitrate (NO_3^-), organic nitrogen, nitrite (NO_2^-), and ammonium (NH_4^+) (Hem, 1989, p. 124-126). Nitrite, an unstable transition compound in the conversion of organic nitrogen and ammonium to nitrate and in the conversion of nitrate to nitrogen gas, is generally present in low concentrations in natural waters. Other forms of nitrogen, such as cyanide (CN^-), may be present in industrial wastewaters.

There are substantial differences in chemical properties among the various nitrogen species. The cation ammonium is strongly absorbed on mineral surfaces. The anion nitrate is soluble, relatively stable under variable conditions, and thus is readily transported in water. Nitrite and organic species of nitrogen, which are unstable in aerated water, are often indicators (along with ammonium) of wastewater inflows (Hem, 1989, p. 124).

Extensive sampling data were not available on concentrations of nutrients from particular nonpoint-source types in the basin, such as atmospheric depositions and lawn treatments. However, four samples of ponded water remaining in drainageways in industrial and commercial areas of the basin collected on March 6, 1997, following a major storm had concentrations ranging from 0.12 to 1.88 mg/L nitrate as nitrogen and 0.05 to 0.28 mg/L ammonia nitrogen as nitrogen (B. Nichols, Louisville and Jefferson County Metropolitan Sewer District, written commun., 1996).

Figure 23. Distribution of total suspended-solids concentrations at sampling sites in the Chenoweth Run Basin, Jefferson County, Kentucky, during 1988–97.

Table 21. Reported total suspended-solids,total nitrogen, and total phosphorus concentrationsin flows from point and nonpoint sources in theUnited States

	Total suspended solids (mg/L)	Total nitrogen (mg/L)	Total phosphorus (mg/L)
Municipal wastewater influent	300	50	10
Combined- sewer overflow	410	9	3
Urban runoff	610	2.3	.5

[mg/L, milligrams per liter; from Thomann and Mueller, 1987, table 1.3, p. 22]

Estimated national background concentrations of nitrogen including atmospheric depositions were reported to be 1.0 mg/L for total nitrogen, 0.6 mg/L of nitrate as nitrogen, and 0.1 mg/L ammonia as nitrogen (U.S. Geological Survey, 1999, p. 34). Waters with nitrogen concentrations exceeding these national background concentrations are considered to have been affected by human activities. Typical total nitrogen concentrations in wastewater influent and conventional-secondary-treatment effluent are reported as 50 and 18 mg/L, respectively (Thomann and Mueller, 1987, p. 391). Simple national regression models to estimate mean total nitrogen concentrations (Omernik, 1977) discharged from basins with combined percentage urban area plus percentage agricultural area ranging from 0 to 100 percent provide estimates of 0.57 to 3.69 mg/L mean total nitrogen concentrations.

The major phosphorus-containing compounds in water include orthophosphate (PO_4^{3-}) and other phosphate-containing compounds $(H_3PO_4, H_2PO_4^-, HPO_4^{2-})$ (Hem, 1989, p. 126). Hem suggests that other forms of dissolved phosphorus are unstable phosphates that will eventually revert to orthophosphate. The inorganic compounds of phosphorus have relatively low solubility in water, which favors precipitation and adsorption to soils and sediments. These chemical and physical characteristics and uptake by aquatic plants limit concentrations of phosphorus in solution in natural waters to generally no more than a few tenths of a milligram per liter (Hem, 1989, p. 126). Particulate forms of phosphorus constitute about 95 percent of the total transported in rivers (Meybeck, 1982). Hem also reported that the total extractable phosphorus concentrations in natural waters have little or no relation to the dissolved-phosphorus concentrations.

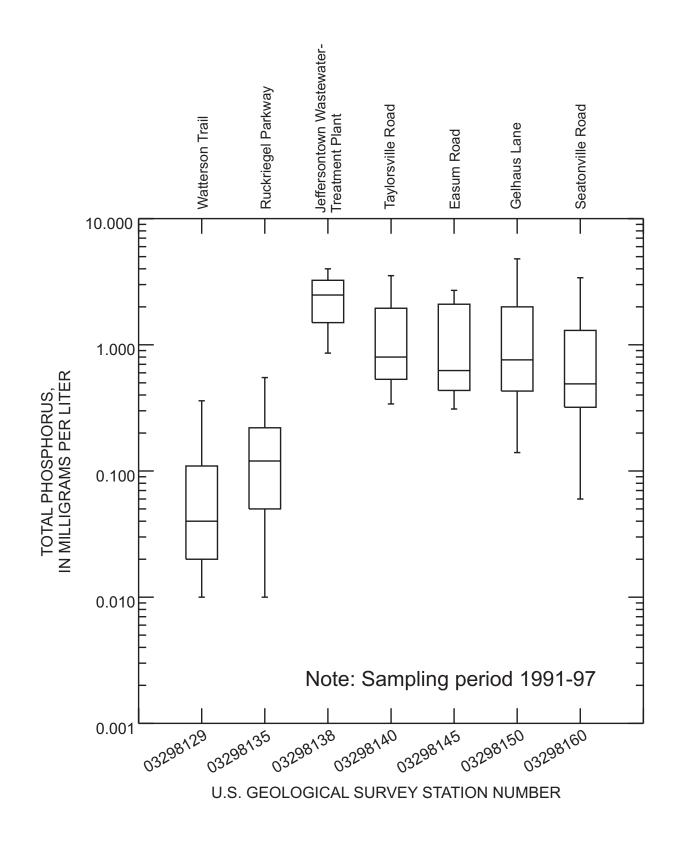
Though phosphorus is not very mobile in soils and sediments, use of phosphate fertilizers may potentially increase the content of phosphorus in drainage from fertilized fields and lawns. Runoff from both phosphate-fertilized and unfertilized lawns on soils that have elevated phosphorus fertility (greater than 20 lb/acre of available phosphorus) has been reported to contain elevated phosphorus concentrations (greater than 1 mg available P/L) (Barten, 1999). Further, eroded soils can add significant quantities of suspended phosphates to streams.

Where dissolved phosphorus exceeds a few tenths of a milligram per liter, human activities are likely the contributor. Given the low solubility of phosphorus and tendency to precipitate and adsorb to sediments and the role of phosphorus in eutrophication, dissolved phosphorus added through disposal of waste or leaching of fertilized lands may not remain available for long periods. The dissolved and total phosphorus content of streams will thus tend to decline naturally during transport downstream (barring additional phosphorus inflows along the stream).

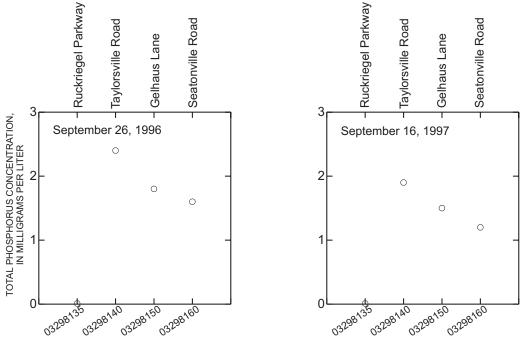
Geologic formations were suggested as a potentially significant "background" source for nutrients in Kentucky by Thomas and Crutchfield (1974). These data indicated a strong relation between geology and the phosphorus content of streams and a partial relation between geology and the nitrogen (nitrate) content of streams. Plum Creek Basin, primarily in pasture land nearby in neighboring Shelby and Spencer Counties, Kentucky, was reported to lie in a "medium" phosphate Ordovician limestone, which is similar in character to the Ordovician limestone in the Chenoweth Run Basin. The mean "medium" phosphorus level among the streams sampled in the "medium" phosphate Ordovician limestone was approximately 0.1 mg P/L.

Estimated national background concentrations of total phosphorus including atmospheric depositions were reported to be 0.1 mg/L as phosphorus (U.S. Geological Survey, 1999, p. 34). Again, waters with nutrient concentrations exceeding these national background concentrations are considered to have been affected by human activities. For comparison, typical total phosphorus concentrations in wastewater influent and conventional-secondary-treatment-plant effluent are reported as 5 to 10 and 7 mg/L, respectively (Thomann and Mueller, 1987, p. 391). Simple national regression models to estimate mean total phosphorus concentrations (Omernik, 1977) discharged from basins with combined percentage urban area plus percentage agricultural area ranging from 0 to 100 percent provide estimates ranging from 0.020 to 0.133 mg/L total phosphorus concentrations. The four samples of ponded water remaining in drainageways in industrial and commercial areas of the basin collected on March 6, 1997, following a major storm had concentrations ranging from 0.03 to 0.33 mg/L total phosphorus (B. Nichols, Louisville and Jefferson County Metropolitan Sewer District, written commun., 1996).

The factors controlling eutrophication are extremely complex, and the nutrient that limits aquatic-plant growth depends on the characteristics of the nutrient source in relation to the characteristics of the receiving water body. Excess phosphorus is generally thought to cause eutrophication in freshwater, while excess nitrogen is generally thought to cause eutrophication in saltwater (U.S. Geological Survey, 1999). Relative amounts of nitrogen and phosphorus available for plant uptake (the nitrogen/phosphorus ratio), as well as the relative amounts of point and nonpoint nutrient inflows (which can change with flow regime), also control which nutrient actually most limits plant growth in a particular stream reach. Small upland streams that are dominated by point sources tend to be nitrogen-limited; however, such streams can become phosphorus-limited if phosphorus is removed at the point source (Thomann and Mueller, 1987, p 402).


A phosphorus-removal process was added to the Jeffersontown WWTP during 1998–99. This study focused on the transport of phosphorus and various aspects of the phosphorus cycle in Chenoweth Run. The distribution of total phosphorus concentrations at sampling sites in the Chenoweth Run Basin during 1991–97 are shown in figure 24. Note a significant increase in concentrations beginning at the Jeffersontown WWTP effluent and continuing downstream.

Total phosphorus concentrations at the sampling sites during selected moderate and lowflow periods are shown in figure 25. The progressive decline in total phosphorus concentrations observed downstream from the Jeffersontown WWTP is consistent with biological uptake.


The total orthophosphate concentration was not determined by the laboratory for approximately one-half the samples collected during 1996–97. This necessitated estimation of TPO_4 concentrations for several stream water samples on the basis of TP concentrations for use in loads estimates, which were needed for calibration of the HSPF PO₄ simulation.

At the Ruckriegel Parkway sampling station (site 401) during 1996–97, 16 of 27 TPO₄ sample concentrations (59 percent) were unavailable; however, 2 of the 27 TPO₄ samples were paired automatic and cross-sectionally integrated samples. Therefore, 15 of 25 TPO₄ sample concentrations (60 percent) were estimated by ordinary least-squares regression against TP (TPO₄ = 0.258*TP ^{0.959}; r^2 = 0.66, n = 11; see fig. 26). This relation indicated that, at this site where nonpoint sources were dominant, generally about one fourth to one third of TP is TPO₄. In contrast, the Jeffersontown WWTP data had indicated that a large portion (approximately 90 percent) of TP in the effluent was in the form of TPO₄ (table 15).

At the Gelhaus Lane sampling station (site 16) during 1996–97, 8 of 40 TPO₄ sample concentrations (20 percent) were unavailable; however, three of these values were for paired automatic samples. Therefore, 5 of 37 TPO₄ sample concentrations (14 percent) were estimated by ordinary least-squares regression against TP (TPO₄ = 0.667*TP^{0.799}; $r^2 = 0.77$, n = 32; see fig. 26).

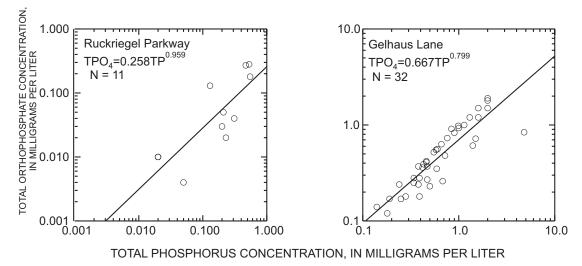
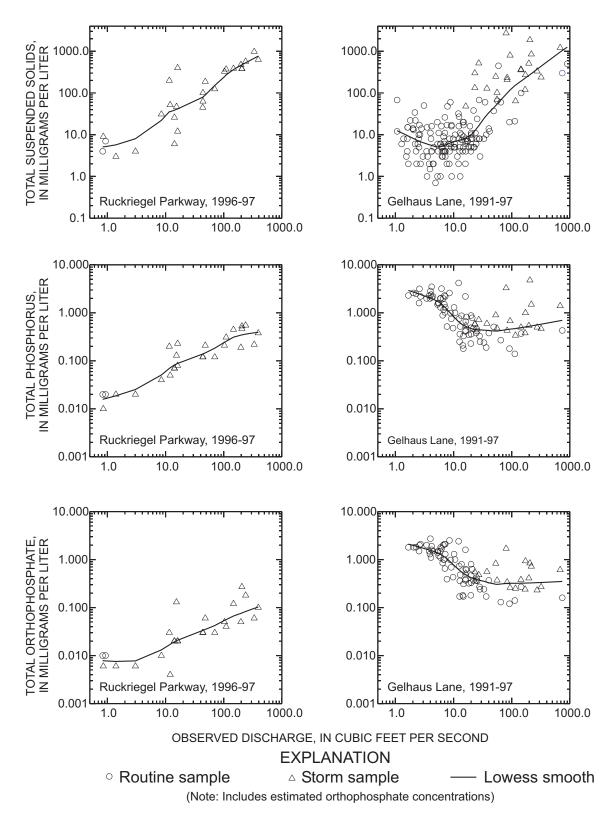


Figure 24. Distribution of total phosphorus concentrations at sampling sites in the Chenoweth Run Basin, Jefferson County, Kentucky, during 1991–97.

Figure 25. Total phosphorus concentrations at selected sites during selected moderate- and low-flow periods in the Chenoweth Run Basin, Jefferson County, Kentucky.

Figure 26. Comparison and regression relations of total phosphorus concentrations and total orthophosphate concentrations at selected sites in the Chenoweth Run Basin, Jefferson County,

The relation of constituent concentration to discharge (fig. 27) is generally indicative of the type of constituent source: decreasing constituent concentration with increasing discharge (dilution) is typical for point sources and increasing constituent concentration with increasing discharge is typical for nonpoint sources. For total suspended solids, nonpoint sources dominated at the Ruckriegel Parkway and Gelhaus Lane sites. For total phosphorus and total orthophosphate, nonpoint sources were dominant at the Ruckriegel Parkway site, and point sources, though supplemented by nonpoint sources, were dominant at the Gelhaus Lane site. Notice also that at the Gelhaus Lane site, the upper end of the constituent concentrationdischarge relation (where most constituent transport occurs) was almost entirely defined by storm waterquality-sampling data collected in 1996–97 for this study, despite the extensive but mostly routine, prescheduled sampling here during 1988-95. Water-quality samples have been collected for daily mean discharges of 117 ft³/s at Ruckriegel Parkway and approximately 300 ft³/s at Gelhaus Lane. These sampled discharges exceed flow durations of 2 percent and 1 percent, respectively, at these sites.


Instream-Constituent Load Estimates

Long-term instream constituent loads were estimated for suspended solids, total phosphorus, and total orthophosphate by use of ESTIMATOR-a statistical, regression-based, loadestimating program. ESTIMATOR generated daily constituent-load estimates (which were aggregated to monthly and annual loads) based on the daily mean discharges and a linear-regression relation between the sampling discharge and available water-quality-sampling data (fig. 27) at the two streamflow-gaging stations in the basin (Ruckriegel Parkway, site 401 and Gelhaus Lane, site 16, fig. 7). Note the large variability in sample concentrations in relation to discharge in figure 27 (a variation of one order of magnitude), which is not uncommon for small basins having variable constituent source

areas and a relatively short period of sampling data. This large variability compounds the uncertainty in the loads estimates.

The varied, curvilinear relation of total suspended solids, total phosphorus, and total orthophosphate concentrations to discharge at the Gelhaus Lane site necessitated a piecewise-linear-regression approach for the loads-estimating relation. Separate linear regressions were done using 20 ft³/s as a break point between a low-flow regression and a high-flow regression. The ESTIMATOR loads and yields for total suspended solids, total phosphorus, and total orthophosphate are shown in table 22.

The estimated annual suspended-solids yields during the model calibration period of over 4 (ton/acre)/yr were much larger than other reported suspended-solids yields that may be representative for average streamflow conditions. Agricultural and forested areas were reported by Thomann and Mueller (1987) to yield 0.71 and 0.11 (ton/acre)/yr of total suspended solids, respectively. Similar suspended-solids yields (approximately 0.05 to 0.7 (ton/acre)/yr) were estimated by Evaldi and Moore (1992 and 1994b) by use of a variety of statistical methods at selected sites in Jefferson County, Kentucky, including small drainage basins with relatively homogeneous residential, commercial, and industrial land uses (table 23). Other studies have reported larger yields than these for other basins in the region. Flint (1983) reported an average yield of 1.16 (ton/acre)/yr considering data from eight sediment-discharge stations in the Bluegrass Region of Kentucky. Measured yields of 4.59 and 2.34 (ton/acre)/yr were reported for longterm sediment-discharge stations in approximately 1 and 32 mi² basins, respectively, on rural Plum Creek in neighboring Shelby and Spencer Counties, Ky. (Anttila, 1970). Therefore, the ESTIMATOR suspended-solids loads and yields were deemed representative during this period, considering the above-normal precipitation, and the high level of construction activity and land disturbance in the basin. The WWTP's were a minor source of the total suspended solids (sediment) transported (tables 14 and 22).

Figure 27. Comparison of total suspended-solids, total phosphorus, and total orthophosphate concentrations and discharge at streamflow-gaging stations in the Chenoweth Run Basin, Jefferson County, Kentucky.

Table 22. Estimated annual loads and yields of total suspended solids, total phosphorus, and total orthophosphate inthe Chenoweth Run Basin, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998

[lb, pound; P, phosphorus; --, not applicable]

	Tot	Total suspended solids			Total phospho	rus	Total orthophosphate		
Period	Tons	Ton/acre	Percentage of load estimated beyond range of sampled discharge	lb as P	Ib as P/acre	Percentage of load estimated beyond range of sampled discharge	lb as P	Ib as P/acre	Percentage of load estimated beyond range of sampled discharge
			Ch	enoweth Run a	t Ruckriegel Parkw	ay			
02/1996-01/1997	6,150	1.78		6,210	1.80		1,820	0.529	
02/1997-01/1998	23,300	6.77		11,600	3.37		3,360	.975	
Mean	14,700	4.27	73.3	8,900	2.58	54.0	2,590	.752	53.7
				Chenoweth Ru	n at Gelhaus Lane				
02/1996-01/1997	17,700	2.42		43,900	6.00		28,400	3.88	
02/1997-01/1998	42,400	5.79		43,300	5.91		27,100	3.70	
Mean	30,100	4.10	54.1	43,600	5.96	11.4	27,800	3.79	7.7

Table 23. Annual suspended-solids yields estimated by several statistical methods at selected sites in Jefferson County, Kentucky

[--, not applicable; reported in Evaldi and Moore, 1992 and 1994b]

	Drainage	Estimated		•	imated annual Ids
Site	area (acres)	percent impervious	Predominate land use (percent of basin area)	Minimum (ton/acre)	Maximum (ton/acre)
South Fork Beargrass Creek tributary at Buechel	97	40	Residential (82 percent)	0.168	0.426
Hite Creek tributary at O'Bennon	108	21	Industrial (58 percent)	.100	.247
Middle Fork Beargrass Creek tributary at St. Matthews	134	35	Residential (80 percent)	.157	.384
Northern Ditch tributary at Okolona	44	46	Industrial (76 percent)	.168	.483
Big Run Tributary at Pleasure Ridge Park	84	69	Residential (51 percent) commercial (46 percent)	.168	.703
Middle Fork Beargrass Creek tributary at Hurstbourne Acres	180	64	Residential (50 percent) commercial (50 percent)	.168	.656
Long Run at State Highway 1531	15,168	14	Agricultural (75 percent)	.077	.248
Chenoweth Run at Gelhaus Lane	7,327	18	Mixed	.116	.344
All sites, all methods				.053	.703

Estimated total phosphorus yields from nonpoint sources located upstream from the Ruckriegel Parkway station (table 22) were consistent with other reported total phosphorus yields. As noted previously, Thomas and Crutchfield (1974) reported "medium" background phosphorus concentrations of approximately 0.1 mg P/L in the nearby Plum Creek Basin of the Outer Bluegrass Region of Kentucky. This concentration was approximately one third the concentration reported for "high" background levels in Cave Creek Basin in Fayette County in the Inner Bluegrass Region of Kentucky. Thomas and Crutchfield (1974) reported a yield for Cave Creek Basin of approximately 1 lb P/acre during the January–May periods in 1971–72. This would equate to an annual yield of approximately 1.5 lb P/acre/yr, assuming that two-thirds of annual runoff occurred in the January-May period. A background annual total-phosphorus yield of one third of that for Cave Creek would thus be approximately 0.5 lb P/acre/yr. Phosphorus yields reported for 13 central Kentucky streamflow-gaging stations in mostly rural basins averaged 0.63 lb P/acre/yr and ranged from 0.188 to 2.22 lb P/acre/yr (Garcia and Crain, 1998). Reported generalized mean total phosphorus yields (Thomann and Mueller, 1987) (table 24) ranged from 0.18 to 0.89 lb P/acre/yr, depending upon the nonpoint-source characteristics. The reported annual TP yields from urban areas ranged from 0.09 to 8.9 lb P/acre/yr. Total phosphorus yields estimated by Evaldi and Moore (1992 and 1994b) by use of a variety of statistical methods at the selected sites in Jefferson County including small drainage basins with relatively homogeneous residential, commercial, and industrial land uses ranged from approximately 0.5 to 8 lb/acre/yr (table 25). Evaldi and Moore (1994b) estimates of TPO₄ annual yields in Jefferson County ranged from 0.378 to 4.72 lb/acre.

The total phosphorus and total orthophosphate loads estimated at Ruckriegel Parkway, in combination with loads estimated for wastewater effluents, were consistent with the cumulative loads estimated at the Gelhaus Lane site.

Table 24. Reported total phosphorus yields from selected nonpoint sources in North America

[--, not available; from Thomann and Mueller, 1987, p. 394]

Туре	Approximate mean (pound/acre per year)	Approximate range (pound/acre per year)
Forest, natural	0.36	0.009 - 0.80
Atmospheric rainfall dry fallout	.18 .71	.07 – .9
Urban	.89	.09 – 8.9
Agricultural, general	.45	.09 - 4.5

The WWTP's were the source of the majority of TP and TPO₄ transported in the basin. The load estimates indicated that roughly 65 percent (23,300 of 43,600 lb as P annually) of the TP and 90 percent (25,200 of 27,800 lb as P annually) of the TPO₄ load at the Gelhaus Lane site during the February 1996–January 1998 model calibration period may have been attributable to the WWTP effluents (see tables 14, 18, and 22).

Storm-load estimates were made by use of the series of discrete water-quality samples collected during selected storms at the two streamflow-gaging stations. The instantaneous streamflow and constituent concentration for the discrete water samples were used to estimate hourly and total storm loads. Estimated total storm loads for total suspended solids, total phosphorus, and total orthophosphate at the Ruckriegel Parkway and Gelhaus Lane sites are shown in table 26.

MODEL-SIMULATION APPROACH AND PROGRAMS

The HSPF model provides the capability to simulate several relevant processes affecting streamflow and water quality in the Chenoweth Run Basin. The model provides the capability to compute a suitable mass balance (water and constituents) for the basin. Features of HSPF and supporting software, HSPEXP and GENSCN, are described in the following sections.
 Table 25.
 Annual total phosphorus yields estimated by several statistical methods at selected sites in Jefferson

 County, Kentucky

	Drainage	Estimated		Estimated annual total phosphorus yields	
Site	area (acres)	percent impervious	Predominate land use (percent of basin area)	Minimum (Ib/acre)	Maximum (Ib/acre)
South Fork Beargrass Creek tributary at Buechel	97	40	Residential (82 percent)	0.704	1.78
Hite Creek tributary at O'Bennon	108	21	Industrial (58 percent)	.667	1.04
Middle Fork Beargrass Creek tributary at St. Matthews	134	35	Residential (80 percent)	.701	1.61
Northern Ditch tributary at Okolona	44	46	Industrial (76 percent)	.690	2.02
Big Run Tributary at Pleasure Ridge Park	84	69	Residential (51 percent) commercial (46 percent)	.686	2.93
Middle Fork Beargrass Creek tributary at Hurstbourne Acres	180	64	Residential (50 percent) commercial (50 percent)	.700	2.73
Long Run at State Highway 1531	15,168	14	Agricultural (75 percent)	.506	3.25
Chenoweth Run at Gelhaus Lane ^a	7,327	18	Mixed	.710	4.50
All sites, all methods				.506	7.75

[lb, pound; --, not applicable; reported in Evaldi and Moore, 1992 and 1994b]

^aAffected by point sources.

Table 26. Estimated loads of total suspended solids, total phosphorus, and total orthophosphate during sampledstorm periods in the Chenoweth Run Basin, Jefferson County, Kentucky, during the model calibration period,February 1996–January 1998

[lb, pound; P, phosphorus]

Period		Total		Total orthophosphate (Ib as P)	
Begin (Julian date/time)			Total phosphorus (Ib as P)		
	Chenoweth	n Run at Ruckriegel Parkv	way		
19960208/1700	19960209/0100	0.82	3.92	3.90	
19960319/0500	19960319/1100	91.5	175	74.9	
19960606/2200	19960606/2300	4.25	4.65	1.12	
19960702/1500	19960703/0100	21.1	29.5	3.77	
19961022/2300	19961023/0500	.28	.95	.26	
19961125/1000	19961125/2400	80.9	95.5	25.3	
19970127/1800	19970128/0400	159	96.0	25.6	
19970519/1600	19970520/0300	.15	2.29	.57	
	Chenov	veth Run at Gelhaus Lane			
19960208/2300	19960209/0700	3.79	29.8	27.8	
19960319/0500	19960319/1300	368	828	384	
19960702/1600	19960703/0200	82.5	280	76.4	
19961018/0100	19961018/0900	107	229	211	
19970122/1300	19970122/1600	12.0	36	27.7	
19970529/0200	19970529/1200	42.6	181	121	

Hydrological Simulation Program—Fortran (HSPF)

HSPF, version 11, was selected for modeling the Chenoweth Run Basin. HSPF, which is an extension and refinement of the Stanford Watershed Model IV (Crawford and Linsley, 1966), was developed by the USEPA for use as a waterresources-planning and management tool (Bicknell and others, 1993). HSPF was first published in 1980 and the current revision became available in 1997.

HSPF is a versatile model capable of simulating hydrologic features and processes in mixed-land-use basins, both urban and rural. HSPF includes land surface, subsurface, and instream water-quantity- and water-quality-modeling components. The HSPF model was used to represent several important hydrologic features and processes of the Chenoweth Run Basin: (1) numerous small lakes and ponds, through which approximately 25 percent of the basin drains (2) potential seasonal ground-water-seepage loss in stream channels, (3) contributions from WWTP effluents and bypass flows, and (4) the transport and transformations of sediments and nutrients.

HSPF is a continuous, lumped-parameter, conceptual hydrologic model. It provides a continuous water and mass balance by tracking precipitation and water-quality constituents through the conceptual pathways of the hydrologic cycle based on the principles of conservation of mass. HSPF is composed of a series of computational routines that separately model key processes in the hydrologic cycle; it represents the hydrologic cycle as an interconnected series of storage (and processing) segments with fluxes of water and constituents between the various storages. Storages and fluxes are controlled by the system inputs and user-supplied parameter values. HSPF parameters have a physical meaning in terms of the conceptualprocess models. Though some parameters are directly measurable, most are estimated during model calibration.

Requirements for meteorological time-series data input depend upon the modeling goal. The flow model is driven by input of precipitation and potential evapotranspiration time-series data; additional meteorological data are needed for detailed water-quality simulations. Generally, 3 to 6 years of data are desired for calibration of HSPF; however, satisfactory calibrations have been done with less data (Viessman and others, 1977). The output of HSPF is continuous streamflow and concentration (or load) of water-quality constituents at a user-specified time interval. Time intervals for simulation can range from 1 day to 1 minute. The model user must specify all input-output time-series linkages between HSPF program modules.

Continuous-simulation models permit modeling significant basin processes for a full range of the streamflow regime during the data-collection period. The relative importance of various processes and factors varies considerably with streamflow; processes that significantly affect water-quality conditions at low flows may have relatively insignificant effects on water-quality conditions during high flows. For assessment of peak-flow characteristics, continuous-simulation models can provide a more realistic evaluation of antecedent soil-moisture conditions than is generally possible with event-based models.

The hierarchical, block structure of HSPF has three primary application modules. The first primary module simulates movements and processing of water, sediment, and other waterquality constituents in pervious land segments (PERLND's). The second primary module simulates movement of water and constituents on impervious land segments (IMPLND's). The third primary module simulates hydrologic routing, sediment transport, and chemical-constituent transport and biochemical processes in stream or mixed-reservoir segments (RCHRES's). Each of these modules contains secondary modules; the secondary modules contain subroutines, which may in turn contain subordinate subroutines. Some of the subordinate subroutines may contain subsidiary subroutines (table 27). The definitions of the HSPF model parameters used in the Chenoweth Run Basin model are shown in table 28.

Primary module	Secondary module	Subroutine	Subordinate subroutine	Subsidiary subroutine
PERLND	PWATER	ICEPT		
		SURFAC	DISPOS	DIVISN
				UZINF
				PROUTE
		INTFLW		
		UZONE	UZONES	
		LZONE		
		GWATER		
		EVAPT	ETBASE	
			EVICEP	
			ETUZON	ETUZS
			ETAGW	
			ETLZON	
	SEDMNT	DETACH		
		SOSED1		
		ATTACH		
	PQUAL	QUALSD		
		QUALOF		
IMPLND	IWATER	RETN		
		IROUTE		
		EVRETN		
	SOLIDS	ACCUM		
		SOSLD2		
	IQUAL	WASHSD		
		WASHOF		
RCHRES	HYDR	ROUTE	DEMAND	
			SOLVE	
		NOROUTE	FNDROW	
		AUXIL		
		SHEAR		
	ADCALC			
	SEDTRN	COHESV	ADVECT	
			DBEXCH	
		SANDLD	TOFFAL	
	RQUAL	OXRX	ADVECT	
			SINK	
			OXBEN	
			OXREA	
			BODDEC	
		NUTRX	ADVECT	
			BENTH	
			ADDSNU	
			ADVNUT	

Table 27. Computer code structure of Hydrological Simulation Program—Fortran (HSPF)

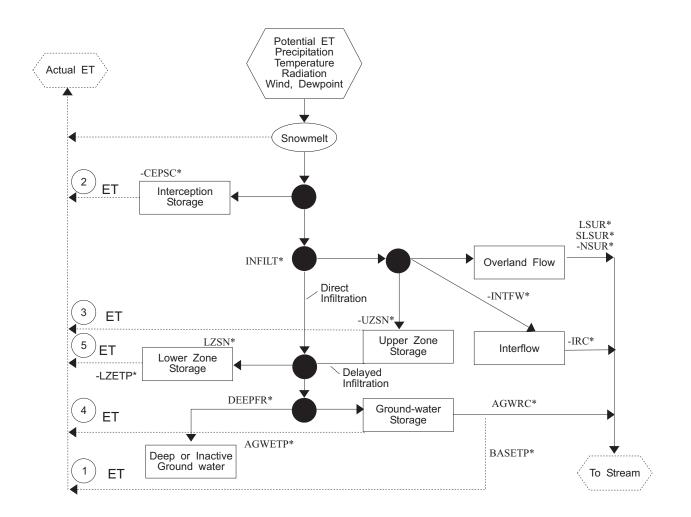
 components used for modeling the Chenoweth Run Basin, Jefferson County, Kentucky

Secondary module	Parameter	Units	Description
		Pervious Lan	d (PERLND)
		Water	<u>balance</u>
		Intercept	ion storage
PWATER	CEPSC	inch	Interception storage capacity of plants
	CEPS	inch	Initial interception storage
		Surface and sul	osurface storages
	UZSN	inch	Upper-zone nominal storage. An index to the amoun of depression and surface-layer storage of a pervious area.
	LZSN	inch	Lower-zone nominal storage. An index to the soil-moisture-holding capacity.
	SURS	inch	Initial surface storage
	IFWS	inch	Initial interflow storage
	UZS	inch	Initial upper-zone storage
	LZS	inch	Initial lower-zone storage
	AGWS	inch	Initial active-ground-water storage
		Evapotra	nspiration
	FOREST		Fraction winter forest transpiration
	LZETP		Lower-zone evapotranspiration. An index to the density of deep-rooted vegetation on a pervious area.
	AGWETP		Fraction of available potential evapotranspiration demand that can be met with stored ground water. Simulates evapotranspiration from phreatophytes, in general.
	BASETP		Fraction of available potential evapotranspiration demand that can be met with ground-water outflow Simulates evapotranspiration from riparian vegetation.
		Recessi	ion rates
	KVARY	1/inch	Ground-water outflow modifier. An index of how much effect recent recharge has on ground-water outflow.
	AGWRC	1/day	Ground-water recession parameter. An index of the rate at which ground water drains from the land.
	IRC	1/day	Interflow recession parameter. An index of the rate a which shallow subsurface flow drains from the lar
	GWVS	inch	Index to ground-water slope
			ration
	INFILT	inch/hour	Infiltration capacity. An index to the infiltration capacity at the soil surface, and an indirect index the percolation rate from the bottom of soil zone.
	INFILD		Ratio of the maximum to mean infiltration rate of a pervious area. Accounts for the degree of variation in the infiltration capacity.

Secondary module	Parameter	Units	Description
		Infiltration—	Continued
	INFEXP		Infiltration equation exponent. Controls the rate at which infiltration decreases with increasing soil moisture.
	INTFW		Interflow index. In combination with INFILT, an inde to the amount of water that infiltrates and flows as shallow subsurface runoff.
	DEEPFR		Fraction of ground water that does not discharge to th surface within the boundaries of the modeled area
		Overland	d flow
	LSUR	foot	Average length of the overland-flow plane
	SLSUR		Average slope of the overland-flow plane
	NSUR		Average roughness of the overland-flow plane
		Soil ero	osion
SEDMNT	SMPF		Management factor to account for use of erosion control practices
	KRER	complex	Coefficient of the soil detachment equation
	JRER	complex	Exponent of the soil detachment equation
	AFFIX	1/day	Fraction by which detached sediment decreases daily through soil compaction
	COVER		Fraction of land surface shielded by vegetation or mulch from erosion by direct rainfall impact
	NVSI	pound/acre-day	Rate at which sediment enters detached-sediment storage from the atmosphere
	KSER	complex	Coefficient of the detached-sediment washoff equation
	JSER	complex	Exponent of the detached-sediment washoff equation
	KGER	complex	Coefficient of the soil-matrix scour equation
	JGER	complex	Exponent of the soil-matrix scour equation
		<u>Orthophosp</u>	ohate flux
PQUAL	SQO	pound/acre	Initial constituent storage on surface
	POTFW	pound/ton	Potency factor of sediment in washoff
	POTFS	pound/ton	Potency factor of scoured sediment
	ACQOP	pound/acre-day	Accumulation rate of constituent on surface
	SQOLIM	pound/acre	Maximum storage of constituent on surface
	WSQOP	inch/hour	Rate of surface runoff to remove 90 percent of stored constituent in one hour
		Impervious Lan	nd (IMPLND)
		Water ba	alance
IWATER	LSUR	foot	Average length of the overland-flow plane
	SLSUR		Average slope of the overland-flow plane
	NSUR		Average roughness of the overland-flow plane
	RETSC	inch	Retention storage capacity of impervious areas

Secondary module	Parameter	Units	Description
		Water balance-	-Continued
	RETS	inch	Initial retention storage
	SURS	inch	Initial overland-flow storage
		Sediment wa	ashoff
SOLIDS	KEIM	complex	Coefficient of the solids washoff equation
	JEIM	complex	Exponent of the solids washoff equation
	REMSDP	1/day	Fraction of solids removed on each day without runo
	ACCSDM	ton/acre-day	Solids accumulation rate
	SLDS	ton/acre	Initial storage of solids
		<u>Orthophosph</u>	ate flux
IQUAL	SQO	pound/acre	Initial constituent storage on surface
	POTFW	pound/ton	Potency factor of sediment in washoff
	ACQOP	pound/acre-day	Accumulation rate of constituent on surface
	SQOLIM	pound/acre	Maximum storage of constituent on surface
	WSQOP	inch/hour	Rate of surface runoff to remove 90 percent of stored constituent in one hour
		Reaches and Reserve	birs (RCHRES)
		Water bala	ance
HYDR	FTABNO		Number of the F-table that contains the RCHRES geometric and hydraulic properties
	LEN	mile	Length of the reach
	DELTH	foot	Drop in water elevation within the stream reach
	STCOR	foot	Correction in the reach depth to calculate stage
	KS		Weighting factor for flow routing
	DB50	millimeter	Median diameter of bed sediment
ADCALC	CRRAT		Ratio of maximum velocity to mean velocity in reach cross section under typical flow conditions
		Sediment tra	nsport
SEDTRN	BEDWID	foot	Width of the streambed
	BEDWRN	foot	Depth of the streambed
	POR		Porosity of the streambed
	D	inch	Effective diameter of the sediment particle
	W	inch/second	Settling velocity of the sediment particle in still water
	RHO	gram/cubic centimeter	Density of the sediment particle
	KSAND	complex	Coefficient of the HSPF sand-load equation
	EXPSND	complex	Exponent of the HSPF sand-load equation
	TAUCD	pound/square foot	Critical bed shear stress for sediment deposition
	TAUCS	pound/square foot	Critical bed shear stress for sediment scour
	М	pound/square foot-day	Erodibility coefficient of the sediment
	BEDDEP	foot	Initial thickness of the bed material

Secondary module	Parameter	Units	Description
		Sediment transport-	Continued
	SSAND	milligrams per liter	Initial concentration of sand in suspension
	SSILT	milligrams per liter	Initial concentration of silt in suspension
	SCLAY	milligrams per liter	Initial concentration of clay in suspension
	FRACSAND		Initial fraction by weight of sand in bed material
	FRACSILT		Initial fraction by weight of silt in bed material
	FRACCLAY		Initial fraction by weight of clay in bed material
		Oxygen bala	nce
RQUAL	SCRVEL	foot/second	Velocity above which the effects of scouring on benthal release rates will be considered
	SCRMUL		Multiplier to increase benthal releases during scour
	KBOD20	1/hour	Unit BOD decay rate at 20 degrees Celsius
	TCBOD		Temperature-correction coefficient for BOD decay
	KODSET	foot/hour	Rate of BOD settling
	SUPSAT		Allowable dissolved-oxygen supersaturation multiplier
	ELEV	foot	RCHRES elevation above sea level
	BENOD	milligram/square meter-hour	Benthal oxygen demand at 20 degrees Celsius
	TCBEN		Temperature-correction coefficient for benthal oxyge demand
	EXPOD		Exponential factor in the dissolved-oxygen term of the benthal-oxygen-demand equation
	BRBOD(1)	milligram/square meter-hour	Benthal release of BOD at high oxygen concentration
	BRBOD(2)	milligram/square meter-hour	Increment to benthal release of BOD under anaerobi conditions
	EXPREL		Exponential factor in the dissolved-oxygen term of the benthal-BOD-release equation
	TCGINV		Temperature-correction coefficient for surface-gas invasion
	DOX	milligrams per liter	Initial dissolved-oxygen concentration
	BOD	milligrams per liter	Initial BOD concentration
	SATDO	milligrams per liter	Initial dissolved-oxygen-saturation concentration
		Orthophosphate	<u>balance</u>
	BRPO4(1)	milligram/square meter-hour	Benthal release rate of orthophosphate, as phosphorus under aerobic condition
	BRPO4(2)	milligram/square meter-hour	Benthal release rate of orthophosphate, as phosphorus under anaerobic condition
	ANAER	milligrams per liter	Concentration of dissolved oxygen below which anaerobic conditions exist
	BPO4(1)	milligrams per kilogram	Constant bed concentration of orthophosphate, as phosphorus, adsorbed to sand


[--, not applicable; BOD, biochemical oxygen demand]

Secondary module	Parameter	Units	Description
		Orthophosphate bala	nce—Continued
	BPO4(2)	milligrams per kilogram	Constant bed concentration of orthophosphate, as phosphorus, adsorbed to silt
	BPO4(3)	milligrams per kilogram	Constant bed concentration of orthophosphate, as phosphorus, adsorbed to clay
	ADPOPM(1)	milliliter per gram	Partition coefficient of orthophosphate, as phosphorus, adsorbed to sand
	ADPOPM(2)	milliliter per gram	Partition coefficient of orthophosphate, as phosphorus, adsorbed to silt
	ADPOPM(3)	milliliter per gram	Partition coefficient of orthophosphate, as phosphorus, adsorbed to clay
	PO4	milligrams per liter	Initial concentration of dissolved orthophosphorus, as phosphorus
	PHVAL	pH units	Initial value of pH
	SPO4(1)	milligrams per kilogram	Initial concentration of orthophosphate, as phosphorus, adsorbed to sand
	SPO4(2)	milligrams per kilogram	Initial concentration of orthophosphate, as phosphorus, adsorbed to silt
	SPO4(3)	milligrams per kilogram	Initial concentration of orthophosphate, as phosphorus, adsorbed to clay

Pervious Land Segments (PERLND)

Flow over and through pervious land segments are modeled in the PERLND secondary module PWATER. The conceptualized movement of water overland and through the upper, lower, and ground-water zones of pervious land segments is illustrated in figure 28. Unsteady overland flow is routed using a modified kinematic-wave formulation. The Manning and continuity equations are used with average overland-flowplane length, slope, and roughness estimates to continuously (at each time step) calculate surface detention storage, from which the overland-flow rate is calculated. The potential infiltration rate is computed as an empirical function of soil moisture. Actual infiltration depends upon rainfall excess remaining after subtracting interception losses from precipitation. Rainfall excess is available for surface detention, infiltration, or runoff. Infiltrated moisture can move to four subsurface storage reservoirs: upper-zone storage, lower-zone storage, active-ground-water storage, and inactive-groundwater storage. The upper-zone storage includes storage in surface depressions, surface vegetation, ground litter, and the shallow root zone in the upper few inches of soil. Moisture may leave the surfacedetention/upper-zone storage by evapotranspiration, overland flow, interflow, or percolation to the lower zone. The lower zone extends a few feet to the depth of deep-rooted vegetation, which evapotranspires a portion of the moisture stored there. Active-ground-water storage feeds stream base flows during periods of no rainfall. Inactive or deep ground-water storage does not flow to the stream and is considered lost from the system.

Sediment erosion in pervious land segments is simulated in the PERLND secondary module SEDMNT. The processes modeled include sediment detachment from the soil matrix by rainfall, washoff of detached sediment, and scour of the soil matrix by overland flow and sediment reattachment.

EXPLANATION

2	Order taken to meet ET demand	*	Parameter Model flow direction
	Process	CEPSC ET	Interception storage Evapotranspiration
	Input	INFILT LSUR NSUR INTFW	Infiltration Length of overland flow path Roughness of overland flow path Interflow
	Output	UZSN IRC LZSN	Upper zone nominal storage Interflow recession constant Lower zone nominal storage
	Storage	LZETP DEEPFR BASETP	Lower zone evapotranspiration Inactive ground water Baseflow evapotranspiration
	Model decision point	AGWETP AGWRC SLSUR	Ground-water evapotranspiration Ground-water recession constant Slope of overland flow path

Figure 28. Schematic of the Hydrologic Simulation Program—Fortran (HSPF) model of flow in a pervious land segment.

Outflows of other water-quality constituents from pervious land segments can be simulated using simple relations to water and (or) sediment yield in the PERLND secondary module PQUAL. For this study, dissolved and sediment-associated orthophosphate yields from pervious land segments were simulated with PQUAL. Detailed simulation of nutrient, pesticide, and tracer constituents can also be done in available PERLND agri-chemical secondary modules; however, additional data including soil temperatures are needed for these detailed simulations.

Impervious Land Segments (IMPLND)

The processes of surface detention, evaporation, and overland flow on impervious surfaces are modeled in the IMPLND secondary module IWATER by functional relations similar to those used for pervious surfaces. Solids (sediment) accumulation and removal from impervious land segments was simulated by use of the SOLIDS secondary module, which uses equations based on those in the NPS Model (Donigian and Crawford, 1976). Outflows of water-quality constituents from impervious land segments were simulated using simple relations to water and (or) sediment yield in the IQUAL secondary module. Thus, IQUAL was used to simulate dissolved and sediment-associated orthophosphate yields from impervious land segments. Model parameters estimated for this simulation of impervious surfaces included potency factors for the constituent in solids (mass/mass) and the constituent accumulation and washoff rates.

Reaches and Reservoirs (RCHRES)

Channel and mixed-reservoir flow is routed in the RCHRES secondary module HYDR using a modified kinematic-wave model with Manning's equation. This is a "hydrologic" or "storage" routing method that does not account for momentum. No assumption is made regarding shape of the RCHRES (may be an open or closed channel, or a completely mixed lake), but a fixed relation between depth, surface area, and volume is needed for routing flow in HYDR.

Each RCHRES is composed of two nodes, or end points, and a single one-dimensional zone between the nodes. Mass-flux rates and depths are associated with nodes; mass-storage volumes are associated with zones. (HSPF land segments consist of zones only.) Each RCHRES has one inflow gate that receives inflows from upstream RCHRES and local sources. Each RCHRES has up to five outflow gates. Other fluxes, such as precipitation and evaporation, affect the RCHRES, but do not pass through the gates. All inflows to RCHRES are assumed to enter at the upstream end of RCHRES prior to routing downstream through the RCHRES. Nodes for the Chenoweth Run Basin were located, where possible, such that tributary inflows were at the upstream end of the RCHRES.

HSPF simulation of the transport, deposition, and scour of inorganic sediment in channels and mixed reservoirs is done in the RCHRES secondary module SEDTRN. Noncohesive sediment (sand) transport can be simulated in one of three alternate methods (Toffaleti, Colby, or an "input power function" method). Cohesive sediment (silts and clays) transport simulation includes two steps: (1) advective transport of entrained particles and (2) deposition and scour of particles based on bed shear stress. The sediment transport simulation requires input of data on sediment diameter, settling velocity, density, erodibility, and shear stress for deposition and scour. Sand, silt, and clay transport is modeled separately, thus armoring is not modeled. HSPF assumes sediment scour and deposition do not affect channel hydraulic characteristics, and bed-load transport is not modeled.

Detailed simulation of constituents involved in biochemical transformations in channels and mixed reservoirs is done in the RCHRES secondary module RQUAL. RQUAL allows users to selectively simulate various constituents and processes. Oxygen, biochemical oxygen demand (BOD), and total orthophosphate content were simulated for this study. Stream temperature data were input for the RQUAL simulation; the simulation was evaluated by comparison to estimated loadings of total orthophosphate at selected points in the basin. Obtaining a complete and satisfactory simulation of relevant constituents using RQUAL can be extremely complicated because of the complexity of the physical, chemical, and biological factors that affect the state of an individual water body.

Hydrologic Response Units (HRU)

Hydrologic response units (HRU's) are conceived as land segments with areally uniform properties that produce a similar hydrologic and water-quality response to a given precipitation and evapotranspiration input. (HRU's may also be distinguished on the basis of features that are expected to affect yields of various water-quality constituents.) The HRU's permit detailed accounting for, and model representation of, the spatial variability of hydrologic characteristics and yields of various water-quality constituents in a basin. Each particular HRU is defined by use of a unique set of HSPF land-segment parameters and meteorologic time series. Particular HRU's are not necessarily contiguous, but rather may be scattered throughout a drainage basin in a mosaic pattern composed of all the HRU types defined for the basin model.

PERLND's, IMPLND's, and RCHRES's are the basic elements of the HSPF model. In this study, each HRU represented unique land covers, as described in further detail in "Hydrological Response Units." HRU's are linked to RCHRES and RCHRES's are linked to other RCHRES's within the SCHEMATIC block of the HSPF user-control input (UCI) file (Appendix 5). The appropriate HRU's are linked to a corresponding RCHRES to represent subbasins, and RCHRES's are linked together to represent the entire basin hydrography.

Expert System HSPEXP for Model Calibration

The expert system for calibration of streamflow in HSPF (HSPEXP) (Lumb and others, 1994) was used to aid in model calibration. After each model is run, statistical measures of flowsimulation error are calculated by the expert system and provided to the user. The user is also provided advice concerning options for adjusting parameters and an explanation of the advice. The user may select a parameter-adjustment option and make the appropriate changes in the HSPF parameters in the model UCI file (working inside or outside the HSPEXP shell). The model is then run again; the iterations continue until the errors reach an acceptable level.

The HSPEXP software was developed to assist less-experienced modelers with calibration of a basin model and facilitate the interaction between the modeler and the modeling process not provided by mathematical optimization schemes (Lumb and others, 1994). The advice provided by the expert system is based on a set of rules that use statistical measures and subjective judgments provided by the user that recognize the relative sensitivity of the model parameters on the rainfall-runoff simulation. The calibration is a non-unique solution, meaning that essentially the same model results can be produced with another set of model parameter values. The calibration goal is to have reasonable approximation to the process modeled while retaining realistic and representative parameter values.

Program GENSCN for Simulation of Scenarios

An interactive computer program, GENeration and analysis of model simulation SCeNarios (GENSCN) (Kittle and others, 1998), is a tool for creation of model-simulation scenarios, analysis of results of the scenarios, and comparison of scenarios. GENSCN enables analysis and management of voluminous input and output to complex river-basin models that are used to simulate water quantity and quality for numerous scenarios of changes in land use, land-use management practices, and water-management operations. HSPF and other hydrologic-modeling tools have been ported to GENSCN.

A Chenoweth Run Basin HSPF model implementation in GENSCN was developed and used for water-quality calibrations (after the streamflow was calibrated in HSPEXP). The Chenoweth Run Basin GENSCN/HSPF model, at present, contains the base calibration for water quantity and quality for the period February 1996– January 1998. Development of actual alternative basin-management scenarios was beyond the scope of this study. The Chenoweth Run Basin GENSCN/HSPF model does, however, provide a ready tool for development and analysis of alternative basin-management scenarios.

MODEL DEVELOPMENT

The HSPF model of Chenoweth Run Basin was developed by defining a set of unique model elements, which include the HRU's and RCHRES's. Basin-segmentation procedures were used to create model elements that have approximately homogeneous characteristics. Initial model parameter values were estimated for each element. The model elements were then specified and linked within the HSPF UCI file (Appendix 5). Associated time-series input-output files were prepared for the HSPF model execution.

Detailed geographic data were used to define the model elements and selected model parameters. ARC/INFO and ARC/INFO-GRID were used to prepare base gridded coverages of land use/land cover, soils, and land slope; TOPOGRID was used to prepare a digital elevation model (DEM) as described in "Methods of Data Collection and Analysis: Geographical Data." A description of the hydrological analysis of this geographic information follows.

Basin segmentation, or partitioning, establishes the areal boundaries of the model elements. Basin segmentation may be based on variations in many basin characteristics, such as meteorology, physiography, land use/land cover, soils, and stream channels. The initial basin segmentation required the definition of RCHRES boundaries and delineation of the subbasins that drain to each RCHRES. Basin segmentation continued further in the process of defining the HRU's.

The basin was segmented, by use of a 1:24,000-scale topographic map, into 23 subbasins draining to 14 channel reaches with significant storage volume (fig. 29). Considerations in defining RCHRES's included provision of (1) reach lengths with mean-flow travel times that approximate the minimum model-simulation time step used, which was 5 minutes; (2) approximately uniform,

homogeneous channel properties, such as slope (fig. 30) and conveyance within the reaches; and (3) nodes at stream gages, water-quality-sampling sites, inflows from external sources, and outflows to external sinks.

Drainage areas were also delineated (segmented out) for the numerous ponds and small lakes in the basin (fig. 31). About 25 percent of the whole basin drains through these ponds and small lakes, which therefore may have significant hydrological effects. In the nine subbasins where combined pond-drainage area exceeded 10 percent of the total subbasin area, these multiple, dispersed ponds were represented as single, composite 'pond' RCHRES (nos. 15-23) through which the combined pond-drainage-area runoff was routed prior to routing through a channel RCHRES (nos. 1-14).

The basin was not further segmented on the basis of the rain-gage Thiessen-polygon boundaries (fig. 8), because RG28a alone provided coverage of approximately 90 percent of the drainage area to the two calibration points at Ruckriegel Parkway and Gelhaus Lane (table 9). Thus, RG28a rainfall was applied to the entire basin.

Model Elements and Selected Parameters

Model elements and the initial values of the associated model parameters were developed and estimated by use of observed, measurable basin characteristics, when possible. The procedures used to define the model elements and initial parameter values are described in this section.

Hydrologic Response Units (HRU)

Basin characteristics and classes were selected for defining HRU's that permit model representation of processes that affect both the quantity and quality of water in the basin. Nineteen different HRU's were developed.

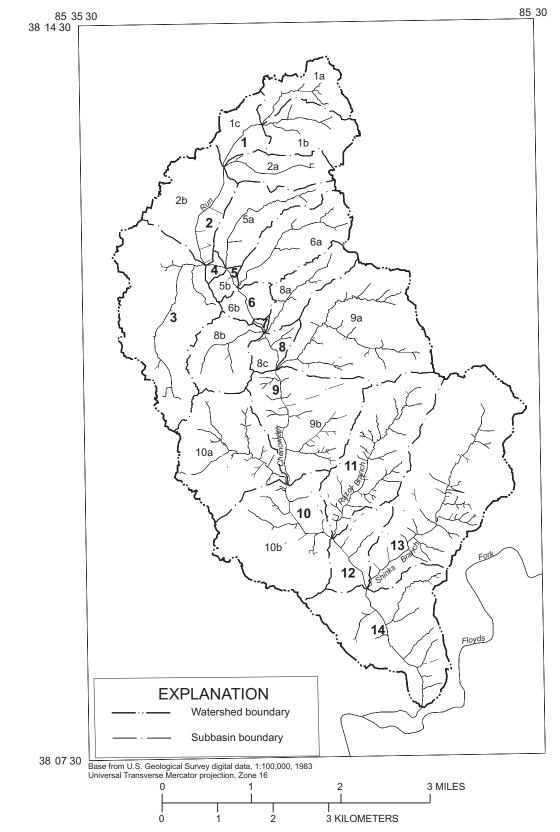


Figure 29. Model subbasin and stream-reach designations for the Chenoweth Run Basin, Jefferson County, Kentucky.

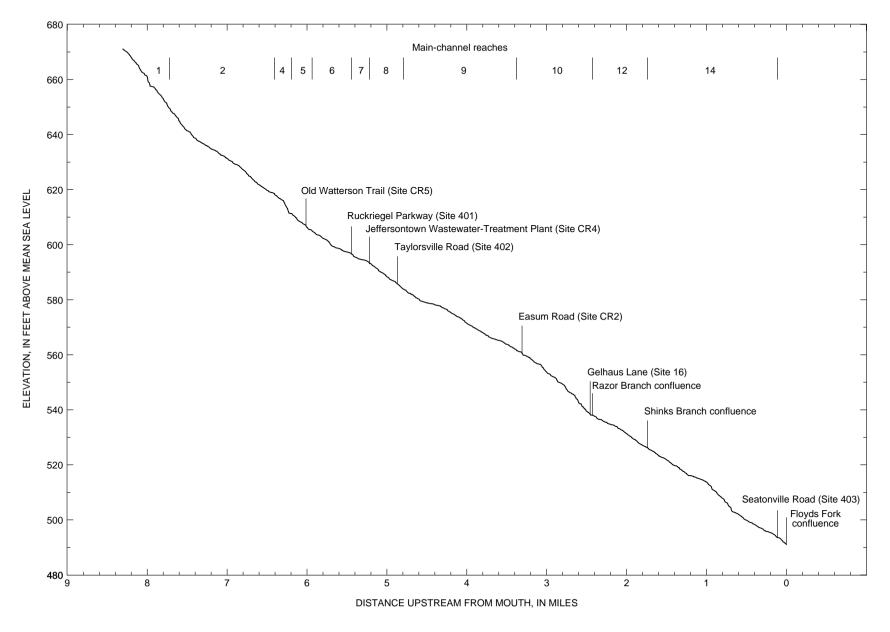
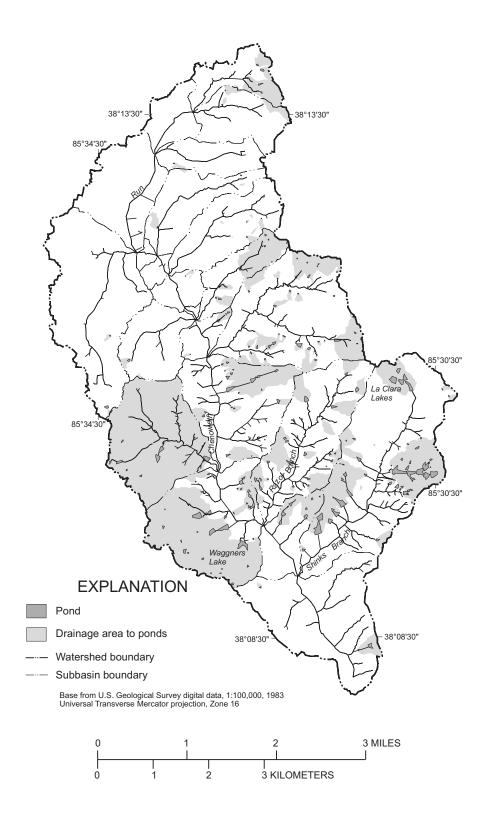



Figure 30. Approximate Chenoweth Run low-water profile based on 2-foot contour-interval data.

Figure 31. Areas draining to ponds and small lakes in the Chenoweth Run Basin, Jefferson County, Kentucky.

Analysis and Classification of Basin Characteristics

Available geographic data were compiled and analyzed in terms of three hydrologically relevant basin characteristics—land use/land cover, soils, and land slope. The HRU's were defined, as described in the following sections, on the basis of seven land-use/land-cover classes, three soil classes, and two land-slope classes.

Land Use and Land Cover

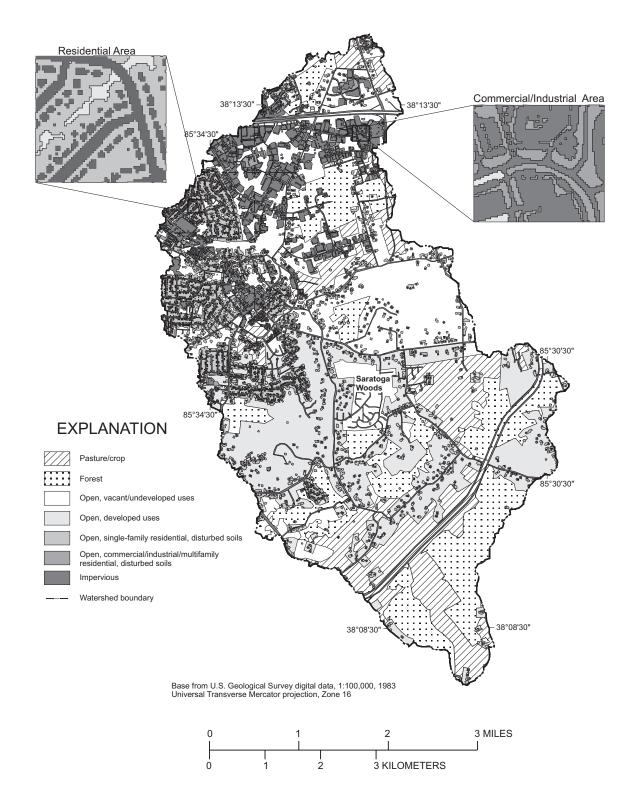
The types of land use and land cover in a basin significantly affect hydrologic response. Thirteen basic land-use/land-cover classes (table 8) were defined from the original geographical data sets. These included agricultural areas (pasture/crop and forest); nonagricultural, open, primarily grasscovered areas; and impervious areas.

The nonagricultural open areas were distinguished by the associated land uses and the degree of possible man-made alterations, including soil disturbances and lawn treatment. These classes permit representation of the effects of possible soil disturbance (compaction, regrading, etc.) and varied lawn-treatment practices. A zone of disturbed soils was assumed to exist within a buffer approximately 50 ft (15 m) in width around buildings in the singlefamily-residential and commercial/industrial/ multifamily-residential land-use categories only. Different HRU's can be hypothesized and represented; land inside the 50-ft buffer can be assumed to have lower infiltration rates and waterstorage capacity and also higher lawn-treatment rates than otherwise similar areas within the same land-use/land-cover class located outside this 50-ft buffer.

Impervious areas were distinguished by type (roads, buildings, and parking lots) and associated land uses. Impervious classes defined on the basis of land-use categories included (1) commercial/ industrial/multi-family impervious, and (2) singlefamily-residential and other impervious areas in the public/semi-public, parks/open space, vacant/ undeveloped land-use categories. Different constituent-accumulation rates may be hypothesized and modeled for these two different impervious classes. The 13 basic land-use/land-cover classes were simplified and consolidated (remapped) into 7 land-use/land-cover classes by use of ARC/INFO-GRID prior to combining these with coverages of other basin characteristics of interest—the soils and land slopes. (See program *hru.aml* in Appendix 3). The seven land-use/land-cover classes included pasture/crop, forest, open vacant/undeveloped uses, open developed uses, open single-family residential-use areas having disturbed soils, open commercial/industrial/multifamily-residential use areas having disturbed soils, and impervious (fig. 32). The proportion of pervious area (open and forested) and total impervious area in the basin was shown in table 2.

Soils

For definition of the HRU's, soils were grouped on the basis of estimated drainage properties of each of the 18 soil series' in the basin. The HSPF soil parameter INFILT (table 28) was estimated as the (limiting) minimum permeability for each soil series as listed in the soil survey of Jefferson County. UZSN was estimated as the product of the average depth of the topsoil horizon and the available-water capacity in the topsoil. LZSN was estimated as the product of the average depth to the seasonally high water table (unsaturated zone) and the average available-water capacity in the subsoil. The K-means clusteranalysis technique (Hartigan, 1975; Wilkinson and others, 1996) was used to help distinguish the soil series' that have similar infiltration and storage characteristics. The cluster analysis was done for various numbers of groups with and without transformation (log base 10) and with and without standardizing the parameter values. Three soilseries clusters were identified using the transformed and standardized INFILT and LZSN parameters for the 7 soil series' that comprise at least 3 percent of the basin area (table 29 and fig. 33). These three groups of the seven primary soil series' were distinguished primarily on the basis of the INFILT value. UZSN was not a significant discriminator among the groups and was not used in the final clustering. The remaining minor soils were classified into the three groups with the most similar INFILT value, as shown in table 29 and figure 33.



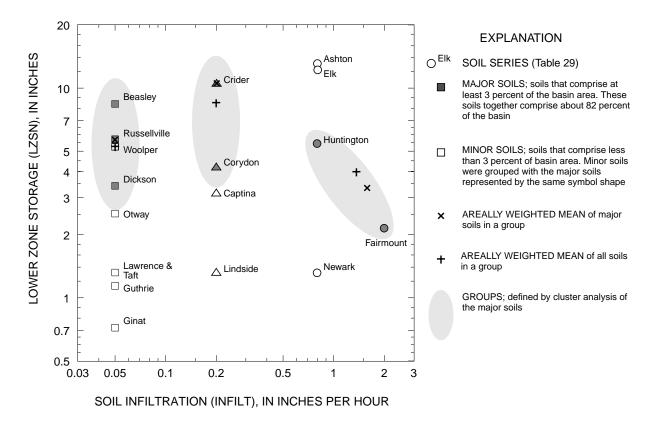

Figure 32. Distribution of land covers in the Chenoweth Run Basin, Jefferson County, Kentucky.

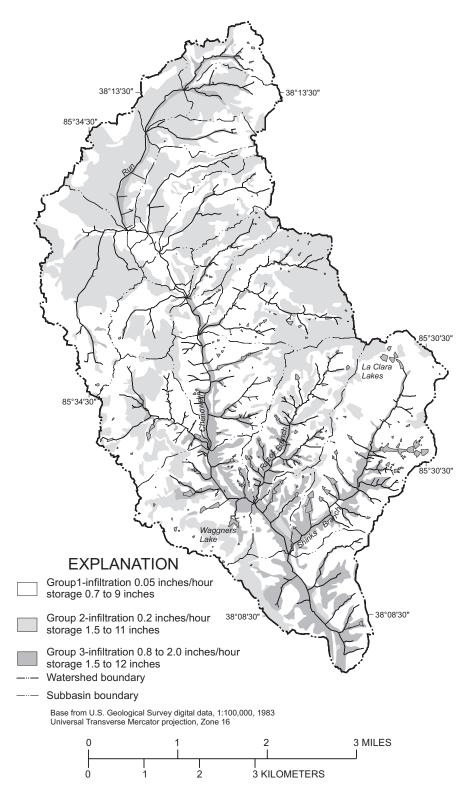
Table 29. Description of the soil-series groups defined for modeling the Chenoweth Run Basin, Jefferson County, Kentucky

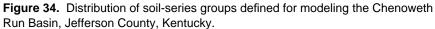
[UZSN, upper-zone nominal storage; LZSN, lower-zone nominal storage; INFILT, infiltration capacity; *, indicates the primary soils used in the final clustering; --, not applicable]

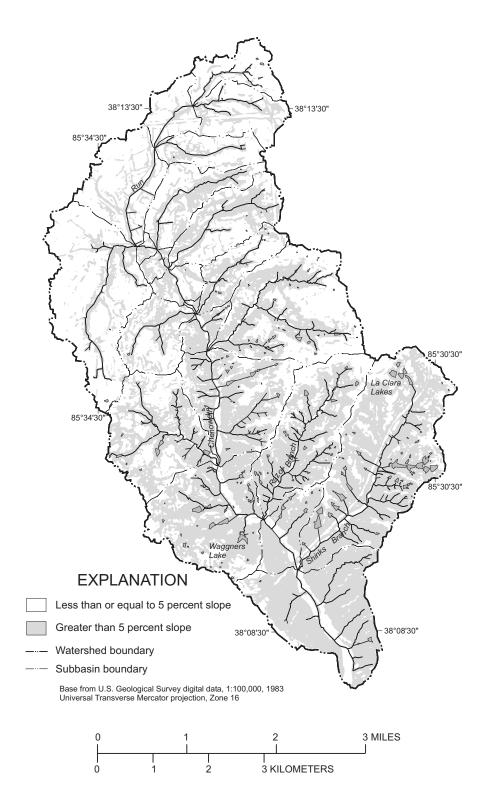
Jefferson County soil series	Percentage of basin area	Estimated UZSN (inches)	Estimated LZSN (inches)	Estimated INFILT (inches per hour)
		Soils-series group	1	
Beasley*	24.5	0.62	8.40	0.05
Dickson*	4.4	.88	3.42	.05
Ginat	1.1	.05	.72	.05
Guthrie	1.0	.88	1.32	.05
Lawrence	2.1	.88	1.32	.05
Otway	1.6	.08	2.52	.05
Russellville*	13.5	.88	5.70	.05
Taft	.3	.66	1.32	.05
Woolper	1.3	.57	5.25	.05
Subtotal:	49.9			
Areally weighted mean:		.70	6.30	.05
		Soils-series group	2	
Captina	.9	1.10	3.15	.20
Corydon*	6.6	.66	4.20	.20
Crider*	24.5	.88	10.5	.20
Lindside	2.4	.88	1.32	.20
Subtotal:	34.3			
Areally weighted mean:		.84	8.47	.20
		Soils-series group	3	
Ashton	.5	.88	13.2	.80
Elk	.7	.88	12.3	.80
Fairmount*	5.5	.40	2.16	2.00
Huntington*	3.1	.78	5.46	.80
Newark	2.1	1.10	1.32	.80
Subtotal:	11.9			
Areally weighted mean:		.67	3.97	1.35

Note: Made land, rock land, and water bodies cover the remaining 3.9 percent of the basin.

Figure 33. Estimated infiltration rates and lower-zone storages of the soil series and soil-series groups defined for modeling the Chenoweth Run Basin, Jefferson County, Kentucky.


Areally weighted average values of UZSN, LZSN, and INFILT were calculated for each soil-series group. These calculated values served as a guide for estimating initial HSPF soil-related parameter values for each HRU. The areal distribution of the soil-series groups is shown in figure 34.


Land Slope


Land slope was generally steeper in the lower half of the basin than in the upper half (see the shaded-relief map on cover). A 13.1 ft by 13.1 ft (4 m by 4m) continuous land-slope grid was computed from the LOJIC digital elevation data. Two slope classes were selected: less than or equal to 5 percent and greater than 5 percent. Approximately 40 to 45 percent of the basin has a land slope of less than or equal to 5 percent. The areal distribution of the two slope classes are shown in figure 35.

Definition and Adjustment

The model HRU's are selected geographic intersections (combinations) of the seven land-use/ land-cover classes, three soil classes, and two slope classes. Processing the gridded land-use/land-cover, soils, and land-slope coverages by use of ARC/INFO-Grid (program hru.aml, Appendix 3) generated the combined grid consisting of the existent combinations of the seven land-use/landcover classes, three soil classes, and two land slope classes (table 30). There were 36 different hypothetical basin-characteristic combinations for pervious HRU's (6 covers * 3 soils * 2 slopes). The impervious land use/land cover was restricted to only two classes (commercial/industrial/ multifamily-residential land uses and single-familyresidential and other land uses), and the impervious areas were not differentiated in terms of slope.

Figure 35. Distribution of land slopes in the Chenoweth Run Basin, Jefferson County, Kentucky.

Table 30. Hydrologic response units simulated in the Hydrological Simulation Program—Fortran (HSPF) model of the Chenoweth Run Basin, Jefferson County, Kentucky

[%, percentage of drainage area at point of interest; >, greater than; The open, developed uses hydrologic response unit includes open areas assumed undisturbed in the land uses designated as residential, commercial, industrial, public, semipublic, parks, and open space in the Louisville and Jefferson County Information Consortium (LOJIC) coverages]

Chenoweth Run at Ruckriegel Parkway			Chenoweth Run at Gelhaus Lane		Chenoweth Run at Seatonville Road		
Hydrologic response unit	Acres	%	Acres	%	Acres	%	Description
unit	Acres	70	Acres	70	Acres	70	Description
				Perviou	s hydrologi	c response	units
1	76	2.2	124	1.7	244	2.3	Pasture/crop, low-permeability soils, 0 to 5 percent slope
2	20	.6	121	1.6	548	5.2	Pasture/crop, low-permeability soils, > 5 percent slope
3	49	1.4	177	2.4	431	4.1	Pasture/crop, moderate-permeability soils, 0 to 5 percent slope
4	5	.2	41	.6	306	2.9	Pasture/crop, high-permeability soils, > 5 percent slope
5	79	2.3	128	1.7	242	2.3	Forested, low-permeability soils, 0 to 5 percent slope
6	126	3.7	290	4.0	930	8.8	Forested, low-permeability soils, > 5 percent slope
7	164	4.8	228	3.1	252	2.4	Forested, moderate-permeability soils, 0 to 5 percent slope
8	21	.6	93	1.3	445	4.2	Forested, high-permeability soils, > 5 percent slope
9	174	5.0	431	5.9	459	4.3	Open, vacant/undeveloped uses, low-permeability soils, 0 to 5 percent slopes
10	201	5.8	452	6.2	592	5.6	Open, developed uses, low-permeability soils, 0 to 5 percent slopes
11	124	3.6	834	11.4	1,238	11.7	Open, developed uses, low-permeability soils, > 5 percent slopes
12	217	6.3	726	9.9	823	7.8	Open, developed uses, moderate-permeability soils, 0 to 5 percent slopes
13	159	4.6	371	5.0	404	3.8	Open, developed uses, moderate-permeability soils, > 5 percent slopes
14	55	1.6	239	3.3	363	3.4	Open, developed uses, high-permeability soils, > 5 percent slopes
15	367	10.6	861	11.7	972	9.2	Open single-family residential, disturbed low- permeability soils, all slopes
16	423	12.3	726	9.9	777	7.3	Open single-family residential, disturbed moderate- permeability soils, 0 to 5 percent slopes
17	465	13.5	547	7.5	547	5.2	Open commercial/industrial/multi-family residential, disturbed moderate-permeability soils, 0 to 5 percent slopes
Subtotal:	2,725	79.1	6,389	87.2	9,573	90.5	
				T			
1	227	()	105	•	ous hydrolog		
1	237	6.9	425	5.8	495	4.7	Single-family residential/parks/public/vacant hydrologically effective impervious areas, all slopes
2	483	14.0	512	7.0	512	4.8	Commercial/industrial/multi-family residential hydrologically effective impervious areas, all slopes
Subtotal:	720	20.9	937	12.8	1,007	9.5	
Total:	3,445	100	7,327	100	10,580	100	

Thus, there were a total of 38 different hypothetical HRU's from which the final set of primary HRU's for modeling were selected and specified.

Adjustments of the hypothetical HRU categories and areas were made on the basis of the HRU prevalence in the basin, the hydrological effectiveness of the impervious areas, and other factors, such as land uses and land treatments that were not reflected in the original geographic data used to generate the initial set of hypothetical HRU's.

Drainage areas of each HRU to each of the two streamflow-gaging stations and the entire basin area are summarized in table 30. The areas listed in table 30 reflect the HRU adjustments described in the following sections.

For appropriate HSPF model routing of water and constituents through the basin, consistent with the basin-segmentation procedure, areas of each HRU were determined for the portion of each subbasin that drains (1) directly to the subbasin channel and (2) to the ponds (but only in cases where more than 10 percent of the subbasin area drains to ponds). These HRU areas, which were grouped by subbasin in the UCI file (Appendix 5), serve as areal "weightings" that specify the relative frequency of each HRU within each subbasin.

Prevalence of the Hydrologic Response Units

Some of the hypothetical HRU's were not present in the basin in hydrologically significant amounts. About one-half of the pervious hypothetical HRU's individually represented less than 2 percent of the basin area; therefore, these hypothetical HRU's were not included in the set of primary HRU's represented in the model. Areas of the pervious hypothetical HRU's covering less than 2 percent of the basin were shifted, or added, to other similar pervious HRU's that were selected, in order of priority, on the basis of similarity in (1) land-use/land-cover, (2) soils characteristics, and (3) slope. Seventeen primary pervious HRU's (table 30) remained after this consolidation procedure.

Prevalent HRU's in the upper third of the basin at Ruckriegel Parkway included the effective impervious areas, IMPLND's 1 and 2 (approximately 21 percent), open space in singlefamily-residential use with disturbed soils, PERLND's 15 and 16 (22.9 percent), and open space in commercial/industrial/multifamilyresidential use with disturbed soils, PERLND 17 (13.5 percent). Further downstream, the proportion of basin area that is in the disturbed-soil and impervious HRU's declined. At the Seatonville Road site, for example, effective impervious area was approximately 10 percent of basin area; HRU's with disturbed soils, PERLND's 15, 16 and 17, were approximately 22 percent of basin area; open space with low-permeability soil and slopes exceeding 5 percent, PERLND 11, was approximately 12 percent of basin area; and forested area with low-permeability soil and slopes exceeding 5 percent, PERLND 6, was approximately 9 percent of basin area.

Hydrologically Effective and Ineffective Impervious Areas

Hydrologically effective impervious areas yield runoff directly to the basin drainage network. The proportion of the total impervious area that was hydrologically effective was estimated. The estimated percentage of the impervious types (roads, buildings, and parking lots) that were hydrologically effective were assumed to vary by land-use classification as shown in table 31. A similar approach has been used in other studies (Dinicola, 1990; Jarrett and others, 1998; Alley and Veenhuis, 1983).

Table 31. Estimates of the percentages of imperviousland covers that are hydrologically effective in theChenoweth Run Basin, Jefferson County, Kentucky[LOJIC, Louisville and Jefferson County Information Consortium]

LOJIC		Percentage
land-use	Impervious	hydrologically
classification	type	effective
Single family:		
	Roads	80
	Buildings	20
Multi-family:		
	Roads	90
	Buildings	80
	Parking	90
Commercial and industrial	l:	
	Roads	95
	Buildings	90
	Parking	95
Public, park and vacant:		
	Roads	70
	Buildings	40
	Parking	40

Conversely, hydrologically ineffective impervious areas convey runoff to nearby pervious areas. A significant proportion of roof tops in lowand moderate-density development is often hydrologically ineffective. The estimated hydrologically ineffective impervious areas were therefore subtracted from the total subbasin impervious area and shifted (added) to pervious HRU areas within the same subbasin.

The hydrologically ineffective impervious areas were added to selected pervious HRU's that have limited storage and infiltration capacity (PERLND's 15, 16, and 17). This indirectly simulated the effect of additional runoff from impervious areas flowing onto an adjacent pervious area, which would have diminished water storage and infiltration capacities because of the additional water added to the precipitation falling directly onto the pervious area. The hydrologically ineffective impervious area was shifted, or allocated, to PERLND's 15, 16, and 17 within a subbasin in proportion to the relative proportion of each of these HRU's within the subbasin. For example, if there was an equal area of PERLND's 15, 16, and 17 in a subbasin, then equal portions (one third) of the total hydrologically ineffective impervious area in the subbasin would be shifted to each of these three HRU's.

For improved fit during calibration of flow, hydrologically effective impervious areas in subbasins upstream from the Ruckriegel Parkway site were reduced an additional 10 percent and also shifted in like fashion to PERLND's 15, 16, and 17. Note that the total impervious area upstream from the Ruckriegel Parkway site was estimated to be approximately 30 percent of the drainage area (table 2), and the final effective impervious area at this site after model calibration was estimated to be approximately 21 percent of the drainage area (table 30).

Other Adjustment Factors

A change in land use that was not reflected in the original LOJIC geographic data set obtained in 1996 for use in the study occurred at the Saratoga Woods residential development (fig. 32) in subbasin 9b (fig. 29). Recent (spring 1997), aerial imagery of the area was obtained from LOJIC to supplement the original data. Approximately 400 new houses in the development were counted on the aerial imagery. Consequently, an adjustment of one quarter acre per house was made by shifting 100 acres from PERLND's 9 and 11 to PERLND 15 (table 30). The 100 acres was subtracted from these HRU's in proportion to the relative amounts of each of these HRU's that was measured in this subbasin. In addition, 2,500 ft² of impervious area (rooftops and driveways) per house were added by shifting 5 acres from PERLND 11 to IMPLND 1. (Roads within the development were already included in the impervious HRU areas.)

An adjustment of HRU's was also made for representation of more intensive land-disturbance and land-treatment activities likely at Vittner Golf Course in subbasin 10a (fig. 29) than was assumed typical for the open, developed-uses set of HRU's (PERLND's 10-14). One-hundred-fifty acres of these five PERLND's, which were subtracted from each of these HRU's in proportion to the relative amounts of each of these HRU's that were measured in this subbasin, were shifted to PERLND's 15-17. Seventy-five percent (112.5 acres) was shifted to PERLND's 15 and 16 in proportion to the relative amounts of each of these two HRU's that were measured in this subbasin. The remaining 25 percent (37.5 acres) was shifted to PERLND 17.

Reaches and Reservoirs (RCHRES)

Stream reach and reservoir (RCHRES) boundaries were defined as part of basin segmentation. The Chenoweth Run Basin was segmented into 23 subbasins with 14 actual RCHRES—11 in the main channel and 3 in the major tributary channels (fig. 29). In addition, nine composite, 'pond' RCHRES's were added to simulate the hydrologic effects of the numerous, dispersed small lakes and ponds in the basin. Each RCHRES had unique channel geometry and conveyance that was described in a function table (FTABLE) in the HSPF UCI file (Appendix 5). The FTABLES specified stage, surface area, storage, and discharge characteristics of a channel or reservoir.

The Channel Geometry Analysis Program (CGAP) by Regan and Schaffranek (1985) was used to define the average, stage-dependent storagedischarge characteristics for the 14 actual main- and tributary-channel RCHRES's. CGAP computations required channel cross-section and roughness information. A series of channel cross sections spaced at approximately 200 to 300 ft were developed for each RCHRES from the LOJIC 2-ft contour-interval maps. Estimates of channel roughness (Manning's "n" value) were made using procedures by Arcement and Schneider (1989) and "n" values estimated previously for indirect discharge measurements in Chenoweth Run.

Runoff in Chenoweth Run, particularly downstream from the Ruckriegel Parkway site, is influenced by numerous, but generally small, lakes and ponds (hereafter referred to as ponds). The LOJIC water-bodies coverage includes 248 ponds in the basin with an average surface area of 0.45 acres, ranging in size from less than 0.01 to 4.43 acres; drainage areas to these ponds were delineated (fig. 31). Total drainage area to ponds was 2,660 acres, about 25 percent of the whole basin drainage area.

The ponds were too numerous to represent individually in the model; therefore, they were represented in the model by composite pond RCHRES's that were intended to reflect the combined water and constituent storage and discharge characteristics of all the ponds within a subbasin. A pond RCHRES was included for each subbasin where drainage area to ponds was greater than 10 percent of the total subbasin area. The normal surface area of each pond RCHRES was estimated as the summation of the surface areas of all ponds within a subbasin. The normal volume of each pond RCHRES was estimated as 40 percent of the normal depth (12 ft assumed) times the surface area at normal depth. A typical, relative pond deptharea-volume relation (table 32) was assumed representative for each pond RCHRES. Mean 10-year and 100-year peak discharges were estimated separately for the drainage areas of the small pond RCHRES's (16, 17, 20, 21, 22, and 23) and the large pond RCHRES's (15, 18, and 19). Low flood-storage volume was assumed for the ponds. Thus, pond RCHRES hypothetical outflows specified in the FTABLES were set equal to approximately two-thirds of the estimated 10-year peak flow at a hydraulic head of 2 ft (stage of 14 ft) and at least equal to the estimated mean 100-year peak flow at a hydraulic head of 4 ft (stage of 16 ft). Pond drainage areas for subbasins 13, 12, 11, 10b, 10a, 9b, 9a, 8a, and 1a (fig. 29) drain to

pond RCHRES 15, 16, 17, 18, 19, 20, 21, 22, and 23, respectively, as detailed in the UCI file, Appendix 5.

Table 32. Relative depth-area-volume relationused for the pond reaches and reservoirs (RCHRES)in the Chenoweth Run Basin model

Depth (in feet)	Depth divided by 12 feet	Area divided by area at 12 feet depth	Volume divided by volume at 12 feet depth	
0	0	0	0	
6	.5	.79	.33	
7	.583	.84	.43	
8	.667	.89	.55	
9	.75	.92	.66	
10	.833	.94	.76	
11	.917	.97	.89	
12	1	1	1	
13	1.083	1.02	1.11	
14	1.167	1.05	1.25	
15	1.25	1.07	1.37	
16	1.33	1.1	1.5	

Base-Flow Losses

Available base-flow discharge measurements in Chenoweth Run (table 20) indicated a possibility for seasonal ground-water-seepage losses in the main channels. Discharge measurements during base flows in the Beargrass Creek Basin indicated base-flow losses occurred there also (Ruhl and Jarrett, 1999). Such losses were hypothesized and incorporated into the model by use of the multipleoutflow-gate feature of HSPF. Two outflow gates were included for RCHRES's 4 to 10, 12, and 14; the first outflow gate removed seepage water from the channel (and entirely out of the system), and the second outflow gate routed the remaining flow to downstream RCHRES's.

During low-flow calibration, the target total channel seepage losses were up to 0.5 ft^3 /s upstream from Ruckriegel Parkway, 1.5 to 2.0 ft³/s from Ruckriegel Parkway to Gelhaus Lane, and the same lineal loss rate continuing downstream from Gelhaus Lane as was assumed to exist between

Ruckriegel Parkway and Gelhaus Lane. A constant seepage-loss rate was assumed during June-November, except in October, when it increased 50 percent until October 30. Also, the base seepage loss rate was increased 50 percent during July–October 1998; at all other times the assumed seepage-loss rate was effectively zero. The seepage loss was implemented in HSPF as an outflowdemand time series (DSN 72) with a base value of $1 \text{ ft}^{3}/\text{s}$ that was multiplied by weighting factors (see UCI file, Appendix 5) to provide a uniform lineal loss rate for each stream segment and the desired total loss in each segment. The combined base-flow loss after flow calibration was 0.37 ft³/s in RCHRES's 4-6 upstream from Ruckriegel Parkway, 1.82 ft³/s in RCHRES's 7-10 between Ruckriegel Parkway and Gelhaus Lane, and 1.37 ft³/s in RCHRES's 10 and 12 downstream from Gelhaus Lane.

As noted in the 'Previous Studies' section, the gains in base flows observed in Floyds Fork near Chenoweth Run may be fed by base-flow losses in Chenoweth Run. Detailed base-flow seepage measurements are needed to confirm and refine the assumed seepage-loss rates.

Lower Zone Evapotranspiration Parameter (LZETP)

Evapotranspiration from lower-zone storage is limited by the amount of deep-rooted vegetation. This limit on evapotranspiration was represented in the model by a deep-rooted-vegetation densityindex parameter, LZETP, which ranges in value from 0 to 1. Initial estimates of LZETP were calculated for each PERLND HRU by combining a gridded tree-canopy cover (developed from the LOJIC tree-canopy line coverage) with the HRU grid. The tree-canopy cover was also merged with the GIRAS cover of forest type to distinguish deciduous trees from evergreen trees, where possible. The deciduous and evergreen proportions were used to estimate variable monthly LZETP values.

Note that the spatial distribution of the forest HRU was not delineated by use of the LOJIC treecanopy coverage. The forest-HRU distribution was determined directly from the GIRAS land-use/landcover data. The forest areas delineated by use of the GIRAS data did have large values of LZETP estimated by use of the LOJIC tree-canopy cover.

Model Input and Output Files

Time-series data (table 5) that were used in the HSPF model were entered into ANNIE (Flynn and others, 1995), a watershed-data-management system designed to create files accessible directly from the HSPF model and other supporting applications, such as METCMP, HSPEXP and GENSCN; ANNIE also provides interactive access to manage, transform, plot, and analyze time-series data.

The UCI file (Appendix 5) controls execution of the HSPF model by specifying the program modules (table 27) and associated model parameters (table 28) to use. Appropriate linkages among the model elements (PERLND's, IMPLND's, and RCHRES's) and time-series data (source to target and input to output) must be explicitly specified in the UCI file.

SIMULATION OF STREAMFLOW

The HSPF model had to be calibrated for precipitation and runoff before it could be used to simulate sediment or chemical constituents. The streamflow-calibration process included steps to adjust appropriate model parameters to obtain representative discharges during a wide range of hydrologic conditions during the 24-month period February 1996–January 1998. Selected discharge data not used in the calibration process was used in model verification. Effluent discharges from the WWTP's in the basin were added to natural discharge: the Jeffersontown WWTP discharges into RCHRES 8, the Chenoweth Hills WWTP discharges into RCHRES 9, and the Lake of the Woods WWTP discharges into RCHRES 10 (fig. 29). (Note: The Chenoweth Hills WWTP is located in subbasin 10a: however, the effluent is pumped over to Reach 9 at a point approximately 3,000 ft downstream from Taylorsville Road.)

Calibration and Verification

Initial parameter values affecting discharge (table 28) were calculated from physical characteristics of the basin to the extent possible, as described in "Model Development." Initial values for parameters that were not physically measurable were estimated from literature values. A trial-anderror, iterative process was then used to modify the initial model parameter values. 'Guidelines for HSPF calibration' (Donigian and others, 1984) and the expert system for HSPF, HSPEXP (Lumb and others, 1994), were used to aid in model discharge calibration. In general, the model was calibrated to annual and seasonal water budgets for the calibration period, then adjusted to improve stormrunoff-volume and peak-discharge simulations while maintaining the annual and seasonal water balances. The quality of the model calibration trials was judged by use of a combination of graphical and statistical means.

Model testing (verification) can be considered an extension of the model calibration process. The purpose of verification is to assure the model adequately represents all conditions that can affect model results. One commonly used verification procedure is to split the available data into two independent data sets-one set is used in model calibration and the other set in model verification. Continuous streamflow data was unavailable prior to February 1996, which limited the available data to a 24-month period. A 3- to 5-year period of calibration data is optimal to provide a representative variety of hydrologic conditions for model calibration, although satisfactory calibrations have been achieved with less data (Viessman and others, 1977). The 24-month study data-collection period included a wide range of streamflows, from record floods to moderately low base flows. The available continuous 24-month data were not split into independent sets, because this would have

unduly limited the period of calibration. A sufficient number of storms were available, however, to split storms into two groups for storm-runoff-volume and peak-discharge calibration and verification. Characteristics of these storms were described in "Analysis and Summary of Hydrologic Conditions: Precipitation."

Calibration Criteria

Various error measures were used to evaluate the quality of the model flow calibration. The expert system for calibration of flow in HSPF (HSPEXP) automatically computes errors in (1) total runoff volumes for the calibration period, (2) the mean of the low-flow-recession rates, (3) the mean of the lowest 50 percent of daily mean discharge, (4) the mean of the highest 10 percent of daily mean discharge, (5) flow volume for selected storms, (6) seasonal volume difference, and (7) runoff volume for selected summer storms.

The quality of the calibration for the total, annual, and monthly water balances was assessed on the basis of the percentage error. Donigian and others (1984) rate an annual or monthly waterbalance error of less than 10 percent as very good, 10 to 15 percent as good, and 15 to 25 percent as fair.

The difference between simulated and observed discharge was reported by three statistics: (1) the correlation coefficient, (2) the coefficient of model-fit efficiency (Nash and Sutcliffe, 1970), and (3) the percentage of the calibration time periods for which the simulation error was less than 10 and 25 percent. In some instances, the difference between simulated and observed discharge was reported as the actual difference in discharge or a percent difference. The correlation coefficient, C, is calculated as

$$C = \frac{\sum_{i=1}^{N} (Qo_i - Qo) \times (Qs_i - Qs)}{\left[\sum_{i=1}^{N} (Qo_i - Qo)^2 \times \sum_{i=1}^{N} (Qs_i - Qs)^2\right]^{1/2}}, (1)$$

and the coefficient of model-fit efficiency, E, is calculated as

$$E = \frac{\sum_{i=1}^{N} (Qo_i - Qo)^2 - \sum_{i=1}^{N} (Qo_i - Qs_i)^2}{\sum_{i=1}^{N} (Qo_i - Qo)^2} , \quad (2)$$

where

- Qo_i is the observed discharge volume for time period *i*,
- Qs_i is the simulated discharge volume for time period *i*,
- *Qo* is the average observed discharge volume,
- *Qs* is the average simulated discharge volume, and
- *N* is the number of time periods in the calibration period.

Additional error statistics computed to compare simulated and observed flows included

Mean absolute error, average =
$$\Sigma[|(S - O)|/N]$$
, (3)

Mean absolute error, percent =
$$100 \times \Sigma \left\{ \left[\frac{|(S-O)|}{O} \right] / N \right\}$$
, (4)

Root mean square error, average =
$$\sqrt{\Sigma[(S-O)^2/N]}$$
, (5)

Root mean square error, percent =
$$100 \times \sqrt{\Sigma \left[\left(\frac{S - O}{O} \right)^2 / N \right]}$$
, (6)

Bias, average =
$$\Sigma[(S-O)/N]$$
, (7)

Bias, percent =
$$100 \times \Sigma\{[(S-O)/O]/N\}$$
, (8)

Standard error of estimate, average = , (9)

$$[N/(N-1)] \times \sqrt{[(\text{Root mean square error, average})^2 - (\text{Bias, average})^2]}$$

Standard error of estimate, percent = , (10)

$$[N/(N-1)] \times \sqrt{[(\text{Root mean square error, percent)}^2 - (\text{Bias, percent})^2]}$$

where

- S is the simulated discharge, in ft^3/s ,
- O is the observed discharge, in ft³/s, and
- *N* is the number of discharge values in the sample.

Hydrographs and scatterplots showing simulated and observed monthly, daily, and stormflows were prepared. Also, flow-duration curves of daily simulated and observed flows were plotted. These graphs were reviewed to identify biases during specific time periods and parts of the flow regime.

Modifications of Model Parameters and Elements

As described by Duncker and others (1995) and Donigian and others (1984), HSPF calibration is facilitated by the structure of the model wherein the annual balance is most affected by one set of parameters (LZETP, DEEPFR, LZSN, and INFILT), the seasonal balance is most affected by another set (UZSN, BASETP, KVARY, and CEPSC), and the stormflow is most affected by still another set (INFILT, INTFW, and IRC). Note the BASETP parameter, which controls evaporation losses from base flows, was set to zero. Nonzero BASETP values caused diurnal fluctuations in simulated flows that were inconsistent with the observed flows.

HSPF is a continuous simulation model, and thus, the calibration of the hydrologic processes occurring between storms is necessary to correctly simulate flows during storms. This is largely done by adjusting the parameter values for HRU's representing pervious areas (PERLND's). The PERLND properties have a relatively large effect on the annual and seasonal water balances (when compared to the IMPLND properties). Seventeen PERLND types, which varied by land use/land cover, soil, and slope (table 30), were simulated.

PERLND's stored water later released as base flow (slow-responding, consistent ground-water flow), as interflow (fast responding ground-water flow), or as surface runoff (in the same fashion as impervious runoff). Precipitation runoff from PERLND's is controlled by the soil-storage and infiltration properties. Initial values for UZSN, LZSN, and INFILT were estimated from soils data as described previously in "Model Development." Storage properties of disturbed soils (PERLND's 15 to 17) were decreased by about one-half or more of the values for similar soils in an undisturbed PERLND; the decreased storage capacity forces precipitation to exit sooner as surface runoff. Calibrated UZSN values ranged from a winter low of 0.10 in. in a disturbed commercial PERLND (no. 17) to an autumn high of 0.98 in. in forested PERLND's (nos. 5 to 8). Calibrated LZSN values ranged from 2.05 to 5.76 in. Calibrated INFILT values ranged from 0.028 to .356 in/h.

Water held in soil storage (including interception storage) is also available for evaporation, which is lost at a rate constrained by the potential evapotranspiration rate (PET). Evapotranspiration is limited by the amount of deep-rooted vegetation, which is indexed by the dimensionless LZETP value and was estimated from the tree-canopy data. The proportion of deciduous and evergreen trees was used to adjust LZETP monthly; calibrated LZETP values ranged from a summer high of 0.14 to 0.98 in. and a winter low of 0.12 to 0.89 in.

Many of the parameters affecting PERLND's were assigned monthly values to improve the agreement between the simulated and observed seasonal runoff. Calibrated PERLND parameter values are shown in the HSPF UCI file in Appendix 5.

Parameters describing impervious areas (IMPLND) that drain directly to channels (hydrologically effective impervious areas) have little effect on the annual hydrologic and seasonal water balance because there are no storage components except for interception storage (calibrated values ranged from 0.01 to 0.03 in.); however, IMPLND's have a large effect on the magnitude and timing of stormflow. The amount of hydrologically effective impervious area estimated for the urbanized area upstream from the gage at Ruckriegel Parkway was lowered an additional 10 percent (as described previously) to improve the model calibration.

Results of Model Streamflow Calibration and Verification

Statistical comparison of observed and simulated water balances for time periods ranging from hourly to the entire model calibration period were reported for the simulations at a 1-hour time step. The simulations at a 1-hour time step were also used during the water-quality simulations. Results comparing stormflow volumes and peak discharges were reported for the simulations at a 5-minute time step, because these represented the actual instantaneous peaks in the observed 5-minute discharge data better than the hourly simulations. The following sections describe the simulated discharges in relation to observed discharges at the Ruckriegel Parkway and Gelhaus Lane gages (fig. 7).

Total, Annual, and Seasonal Water Budgets

Simulated interflow was on average approximately 20 and 27 percent of the simulated HRU outflow at Ruckriegel Parkway and Gelhaus Lane, respectively (table 33). The simulated ground-water-flow contribution to simulated HRU outflow was approximately equal to the simulatedinterflow contributions at each station. Approximately 60 percent of the simulated HRU outflow at Ruckriegel Parkway was from surface runoff. In contrast, approximately 47 percent of the simulated HRU outflow at the Gelhaus Lane gage (which had a lower development density than at the upstream gage) was from surface runoff. The above-normal rainfall during the model calibration period probably caused the large proportion of simulated HRU outflows that were generated from surface runoff. The WWTP flows, representing imported water from the Ohio River, was approximately 7 in. of water on the basin at Gelhaus Lane, or 20 percent of the total observed discharge during the model calibration period. Estimated base-flow losses were 1.6 percent of total observed discharge at Ruckriegel Parkway and 4.4 percent of total observed discharge at Gelhaus Lane.

Total simulated and observed discharge during the model calibration period, February 1996–January 1998, differed by approximately -5.4 percent at Ruckriegel Parkway and 3.1 percent at Gelhaus Lane. Annually (in the year ending in January), the difference between the simulated and observed discharge for this period ranged from -5.2 to -5.6 percent at Ruckriegel Parkway and 1.1 to 5.0 percent at Gelhaus Lane (tables 33 and 34). The model results for the total and annual water balances were classified as very good on the basis of the criteria suggested by Donigian and others (1984).

Table 33. Simulated water budget and measured rainfall and streamflow in the Chenoweth Run Basin,Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998

[WWTP, wastewater-treatment plant; ---, not applicable; all values are in inches on the watershed]

		Simulated					Measured		
Period	Measured rainfall	Evapotrans- piration	Surface runoff	Interflow	Ground- water flow	WWTP effluent	Channel Ioss	Total streamflow	Total streamflow
Chenoweth Run at Ruckriegel Parkway									
02/1996-01/1997	56.81	24.01	19.08	7.33	6.85		0.51	32.91	34.71
02/1997-01/1998	53.33	19.90	20.48	6.47	7.08		.62	33.61	35.60
Mean	55.07	21.96	19.78	6.90	6.96		.56	33.26	35.16
Chenoweth Run at Gelhaus Lane									
02/1996-01/1997	56.81	26.92	13.5	9.01	7.87	7.23	1.41	36.46	36.06
02/1997-01/1998	53.33	22.34	15.56	7.93	8.24	6.79	1.74	37.12	35.34
Mean	55.07	24.63	14.53	8.47	8.06	7.01	1.58	36.79	35.70

Table 34. Statistics for the criteria used in the calibration of streamflow using the Hydrological Simulation Program—Fortran (HSPF) model applied in the Chenoweth Run Basin, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998

[--, not available]

	Observed	Simulated	Percent Error (simulated/ observed-1) (percent)	Suggested default criteria ¹
Chenoweth	Run at Ruckriegel Parkv	vay		
Total flow, in inches	70.33	66.52	-5.4	10.0
Total highest 10 percent flows, in inches	44.87	42.62	-5.0	15.0
Total lowest 50 percent flows, in inches	4.59	4.12	-10.3	10.0
Total storm volume, in inches	22.05	21.01	-4.7	20.0
Average storm peaks, in cubic feet per second	402	352	-12.5	
Summer flow volume, in inches	13.07	13.75	5.2	30
Winter flow volume, in inches	16.12	14.3	-11.3	30
Summer storm volume, in inches	1.51	1.96	² 34.5	50
Chenowe	eth Run at Gelhaus Lane			
Total flow, in inches	71.40	73.58	3.1	10.0
Total highest 10 percent flows, in inches	41.55	40.41	-2.7	15.0
Total lowest 50 percent flows, in inches	7.66	8.61	12.4	10.0
Total storm volume, in inches	19.63	20.23	3.1	20.0
Average storm peaks, in cubic feet per second	599	541	-9.7	
Summer flow volume, in inches	13.60	14.63	7.6	30.0
Winter flow volume, in inches	17.62	17.32	-1.7	30.0
Summer storm volume, in inches	1.54	1.77	² 11.8	50.0

¹Lumb and others (1994), p. 56, 58.

²Summer storm volume error minus total storm volume error.

Simulated monthly discharge generally approximated the observed monthly discharge at both gages as indicated in figures 36 and 37 and by the error statistics reported in table 35. Monthly, the difference between the simulated and observed discharge for the model calibration period ranged from -26 to 75 percent at Ruckriegel Parkway and -28 to 86 percent at Gelhaus Lane. Errors in monthly simulated discharge were less than 10 percent at both gages during approximately one-half of the model calibration period. The largest relative differences between simulated and observed discharge generally occurred during the fall (September and October), possibly indicating seepage losses are larger than estimated for this time of year.

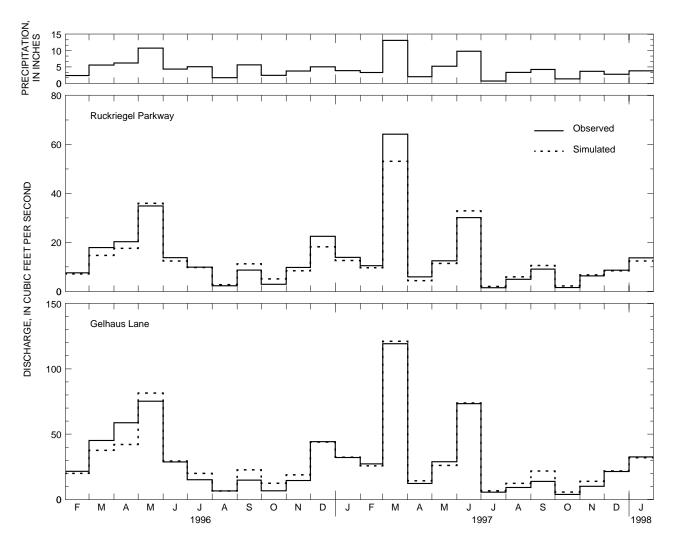
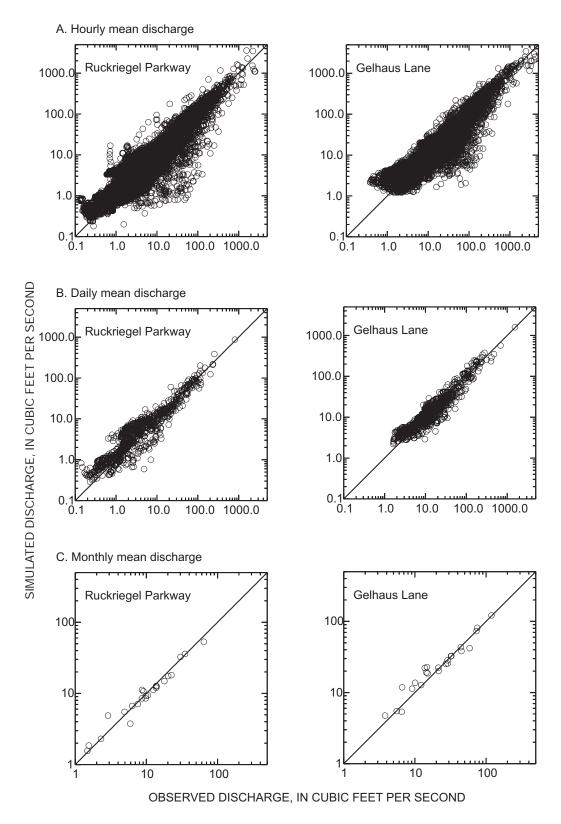



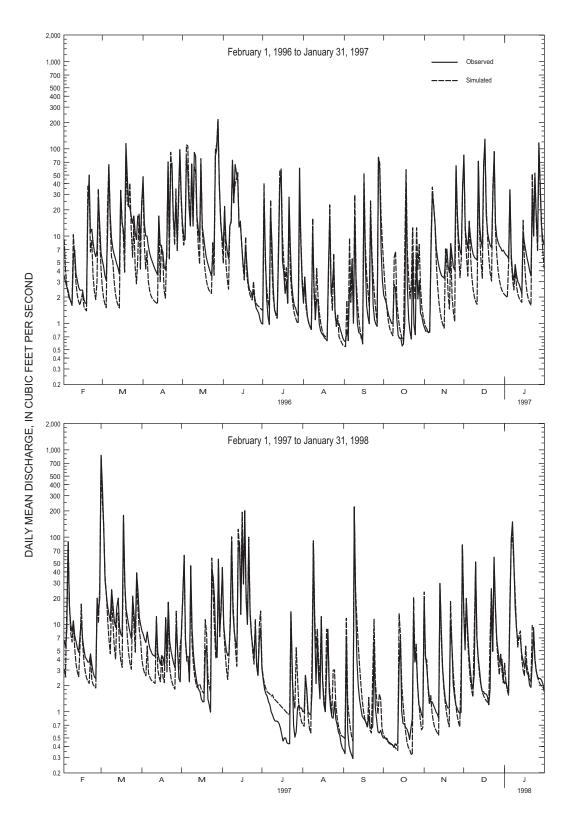
Figure 36. Observed and simulated monthly mean discharge hydrographs at Chenoweth Run at Ruckriegel Parkway and at Gelhaus Lane, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

Figure 37. Comparison of observed and simulated hourly, daily, and monthly mean discharges in the Chenoweth Run Basin, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

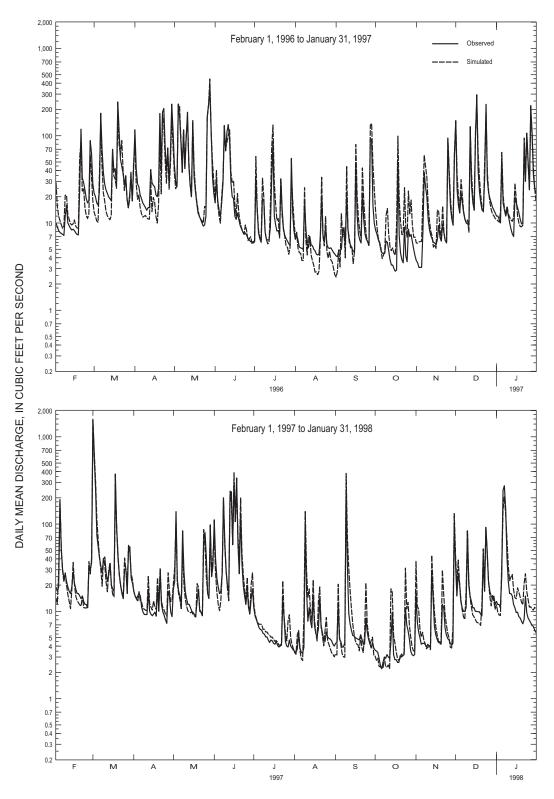
Table 35. Model-calibration statistics for hourly, daily, and monthly streamflows at the two streamflow-gaging
stations in the Chenoweth Run Basin, Jefferson County, Kentucky, during the model calibration period,
February 1996–January 1998

[ft³/s, cubic foot per second]

	Hourly st	reamflow	Daily stre	eamflow	Monthly st	reamflow
	Ruckriegel Parkway	Gelhaus Lane	Ruckriegel Parkway	Gelhaus Lane	Ruckriegel Parkway	Gelhaus Lane
Number of periods	17,544	17,544	731	731	24	24
Minimum (ft ³ /s) Observed Simulated	.18 .31	1.19 .93	.29 .32	2.20 2.21	1.48 1.99	3.80 5.61
Maximum (ft ³ /s) Observed Simulated	3,580 2,010	4,350 3,470	868 792	1,590 1,530	64.2 53.1	119 121
Mean (ft ³ /s) Observed Simulated	13.9 13.1	30.1 31.0	13.9 13.1	30.1 31.0	13.9 13.1	30.0 30.9
Standard deviation (ft ³ /s) Observed Simulated	69.1 61.8	108 111	42.4 38.7	77.7 76.4	13.7 11.9	27.8 26.9
Coefficient of model-fit efficiency	.79	.86	.95	.96	.95	.96
Correlation coefficient	.89	.93	.98	.98	.98	.98
Percentage of periods when the difference between simulated and observed average streamflow was less than 10 percent	17.5	24.9	19.0	28.2	45.8	50.0
Percentage of periods when the difference between simulated and observed average streamflow was less than 25 percent	40.4	55.9	46.4	59.2	79.2	62.5
Mean absolute error: Average (ft ³ /s) Percent	5.63 55.9	10.2 40.1	3.56 41.0	7.27 29.9	1.83 17.4	3.49 21.1
Root mean square error: Average (ft ³ /s) Percent	31.6 199	39.8 108	9.27 68.6	16.3 45.6	2.85 23.4	5.10 30.6
Bias: Average (ft ³ /s) Percent	75 14.3	.92 20.2	75 7.1	.90 14.5	74 3.9	.91 15.0
Standard error of estimate: Average (ft ³ /s) Percent	31.6 198	39.8 106	9.25 68.3	16.3 43.3	2.87 24.1	5.24 27.8


Daily Discharge

Observed and simulated daily mean discharge hydrographs at Ruckriegel Parkway and Gelhaus Lane are shown in figures 38 and 39, respectively. In general, the simulated daily discharge matches the observed daily discharge (figs. 37 and 40). The average difference (bias) between simulated and observed daily discharge was -0.75 and 0.90 ft^3/s at Ruckriegel Parkway and Gelhaus Lane, respectively (table 35). Errors in simulated daily discharge were less than 25 percent at both gages during approximately one-half of the model calibration period. The largest absolute difference between simulated and observed daily discharge occurred during high-flow periods and ranged from -99 to $69 \text{ ft}^3/\text{s}$ at Ruckriegel Parkway and -99 to 147 ft³/s at Gelhaus Lane. The model somewhat overestimates daily discharge at low flows (fig. 37). as was the case for monthly discharges. Percentage differences between the simulated and observed daily discharge ranged from -74 to 798 percent at Ruckriegel Parkway and -52 to 295 percent at Gelhaus Lane. The largest percentage differences between simulated and observed flows resulted during periods of lowest flow and during fall storms.


Duncker and others (1995) summarized model-application results in terms of the correlation coefficient and the coefficient of model-fit efficiency. Applications of HSPF and the Stanford Watershed Model were reported to have had correlation coefficients ranging from .8 to .98 and coefficients of model-fit efficiency ranging from .93 to .98 considering daily or monthly flows. The Chenoweth Run HSPF model had correlation coefficients ranging from 0.89 to 0.98 for hourly to monthly mean flows, respectively. The coefficients of model-fit efficiency for daily and monthly discharge simulations for the Chenoweth Run Basin HSPF model (table 35) approach the excellent range (exceeding 0.97) as defined by James and Burgess (1982). However, the model was calibrated for a comparatively short 24-month period during which flows were above normal. Increased model error might be expected during an extended period of near-normal flows.

Stormflow Volumes and Peak Discharges

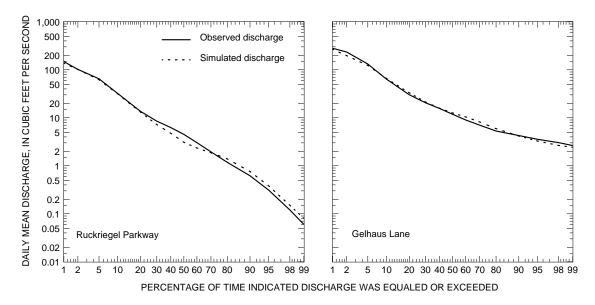

Twenty-five storm events for model calibration and 25 storms for model verification were randomly selected from storms considered to have uniform precipitation over the basin (see "Analysis and Summary of Hydrologic Conditions: Precipitation.") Comparisons of the model calibration and verification storms in terms of rainfall depth, average and maximum intensities, and antecedent 7-day rainfall indicated no statistically significant differences. The storm set that included the record February 28-March 2, 1997 storm was used for model calibration because of the low recurrence frequency of this storm. Simulated storm volumes and peak discharges for the model calibration and verification storms were also compared to observed discharges for 27 storms that were considered to have highly variable precipitation over the basin (nonuniform storms). In general, precipitation characteristics are similar among calibration, verification, and nonuniform storms with the exception that the storm intensities are generally twice as large for the nonuniform storms as for the calibration and verification storms. Nonuniform storms are mostly convective type summer storms; hence, summer storms are not well represented in the model calibration and verification storms because of the uneven rainfall distribution over the basin.

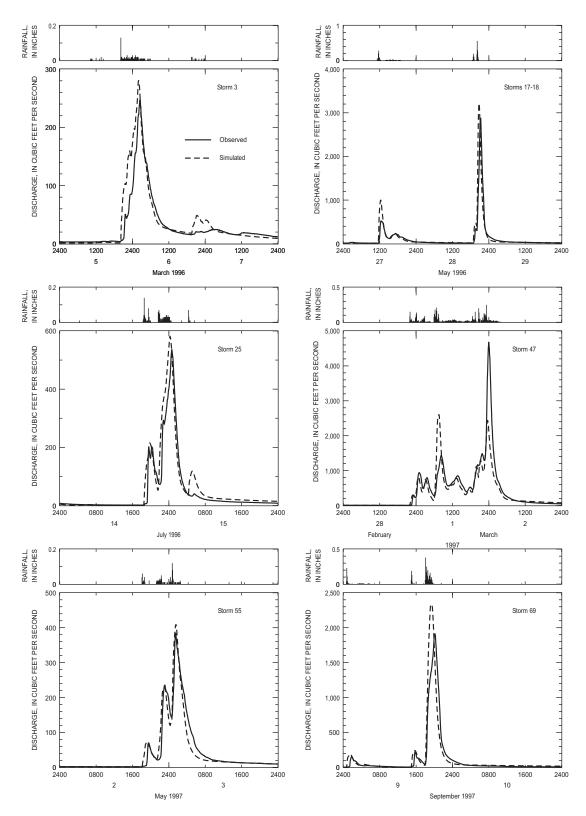
Figure 38. Observed and simulated daily mean discharge at Chenoweth Run at Ruckriegel Parkway, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

Figure 39. Observed and simulated daily mean discharge at Chenoweth Run at Gelhaus Lane, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

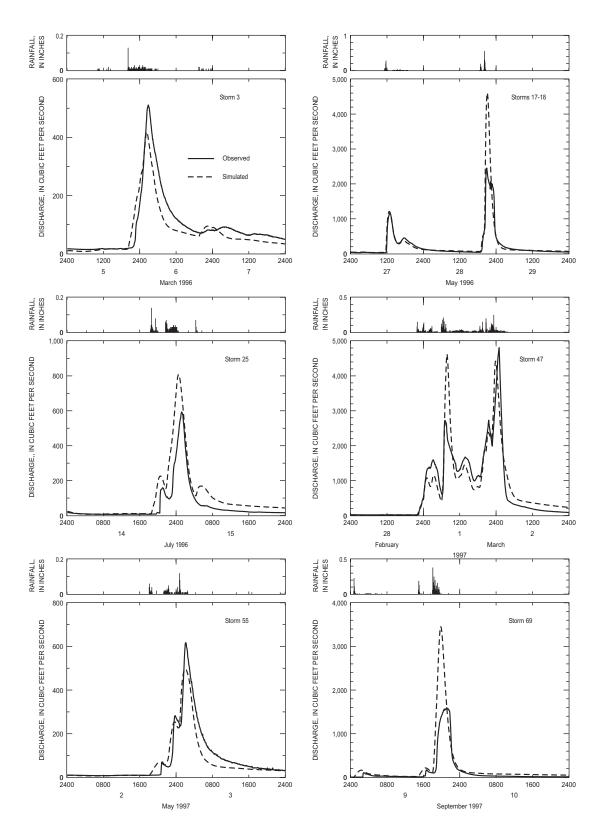
Figure 40. Flow-duration curves with observed and simulated daily mean discharge at Chenoweth Run at Ruckriegel Parkway and at Gelhaus Lane, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

Comparisons of observed and simulated stormflow volumes and peak discharges of selected model calibration and verification storms are shown in table 36. Hydrographs of observed and simulated flows for selected calibration storms are shown in figures 41 and 42.

Calibration Storms


Storm Volume—Simulated storm volumes were similar to observed storm volumes at both gages (fig. 43) with the exception of fall storms which tend to be overpredicted at both sites, particularly for low-magnitude fall storms. Errors in simulated storm volumes also tend to be larger at the Gelhaus Lane gage than at the Ruckriegel Parkway gage for fall storms of all magnitudes. The standard error of estimate of the simulated storm volume was 30.1 percent at Ruckriegel Parkway (table 37) and 41.5 percent at Gelhaus Lane (table 38). The error of the simulated storm volume ranged from -35 to 100 percent at Ruckriegel Parkway and from -31 to 100 percent at Gelhaus Lane.

Peak Discharge—Simulated storm peak discharges were also similar to observed peak discharges at both gages (fig. 44). Peak discharge is overpredicted at both sites for low-magnitude fall storms (particularly, October 14, 1997 and November 10, 1997). The standard error of estimate of the simulated storm peak discharge was 45.9 percent at Ruckriegel Parkway and 63.6 percent at Gelhaus Lane (tables 37 and 38). The errors of the simulated storm peak discharge ranged from -44 to 127 percent at Ruckriegel Parkway and from -46 to 260 percent at Gelhaus Lane. Note the coefficient of model-fit efficiency values are sensitive to the magnitude of the simulation error (equation 2). Thus, a large difference between observed and simulated discharge for a major storm can significantly affect this statistic.


 Table 36.
 Precipitation and streamflow data for selected calibration storms at streamflow-gaging stations in the Chenoweth Run Basin, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1988

[ft³/s, cubic foot per second]

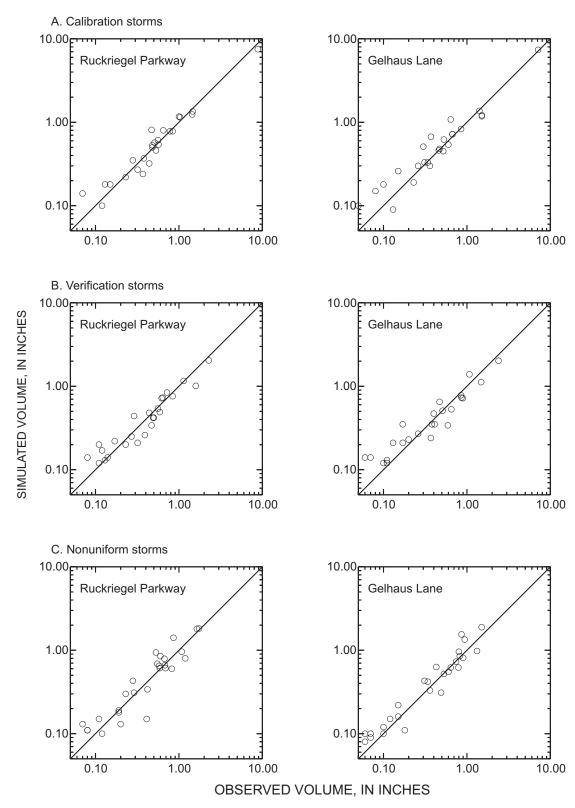
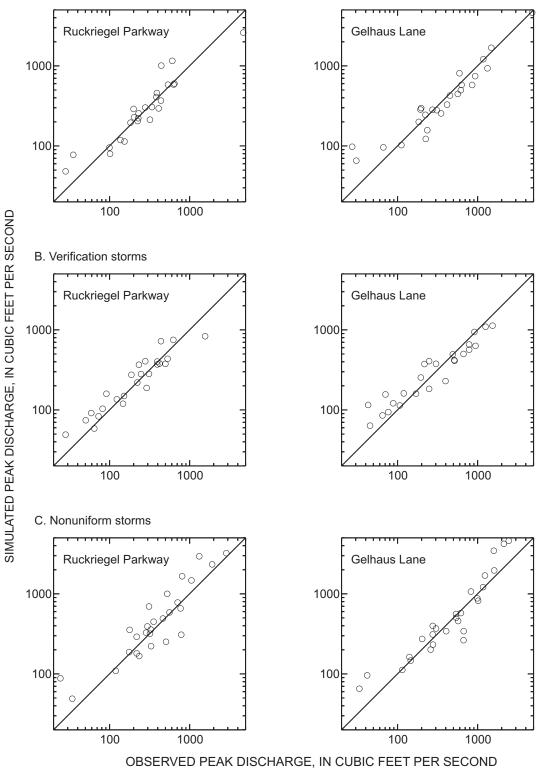

					Flow vo	lume			Peak f	low	
Storm number	Beginning date	Ending date	Observed precipitation (inches)	Observed (inches)	Simulated (inches)	Difference (inches)	Difference (percent)	Observed (ft ³ /s)	Simulated (ft ³ /s)	Difference (ft ³ /s)	Difference (percent)
				Chen	oweth Run at R	uckriegel Park	way				
7	04/13/1996	04/13/1996	0.50	0.12	0.10	-0.02	-16.7	154	114	-40	-26.0
9	04/22/1996	04/24/1996	1.70	1.03	1.15	.12	11.6	443	1,000	557	126.0
25	07/14/1996	07/15/1996	1.61	.65	.80	.15	23.1	536	582	46	8.5
39	12/16/1996	12/18/1996	1.89	1.46	1.35	11	-7.3	438	368	-70	-16.0
47	02/28/1997	03/02/1997	8.78	8.80	7.51	-1.29	-14.6	4,680	2,600	-2,080	-44.4
51	03/18/1997	03/19/1997	1.93	1.44	1.24	20	-13.9	631	585	-46	-7.3
55	05/02/1997	05/03/1997	1.20	.57	.54	03	-5.6	384	409	25	6.5
62	06/13/1997	06/13/1997	1.48	.47	.81	.34	72.3	608	1,160	552	47.6
76	12/09/1997	12/10/1997	.83	.38	.37	01	-2.6	228	222	-6	-2.6
				Cl	henoweth Run a	t Gelhaus Lan	e				
7	04/13/1996	04/13/1996	.50	.13	.09	04	-30.8	225	122	-103	-45.8
9	04/22/1996	04/24/1996	1.70	1.51	1.18	33	-21.8	1,180	1,210	30	2.5
25	07/14/1996	07/15/1996	1.61	.37	.67	.30	81.1	594	808	214	36.0
39	12/16/1996	12/18/1996	1.89	1.41	1.37	04	-2.8	856	577	-279	-32.6
47	02/28/1997	03/02/1997	8.78	7.12	7.38	26	-3.6	4,810	4,620	-190	-4.0
51	03/18/1997	03/19/1997	1.93	1.51	1.21	30	-19.9	1,330	933	-397	-29.8
55	05/02/1997	05/03/1997	1.20	.52	.45	07	-13.5	617	496	-121	-19.6
62	06/13/1997	06/13/1997	1.48	.67	.72	.05	7.5	1,480	1,680	200	13.5
76	12/09/1997	12/10/1997	.83	.31	.33	.02	6.5	273	284	11	4.0

Figure 41. Discharge during selected storms at Chenoweth Run at Ruckriegel Parkway, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

Figure 42. Discharge during selected storms at Chenoweth Run at Gelhaus Lane, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

Figure 43. Comparison of the observed and simulated flow volumes in inches of water on the basin for the calibration, verification, and nonuniform storms in the Chenoweth Run Basin, Jefferson County, Kentucky.

Table 37. Model-calibration statistics for the volume and peak streamflow during storm periods at Chenoweth Run at Ruckriegel Parkway, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998


[in., inch; ft³/s, cubic foot per second]

		Volume		Peak				
	Calibration storms	Verification storms	Nonuniform storms	Calibration storms	Verification storms	Nonuniform storms		
Number of periods	25	25	27	25	25	27		
Minimum (in. or ft ³ /s)								
Observed	.07	.08	.07	28.3	28.3	24.4		
Simulated	.10	.12	.10	48.2	49.1	49.0		
Maximum (in. or ft ³ /s)								
Observed	8.80	2.28	1.74	4,680	1,560	2,870		
Simulated	7.51	2.04	1.82	2,600	832	3,220		
Mean (in. or ft^3/s)								
Observed	.88	.53	.55	477	300	582		
Simulated	.85	.50	.59	432	292	737		
Standard deviation (in. or ft ³ /s)								
Observed	1.69	.51	.45	893	312	620		
Simulated	1.44	.43	.49	529	218	857		
Coefficient of model-fit efficiency	.97	.91	.82	.74	.69	.54		
Correlation coefficient	.94	.96	.92	.92	.85	.91		
Percentage of periods when the difference between simulated and observed average streamflow was less than 10 percent	32.0	32.0	22.2	40.0	32.0	25.9		
Percentage of periods when the difference between simulated and observed average streamflow was less than 25 percent	80.0	64.0	48.1	64.0	56.0	44.4		
Mean absolute error:								
Average (in. or ft^3/s)	.13	.10	.13	164	86.8	234		
Percent	20.2	22.8	28.5	29.9	29.2	47.2		
Root mean square error:								
Average (in. or ft^3/s)	.28	.15	.19	446	170	413		
Percent	29.8	31.0	36.7	45.7	37.1	73.7		
Bias:								
Average (in. or ft^3/s)	04	03	.04	-44.4	-8.1	154		
Percent	7.2	4.9	11.9	12.1	14.7	31.4		
Standard error of estimate: Average (in. or ft ³ /s)	20	15	10	150	177	207		
Average (in. or it ² /s) Percent	.29	.15	.19	462	177	397		
i cicent	30.1	30.6	36.1	45.9	35.5	68.5		

Table 38. Model-calibration statistics for the volume and peak streamflow during storm periods at Chenoweth Run at Gelhaus Lane, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998 [in., inch; ft³/s, cubic foot per second]

		Volume (inches)			Peak (ft ³ /s)	
	Calibration storms	Verification storms	Nonuniform storms	Calibration storms	Verification storms	Nonuniform storms
Number of periods	25	25	27	25	25	27
Minimum (in. or ft ³ /s) Observed	0.7			25.4	12.0	22 A
Simulated	.05 .09	.04 .10	.06 .08	27.1 65.5	43.0 63.6	33.4 65.3
Maximum (in. or ft ³ /s)						
Observed Simulated	7.12 7.38	2.39 2.02	1.50 1.89	4,810 4,620	1,540 1,130	2,450 4,610
Mean (in. or ft^3/s)						
Observed Simulated	.79 .82	.51 .49	.50 .55	652 614	432 389	708 938
Standard deviation (in. or ft ³ /s)						
Observed Simulated	1.38 1.41	.54 .46	.40 .48	955 920	408 308	639 1,240
Coefficient of model-fit efficiency	.99	.91	.74	.98	.87	24
Correlation coefficient	.99	.96	.91	.99	.96	.94
Percentage of periods when the difference between simulated and observed average streamflow was less than 10 percent	40.0	20.0	33.3	36.0	16.0	22.2
Percentage of periods when the difference between simulated and observed average streamflow was less than 25 percent	68.0	64.0	48.1	56.0	40.0	59.2
Mean absolute error:	11		12	104	105	22.4
Average (in. or ft ³ /s) Percent	.11 30.3	.11 37.1	.12 26.2	104 35.1	105 36.5	334 36.4
Root mean square error: Average (in. or ft ³ /s) Percent	.16 44.3	.16 54.7	.20 32.9	139 62.3	144 51.6	699 51.5
Diag						
Bias: Average (in. or ft ³ /s) Percent	.03 19.3	02 21.0	.05 14.6	-38.0 12.2	-42.7 16.0	230 19.3
Standard error of estimate: Average (in. or ft ³ /s)	.16	.16	.20	134	143	686
Percent	41.5	52.6	30.6	63.6	51.1	49.6

A. Calibration storms

Figure 44. Comparison of the observed and simulated peak discharges for the calibration, verification, and nonuniform storms in the Chenoweth Run Basin, Jefferson County, Kentucky.

Verification Storms

Storm Volume—Simulated storm volumes for verification storms were also similar to observed volumes at both gages (fig. 43) with the exception of fall storms, which tended to be overpredicted at both sites, particularly for low-magnitude fall storms. Errors of the simulated storm volumes also tended to be larger at the Gelhaus Lane gage than at the Ruckriegel Parkway gage for fall storms of all magnitudes. The standard error of estimate of the simulated storm volume was 30.6 percent at Ruckriegel Parkway and 52.6 percent at Gelhaus Lane. The error of the simulated storm volume ranged from -36 to 82 percent at Ruckriegel Parkway and from -42 to 150 percent at Gelhaus Lane.

Peak Discharge—Simulated verification storm peak discharges were also similar to observed peak discharges at both gages (fig. 44). Peak discharge was overpredicted at both gages for lowmagnitude fall storms (particularly, October 14, 1997 and November 10, 1997). The standard error of estimate of the simulated storm peak discharge was 35.5 percent at Ruckriegel Parkway and 51.1 percent at Gelhaus Lane. The error of the simulated storm peak discharge ranged from -47 to 74 percent at Ruckriegel Parkway and from -42 to 168 percent at Gelhaus Lane.

Nonuniform Storms

Storm Volume—Simulated storm volumes for nonuniform storms were also similar to observed volumes at both gages (fig. 43). The error in the simulated storm volume for nonuniform storms increased in comparison to calibration and verification storms at both gages. This probably reflects the increased error in measurement of rainfall over the basin associated with the nonuniform rainfall distribution. The standard error of estimate of the simulated storm volume was 36.1 percent at Ruckriegel Parkway and 30.6 percent at Gelhaus Lane. The error of the simulated storm volume ranged from -63 to 86 percent at Ruckriegel Parkway and from -39 to 80 percent at Gelhaus Lane. *Peak Discharge*—Simulated nonuniform storm peak discharges were also similar to observed peak discharges at both gages (fig. 44). Peak discharge was overpredicted at both sites for low-magnitude storms. The standard error of estimate of the simulated storm peak discharge was 68.5 percent at Ruckriegel Parkway and 49.6 percent at Gelhaus Lane. The error of the simulated storm peak discharge ranged from -61 to 262 percent at Ruckriegel Parkway and from -60 to 129 percent at Gelhaus Lane. Note that errors in simulation of large peak discharges for some nonuniform storms resulted in a negative coefficient of model-fit efficiency (see table 38 and equation 2.)

Comparison of Simulated and Measured Discharge Near the Mouth of Chenoweth Run

During the model calibration period, four discharge measurements were made near the mouth of Chenoweth Run at Seatonville Road (fig. 7). These measurements provided an indication of the flow-model fit including the lower third of the basin downstream from the Gelhaus Lane gage. Simulated and measured discharges were fairly close (table 39). Discharge measurements made on September 16, 1996, were made during a storm recession. Simulated discharge during this storm was overpredicted, but matched the measured discharge within 1 hour.

Table 39. Comparison of simulated and measureddischarge at Chenoweth Run at Seatonville Road,Jefferson County, Kentucky

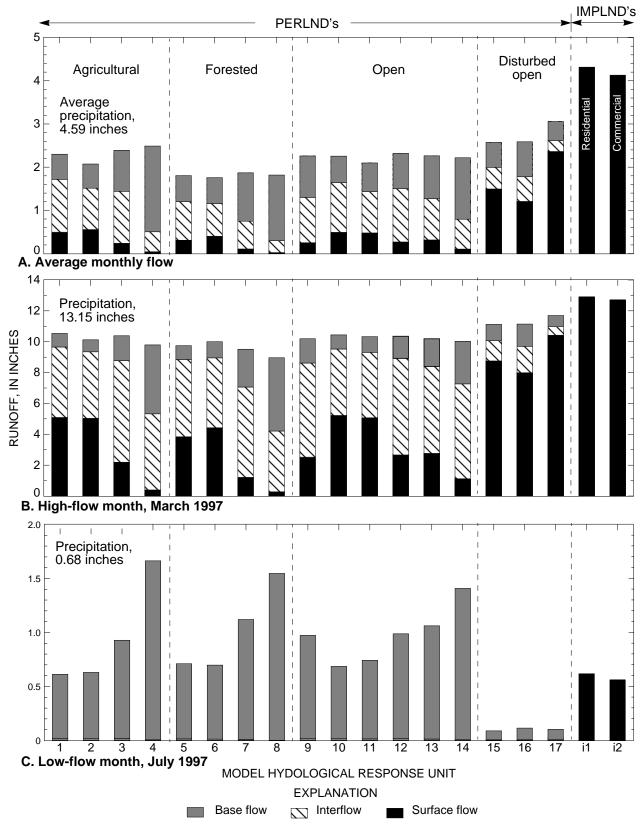
[ft³/s, cubic foot per second]

		Discharg	je (ft ³ /s)
Date	Time	Measured	Simulated
09/16/1996	1100	57.0	82.6
09/16/1996	1150	54.9	65.1
09/26/1996	1300	3.10	5.07
09/16/1997	1245	5.79	3.67

Sensitivity Analysis

A sensitivity analysis describes the effect of changes in the individual model input elements and parameter values on the resulting simulated hydrological processes. Evaluation of parameters to which the model is sensitive requires an understanding of the relative effect of each HRU on the various flow components. An iterative process, whereby the value of a given input parameter is varied while all others parameters are held constant, indicates the degree to which that parameter affects the model results.

Discharge Characteristics of the Hydrologic Response Units


The simulated amount of surface runoff, interflow, and base flow from each of the 2 IMPLND's and 17 PERLND's on average during the model calibration period (February 1996– January 1998), in a month of low flow and in a month of high flow are shown in figure 45.

IMPLND's have only a surface-flow component. Runoff from IMPLND's occurs when precipitation exceeds interception and surface storage; thus, the timing and magnitude of runoff from an IMPLND is in direct response to the timing and magnitude of precipitation. Losses through evaporation (averaging about 6 percent of total annual precipitation) were limited to water retained in these storage components. Consequently, during average and high-flow periods, a given IMPLND will generate more runoff than a given PERLND (fig. 45). Runoff values for the two types of IMPLND's were nearly identical whether on an average monthly basis, a wet month, or a dry month. This indicates that runoff from IMPLND's were insensitive to the differences defined for each IMPLND type.

Average simulated monthly surface runoff ranged from about 3 percent of total runoff for PERLND's with highly permeable soils (nos. 4, 8, and 14 in table 30) to about 24 percent for those with poorly permeable soils on slopes greater than 5 percent (nos. 2, 6, and 11). Surface runoff from PERLND's characterized as disturbed soils, which also received surface runoff from adjacent impervious surfaces (nos. 15, 16, and 17), had the largest surface-runoff component of any PERLND (averaged 62 percent of total discharge). Average monthly base flow was roughly inversely proportional to surface runoff; it was least in PERLND's with disturbed soils and largest in PERLND's with the deepest, most well-drained soils. Base flow ranged from 15 to 84 percent of total discharge. Average monthly interflow was also least in PERLND's with disturbed soils and largest in PERLND's with the deepest, most well-drained soils and ranged from 8 to 53 percent of total discharge.

During the July 1997 low-flow period (0.68 in. precipitation), simulated base flow accounted for 75 to 100 percent of the total discharge. Base flow was largest from the deepest, most well-drained soils (nos. 4, 8, and 14) and least on shallow, poorly drained soils (nos. 1, 2, 5, 6, 10, 11, 15, and 17). Surface runoff occurred only on disturbed PERLND's (nos. 15, 16, and 17) during July 1997 and only to an appreciable extent (18 percent of total discharge) on the disturbed, commercial PERLND (no. 17). Surface runoff from PERLND's 15 and 16 were about 1 percent of the total discharge in July 1997. Interflow accounted for less than 1 and up to 7 percent of total discharge. Losses through evapotranspiration during this period ranged from 114 to 616 percent of total precipitation for all PERLND's. Evaporation losses were mostly from lower-zone storage; losses were largest in deep, forested soils and smallest in shallow, disturbed soils. Therefore, under dryweather conditions, discharge was most sensitive to model parameters that affect evapotranspiration and base flow.

During the March 1997 high-flow period (13.15 in. precipitation), simulated base flow accounted for 6 to 53 percent of the total discharge from PERLND's. The relative contribution to base flow was similar to that for dry-weather conditions. Surface runoff occurred on all PERLND's during March 1997 and accounted for 3 to 89 percent of the total discharge. Surface runoff was largest for PERLND's with disturbed soils (nos. 15, 16, and 17) and poorly drained soils (nos. 1, 2, 5, 6, 10, and 11), and least in PERLND's with the deepest, most well-drained soils (nos. 4, 8, and 14).

Figure 45. Simulated surface runoff, interflow, and base flow for 17 types of pervious land surfaces (PERLND) and 2 types of impervious land surfaces (IMPLND) in the Chenoweth Run Basin, Jefferson County, Kentucky: (A) Average monthly flow; (B) High-flow month, March 1997; and (C) Low-flow month, July 1997. [Note: Hydrologic response units are defined in table 30.]

Interflow was the largest component of total discharge, except from PERLND's with poorly drained and disturbed soils and accounted for 5 to 60 percent of the total discharge. Losses through evapotranspiration during this period ranged from 12 to 19 percent of total precipitation. Total discharge from any of the PERLND's during this high-flow period nearly equalled runoff from IMPLND's, because evapotranspiration losses were small, and subsurface storage was at or near capacity. Thus, under wet-weather conditions, discharge was most sensitive to parameters that affect surface flow and interflow.

Parameter Values

The response of the model to a specified change in a parameter value indicates the relative effect of that parameter on simulated discharge. The sensitivity analysis used only constant changes in parameter values, and the values were applied equally over seasons and among the HRU's. The following paragraphs summarize the sensitivity of the model discharge characteristics (listed in tables 40-43) to changes in selected PERLND parameters.

Model sensitivity to 10 PERLND parameters was examined by doubling, then halving the calibrated parameter value and measuring the effect on the various PERLND discharge components (tables 40 and 42) and on (1) the total flow volume, (2) high- and low-flow distribution, (3) total storm volume, (4) seasonal and summer flow, (5) summer storm volume, and (6) peak stormflow (tables 41 and 43). The active-ground-water recession rate (AGWRC) parameter was decreased by 50 percent but was not increased because the calibrated value was near the maximum allowed value. The effect of altering the base (calibrated) parameter values was expressed in tables 40 and 42 as percentage changes in the water fluxes and storages from the base values. The effect of altering the calibrated values was expressed in tables 41 and 43 as the revised percentage errors for comparison to the percentage errors as calibrated.

The following paragraphs summarize the sensitivity of the model discharge characteristics to selected model parameters.

Total flow volume was most sensitive to changes in the upper-zone storage (UZSN) and evapotranspiration from the lower-zone soil (LZETP), which in turn was affected by the available lower-zone storage (LZSN). Total flow volume was also moderately affected by interception storage (CEPSC) and the activeground-water recession rate (AGWRC).

50-percent low flow and 10-percent high flow¹ were inversely proportional in that a change in value that decreased low flows increased high flows, and a change that increased low flows decreased high flows. These terms were most sensitive to the active-ground-water recession rate (AGWRC), and moderately sensitive to interflow-recession coefficient (IRC), lower-zone storage (LZSN), and infiltration rate (INFILT).

Seasonal and summer flow volumes were most sensitive to soil infiltration rate (INFILT), which controlled the amount of water that drained to the subsurface, and by upper- and lower-zone soil storage (UZSN and LZSN), which determined the availability of water for evapotranspiration. Activeground-water recession rate (AGWRC) then regulated the rate at which water that percolated down from upper- and lower-zone storages was released from active-ground-water storage.

Peak stormflow was affected most strongly by infiltration rate (INFILT), interflow (INTFLW), and upper-zone storage (UZSN) and, to a lesser extent, surface roughness (NSUR), length of the overlandflow surface (LSUR), lower-zone storage (LZSN), and evapotranspiration from the lower-zone soil (LZETP).

Interflow and surface runoff as a percentage of the total flow were most affected by interflow (INTFLW) and soil infiltration rate (INFILT) (tables 40 and 42).

The calibrated parameter values appear to yield the least overall model error. Changes in selected PERLND parameters, however, improved model fit for some runoff characteristics, but degraded model fit for other runoff characteristics (tables 41 and 43).

¹50-percent flow is the flow that is equaled or exceeded 50 percent of the time (low flow), and 10-percent flow is the flow that is equaled or exceeded 10 percent of the time (high flow).

		Stream	nflow			Perviou	s storage			Evap	otranspir	ation	
Parameter ^a	Total flow	Surface runoff	Interflow	Base flow	Upper zone	Lower zone	Ground water	Total	Interception	Upper zone	Lower zone	Ground water	Total
Base calibration ^b	66.52	39.56	13.80	13.93	0.61	4.27	1.31	6.21	8.16	25.17	8.03	0.79	43.91
CEPSC (2x)	-1.1	4	9	-3.4	1.7	1.0	-2.6	.4	45.7	-9.1	-7.6	-10.1	1.7
CEPSC (0.5x)	.8	.3	.4	2.4	-1.0	5	1.4	2	-28.2	5.6	4.4	5.1	-1.1
INFILT (2x)	.7	-11.9	-4.3	41.4	-9.2	3.4	24.1	6.5	.0	-7.5	11.0	11.4	-2.1
INFILT (0.5x)	2	12.7	-5.7	-31.4	7.1	-3.8	-22.4	-6.7	.0	5.6	-8.6	-10.1	1.5
LZSN (2x)	-4.3	-6.1	-17.2	14.0	-6.3	73.9	6.9	51.6	.0	-5.6	5.9	8.9	-2.0
LZSN (0.5x)	1.8	8.9	15.7	-32.3	7.1	-28.5	-30.8	-25.3	.0	5.2	-5.9	-10.1	1.7
UZSN (2x)	-5.7	-5.8	-14.2	3.2	112.0	3.2	3.4	13.9	.0	15.5	-11.1	-16.5	6.6
UZSN (0.5x)	6.1	5.4	14.8	-1.0	-54.3	-3.7	-1.6	-8.2	.0	-18.8	13.3	20.3	-8.0
INTFW (2x)	.3	-12.5	40.7	-3.3	-1.0	7	-2.2	-1.0	.0	9	.7	1.3	3
INTFW (0.5x)	4	12.2	-41.8	4.7	1.5	1.1	3.6	1.5	.0	1.2	-1.0	-2.5	.4
IRC (2x)	.0	.0	1	.0	.0	.0	.0	3.4	.0	.0	.0	.0	.0
IRC (0.5x)	.0	.0	.0	.0	.0	.0	.0	1	.0	.0	.0	.0	.0
LZETP (2x)	-5.1	-5.1	-11.5	1.5	-9.0	-12.6	.3	-9.5	.0	-8.3	73.0	7.6	8.7
LZETP (0.5x)	3.0	4.5	9.9	-8.2	7.3	12.9	-4.0	8.7	.0	5.6	-47.4	-8.9	-5.6
NSUR (2x)	2	-3.1	6.2	1.7	.4	.3	.6	.4	.0	.5	2	-1.3	.2
NSUR (0.5x)	.2	2.9	-5.8	-1.6	4	3	7	4	.0	5	.4	.0	2
LSUR (2x)	2	-3.1	6.2	1.7	.4	.3	.6	.4	.0	.5	2	-1.3	.2
LSUR (0.5x)	.2	2.9	-5.7	-1.6	4	3	7	4	.0	5	.4	.0	2
KVARY (2x)	.5	.0	.0	2.1	.0	.0	-20.4	-4.3	.0	.0	.1	-2.5	.0
KVARY (0.5x)	3	.0	.0	-1.6	.0	.0	15.2	3.2	.0	.0	.0	.0	.0
AGWRC (0.5x)	3.3	1	6	13.0	7	7	-98.6	-21.4	.0	4	3.6	-62.0	7
N (0.8x)	.0	.0	.0	.0	.0	.0	.0	.0	0	.0	.0	.0	.0
N (1.2x)	.0	.0	.0	.0	.0	.0	.0	.0	0	.0	.0	.0	.0

Table 40. Sensitivity of simulated-flow characteristics to changes in selected model parameters expressed as a percentage change relative to the base calibration at Chenoweth Run at Ruckriegel Parkway, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998

^aINFILT, soil infiltration rate; LZSN, lower zone nominal storage; UZSN, upper zone nominal storage; INTFW, interflow parameter; IRC, interflow recession parameter; LZETP, lower zone evapotranspiration; CEPSC, interception storage; NSUR, Manning's roughness coefficient for overland flow plane; LSUR, length of the overland flow plane; KVARY, ground-water recession-rate behavior; AGWRC, ground-water recession rate relative to previous day's rate; n, Manning's roughness coefficient for channels; (x), indicates the constant multiplied by the parameter value.

^bBase calibration, base line for the calibrated model in inches of water on the watershed.

	Percent error									
Parameter ^a	Total flow volume	50-percent lowest flow	10-percent highest flow	Seasonal volume ^b	Summer storm volume	Average storm peak				
Base calibration ^c	-5.4	-10.3	-5.0	16.2	35.0	-12.5				
CEPSC (2x)	-6.5	-15.1	-5.4	14.9	34.0	-12.8				
CEPSC (0.5x)	-4.7	-7.2	-4.8	16.8	35.4	-12.5				
INFILT (2x)	-4.8	20.2	-10.7	20.9	31.9	-21.5				
INFILT (0.5x)	-5.6	-36.4	.8	12.4	39.4	-3.8				
LZSN (2x)	-9.5	-2.4	-10.7	20.8	36.1	-17.6				
LZSN (0.5x)	-3.7	-38.6	1.3	8.7	37.5	-5.6				
UZSN (2x)	-10.8	-6.6	-11.9	14.0	27.8	-19.4				
UZSN (0.5x)	.3	-11.3	.9	19.9	41.1	-7.3				
INTFW (2x)	-5.1	-12.0	-6.8	16.3	31.2	-20.8				
INTFW (0.5x)	-5.8	-7.6	-2.7	16.5	38.1	-5.2				
IRC (2x)	-5.5	31.1	-12.2	16.7	34.5	-13.8				
IRC (0.5x)	-5.4	-14.2	-1.7	16.2	36.5	-11.1				
LZETP (2x)	-10.2	-15.9	-10.0	14.8	23.6	-17.0				
LZETP (0.5x)	-2.6	-14.2	-1.2	13.7	38.3	-8.7				
NSUR (2x)	-5.6	-9.2	-6.2	16.1	33.0	-17.6				
NSUR (0.5x)	-5.3	-11.6	-4.0	16.3	37.0	-8.0				
LSUR (2x)	-5.6	-9.2	-6.2	16.1	33.0	-17.6				
LSUR (0.5x)	-5.3	-11.6	-4.0	16.3	37.0	-8.0				
KVARY (2x)	-5.0	-14.8	-4.4	14.2	35.0	-12.5				
KVARY (0.5x)	-5.7	-7.4	-5.4	17.5	35.5	-12.5				
AGWRC (0.5x)	-2.3	-77.8	3.3	2.5	37.3	-11.1				
N (0.8x)	-5.5	-10.5	-5.1	16.2	35.0	-8.0				
N (1.2x)	-5.4	-10.0	-5.0	16.3	35.0	-16.2				

Table 41. Sensitivity of simulated-flow characteristics to changes in selected model parameters expressed as a percentage error relative to the observed flow characteristics at Chenoweth Run at Ruckriegel Parkway, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998

^aINFILT, soil infiltration rate; LZSN, lower zone nominal storage; UZSN, upper zone nominal storage; INTFW, interflow parameter; IRC, interflow recession parameter; LZETP, lower zone evapotranspiration; CEPSC, interception storage; NSUR, Manning's roughness coefficient for overland flow plane; LSUR, length of the overland flow plane; KVARY, ground-water recession-rate behavior; AGWRC, ground-water recession rate relative to previous day's rate; n, Manning's roughness coefficient for channels; (x), indicates the constant multiplied by the parameter value.

^bAbsolute value of difference between summer flow volume error and winter flow volume error.

^cBase calibration, base line for the calibrated model as a percentage difference from the observed flow characteristics.

		Strea	mflow			Perviou	s storage			Evap	otranspir	ation	
Parameter ^a	Total flow	Surface runoff	Interflow	Base flow	Upper zone	Lower zone	Ground water	Total	Interception	Upper zone	Lower zone	Ground water	Total
Base calibration ^b	73.58	29.06	16.93	16.10	0.77	4.98	1.76	7.54	9.24	28.74	9.34	0.92	49.26
CEPSC (2x)	-1.1	3	8	-3.6	1.6	1.1	-2.6	.4	43.2	-9.2	-7.8	-8.7	1.6
CEPSC (0.5x)	.7	.2	.3	2.4	9	5	1.5	1	-26.7	5.3	4.4	5.4	-1.0
INFILT (2x)	.7	-16.5	-7.1	40.7	-9.2	3.2	24.4	6.9	.0	-7.8	11.1	13.0	-2.2
INFILT (0.5x)	1	18.9	-3.8	-30.8	7.1	-3.6	-22.5	-6.9	.0	5.9	-8.9	-8.7	1.6
LZSN (2x)	-4.5	-8.4	-18.3	14.0	-6.4	72.8	7.6	49.1	.0	-6.1	6.4	9.8	-2.2
LZSN (0.5x)	1.9	13.1	17.1	-33.0	7.1	-27.3	-30.2	-24.3	.0	5.5	-6.5	-8.7	1.8
UZSN (2x)	-5.4	-9.0	-14.4	3.4	110.9	3.2	3.3	14.2	.0	13.8	-10.9	-15.2	5.7
UZSN (0.5x)	5.8	6.4	14.9	9	-54.1	-3.8	-1.4	-8.3	.0	-17.5	13.4	21.7	-7.2
INTFW (2x)	.3	-17.2	33.9	-3.1	-1.0	7	-2.2	-1.0	.0	9	.9	2.2	4
INTFW (0.5x)	4	18.2	-37.7	4.7	1.5	1.1	3.5	1.6	.0	1.2	-1.2	-1.1	.4
IRC (2x)	.0	.0	1	.0	.0	.0	.0	3.2	.0	.0	.0	.0	.0
IRC (0.5x)	.0	.0	.0	.0	.0	.0	.0	1	.0	.0	.0	.0	.0
LZETP (2x)	-5.4	-6.7	-12.5	.9	-9.6	-13.4	1	-9.9	.0	-8.6	74.3	9.8	9.2
LZETP (0.5x)	3.2	6.3	10.8	-8.0	7.5	13.5	-4.5	8.6	.0	5.9	-48.7	-8.7	-6.0
NSUR (2x)	2	-4.6	5.8	1.4	.4	.3	.7	.4	.0	.5	3	.0	.2
NSUR (0.5x)	.2	4.4	-5.6	-1.3	4	3	7	4	.0	5	.3	1.1	2
LSUR (2x)	2	-4.6	5.8	1.4	.4	.3	.7	.4	.0	.5	3	.0	.2
LSUR (0.5x)	.2	4.4	-5.6	-1.3	4	3	7	4	.0	5	.3	1.1	2
KVARY (2x)	.5	.0	.0	2.5	.0	.0	-20.4	-4.8	.0	.0	.0	-1.1	.0
KVARY (0.5x)	4	.0	.0	-1.8	.0	.0	15.3	3.6	.0	.25	.0	1.1	.0
AGWRC (0.5x)	3.6	1	5	14.9	6	6	-98.8	-23.5	.0	4	3.3	-62.0	8
N (0.8x)	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
N (1.2x)	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0

Table 42. Sensitivity of simulated-flow characteristics to changes in selected model parameters expressed as a percentage change relative to the base calibration at Chenoweth Run at Gelhaus Lane, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998

^aINFILT, soil infiltration rate; LZSN, lower zone nominal storage; UZSN, upper zone nominal storage; INTFW, interflow parameter; IRC, interflow recession parameter; LZETP, lower zone evapotranspiration; CEPSC, interception storage; NSUR, Manning's roughness coefficient for overland flow plane; LSUR, length of the overland flow plane; KVARY, ground-water recession-rate behavior; AGWRC, ground-water recession rate relative to previous day's rate; n, Manning's roughness coefficient for channels; (x), indicates the constant multiplied by the parameter value.

^bBase calibration, base line for the calibrated model in inches of water on the watershed.

	Percent error									
Parameter ^a	Total flow volume	50-percent lowest flow	10-percent highest flow	Seasonal volume ^b	Summer storm volume	Average storm peak				
Base calibration ^c	3.1	12.4	-2.7	9.3	11.8	-9.7				
CEPSC (2x)	1.9	8.7	-3.1	7.8	10.4	-10.2				
CEPSC (0.5x)	3.7	14.8	-2.5	9.9	12.4	-9.7				
INFILT (2x)	3.8	36.2	-9.6	15.0	9.2	-23.1				
INFILT (0.5x)	2.9	-7.6	4.1	4.6	16.1	2.6				
LZSN (2x)	-1.6	19.5	-9.9	14.3	14.1	-17.1				
LZSN (0.5x)	5.0	-8.7	5.2	.2	12.7	.1				
UZSN (2x)	-2.5	14.8	-10.5	7.9	6.1	-17.6				
UZSN (0.5x)	9.0	12.7	4.2	12.6	17.4	-3.8				
INTFW (2x)	3.4	11.4	-3.9	9.3	7.6	-21.6				
INTFW (0.5x)	2.6	14.2	9	9.4	15.6	.6				
IRC (2x)	3.0	41.6	-13.2	10.3	13.4	-12.7				
IRC (0.5x)	3.1	9.5	1.5	9.0	12.5	-7.3				
LZETP (2x)	-2.5	7.2	-8.6	9.4	2.5	-16.2				
LZETP (0.5x)	6.4	9.8	2.1	6.1	14.9	-4.3				
NSUR (2x)	2.9	13.4	-3.8	9.1	8.9	-15.2				
NSUR (0.5x)	3.2	11.5	-1.6	9.3	14.3	-4.8				
LSUR (2x)	2.9	13.4	-3.8	9.1	8.9	-15.2				
LSUR (0.5x)	3.2	11.5	-1.6	9.3	14.4	-4.8				
KVARY (2x)	3.6	8.9	-2.0	6.6	11.8	-9.7				
KVARY (0.5x)	2.6	14.9	-3.2	10.8	12.4	-9.7				
AGWRC (0.5x)	6.7	-38.1	9.8	8.9	13.7	-7.3				
N (0.8x)	3.0	12.3	-2.8	9.1	11.8	-5.3				
N (1.2x)	3.1	12.7	-2.7	9.3	11.9	-14.7				

Table 43. Sensitivity of simulated-flow characteristics to changes in selected model parameters expressed as a percentage error relative to the observed flow characteristics at Chenoweth Run at Gelhaus Lane, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998

^aINFILT, soil infiltration rate; LZSN, lower zone nominal storage; UZSN, upper zone nominal storage; INTFW, interflow parameter; IRC, interflow recession parameter; LZETP, lower zone evapotranspiration; CEPSC, interception storage; NSUR, Manning's roughness coefficient for overland flow plane; LSUR, length of the overland flow plane; KVARY, ground-water recession-rate behavior; AGWRC, ground-water recession rate relative to previous day's rate; n, Manning's roughness coefficient for channels; (x), indicates the constant multiplied by the parameter value.

^bAbsolute value of difference between summer flow volume error and winter flow volume error.

^cBase calibration, base line for the calibrated model as a percentage difference from the observed flow characteristics.

SIMULATION OF WATER QUALITY

Water-quality simulations included those for contribution of suspended sediment and TPO_4 from point and nonpoint sources and transport of these constituents through the basin. The model provides a rudimentary simulation of TPO_4 yield and transport, as only selected instream processes affecting TPO_4 were simulated. Simulation of TPO_4 in HSPF required data on temperature, sediment, dissolved oxygen and biochemical oxygen demand (BOD). Temperature data were input from observed and estimated data. Dissolved-oxygen and BOD simulation in HSPF were activated within the OXRX subroutine of the RCHRES secondary module RQUAL (table 27).

The water-quality-calibration process included steps to adjust appropriate model parameters to obtain representative total constituent loads and yields from the four major classes of pervious land use and the two classes of impervious land use (table 30). Calibration included landsurface and instream calibration phases. Instream processes affecting nutrients are extremely complex because of the numerous physical, chemical, and biological factors that affect nutrient concentrations. The calibrations were based on comparisons of simulated and estimated constituent loads during the whole 24-month calibration period, annually, monthly, and selected storm periods (see estimated loads in tables 22 and 26).

First-order transformations of nutrients in RCHRES are dependent upon water temperature. Water temperature measured at the Ruckriegel Parkway and Gelhaus Lane gaging sites was used in the model. Missing periods of stream-water temperature were estimated by regression against air temperature. (See "Analysis and Summary of Hydrologic Conditions: Water Quality.") Alternatively, missing stream temperature data could be estimated using the RCHRES secondary module HTRCH, which requires data for solar radiation, cloud cover, dewpoint temperature, air temperature, and wind speed.

Sediment

Calibration of sediment concentrations and loads follows the calibration of flow and precedes the calibration of other water-quality constituents. Simulations of suspended-sediment transport were made by use of the HSPF secondary modules SEDMNT for PERLND's, SOLIDS for IMPLND's, and SEDTRN for RCHRES (table 27). Suspendedsolids loading from the three WWTP's, a minor source of suspended solids compared to nonpoint sources, were directed to the appropriate RCHRES. (The Jeffersontown WWTP flows into RCHRES 8, the Chenoweth Hills WWTP flows into RCHRES 9, and the Lake of the Woods WWTP flows into RCHRES 10.) The processes of detachment of sediment from the soil matrix and washoff of this sediment are simulated in SEDMNT on the basis of rainfall intensity, surface runoff, and the model parameters that control the accumulation, detachment, and transport of soils. SEDMNT also simulates production of sediment through gully or rill erosion by scour of the soil matrix. PERLND's were assumed in the model to be an infinite source of sediment. An erosion-related vegetative-cover factor (FACTOR) was varied monthly and by HRU type (see the HSPF UCI file in Appendix 5).

SOLIDS determines the sediment available for washoff from IMPLND's by use of a userdefined net-accumulation rate (which varied monthly) and the transport parameters. Solids removal that may occur independent of flow, such as by street sweeping, was set to zero.

One goal of sediment calibration was attaining an approximate balance between the accumulation and generation of sediment particles and the washoff or transport of sediment, such that sediment storage on the land surface will not be continually increasing or decreasing during the model calibration period. (Donigian and others, 1984). The sediment calibration was achieved by first adjusting the load from PERLND's and IMPLND's to match observed loads at the Ruckriegel Parkway and Gelhaus Lane sites. Once a reasonable match between simulated and observed loads was obtained, the soil detachment was approximately balanced with the soil washoff for each PERLND. Solids accumulation and washoff from IMPLND's was adjusted to match simulated

and observed loads at the Ruckriegel Parkway site, which had the largest percentage of impervious area of any of the sampling sites in the basin (total impervious area was about 30 percent).

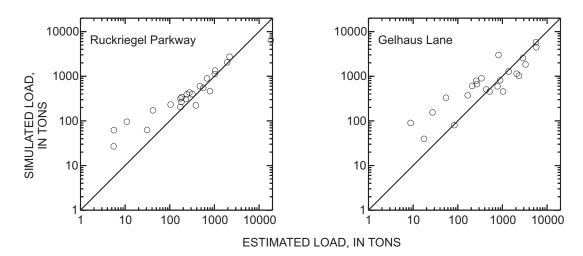
The open, developed HRU's have the highest suspended-sediment yield, whereas yields from forested HRU's are about an order of magnitude lower than these (table 44). Suspended-sediment yields are about 50 percent higher for most HRU's in 1997 compared to yields in 1996, because of the March 1997 flood.

The suspended-sediment load from PERLND's and IMPLND's is transported, deposited, and scoured in the RCHRES by SEDTRN. Transport, deposition, and scour processes in the RCHRES are functions of the sediment size, settling velocity, density, and erodibility, the bed depth, and the critical shear stress for scour and deposition. RCHRES sediment transport is computed separately for each sediment size fraction-sand, silt, and clay-whereas transport of sediments from the land surfaces is simulated as total suspended sediment. The particlesize distribution of the suspended-sediment yield from land surfaces was set to the average size distribution reported by Flint (1983) for similar, nearby basins in the Bluegrass Region-1.6 percent sand, 37.4 percent silt, and 61 percent clay.

During the adjustment of sediment loads from PERLND's and IMPLND's, the pond RCHRES's (nos. 15-23) sediment parameters were set such that all sand, most silt, and some clay-size particles were deposited. During this adjustment process, the channel RCHRES's (nos. 1-14) sediment parameters were set such that overland cohesive sediment loads (silt and clay) would "wash through" the RCHRES. RCHRES's 1-14 sediment parameters were later adjusted to allow sediment deposition and scour after satisfactory overland sediment loads were obtained. This improved the match between simulated and observed loads during some storms. Sediment deposition generally occurs during minor storms and at the beginning and end of major storms. The deposited sediment was then

available for scour during major storms, and thus, the total sediment load transported during the peakflow period of the storm was increased to improve the simulation of the storm loads.

Sediment deposition and scour for silt and clays in channels is largely controlled by the bed shear stress (TAU), the values of the shear-stress threshold below which deposition occurs (TAUCD), and the shear-stress threshold above which scour occurs (TAUCS). Over time, the deposition and scour in channels should balance. Initial values of TAU were determined by examining the modelcalculated TAU values for several reaches; values of TAUCD, and correspondingly TAUCS, were then adjusted to balance deposition with scour. This usually entailed an upward adjustment of these values because, in general, the cessation of surface runoff from PERLND's stopped the inflow of sediment at the same time that the TAUCD threshold was reached. The deposition and scour of sand-size particles was determined by the Toffaleti method for the pond RCHRES's (nos. 15-23) and by a power function for channel RCHRES's (nos. 1-14).


Annual and mean-annual loads of simulated total suspended sediment and estimated total suspended solids are shown in table 45. The meanannual simulated suspended-sediment loads ranged from -33 to -28 percent of the estimated meanannual suspended-solids loads at the Ruckriegel Parkway and Gelhaus Lane sites. Sediment load was undersimulated during the year of major flooding (1997), in particular. Comparisons of simulated and estimated monthly loads (fig. 46) indicate a tendency to oversimulate during months of low sediment transport. Annual and mean-annual errors provided a fair sediment simulation (25 to 35 percent error), based on criteria suggested by Donigian and others, (1984). **Table 44.** Simulated suspended-sediment yields by model hydrologic response unit in the Chenoweth Run Basin,Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998

[<, less than; >, greater than]

			Sediment yield (ton/acre/year)	
Hydrologic response unit	Description	12-month period ending 01/1997	12-month period ending 01/1998	Average
	Pervious hydrologic respon	se units		
1	Pasture/crop, low-permeability soils, 0 to 5 percent slope	3.74	5.47	4.60
2	Pasture/crop, low-permeability soils, >5 percent slope	4.01	5.52	4.76
3	Pasture/crop, moderate-permeability soils, 0 to 5 percent slope	3.26	4.67	3.96
4	Pasture/crop, high-permeability soils, >5 percent slope	2.10	3.70	2.90
5	Forested, low-permeability soils, 0 to 5 percent slope	.170	.433	.302
6	Forested, low-permeability soils, >5 percent slope	.217	.426	.322
7	Forested, moderate-permeability soils, 0 to 5 percent slope	.106	.188	.147
8	Forested, high-permeability soils, >5 percent slope	.054	.105	.080
9	Open, vacant/undeveloped uses, low-permeability soils, 0 to 5 percent slopes	3.93	5.59	4.76
10	Open, developed uses, low-permeability soils, 0 to 5 percent slopes	8.67	10.6	9.64
11	Open, developed uses, low-permeability soils, >5 percent slopes	8.66	10.5	9.58
12	Open, developed uses, moderate-permeability soils, 0 to 5 percent slopes	8.50	10.0	9.25
13	Open, developed uses, moderate-permeability soils, >5 percent slopes	8.57	10.0	9.28
14	Open, developed uses, high-permeability soils, >5 percent slopes	8.32	9.61	8.96
15	Open single-family residential, disturbed low-permeability soils, all slopes	3.84	5.16	4.50
16	Open single-family residential, disturbed moderate- permeability soils, 0 to 5 percent slopes	1.32	1.93	1.62
17	Open commercial/industrial/multi-family residential, disturbed moderate-permeability soils, 0 to 5 percent slopes	1.55	2.26	1.90
	Impervious hydrologic respo	nse units		
1	Single-family residential/parks/public/vacant hydrologically effective impervious areas, all slopes	.789	.799	.794
2	Commercial/industrial/multi-family residential hydrologically effective impervious areas, all slopes	.823	.740	.782

Table 45. Annual ESTIMATOR suspended-solids loads and Hydrological Simulation Program—Fortran
(HSPF)-simulated suspended-sediment loads in the Chenoweth Run Basin, Jefferson County, Kentucky,
during the model calibration period, February 1996–January 1998

	Measured rainfall	Estimator suspended-solids load		Simulated suspended-sediment load		Difference	
Period	(inches)	Tons Ton/acre		Tons	Ton/acre	Percent	
		Chenoweth	Run at Ruckriegel	Parkway			
02/1996-01/1997	56.81	6,150	1.78	7,790	2.26	27.0	
02/1997-01/1998	53.33	23,300	6.77	11,900	3.46	-48.9	
Mean	55.07	14,700	4.27	9,850	2.86	-33.0	
		Chenow	eth Run at Gelhaus	Lane			
02/1996-01/1997	56.81	17,700	2.42	16,400	2.23	-7.8	
02/1997-01/1998	53.33	42,400	5.79	26,700	3.65	-37.0	
Mean	55.07	30,100	4.10	21,500	2.94	-28.3	

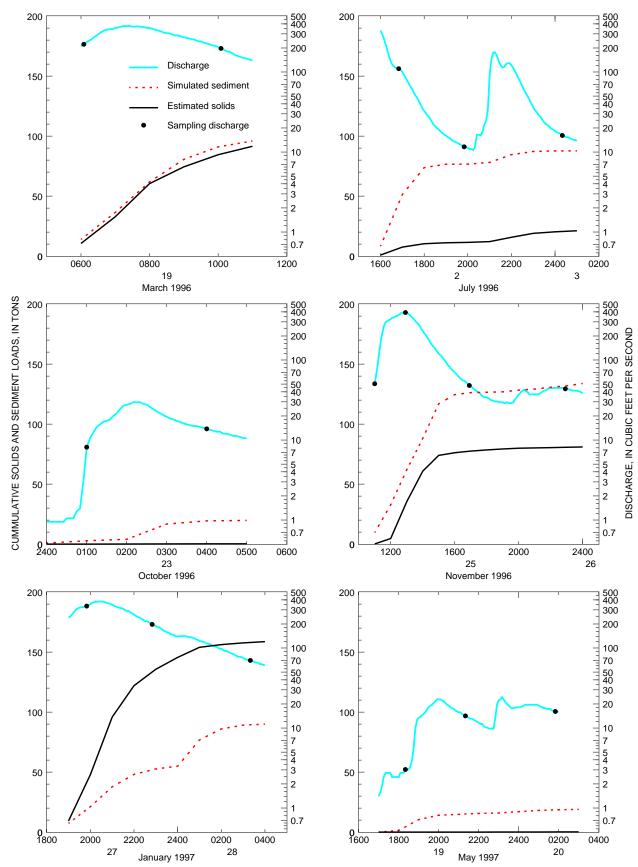


Figure 46. Comparison of the monthly ESTIMATOR suspended-solids loads and the monthly Hydrological Simulation Program—Fortran (HSPF)-simulated suspended-sediment loads in the Chenoweth Run Basin, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

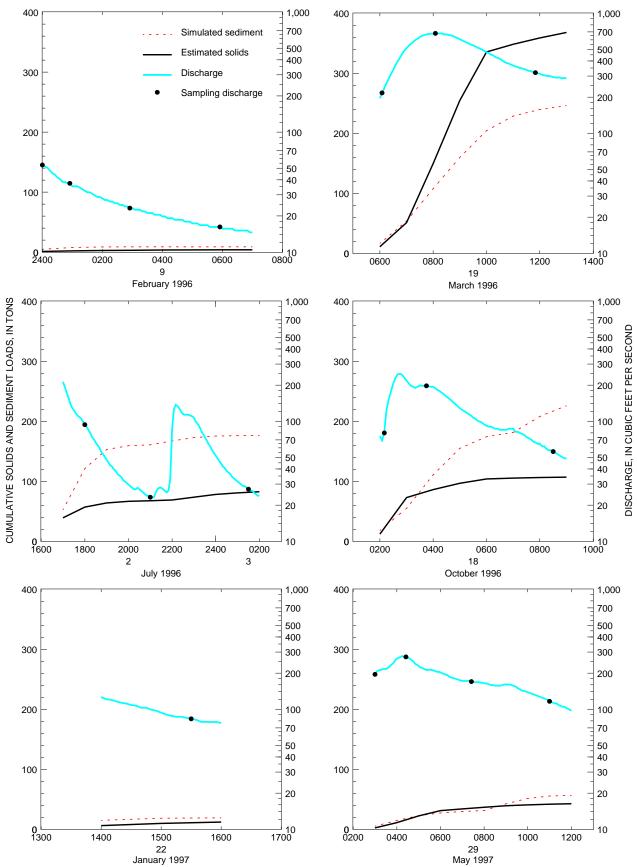

Observed total suspended-solids concentrations were reported for 9 storms at the Ruckriegel Parkway site and 6 storms at the Gelhaus Lane site; these storms represented a total of 23 and 27 samples, respectively, at the 2 sites. Comparisons of simulated and estimated storm loads are shown in table 46 and figures 47–49. Discharge and also the sediment loads tended to be oversimulated during the smallest storms sampled during summer and early fall low-flow periods. Percentage errors in simulation of individual storm sediment loads were, as would be expected, generally much larger than percentage errors in annual and mean-annual loads.

Table 46. Estimated suspended-solids loads and Hydrological Simulation Program—Fortran (HSPF)-simulated suspended-sediment loads for selected storms in the Chenoweth Run Basin, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998

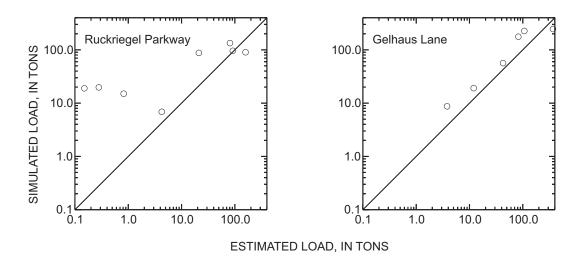

Period					Load		
						Diffe	erence
Begin (Julian date/time)	End (Julian date/time)	Observed flow (acre-feet)	Simulated flow (acre-feet)	Estimated suspended solids (tons)	Simulated suspended sediment (tons)	Tons	Percent
		Cher	noweth Run at R	uckriegel Parkway	,		
19960208/1700	19960209/0100	11.0	18.5	0.82	15.0	14.2	1,730
19960319/0500	19960319/1100	125	98.6	91.5	95.9	4.4	4.8
19960606/2200	19960606/2300	8.15	6.82	4.25	6.88	2.63	61.9
19960702/1500	19960703/0100	53.7	75.5	21.1	87.7	66.6	316
19961022/2300	19961023/0500	6.18	19.5	.28	19.8	19.5	6,960
19961125/1000	19961125/2400	123	111	80.9	134.0	53.1	65.6
19970127/1800	19970128/0400	160	104	159	90.0	-69	-43.4
19970519/1600	19970520/0300	11.8	27.9	.15	19.0	18.8	12,600
		C	Chenoweth Run a	t Gelhaus Lane			
19960208/2300	19960209/0700	16.6	21.4	3.79	8.71	4.92	130
19960319/0500	19960319/1300	274	203	368	246	-122	-33.2
19960702/1600	19960703/0200	58.5	101	82.5	176	93.5	113
19961018/0100	19961018/0900	74.0	142	107	226	119	111
19970122/1300	19970122/1600	28.0	16.5	12.0	19.1	7.1	59.2
19970529/0200	19970529/1200	137	116	42.6	56.4	13.8	32.4

Figure 47. Hourly suspended-solids and suspended-sediment loads and 5-minute discharge and sampling discharge during selected storms, Chenoweth Run at Ruckriegel Parkway, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

Figure 48. Hourly suspended-solids and suspended-sediment loads and 5-minute discharge and sampling discharge during selected storms, Chenoweth Run at Gelhaus Lane, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

Figure 49. Comparison of total estimated suspended-solids loads and Hydrological Simulation Program—Fortran (HSPF)-simulated suspended-sediment loads for selected storms in the Chenoweth Run Basin, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

Total Orthophosphate (TPO₄)

The simulation of TPO_4 included representation of point and nonpoint sources, as well as some instream processes, including settling of suspended TPO_4 , adsorption and de-adsorption of PO_4 on suspended sediments, and release of PO_4 by benthic organisms and BOD decay. TPO_4 hourly point-source-load estimates were included as direct inflows to three main-channel RCHRES. The Jeffersontown WWTP flows into RCHRES 8, the Chenoweth Hills WWTP flows into RCHRES 9, and the Lake of the Woods WWTP flows into RCHRES 10. (See WWTP flow and sediment inputs.)

TPO₄ yields from pervious areas were simulated with the HSPF general water-quality secondary module, PQUAL, in the PERLND module. PQUAL accounts for a buildup and washoff of a constituent as a dissolved fraction on the surface and the entrainment of a constituent associated with sediment erosion as a suspended fraction. The quantity of a dissolved constituent available for washoff is controlled by the amount of surface flow and a user-defined accumulation rate (ACQOP), maximum storage limit (AQOLIM), and a washoff-susceptibility term (WSQOP). The quantity of a suspended constituent is directly proportional to the quantity of detached and scoured soils simulated by SEDMNT (as previously described) and a potency factor associated with each sediment source (POTFW for detached soil and POTFS for scoured soil). Phosphorus can also be input as atmospheric wet or dry deposition; however, this was not simulated explicitly because local information on atmospheric sources of TPO_4 was not available. The atmospheric source contribution was, however, represented in the general constituent accumulations.

The PERLND accumulation rates (ACQOP) ranged from 0.0001 to 0.0002 lb TPO₄/acre/d, the upper storage limit (AQOLIM) ranged from 0.001 to 0.006 lb TPO₄ /acre and the storedorthophosphate washoff-susceptibility factor (WSQOP) ranged from 1.9 to 5.4 in/h. Washoff potency factors for detached sediment (POTFW) ranged from 0.008 to 0.82 lb TPO₄ /ton sediment and the potency factor for scoured sediment (POTFS) ranged from 0.008 to 0.062 lb TPO₄/ton sediment. Generally, the largest values for these terms were associated with disturbed PERLND's. Specific parameter values for each HRU are given in the PQUAL input block of the HSPF UCI file in Appendix 5. As calibrated, average annual TPO_4 vields for pervious areas (table 47) ranged from 0.001 to 1.36 lb/acre, for the forest and singlefamily-residential HRU's, respectively.

Table 47. Simulated total orthophosphate yields by model hydrologic response unit in the Chenoweth Run Basin,Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998

[<, less than; >, greater than]

			Total orthophosphate yield (pound/acre/year)		
Hydrologic response unit	Description	12-month period ending 01/1997	12-month period ending 01/1998	Average	
	Pervious hydrologic response	se units			
1	Pasture/crop, low-permeability soils, 0 to 5 percent slope	0.183	0.243	0.213	
2	Pasture/crop, low-permeability soils, >5 percent slope	.201	.247	.224	
3	Pasture/crop, moderate-permeability soils, 0 to 5 percent slope	.152	.212	.182	
4	Pasture/crop, high-permeability soils, >5 percent slope	.096	.168	.132	
5	Forested, low-permeability soils, 0 to 5 percent slope	.004	.006	.005	
6	Forested, low-permeability soils, >5 percent slope	.007	.006	.006	
7	Forested, moderate-permeability soils, 0 to 5 percent slope	.002	.003	.002	
8	Forested, high-permeability soils, >5 percent slope	.001	.001	.001	
9	Open, vacant/undeveloped uses, low-permeability soils, 0 to 5 percent slopes	.278	.387	.332	
10	Open, developed uses, low-permeability soils, 0 to 5 percent slopes	.611	.716	.664	
11	Open, developed uses, low-permeability soils, >5 percent slopes	.610	.712	.661	
12	Open, developed uses, moderate-permeability soils, 0 to 5 percent slopes	.596	.690	.643	
13	Open, developed uses, moderate-permeability soils, >5 percent slopes	.603	.690	.646	
14	Open, developed uses, high-permeability soils, >5 percent slopes	.582	.669	.626	
15	Open single-family residential, disturbed low-permeability soils, all slopes	1.21	1.50	1.36	
16	Open single-family residential, disturbed moderate- permeability soils, 0 to 5 percent slopes	.564	.683	.624	
17	Open commercial/industrial/multi-family residential, disturbed moderate-permeability soils, 0 to 5 percent slopes	1.00	1.21	1.11	
	Impervious hydrologic respo	nse units			
1	Single-family residential/parks/public/vacant hydrologically effective impervious areas, all slopes	.599	.599	.599	
2	Commercial/industrial/multi-family residential hydrologically effective impervious areas, all slopes	.571	.510	.544	

These represent hypothesized yields within the model framework, as no HRU-scale sampling was done as part of this study.

(HSPF provides an option for detailed simulation of TPO_4 flux in soil layers of pervious areas by use of the PHOS secondary module of PERLND; however, additional soils data (such as soil temperature) are needed for these detailed simulations.)

TPO₄ yields from impervious areas were simulated by use of the HSPF general water-quality secondary module, IQUAL, in the IMPLND module. Similar to PQUAL, this secondary module simulates accumulation and washoff of dissolved constituents and washoff of constituents associated with sediment, which was simulated in the SOLIDS secondary module of IMPLND. The accumulation rate (ACQOP) was 0.001 lb TPO₄/d. The stored orthophosphate washoff-susceptibility factor (WSQOP) was 5.4 in/h for both IMPLND types. The upper storage limit (SQOLIM) ranged from 0.045 lb TPO₄/acre on IMPLND1 to 0.035 lb TPO_{4} /acre on IMPLND2. All values for these terms are given in the IQUAL input block of the HSPF UCI file in Appendix 5. The simulated average annual TPO₄ yields for impervious areas (table 47) were approximately 0.5 lb TPO₄/acre for both IMPLND's.

All mass transfers in HSPF must be explicitly specified in the UCI input files. Yields of suspended and dissolved TPO₄ from PERLND's and IMPLND's were directed to appropriate RCHRES input members in the MASS-LINK block of the UCI file. Suspended PO_4 from PERLND's and IMPLND's was proportioned so that 10 percent was associated with sand-size particles, 20 percent with silt-size particles, and 70 percent with clay-size particles. A number of studies have indicated that fine-grain sediments provide the main bonding sites for adsorption of phosphorus (White, 1981; Raush and Schreiber, 1981; Carter and others, 1974; Brown and others, 1981). These studies indicate that phosphorus bonding with clay-size particles is about twice that for an equivalent mass of sand-size particles.

Although a number of transformations of PO_4 can occur in the stream reaches (RCHRES), only a partial set of these possible transformations was modeled for this study. The modeled transformations included settling of suspended

TPO₄, adsorption and de-adsorption of PO₄ on suspended sediments, and release of PO₄ by benthic organisms and BOD decay. Other transformations of PO₄ that could be simulated, but were not, included uptake and release by phytoplankton and zooplankton, and benthic-algae uptake. These additional processes could be incorporated with additional data.

Changes of soluble phosphorus to an absorbed phase (adsorption) and from an adsorbed phase to a dissolved phase (de-adsorption) was simulated in HSPF with a linear-equilibrium isotherm defined by the user-supplied adsorption coefficient (Kd in NUT-ADSPARM block) for each of the three size fractions—sand, silt, and clay. In the calibrated model, PO_4 partition coefficients (Kd) ranged from 400 to 900 mL/g; values were higher for the silt/clay fractions than for the sand-size fractions.

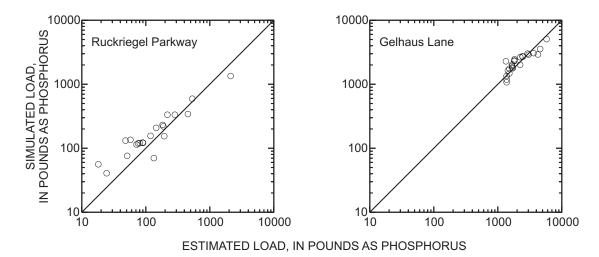
Release of soluble PO_4 by benthic organisms is directly proportional to user-defined release rates under aerobic and anaerobic conditions (BRPO(1) and BRPO₄(2) respectively, in the NUT-BENPARM block) and benthal scour (SCRVEL and SCRUML in the RQUAL SCOUR-PARMS block). Aerobic and anaerobic conditions are determined by the current simulated value of dissolved oxygen in the OXRX module and the user-defined threshold value that determines which condition exists (ANAER in the NUT-BENPARM section of the HSPF UCI file).

BOD-decay release of soluble PO_4 was a function of the total BOD decay determined in the OXRX module and a stoichiometric conversion factor. A number of interconnected subordinate subroutines in the OXRX module (table 27) and their respective parameter values (table 28) affect the BOD decay. No other user-defined parameter values were required to adjust the BOD-decay release of soluble PO_4 .

Suspended PO_4 was routed to the next downstream reach for each size fraction for all RCHRES including those with two outflow gates. (The first outflow gate was used to simulate groundwater-seepage losses and the second outflow gate was used to simulate the remaining main-channel flow downstream to the next RCHRES). Thus, there were assumed to be no losses of the suspended PO_4 in the ground-water-seepage. Dissolved PO_4 was routed to the next downstream reach only for that portion associated with the main-channel flow (that is, through the second outflow gate, for the RCHRES with two outflow gates), and the dissolved PO_4 associated with ground-water seepage was lost from the system.

TPO₄ loads were calibrated to the annual TPO₄ loads estimated at the Ruckriegel Parkway and Gelhaus Lane sites by use of ESTIMATOR. The simulated mean-annual TPO_4 load for the model calibration period differed from the ESTIMATOR load by -1.3 percent at the Ruckriegel Parkway site and 0.8 percent at the Gelhaus Lane site (table 48). Annual and mean-annual errors provided a good TPO₄ simulation (20 to 30 percent error), based on criteria suggested by Donigian and others (1984). Simulated monthly TPO₄ loads were generally in good agreement with the ESTIMATOR monthly loads (fig. 50), but loads were oversimulated for low-flow months, as was also the case for flows and sediment. (ESTIMATOR is not considered to provide very reliable estimates for time steps less than 1 year, particularly for small drainage areas and short periods of record.)

Agreement on HSPF-simulated and TPO₄ storm loads estimated directly from the discrete samples collected during individual storms was


variable (see table 49 and figs. 51–53). There was a tendency to oversimulate loads at the Ruckriegel Parkway site, particularly for the smaller storms. Discharge and also the sediment and TPO_4 loads tended to be oversimulated during the smallest storms sampled during summer and early fall low-flow periods. Percentage errors in simulation of individual storm TPO_4 loads were, as expected, generally much larger than percentage errors in annual and total loads.

On average, the simulated suspended fraction of the TPO₄ load was 57 percent at the Ruckriegel Parkway site and 10 percent at the Gelhaus Lane site. The proportion of suspended PO₄ to dissolved PO₄ was greater in the reaches upstream from the Jeffersontown WWTP than the proportion just downstream from the Jeffersontown WWTP. Moving downstream from the Jeffersontown WWTP, the proportion of suspended PO₄ to dissolved PO₄ continued to rise. This might be expected because the available soluble PO₄ will adsorb to suspended sediments.

Table 48. Annual ESTIMATOR total orthophosphate loads and Hydrological Simulation Program—Fortran (HSPF)-simulated total orthophosphate loads in the Chenoweth Run Basin, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998

[lb, pound; P, phosphorus]

	Measured	Estimator total orthophosphate load		Simulated total orthophosphate load		Difference	
Period	rainfall (inches)	lb as P	lb as P/acre	lb as P	lb as P/acre	Percent	
		Chenoweth	Run at Ruckriege	l Parkway			
02/1996-01/1997	56.81	1,820	0.529	2,360	0.685	29.5	
02/1997-01/1998	53.33	3,360	.975	2,750	.799	-18.1	
Mean	55.07	2,590	.752	2,560	.742	-1.3	
		Chenowe	eth Run at Gelhau	s Lane			
02/1996-01/1997	56.81	28,400	3.88	28,200	3.84	-1.0	
02/1997-01/1998	53.33	27,100	3.70	27,800	3.80	2.7	
Mean	55.07	27,800	3.79	28,000	3.82	.8	

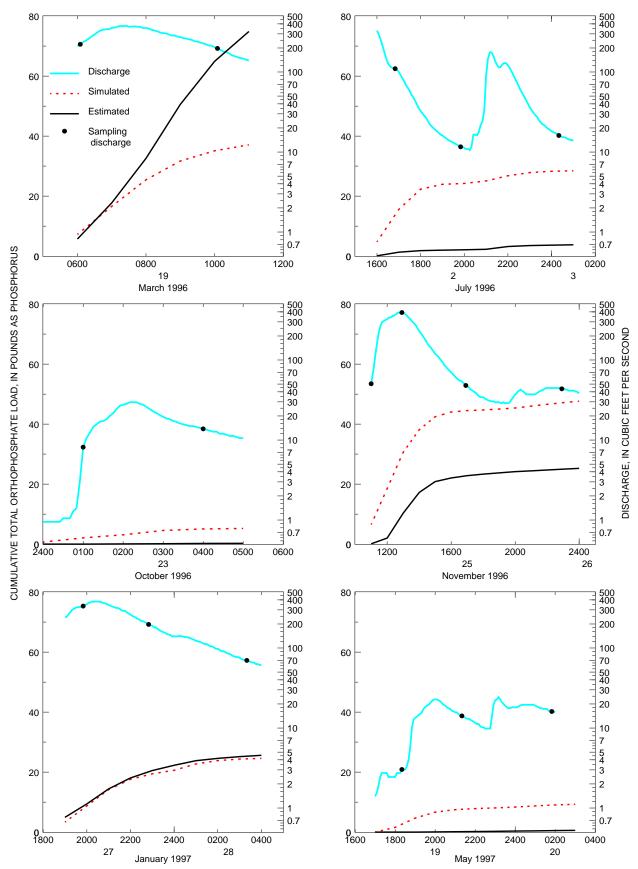
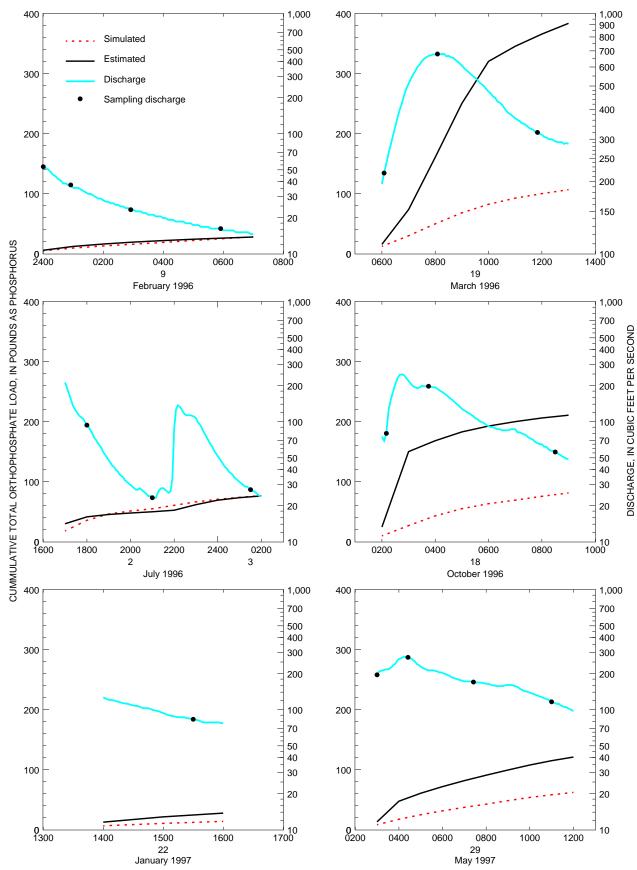


Figure 50. Comparison of the monthly ESTIMATOR total orthophosphate loads and the monthly Hydrological Simulation Program—Fortran (HSPF)-simulated total orthophosphate loads in the Chenoweth Run Basin, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.


Table 49. Estimated total orthophosphate loads and Hydrological Simulation Program—Fortran (HSPF)-simulated total orthophosphate loads for selected storms in the Chenoweth Run Basin, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998

[lb, pound; P, phosphorus]

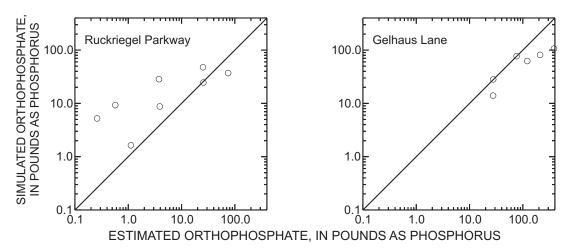

				Total orthophosphate load			
Ре	riod					Diffe	rence
Begin (Julian date/time)	End (Julian date/time)	Observed flow (acre-feet)	Simulated flow (acre-feet)	Estimated (Ib as P)	Simulated (Ib as P)	lb as P	Percent
		Che	noweth Run at Ru	uckriegel Parkway	,		
19960208/1700	19960209/0100	11.0	18.5	3.90	8.77	4.87	125
19960319/0500	19960319/1100	125	98.6	74.9	37.1	-37.8	-50.5
19960606/2200	19960606/2300	8.14	6.82	1.12	1.63	.51	45.5
19960702/1500	19960703/0100	53.7	75.5	3.77	28.4	24.6	652
19961022/2300	19961023/0500	6.18	19.5	.26	5.22	4.96	1,910
19961125/1000	19961125/2400	123	110	25.3	47.6	22.3	88.1
19970127/1800	19970128/0400	160	104	25.6	24.6	-1.0	-3.9
19970519/1600	19970520/0300	11.8	27.9	.57	9.29	8.72	1,530
		(Chenoweth Run a	t Gelhaus Lane			
19960208/2300	19960209/0700	16.6	21.4	27.8	28.2	6	-2.2
19960319/0500	19960319/1300	274	203	384	107.0	-277	-72.1
19960702/1600	19960703/0200	58.5	101	76.4	76.8	.4	.5
19961018/0100	19961018/0900	74	142	211	81.3	-130.0	-61.6
19970122/1300	19970122/1600	27.9	16.5	27.7	14.0	-13.7	-49.4
19970529/0200	19970529/1200	137	116	121	62.3	-58.7	-48.5

Figure 51. Hourly total orthophosphate loads and 5-minute discharge and sampling discharge during selected storms, Chenoweth Run at Ruckriegel Parkway, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

Figure 52. Hourly total orthophosphate loads and 5-minute discharge and sampling discharge during selected storms, Chenoweth Run at Gelhaus Lane, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

Figure 53. Comparison of total estimated total orthophosphate loads and Hydrological Simulation Program—Fortran (HSPF)-simulated total orthophosphate loads for selected storms in the Chenoweth Run Basin, Jefferson County, Kentucky, during the model calibration period, February 1996–January 1998.

There was no sampling data showing the actual suspended and dissolved fractions of TPO₄; however, data for total and dissolved phosphorus were available. Sampling data (19 samples) for this study indicated that, on average, the suspended fraction makes up approximately three-fourths of the TP concentration at the Ruckriegel Parkway site; however, only one fourth to one third of TP is TPO_4 at the Ruckriegel Parkway site. Twenty water samples collected for this study indicated approximately half of TP concentration was in the suspended fraction at the Gelhaus Lane site. Generally, approximately half of TP is TPO₄ at the Gelhaus Lane site. (See the regression relations developed between TP and TPO_4 in "Water Quality.") The large majority of the Jeffersontown WWTP effluent was in the dissolved orthophosphate form.

MODEL APPLICATIONS AND LIMITATIONS

The model of the Chenoweth Run Basin described in this report can help managers, planners, and engineers examine the complexities of the basin hydrology and, thus, support comprehensive water-resource-management decisions in the basin. Such analyses are facilitated by the implementation of the HSPF model within GENSCN, which provides a tool for development and comparison of various alternative basindevelopment scenarios that can be defined by unique sets of water-resource-management operations and modeled basin characteristics.

The model can be used to assess the hydrological consequences of changes in the landuse/land-cover and (or) water-storage characteristics of the basin. Magnitudes of the effects of such changes on discharge and water quality may be assessed.

Flood frequency may be estimated through long-term simulation (record extension) by use of historical meteorological data with the calibrated model. Furthermore, estimates of peak-discharge frequency could be used to delineate floodways.

Perhaps with additional data on tributary flows, the model could also be used to examine the normal timing of inflows to the main channel from the many tributary subbasins within Chenoweth Run. Timing of subbasin inflows are important for determination of the effects of storm-water detention facilities on peak discharges. The model calibration data were limited to a 2-year period when precipitation and streamflow were well above average. Although some periods of moderately low base flows were included, extended periods of low base flows were not. Also, base-flowseepage losses in the main channel were hypothesized and included in the model, but such losses have not been confirmed and quantified by field measurements. Applications of the model for simulations of extended low base flows may therefore be less accurate than moderate- and highflow simulations.

Calibration of the model for simulation of TPO_4 transport was rudimentary. Components of TPO_4 processing most critical to transport during moderate and high-flow portions of the model calibration period were considered. Biological uptake of TPO_4 was not modeled; therefore, not all linkages between instream TPO_4 concentrations and algal growth were represented in the model.

SUMMARY AND CONCLUSIONS

Rainfall, streamflow, and water-quality data collected in the Chenoweth Run Basin in Jefferson County, Ky., during February 1996–January 1998, and the available historical hydrological data collected in the basin beginning in February 1988, were used to characterize existing (base) hydrologic conditions and to calibrate a Hydrological Simulation Program—Fortran (HSPF) model for continuous simulation of rainfall, streamflow, suspended-sediment, and total-orthophosphate transport relations. Chenoweth Run Basin, encompassing 16.5 mi² in suburban eastern Jefferson County, includes areas of expanding urban development, particularly in the upper third of the basin, which contains a large industrial park and a new 9,100-seat church complex. Long-standing problems in meeting water-quality criteria for either of the state-designated aquatic-life or swimming uses in the approximately 9-mi-long main channel had been attributed to organic enrichment, and the presence of nutrients, metals, and pathogens in urban-runoff and wastewater inflows. Study results

provided an improved understanding of the complexities of the basin hydrology and a basinmodeling framework with analytical tools for use in comprehensive water-resource planning and management.

The 2-year field data-collection (model calibration) period was designed to supplement and expand the utility of the available historical streamflow and water-quality data, most of which represented individual water samples collected and discharge measurements made during low-tomoderate flows in routine monitoring programs. For this study, stream-water sampling was targeted primarily toward stormflows to adequately characterize the highly variable hydrologic conditions of this mixed-land-use, urbanizing basin. Spatial, flow-related, and seasonal variability of water quality was represented by the collection of a series of discrete water samples during 3 storms each year, distributed seasonally at each of 4 sampling sites on the main channel, for a total of 12 storm-sampling events per year. In 1996–97, 24 storms were sampled at the 4 sites; 79 discrete water samples were collected, which provided an average of 3.3 samples per storm. Also, one lowflow sample was collected annually in September at each of the four sites. Constituents and properties analyzed included pH, alkalinity, total dissolved solids, total suspended solids, total volatile suspended solids, biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrate nitrogen, nitrite nitrogen, ammonia nitrogen, organic nitrogen, total orthophosphate (TPO₄), total phosphorus (TP), and fecal coliform and streptococcus. A filtered sample for total phosphorus analysis was also routinely submitted for laboratory analysis. As requested by Louisville and Jefferson County Metropolitan Sewer District (MSD), samples for analysis of metals and chloride also were collected when enough sample water was available. Two streamflow-gaging stations (one upstream and one downstream) near the single major wastewater-treatment plant (WWTP) (4-Mgal/d capacity) and two minor WWTP's in the basin provided continuous, 5-minute-interval records of stream stage (water level) for use in

computation of continuous discharge. Water-quality monitors at each streamflow-gaging station provided continuous, 30-minute-interval records of water temperature, pH, specific conductance, and dissolved-oxygen concentration. The two streamflow-gaging stations were also among the four water-quality-sampling sites, one of which was located upstream from the WWTP's.

Several types of other pertinent data, including meteorological, geographical, and WWTP-effluent data, were compiled and analyzed for the study. Rainfall was recorded at 5-minute intervals at one gage in the basin and at four other gages surrounding the basin. Mean annual precipitation in the basin (55.07 in.) averaged approximately 11 in. above the normal annual amount (44.39 in.) at a nearby long-term rain gage in 1996-97; record rainfalls (63.76 in. in 1996 and 10.48 in. on March 1, 1997) and flooding occurred.

Hydrological characteristics and the underlying surficial geological characteristics are highly varied in Jefferson County. In the Chenoweth Run Basin, as in much of the eastern third of Jefferson County and adjacent counties to the east within the Outer Bluegrass Physiographic Region of Kentucky, relief is moderately sloping to steep. Also, internal drainage in pervious areas here is impeded by the shallow (generally less than 5 ft deep), fine-textured subsoils that include abundant silts and clays. Thus, much of the precipitation here tends to move rapidly as overland flow and (or) interflow to the stream channels, and relatively little water infiltrates through the soil mantle to the underlying bedrock.

Seepage losses to ground water are not uncommon where thin, fractured sections of clastic rocks (shales) are intersected by stream channels. Bedrock-fracture zones tend to be concentrated in and (or) near stream channels in this geological setting. Some seepage losses in the main channel were hypothesized and modeled for base-flow periods.

Approximately 60 percent of the abovenormal precipitation left the Chenoweth Run Basin as streamflow during the data-collection period, and approximately 40 percent of precipitation left the basin as evapotranspiration and other losses, such as to the ground water by channel losses. Typically, this distribution would be reversed; approximately 40 percent would leave as streamflow and the remaining 60 percent would leave as evapotranspiration and other losses.

The WWTP's provide secondary (biological) treatment of wastewaters from domestic, commercial, and industrial customers. At times, wastewater effluent makes up the majority of base flows in the main channel. Bypass flows occurred at the major WWTP during and following rain storms of approximately 0.5 in. or greater, when infiltration and inflows to the sanitary-sewer system caused the WWTP-inflow capacity to be exceeded. As a consequence, some untreated wastewater bypassed the WWTP and was discharged directly to the stream. Bypass flows, though not directly measured at the plant, were estimated to have occurred at a constant rate of 7.74 ft^3/s (5 Mgal/d) for the bypass periods (59 days) during the data-collection period. Overall, wastewater inflows constituted some 14 in. of water on the basin, or approximately 20 percent of flow measured, at the gaging station downstream from the WWTP's during the data-collection period.

Additional and variable nonpoint sources also exist for chemical constituents. The fine-textured soils are highly susceptible to erosion when exposed, as is often the case during construction activity. Large concentrations and loads of sediment have often been transported during stormflows. The sediments also carry sorbed constituents including nutrients and metals. Streets, parking lots, treated turf grasses, pastures, and crop areas also are potentially significant constituent-source areas.

Increased stream-water temperatures resulting from the runoff from impervious surfaces, the loss of riparian tree canopy, and thermal energy added by the WWTP's reduces the oxygen-carrying capacity of streams and thereby adversely affects habitat for aquatic organisms. Oxygen-demanding organic materials, sediments, and nutrients further impair aquatic habitat. The numerous ponds and small lakes constructed on the resistant upland bedrock formations also affect streamflow and water-quality conditions. Approximately 25 percent of the basin area is drained through these ponds. This additional detention storage delays and (or) reduces the movement of water and constituents through the basin to some degree, including the sediments and nonpoint-source nutrients.

The water-quality-sampling and discharge data were used to estimate loads from point and nonpoint sources of suspended sediments, TP, and TPO₄. Above-average suspended-sediment loads and yields (exceeding 4 ton/acre) were estimated for the data-collection period; nonpoint sources contributed the largest portion of the sediment loads. The WWTP's were the source of most of the estimated TP and TPO_4 transported in the basin. The load estimates indicated that roughly 65 percent (23,300 of 43,600 lb as P annually) of the TP load and 90 percent (25,200 of 27,800 lb as P annually) of the TPO₄ load at the streamflowgaging station downstream from the WWTP's during the February 1996-January 1998 datacollection period may be attributable to the WWTP effluents.

The 4-Mgal/d major WWTP was upgraded following the data-collection period for this study; a phosphorus-removal process and an ultravioletdisinfectant unit were added. Also, work was done to reduce the rainwater inflows to the sanitary-sewer system that had previously caused overflows of untreated or undertreated wastewater to the stream.

The HSPF model was used to represent several important hydrologic features of the Chenoweth Run Basin: (1) numerous small lakes and ponds, (2) potential seasonal ground-waterseepage loss in stream channels, (3) contributions from WWTP effluents and bypass flows, and (4) the transport and transformations of sediments and nutrients. The model was calibrated and verified for flow simulation on the basis of measured total, annual, seasonal, monthly, daily, hourly, and 5-minute-interval storm discharge data. The numerous storms permitted a split-sample procedure to be used for a model verification on the

basis of storm volumes and peaks. Total simulated and observed discharge during the model calibration period differed by approximately -5.4 percent at the upper streamflow-gaging station and 3.1 percent at the lower station. The model results for the total and annual water balances were classified as very good on the basis of the suggested calibration criteria. The model had correlation coefficients ranging from 0.89 to 0.98 for hourly to monthly mean flows, respectively. The coefficients of model-fit efficiency for daily and monthly discharge simulations approach the excellent range (exceeding 0.97). However, the model was calibrated for a comparatively short 24-month period during which flows were above normal. Increased model error might be expected during an extended period of near-normal flows.

The model was calibrated for simulation of sediment and TPO_4 transport on the basis of estimated constituent loads. The overall mass balance was within -33 percent for sediment and +/- 1 percent for TPO_4 . Sediment was undersimulated during the major-flood year (1997). Close agreement between simulated and observed total loads of TPO_4 was obtained; however, the model tended to oversimulate discharge and also the sediment and TPO_4 loads during the smallest storms sampled during summer and early fall low-flow periods.

The model developed in the study described in this report can be applied to assessments or evaluation of several water-related issues or activities in the Chenoweth Run Basin, including:

- Estimates of flood frequency through longterm simulation (record extension) by use of historical meteorological data with the calibrated model.
- Predictions of the timing of inflows to the main channel from the many tributary subbasins within Chenoweth Run may be made with additional data collection on tributary inflows.
- Development and analysis of alternative basin- and water-resource-management scenarios.

The model calibration data were limited to a 2-year period when precipitation and streamflow were well above the long-term averages. Although some periods of moderately low base flows were included, extended periods of low base flows were not. Also, base-flow-seepage losses in the main channel were hypothesized and included in the model, but such losses have not been confirmed and quantified by field measurements. Applications of the model simulations of extended low base flows may therefore be less accurate than those for moderate and high flows.

Calibration of the model for simulation of TPO_4 transport was rudimentary. Components of TPO_4 processing most critical to transport during moderate- and high-flow parts of the model calibration period were considered. Biological uptake of TPO_4 was not modeled; therefore, not all linkages between instream TPO_4 concentrations and algal growth were represented in the model.

Additional refinement and extension of the HSPF-model application is suggested. Base-flowseepage losses in the main channel could be confirmed and accurately quantified by investigation of surface- and ground-water relations in the basin area. Water-quality sampling of stormflows from small drainage areas (HRU-scale) are needed to establish definitive relations between specific land uses and nutrient yields in the basin. Capabilities of the water-quality model could be extended to assess questions concerning factors controlling algal growth and options for minimizing any future nuisance algal growth if additional waterquality and biological (algal) data were collected and the model were further calibrated for related constituents including dissolved oxygen, BOD, inorganic N, and plankton. Post-audit testing of the model would enable comparison of model predictions to actual water-quality conditions following implementation of any constituentcontrol strategies.

REFERENCES CITED

- Alley, W.A., and Veenhuis, J.E., 1983, Effective impervious area in urban runoff modeling: Journal of Hydrological Engineering, ASCE, v. 109, no. 2, February 1983, p. 313–319.
- Anttila, P.W., 1970, Sedimentation in Plum Creek
 Subwatershed No. 4, Shelby County, North-Central
 Kentucky—Sedimentation in small drainage basins:
 U.S. Geological Survey Water-Supply
 Paper 1798-G, 54 p.
- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Barten, J.M., 1999, Effects of residential lawn fertilizers on runoff water quality, *in* Conference on Enhancing the States' Lake Management Programs, 12th, Chicago, Ill., 1999, Proceedings: Chicago, Ill., U.S. Environmental Protection Agency, p. 15.
- Bell, E.A., 1966, Summary of hydrologic conditions of the Louisville area Kentucky: U.S. Geological Survey Water-Supply Paper 1819-C, 36 p., 6 pls.
- Bicknell, B.R., Imhoff, J.C., Kittle, J.L., Jr., Donigian, A.S., Jr., Johanson, R.C., 1993, Hydrological Simulation Program—FORTRAN User's Manual for Release 10: U.S. Environmental Protection Agency, EPA/600/R-93174, 660 p.
- Brown, M.J., Boondurant, J.A., and Brockway, C.E., 1981, Ponding surface drainage water for sediment and phosphorus removal: Transactions of the American Society of Agricultural Engineers, p. 1478–1481.
- Brutsaert, W., and Parlange, M.B., 1998, Hydrologic cycle explains the evaporation paradox: Nature, v. 396, November 5, 1998, p. 30.
- Carter, D.L., Brown, M.J., Robbins, C.W., and Bondurant, J.A., 1974, Phosphorus associated with sediments in irrigation and drainage water for two large tracts in southern Idaho: Journal of Environmental Quality, v. 3, no. 3, p. 287–291.
- Chew, C.Y., Moore, L.W., and Smith, R.H., 1991, Hydrological simulation of Tennessee's North Reelfoot Creek watershed: Journal of the Water Pollution Control Federation, v. 63 p. 10-16.
- Cohn, T.A., Caulder, D.L., Gilroy, E.J., Zynjuk, L.D., and Summers, R.M., 1992a, The validity of a simple statistical model for estimating fluvial constituent loads—an empirical study involving nutrient loads entering Chesapeake Bay: Water Resources Research, v. 28, no. 9, p. 2,353–2,363.

Cohn, T.A., Gilroy, E.J., and Baier, W.G., 1992b, Estimating fluvial transport of trace constituents using a regression model with data subject to censoring, *in* Proceedings of the Section on Statistics and the Environment: Boston, Mass., American Statistical Association, August 9–13, 1992, p. 142–151.

Conner, Glen, 1982, Monthly, seasonal, and annual precipitation in Kentucky 1951–1980: Kentucky Climate Center Publication Number 25, Bowling Green, Ky., Western Kentucky University, 30 p.

Crawford, N.H., and Linsley, R.K., 1966, Digital simulation in hydrology—Stanford Watershed Model IV: Stanford, Calif., Stanford University, Department of Civil Engineering, Technical Report 39, 210 p.

Dinicola, R.S., 1990, Characterization and simulation of rainfall-runoff relations for headwater basins in western King and Snohomish Counties, Washington: U.S. Geological Survey Water-Resources Investigations Report 89-4052, 52 p.

Donigian, A.S., Jr., and Crawford, N.H., 1976, Modeling nonpoint pollution from the land surface: Athens, Ga., Environmental Research Laboratory, EPA 600/3-76-083, 280 p.

Donigian, A.S., Jr., Imhoff, J.C., Bicknell, B.R., and Kittle, J.L., Jr., 1984, Application guide for hydrological simulation program—FORTRAN (HSPF): U.S. Environmental Protection Agency, EPA/600/3-84-065, 177 p.

Duncker, J.J., Vail, T.J., and Melching, C.S., 1995,
Regional rainfall-runoff relations for simulation of streamflow for watersheds in Lake County, Illinois: U.S. Geological Survey Water-Resources Investigations Report 95-4023, 71 p.

Edwards, T.K., and Glysson, G.D., 1988, Field methods for measurement of fluvial sediment: U.S. Geological Survey Open-File Report 86-531, 118 p.

Environmental Systems Research Institute, Inc., 1991, ARC/INFO User's Guide, Cell-based Modeling with GRID—Analysis, display and management: Redlands, Calif. [variously paged].

____1992, ARC/INFO User's Guide, Cell-based Modeling with GRID 6.1, Supplement—Hydrologic and distance modeling tools: Redlands, Calif. [variously paged].

Evaldi, R.D., Burns, R.J., and Moore, B.L., 1993, Water quality of selected streams in Jefferson County, Kentucky, 1988–91: U.S. Geological Survey Water-Resources Investigations Report 92-4150, 177 p. Evaldi, R.D., and Moore, B.L., 1992, Stormwater data for Jefferson County, Kentucky, 1991–92:U.S. Geological Survey Open-File Report 92-638, 82 p.

_____1994a, Techniques for estimating the quantity and quality of storm runoff from urban watersheds of Jefferson County, Kentucky: U.S. Geological Survey Water-Resources Investigations Report 94-4023, 70 p.

_____1994b, Yields of selected constituents in base flow and stormflow in urban watersheds of Jefferson County, Kentucky, 1988–92: U.S. Geological Survey Water-Resources Investigations Report 94-4065, 70 p.

Flint, R.F., 1983, Fluvial sedimentation in Kentucky: U.S. Geological Survey Water-Resources Investigations Report 83-4152, 75 p.

Flynn, K.M., Hummel, P.R., Lumb, A.M., and Kittle, J.L., Jr., 1995, User's manual for ANNIE, version 2, a computer program for interactive hydrologic data management: U.S. Geological Survey Water-Resources Investigations Report 95-4085, 211 p.

Garcia, Rene, and Crain, A.S., 1998, Loads and yields of sediment and water-quality constituents in Kentucky streams: U.S. Geological Survey Open-File Report 98-411, 60 p.

Guy, H.P., and Norman, V.W., 1970, Field methods for measurements of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap. C2, 59 p.

Hall, F.R., and Palmquist, W.N., Jr., 1960, Availability of ground water in Anderson, Franklin, Shelby, Spencer and Woodford Counties, Kentucky: U.S. Geological Survey Hydrologic Investigations Atlas HA-24, 3 sheets, scale 1:125,000.

Hammer, M.J., 1975, Water and waste-water technology: New York, Wiley, 502 p.

Hartigan, J.A., 1975, Clustering algorithms: New York, Wiley, 351 p.

Hem, J.D., 1989, Study and interpretation of the chemical characteristics of natural water (3d ed.):U.S. Geological Survey Water-Supply Paper 2254, 263 p., 4 pls. in pocket.

Hutchinson, M.F., and Dowling, T.I., 1991, A continental hydrological assessment of a new grid-based elevation model of Australia: Hydrological Processes, v. 5, p. 45–58.

James, L.D., and Burgess, S.J., 1982, Selection, calibration and testing of hydrologic models, *in* Hydrologic Modeling of Small Watersheds: American Society of Agricultural Engineers, p. 466. Jarrett, G.L., Downs, A.C., and Grace-Jarrett, P.A., 1998, Continuous hydrologic simulation of runoff for the Middle Fork and South Fork of the Beargrass Creek Basin in Jefferson County, Kentucky: U.S. Geological Survey Water-Resources Investigations Report 98-4182, 20 p.

Kentucky Natural Resources and Environmental Protection Cabinet, 1994, The 1994 Kentucky report to Congress on water quality: Frankfort, Ky., Division of Water, 318 p.

_____1999, Chenoweth Run drainage—biological and water quality investigation: Frankfort, Ky., Division of Water, Ecological Support Section, Technical Report No. 53, 15 p.

Kittle, J.L., Jr., Lumb, A.M., Hummel, P.R., Duda, P.B., and Gray, M.H., 1998, A Tool for the Generation and Analysis of Model Simulation Scenarios for Watersheds (GenScn): U.S. Geological Survey Water-Resources Investigations Report 98-4134, 152 p.

Kohler, M.A., Nordenson, T.J., Baker, D.R., 1959, Evaporation maps for the United States:U.S. Department of Commerce, National Weather Bureau, Technical Paper No. 37, 13 p.

Leist, David, 1996, Water quality study of Chenoweth Run: Frankfort, Ky., Division of Water, 67 p.

Leist, David, VanArsdall, T., Balassa, J., and Wiley, T., 1990, Water quality study of Harrods Creek: Frankfort, Ky., Division of Water, 31 p.

_____1991, Water quality study of Floyds Fork: Frankfort, Ky., Division of Water, 31 p.

Leopold, L.B., 1968, Hydrology for urban and land-use planning—a guidebook on the hydrological effects of urban land use: U.S. Geological Survey Circular 554, 18 p.

Logan, R.W., Beck, G.V., Call, S.M., Houp, R.E., Miller, L.G., Mills, M.R., Porter, S.D., Metzmeier, Lythia, Schneider, C.C., and Walker, D.K., 1986, Floyds Fork drainage biological and water quality investigation for stream use designation: Frankfort, Ky., Kentucky Department for Environmental Protection, Division of Water, Technical Report No. 3, 152 p.

Louisville and Jefferson County Metropolitan Sewer District, 1990, An appraisal of water quality conditions in streams of Jefferson County, Kentucky, 1989 data: Louisville, Ky., Louisville and Jefferson County Metropolitan Sewer District, 124 p.

_____1991, An appraisal of water quality conditions in the streams of Jefferson County, Kentucky, 1990 data: Louisville, Ky., Louisville and Jefferson County Metropolitan Sewer District, 121 p. ____1994, An appraisal of water quality conditions in streams of Jefferson County, Kentucky, with 1991/1992 data: Louisville, Ky., Louisville and Jefferson County Metropolitan Sewer District, 280 p.

____1996, A preliminary report on the stream quality of Chenoweth Run at Gelhaus Lane, Jefferson County, Kentucky: Louisville, Ky., Louisville and Jefferson County Metropolitan Sewer District, Stormwater Department, Stream Program, 13 p.

2000, Water-quality report 2000: Louisville, Ky., Louisville and Jefferson County Metropolitan Sewer District, 29 p.

Lumb, A.M., McCammon, R.B., and Kittle, J.L., Jr., 1994, Users manual for an expert system (HSPEXP) for calibration of the hydrological simulation program—FORTRAN: U.S. Geological Survey Water-Resources Investigations Report 94-4168, 102 p.

Martin, G.R., Smoot, J.L., and White, K.D., 1992, A comparison of surface-grab and cross sectionally integrated stream-water-quality sampling methods: Washington, D.C., Water Environment Research, v. 64, no. 7, p. 866–876.

Martin, G.R., Ruhl, K.J., Moore, B.L., and Rose, M.F., 1997, Estimation of peak-discharge frequency of urban streams in Jefferson County, Kentucky: U.S. Geological Survey Water-Resources Investigations Report 97-4219, 40 p.

McDowell, R.C., ed., 1986, The geology of Kentucky—A text to accompany the geologic map of Kentucky: U.S. Geological Survey Professional Paper 1151-H, 76 p.

McDowell, R.C., Grabowski, G.J., Jr., and Moore, S.L., 1981, Geologic map of Kentucky: U.S. Geological Survey, scale 1:250,000, 4 sheets.

Meybeck, Michel, 1982, Carbon, nitrogen and phosphorus transport by world rivers: American Journal of Science, v. 282, p. 401–450.

Mitchell, W.B., Guptil, S.C., Anderson, K.E., Fegeas, R.C., and Hallam, C.A., 1977, GIRAS—A geographic information retrieval and analysis system for handling land use and land cover data: U.S. Geological Survey Professional Paper 1059, 16 p.

Moore, F.B., Kepferle, R.C., and Peterson, W.L., 1972, Geologic map of the Jeffersontown Quadrangle, Jefferson County, Kentucky: U.S. Geological Survey Geologic Quadrangle Map GQ-999, scale 1:24,000.

Moore, L.W., Matheny, H., Tyree, T., Sabatini, D., and Klaine, S., 1988, Agricultural runoff modeling in a small west Tennessee watershed: Journal of the Water Pollution Control Federation, v. 60, p. 242–249. Nash, J.E., and Sutcliffe, J.V., 1970, River flow forecasting through conceptual models, Part 1—A discussion of principles: Journal of Hydrology, v. 10, p. 282–290.

National Climatic Data Center, 2000, accessed August 21, 2000, at URL http://mcc.sws.uiuc.edu/Summary/ Data/154954.txt.

National Weather Service, 2000, Local, daily and monthly climatological data, accessed August 21, 2000, at URL http://www.crh.noaa.gov/lmk/ climate.htm.

Omernik, J.M., 1977, Nonpoint source—Stream nutrient level relationships—A nationwide study: Corvallis, Oreg., Corvallis ERL, ORD, USEPA, EPA-600/3-77-105, 151 p., 5 pls.

Palmquist, W.N., Jr., and Hall, F.R., 1960, Availability of ground water in Bullitt, Jefferson and Oldham Counties, Kentucky: U.S. Geological Survey Hydrologic Investigations Atlas HA-22, 3 sheets, scale 1:125,000.

_____1961, Reconnaissance of ground-water resources in the Blue Grass Region Kentucky: U.S. Geological Survey Water-Supply Paper 1533, 39 p, 3 pls.

Penman, H.L., 1948, Natural evaporation from open water, bare soils, and grasses, *in* Proceedings of the Royal Society of London: ser. A, v. 193, no. 10032, p. 120–145.

Raush, D.L., and Schreiber, J.D., 1981, Sediment and nutrient trap efficiency of a small flood detention basin reservoir: Journal of Environmental Quality, v. 10, no. 3, p. 288–293.

Regan, R.S., and Schaffranek, R.W., 1985, A computer program for analyzing channel geometry: U.S. Geological Survey Water-Resources Investigations Report 85-4335, 49 p.

Ruhl, K.J., and Jarrett, G.L., 1999, Processes affecting dissolved-oxygen concentrations in the Lower Reaches of Middle Fork and South Fork Beargrass Creek, Jefferson County, Kentucky: U.S. Geological Survey Water-Resources Investigations Report 98-4218, 53 p.

 Sams, J.I., III, and Witt, E.C., III, 1995, Simulation of streamflow and sediment transport in two surfacecoal-mined basins in Fayette County, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 92-4093, 52 p.

Sauer, V.B., Thomas, W.O., Jr., Stricker, V.A., and Wilson, K.V., 1983, Flood characteristics of urban watersheds in the United States: U.S. Geological Survey Water-Supply Paper 2207, 63 p.

Shelton, L.R., 1994, Field guide for collecting and processing stream-water samples for the National Water-Quality Assessment Program: U.S. Geological Survey Open-File Report 94-455, 42 p. Thomann, R.V., and Mueller, J.A., 1987, Principles of surface water quality modeling and control: New York, HarperCollinsPublishers Inc., 644 p.

Thomas, G.W., and Crutchfield, J.D., 1974, Nitratenitrogen and phosphorus contents of streams draining small agricultural watersheds in Kentucky: Journal of Environmental Quality, v. 3, no. 1, p. 46–49.

Tukey, J.W., 1977, Exploratory data analysis: Reading, Mass., Addison-Wesley, 506 p.

U.S. Environmental Protection Agency, 1986, Quality criteria for water: EPA-440/5-86-001, 475 p.

U.S. Geological Survey, 1999, The Quality of Our Nation's Waters—Nutrients and Pesticides: U.S. Geological Survey Circular 1225, 82 p.

Van Campen, Todd, 1998, New church seems big as all creation: Lexington, Ky., Lexington Herald-Leader, December 19, 1998, p. C1, C4.

Viessman, Warren, Jr., Knapp, J.W., Lewis, G.L., Harbaugh, T.E., 1977, Introduction to Hydrology (2d ed.): New York, Harper & Row, Publishers, Inc., 704 p.

Wade, Scott, 1999, Sewage-plant upgrade nearly done—Chenoweth Run water quality should improve: Louisville, Ky., The Courier-Journal, Metro Edition, March 11, 1999, p. B2.

Ward, J.R., and Harr, C.A, eds., 1990, Methods for the collection and processing of surface-water and bed-material samples for physical and chemical analysis:
U.S. Geological Survey Open-File Report 90-140, 71 p.

Water Environment & Technology, 1995, Shade Clears Streams: Water Environment & Technology, December 1995, p. 58.

White, E.M., 1981, Possible clay concentrations effects on soluble phosphate contents of runoff: Environmental Science and Technology, v. 15, no. 12, p. 1726–1731.

Wilkinson, L., Blank, G., and Gruber, C., 1996, Desktop data analysis with SYSTAT: Englewood Cliffs, N.J., Prentice-Hall, 798 p.

Woodruff, J.F., and Hewlett, J.D., 1970, Predicting and mapping the average annual hydrologic response for the eastern United States: Water Resources Research, v. 6, no. 5, p. 1312–1326.

Zimmerman, W.H., Ross, J.C., Fehr, J.P., Wilson, B.L., Carroll, D.T., and Luttrell, C.D., 1966, Soil survey of Jefferson County, Kentucky: U.S. Department of Agriculture, Soil Conservation Service, ser. 1962, no. 11, 137 p.

APPENDIXES

Appendix 1. Results of analyses of field blanks for sampling in the Chenoweth Run Basin, Jefferson County, Kentucky, in 1996–97

WATER-QUALITY DATA

DATE	STATION NUM	BER DATE	TIME	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)
FEB 1996									
08	03123499	960208	1600						2.1
MAR									
19	03123499	960319	0915						1.5
19	03123499	960319	1115						.13
JUL									
03	03123499	960703	1215			5.8	5		.22
SEP									
26	03123499	960926	0800			7.9			.10
JUN 1997	00100400	00000	1				0		
09	03123499	970609	1000	7.2	7.0	7.8	2		
SEP	03123499	970916	0000	7.2	7.0	7 0	2	20.5	
16	03123499	970910	0820	1.2	7.0	7.8	2	20.5	
	MAGNE – AN	IC.							
	SIUM, UNFL		NITRO-	NITRO-	NITRO-	NITRO-	NITRO-	PHOS-	

	SIUM,	UNFLTRD	CHLO-	NITRO-	NITRO-	NITRO-	NITRO-	NITRO-	PHOS-	
	TOTAL	TIT 4.5	RIDE,	GEN,	GEN,	GEN,	GEN,	GEN,	PHORUS	PHOS-
	RECOV-	LAB	DIS-	AMMONIA	NITRATE	ORGANIC	AMMONIA	NITRITE	DIS-	PHORUS
	ERABLE	(MG/L	SOLVED	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	SOLVED	TOTAL
DATE	(MG/L	AS	(MG/L							
	AS MG)	CACO3)	AS CL)	AS N)	AS N)	AS N)	AS NH4)	AS N)	AS P)	AS P)
	(00927)	(90410)	(00940)	(00610)	(00620)	(00605)	(71845)	(00615)	(00666)	(00665)
FEB 1996										
08	.54									
MAR										
19	.42									
19	.04									
JUL										
03	.07	3.0	.50	.090	.090	.03	.12		.001	.001
SEP										
26	.01	71								
JUN 1997										
09		240	.05	.010	<.100	.03	.01	.002	.010	.020
SEP										
16			.05	.010	<.100	.03	.01	.002	.010	.020

	OXYGEN	OXYGEN			RESIDUE	FECAL	STREP-			BERYL-
	DEMAND,	DEMAND,	RESIDUE	RESIDUE	TOTAL	COLI-	TOCOCCI		BARIUM,	LIUM,
	BIO-	CHEM-	FIXED	AT 105	AT 105	FORM	FECAL,		TOTAL	TOTAL
	CHEM-	ICAL	NON	DEG. C,	DEG. C,	24-HR	KF AGAR	ARSENIC	RECOV-	RECOV-
	ICAL,	(HIGH	FILTER-	DIS-	SUS-	MEM.FIL	(COLS.	TOTAL	ERABLE	ERABLE
DATE	5 DAY	LEVEL)	ABLE	SOLVED	PENDED	(COLS./	PER	(UG/L	(UG/L	(UG/L
	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	100 ML)	100 ML)	AS AS)	AS BA)	AS BE)
	(00310)	(00340)	(00540)	(00515)	(00530)	(31613)	(31673)	(01002)	(01007)	(01012)
FEB 1996										
08									2	<1
MAR										
19								<5	<1	<1
19								<5	<1	<1
JUL										
03	.3	2	4	192	5	K7.00	K10	<5	<1	<1
SEP										
26	. 2		.500	24	2			<5	1	<1
JUN 1997										
09	.2	2	1	254	2	K2.00	К2			
SEP										
16	.2	2		254		K2.00	К2			

Appendix 1. Results of analyses of field blanks for sampling in the Chenoweth Run Basin, Jefferson County, Kentucky, in 1996–97—*Continued*

		CHRO-								
	CADMIUM	MIUM,	COPPER,	IRON,	LEAD,	MERCURY	NICKEL,		SILVER,	ZINC,
	WATER	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	SELE-	TOTAL	TOTAL
	UNFLTRD	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-	RECOV-	NIUM,	RECOV-	RECOV-
	TOTAL	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	ERABLE	TOTAL	ERABLE	ERABLE
DATE	(UG/L									
	AS CD)	AS CR)	AS CU)	AS FE)	AS PB)	AS HG)	AS NI)	AS SE)	AS AG)	AS ZN)
	(01027)	(01034)	(01042)	(01045)	(01051)	(71900)	(01067)	(01147)	(01077)	(01092)
FEB 1996										
	0	2	~			0	-		~	
08	<2	<3	6	240	<20	.2	<5		<6	29
MAR										
19	<2	<3	4	33	<20	<.2	<5	<5	<6	18
19	<2	<3	<2	39	<20	<.2	<5	<5	<6	13
JUL										
03	<2	< 3	<2	52	<20	<.2	<5	<5	<6	< 3
SEP										
26	<2	< 3	4	8	<20	<.2	< 5	<5	<6	16
JUN 1997										
09										
SEP										
16										

Appendix 2. Results of analyses of paired water samples collected by use of automatic samplers and manual, cross-sectionally integrated sampling, Chenoweth Run Basin, Jefferson County, Kentucky

SAMPLE- COLLECTION METHOD	STATION NUMBER	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)
INTEGRATED	03298135	03-19-96	1005	205.	339.	7.5	7.8	5.4	12.2	4.	28.	28.3
AUTOMATIC	03298135	03-19-96	0955	205.	339.	7.5	7.6	5.4	12.2	3.	27.	26.7
INTEGRATED	03298135	11-25-96	1055	43.8	475.	7.8	7.8	8.97	9.27	3.	20.	59.5
AUTOMATIC	03298135	11-25-96	1100	43.8	475.	7.8	8.	8.97	9.27	2.	16.	59.
INTEGRATED	03298140	01-22-97	1500		765.		7.8			7.	20.	46.3
AUTOMATIC INTEGRATED AUTOMATIC INTEGRATED AUTOMATIC	03298140 03298150 03298150 03298150 03298150	01-22-97 03-19-96 03-19-96 10-18-96 10-18-96	1505 1145 1150 0830 0835	362. 362. 55. 55.	766. 292. 292. 317. 264.	 7.7 7.7 7.46 7.46	7.9 8. 8. 8.	6. 6. 16. 16.	 11.1 11.1 9. 9.	6. 8. 5. 5.	21. 40. 20. 21.	45.1 38.2 38.9 32.3 32.5
INTEGRATED AUTOMATIC INTEGRATED AUTOMATIC	03298150 03298150 03298150 03298150 03298150	01-22-97 01-22-97 01-22-97 01-22-97	1335 1340 1530 1535	151. 151. 82.4 82.4	583. 589. 616. 621.	7.72 7.72 7.75 7.75	7.9 7.9 8. 8.	4.4 4.4 4.9 4.9	12.47 12.47 12.01 12.01	7. 7. 6.	23. 22. 21. 18.	41.3 42.9 44.5 44.9

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	STATION NUMBER	DATE	TIME	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD CARBON- ATE (MG/L CACO3) (00430)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUE FIXED NON FILTER- ABLE (MG/L) (00540)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03298135	03-19-96	1005	9.94	73.	20.6	196.	380.	352.	28.	2.4	.18	2.58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03298135	03-19-96	0955	9.38	66.	20.4	168.	378.	348.	30.	2.4	.23	2.63
03298140 01-22-97 1500 16.2 146. 210. 3.5 03298140 01-22-97 1505 16.1 148. 178. 3.2 03298150 03-19-96 1145 13.6 142. 24. 23. 14 2.44 03298150 01-18-96 0835 10.9 19. 70. 2.7 03298150 <t< td=""><td>03298135</td><td>11-25-96</td><td>1055</td><td>24.5</td><td></td><td>31.</td><td></td><td>101.</td><td></td><td></td><td></td><td></td><td>1.2</td></t<>	03298135	11-25-96	1055	24.5		31.		101.					1.2
03298140 01-22-97 1505 16.1 148. 178. 3.2 03298150 03-19-96 1145 13.6 2.3 014 2.44 03298150 010-18-96 0835 10.9 19. 70. 2.7 03298150 01-22-97 1340 16. 96.	03298135	11-25-96	1100	24.1		30.		63.					1.2
03298150 03-19-96 1145 13.6 2.3 03298150 10-18-96 0835 10.9 19. 70. 2.3 03298150 01-22-97 1335 15.6 92. 368. 2.7 03298150 01-22-97 1340 16. 96. 354. 2.7 03298150 01-22-97 1530 17.3 93. 234. 2.7 2.5	03298140	01-22-97	1500	16.2		146.		210.					3.5
03298150 10-18-96 0830 11. 18. 102. 2.3 03298150 10-18-96 0835 10.9 19. 70. 2.3 03298150 01-22-97 1335 15.6 92. 368. 2.7 03298150 01-22-97 1340 16. 96. 354. 2.7 03298150 01-22-97 1530 17.3 93. 234. 2.5													
03298150 10-18-96 0835 10.9 19. 70. 2. 03298150 01-22-97 1335 15.6 92. 368. 2.7 03298150 01-22-97 1340 16. 96. 354. 2.7 03298150 01-22-97 1530 17.3 93. 234. 2.5	03298150	03-19-96	1150	13.3	131.	19.8	196.	238.	214.	24.	2.3	.14	2.44
03298150 01-22-97 1335 15.6 92. 368. 2.7 03298150 01-22-97 1340 16. 96. 354. 2.7 03298150 01-22-97 1530 17.3 93. 234. 2.5	03298150	10-18-96	0830	11.		18.		102.					2.3
03298150 01-22-97 1340 16. 96. 354. 2.7 03298150 01-22-97 1530 17.3 93. 234. 2.5	03298150	10-18-96	0835	10.9		19.		70.					2.
	03298150	01-22-97	1340	16.		96.		354.					2.7

STATION NUMBER	DATE	TIME	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4) (71845)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHATE, TOTAL (MG/L AS PO4) (00650)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ARSENIC TOTAL (UG/L AS AS) (01002)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)
03298135	03-19-96	1005	.3	0.386	1.43	.47	.27	.06	<5.	98.	<.5	<2.
03298135	03-19-96	0955	.26	0.335	1.3	.53	.28	.05	7.	103.	<.5	<2.
03298135	11-25-96	1055	.12	0.155		.12		.02	<5.	68.	<.5	<2.
03298135	11-25-96	1100	.25	0.322		.13		.03	<5.	63.	<.5	<2.
03298140	01-22-97	1500	.89	1.146		.65		.46	<5.	80.	1.	<2.
03298140	01-22-97	1505	.88	1.133		.59		.45	<5.	79.	<.5	<2.
03298150	03-19-96	1145							<5.	72.	<.5	<2.
03298150	03-19-96	1150	.31	.399	1.56	.47	.27	.12	<5.	72.	<.5	<2.
03298150	10-18-96	0830	.09	0.116		.48		.37	5.	47.	<.5	<2.
03298150	10-18-96	0835	.08	0.103		.48		.37	<5.	46.	<.5	<2.
03298150	01-22-97	1335	.55	0.708		.5		. 2	<5.	101.	1.	<2.
03298150	01-22-97	1340	.51	0.657		.36		.23	<5.	103.	1.	<2.
03298150	01-22-97	1530	.54	0.695		.43		.27	<5.	83.	<.5	<2.
03298150	01-22-97	1535	.54	0.695		.5		.26	<5.	85.	<.5	<2.

Appendix 2. Results of analyses of paired water samples collected by use of automatic samplers and manual, cross-sectionally integrated sampling, Chenoweth Run Basin, Jefferson County, Kentucky—*Continued*

STATION	DATE	TIME	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L	COPPER, TOTAL RECOV- ERABLE (UG/L	IRON, TOTAL RECOV- ERABLE (UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L	MERCURY TOTAL RECOV- ERABLE (UG/L	NICKEL, TOTAL RECOV- ERABLE (UG/L	SELE- NIUM, TOTAL (UG/L	SILVER, TOTAL RECOV- ERABLE (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L
NUMBER			AS CR)	AS CU)	AS FE)	AS PB)	AS HG)	AS NI)	AS SE)	AS AG)	AS ZN)
			(01034)	(01042)	(01045)	(01051)	(71900)	(01067)	(01147)	(01077)	(01092)
03298135	03-19-96	1005	<3.	11.	11100.	< 20.	.3	8.	<5.	<6.	75.
03298135	03-19-96	0955	10.	11.	10500.	20.	<.2	8.	<5.	<6.	67.
03298135	11-25-96	1055	<3.	3.	2080.	<20.	.1	<5.	<5.	<6.	37.
03298135	11-25-96	1100	<3.	4.	1800.	<20.	.1	<5.	<5.	<6.	29.
03298140	01-22-97	1500	<3.	8.	7020.	<20.	.1	8.	<5.	<6.	43.
03298140	01-22-97	1505	<3.	13.	6130.	24.	.1	<5.	<5.	<6.	41.
03298150	03-19-96	1145	<3.	8.	7100.	<20.	.7	<5.	<5.	<6.	43.
03298150	03-19-96	1150	7.	10.	6890.	20.	<.2	9.	<5.	<6.	41.
03298150	10-18-96	0830	15.	6.	3500.	<20.	. 2	9.	<5.	<6.	25.
03298150	10-18-96	0835	<3.	4.	3300.	<20.	<.2	5.	<5.	<6.	24.
03298150	01-22-97	1335	<3.	13.	11200.	21.	.1	8.	<5.	<6.	50.
03298150	01-22-97	1340	<3.	16.	11800.	<20.	. 2	9.	<5.	<6.	53.
03298150	01-22-97	1530	<3.	9.	7510.	<20.	.1	б.	<5.	<6.	44.
03298150	01-22-97	1535	<3.	11.	8100.	20.	.1	8.	<5.	<6.	37.

STATION	NUMBER	DATE	TIME	SEDI- MENT. SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. %FINER THAN .062MM (70331)
0329813	5 0	3-19-96	1005	390	99.6
0329813	5 0	3-19-96	0955		
0329813	5 1	1-25-96	1055		
0329813	5 1	1-25-96	1100		
0329814	0 0	1-22-97	1500		
0329814	0 0	1-22-97	1505		
0329815	0 0	3-19-96	1145		
0329815	0 0	3-19-96	1150		
0329815	0 1	0-18-96	0830		
0329815	0 1	0-18-96	0835		
0329815		1-22-97	1335 1340		
0329815		1-22-97	1530		
0329815		1-22-97	1535		

Appendix 3. Arc Macro Language (AML) program for definition of hydrologic response units (HRU's), hru.aml

```
/* PURPOSE: Develop model HRU's
/* Continuous grids of slope, soils, and land-use are simplified as
/* defined by remap tables (xxxx.rmp). The reclassed grids are then
/* combined with the subbasin grid. This combined grid is used to extract
/* the unique combination of slope, soils and land-use type by subbasin that
/* is written to an ascii, comma-delimited file
/* WRITTEN: P. Zarriello 7/1998
/* INPUT GRIDS Required (xxx_ig)
                                   /* smoothed slope grid 7x7 cell focalmedian
&sv slp_ig = slope7fm_grd
                                   /* soils grid
&sv soil_ig = soils_grd
                                   /* lulc grid
&sv lulc_ig = lulc_grd
&sv sub_ig = subbas_grd
                                  /* subbasin grid
&sv lk_ig = lkda_grd
                                   /* drainage area to ponds
/* OUTPUT GRIDS created (xxx_og)
                                    /* reclassed slope grid
&sv slp_og = rc_slopeg
&sv soil_og = rc_soilg
                                  /* reclassed soils grid
&sv soil_og = rc_lulcg
&sv lulc_og = rc_lulcg
&sv HRU_og = HRU_grd
                                   /* reclassed land use grid
                                  /* combined reclassed slope, soils, & lulc
                                  /* ASCII output file of HRU's by subbasin
&sv outf = HRU.dat
&sv outf2 = HRU_sum.dat
                               /* ASCII output file summarizing HRU's
/* &echo &on
&s .grd_char = %slp_ig% /* set cell characteristics to an existing grid
/* Check that required input grids exist
  &if [exist %slp_ig% -grid] = .FALSE. &then &do
    &type %slp_ig% does not exist
    &stop
  &end
  &if [exist %soil_ig% -grid] = .FALSE. &then &do
   &type %soil_ig% does not exist
    &stop
  &end
  &if [exist %lulc_ig% -grid] = .FALSE. &then &do
    &type %lulc_ig% does not exist
    &stop
  &end
  &if [exist %sub_ig% -grid] = .FALSE. &then &do
   &type %sub_ig% does not exist
    &stop
  &end
  &if [exist %lk_ig% -grid] = .FALSE. &then &do
    &type %lk_ig% does not exist
    &stop
  &end
  &type 'Required input grids exist.... processing'
/* Check for and delete output grids
  &if [exist %slp_og% -grid] = .TRUE. &then &do
   kill %slp_og% all
  &end
  &if [exist %soil_og% -grid] = .TRUE. &then &do
    kill %soil_og% all
  &end
  &if [exist %lulc_og% -grid] = .TRUE. &then &do
   kill %lulc_og% all
```

```
&end
 &if [exist %HRU_og% -grid] = .TRUE. &then &do
   kill %HRU_og% all
 &end
display 9999 position 40 40 size 600 820
/* _____
/* Grid processing
/* _____
GRID
 mape %.grd_char%
 setcell %.grd_char%
 setwindow %.grd_char% %.grd_char%
/* get cell size from .grd_char
 &describe %.grd_char%
 &sv cellX = %GRD$dx%
 &sv cellY = %GRD$dy%
 &sv a_mult = %cellX% * %cellY% * 0.0002471 /* ac/m^2
/* reclass grids into user defined groups by ASCII remap tables (xxxxx.rmp)
/* NOTE: A item in the GRID can be used, other than value, by specifying the item
/*
        after the grid (e.g. reclass{in_grid.item, rmp_file)
 &type 'Reclassing SLOPE grid'
 %slp_og% = reclass(%slp_ig%, slope2.rmp)
 &type 'Reclassing SOILS grid'
 %soil_og% = reclass(%soil_ig%.code, soil3.rmp)
 &type 'Reclassing LULC grid'
 %lulc_og% = reclass(%lulc_ig%.lulc_code, lulc.rmp)
/* combine reclassed grids with subbasins and pond drainage areas
 &type 'Combining reclassed SLOPE, SOIL, & LULC GRIDS with SUBBASIN & LKDA GRID'
 %HRU_og% = combine(%sub_ig%, %lk_ig%, %slp_og%, %soil_og%, %lulc_og%)
quit
/* _____
/* Arc processing
/* _____
/* additem to combined grid to get area in acres
additem %HRU_og%.vat %HRU_og%.vat acres 7 7 n 2
&type 'Added item ACRES to %HRU_og%.vat'
/* calculate area in acres and cleanup old output info files
TABLES
 sel %HRU_og%.vat
 calc acres = count * %a_mult%
 &if [exist HRU.TAB -info] = .TRUE. &then kill HRU.TAB
 &if [exist HRU.SUM -info] = .TRUE. &then kill HRU.SUM
quit
&type 'Calculated area in acres'
/* delete the case item if it exist
 &if [iteminfo %HRU_og% -vat table# -exist] = .TRUE. &then &do
   dropitem %HRU_og%.vat %HRU_og%.vat table#
 &end
```

```
/* summarize unique combination of slope, soils, & lulc by subbasin
 &DATA arc frequency %HRU_og%.vat hru.tab table#
  %sub_ig%
  %lk_ig%
  %slp_og%
  %soil_og%
  %lulc_og%
  END
  ACRES
  END
 &END
 &type 'Frequencies by subbasin computed'
/* _____
/* produce output report to an ASCII file
/* _____
/* &if [exist %outf% -file] = .TRUE. &then &do
/*
  &sys mv %outf% %outf%_old
/* &end
 &DATA arc TABLES
  sel hru.tab
  unload %outf% %sub_ig% %lk_ig% %slp_og% %soil_og% %lulc_og% acres delimited init
  statistics %sub_ig% hru.sum
  sum acres
  end
  sel hru.sum
  unload %outf2% %sub_ig% sum-acres delimited init
  kill hru.sum
  Quit
 & END
&type '-----
&type 'Output HRU data written to: ' %outf%
&type 'Summary of HRU's written to:' %outf2%
&type '-----
&type DONE
REMAP TABLES
# remap table for slope
0.00 5.00 : 1
          #0 to 5 %
5.00 1000. : 2
            #> 5%
# remap table for soils
1:2
      #CaA
2:3
      #AsB
3:2
      #CnD
4:2
      #CnE
5:2
      #CrE3
6:2
      #CmC3
7:1
       #RuA
8:3
       #EkA
9:1
       #Ta
10 : 2
       #CsC
11 : 1
       #WmC2
12 : 2
      #CsD2
13 : 3
     #EkB
14 : 3 #AsA
```

15.1	
15 : 1 16 : 2	#BeB3 #Ma
$10 \cdot 2$ $17 \cdot 2$	#Pia #CdB2
$17 \cdot 2$ $18 \cdot 1$	#WmB
$10 \cdot 1$ $19 \cdot 2$	#CaB
20 : 1	#DcA
$20 \cdot 1$ 21 : 2	#Rd
$21 \cdot 2$ $22 \cdot 3$	#FaF
22 : 5	#OcD3
$23 \cdot 1$ 24 : 3	#FaE
25 : 2	#CsC3
26 : 1	#Gn
27:3	#FaD
28:1	#WA
29:3	#Ne
30 : 1	#Gu
31 : 1	#RuC2
32 : 1	#BaB
33:2	#CsA
34 : 1	#Ld
35:3	#FaE3
36 : 2	#CrD3
37:1	#BaD2
38:2	#CrC3
39:1	#BaB2
40 : 1	#Lb
41 : 1	#RuB2
42:3	#Hs
43 : 2	#CsB2
44 : 1	#DcB
45 : 2	#CsC2
46 : 3	#FaD3
47 : 1	#BeD3
48 : 1	#BaC2
49 : 1	#RuB
50 : 1	#BeC3
51 : 2	#CsB
++++++++	****
# reman	table for lulc
# remap 10 : 1	#Pasture/Crop
$10 \cdot 1$ $11 \cdot 2$	#Forest
$11 \cdot 2$ $12 \cdot 3$	#Dist residential
$12 \cdot 3$ $13 \cdot 4$	#Dist Comm/indust/Mfam
$13 \cdot 4$ 14 : 5	#Dist commin indust/Miam #Open residential
15 : 5	#Open comm/indust/Mfam
$15 \cdot 5$ $16 \cdot 6$	#Open other
10 : 0 21 : 7	#Roads-comm/indust/Mfam
$21 \cdot 7$ 23 : 7	#Buildings-comm/indust/Mfam
23 : 7 24 : 7	#Parking-comm/indsut/Mfam
$24 \cdot 7$ 25 : 7	#Roads-residential
26 : 7	#Buildings-residential
27 : 7	#Parking-residential
<u> </u>	
	ILES - Note the head line has to be added manually

148 Appendix 3

21,803.170000 22,702.920000 23,700.960000 24,969.970000 25,116.610000 26,325.500000 27,253.020000 28,10.450000 31,119.630000 32,437.520000 33,51.360000 34,356.350000 35,29.010000 36,986.850000 37,475.940000 38,242.520000 39,185.860000 40,318.090000 41,241.840000 COMPLETE LISTING - hru.dat (header added manually) REACH, LK_DA, SLOPE, SOIL, LULC, AREA_AC 11,1,1,1,2,0.000000 11,1,1,1,3,0.060000 11,1,1,1,5,22.340000 11,1,1,1,7,29.720000 11,1,1,2,2,0.010000 11,1,1,2,3,0.320000 11,1,1,2,5,12.900000 11,1,1,2,7,37.240000 11,1,1,3,2,0.020000 11,1,1,3,5,41.790000 11,1,1,3,7,8.740000 11,1,2,1,2,0.020000 11,1,2,1,3,0.100000 11,1,2,1,5,98.440000 11,1,2,1,7,261.720000 11,1,2,2,3,0.080000 11,1,2,2,5,3.950000 11,1,2,2,7,40.560000 11,1,2,3,2,0.010000 11,1,2,3,3,0.020000 11,1,2,3,5,76.920000 11,1,2,3,7,177.130000 11,2,1,1,3,0.020000 11,2,1,1,5,0.020000 11,2,1,1,7,1.210000 11,2,1,2,5,0.060000 11,2,1,2,7,0.250000 11,2,1,3,7,0.230000 11,2,2,1,2,0.000000 11,2,2,1,5,0.350000 11,2,2,1,7,14.860000 11,2,2,2,3,0.030000 11,2,2,2,5,0.190000 11,2,2,2,7,0.600000 11,2,2,3,7,7.870000

Truncated to listing of the first subbasin.

							Value	at indicated pe	ercentile		
Station number	Station name	Period analyzed	N	Mean	Minimum	5	25	50	75	95	Maximum
			Ι	Discharge, in cul	oic feet per secon	d [00061]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	17	29.901	0.130	0.130	0.815	1.690	15.000	330.000	330.000
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	35	66.293	0.830	0.846	11.600	18.600	98.000	345.800	393.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	13	4.278	0.890	0.890	3.540	3.920	4.760	7.550	7.550
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	16	30.194	4.020	4.020	4.892	9.215	28.550	211.000	211.000
03298145	Chenoweth Run at Easum Road	01/95-01/96	15	40.625	3.580	3.580	6.110	11.100	40.900	252.000	252.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	100	54.729	1.670	2.595	6.800	16.050	39.650	270.200	739.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	17	48.400	1.810	1.810	5.610	9.910	53.500	331.000	331.000
		Specific co	onductance	, in microsiemer	ıs per centimeter	at 25 degrees C	Celsius [00095]				
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	17	667.941	168.000	168.000	534.000	660.000	780.000	1211.000	1211.000
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	35	438.143	142.000	158.000	299.000	389.000	600.000	870.000	942.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	15	875.533	572.000	572.000	718.000	752.000	1140.000	1220.000	1220.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	27	690.704	187.000	188.600	500.000	699.000	811.000	1132.800	1138.000
03298145	Chenoweth Run at Easum Road	01/95-01/96	14	719.000	310.000	310.000	525.750	717.000	914.000	1100.000	1100.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	99	544.856	162.000	255.000	441.000	573.000	662.000	758.300	850.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	33	552.151	129.000	178.700	368.000	472.000	730.000	1089.500	1135.000
				pH, in sta	ndard units [0040)0]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	19	7.316	6.200	6.200	6.600	7.600	7.900	8.200	8.200
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	35	7.634	7.180	7.204	7.500	7.690	7.760	7.920	8.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	16	7.387	6.500	6.500	6.800	7.350	7.675	8.800	8.800
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	21	7.476	6.600	6.620	7.000	7.400	7.800	9.100	9.200
03298145	Chenoweth Run at Easum Road	01/95-01/96	15	7.940	6.500	6.500	7.400	7.900	8.600	8.800	8.800
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	99	7.939	6.300	6.900	7.580	8.000	8.400	8.800	9.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	2		8.700						8.900
				pH, laboratory,	in standard units	s [00403]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	15	7.987	7.600	7.600	7.900	8.000	8.100	8.300	8.300
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	25	7.692	7.000	7.030	7.450	7.700	8.000	8.240	8.300
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	15	7.580	7.200	7.200	7.400	7.500	7.800	8.100	8.100
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	32	7.806	6.300	7.015	7.725	7.850	8.000	8.270	8.400
03298145	Chenoweth Run at Easum Road	01/95-01/96	15	8.487	7.700	7.700	8.200	8.500	8.800	9.000	9.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	94	8.036	6.500	6.900	7.800	8.100	8.400	8.800	9.400
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	37	8.049	6.600	7.050	7.750	7.900	8.600	9.250	10.600

		Period			_		Value	at indicated pe	rcentile		
Station number	Station name	Period analyzed	N	Mean	Minimum	5	25	50	75	95	Maximum
			Wa	ater temperatur	e, in degrees Celsi	ius [00010]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	19	13.479	1.000	1.000	5.000	14.600	21.000	22.000	22.000
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	35	13.059	3.500	3.988	6.010	11.310	19.620	24.542	25.230
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	15	16.413	5.000	5.000	11.500	17.200	22.500	25.500	25.500
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	20	16.540	5.000	5.050	9.000	16.900	22.875	25.495	25.500
03298145	Chenoweth Run at Easum Road	01/95-01/96	15	13.647	3.000	3.000	4.000	16.000	23.000	25.500	25.500
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	99	13.859	2.400	3.200	6.800	15.000	19.800	25.000	29.300
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	21	16.162	0.500	0.700	5.250	19.000	23.700	25.950	26.000
				Dissolved ox	ygen, in mg/L [00	300]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	19	10.042	6.000	6.000	7.700	9.100	12.300	14.200	14.200
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	35	9.705	6.770	6.794	8.020	9.410	11.440	12.672	13.800
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	15	7.653	4.000	4.000	7.100	8.000	8.500	9.900	9.900
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	20	10.235	7.400	7.410	8.225	9.000	12.225	14.195	14.200
03298145	Chenoweth Run at Easum Road	01/95-01/96	14	12.457	7.700	7.700	9.600	12.450	14.500	20.000	20.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	96	11.494	6.270	7.371	10.125	11.200	12.923	16.215	17.500
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	18	13.044	8.200	8.200	10.075	12.350	14.925	23.900	23.900
			Disso	olved oxygen, in	percent of satura	tion [00301]					
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	68	116.441	84.000	90.000	100.000	113.500	124.000	163.750	189.000
		Bioche	emical oxy	gen demand, 5-o	lay at 20 degrees	Celsius, in mg/	L [00310]				
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	17	1.985*		*0.392	*0.989	*1.500	*3.500	*5.000	5.000
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	25	4.346*		*1.132	*2.500	*4.000	*6.000	*9.700	10.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	16	4.575*		*1.000	*1.925	*3.000	*8.000	*10.000	10.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	35	5.037	1.000	1.080	2.000	4.000	6.000	13.800	17.000
03298145	Chenoweth Run at Easum Road	01/95-01/96	15	2.488*		*1.000	*1.213	*2.000	*4.000	*6.000	6.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	94	3.388*		*0.897	*2.000	*2.000	*4.000	*10.000	13.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	39	4.722*		*0.852	*2.000	*4.000	*7.000	*12.000	12.000
			Chemical	oxygen demand	, 0.25N dicromate	e, in mg/L [0034	40]				
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	25	27.280	7.000	7.300	15.000	20.000	30.500	98.000	110.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	18	25.667	1.000	1.000	18.750	23.500	32.250	63.000	63.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	93	20.106*		*7.708	*14.000	*18.000	*23.500	*43.200	55.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	22	35.455	14.000	14.150	18.000	31.000	41.750	95.850	99.000

							Value	at indicated p	ercentile		
Station number	Station name	Period analyzed	N	Mean	Minimum	5	25	50	75	95	Maximum
		Fec	al colifor	m, membrane filt	er, M-FC agar, i	n colonies/100	[31613]				
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	15	1681.004*		*2.057	*53.000	*410.000	*1560.000	*7500.000	7500.000
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	14	3931.572	2.000	2.000	432.500	650.000	7075.000	18500.000	18500.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	14	771.860*		*1.015	*8.255	*189.500	*1395.000	*3300.000	3300.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	27	2988.667	1.000	3.800	260.000	700.000	4600.000	14400.001	15000.000
03298145	Chenoweth Run at Easum Road	01/95-01/96	14	919.568*		*4.949	*73.250	*300.000	*590.000	*7500.000	7500.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	82	2286.902	3.000	23.300	109.500	345.000	2425.000	14119.989	38400.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	22	2623.191*		*1.232	*70.000	*645.000	*4650.000	*14014.502	15000.000
		Feca	al strepto	cocci, membrane	filter, KF agar, i	n colonies/100	[31673]				
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	14	12592.786	12.000	12.000	78.750	960.000	19125.000	100000.000	100000.000
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	13	17139.309	371.000	371.000	1780.000	9800.000	26000.000	65500.000	65500.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	13	1459.462	10.000	10.000	51.000	200.000	1150.000	12700.000	12700.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	25	15844.880	12.000	19.200	172.500	7800.000	23050.000	66400.008	70000.000
03298145	Chenoweth Run at Easum Road	01/95-01/96	13	9262.308	23.000	23.000	38.000	600.000	17050.000	60000.000	60000.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	80	5218.800	8.000	20.100	67.000	500.000	3650.000	41329.996	60000.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	20	8214.150	10.000	10.000	103.000	417.000	12200.000	49000.016	50000.000
				Hardness, total, i	n mg/L as CaC0	3 [00900]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	4		191.000						292.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	1								173.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	4		188.000						209.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	24	196.901	125.600	126.287	149.233	197.235	241.410	284.365	292.320
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	4		174.000						230.000
				Calcium, total	, in mg/L as Ca [00916]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	1								74.500
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	17	45.318	20.900	20.900	27.750	38.400	64.750	74.000	74.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	1								49.700
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	18	44.322	21.800	21.800	31.425	39.800	58.700	89.000	89.000
03298145	Chenoweth Run at Easum Road	01/95-01/96	1								55.500
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	44	55.698	29.200	29.625	40.525	53.200	61.975	105.000	179.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	23	48.832	25.800	26.140	40.100	46.100	58.200	70.660	71.400

					-		Value	at indicated pe	rcentile		
Station number	Station name	Period analyzed	Ν	Mean	Minimum	5	25	50	75	95	Maximum
			1	Magnesium, tota	al, in mg/L as Mg	; [00927]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	1								31.400
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	17	22.170	6.830	6.830	9.615	13.900	28.650	93.000	93.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	1								17.500
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	18	15.234	8.050	8.050	10.363	13.750	19.650	30.700	30.700
03298145	Chenoweth Run at Easum Road	01/95-01/96	1								21.700
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	44	18.677	9.350	9.680	13.950	18.000	23.375	26.300	36.500
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	23	15.918	7.620	7.818	13.670	16.800	18.000	23.240	23.600
			Alk	alinity, carbonat	te, in mg/L as Ca	C03 [00430]					
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	14	135.000	46.000	46.000	70.500	114.000	213.000	236.000	236.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	11	94.455	7.000	7.000	51.000	92.000	155.000	182.000	182.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	90	158.167	53.000	81.900	120.750	156.500	198.000	221.700	237.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	10	128.200	90.000	90.000	107.000	130.000	147.500	162.000	162.000
			(Chloride, dissolv	ved, in mg/L as C	1 [00940]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	4		25.900						46.700
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	16	33.881	6.000	6.000	16.350	29.500	45.500	101.000	101.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	1								88.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	19	52.589	1.700	1.700	9.200	43.000	67.600	160.000	160.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	20	34.980	8.600	8.670	16.000	20.900	55.575	95.900	96.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	18	30.889	3.000	3.000	15.250	22.500	54.350	79.200	79.200
		D	vissolved so	olids, residue at	105 degrees Cels	ius, in mg/L [00	515]				
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	10	276.000	78.000	78.000	157.000	227.000	418.000	500.000	500.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	11	376.727	132.000	132.000	210.000	280.000	500.000	1050.000	1050.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	89	386.084	140.000	194.000	338.000	378.000	452.000	530.500	1240.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	14	242.929	45.000	45.000	156.000	215.000	322.500	528.000	528.000
		Su	spended s	olids, residue at	105 degrees Cel	sius, in mg/L [00	0530]				
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	19	47.053	1.000	1.000	5.000	9.000	36.000	444.000	444.000
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	25	213.800	3.000	3.300	10.500	63.000	382.000	878.400	984.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	16	6.688	1.000	1.000	2.500	6.500	8.750	18.000	18.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	37	196.784	1.000	1.900	6.000	46.000	239.000	1109.000	1370.000
03298145	Chenoweth Run at Easum Road	01/95-01/96	15	37.333	1.000	1.000	4.000	6.000	53.000	230.000	230.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	94	127.559	1.000	1.875	4.000	8.000	39.750	813.000	2720.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	41	296.902	1.000	2.000	5.500	88.000	424.000	1646.001	1820.000

					_		Value	at indicated pe	rcentile		
Station number	Station name	Period analyzed	N	Mean	Minimum	5	25	50	75	95	Maximum
			Suspend	ed solids, nonvo	latile on ignition,	in mg/L [00540]]				
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	10	147.800	2.000	2.000	17.250	85.000	283.500	534.000	534.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	11	293.727	3.000	3.000	12.000	82.000	694.000	1010.000	1010.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	83	61.614	1.000	1.000	2.000	4.000	19.000	291.200	1120.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	14	424.357	2.000	2.000	61.250	121.000	790.000	1660.000	1660.000
			Res	sidue, volatile no	onfilterable, in mg	/L [00535]					
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	10	87.800	2.000	2.000	16.000	33.000	167.000	290.000	290.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	11	31.273	2.000	2.000	2.000	20.000	60.000	74.000	74.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	90	39.188	0.100	0.500	2.000	3.000	13.500	236.800	880.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	14	115.286	2.000	2.000	9.500	62.500	186.000	378.000	378.000
			Ni	itrogen, nitrate,	total, in mg/L as 1	N [00620]					
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	4		0.770						2.400
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	10	2.890	1.200	1.200	1.475	2.700	4.225	5.200	5.200
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	79	3.765	0.140	0.640	2.000	3.200	4.800	9.800	12.400
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	9	2.589	1.200	1.200	1.700	2.400	3.300	4.700	4.700
			Ν	itrogen, nitrite,	total, in mg/L as I	N [00615]					
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	9	0.071	0.010	0.010	0.020	0.040	0.130	0.230	0.230
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	10	0.147	0.002	0.002	0.005	0.065	0.245	0.500	0.500
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	86	0.109	0.010	0.013	0.040	0.070	0.172	0.340	0.420
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	9	0.492	0.009	0.009	0.120	0.330	1.050	1.200	1.200
			Nitrog	en, nitrite + niti	rate, total, in mg/I	as N [00630]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	18	1.021	0.260	0.260	0.653	1.130	1.325	1.700	1.700
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	20	1.493	0.580	0.587	0.875	1.550	1.875	2.617	2.630
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	15	9.452	0.880	0.880	4.600	9.600	13.000	19.000	19.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	36	5.216	1.200	1.200	2.075	4.135	7.800	13.640	15.000
03298145	Chenoweth Run at Easum Road	01/95-01/96	15	5.040	1.100	1.100	2.800	3.500	6.700	14.000	14.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	85	3.889	0.310	0.909	2.010	3.270	4.660	10.512	13.800
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	36	4.074	0.940	1.229	1.900	2.950	4.852	12.575	13.000

							Value a	t indicated per	rcentile		
Station number	Station name	Period analyzed	N	Mean	 Minimum	5	25	50	75	95	Maximum
			Niti	rogen, ammonia	ı, total, in mg/L as	N [00610]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	19	0.077	0.020	0.020	0.040	0.050	0.070	0.240	0.240
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	25	0.246	0.027	0.031	0.055	0.160	0.255	1.672	2.200
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	16	0.449	0.030	0.030	0.065	0.195	0.842	1.700	1.700
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	37	0.343	0.020	0.020	0.100	0.250	0.530	0.972	1.800
03298145	Chenoweth Run at Easum Road	01/95-01/96	15	0.161	0.010	0.010	0.040	0.100	0.260	0.600	0.600
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	93	0.167	0.010	0.020	0.070	0.100	0.200	0.489	0.760
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	41	0.153	0.010	0.021	0.075	0.110	0.200	0.605	0.690
			Nitro	gen, ammonia,	total, in mg/L as N	H4 [71845]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	19	0.099	0.030	0.030	0.050	0.060	0.090	0.310	0.310
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	25	0.314	0.030	0.036	0.070	0.210	0.325	2.131	2.800
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	16	0.584	0.040	0.040	0.085	0.250	1.115	2.200	2.200
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	37	0.440	0.030	0.030	0.130	0.320	0.680	1.220	2.300
03298145	Chenoweth Run at Easum Road	01/95-01/96	15	0.207	0.010	0.010	0.050	0.130	0.330	0.770	0.770
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	93	0.216	0.010	0.030	0.090	0.130	0.255	0.632	0.980
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	41	0.197	0.010	0.031	0.095	0.140	0.260	0.775	0.890
			Nitro	ogen, organic, di	issolved, in mg/L ล	s N [00605]					
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	10	1.119	0.120	0.120	0.428	1.135	1.885	2.000	2.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	11	1.279	0.440	0.440	0.800	0.970	1.600	2.500	2.500
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	85	0.912	0.040	0.106	0.400	0.630	0.890	2.610	13.100
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	10	1.703	0.570	0.570	0.660	1.055	2.675	4.700	4.700
				Phosphorus, to	tal, in mg/L as P [00665]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	15	0.103	0.010	0.010	0.020	0.040	0.120	0.360	0.360
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	25	0.176	0.020	0.020	0.045	0.130	0.225	0.544	0.550
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	12	2.430	0.860	0.860	1.500	2.500	3.325	4.000	4.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	34	1.288	0.340	0.340	0.485	0.820	2.050	3.207	3.530
03298145	Chenoweth Run at Easum Road	01/95-01/96	12	1.183	0.310	0.310	0.427	0.625	2.150	2.700	2.700
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	91	1.181	0.140	0.202	0.420	0.760	2.000	3.240	4.800
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	39	0.863	0.060	0.090	0.320	0.490	1.300	2.920	3.400

156

							Value a	at indicated pe	rcentile		
Station number	Station name	Period analyzed	N	Mean	Minimum	5	25	50	75	95	Maximum
				Phosphate, total	l, in mg/L as P04	[00650]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	3		0.020						0.020
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	10	0.230	0.010	0.010	0.030	0.105	0.438	0.860	0.860
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	1								7.970
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	14	3.211	0.460	0.460	0.798	2.745	5.905	7.360	7.360
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	85	2.753	0.370	0.499	1.040	1.990	4.600	6.440	8.340
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	18	2.174	0.180	0.180	0.800	1.150	3.750	6.130	6.130
			Pl	nosphorus, disso	lved, in mg/L as	P [00666]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	10	0.041	0.010	0.010	0.020	0.035	0.060	0.100	0.100
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	20	0.042*		*0.008	*0.014	*0.030	*0.060	*0.156	0.160
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	9	2.556	1.200	1.200	1.500	2.600	3.700	3.800	3.800
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	26	0.917	0.030	0.034	0.183	0.420	1.325	3.715	4.100
03298145	Chenoweth Run at Easum Road	01/95-01/96	10	1.132	0.120	0.120	0.268	0.990	2.025	2.600	2.600
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	19	0.441	0.070	0.070	0.170	0.260	0.580	1.900	1.900
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	28	0.497	0.020	0.029	0.080	0.175	0.673	2.055	2.100
			Phospho	orus, orthophosp	phate, total, in mg	g/L as P [70507]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	3		0.005						0.006
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	10	0.075	0.004	0.004	0.010	0.035	0.142	0.280	0.280
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	1								2.600
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	14	1.047	0.150	0.150	0.260	0.895	1.925	2.400	2.400
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	85	0.898	0.120	0.163	0.340	0.650	1.500	2.100	2.720
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	18	0.709	0.060	0.060	0.260	0.375	1.223	2.000	2.000
				Arsenic, total	, in ug/L as As [0	1002]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	2								
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	17								
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	2								
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	19	6.246*		*1.298	*2.603	*4.430	*10.000	*16.000	16.000
03298145	Chenoweth Run at Easum Road	01/95-01/96	2								
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	44	3.798*		*0.120	*0.519	*1.434	*3.941	*24.000	31.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	23	7.678*		*2.433	*4.459	*6.372	*11.000	*18.200	19.000

							Value a	at indicated pe	rcentile		
Station number	Station name	Period analyzed	Ν	Mean	Minimum	5	25	50	75	95	Maximum
				Barium, total	, in ug/L as Ba [0	1007]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	2		78.000						79.000
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	17	74.529	41.000	41.000	64.000	70.000	93.000	110.000	110.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	2		26.000						64.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	19	88.211	35.000	35.000	43.000	71.000	129.000	231.000	231.000
03298145	Chenoweth Run at Easum Road	01/95-01/96	2		47.000						59.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	44	76.568	26.000	26.750	36.000	42.000	83.500	324.750	568.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	24	89.167	40.000	40.000	43.750	67.500	119.750	225.500	234.000
				Beryllium, tota	al, in ug/L as Be [01012]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	1								
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	17								
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	1								
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	18								
03298145	Chenoweth Run at Easum Road	01/95-01/96	1								1.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	44	0.244*		*0.003	*0.016	*0.056	*0.192	*1.000	4.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	23	1.000*		*1.000	*1.000	*1.000	*1.000	*1.000	1.000
				Cadmium, tota	ıl, in ug/L as Cd [01027]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	2								
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	17								
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	2								
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	19								
03298145	Chenoweth Run at Easum Road	01/95-01/96	2								
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	44								
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	24								
				Chromium, tot	al, in ug/L as Cr	[01034]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	2								
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	17	2.354*		*0.205	*0.608	*1.334	*3.500	*10.000	10.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	2								
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	19								
03298145	Chenoweth Run at Easum Road	01/95-01/96	2								
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	44	4.681*		*0.007	*0.072	*0.315	*1.615	*45.750	82.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	24	1.571*		*0.029	*0.158	*0.485	*1.442	*12.250	15.000

							Value	at indicated p	ercentile		
Station number	Station name	Period analyzed	N	Mean	Minimum	5	25	50	75	95	Maximum
			Co	pper, total recove	erable, in ug/L as	s Cu [01042]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	2								
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	17	7.183*		*1.269	*2.556	*7.000	*11.500	*14.000	14.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	2		8.000						17.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	19	16.158	7.000	7.000	13.000	15.000	21.000	30.000	30.000
03298145	Chenoweth Run at Easum Road	01/95-01/96	2		7.000						11.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	44	11.896*		*3.920	*4.360	*8.000	*15.000	*42.250	73.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	24	15.083	5.000	5.500	8.250	10.500	18.750	39.000	41.000
				Iron, total, i	n ug/L as Fe [01	045]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	2		249.000						10300.000
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	17	5325.647	94.000	94.000	864.000	2250.000	9665.000	16700.000	16700.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	2		47.000						257.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	19	9669.685	90.000	90.000	312.000	6130.000	20400.000	25000.000	25000.000
03298145	Chenoweth Run at Easum Road	01/95-01/96 2			128.000						6940.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	44	4722.227	68.000	78.750	122.750	424.500	7797.500	22500.000	24600.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	24	11755.708	75.000	75.000	3925.000	7805.000	15575.000	41925.000	43100.000
				Lead, total, i	n ug/L as Pb [01	051]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	1								23.000
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	17								
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	1								3.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	18	23.792*		*10.753	*15.898	*20.000	*31.750	*40.000	40.000
03298145	Chenoweth Run at Easum Road	01/95-01/96	1								13.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	44	14.477*		*2.611	*5.537	*9.780	*17.520	*45.000	90.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	23	18.972*		*2.754	*7.113	*12.471	*20.000	*58.400	60.000
			Me	rcury, total recov	erable, in ug/L a	s Hg [71900]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	2								
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	17	0.109*		*0.081	*0.099	*0.100	*0.114	*0.200	0.200
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	2								
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	19	0.095*		*0.022	*0.040	*0.070	*0.108	*0.300	0.300
03298145	Chenoweth Run at Easum Road	01/95-01/96	2								
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	45	0.147*		*0.016	*0.043	*0.083	*0.200	*0.470	1.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	24	0.127*		*0.031	*0.056	*0.099	*0.200	*0.300	0.300

							Value a	at indicated pe	ercentile		
Station number	Station name	Period analyzed	N	Mean	_ Minimum	5	25	50	75	95	Maximum
				Nickel, total,	in ug/L as Ni [01	.067]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	2								
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	17	5.314*		*2.004	*3.254	*4.626	*8.000	*11.000	11.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	2								
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	19	8.343*		*2.430	*4.592	*6.602	*13.000	*20.000	20.000
03298145	Chenoweth Run at Easum Road	01/95-01/96	2								
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	44	11.078*		*1.328	*3.112	*7.530	*9.750	*52.500	70.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	24	8.414*		*1.146	*2.958	*6.000	*12.000	*26.750	27.000
				Selenium, tota	l, in ug/L as Se [()1147]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	1								
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	17								
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	1								
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	18								
03298145	Chenoweth Run at Easum Road	01/95-01/96	1								
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	44								
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	23								
				Silver, total,	in ug/L as Ag [01	.077]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	2								
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	17								
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	2								
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	19								
03298145	Chenoweth Run at Easum Road	01/95-01/96	2								
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	44								
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	24								
				Zinc, total, i	n ug/L as Zn [01	092]					
03298129	Chenoweth Run at Old Watterson Trail	01/95-03/97	2		10.000						50.000
03298135	Chenoweth Run at Ruckriegel Parkway	02/96-09/97	17	49.320*		*7.447	*24.500	*39.000	*77.500	*132.000	132.000
03298138	Chenoweth Run at Jeffersontown WWTP	01/95-01/96	2		28.000						63.000
03298140	Chenoweth Run at Taylorsville Road	01/95-09/97	19	67.526	25.000	25.000	34.000	42.000	102.000	148.000	148.000
03298145	Chenoweth Run at Easum Road	01/95-01/96	2		29.000						35.000
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	44	58.500	13.000	18.000	31.000	49.500	63.000	144.500	225.000
03298160	Chenoweth Run at Seatonville Road	01/95-09/97	24	62.250	16.000	16.250	27.250	45.000	95.750	173.000	190.000

Station number	Station name	Period analyzed	N	Mean	Minimum	5	25	50	75	95	Maximum
				Cyanide, total, i	in mg/L as Cn [00720]					
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	19								
				2,4-D, tota	l, in ug/L [3973	0]					
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	18	0.209*		*0.003	*0.008	*0.030	*0.213	*1.800	1.800
				2.4.5-T. tota	al, in ug/L [3974	101					
03298150	Chenoweth Run at Gelhaus Lane	01/91-12/97	18								

*Value is estimated by use of a log-probability regression to predict the values of data below the detection limit.

Appendix 5. Chenoweth Run Basin HSPF Model User Control Input (UCI) File

```
* * *
    HSPF model for Chenoweth Run - Louisville, Ky.
* * *
    Modelers: Phil Zarriello, Ithaca N.Y.; Gary Martin, Louisville, Ky.
***
    Run Date: 3/2/2000
* * *
* * *
    References to HSPF manual V10
* * *
* * *
    NOTE: Three or more asterisks indicate a model comment statement.
* * *
* * *
    General Conversions
* * *
    ac-ft/hr x 12.1 = mean cfs/sec (ac-ft * 43560ft/ac * 1/60min/hr *1/60sec/
* * *
     ac-ft/day x 0.50417 = mean cfs/sec
* * *
     mean cfs/hr x 0.0826446 = ac-ft/hr (1/43560ac * 60min/hr * 60sec/min)
* * *
     mean cfs/day x 1.9834711 = ac-ft/day
* * *
* * *
     1 hour simulation: flow, sediment, and PO4
* * *
* * *
    Module Sub-module Purpose
* * *
                             _____
* * *
    PERLND PWATER
                     Flow from pervious areas
                  Sediment generati
PO4 yield associa
Runoff from imper
Solids generation
Buildup and washo
Flow in Channels
Sediment transpor
* * *
           SEDMNT
                      Sediment generation
* * *
           PQUAL
                     PO4 yield associated with sediment + overland flow
* * *
   IMPLND IWATER
                     Runoff from impervious surfaces
* * *
           SLD
                     Solids generation
***
           IQUAL
                     Buildup and washoff of PO4 on a surface
    RCHRES HYDR
* * *
* * *
          SEDTRN
                     Sediment transport in channels
                    River quality
* * *
          RQUAL
* * *
            OXRX
                     Simulate DO and BOD
                   Nutrient flux (PO4 only) in channels
* * *
            NUTRX
RUN
GLOBAL
 Chenoweth Run Watershed - Jeffersontown, KY 2/96 to 1/98 [QUAL run]
          1996/02/01 00:00 END 1998/01/31 24:00
 START
 RUN INTERP OUTPUT LEVEL
                         9
 RESUME 0 RUN
END GLOBAL
*******
*** FILES Block 4.2 pg 277
                      FILES
20 C:\WRDAPP\GENWORK\ky\chen.wdm
WDM
         25 C:\WRDAPP\GENWORK\ky\qual.err
22 C:\WRDAPP\GENWORK\ky\qual.ech
ERROR
MESSU
         15 C:\WRDAPP\GENWORK\ky\qual.out
END FILES
*******
*** OPN Sequence Block 4.3 pg 279
                                                                   ***
****
OPN SEQUENCE
                  Select Time step:
***
                  INDELT 00:05
*** INGRP
   INGRP
                    INDELT 01:00
     IMPLND
              1
     IMPLND
                2
     PERLND
                1
     PERLND
                2
     PERLND
                3
     PERLND
                4
     PERLND
                5
     PERLND
                б
                7
     PERLND
     PERLND
                8
     PERLND
                9
     PERLND
               10
     PERLND
               11
     PERLND
               12
     PERLND
               13
     PERLND
               14
     PERLND
               15
     PERLND
               16
```

PERLND

17

```
Appendix 5
```

163

	Process pond RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	15 16 17 18 19 20 21 22 23	(lakes/	ponds)	before	channel	RCHRES			
* * *	COPY	1								
*** (Channels RCHRES	1								
	RCHRES	2								
	RCHRES	3								
	RCHRES	4 5								
	RCHRES RCHRES	6								
	RCHRES	7								
	RCHRES	8								
	RCHRES RCHRES	9 10								
	RCHRES	11								
	RCHRES	12								
	RCHRES	13								
	RCHRES	14								
	COPY	100								
		101								
		102 105								
		106								
		107								
		108								
* * *		109 110								
* * *		111								
	CENED	1								
	GENER GENER	2								
	GENER	3								
	GENER	4								
	END INGRP OPN SEQUENCE									
	~ ~ ~									
* * * *	* * * * * * * * * * * *	* * * * * * * *	******	* * * * * *	******	******	******	******	******	* * *
* * *	PER	LND - Pe	ervious	land s	urface		4.2(1).1			* * *
***	* * * * * * * * * * * * *	* * * * * * * *	******	*****	******		4.4(1)			* * *
PERL										
	FIVITY <pls></pls>	Act	ive Sect	ions (1=Active	e, O=Ina	ctive)		* * *	
##	# -### ATMP	SNOW PWA	AT SED	PST	PWG PQA	L MSTL P	EST NITR	PHOS TRAC	2 ***	
	1 17		1 1	0		L 0		0		
EN	D ACTIVITY									
	INT-INFO									
	<pls> <-***</pls>									
	# -### ATMP : 1 17		6 5					PHOS TRAC		
	D PRINT-INFO		2	-		-		-	-	-

GEN-INFO		. 170					Ð				
<pls> ######</pls>					t-sei	ries			* * *		
	LULC,Dainage,					out			* * *		
1	Agr, poor <5%		1	1	1			0			
2	Agr, poor >5%		1		1			0			
3	Agr, mod		1	1	1	1	15	0			
4	Agr, well		1	1	1	1	15	0			
5	Forest, poor,		1		1	1	15	0			
6	Forest, poor,	>5%	1	1 1	1		15	0			
7	Forest, mod		1					0			
8	Forest, well		1	1	1	1	15	0			
9	Open		1	1	1	1	15	0			
10	Open R/C,poor	:,<5%	1	1	1	1	15	0			
11	Open R/C,poor	:,>5%	1	1	1 1 1	1	15	0			
12	Open R/C,mod,	<5%	1	1	1	1	15	0			
13	Open R/C,mod,	>5%	1	1	1	1	15	0			
14	Open R/C,well		1	1	1	1	15	0			
15	Dist R, poor		1	1	1	1	15	0			
16	Dist R, mod		1	1	1			0			
17	Diat C		1	1	1	1	15	0			
END GEN-	Dist C INFO		T	T	T	T	15	0			
											**
*** PERLN	D - Section P				2(1). 4(1).4)			*
*** Wat	er Budget		00011		-(-).	- r		-			*
											*
PWAT-PAR											
PWAT-PAR ***	М1	1=vari	es mo	onthl	y 0=do	oes r	not				
PWAT-PAR *** *** <pls></pls>	M1 <pwater flags<="" td=""><td>1=vari ><monthl< td=""><td>es mc y par</td><td>onthl</td><td>y 0=do er val</td><td>oes r lue f</td><td>not Elags:</td><td></td><td></td><td></td><td></td></monthl<></td></pwater>	1=vari > <monthl< td=""><td>es mc y par</td><td>onthl</td><td>y 0=do er val</td><td>oes r lue f</td><td>not Elags:</td><td></td><td></td><td></td><td></td></monthl<>	es mc y par	onthl	y 0=do er val	oes r lue f	not Elags:				
PWAT-PAR *** *** <pls> ***## -###</pls>	M1 <pwater flags<br="">CSNO RTOP UZF</pwater>	l=vari s> <monthl 'G VCS</monthl 	es mc y par VUZ	onthl amet VNN	y 0=do er val VIFW V	oes r lue f VIRC	not Elags: VLE				
PWAT-PAR *** *** <pls> ***## -### 1 17</pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0</pwater>	1=vari > <monthl< td=""><td>es mc y par</td><td>onthl</td><td>y 0=do er val</td><td>oes r lue f</td><td>not Elags:</td><td></td><td></td><td></td><td></td></monthl<>	es mc y par	onthl	y 0=do er val	oes r lue f	not Elags:				
PWAT-PAR *** *** <pls> ***## -###</pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0</pwater>	l=vari s> <monthl 'G VCS</monthl 	es mc y par VUZ	onthl amet VNN	y 0=do er val VIFW V	oes r lue f VIRC	not Elags: VLE				
PWAT-PAR *** *** <pls> ***## -### 1 17 END PWAT PWAT-PAR</pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2</pwater>	l=vari s> <monthl G VCS 0 1</monthl 	es mc y par VUZ 1	onthl camet VNN 1	y 0=do er vai VIFW V 1	oes r lue f VIRC	not Elags: VLE				
PWAT-PAR *** *** <pls> ***## -### 1 17 END PWAT PWAT-PAR</pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1</pwater>	l=vari s> <monthl G VCS 0 1</monthl 	es mc y par VUZ 1	onthl camet VNN 1	y 0=do er vai VIFW V 1	oes r lue f VIRC	not Elags: VLE				
PWAT-PAR *** *** <pls> ***## -### 1 17 END PWAT PWAT-PAR <pls></pls></pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST</pwater>	l=vari s> <monthl G VCS 0 1</monthl 	es mc y par VUZ 1	onthl camet VNN 1 art 2	y 0=do er val VIFW V 1	oes r lue f VIRC	not Elags: VLE 1			KVARY	
PWAT-PAR *** *** <pls> ***## -### 1 17 END PWAT PWAT-PAR <pls></pls></pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i</pwater>	1=vari s> <monthl G VCS 0 1 nput inf</monthl 	es mc y par VUZ 1 o: Pa	onthl camet VNN 1 art 2 TLT	y 0=do er val VIFW V 1	bes n lue f /IRC 1	ot Elags: VLE 1	>			AGWRC
PWAT-PAR *** *** <pls> ***## -### 1 17 END PWAT PWAT-PAR <pls></pls></pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST</pwater>	l=vari > <monthl PG VCS 0 1 .nput inf LZSN</monthl 	es mo y par VUZ 1 o: Pa INF (in/	onthl camet VNN 1 art 2 TLT	y 0=dd er val VIFW V 1	oes r lue f /IRC 1 LSUR	not Elags: VLE 1	SLSUR		KVARY	AGWRC
PWAT-PAR *** ****# -### 1 17 END PWAT PWAT-PAR <pls> ### -###</pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST ***(none)</pwater>	l=vari >>monthl G VCS 0 1 .nput inf LZSN (in)	es mc y par VUZ 1 0: Pa INF (in/ 0.	onthl camet VNN 1 art 2 TLT (hr)	y 0=de er val VIFW V 1 1	Des r lue f JIRC 1 LSUR (ft)	lot Elags: VLE 1	SLSUR		KVARY l/in)	AGWRC (1/in)
PWAT-PAR *** ****# -### 1 17 END PWAT PWAT-PAR <pls> ### -### 1</pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST ***(none) 0</pwater>	1=vari >>(monthl) 'G VCS 0 1 .nput inf LZSN (in) 5.67 4.77 7.65	es mc y par VUZ 1 0: Pa INF (in/ 0. 0.	onthl camet VNN 1 art 2 71LT (hr) 037	y 0=do er val VIFW 1 1	LSUR (ft) 200.	lot Elags: VLE 1	SLSUR (none)		KVARY 1/in) 0.45	AGWRC (1/in) 0.994
PWAT-PAR *** *** <pls> ***## -### 1 17 END PWAT PWAT-PAR <pls> ### -### 1 2</pls></pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST ***(none) 0 0 0</pwater>	1=vari >> monthl 'G VCS 0 1 nput inf LZSN (in) 5.67 4.77	es mo y par VUZ 1 o: Pa INF (in/ 0. 0. 0.	onthl amet VNN 1 art 2 TLT (hr) 037 035	y 0=do er vai VIFW V 1 1 1 1 1	LSUR (ft) 200.	lot Elags VLE 1	SLSUR (none)).025).075		KVARY 1/in) 0.45 0.45	AGWRC (1/in) 0.994 0.998
PWAT-PAR *** *** <pls> ***## -### 1 17 END PWAT PWAT-PAR <pls> ### -### 1 2 3</pls></pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST ***(none) 0 0 0 0 0</pwater>	1=vari >>(monthl) 'G VCS 0 1 .nput inf LZSN (in) 5.67 4.77 7.65	es mc y par VUZ 1 0: Pa INF (in/ 0. 0. 0. 0.	onthl amet VNN 1 art 2 71LT (hr) 037 035 097 356	y 0=dd er va VIFW v 1 1 1 1 1 1	Des r lue f /IRC 1 LSUR (ft) 200. 550. 200. 400.	not Elags: VLE 1	SLSUR (none)).025).075).050).050		KVARY 1/in) 0.45 0.45 0.45	AGWRC (1/in) 0.994 0.998 0.992
PWAT-PAR *** ***## -### 1 17 END PWAT PWAT-PAR <pls> ### -### 1 2 3 4 5</pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST ***(none) 0 0 0 0 0 0</pwater>	1=vari s> <monthl G VCS 0 1 nput inf LZSN (in) 5.67 4.77 7.65 3.60 5.67</monthl 	es mc y par VUZ 1 0: Pa INF (in/ 0. 0. 0. 0.	onthl amet VNN 1 art 2 71LT (hr) 037 035 097 356 037	y 0=dc er vai VIFW 1 1 1 1 1 1 1 1 1 1	LSUR (ft) 200. 200. 200.	not Elags: VLE 1	SLSUR (none)).025).075).050).050		KVARY 1/in) 0.45 0.45 0.45 0.45	AGWRC (1/in) 0.994 0.998 0.992 0.990 0.998
PWAT-PAR *** ***## -### 1 17 END PWAT PWAT-PAR <pls> ### -### 1 2 3 4 5 6</pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST ***(none) 0 0 0 0 0 0 0 0 0 0 0 0 0</pwater>	1=vari > <monthl 'G VCS 0 1 .nput inf LZSN (in) 5.67 4.77 7.65 3.60 5.67 4.77</monthl 	es mc y par VUZ 1 0: Pa INF (in/ 0. 0. 0. 0. 0. 0.	onthl camet VNN 1 1 2 1 1 2 1 1 7 1 1 7 037 035 097 356 037 035	y 0=dd er val VIFW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dess r lue f VIRC 1 SSUR (ft) 200. 550. 200. 400. 200. 200.	not Elags: VLE 1 (((((((((((((((((((SLSUR (none)).025).050).050).050).025).075		KVARY 1/in) 0.45 0.45 0.45 0.45 0.45	AGWRC (1/in) 0.994 0.998 0.992 0.990 0.998 0.994
PWAT-PAR *** ***## -### 1 17 END PWAT PWAT-PAR <pls> ### -### 1 2 3 4 5</pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST ***(none) 0 0 0 0 0 0</pwater>	1=vari s> <monthl G VCS 0 1 nput inf LZSN (in) 5.67 4.77 7.65 3.60 5.67</monthl 	es mc y par VUZ 1 (in/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	onthl amet VNN 1 art 2 71LT (hr) 037 035 097 356 037	y 0=dc er val VIFW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LSUR (ft) 200. 200. 200.	not Elags: VLE 1 (((((((((((((((((((SLSUR (none)).025).075).050).050		KVARY 1/in) 0.45 0.45 0.45 0.45	AGWRC (1/in) 0.994 0.998 0.992 0.990 0.998
PWAT-PAR **** 1 17 END PWAT PWAT-PAR <pls> ### -### 1 2 3 4 5 6 7 8</pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST ***(none) 0 0 0 0 0 0 0 0 0 0 0 0 0</pwater>	1=vari >>monthl 'G VCS 0 1 LZSN (in) 5.67 4.77 7.65 3.60 5.67 4.77 7.65 3.60	es mc y par VUZ 1 (in/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	nthl amet VNN 1 'ILT 'hr) 037 035 097 356 037 035 097	y 0=dd er val VIFW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Des r lue f /IRC 1 200. 550. 200. 400. 200. 200. 200. 200. 200. 20	not Elags: VLE 1 (((((((((((((((((((SLSUR (none)).025).050).050).050).050).050).050	(KVARY 1/in) 0.45 0.45 0.45 0.45 0.45 0.45 0.45	AGWRC (1/in) 0.994 0.998 0.992 0.990 0.998 0.994 0.990 0.990
PWAT-PAR *** **** <pls> ***## -### 1 17 END PWAT PWAT-PAR <pls> ### -### 1 2 3 4 5 6 7</pls></pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST ***(none) 0 0 0 0 0 0 0 0 0 0 0 0 0</pwater>	1=vari >>monthl 'G VCS 0 1 LZSN (in) 5.67 4.77 7.65 3.60 5.67 4.77 7.65 3.60	es mc y par VUZ 1 (in/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	nthl amet VNN 1 'ILT 'hr) 037 035 097 356 037 035 097	y 0=dc er val VIFW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Des r lue f /IRC 1 200. 550. 200. 400. 200. 200. 200. 200. 200. 20	not Elags: VLE 1 (((((((((((((((((((SLSUR (none)).025).075).050).050).025).075).050	(KVARY 1/in) 0.45 0.45 0.45 0.45 0.45 0.45 0.45	AGWRC (1/in) 0.994 0.998 0.992 0.990 0.998 0.994 0.990 0.990
PWAT-PAR **** 1 17 END PWAT PWAT-PAR <pls> ### -### 1 2 3 4 5 6 7 8</pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST ***(none) 0 0 0 0 0 0 0 0 0 0 0 0 0</pwater>	1=vari >>monthl 'G VCS 0 1 LZSN (in) 5.67 4.77 7.65 3.60 5.67 4.77 7.65 3.60	es mc y par UUZ 1 INF (in/ 0. 0. 0. 0. 0. 0. 0. 0. 0.	nthl amet VNN 1 'ILT 'hr) 037 035 097 356 037 035 097	y 0=dd er val VIFW v 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Des r lue f /IRC 1 200. 550. 200. 400. 200. 200. 200. 200. 200. 20	not Flags: 1 (((((((((((((((((((((((((((((((((((SLSUR (none)).025).050).050).050).050).050).050	(KVARY 1/in) 0.45 0.45 0.45 0.45 0.45 0.45 0.45	AGWRC (1/in) 0.994 0.992 0.990 0.998 0.994 0.990 0.990 0.994
PWAT-PAR *** ***## -### 1 17 END PWAT PWAT-PAR <pls> ### -### 1 2 3 4 5 6 7 8 9</pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST ***(none) 0 0 0 0 0 0 0 0 0 0 0 0 0</pwater>	1=vari > <monthl 'G VCS 0 1 .nput inf LZSN (in) 5.67 4.77 7.65 3.60 5.67 4.77 7.65 3.60 5.76</monthl 	es mc y par 1 (in/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	onthl amet 2 VNN 1 VTLT (hr) 037 035 097 356 037 035 097 356 073	y 0=dd er val VIFW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LSUR (ft) 200. 200. 200. 200. 200. 400. 200. 200.	<pre>Prot Flagss VLE 1 1 (((((((((((((((((</pre>	SLSUR (none)).025).050).050).050).050).050).050).050	(KVARY 1/in) 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	AGWRC (1/in) 0.994 0.992 0.990 0.998 0.994 0.990 0.990 0.994
PWAT-PAR *** ***# -### 1 17 END PWAT PWAT-PAR <pls> ### -### 1 2 3 4 5 6 7 8 9 10</pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST ***(none) 0 0 0 0 0 0 0 0 0 0 0 0 0</pwater>	1=vari S>(monthl) G VCS 0 1 LZSN (in) 5.67 4.77 7.65 3.60 5.67 4.77 7.65 3.60 5.76 4.89	es mc y par VUZ 1 INF (in/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	onthl amet 2 VNN 1 1 VNN 037 037 035 097 356 037 035 097 356 073 073 033	y 0=dd er val VIFW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LSUR (ft) 200. 550. 200. 400. 200. 200. 300.	<pre>pot Elags: VLE 1 1 (((((((((((((((((</pre>	ELSUR (none)).025).050).050).050).050).050).050).050).050	(KVARY 1/in) 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	AGWRC (1/in) 0.994 0.998 0.992 0.990 0.994 0.990 0.994 0.994 0.995
PWAT-PAR **** <pls> ***## -### 1 17 END PWAT PWAT-PAR <pls> ### -### 1 2 3 4 5 6 7 8 9 10 11</pls></pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST ***(none) 0 0 0 0 0 0 0 0 0 0 0 0 0</pwater>	1=vari > <monthl 'G VCS 0 1 .nput inf LZSN (in) 5.67 4.77 7.65 3.60 5.67 4.77 7.65 3.60 5.76 4.89 4.38 5.50</monthl 	es mc y par 1 1NF (in/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	onthl ant 2 TLT (hr) 035 097 356 037 035 097 356 073 033 033 032 079	y 0=dd er val VIFW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LSUR (ft) 200. 550. 200. 400. 200. 400. 200. 400. 200. 400. 200. 400.	<pre>not Elags: VLE 1 1 (((((((((((((((((((((((((((((((((</pre>	SLSUR (none)).025).075).050).050).050).050).050).050).025).025	(KVARY 1/in) 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	AGWRC (1/in) 0.994 0.992 0.990 0.998 0.994 0.990 0.994 0.995 0.994 0.993
PWAT-PAR *** ***# -### 1 17 END PWAT PWAT-PAR <pls> ### -### 1 2 3 4 5 6 7 8 9 10 11 12</pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST ***(none) 0 0 0 0 0 0 0 0 0 0 0 0 0</pwater>	1=vari > <monthl 'G VCS 0 1 .nput inff LZSN (in) 5.67 4.77 7.65 3.60 5.67 4.77 7.65 3.60 5.76 4.89 4.38</monthl 	es mc y par VUZ 1 INF (in/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	onthl ramet VNN 1 PILT Chr) 035 037 035 097 356 073 035 073 033 033	y 0=dd er val VIFW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LSUR (ft) 200. 550. 200. 400. 200. 200. 200. 200. 200. 20	<pre>prot Elagss VLE 1 1 (((((((((((((((((</pre>	SLSUR (none)).025).075).050).050).050).050).050).050).050).050	(KVARY 1/in) 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	AGWRC (1/in) 0.994 0.998 0.992 0.990 0.994 0.990 0.994 0.990 0.994 0.995 0.994
PWAT-PAR **** <pls> ***## -### 1 17 END PWAT PWAT-PAR <pls> ### -### 1 2 3 4 5 6 7 8 9 10 11 12 13 14</pls></pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST ***(none) 0 0 0 0 0 0 0 0 0 0 0 0 0</pwater>	1=vari S>(monthl) 'G VCS 0 1 	es mc y par UUZ 1 0: Pa INF (in/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	onthl ramet VNN 1 DrlLT hr) 037 035 037 035 037 035 073 035 073 032 073 032 075 152	y 0=dd er val VIFW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LSUR (ft) 200. 200. 200. 200. 200. 200. 200. 200	<pre>Prot Flagss VLE 1 1 1 ((((((((((((((((</pre>	ELSUR (none)).025).050).050).050).050).050).050).050).025).025).025).025).025).025	(KVARY 1/in) 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	AGWRC (1/in) 0.994 0.998 0.992 0.990 0.994 0.990 0.994 0.995 0.994 0.995 0.994 0.993 0.992 0.991
PWAT-PAR *** ****# -### 1 17 END PWAT PWAT-PAR <pls> ### -### 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</pls>	M1 <pre></pre>	<pre>1=vari ><monthl 'G VCS 0 1 .nput inf LZSN (in) 5.67 4.77 7.65 3.60 5.67 4.77 7.65 3.60 5.67 4.77 7.65 3.60 5.76 4.89 4.88 5.50 5.50 3.24 2.30</monthl </pre>	es mc y par 1 iNFM (in/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	onthl ramet VNN 1 037 035 097 356 037 035 097 356 073 033 032 079 075 152 038	y 0=dd er val VIFW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LSUR (ft) 200. 550. 200. 400. 200. 200. 200. 200. 200. 20	<pre>prot Elagss VLE 1 1 (((((((((((((((((</pre>	SLSUR (none)).025).075).050).050).050).050).050).050).025).075).025).075).025).075).025	(KVARY 1/in) 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	AGWRC (1/in) 0.994 0.992 0.990 0.998 0.994 0.990 0.994 0.995 0.994 0.993 0.992 0.991 0.640
PWAT-PAR *** ***## -### 1 17 END PWAT PWAT-PAR <pls> ### -### 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16</pls>	M1 <pre></pre>	<pre>1=vari ><monthl 'G VCS 0 1 .nput inf LZSN (in) 5.67 4.77 7.65 3.60 5.67 4.77 7.65 3.60 5.67 4.77 7.65 3.60 5.76 4.89 4.38 5.50 5.50 3.24 2.30 2.90</monthl </pre>	es mc y par VUZ 1 INFF (in/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	onthl amet VNN 1 035 097 356 037 035 097 356 073 032 073 032 079 075 152 038 058	y 0=dd er val VIFW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C_SUR (ft) 200. 200. 200. 200. 200. 200. 200. 200	<pre>pot Elagss VLE 1 1 (((((((((((((((((</pre>	SLSUR (none)).025).075).050).050).050).050).050).050).025).055).025).025).025).025).025).025	(KVARY 1/in) 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	AGWRC (1/in) 0.994 0.992 0.990 0.994 0.990 0.994 0.990 0.994 0.995 0.994 0.993 0.992 0.991 0.640 0.640
PWAT-PAR *** ****# -### 1 17 END PWAT PWAT-PAR <pls> ### -### 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</pls>	M1 <pwater flags<br="">CSNO RTOP UZF 0 0 -PARM1 M2 *** PWATER i ***FOREST ***(none) 0 0 0 0 0 0 0 0 0 0 0 0 0</pwater>	<pre>1=vari ><monthl 'G VCS 0 1 .nput inf LZSN (in) 5.67 4.77 7.65 3.60 5.67 4.77 7.65 3.60 5.67 4.77 7.65 3.60 5.76 4.89 4.88 5.50 5.50 3.24 2.30</monthl </pre>	es mc y par VUZ 1 INFF (in/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	onthl ramet VNN 1 037 035 097 356 037 035 097 356 073 033 032 079 075 152 038	y 0=dd er val VIFW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LSUR (ft) 200. 550. 200. 400. 200. 200. 200. 200. 200. 20	<pre>pot Elagss VLE 1 1 (((((((((((((((((</pre>	SLSUR (none)).025).075).050).050).050).050).050).050).025).075).025).075).025).075).025	(KVARY 1/in) 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	AGWRC (1/in) 0.994 0.992 0.990 0.998 0.994 0.990 0.994 0.995 0.994 0.993 0.992 0.991 0.640

	r-parm														
	PLS > -###				out in TMIN		Part : NFEXP		VFILD	DI	EEPFR	B	ASETP	į	AGWETP
1	4		40.		35.		2.5		2.0		0.00		0.00		0.070
5 9	8		40. 40.		35. 35.		2.5 2.5		2.0 2.0		0.00		0.00		0.100 0.070
10	14		40.		35.		2.5		2.0		0.00		0.00		0.040
15	16		40.		35.		3.0		2.0		0.00		0.00		0.020
17 END	PWAT-	PARM	40. 3		35.		3.5		2.0		0.00		0.00		0.010
PWAT	-PARM	14													
<1	PLS >	1		R inpu		fo: Pa	art 4							* * *	
	lag P <i>P</i> -###		VCS CEPSC		VUZ UZSN		VUR NSUR		VMN INTFW		VIFW IRC		VLE LZETP		
***	-###		(in)		(in)		none)		none)		l/da)		none)		
1	17 PWAT-	DADM	4												
*** N ***	Monthl Valu			er val ent th								at ad		* * * * * *	
* * *				of the							erpore	aceu		***	
MON	-INTEF														
Мс	onthly		ercept	tion s	torag	ge caj	pacity	7						* * *	
	PLS> -###	Pa	miro	d if V	ICSEC.	-1 in	סשאיד.	-DVDM	1					* * * * * *	
###	-###			MAR						SEP	OCT	NOV	DEC		
1				0.03											
10 15				0.02											
17		0.01	0.01	0.01											
END	MON-1	NTER	CEP												
	-UZSN			1										* * *	
	oper z ZSN ir					k flo	w – as	s UZSI	N qoes	s up,	peaks	s qo (down	* * *	
<1	PLS>	Req	uired	if VU	JZFG=	1					-	-		* * *	
###	-###	Upp: JAN		ne sto MAR	-						OCT	NOV	DEC	* * * * * *	
1	4		.80				.80			.95					
5	8	.84		.84	.84		.84		.87				.84		
9 10	14	.80 .82	.80	.80 .82	.80 .82		.80 .83				.96 .98				
15	16	.35	.35	.35	.35	.35	.35	.38	.38	.50	.50				
17 END	MON-U	.10	.10	.10	.10	.10	.10	.12	.18	.28	.28	.14	.10		
	-MANNI anning		n" foi	r over	land	flow								* * *	
<1	PLS >	Req	uired	if VN	INFG=1	1								* * *	
###	-###	Manı JAN	-	s n fo MAR				v at : JUL					DEC	* * *	
1	14			0.25											
15				0.23											
	7 MON-M			0.22	0.22	0.22	0.22	0.22	0.22	0.24	0.24	0.23	0.22		
MON-	-INTEF	W.TH													
*** Mc	onthly	/ inte					latter	ns pea	ak by	creat	ting m	nore :	inter	Elow)
	PLS >													* * * * * *	
###	-###			MAR							OCT	NOV	DEC		
1		2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90		
10 15				2.80 1.05											
17				0.70											
END	MON-1	NTER	FLW												
MON-			_					_							
	onthly PLS >								peak)				* * * * * *	
	-###								ch moi	nth				* * *	
-	~			MAR										* * *	
1 10				0.45 0.35											
15	16	0.18	0.18	0.18	0.18	0.18	0.18	0.19	0.19	0.19	0.20	0.19	0.18		
17 FND	MON-1		0.08	0.08	0.08	0.08	0.08	0.08	0.09	0.09	0.09	0.09	0.08		
END	1-1014 – 1	.nc													

Appendix 5. Chenoweth Run Basin HSPF Model User Control Input (UCI) File—Continued

	-LZETP	ARM											
Lo	ower z	one ET		index of de				ensit	У				* * *
				if VLEFG=1				c .					* * *
###	-###			ne ET param									* * *
-				MAR APR					SEP				* * *
1				.12 .12								.12	
2				.25 .26							.27		
3				.12 .12					.14			.12	
4				.27 .27					.29				
5		.56							.62			.56	
6		.81							.98		.90	.81	
7				.72 .72					.79				
8				.89 .89	.89	.91	.98	.98	.98	.98		.89	
9		.22	.22	.22 .22	.23	.24	.24	.24	.24	.24	.23	.22	
10		.18	.18	.18 .18	.19	.22	.22	.22	.21	.20	.19	.18	
11		.34	.34	.34 .34	.38	.40	.40	.40	.38	.34	.34	.34	
12				.23 .23					.28	.27	.25	.23	
13				.30 .30									
14				.38 .38					.42				
15				.05 .07									
17	10			.03 .03									
	MON-L	ZETPARN		.05 .05	.00	.15	.10	• ± /	• ± /	• 1 /	.01	.05	
די געות	-STAT	rc 1											
			itia	al conditio	ons at	star	t of	simul	ation				
###	-###	*** CH	EPS	SURS		UZS		IFWS		LZS		AGWS	GV
1		0.0	030	0.000	1	.547	0	.104	8	.946	2	.529	0.9
2			030		1	458	0	.080		.479		.091	
3			030		1	412	0	063		.426		.032	
4			030		-	.412 .868	0	.002	5			.008	
T		0.0	550	0.000		.000	0	.002	5	.005	-	.000	5.0
5		0.0	030	0.000	1	.466	0	.057				.046	1.2
6		0.0	030	0.000		.460		.056	5	.859	2	.722	1.1
7		0.0	030	0.000	1	.184	0	.016		.869		.040	1.9
8			030			.692		.001		.007		.867	
9		0 (120	0.000	1	200	0	0 5 2	0	016	2	207	1.5
		0.0	020		1	. 300 E04	0	.053 .096	7		2	.297 .534	
10					1	. 594	0	.090	6	.600	2		
11			020		1	.521	0	.081	6 12	.043	2	.472	
12			020		T	.594 .521 .593 .518	0	.106	12	.003	2	.056	
13			020		1	.518	0	.083		.970		.794	
14		0.0	020	0.000	1	.286	0	.028	5	.430	3	.243	2.2
15		0.0	020	0.003	0	.772	0	.070	4	.556	0	.049	0.5
16			020		0	.727		.070	4	.746	0	.106	
17			000		0	118		.000	3	419	0	.005	
	PWAT-	STATE1		0.000	0		0		5	• • • •	0		0.12
****	Secti	ON SED	UNT TT	coding pg	315 4	4(1)	5 -						
	Decer	OII DEDI	. 11 1 1	couring pg	515 I	• = (=)	. 5						
	-PARM1 PLS >			c	- םסמי	0 201	moth	od 10	aa do	nondo	nt on	+ i m	e step
			SIV	SDOP *** S						- criae	011	CIN	- Preb
1		1	0										
5	8	1	0	1									
9	17	1	Ő	1									
	SED-P		0	-									
END													
				ייייסר – יייסר	0 * / 1	י מים י	* 01100	***	/ D 7 T M	/ רח די חיידי די	60147	משם	***
SED-	-PARM2			DET = DELT6 coef				*KRER attac		/DETL eg		RER rticl	
SED- so	oil de					exp				-			
SED- sc < P	oil de PLS >	mg	-			JRER	A	FFIX	C	OVER		NVSI	
SED- sc < P ###	oil de PLS > -###	SI	MPF	KRER		1 0 5							
SED- so < P ### 1	oil de PLS > -### 4	SI	MPF 1.0	0.86		1.95		.020		<i>.</i> –		0.0	
SED- so < P ### 1 5	oil de PLS > -###	SI	MPF 1.0 1.0	0.86 0.14		2.30		.035		.95		0.0	
SED- so < P ### 1 5 9	011 de 2LS > -### 4 8	SI	MPF 1.0 1.0 1.0	0.86 0.14 1.38		2.30 1.70		.035 .015		.60		0.0	
SED- sc < P ### 1 5 9 10	oil de PLS > -### 4	SI	MPF 1.0 1.0 1.0 1.0	0.86 0.14 1.38 1.95		2.30 1.70 1.55		.035 .015 .015		.60 .60		0.0 0.0 0.0	
SED- so < P ### 1 5 9	011 de 2LS > -### 4 8	SI	MPF 1.0 1.0 1.0 1.0 1.0	0.86 0.14 1.38 1.95 0.96		2.30 1.70 1.55 1.90		.035 .015 .015 .010		.60 .60 .70		0.0 0.0 0.0 0.0	
SED- sc < P ### 1 5 9 10	011 de 2LS > -### 4 8	SI	MPF 1.0 1.0 1.0 1.0	0.86 0.14 1.38 1.95		2.30 1.70 1.55		.035 .015 .015		.60 .60		0.0 0.0 0.0	

SED-PARM3 *** SDOP -flg determines (SED-PARAM1) washoff and scour equation used *** 1 Washoff = DELT60*KSER((SURS +SURO)/DELT60)^JSER *** 0 Washoff = DELT60*KSER(SURO /DELT60)^JSER *** 1 Scour = SURO/[(SURS + SURO)*DELT60*KGER*((SURS + SURO)/DELT60)*JGER] *** 0 Scour = DELT60*KGER*(SURS + SURO)/DELT60^JGER Scour *** coeff exp *** * * * Washoff *** PLS > coeff exp JGER *** ***## -### KGER KSER JSER 0.76 0.19 1 4 5.45 1.40 2 30 5 8 2.95 1 05 0.10 9 3.96 0.68 0.12 1.65 14 10 5.46 0.25 0.18 1.35 15 3.22 1.05 0.18 1.45 16 17 2.62 1.25 0.08 2.40 END SED-PARM3 MON-COVER < PLS > Monthly values for erosion-related veg cover (CRV=1) * * * ### -### JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC *** .84 1 4 .55 .55 .55 .60 .70 .75 .85 .85 .82 .70 .55 .88 .88 .92 .95 .95 5 8 .88 .93 .95 .95 .93 .92 .91 9 14 .65 15 17 .65 .65 .70 .75 .85 .90 .92 .92 .85 .80 .78 .75 .65 .70 .75 .85 .90 .92 .92 .92 .92 .92 .75 END MON-COVER SED-STOR Detached sediment storage (tons/acre) < PLS > * * * ### -### BLOCK1 BLK2 BLK3 BLK4 BLK5 *** 4 .010 0 0 0 0 1 5 8 .005 0 0 0 0 14 17 9 .008 0 0 0 0 15 .010 0 0 0 0 END SED-STOR *** SOIL TEMP SIM TURNED OFF--NOT NEEDED BECAUSE AG-CHEM MODULE NOT USED ***** Section PSTEMP coding pg 323 4.4(1).6 -----PSTEMP-PARM1 ### ### SLTV ULTV LGTV TSOP *** 1 17 1 1 1 1 END PSTEMP-PARM1 *** PSTEMP-PARM2 *** ### ### *** 1 17 ALST BLST ULTP1 ULTP2 LGTP1 LGTP2 *** .80 .10 2. 33 .15 6. *** END PSTEMP-PARM2 MON-ASLT < PLS > Surface temperature when air temp is 32F (TSOP = 1) * * * ### ### JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC *** 4 34. 34. 1 35. 38.0 45.0 52.0 62.0 60.0 48.0 42.0 36. 35.0 32. 8 32. 34. 38.0 40.0 48.0 58.0 58.0 44.0 38.0 36. 35.0 5 9 14 34. 34. 35. 38.0 43.0 50.0 60.0 59.0 47.0 38.0 36. 35.0 15 17 36. 36. 38. 41.0 46.0 53.0 64.0 63.0 52.0 44.0 39. 37.0 15 END MON-ASLT MON-BSLT < PLS > Surface soil temperature slope (TSOP = 1) * * * ### ### JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC *** 4 0.28 0.28 0.28 0.29 0.31 0.38 0.42 0.45 0.42 0.38 0.28 0.28 8 0.28 0.28 0.28 0.29 0.31 0.34 0.36 0.37 0.35 0.34 0.28 0.28 9 14 0.28 0.28 0.28 0.29 0.31 0.38 0.42 0.45 0.42 0.38 0.28 0.28
 14
 0.20
 0.20
 0.20
 0.20
 0.21
 0.11
 0.11
 0.11
 0.11
 0.11
 0.11
 0.11
 0.11
 0.11
 0.11
 0.12
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.13
 0.13
 0.13
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0.14
 0 END MON-BSLT MON-ULTP1 < PLS > Upper zone soil temperature intercept (TSOP = 1) ### ### JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC *** 4 42. 42. 44. 47. 50. 54. 57. 58. 56. 46. 44. 42. 1 5 8 44. 44. 44. 45. 47. 49. 51. 53. 52. 45. 44. 44. 9 14 43. 43. 44. 45. 49. 53. 56. 57 56. 46. 44. 44 17 45. 45. 45. 49. 53. 58. 62. 60. 58. 47. 45. 15 45. END MON-ULTP1

MON-ULTP2 < PLS > Upper zone soil temperature slope (TSOP = 1) ### ### JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC *** 1 17 .25 .25 .25 .30 .30 15 17 .30 .30 .30 35 35 .30 .35 .35 .30 .25 .25 .25 .35 .40 .40 .35 .30 .30 .30 END MON-ULTP2 MON-LGTP1 < PLS > Lower zone soil temperature (TSOP = 1) ***
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC *** 1 17 57.5 57.5 58.8 60.0 60.4 60.8 61.3 62.4 61.5 60.5 59.3 58.1 END MON-LGTP1 PSTEMP-TEMPS *** < PLS > Initial temperatures SLTMP AIRTC III.TMP LGTMP *** ### ### 1 14 15 17 29.5 43.0 33.0 57 5 29.5 32.0 44.0 59.0 END PSTEMP-TEMPS *** Section PQUAL coding pg 363 4.4(1).8 -----NOUALS * * * <PLS > # - #NQUAL *** 1 17 1 END NQUALS OUAL-PROPS <PLS >*** Identifiers and flags # - #<--qualid-->*** QTID QSD VPFW VPFS QSO VQO QIFW VIQC QAGW VAQC 1 17 PO4 LB 1 1 0 0 1 1 0 0 END QUAL-PROPS QUAL-INPUT <PLS > Storage on surface and nonseasonal parameters SQO POTFW POTFS ACQOP SQOLIM WSQOP IOQC AOQC *** # - # 1.00 0.045 0.035 0.0002 0.003 1.9 .00001 .000001 4 1 2.00 0.008 0.008 0.0001 0.001 2.7 .00001 .000001 5 8
 1.10
 0.070
 0.040
 0.0002

 0.20
 0.460
 0.058
 0.0002
 0.040 0.0002 0.003 .00001 .000001 14 2.7 9 2.7 .00001 .000001 3.8 .00001 .000001 0 006 15 16 5.4 .00001 .000001 0.20 0.820 0.062 0.0002 0.006 17 END OUAL-INPUT END PERLND ***______ ***______ **** *** IMPLND - Impervious land 4.2(2) Prin. 4.2(2) pg 104 * * * *** Coding 4.4(2) pg 403 *** IMPLND ACTIVITY <ILS > Active Sections (1-active, 0-inactive) +++ ### -### ATMP SNOW IWAT SLD IWG IQAL * * * 1 1 1 1 END ACTIVITY PRINT-INFO 2-PIVL, 3-dy, 4-mn, 5-yr, 6-never user end *** <ILS > <----> Print-flags ----> PIVL * * * PYR ### -### ATMP SNOW IWAT SLD IWG IQAL #### +++ ## ےبید 5 5 6 6 1 1 1 2 6 6 1 1 END PRINT-INFO GEN-INFO <ILS ><-----Name----> Unit-systems Printer * * * ### -### User t-series Engl Met * * * * * * in out i/o# Residential 0 1 1 1 1 15 1 2 Comm/Indust/Mfam 1 1 15 0 END GEN-INFO

*** ____ *** IMPLND - Section IWATER input Prin. 4.2(2).3 pg 104 * * * Coding 4.4(2).4 pg 408 *** retention, routing and evap from impervious surfaces *** _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ IWAT-PARM1 <TLS > Flags ### -### CSNO RTOP VRS VNN RTLI *** 1 0 1 2 0 1 0 0 END IWAT-PARM1 IWAT-PARM2 * * * <ILS > RETSC *** LSUR SLSUR NSUR ### -### 1 2 400. .014 .01 .010 200. .010 .010 .03 END IWAT-PARM2 IWAT-PARM3 * * * < ILS >### -### PETMAX PETMIN *** 35. 35. END IWAT-PARM3 IWAT-STATE1 <ILS > IWATER state variables *** * * * ### -### RETS SURS .00 1 .01 .03 .00 END IWAT-STATE1 **** Section Solids coding pg 416 4.4(2).6 -----SLD-PARM1 <PLS > Accu remov flgs *** # - # VASD VRSD SDOP *** 1 2 1 0 0 1 0 0 END SLD-PARM1 SLD-PARM2 Washoff * * * Accumulation Removal *** <PLS > coef exp ACCSDP REMSDP *** ### -### KEIM JEIM 0.01 1 2 0 0.10 1.85 0.12 1.90 0.01 0 END SLD-PARM2 MON-SACCUM <PLS > Monthly solids accumulation rate (VASD= 1) ton/acre/day * * * ### -### JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC *** END MON-SACCUM MON-REMOV *** <PLS > Monthly values for solids removal rate (VRSD flg = 1) *** END MON-REMOV *** SLD-STOR <PLS > initial slds storage (tons/acre) * * * +++ ##### ### -### 1 2 .095 .142 END SLD-STOR

```
*** Section IQUAL coding pg 428 4.4(2).7 -----
*** because IMPLND has no explicit subroutines for PHOS
   NQUALS
       <PLS >
    ### -###NQUAL ***
1 2 1
                         1
    END NOUALS
    OUAL-PROPS
                                                 Unit Sed Mon. Wash mon. ***
QTID QSDF VPFW QSOF VQO ***
       <PLS > consituent
    ### -###<--qualid-->
                                   PO4
                                                     LB 1 0 1
       1 2
                                                                                                       0
    END OUAL-PROPS
    OUAL-INPUT
       <PLS > Storage on surface and nonseasonal parameters
                                                                                                                             * * *
                                                                                                                              ***
    ### -###
                      SQO POTFW ACQOP SQOLIM WSQOP
                                                        .001
                                                                                          5.4
                        .010
                                       1.55
     1
2
                                                                         0.045
                         .012
                                         1.42
                                                         .001
                                                                       0.035
                                                                                              5.4
    END QUAL-INPUT
END IMPLND
***______
***------
*** RCHRES Block Prin. 4.2(3) pg 117
*** Coding 4.4(3) pg 433
                                                                                                                                                                * * *
                                                                                                                                                                 ***
               Channel Processes
* * *
                                                                                                                                                                ***
****
RCHRES
    ACTIVITY
      RCHRES Active Sections (1=Active, 0=Inactive)
    ### -### HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
      1 23 1 1 1 1 1
    END ACTIVITY
    PRINT-INFO
      RCHRES <-Print-flags: 2-PIVL, 3-dy, 4-mn, 5-yr, 6-never ***> PIVL PYR
    \begin{array}{c} \text{RCRED S} & \text{CPLING-IAGGS} & \text{2 FIND, S} & \text{3 FIND, S} & \text{3 FIND} 
                                                                                                                                             * * *
      1 23 6 6
                                                                                                                                             1
    END PRINT-INFO
    GEN-INFO
      RCHRES<-----Name---->Nexit Unit Systems Printer
                                                                                                                                           * * *
                                                                          User t-series Engl Metr LKFG ***
    ### -###
                                                                                                                                           * * *
                                                                                          in out
        1
                    Chenoweth
                                            #39
                                                                      1
                                                                                 1
                                                                                           1
                                                                                                      1
                                                                                                               15
                                                                                                                           Ο
                                                                                                                                      Λ
        2
                    Chenoweth
                                             #37
                                                                       1
                                                                                 1
                                                                                            1
                                                                                                       1
                                                                                                               15
                                                                                                                           0
                                                                                                                                      0
                                                                            -
1
1
        3
                    Reach
                                             #36
                                                                       1
                                                                                           1
                                                                                                      1
                                                                                                               15
                                                                                                                           0
                                                                                                                                      0
        4
                    Chenoweth
                                             #35
                                                                       2
                                                                                           1
                                                                                                      1
                                                                                                               15
                                                                                                                           0
                                                                                                                                      0
                                                                             1
        5
                    Chenoweth
                                             #33
                                                                       2
                                                                                            1
                                                                                                      1
                                                                                                               15
                                                                                                                           0
                                                                                                                                      0
        б
                    Chenoweth
                                             #31
                                                                       2
                                                                                 1
                                                                                            1
                                                                                                       1
                                                                                                               15
                                                                                                                           0
                                                                                                                                      0
                                                                             1
        7
                    Chenoweth
                                             #28
                                                                      2
                                                                                           1
                                                                                                      1
                                                                                                               15
                                                                                                                           0
                                                                                                                                      0
        8
                     Chenoweth
                                             #25
                                                                       2
                                                                                                               15
                                                                                                                                      0
                                                                                 1
                                                                                            1
                                                                                                       1
                                                                                                                           0
                                                                             1
        9
                    Chenoweth
                                             #23
                                                                       2
                                                                                            1
                                                                                                      1
                                                                                                               15
                                                                                                                           0
                                                                                                                                      0
      10
                    Chenoweth
                                             #21
                                                                       2
                                                                                 1
                                                                                            1
                                                                                                       1
                                                                                                               15
                                                                                                                                      0
                                                                                                                           0
      11
                    Razor Br.
                                             #14
                                                                       1
                                                                                 1
                                                                                            1
                                                                                                      1
                                                                                                               15
                                                                                                                            0
                                                                                                                                      0
      12
                    Chenoweth
                                             #13
                                                                       2
                                                                                 1
                                                                                            1
                                                                                                       1
                                                                                                               15
                                                                                                                            0
                                                                                                                                      0
      13
                    Shinks Br. #12
                                                                       1
                                                                                 1
                                                                                            1
                                                                                                      1
                                                                                                               15
                                                                                                                           0
                                                                                                                                      0
      14
                    Chenoweth
                                             #11
                                                                       2
                                                                                 1
                                                                                            1
                                                                                                       1
                                                                                                               15
                                                                                                                           0
                                                                                                                                      0
 *** Pond reaches (Lakes/ponds)
                                                                                 1
      15
                    V12
                                                                       1
                                                                                            1
                                                                                                       1
                                                                                                               15
                                                                                                                           0
                                                                                                                                      0
                     V13
      16
                                                                       1
                                                                                 1
                                                                                            1
                                                                                                       1
                                                                                                               15
                                                                                                                           0
                                                                                                                                      0
      17
                    V14
                                                                       1
                                                                                  1
                                                                                            1
                                                                                                       1
                                                                                                               15
                                                                                                                           0
                                                                                                                                      0
      18
                    V21
                                                                       1
                                                                                 1
                                                                                            1
                                                                                                       1
                                                                                                               15
                                                                                                                           0
                                                                                                                                      0
                    V22
      19
                                                                                                                                      0
                                                                       1
                                                                                  1
                                                                                            1
                                                                                                       1
                                                                                                               15
                                                                                                                           0
      20
                    V23
                                                                                  1
                                                                       1
                                                                                            1
                                                                                                       1
                                                                                                               15
                                                                                                                                      0
                                                                                                                           0
      21
                    V24
                                                                                 1
                                                                                            1
                                                                                                       1
                                                                                                               15
                                                                                                                           0
                                                                                                                                      0
                                                                       1
      2.2
                    v27
                                                                       1
                                                                                 1
                                                                                            1
                                                                                                       1
                                                                                                               15
                                                                                                                           0
                                                                                                                                      0
```

END GEN-INFO

V41

* * *	RECH	IRES	- :	Sect	cior	ı HYDR	. ir	-													* *	
* * *									C	odin	ıg 4	1.4(3).2	5 bà	43	8					* *	*
* * *	H	IYDR	A-P	ARM1	L	pg 43	9														* *	*
* * *	H	IYDR	A-P	ARM2	2	pg 44	1														* *	*
* * *	F	IYDR	A-II	NIT		pg 44	4	In	ita	l co	ndi	tion	s								* *	*
***																					* *	*
HYDI	R-PARM	11																				
R	CHRES	Fla	aqs	foi	ну	ZDR se	cti	ion									* * *					
			-			ODFV			ea	ch		ODGT	FG	for	ea	ch	* * *	FUN	СТ	for	ea	ch
						poss																
												1										
1	3	0	1	1	1		-	-	-	-		_	-	-	-	-		_	_	-	-	-
	7						4					1	0					2				
8		0					4					_	0					2				
11	10			1			-					-	0					2				
12				1			4					1	0					2				
13				1			-					1	0					2				
14		-	-	-	_	0	4					1	0					2				
14				1			4					T	0					2				
	∠3 HYDR-	-	-	T	T	4																
END	HYDR-	-PARI	мт																			
	R-PARM																					
	CHRES																					
	-###					LE														* * *		
###	-###	DSI	N I	BNO	((miles)	(:	fee	t)	(feet)			KS		DB	50	* * *		

###	-###	DSN	BNO	(miles)	(feet)	(feet)	KS	DB50 ***	
1			39	0.705	26.	0.	.5	.008	
2			37	1.234	30.	0.	.5	.008	
3			36	1.994	39.	0.	.5	.008	
4			35	0.244	10.	0.	.5	.008	
5			33	0.458	3.	0.	.5	.008	
6			31	0.441	7.	0.	.5	.008	
7			28	0.215	3.	0.	.5	.008	
8			25	0.490	10.	0.	.5	.008	
9			23	1.358	23.	0.	.5	.008	
10			21	0.957	23.	0.	.5	.008	
11			14	1.016	59.	0.	.5	.008	
12			13	0.690	12.	0.	.5	.008	
13			12	1.179	66.	0.	.5	.008	
14			11	1.584	31.	0.	.5	.008	
*** Pc	ond re	aches	(Lak	es/ponds)					
15			112	0.200	.01	0.	.5	.008	
16			113	0.200	.01	0.	.5	.008	
17			114	0.200	.01	0.	.5	.008	
18			121	0.200	.01	0.	.5	.008	
19			122	0.200	.01	0.	.5	.008	
20			123	0.200	.01	0.	.5	.008	
21			124	0.200	.01	0.	.5	.008	
22			127	0.200	.01	0.	.5	.008	
23			141	0.200	.01	0.	.5	.008	
	TIMPP	D3 DM2							

END HYDR-PARM2

HYDR-INI'I'		
		Initial value of COLIND *** Initial value of OUTDGT
<rchres></rchres>	VOL	for each possible exit *** for each possible exit
### -###	(ac-ft)	EX1 EX2 EX3 EX4 EX5 *** EX1 EX2 EX3 EX4 EX5
1	0.284	4.0
2	0.560	4.0
3	0.851	4.0
4	0.597	0.0 4.0 0.0 0.0
5	0.386	0.0 4.0 0.0 0.0
6	0.925	0.0 4.0 0.0 0.0
7	0.256	0.0 4.0 0.0 0.0
8	1.020	0.0 4.0 0.0 0.0
9	4.740	0.0 4.0 0.0 0.0
10	3.300	0.0 4.0 0.0 0.0
11	0.065	4.0
12	2.590	0.0 4.0 0.0 0.0
13	0.254	4.0
14	9.260	0.0 4.0 0.0 0.0

*** Pond reaches (Lakes/ponds) 226.000 15 4.0 18.400 16 4.0 43.800 17 4.0 92.200 18 4.0 32,400 19 4.0 35.600 20 4.0 21 38.600 4 0 2.2 8.410 4.0 23 6.710 4.0 END HYDR-INIT *** Section ADCALC coding pg 445 4.4(3).3 ----*** Prepare advection simulation ADCALC-DATA RCHRES Data for ADCALC * * * VOL *** ### -### CRRAT 1 14 15 23 1.80 1.10 END ADCALC-DATA *** Section HTRCH coding pg 451 4.4(3).5 -----*** Not active - stream temp read in from external annie file *** To simulate stream temp external files for cloud cov, dew pnt, sol rad, *** and wind speed are required HEAT-PARM ELEV <RCHRES> ELDAT CFSAEX KATRAD KCOND KEVAP *** ### -### * * * 1 14 15 23 550.0 0.0 .85 550.0 0.0 .95 END HEAT-PARM HEAT-INIT AIRTMP *** <RCHRES> ΤW * * * ### -### 41. 46. 1 23 END HEAT-INIT *** Section SEDTRN coding pg 454 4.4.(3).6 -----*** Simulate sediment transport in RCHRES SANDEG <RCHRES> ### -### SNDFG (sand load simul method; 1-Toffaletti,2-Colbely,3-user) *** 1 14 15 23 3 1 END SANDFG SED-GENPARM <RCHRES> BEDWID BEDWRN POR *** ### ### (ft) (ft) * * * 1 5 5. 1.5 6 10 10. 1.5 11 5. 1.5 12 15. 1.5 13 5. 1.0 14 20. 1.0 2.5 15 23 25. END SED-GENPARM SAND-PM <RCHRES> RHO EXPSND *** Dia. W KSAND ### ### (in) (in/s) * * * .770 .008 2.45 2.5 0.8 1 14 15 23 .770 .008 2.45 END SAND-PM *** Silt Parameters (default parameters washthru) SILT-CLAY-PM RHO TAUCD TAUCS M *** <RCHRES> W Dia. (in/s) (gm/cm3) (lb/ft2) (lb/ft2) (lb/ft2) *** ### ### (in) *** 1 14 8 .00145 .0320 2.35 .270 4.10 1 .29 14 9 .00145 .0320 2.35 .30 .265 5.10 .0320 .100 00145 2.35 .35 1.10 15 23 END SILT-CLAY-PM

```
*** Clay Parameters
 SILT-CLAY-PM
 <RCHRES>
               Dia.
                                            TAUCD
                                                      TAUCS
                                                                    M ***
                          W
                                    RHO
                      (in/s) (gm/cm3) (lb/ft2) (lb/ft2) (lb/ft2) ***
 ### ###
               (in)
*** 1
      15
             .00012
                        .0034
                                   2.20
                                             .270
 1
        8
                                                        .28
                                                                 4.10
  9 14
15 23
             .00012
                                             .265
                        .0034
                                   2.20
                                                        .30
                                                                 4.10
             00012
                        0034
                                   2 20
                                                                 1 10
                                             100
                                                        35
 END SILT-CLAY-PM
 SSED-INIT
              Suspended sed concs (mg/l) ***
 <RCHRES>
                                   Clay ***
                         Silt
 ### -###
               Sand
  1 14
15 23
                0.
                          5.
                                    4.
                 Ο.
                           1.
                                     4.
 END SSED-INIT
 BED-INIT
 <RCHRES>
             BEDDEP Initial bed composition as % ***
                     Sand
 ### -###
              (ft)
                                Silt
                                         Clay ***
1 23
*** 1 23
                0.8
                         0.80
                                   0.15
                                             0.05
 END BED-INIT
*** Section RQUAL coding pg 497 4.4(3).8 -----
 BENTH-FLAG
 <RCHRES> Flag benthic influences, 1-active, 0-inactive ***
 ### -### BENF flag
      23
   1
             1
 END BENTH-FLAG
 SCOUR-PARMS
 <RCHRES> benthic scour parameters (only used BENF = 1) ***
           SCRVEL
 ### -###
                      SCRMUL
  1 23
              5.
                          1.5
 END SCOUR-PARMS
*** Section OXRX (required for RQUAL which is required for NUTRX)------
*** coding pg 500 4.4(3).8.1
*** NOTE: Pond RCHRES (No. 15-23) are not specified as LAKE's in RCHRES GEN-INFO
*** if these are specified as LAKE's (LKFG = 1), then windspeed is required
 OX-FLAGS
 <RCHRES> flag type of oxygen reaeration method ***
*** Owen's/Churchill's/O'Connor-Dubbins' formua ***
 ### -### REAM
1 23 2
 END OX-FLAGS
 OX-GENPARM
 <RCHRES>
             KBOD20
                        TCBOD
                                 KODSET
                                           SUPSAT ***
 ### -###
              /hr
                                                  ***
                .1
   1
      7
                                      4.
  8 14
15 23
                 .1
                                     5.
                                     8.
                 .1
 END OX-GENPARM
 ELEV
 <RCHRES>
               ELEV *** elevation of RCHRES above sea level
               (ft) *** (required becaue HTRCH inactive)
 ### -###
       23
                550
   1
 END ELEV
 OX-BENPARM
                        TCBEN
                                  EXPOD BRBOD(1) BRBOD(2)
 <RCHRES>
              BENOD
                                                               EXPREL ***
 ### -###
           mg/m2.hr
                                         mg/m2.hr mg/m2.hr
                                                                      * * *
                                                                  2.5
        7
                          1.1
                                    1.2
                                                         5.
   1
                 1.
                                               1.
   8 14
                          1.1
                                    1.2
                                                         8.
                                                                  2.5
                 4.
                                               3.
  15
      23
                          1.2
                                    1.5
                                               8.
                                                        15.
                                                                  2.8
                 3.
 END OX-BENPARM
*** OX-CFOREA
*** <RCHRES>
                CFOREA *** correction factor for reaeration in lakes
* * *
   ### -###
                       *** (RCHRES 15-23 pond RCHRES for ponds GEN PARM LKFG=1
***
                   08
     15 23
*** END OX-CFOREA
```

OX-TCGINV <RCHRES> ***stream RCHRES (GEN-PARM LKFG=0,OX-FLAGS REAM=2) *** ### -### TCGINV 1 23 1.050 END OX-TCGINV OX-INIT <RCHRES> DOX BOD SATDO *** mg/l *** ### -### mg/l mg/l 1 14 15 23 10. 2. 8 7 END OX-INIT *** Section NUTRX coding pg 511 4.4(3).8.2 -----*** Simulate PO4 in RCHRES *** NUT-FLAGS <RCHRES> TAM NO2 PO4 AMV DEN ADNH ADPO PHFL *** ### -### * * * 1 23 0 0 1 0 0 0 1 0 END NUT-FLAGS *** NUT-AD-FLAGS *** Not used *** *** Atmospheric Deposition Flags ***

 RCHRES>
 NO3
 NH3
 PO4

 ### -###
 F
 C
 F
 C
 *

 1
 23
 -1
 0
 -1
 0
 0
 *** END NUT-AD-FLAGS NUT-BENPARM *** Release rates - Used only if BENF = 1 in RQUAL *** aerobic anaerobic aerobic anaerobic <RCHRES> BRTAM(1) BRTAM(2) BRPO4(1) BRPO4(2) ANAER *** +++ ### -### mg/m2.hr mg/m2.hr mg/m2.hr mg/l 23 11.0 33.0 0.95 1.2 0.0055 1 END NUT-BENPARM NUT-NITDENIT *** nitrification- denitrification rates <RCHRES> KTAM20 KN0220 TCNIT KNO320 TCDEN DENOXT *** ### -### 1 23 /hr mg/l *** /hr /hr 002 004 1.07 1 04 0 2 001 END NUT-NITDENIT NUT-NH3VOLAT EXPNVL *** <RCHRES> EXPNVG * * * ### -### 0.6667 1 23 0 50 END NUT-NH3VOLAT NUT-BEDCONC <RCHRES> Bed concentrations of NH4 & PO4 (mg/mg) ### -### NH4-sand NH4-silt NH4-clay PO4-sand PO4-silt PO4-clay *** 1 23 0 0 0 0.00011 0.00211 0.02421 END NUT-BEDCONC NUT-ADSPARM <RCHRES> Kd Adsorbtion coefficients for NH4 AND PO4 (1/mg) +++ ### -### NH4-sand NH4-silt NH4-clay PO4-sand PO4-silt PO4-clay *** 1 23 400.00 500.00 900.00 END NUT-ADSPARM NUT-DINIT <RCHRES> NO3 TAM NO2 PO4 * * * ### -### 1 23 *** mg/l mg/l mg/l mg/l pН Ο. Ο. Ο. 0.025 8.1 END NUT-DINIT NUT-ADSINIT <RCHRES> Initial suspended NH4 and PO4 concentrations (mg/mg) *** NH4-sand NH4-silt NH4-clay PO4-sand PO4-silt PO4-clay *** ### -### .001 0. Ο. 0. .025 0.50 23 1 END NUT-ADSINIT

END RCHRES

```
*** COPY Block 4.4.(11) page 536
* * *
           combines times series from mutiple PERLN's, IMPLD's, RCHRES
                                                                ***
COPY
 TIMESERIES
 Copy-opn
 ### -### NPT NMN ***
         0
              7
 100 102
 105
               1
 106 109
                5
 END TIMESERIES
END COPY
GENER
 OPCODE
   # - # Op- *** add two time series
        code ***
      4 16
   1
 END OPCODE
END GENER
* * *
       External Sources Block 4.6.2 Page 569
                                                               * * *
*** WDM input data ***
*** HOURLY TIME STEP
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <tgrp> <-Member-> ***
<Name> ### <Name>## tem strg<-factor->strg <Name> ### ###
                                                      <Name> # # ***
                                                      PREC
WDM
      28 PREC
                ENGLZERO 1.00SUM PERLND 1 17 EXTNL
WDM
      28 PREC
                ENGLZERO
                            1.00SUM IMPLND
                                           1
                                               2 EXTNL
                                                      PREC
      28 PREC
                ENGLZERO
                            1.00SUM RCHRES
                                          1 23 EXTNL
WDM
                                                      PREC
                                           1 17 EXTNL PETINP
WDM
      32 PET
                ENGL
                            1.00SAME PERLND
                                          1 2 EXTNL
      32 PET
                ENGL
                            1.00SAME IMPLND
WDM
                                                      PETINP
WDM
      32 PET
                ENGL
                            1.00SAME RCHRES 1 23 EXTNL POTEV
                            1.00SAME PERLND 1 17 ATEMP AIRTMP
1.00SAME RCHRES 1 8 HTRCH TW
      34 ATMP
                ENGL
WDM
      36 WTMP
                ENGL
WDM
                            1.00SAME RCHRES 9 23 HTRCH TW
      40 WTMP
                ENGL
WDM
*** WWTP flow input source is in ft^3/s; target unit in ac-ft/hr
                                                        0 0826446
    9602 FLOW
WDM
                ENGL .0826446SAME RCHRES 8 INFLOW IVOL
    9603 FLOW
                ENGL.
                        .0826446SAME RCHRES 8
WDM
                                                INFLOW IVOL
WDM
    9605 FLOW
                ENGL.
                        .0826446SAME RCHRES
                                           9
                                                INFLOW IVOL
WDM
    9606 FLOW
                ENGL
                       .0826446SAME RCHRES 10
                                               INFLOW IVOL
* * *
    same for both time steps input DSN in tons/day assumes all SED from
* * *
    WWTP is clay size except for the Jeff bypass flows which are split
* * *
    between clay and silt size particles
WDM
    9712 SED
                ENGL
                            1.00DIV RCHRES
                                           8
                                                INFLOW ISED
                                                            3
                                                INFLOW ISED
WDM
    9713 SED
                ENGL
                            0.50DIV RCHRES
                                           8
                                                            2
WDM
    9713 SED
                ENGL
                            0.50DIV RCHRES
                                           8
                                                INFLOW ISED
                                                            3
    9715 SED
                ENGL
                            1.00DIV RCHRES
                                          9
                                                INFLOW ISED
WDM
                                                            3
    9716 SED
                ENGL
                            1.00DIV RCHRES 10
                                                INFLOW ISED
WDM
                                                            3
*** WWTP PO4 loads-- assume the majority of the by PO4 load is suspended & on clay size fraction
   9702 PO4
WDM
                ENGL 1.00DIV RCHRES 8 INFLOW NUIF1 4
WDM
     9703 PO4
                ENGL
                             .20DIV RCHRES
                                           8
                                                INFLOW NUIF1
                                                            4
    9703 PO4
                                                INFLOW NUIF2
WDM
                ENGL
                            .30DIV RCHRES
                                           8
                                                            2
    9703 PO4
WDM
                ENGL
                             .70DIV
                                   RCHRES
                                           8
                                                INFLOW NUIF2
                                                            3
                          1.00DIV RCHRES
    9705 PO4
                                          9
                                               INFLOW NUIF1
WDM
                ENGL
                                                            4
WDM
    9706 PO4
                ENGL
                            1.00DIV RCHRES 10
                                                INFLOW NUIF1
                                                            4
```

*** Hourly GW loss DSN 72 ranges 1.0-1.5 ft3/s June-November, zero otherwise. *** GW loss estimated to be a maximum of 2 ft3/s between Ruckriegel and *** Gelhaus, the same lineal loss rate dowstream from Gelhaus; and 0.5 ft3/s *** maximum upstream from Ruckriegel. Outflow Demand Gate 1 is the estimated *** channel loss from the system.

WDM	72 FLOW	ENGL	0.079SAME	RCHRES	4	EXTNL	OUTDGT	1
WDM	72 FLOW	ENGL	0.148SAME	RCHRES	5	EXTNL	OUTDGT	1
WDM	72 FLOW	ENGL	0.143SAME	RCHRES	б	EXTNL	OUTDGT	1
	*** Base loss	rate 0.37	ft3/s upstream	n from R	uckrieg	el Pkwy		
WDM	72 FLOW	ENGL	0.130SAME	RCHRES	7	EXTNL	OUTDGT	1
WDM	72 FLOW	ENGL	0.295SAME	RCHRES	8	EXTNL	OUTDGT	1
WDM	72 FLOW	ENGL	0.819SAME	RCHRES	9	EXTNL	OUTDGT	1
WDM	72 FLOW	ENGL	0.577SAME	RCHRES	10	EXTNL	OUTDGT	1
	*** Base loss	rate 1.82	ft3/s Ruckrieg	gel Pkwy	to Gel	haus Ln		
WDM	72 FLOW	ENGL	0.416SAME	RCHRES	12	EXTNL	OUTDGT	1
WDM	72 FLOW	ENGL	0.955SAME	RCHRES	14	EXTNL	OUTDGT	1
	*** Base loss	rate 1.37	ft3/s Gelhaus	Ln to S	eatonvi	lle Rd		

END EXT SOURCES

******* * * * EXTERNAL Block 4.6.5 page 581 * * * *** *** output ***** *** Area of Chenoweth Run 10579.47 ac (16.530 mi2) * * * * * * *** Mult factor for RCHRES convert ac-ft/tsstep to inches =(12in/ft)/DA(ac) US Gage : 12/ 3445.14 = 0.0034832 (RCHRES #6) Mid Gage: 12/ 7326.62 = 0.0016379 (RCHRES #10) DS Gage : 12/10579.47 = 0.0011343 (RCHRES #14) * * * * * * * * * * * * *** Convert ac-ft/hr into ft3/s * * * ac-ft/hr * 1hr/60min * 1min/60sec * 43,560ft2/ac = 12.1 * * * PERLND & IMPLND * * * converts ac-in/tsstep to watershed inches/tsstep = 1/DA US Gage: 0.0002903 for DA of 3445.14 ac Mid Gage: 0.0001365 for DA of 7326.62 ac * * * * * * * * * DS Gage: 0.0000945 for DA of 10579.47 ac ***

* * *	Basin Reach	ID	Model	RCHRES No.
* * *				
* * *	Reach	11	- RCHRES	#14 (DS Gage at Seatonville Rd)
* * *	Reach	21	- RCHRES	#10 (Mid Gage at Gelhaus Lane)
* * *	Reach	25	- RCHRES	#8 (DS JTown WWTP at Taylorsville Rd)
* * *	Reach	31	- RCHRES	#6 (US Gage at Ruckriegel Pkwy)
EXT	TARGETS			

<-Volume-> <-Grp> <-Member-><-Mult-->Tran <-Volume-> <Member> Tsys Agg Amd ***

<Name> x
<Name> x <</pre>
Name> x x<-factor->strg <Name> x <</pre>
Name> x <</pre>
Strg***
RCHRES 6 0FLOW 0VOL 2 12.1 WDM 556 SIMQ 1 ENGL REPL
RCHRES 10 0FLOW 0VOL 2 12.1 WDM 560 SIMQ 1 ENGL REPL
RCHRES 10 0FLOW 0VOL 2 12.1 WDM 560 SIMQ 1 ENGL REPL
RCHRES 14 0FLOW 0VOL 2 12.1 WDM 564 SIMQ 1 ENGL REPL

*** OVOL - outflow ac-ft/hr through individual exit
*** ROSED - total outflow sediment tons/hr
*** SSED - Suspended Sed conc. mg/l (4 - all size fractions)
*** TAU - Bed shear stress

	ies at Ruckriegel (US g VOL 2 0.0034832		SIMQ	1 ENGL	REPL
RCHRES 8 OFLOW OV	VOL 2 0.0034832	WDM 500	SIMQ	I ENGL	REPL
RCHRES 6 SEDTRN RC	OSED 4	WDM 600	SED	1 ENGL	REPL
RCHRES 6 SEDTRN SS			SSED	1 ENGL	REPL
	AU 1		TAU	1 ENGL	REPL
RCHRES 6 SEDTRN DE			SCOU	1 ENGL	REPL
RCHRES 6 SEDTRN DE			SCOU	1 ENGL	REPL
RCHRES 6 SEDTRN DE			SCOU	1 ENGL	REPL
RCHRES 6 SEDTRN RS			RSED	1 ENGL	REPL
RCHRES 6 SEDTRN RS	SED 8 ***	WDM 607	RSED	1 ENGL	REPL
RCHRES 6 SEDTRN RS	SED 9 ***	WDM 608	RSED	1 ENGL	REPL
RCHRES 6 OXRX DO	OX 11	WDM 800	DO	1 ENGL	REPL
RCHRES 6 NUTRX NU	UCF9 2 4	WDM 700	DPO4	1 ENGL	REPL
RCHRES 6 NUTRX NU	UCF2 1 2	WDM 701	SPO4	1 ENGL	REPL
RCHRES 6 NUTRX NU	UCF2 2 2	WDM 702	SPO4	1 ENGL	REPL
RCHRES 6 NUTRX NU	UCF2 3 2	WDM 703	SPO4	1 ENGL	REPL
RCHRES 6 NUTRX NU		WDM 704	SPO4	1 ENGL	REPL
*** Total PO4 loa	ad				
GENER 1 OUTPUT TI	IMSER	WDM 705	TPO4	1 ENGL	REPL
	ies at Talyorsville Rd.	(CHEN 8)			
RCHRES 8 SEDTRN RC			SED	1 ENGL	REPL
GENER 3 OUTPUT TI	IMSER	WDM 728	TPO4	1 ENGL	REPL
-	ries at Gelhaus (mid g	-			
RCHRES 10 OFLOW OV	VOL 2 0.0016379	WDM 510	SIMQ	1 ENGL	REPL
RCHRES 10 SEDTRN RC			SED	1 ENGL	REPL
RCHRES 10 SEDTRN SS			SSED	1 ENGL	REPL
	AU 1		TAU	1 ENGL	REPL
RCHRES 10 SEDTRN DE	EPSCR 1	WDM 613	SCOU	1 ENGL	REPL
RCHRES 10 SEDTRN DE	EPSCR 2	WDM 614	SCOU	1 ENGL	REPL
RCHRES 10 SEDTRN DE		WDM 615	SCOU	1 ENGL	REPL
	SED 7 ***	WDM 616	RSED	1 ENGL	REPL
RCHRES 10 SEDTRN RS		WDM 010	коць	T FINGE	
RCHRES 10 SEDTRN RS	SED 8 ***	WDM 617	RSED	1 ENGL	REPL
	SED 8 ***	WDM 617			
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS	SED 8 *** SED 9 ***	WDM 617 WDM 618	RSED RSED	1 ENGL 1 ENGL	REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS	SED 8 ***	WDM 617	RSED RSED	1 ENGL	REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DC	SED 8 *** SED 9 *** OX 1 1	WDM 617 WDM 618 WDM 810	RSED RSED DO	1 ENGL 1 ENGL 1 ENGL	REPL REPL REPL
RCHRES10SEDTRNRSRCHRES10OXRXDORCHRES10NUTRXNU	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4	WDM 617 WDM 618 WDM 810 WDM 710	RSED RSED DO DPO4	1 ENGL 1 ENGL 1 ENGL 1 ENGL	REPL REPL REPL REPL
RCHRES10SEDTRNRSRCHRES10OXRXDORCHRES10NUTRXNURCHRES10NUTRXNU	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2	WDM 617 WDM 618 WDM 810 WDM 710 WDM 711	RSED RSED DO DPO4 SPO4	1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL	REPL REPL REPL REPL REPL
RCHRES10SEDTRNRSRCHRES10OXRXDCRCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNU	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2	WDM 617 WDM 618 WDM 810 WDM 710 WDM 711 WDM 712	RSED RSED DO DPO4 SPO4 SPO4	1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL	REPL REPL REPL REPL REPL REPL
RCHRES10SEDTRNRSRCHRES10OXRXDCRCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNU	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2	WDM 617 WDM 618 WDM 810 WDM 711 WDM 712 WDM 713	RSED RSED DO DPO4 SPO4 SPO4 SPO4 SPO4	1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL	REPL REPL REPL REPL REPL REPL REPL
RCHRES10SEDTRNRSRCHRES10SEDTRNRSRCHRES10OXRXDORCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNU	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 4 2	WDM 617 WDM 618 WDM 810 WDM 711 WDM 712 WDM 713	RSED RSED DO DPO4 SPO4 SPO4	1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL	REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DC RCHRES 10 NUTRX NU *** Total PO4 load	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 4 2 d 4 2	WDM 617 WDM 618 WDM 810 WDM 711 WDM 712 WDM 713 WDM 714	RSED RSED DO DPO4 SPO4 SPO4 SPO4 SPO4	1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL	REPL REPL REPL REPL REPL REPL REPL
RCHRES10SEDTRNRSRCHRES10SEDTRNRSRCHRES10OXRXDORCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNU	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 4 2 d 4 2	WDM 617 WDM 618 WDM 810 WDM 711 WDM 712 WDM 713 WDM 714	RSED RSED DO DPO4 SPO4 SPO4 SPO4 SPO4	1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL	REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DC RCHRES 10 NUTRX NU RCHRES 2 OUTPUT NU	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 4 2 d IMSER	WDM 617 WDM 618 WDM 810 WDM 711 WDM 712 WDM 713 WDM 714	RSED RSED DO DPO4 SPO4 SPO4 SPO4 SPO4 TPO4	1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL	REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DO RCHRES 10 NUTRX NU *** Total PO4 Load GENER 2 OUTPUT TI **** Output time serie	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd-	WDM WDM 617 618 WDM 810 WDM 710 WDM WDM 713 WDM WDM 713 WDM WDM 715 downstream	RSED RSED DO DPO4 SPO4 SPO4 SPO4 SPO4 SPO4 TPO4 site (0	1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 21 ENGL 21 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DC RCHRES 10 NUTRX NU RCHRES 2 OUTPUT NU	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd-	WDM WDM 617 618 WDM 810 WDM 710 WDM WDM 713 WDM WDM 713 WDM WDM 715 downstream	RSED RSED DO DPO4 SPO4 SPO4 SPO4 SPO4 TPO4	1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL	REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DO RCHRES 10 NUTRX NU *** Total PO4 load GENER 2 OUTPUT TI **** Output time serie RCHRES 14	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343	WDM WDM617 618WDM810WDM710 WDMWDM711 712 WDMWDM713 714WDM715downstream WDM534	RSED RSED DO DP04 SP04 SP04 SP04 SP04 TP04 site ((SIMQ	1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL CHEN 14) 1 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES10SEDTRNRSRCHRES10SEDTRNRSRCHRES10OXRXDCRCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNU***TotalPO4GENER2OUTPUTTI***OutputtimeseriRCHRES14OFLOWOVRCHRES14SEDTRNRC	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4	WDM 617 WDM 618 WDM 810 WDM 710 WDM 711 WDM 712 WDM 713 WDM 715 downstream WDM 534 WDM 634	RSED RSED DO DP04 SP04 SP04 SP04 SP04 TP04 site (SIMQ SED	1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL CHEN 14) 1 ENGL 1 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DO RCHRES 10 NUTRX NU *** Total PO4 load GENER 2 OUTPUT TI **** Output time serie RCHRES 14	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4	WDM 617 WDM 618 WDM 810 WDM 710 WDM 711 WDM 712 WDM 713 WDM 715 downstream WDM 534 WDM 634	RSED RSED DO DP04 SP04 SP04 SP04 SP04 TP04 site ((SIMQ	1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL CHEN 14) 1 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES10SEDTRNRSRCHRES10SEDTRNRSRCHRES10OXRXDCRCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNURCHRES10NUTRXNU***TotalPO4GENER2OUTPUTTI***OutputtimeseriRCHRES14OFLOWOVRCHRES14SEDTRNRC	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4	WDM 617 WDM 618 WDM 810 WDM 710 WDM 711 WDM 712 WDM 713 WDM 715 downstream WDM 534 WDM 634	RSED RSED DO DP04 SP04 SP04 SP04 SP04 TP04 site (SIMQ SED	1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL CHEN 14) 1 ENGL 1 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DC RCHRES 10 NUTRX NU *** Total PO4 load GENER 2 OUTPUT TI *** Output time seri RCHRES 14 RCHRES 14 SEDTRN RC GENER 4 OUTPUT TI	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER	WDM 617 WDM 618 WDM 810 WDM 711 WDM 712 WDM 714 WDM 715 downstream 534 WDM 634 WDM 734	RSED RSED DO DP04 SP04 SP04 SP04 SP04 TP04 site (SIMQ SED	1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL CHEN 14) 1 ENGL 1 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DO RCHRES 10 NUTRX NU RCHRES 10 NUTRX NU RCHRES 10 NUTRX NU RCHRES 10 NUTRX NU *** Total PO4 load GENER 2 OUTPUT TI *** Output time seri RCHRES 14 SEDTRN RC GENER 4 OUTPUT TI	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER ies via Copy for use wi	WDM 617 WDM 618 WDM 810 WDM 710 WDM 711 WDM 712 WDM 713 WDM 715 downstream WDM 534 WDM 634 WDM 734 th HSPEXP	RSED RSED DO DPO4 SPO4 SPO4 SPO4 SPO4 SIMQ SED TPO4	1 ENGL 1 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DO RCHRES 10 NUTRX NU *** Total PO4 load GENER 2 OUTPUT TI **** Output time seri RCHRES 14 SEDTRN RC GENER 4 OUTPUT TI *** Output time seri COPY 100 OUTPUT ME	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER ies via Copy for use wi EAN 1 1 0.0002903	WDM 617 WDM 618 WDM 810 WDM 710 WDM 713 WDM 713 WDM 714 WDM 715 downstream WDM 534 WDM 634 WDM 734 th <hspexp< td=""> WDM 501</hspexp<>	RSED RSED DO DPO4 SPO4 SPO4 SPO4 SPO4 SPO4 TPO4 SIMQ SED TPO4 SURO	1 ENGL 1 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DO RCHRES 10 NUTRX NU *** Total PO4 load GENER 2 OUTPUT TI **** Output time seri RCHRES 14 SEDTRN RC GENER 4 OUTPUT TI *** Output time seri COPY 100 COPY 100 OUTPUT ME	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER ies via Copy for use wi EAN 1 1 0.0002903 EAN 2 1 0.0002903	WDM 617 WDM 618 WDM 810 WDM 710 WDM 711 WDM 713 WDM 714 WDM 715 downstream WDM 534 WDM 634 WDM 734 th <hspexp< td=""> WDM 501 WDM 502</hspexp<>	RSED RSED DO DPO4 SPO4 SPO4 SPO4 SPO4 SPO4 TPO4 SED TPO4 SED TPO4 SURO	1 ENGL 1 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DO RCHRES 10 NUTRX NU *** Total PO4 load GENER 2 OUTPUT TI **** Output time seri COPY 14 SEDTRN RC GENER 4 OUTPUT TI *** Output time seri COPY 100 OUTPUT ME COPY 100 OUTPUT ME COPY 100 OUTPUT ME <td>SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 3 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER ies via Copy for use wi EAN 1 1 0.0002903 EAN 2 1 0.0002903</td> <td>WDM 617 WDM 618 WDM 810 WDM 710 WDM 711 WDM 713 WDM 714 WDM 715 downstream WDM 534 WDM 634 WDM 734 th HSPEXP WDM 501 WDM 502 WDM 503</td> <td>RSED RSED DO DP04 SP04 SP04 SP04 SP04 SID4 SED TP04 SED TP04 SUR0 IFW0 AGW0</td> <td>1 ENGL 1 ENGL</td> <td>REPL REPL REPL REPL REPL REPL REPL REPL</td>	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 3 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER ies via Copy for use wi EAN 1 1 0.0002903 EAN 2 1 0.0002903	WDM 617 WDM 618 WDM 810 WDM 710 WDM 711 WDM 713 WDM 714 WDM 715 downstream WDM 534 WDM 634 WDM 734 th HSPEXP WDM 501 WDM 502 WDM 503	RSED RSED DO DP04 SP04 SP04 SP04 SP04 SID4 SED TP04 SED TP04 SUR0 IFW0 AGW0	1 ENGL 1 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DC RCHRES 10 NUTRX NU *** Total PO4 load GENER 2 OUTPUT TI *** Output time seri RCHRES 14 GENER 4 OUTPUT ME *** Output time seri COPY 100 OUTPUT COPY 100 OUTPUT ME COPY 100 OUTPUT COPY 100 OUTPUT ME COPY 100 OUTPUT ME COPY 100 OUTPUT ME COPY 100 OUTPUT ME	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER ies via Copy for use wi EAN 1 1 0.0002903 EAN 2 1 0.0002903 EAN 4 1 0.0002903	WDM 617 WDM 618 WDM 810 WDM 710 WDM 711 WDM 712 WDM 713 WDM 714 WDM 534 WDM 534 WDM 634 WDM 501 WDM 503 WDM 503 WDM 503 WDM 503 WDM 503	RSED RSED DO DP04 SP04 SP04 SP04 SP04 SIMQ SED TP04 SURO IFWO AGWO PETX	1 ENGL 1 ENGL 2 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DO RCHRES 10 NUTRX NU *** Total PO4 load GENER 2 OUTPUT TI *** Output time seri RCHRES 14 GENER 4 OUTPUT ME *** Output time seri COPY 100 OUTPUT COPY 100 OUTPUT ME COPY 100 OUTPUT COPY 100 OUTPUT ME COPY 100 OUTPUT ME COPY 100 OUTPUT ME COPY 100 OUTPUT ME COPY 100	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER ies via Copy for use wi EAN 1 1 0.0002903 EAN 2 1 0.0002903 EAN 3 1 0.0002903 EAN 5 1 0.0002903	WDM 617 WDM 618 WDM 810 WDM 710 WDM 711 WDM 712 WDM 713 WDM 714 WDM 715 downstream WDM 534 WDM 634 WDM 534 th HSPEXP WDM 501 WDM 502 WDM 503 WDM 505 WDM 505 WDM 506	RSED RSED DO DPO4 SPO4 SPO4 SPO4 SIMQ SED TPO4 SIMQ SED TPO4 SURO AGWO PETX SAET	1 ENGL 1 ENGL 2 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DO RCHRES 10 NUTRX NU *** Total PO4 load GENER 2 OUTPUT TI **** Output time seri RCHRES 14 OFLOW OV RCHRES 14 SEDTRN RC GENER 4 OUTPUT TI *** Output time seri COPY COPY 100 OUTPUT ME COPY 100 OUTPUT ME COPY 100 OUTPUT ME COPY 100 OUTPUT ME COPY 10	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 3 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER ies via Copy for use wi EAN 1 1 0.0002903 EAN 2 1 0.0002903 EAN 3 1 0.0002903 EAN 4 1 0.0002903 EAN 6 1 0.0002903AVER	WDM 617 WDM 618 WDM 810 WDM 711 WDM 712 WDM 713 WDM 714 WDM 715 downstream WDM 534 WDM 634 WDM 534 th HSPEXP WDM 501 WDM 503 WDM 503 WDM 505 WDM 507	RSED RSED DO DPO4 SPO4 SPO4 SPO4 SPO4 SPO4 SPO4 SIMQ SED TPO4 SED TPO4 SURO IFWO AGWO PETX SAET UZSX	1 ENGL 1 ENGL 2 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DO RCHRES 10 NUTRX NU *** Total PO4 load GENER 2 OUTPUT TI *** Output time seri RCHRES 14 GENER 4 OUTPUT ME *** Output time seri COPY 100 OUTPUT COPY 100 OUTPUT ME COPY 100 OUTPUT COPY 100 OUTPUT ME COPY 100 OUTPUT ME COPY 100 OUTPUT ME COPY 100 OUTPUT ME COPY 100	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 3 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER ies via Copy for use wi EAN 1 1 0.0002903 EAN 2 1 0.0002903 EAN 3 1 0.0002903 EAN 4 1 0.0002903 EAN 6 1 0.0002903AVER	WDM 617 WDM 618 WDM 810 WDM 711 WDM 712 WDM 713 WDM 714 WDM 715 downstream WDM 534 WDM 634 WDM 534 th HSPEXP WDM 501 WDM 503 WDM 503 WDM 505 WDM 507	RSED RSED DO DPO4 SPO4 SPO4 SPO4 SIMQ SED TPO4 SIMQ SED TPO4 SURO AGWO PETX SAET	1 ENGL 1 ENGL 2 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DO RCHRES 10 NUTRX NU *** Total PO4 load GENER 2 OUTPUT NU **** Output time seri COPY 100 COPY 100 OUTPUT ME	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER ies via Copy for use wi EAN 1 1 0.0002903 EAN 2 1 0.0002903 EAN 4 1 0.0002903 EAN 5 1 0.0002903 EAN 5 1 0.0002903 EAN 6 1 0.0002903AVER EAN 7 1 0.0002903AVER	WDM 617 WDM 618 WDM 810 WDM 710 WDM 711 WDM 712 WDM 713 WDM 714 WDM 715 downstream WDM 534 WDM 634 WDM 534 WDM 501 WDM 502 WDM 503 WDM 503 WDM 505 WDM 506 WDM 507 WDM 508	RSED RSED DO DP04 SP04 SP04 SP04 SP04 SID4 SIMQ SED TP04 SURO ISURO ISURO ISURO AGWO PETX SAET UZSX LZSX	1 ENGL 1 ENGL 2 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DO RCHRES 10 NUTRX NU *** Total PO4 load GENER 2 OUTPUT TI *** Output time seri RCHRES 14 COPY 100 OUTPUT ME	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER ies via Copy for use wi EAN 1 1 0.0002903 EAN 4 1 0.0002903 EAN 5 1 0.0002903 EAN 5 1 0.0002903 EAN 6 1 0.0002903AVER EAN 7 1 0.0001365	WDM 617 WDM 618 WDM 810 WDM 710 WDM 711 WDM 713 WDM 714 WDM 715 downstream WDM 534 WDM 501 WDM 501 WDM 503 WDM 505 WDM 505 WDM 506 WDM 507 WDM 508 WDM 511	RSED RSED DO DP04 SP04 SP04 SP04 SP04 SIMQ SED TP04 SIMQ SED TP04 SURO SURO PETX SAET UZSX LZSX SURO	1 ENGL 1 ENGL 2 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DO RCHRES 10 NUTRX NU *** Total PO4 load GENER 2 OUTPUT TI **** Output time seri RCHRES 14 OFLOW OV RCHRES 14 SEDTRN RC GENER 4 OUTPUT ME COPY 100	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 3 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER ies via Copy for use wi EAN 1 1 0.0002903 EAN 2 1 0.0002903 EAN 3 1 0.0002903 EAN 4 1 0.0002903 EAN 4 1 0.0002903 EAN 6 1 0.0002903 EAN 6 1 0.0002903 EAN 7 1 0.0002903AVER EAN 1 1 0.0001365 EAN 2 1 0.0001365	WDM 617 WDM 618 WDM 810 WDM 711 WDM 713 WDM 713 WDM 714 WDM 715 downstream WDM 534 WDM 634 WDM 534 WDM 501 WDM 502 WDM 503 WDM 503 WDM 505 WDM 507 WDM 508 WDM 511 WDM 511	RSED RSED DO DPO4 SPO4 SPO4 SPO4 SPO4 SPO4 SIMQ SED TPO4 SED TPO4 SURO IFWO AGWO PETX SAET UZSX LZSX SURO IFWO	1 ENGL 1 ENGL 2 ENGL 3 ENGL 3 ENGL 3 ENGL 4 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DO RCHRES 10 NUTRX NU *** Total PO4 load GENER 2 OUTPUT TI **** Output time seri COPY 100 OUTPUT ME COPY	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER ies via Copy for use wi EAN 1 1 0.0002903 EAN 2 1 0.0002903 EAN 3 1 0.0002903 EAN 4 1 0.0002903 EAN 5 1 0.0002903 EAN 5 1 0.0002903 EAN 7 1 0.0002903AVER EAN 1 1 0.0001365 EAN 1 0.0001365 EAN 3 1 0.0001365	WDM 617 WDM 618 WDM 810 WDM 710 WDM 711 WDM 713 WDM 713 WDM 714 WDM 715 downstream 534 WDM 634 WDM 634 WDM 501 WDM 502 WDM 503 WDM 503 WDM 505 WDM 505 WDM 507 WDM 508 WDM 511 WDM 512 WDM 512 WDM 512	RSED RSED DO DPO4 SPO4 SPO4 SPO4 SPO4 SPO4 SPO4 SED TPO4 SED TPO4 SURO IFWO AGWO PETX SAET UZSX LZSX SURO IFWO AGWO	1 ENGL 1 ENGL 2 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DO RCHRES 10 NUTRX NU *** Output time seri RCHRES 14 COPY 100 OUTPUT ME	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 3 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER ies via Copy for use wi EAN 1 1 0.0002903 EAN 2 1 0.0002903 EAN 4 1 0.0002903 EAN 5 1 0.0002903 EAN 5 1 0.0002903 EAN 5 1 0.0002903 EAN 1 1 0.0002903 EAN 1 1 0.0001365 EAN 1 1 0.0001365 EAN 4 1 0.0001365 EAN 4 1 0.0001365	WDM 617 WDM 618 WDM 810 WDM 711 WDM 712 WDM 713 WDM 714 WDM 715 downstream WDM 534 WDM 634 WDM 534 WDM 501 WDM 502 WDM 502 WDM 503 WDM 505 WDM 507 WDM 508 WDM 511 WDM 513 WDM 513 WDM 513 WDM 513 WDM 513	RSED RSED DO DP04 SP04 SP04 SP04 SP04 SID4 SID4 SED TP04 SED TP04 SED TP04 SUR0 IFW0 AGW0 PETX SAET LZSX LZSX SUR0 IFW0 AGW0 PETX	1 ENGL 1 ENGL 2 ENGL 1 ENGL 2 ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 2 ENGL 1 ENGL 2 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DC RCHRES 10 NUTRX NU *** Total PO4 load GENER 2 OUTPUT TI *** Output time seri COPY 100 OUTPUT ME COPY	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 2 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER ies via Copy for use wi EAN 1 1 0.0002903 EAN 2 1 0.0002903 EAN 4 1 0.0002903 EAN 5 1 0.0002903 EAN 5 1 0.0002903 EAN 6 1 0.0002903 EAN 6 1 0.0002903 EAN 7 1 0.0002903 EAN 1 1 0.0001365 EAN 3 1 0.0001365 EAN 3 1 0.0001365 EAN 5 1 0.0001365 EAN 5 1 0.0001365	WDM 617 WDM 618 WDM 810 WDM 710 WDM 711 WDM 712 WDM 713 WDM 714 WDM 715 downstream 534 WDM 534 WDM 534 WDM 534 WDM 534 WDM 502 WDM 503 WDM 503 WDM 503 WDM 503 WDM 505 WDM 506 WDM 507 WDM 508 WDM 511 WDM 512 WDM 512 WDM 515 WDM 516	RSED DO DP04 SP04 SP04 SP04 SP04 SP04 SID0 SUR0 SED TP04 SUR0 AGW0 PETX SAET UZSX SUR0 IFW0 AGW0 PETX SAET	1 ENGL 1 ENGL 2 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL
RCHRES 10 SEDTRN RS RCHRES 10 SEDTRN RS RCHRES 10 OXRX DO RCHRES 10 NUTRX NU *** Output time seri RCHRES 14 COPY 100 OUTPUT ME	SED 8 *** SED 9 *** OX 1 1 UCF9 2 4 UCF2 1 2 UCF2 3 2 UCF2 3 2 UCF2 4 2 d IMSER ies at Seatonville Rd- VOL 2 0.0011343 OSED 4 IMSER ies via Copy for use wi EAN 1 1 0.0002903 EAN 2 1 0.0002903 EAN 3 1 0.0002903 EAN 4 1 0.0002903 EAN 5 1 0.0002903 EAN 6 1 0.0002903 EAN 6 1 0.0002903 EAN 7 1 0.0002903 EAN 1 0.0002903 EAN 1 0.0002903 EAN 3 1 0.0001365 EAN 3 1 0.0001365 EAN 4 1 0.0001365 EAN 4 1 0.0001365 EAN 6 1 0.0001365 EAN 6 1 0.0001365	WDM 617 WDM 618 WDM 810 WDM 711 WDM 713 WDM 713 WDM 713 WDM 713 WDM 713 WDM 714 WDM 715 downstream 534 WDM 634 WDM 734 th HSPEXP WDM 502 WDM 503 WDM 503 WDM 505 WDM 508 WDM 508 WDM 511 WDM 512 WDM 513 WDM 513 WDM 513 WDM 515 WDM 517	RSED RSED DO DP04 SP04 SP04 SP04 SP04 SID4 SID4 SED TP04 SED TP04 SED TP04 SUR0 IFW0 AGW0 PETX SAET LZSX LZSX SUR0 IFW0 AGW0 PETX	1 ENGL 1 ENGL 2 ENGL	REPL REPL REPL REPL REPL REPL REPL REPL

COPY 102 OUTPUT MEAN 1 1 0.0000945 WDM 521 SURO 1 ENGL REPL COPY 102 OUTPUT MEAN 2 1 0.0000945 WDM 522 IFWO 1 ENGL REPL COPY 102 OUTPUT MEAN 3 1 0.0000945 WDM 523 AGWO 1 ENGL REPL COPY 102 OUTPUT MEAN 4 1 0.0000945 WDM 525 PETX 1 ENGL AGGR REPL COPY 102 OUTPUT MEAN 5 1 0.0000945 WDM 1 ENGL AGGR REPL 526 SAET 6 1 0.0000945AVER WDM 1 ENGL AGGR REPL COPY 102 OUTPUT MEAN 527 UZSX 102 OUTPUT MEAN 7 1 0.0000945AVER WDM 1 ENGL AGGR REPL COPY 528 LZSX *** GW channel seepage (dsn 80- hourly , 81- 5 min) COPY 105 OUTPUT MEAN 80 GW 1 ENGL REPL 1 WDM Output average soil temps & SED yield by land-use type *** xxx1 soil surface temp F * * * soil upper-zone temp F xxx2 * * * soil lower-zone temp F xxx3 * * * Total removal of sediment from PERLND's xxx4 *** Sed transport capacity (by surface runoff) xxx5 *** Combined Agr PERLND's (No. 1 to 4) COPY 106 OUTPUT MEAN 1 1 WDM 1061 SLTM 1 ENGL REPL 106 OUTPUT MEAN 1 ENGL COPY 2 1 WDM 1062 ULTM REPL COPY 106 OUTPUT MEAN 3 1 WDM 1063 LGTM 1 ENGL REPL COPY 106 OUTPUT MEAN 4 1 WDM 1064 PSED 1 ENGL REPL 106 OUTPUT MEAN 51 WDM 1065 STCP 1 ENGL REPL COPY *** Combined Forest PERLND's (No. 5 to 8) 1071 SLTM COPY 107 OUTPUT MEAN WDM 1 ENGL REPL 1 COPY 107 OUTPUT MEAN 2 WDM 1072 ULTM REPL 1 ENGL 107 OUTPUT MEAN 1073 LGTM COPY 3 WDM 1 ENGL REPL COPY 107 OUTPUT MEAN 4 WDM 1074 PSED 1 ENGL REPL COPY 107 OUTPUT MEAN 5 WDM 1075 STCP 1 ENGL REPL *** Combined Open PERLND's (No. 9 to 14) 108 OUTPUT MEAN 1081 SLTM COPY WDM 1 ENGL REPL 1 COPY 108 OUTPUT MEAN WDM 1082 ULTM 1 ENGL REPL 2 COPY 108 OUTPUT MEAN WDM 1083 LGTM 1 ENGL REPL 3 COPY 108 OUTPUT MEAN 1084 PSED 4 WDM 1 ENGL REPL COPY 108 OUTPUT MEAN WDM 1085 STCP 1 ENGL REPL 5 *** Combined disturbed PERLND's (No. 15 to 17) COPY 1091 SLTM REPL. 109 OUTPUT MEAN 1 ENGL 1 WDM COPY 109 OUTPUT MEAN WDM 1092 ULTM 1 ENGL REPL 2 COPY 109 OUTPUT MEAN 1093 LGTM REPL 3 WDM 1 ENGL COPY 109 OUTPUT MEAN 4 WDM 1094 PSED 1 ENGL REPL. COPY 109 OUTPUT MEAN 5 WDM 1095 STCP 1 ENGL REPL *** Output individual PERLND sediment characteristics PERLND 1 SEDMNT DETS WDM 2001 DETS 1 ENGL REPL PERLND 1 SEDMNT STCAP WDM 2002 STCP 1 ENGL REPL. PERLND 1 SEDMNT WSSD WDM 2003 WSSD 1 ENGL REPL. PERLND 1 SEDMNT SCRSD WDM 2004 SCRS 1 ENGL REPL PERLND 1 SEDMNT SOSED WDM 2005 SOSE 1 ENGL REPL. PERLND 1 SEDMNT DET WDM 2006 DET 1 ENGL REPL

END EXT TARGETS

CHEMAT -Sourc Name> ** Sub ERLND ERLND	***** IC e->	Global works	. specific in tander	4.6.4 page cations of wate with MASS-LI	ershed sti	ructu	re		* *
****** CHEMAT -Sourc Name> ** Sub ERLND ERLND	***** IC e->	works	in tander	n with MASS-LI					* *
CHEMAT -Sourc Name> ** Sub ERLND ERLND	IC e->	* * * * * *	* * * * * * * * * *						~ ~ ~
-Sourc Name> ** Sub ERLND ERLND	e->				*******	* * * * *	* * * * * * *	* * * * * * * * * *	* * * * * * *
Name> ** Sub ERLND ERLND									
** Sub ERLND ERLND	###			<area/>	<-Targe	et->	<ml-></ml->	* * *	
ERLND ERLND				<-factor->	<name></name>	###	#	* * *	
ERLND	basin	la to	RCHRES 1	(acres) (fig. 29)				* * *	
ERLND				(241.95 ac -	226.74ac	per,	15.21	ac imp)	
	1			20.64	RCHRES	1	1		
	2			0.30	RCHRES	1	1		
ERLND	3			10.66	RCHRES	1	1		
ERLND	4			5.28	RCHRES	1	1		
ERLND	5			11.63	RCHRES	1	1		
ERLND	6			2.49	RCHRES	1	1		
ERLND	7			28.44	RCHRES		1		
ERLND	8			8.91	RCHRES		1		
ERLND	9			11.15	RCHRES		1		
	10			13.69	RCHRES		1		
	11			1.62	RCHRES		1		
	12			4.84	RCHRES		1		
	13			1.12	RCHRES		1		
	14			9.96	RCHRES		1		
	15			17.95	RCHRES		1		
	16			8.67	RCHRES		1		
ERLND	17			2.62	RCHRES	1	1		
MPLND MPLND	1 2			5.00 0.07	RCHRES RCHRES		2 2		
** Sub	basin	la to) Pond RCI	IRES V23					
ERLND	1			28.26	RCHRES	23	1		
ERLND	2			0.81	RCHRES	23	1		
ERLND	3			0.10	RCHRES	23	1		
ERLND	9			8.83	RCHRES	23	1		
ERLND	10			13.00	RCHRES	23	1		
ERLND	11			0.60	RCHRES	23	1		
ERLND	12			0.45	RCHRES	23	1		
ERLND	13			0.02	RCHRES	23	1		
ERLND	14			1.59	RCHRES	23	1		
ERLND	15			10.24	RCHRES		1		
ERLND ERLND	16 17			0.66 2.21	RCHRES RCHRES		1		
MPLND	1			10.14			2		
** Sub	basin	1b to	RCHRES 1	(318.09 ac)					
ERLND	7			4.75	RCHRES	1	1		
ERLND	8			2.89	RCHRES	1	1		
ERLND	9			68.46	RCHRES		1		
ERLND	10			25.46	RCHRES	1	1		
ERLND	11			3.92	RCHRES	1	1		
ERLND	12			27.96	RCHRES	1	1		
ERLND	13			16.84	RCHRES	1	1		
ERLND	14			15.50	RCHRES	1	1		
ERLND	15			5.64	RCHRES	1	1		
ERLND	16			13.34	RCHRES	1	1		
ERLND	17			57.54	RCHRES	1	1		
MPLND MPLND	1 2			28.76 47.03	RCHRES RCHRES	1 1	2 2		
		lc to	RCHRES 1	(185.89 ac)		-	-		
ERLND	5			1.18	RCHRES	1	1		
ERLND ERLND	7			21.84	RCHRES	1	1		
erlnd Erlnd	8 9			4.10 14.47	RCHRES RCHRES	1 1	1		
erlnd Erlnd	9 10			3.40	RCHRES	1	1		
erlnd Erlnd	11			0.79	RCHRES	1	1		
ERLND	12			18.92	RCHRES	1	1		
ERLND	13			5.52	RCHRES	1	1		
ERLND	14			4.68	RCHRES	1	1		
ERLND	15			20.34	RCHRES	1	1		
ERLND	16			17.64	RCHRES	1	1		
ERLND	17			22.82	RCHRES	1	1		
MPLND	1			16.57	RCHRES	1	2		

	hadin	22	+ 0	DCUDEC	2	(242.53 ac)			
PERLND	1	zа	ιu	КСПКЕЗ	2	(242.55 ac) 2.68	RCHRES	2	1
PERLND	2					0.05	RCHRES	2	1
PERLND	3					0.68	RCHRES	2	1
PERLND	5					6.46	RCHRES	2	1
PERLND	6					3.36	RCHRES	2	1
PERLND	9					4.97		2	1
							RCHRES		
PERLND	10					15.26	RCHRES	2	1
PERLND	11					12.20	RCHRES	2	1
PERLND	12					11.07	RCHRES	2	1
PERLND	13					20.94	RCHRES	2	1
PERLND	14					6.25	RCHRES	2	1
PERLND	15					3.85	RCHRES	2	1
PERLND	17					67.78	RCHRES	2	1
IMPLND	1					2.19	RCHRES	2	2
IMPLND	2					84.79	RCHRES	2	2
*** Sub	basin	2b	to	RCHRES	2	(475.93 ac)			
PERLND	9					5.47	RCHRES	2	1
PERLND	10					6.48	RCHRES	2	1
PERLND	11					2.55	RCHRES	2	1
PERLND	12					36.21	RCHRES	2	1
PERLND	13					34.31	RCHRES	2	1
PERLND	14					13.55	RCHRES	2	1
PERLND	15					25.16	RCHRES	2	1
PERLND	16					76.84	RCHRES	2	1
PERLND	17					109.11	RCHRES	2	1
IMPLND	1					20.49	RCHRES	2	2
IMPLND	2					145.76	RCHRES	2	2
*** Sub	basin	3	to	RCHRES	3	(986.80 ac)			
PERLND	1					0.04	RCHRES	3	1
PERLND	2					0.03	RCHRES	3	1
PERLND	5					0.92	RCHRES	3	1
PERLND	6					0.41	RCHRES	3	1
PERLND	7					0.16	RCHRES	3	1
PERLND	9					29.90	RCHRES	3	1
PERLND	10							3	1
						86.81	RCHRES		
PERLND	11					15.50	RCHRES	3	1
PERLND	12					54.69	RCHRES	3	1
PERLND	13					30.55	RCHRES	3	1
PERLND	14					3.39	RCHRES	3	1
PERLND	15					224.80	RCHRES	3	1
PERLND	16					279.21	RCHRES	3	1
						89.83	DOUDDO		1
PERLND	17					09.03	RCHRES	3	
PERLND	17					09.05	RCHRES	3	_
PERLND	17 1					117.21	RCHRES	3 3	2
IMPLND	1					117.21	RCHRES	3	2
IMPLND IMPLND	1 2	4	to	RCHRES	4	117.21	RCHRES	3	2
IMPLND IMPLND *** Sub	1 2 basin	4	to	RCHRES	4	117.21 53.35 (29.02 ac)	RCHRES RCHRES	3 3	2 2
IMPLND IMPLND *** Suk PERLND	1 2 Dbasin 9	4	to	RCHRES	4	117.21 53.35 (29.02 ac) 0.29	RCHRES RCHRES RCHRES	3 3 4	2 2 1
IMPLND IMPLND *** Suk PERLND PERLND	1 2 Dbasin 9 10	4	to	RCHRES	4	117.21 53.35 (29.02 ac) 0.29 4.52	RCHRES RCHRES RCHRES RCHRES	3 3 4 4	2 2 1 1
IMPLND IMPLND *** Sub PERLND PERLND PERLND	1 2 Dbasin 9 10 11	4	to	RCHRES	4	117.21 53.35 (29.02 ac) 0.29 4.52 10.93	RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4	2 2 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND	1 2 Dbasin 9 10 11 12	4	to	RCHRES	4	117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4	2 2 1 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND	1 2 Dbasin 9 10 11 12 13	4	to	RCHRES	4	117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4	2 2 1 1 1 1 1
IMPLND IMPLND *** Sut PERLND PERLND PERLND PERLND PERLND PERLND	1 2 0basin 9 10 11 12 13 15	4	to	RCHRES	4	117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4	2 2 1 1 1 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND	1 2 0basin 9 10 11 12 13 15	4	to	RCHRES	4	117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4	2 2 1 1 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND PERLND	1 2 bbasin 9 10 11 12 13 15 17	4	to	RCHRES	4	117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 4	2 2 1 1 1 1 1 1 1
IMPLND IMPLND *** Sut PERLND PERLND PERLND PERLND PERLND PERLND IMPLND	1 2 bbasin 9 10 11 12 13 15 17 1	4	to	RCHRES	4	117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 4 4	2 2 1 1 1 1 1 1 1 2
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND PERLND	1 2 bbasin 9 10 11 12 13 15 17 1	4	to	RCHRES	4	117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 4	2 2 1 1 1 1 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND PERLND IMPLND	1 2 0basin 9 10 11 12 13 15 17 1 2					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 4 4	2 2 1 1 1 1 1 1 1 2
IMPLND IMPLND *** Sub PERLND PERLND PERLND PERLND PERLND PERLND IMPLND IMPLND	1 2 0basin 9 10 11 12 13 15 17 1 2 0basin					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac)	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 4 4	2 2 1 1 1 1 1 1 2 2
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND IMPLND *** Suk PERLND	1 2 0basin 9 10 11 12 13 15 17 1 2 0basin 1					1117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 4 4 5	2 2 1 1 1 1 1 1 2 2 2
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND *** Suk PERLND PERLND	1 2 0basin 9 10 11 12 13 15 17 1 2 0basin 1					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac)	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 5 5	2 2 1 1 1 1 1 1 2 2
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND IMPLND *** Suk PERLND	1 2 0basin 9 10 11 12 13 15 17 1 2 0basin 1					1117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 4 4 5	2 2 1 1 1 1 1 1 2 2 2
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND *** Suk PERLND PERLND	1 2 bbasin 9 10 11 12 13 15 17 1 2 bbasin 1 2					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18 0.28	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 5 5	2 2 1 1 1 1 1 1 2 2 2 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND *** Suk PERLND PERLND PERLND PERLND	1 2 bbasin 9 10 11 12 13 15 17 1 2 bbasin 1 2 3					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18 0.28 0.40	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 4 5 5 5	2 2 1 1 1 1 1 1 2 2 2 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND *** Suk PERLND PERLND PERLND PERLND	1 2 bbasin 9 10 11 12 13 15 17 1 2 bbasin 1 2 3 5					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18 0.28 0.40 18.58	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	2 2 1 1 1 1 1 1 2 2 2 1 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND PERLND	1 2 obasin 9 10 11 12 13 15 17 1 2 obasin 1 2 3 5 6 7					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18 0.28 0.40 18.58 37.65 48.28	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5	2 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 2 obasin 9 10 11 12 13 15 17 1 2 obasin 1 2 3 5 6 7 9					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18 0.28 0.40 18.58 37.65 48.28 21.14	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5	2 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 2 bbasin 9 10 11 12 13 15 17 1 2 bbasin 1 2 3 5 6 7 9 10					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18 0.28 0.40 18.58 37.65 48.28 21.14 9.57	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5	2 2 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 2 bbasin 9 10 11 12 13 15 17 1 2 bbasin 1 2 3 5 6 7 9 10 11					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18 0.28 0.40 18.58 37.65 48.28 21.14 9.57 19.40	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5	2 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 2 bbasin 9 10 11 12 13 15 17 1 2 bbasin 1 2 3 5 6 7 9 10 11 12					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18 0.28 0.40 18.58 37.65 48.28 21.14 9.57 19.40 26.23	RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5	2 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 2 obasin 9 10 11 12 13 15 17 1 2 obasin 1 2 3 5 6 7 9 10 11 12 13					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18 0.28 0.40 18.58 37.65 48.28 21.14 9.57 19.40 26.23 22.50	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5	2 2 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 2 obasin 9 10 11 12 13 15 17 1 2 obasin 1 2 3 5 6 7 9 10 11 12 13 15					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18 0.28 0.40 18.58 37.65 48.28 21.14 9.57 19.40 26.23 22.50 9.34	RCHRES RCHRES	3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5	2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 2 bbasin 9 10 11 12 13 15 17 1 2 3 5 6 7 9 10 11 12 13 15 16					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18 0.28 0.40 18.58 37.65 48.28 21.14 9.57 19.40 26.23 22.50 9.34 10.98	RCHRES RCHRES	3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5	2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 2 obasin 9 10 11 12 13 15 17 1 2 obasin 1 2 3 5 6 7 9 10 11 12 13 15					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18 0.28 0.40 18.58 37.65 48.28 21.14 9.57 19.40 26.23 22.50 9.34	RCHRES RCHRES	3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5	2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 2 bbasin 9 10 11 12 13 15 17 1 2 0 bbasin 1 2 3 5 6 7 9 10 11 12 13 15 16 17					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18 0.28 0.40 18.58 37.65 48.28 21.14 9.57 19.40 26.23 22.50 9.34 10.98 51.76	RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5	2 2 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 2 bbasin 9 10 11 12 13 15 17 1 2 bbasin 1 2 3 5 6 7 9 10 11 12 13 15 16 17 1					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18 0.28 0.40 18.58 37.65 48.28 21.14 9.57 19.40 26.23 22.50 9.34 10.98 51.76 8.34	RCHRES RCHRES	3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5	2 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1
IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND IMPLND IMPLND *** Suk PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 2 bbasin 9 10 11 12 13 15 17 1 2 0 bbasin 1 2 3 5 6 7 9 10 11 12 13 15 16 17					117.21 53.35 (29.02 ac) 0.29 4.52 10.93 0.19 0.22 7.64 1.74 1.64 1.85 (356.37 ac) 5.18 0.28 0.40 18.58 37.65 48.28 21.14 9.57 19.40 26.23 22.50 9.34 10.98 51.76 8.34	RCHRES RCHRES	3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5	2 2 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1

					_					
		5b	to	RCHRES	5	(51.37 ac)				
PERLND	9					2.67		5	1	
	10					4.48		5	1	
PERLND	11					15.27	RCHRES	5	1	
PERLND	12					1.93	RCHRES	5	1	
PERLND	13					1.02	RCHRES	5	1	
PERLND	15					12.51	RCHRES	5	1	
PERLND	16					1.16	RCHRES	5	1	
PERLND	17					4.87	RCHRES	5	1	
IMPLND	1					6.71	RCHRES	5	2	
IMPLND	2					0.75	RCHRES	5	2	
*** Sub	basin	ба	to	RCHRES	6	(437.52 ac)				
PERLND	1	ou	00	110111120	Ŭ		RCHRES	6	1	
PERLND	2					9.54	RCHRES	6	1	
	3					22.28		6	1	
PERLND						40.58	RCHRES RCHRES	6		
PERLND	5						RCHRES	0	1	
PERLND	6					82.40	RCHRES	6	1	
PERLND	7					60.48	RCHRES RCHRES RCHRES	6	1	
PERLND	8					4.97	RCHRES	6	1	
PERLND	9					2.31	RCHRES	6	1	
PERLND	10					14.87	RCHRES	6	1	
PERLND	11					23.29	RCHRES	6	1	
PERLND	12					29.33	RCHRES	6	1	
	13					22 03	RCHRES	6	1	
	15					10 24	RCHRES RCHRES	6	1	
						IJ.24 E 61	RCHRES	6	1	
	16					5.61		6		
PERLND	17					35.27	RCHRES	6	1	
IMPLND	1					12.11		6	2	
IMPLND	2					37.97	RCHRES	6	2	
*** Sub	basin	6b	to	RCHRES	б	(119.67 ac)				
PERLND	1					4.32	RCHRES	6	1	
PERLND	2					8.65	RCHRES	6	1	
PERLND	3					15.18	RCHRES RCHRES RCHRES	6	1	
PERLND	9					4.16	DOUDEC	6	1	
						3.24	RCHRES	6	1	
	10									
PERLND	11					18.36	RCHRES	6	1	
	12					5.39	RCHRES		1	
PERLND	13					3.99	RCHRES	6	1	
PERLND										
PERLND	13					3.99 9.89 8.45	RCHRES RCHRES RCHRES	6	1	
PERLND PERLND	13 15					3.99 9.89	RCHRES RCHRES RCHRES	6 6 6	1 1	
PERLND PERLND PERLND	13 15 16					3.99 9.89 8.45	RCHRES RCHRES RCHRES	6 6 6	1 1 1	
PERLND PERLND PERLND	13 15 16					3.99 9.89 8.45	RCHRES RCHRES RCHRES	6 6 6	1 1 1	
PERLND PERLND PERLND PERLND	13 15 16 17					3.99 9.89 8.45 18.96	RCHRES RCHRES RCHRES RCHRES	6 6 6	1 1 1	
PERLND PERLND PERLND PERLND IMPLND	13 15 16 17 1					3.99 9.89 8.45 18.96 7.80	RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 6	1 1 1 2	
PERLND PERLND PERLND PERLND IMPLND IMPLND	13 15 16 17 1 2	gel	Par	rkway (Upr	3.99 9.89 8.45 18.96 7.80 11.28	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 6	1 1 1 1 2	_
PERLND PERLND PERLND PERLND IMPLND IMPLND	13 15 16 17 1 2	gel	Par	rkway (Upr	3.99 9.89 8.45 18.96 7.80 11.28	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 6	1 1 1 1 2 2	_
PERLND PERLND PERLND PERLND IMPLND IMPLND	13 15 16 17 1 2 .ckrieg	-		_		3.99 9.89 8.45 18.96 7.80 11.28	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 6	1 1 1 1 2 2	_
PERLND PERLND PERLND PERLND IMPLND **** Ru *** Sub	13 15 16 17 1 2 .ckrieg	-		_		3.99 9.89 8.45 18.96 7.80 11.28 Der Gage) at ((10.45 ac)	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES putflow RCH	6 6 6 6 8 RES 6	1 1 1 2 2	_
PERLND PERLND PERLND IMPLND **** Ru *** Sub PERLND	13 15 16 17 1 2 ckrieg basin 1	-		_		3.99 9.89 8.45 18.96 7.80 11.28 Der Gage) at ((10.45 ac) 0.65	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES Dutflow RCH	6 6 6 6 8 RES 6	1 1 1 2 2	_
PERLND PERLND PERLND IMPLND IMPLND **** Ru *** Sub PERLND PERLND	13 15 16 17 1 2 ckries basin 1 2	-		_		3.99 9.89 8.45 18.96 7.80 11.28 per Gage) at ((10.45 ac) 0.65 2.76	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES Dutflow RCH RCHRES RCHRES	6 6 6 6 RES 6 7 7	1 1 1 1 2 2 2	_
PERLND PERLND PERLND IMPLND IMPLND **** Ru *** Sub PERLND PERLND PERLND	13 15 16 17 1 2 ckries basin 1 2 3	-		_		3.99 9.89 8.45 18.96 7.80 11.28 per Gage) at ((10.45 ac) 0.65 2.76 0.86	RCHRES RCHRES RCHRES RCHRES RCHRES Dutflow RCH RCHRES RCHRES RCHRES	6 6 6 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9	1 1 1 2 2 2 	_
PERLND PERLND PERLND IMPLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckries basin 1 2 3 9	-		_		3.99 9.89 8.45 18.96 7.80 11.28 ber Gage) at o (10.45 ac) 0.65 2.76 0.86 0.35	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 6 8 8 8 8 8 8 8 8 8 8 9 7 7 7 7 7 7 7	1 1 1 2 2 2 1 1 1 1	_
PERLND PERLND PERLND IMPLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckries basin 1 2 3 9 10	-		_		3.99 9.89 8.45 18.96 7.80 11.28 Der Gage) at ((10.45 ac) 0.65 2.76 0.86 0.35 0.68	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 1 1 1 1 1	_
PERLND PERLND PERLND IMPLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckries basin 1 2 3 9 10 11	-		_		3.99 9.89 8.45 18.96 7.80 11.28 ber Gage) at ((10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 1 1 1 1 1 1	_
PERLND PERLND PERLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckries basin 1 2 3 9 10 11 13	-		_		3.99 9.89 8.45 18.96 7.80 11.28 eer Gage) at ((10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 	_
PERLND PERLND PERLND IMPLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14	-		_		3.99 9.89 8.45 18.96 7.80 11.28 cer Gage) at o (10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 	_
PERLND PERLND PERLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckries basin 1 2 3 9 10 11 13	-		_		3.99 9.89 8.45 18.96 7.80 11.28 eer Gage) at ((10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 	_
PERLND PERLND PERLND IMPLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14	-		_		3.99 9.89 8.45 18.96 7.80 11.28 cer Gage) at o (10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 	_
PERLND PERLND PERLND IMPLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14 15	-		_		3.99 9.89 8.45 18.96 7.80 11.28 ber Gage) at o (10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 	_
PERLND PERLND PERLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14 15	-		_		3.99 9.89 8.45 18.96 7.80 11.28 oer Gage) at ((10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58 0.25	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 	_
PERLND PERLND PERLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14 15 16	-		_		3.99 9.89 8.45 18.96 7.80 11.28 oer Gage) at ((10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58 0.25	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 	_
PERLND PERLND PERLND IMPLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14 15 16 1	7	to	RCHRES	7	3.99 9.89 8.45 18.96 7.80 11.28 oer Gage) at ((10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58 0.25	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 	
PERLND PERLND PERLND IMPLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14 15 16 1	7	to	RCHRES	7	3.99 9.89 8.45 18.96 7.80 11.28 ber Gage) at o (10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58 0.25 1.20	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 	
PERLND PERLND PERLND IMPLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14 15 16 1 basin	7	to	RCHRES	7	3.99 9.89 8.45 18.96 7.80 11.28 ber Gage) at 0 (10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58 0.25 1.20 (253.07 ac) 5.12	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2	
PERLND PERLND PERLND IMPLND IMPLND **** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14 15 16 1 basin 1 2	7	to	RCHRES	7	3.99 9.89 8.45 18.96 7.80 11.28 ber Gage) at o (10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58 0.25 1.20 (253.07 ac) 5.12 28.42	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	
PERLND PERLND PERLND IMPLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14 15 16 1 basin 1 2 3	7	to	RCHRES	7	3.99 9.89 8.45 18.96 7.80 11.28 eer Gage) at o (10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58 0.25 1.20 (253.07 ac) 5.12 28.42 17.79	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	_
PERLND PERLND PERLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14 15 16 1 basin 1 2 3 4	7	to	RCHRES	7	3.99 9.89 8.45 18.96 7.80 11.28 0er Gage) at 0 (10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58 0.25 1.20 (253.07 ac) 5.12 28.42 17.79 6.62	RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	_
PERLND PERLND PERLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14 15 16 1 basin 1 2 3 4 9	7	to	RCHRES	7	3.99 9.89 8.45 18.96 7.80 11.28 Der Gage) at ((10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58 0.25 1.20 (253.07 ac) 5.12 28.42 17.79 6.62 6.81	RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	_
PERLND PERLND PERLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14 15 16 1 basin 1 2 3 9 10 11 13 14 15 16 17 10 10 10 10 10 10 10 10 10 10	7	to	RCHRES	7	3.99 9.89 8.45 18.96 7.80 11.28 ber Gage) at o (10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58 0.25 1.20 (253.07 ac) 5.12 28.42 17.79 6.62 6.81 3.68	RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	_
PERLND PERLND PERLND IMPLND IMPLND **** Ru *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14 15 16 1 basin 1 2 3 9 10 11 2 3 9 10 11 2 3 9 10 11 2 3 9 10 11 2 3 9 10 11 2 3 9 10 11 2 3 9 10 11 13 14 15 16 17 10 10 10 10 10 10 10 10 10 10	7	to	RCHRES	7	3.99 9.89 8.45 18.96 7.80 11.28 der Gage) at o (10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58 0.25 1.20 (253.07 ac) 5.12 28.42 17.79 6.62 6.81 3.68 11.45	RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	_
PERLND PERLND PERLND IMPLND IMPLND **** Ru *** Sub PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14 15 16 1 1 2 3 4 9 10 11 12	7	to	RCHRES	7	3.99 9.89 8.45 18.96 7.80 11.28 oer Gage) at o (10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58 0.25 1.20 (253.07 ac) 5.12 28.42 17.79 6.62 6.81 3.68 11.45 9.07	RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	_
PERLND PERLND PERLND PERLND IMPLND **** Ru *** Sub PERLND	13 15 16 17 1 2 bbasin 1 2 3 9 10 11 13 14 15 16 1 bbasin 1 2 3 4 9 10 11 12 13 14 15 16 11 12 13 14 15 16 17	7	to	RCHRES	7	3.99 9.89 8.45 18.96 7.80 11.28 Der Gage) at o (10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58 0.25 1.20 (253.07 ac) 5.12 28.42 17.79 6.62 6.81 3.68 11.45 9.07 5.88	RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	-
PERLND PERLND PERLND PERLND IMPLND **** Ru *** Sub PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14 15 16 1 1 2 3 4 9 10 11 12	7	to	RCHRES	7	3.99 9.89 8.45 18.96 7.80 11.28 oer Gage) at o (10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58 0.25 1.20 (253.07 ac) 5.12 28.42 17.79 6.62 6.81 3.68 11.45 9.07	RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	-
PERLND PERLND PERLND IMPLND iMPLND **** Sub PERLND	13 15 16 17 1 2 bbasin 1 2 3 9 10 11 13 14 15 16 1 bbasin 1 2 3 4 9 10 11 12 13 14 15 16 11 12 13 14 15 16 17	7	to	RCHRES	7	3.99 9.89 8.45 18.96 7.80 11.28 Der Gage) at o (10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58 0.25 1.20 (253.07 ac) 5.12 28.42 17.79 6.62 6.81 3.68 11.45 9.07 5.88	RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	_
PERLND PERLND PERLND IMPLND iMPLND **** Sub PERLND	13 15 16 17 1 2 ckrieg basin 1 2 3 9 10 11 13 14 15 16 1 2 3 4 9 10 11 2 3 4 9 10 11 12 13 14	7	to	RCHRES	7	3.99 9.89 8.45 18.96 7.80 11.28 oer Gage) at o (10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.35 0.68 0.93 0.16 0.03 2.58 0.25 1.20 (253.07 ac) 5.12 28.42 17.79 6.62 6.81 3.68 11.45 9.07 5.88 3.95	RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	_
PERLND PERLND PERLND IMPLND IMPLND **** Ru *** Sub PERLND	13 15 16 17 1 2 basin 1 2 3 9 10 11 13 14 15 16 1 basin 1 2 3 9 10 11 13 14 15 16 17 10 12 10 10 10 10 10 10 10 10 10 10	7	to	RCHRES	7	3.99 9.89 8.45 18.96 7.80 11.28 der Gage) at o (10.45 ac) 0.65 2.76 0.86 0.35 0.68 0.93 0.16 0.03 2.58 0.25 1.20 (253.07 ac) 5.12 28.42 17.79 6.62 6.81 3.68 11.45 9.07 5.8 3.95 8.72	RCHRES RCHRES	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	_

IMPLND IMPLND	1 2					4.51 9.76	RCHRES RCHRES	8 8	2 2
*** Sub	hadin	8-	+ 0	Dond P	CUI	DEC 1777			
		oa	ιu	Polia R	CHI				_
PERLND	1					7.20	RCHRES	22	1
PERLND	2					7.17	RCHRES	22	1
PERLND	3					28.11	RCHRES	22	1
	4								1
PERLND						0.26	RCHRES	22	
PERLND	9					2.62	RCHRES	22	1
PERLND	10					7.00	RCHRES	22	1
PERLND	11					1.72	RCHRES	22	1
PERLND	12					22.49	RCHRES	22	1
PERLND	13					12.08	RCHRES	22	1
PERLND	14					0.19	RCHRES	22	1
PERLND	15					3.94	RCHRES	22	1
	16					9.25		22	1
PERLND							RCHRES		
PERLND	17					6.66	RCHRES	22	1
IMPLND	1					2.89	RCHRES	22	2
IMPLND	2					6.24	RCHRES		2
IMPLIND	2					0.24	КСПКЕЗ	22	2
					-				
*** Sub	basin	8b	to	RCHRES	8	(325.43 ac)			
PERLND	1					11.42	RCHRES	8	1
PERLND	2					10.98	RCHRES	8	1
	3								
PERLND						17.12	RCHRES	8	1
PERLND	4					0.91	RCHRES	8	1
PERLND	9					8.19	RCHRES	8	1
PERLND	10					20.53	RCHRES	8	1
PERLND	11					28.78	RCHRES	8	1
PERLND	12					30.41	RCHRES	8	1
PERLND	13					10.02	RCHRES	8	1
	14					2.00	RCHRES	8	1
PERLND	15					54.74	RCHRES	8	1
PERLND	16					45.72	RCHRES	8	1
PERLND	17					27.26	RCHRES	8	1
IMPLND	1					44.47	RCHRES	8	2
IMPLND	2					12.88	RCHRES	8	2
						12100	reaments	0	
*** Sub	hagin	80	to	RCHRES	8		Romubb	U	
		8c	to	RCHRES	8	(116.57 ac)			1
PERLND	5	8c	to	RCHRES	8	(116.57 ac) 4.04	RCHRES	8	1
		8c	to	RCHRES	8	(116.57 ac)			1 1
PERLND	5	8c	to	RCHRES	8	(116.57 ac) 4.04	RCHRES	8	
PERLND PERLND PERLND	5 6 7	8c	to	RCHRES	8	(116.57 ac) 4.04 3.57 0.38	RCHRES RCHRES RCHRES	8 8 8	1 1
PERLND PERLND PERLND PERLND	5 6 7 9	8c	to	RCHRES	8	(116.57 ac) 4.04 3.57 0.38 18.81	RCHRES RCHRES RCHRES RCHRES	8 8 8	1 1 1
PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10	8c	to	RCHRES	8	(116.57 ac) 4.04 3.57 0.38 18.81 4.44	RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8	1 1 1
PERLND PERLND PERLND PERLND	5 6 7 9	8c	to	RCHRES	8	(116.57 ac) 4.04 3.57 0.38 18.81	RCHRES RCHRES RCHRES RCHRES	8 8 8	1 1 1
PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10	8c	to	RCHRES	8	(116.57 ac) 4.04 3.57 0.38 18.81 4.44	RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8	1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12	8c	to	RCHRES	8	(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8	1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13	8c	to	RCHRES	8	(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8	1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14	8c	to	RCHRES	8	(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13	8c	to	RCHRES	8	(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8	1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14	8c	to	RCHRES	8	(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14 15	8c	to	RCHRES	8	(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16	8c	to	RCHRES	8	(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16	8c	to	RCHRES	8	(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17	8c	to	RCHRES	8	(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND **** Sub	5 6 7 9 10 11 12 13 14 15 16 17 1 wbasin					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac)	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 2
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND **** Sub PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 bbasin 1					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 2 2
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND IMPLND *** Sub PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 0basin 2					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.69	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9	1 1 1 1 1 1 1 1 1 1 1 2 2
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND **** Sub PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 bbasin 1					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 2 2
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND IMPLND *** Sub PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 0basin 2					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.69 9.28	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 0basin 1 2 3 5					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.69 9.28 11.17	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 bbasin 1 2 3 5 6					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.63 0.69 9.28 11.17 42.87	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 bbasin 1 2 3 5 6 7					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.69 9.28 11.17 42.87 0.32	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 0 basin 1 2 3 5 6					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.63 0.69 9.28 11.17 42.87	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 bbasin 1 2 3 5 6 7					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.69 9.28 11.17 42.87 0.32	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 2 3 5 6 7 8 10					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.69 9.28 11.17 42.87 0.32 3.79 50.22	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 0basin 1 2 3 5 6 7 8 10 11					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.69 9.28 11.17 42.87 0.32 3.79 50.22 203.90	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 bbasin 1 2 3 5 6 7 8 10 11 12					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.69 9.28 11.17 42.87 0.32 3.79 50.22 203.90 234.84	RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 0basin 1 2 3 5 6 7 8 10 11					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.69 9.28 11.17 42.87 0.32 3.79 50.22 203.90 234.84 93.18	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 bbasin 1 2 3 5 6 7 8 10 11 12					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.69 9.28 11.17 42.87 0.32 3.79 50.22 203.90 234.84	RCHRES RCHRES	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 2 3 5 6 7 8 10 11 12 13 14					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.69 9.28 11.17 42.87 0.32 3.79 50.22 203.90 234.84 93.18 8.60	RCHRES RCHRES	888888888888888888888888888888888888888	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 1 2 3 5 6 7 8 10 11 12 13 14 15 14 15					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.69 9.28 11.17 42.87 0.32 3.79 50.22 203.90 234.84 93.18 8.60 21.74	RCHRES RCHRES	888888888888888888888888888888888888888	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 0 basin 1 2 3 5 6 7 8 10 11 12 13 14 15 16 17 10 10 17 10 10 11 12 13 14 15 16 17 17 10 10 11 12 13 14 15 16 17 17 10 10 11 12 13 14 15 16 17 17 17 10 10 11 12 13 14 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.63 0.69 9.28 11.17 42.87 0.32 3.79 50.22 203.90 234.84 93.18 8.60 21.74 31.22	RCHRES RCHRES	888888888888888888888888888888888888888	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 1 2 3 5 6 7 8 10 11 12 13 14 15 14 15					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.69 9.28 11.17 42.87 0.32 3.79 50.22 203.90 234.84 93.18 8.60 21.74	RCHRES RCHRES	888888888888888888888888888888888888888	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 bbasin 1 2 3 5 6 7 8 10 11 12 13 14 15 16 17 1 2 3 5 6 7 8 10 17 17 17 10 11 14 15 16 17 17 10 11 14 15 16 17 17 17 10 17 10 11 14 15 16 17 17 17 10 17 14 15 16 17 17 17 10 17 17 17 17 17 17 17 17 17 17 17 17 17					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.69 9.28 11.17 42.87 0.32 3.79 50.22 203.90 234.84 93.18 8.60 21.74 31.22 1.83	RCHRES RCHRES	888888888888888888888888888888888888888	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 2 3 5 6 7 8 10 11 12 13 14 15 16 17 1 2 3 5 6 7 8 10 11 17 17 10 11 14 15 16 17 17 17 10 11 14 15 16 17 17 17 10 11 14 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17					<pre>(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.69 9.28 11.17 42.87 0.32 3.79 50.22 203.90 234.84 93.18 8.60 21.74 31.22 1.83 16.92</pre>	RCHRES RCHRES	888888888888888888888888888888888888888	1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND PERLND	5 6 7 9 10 11 12 13 14 15 16 17 1 bbasin 1 2 3 5 6 7 8 10 11 12 13 14 15 16 17 1 2 3 5 6 7 8 10 17 17 17 10 11 14 15 16 17 17 10 11 14 15 16 17 17 17 10 17 10 11 14 15 16 17 17 17 10 17 14 15 16 17 17 17 10 17 17 17 17 17 17 17 17 17 17 17 17 17					(116.57 ac) 4.04 3.57 0.38 18.81 4.44 42.10 5.63 6.04 3.64 13.94 6.96 1.06 5.96 (969.95 ac) 0.63 0.69 9.28 11.17 42.87 0.32 3.79 50.22 203.90 234.84 93.18 8.60 21.74 31.22 1.83	RCHRES RCHRES	888888888888888888888888888888888888888	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

*** 01								
30		9a to Pond RCHRES V						
PERLNI) 2			RCHRES		1		
PERLNI) 3		3.81	RCHRES	21	1		
PERLNI) 5		0.01	RCHRES	21	1		
PERLNI) 9		4.24	RCHRES	21	1		
PERLNI	10		15.57	RCHRES	21	1		
PERLNI				RCHRES		1		
PERLNI				RCHRES		1		
				RCHRES		1		
PERLNI								
PERLNI				RCHRES		1		
PERLNI				RCHRES		1		
PERLNI) 17		0.93	RCHRES	21	1		
IMPLNI) 1		13.84	RCHRES	21	2		
*** Su	bbasin	9b to RCHRES 9 (699	9.96 ac)					
				(Sarato	a Woods	in	this	subbasin)
PERLNI) 5		3.21		9	1		,
PERLNI				RCHRES		1		
PERLNI				RCHRES		1		
				RCHRES		1		
PERLNI								
PERLNI				RCHRES		1		
PERLNI				RCHRES		1		
PERLNI				RCHRES		1		
PERLNI) 13			RCHRES	9	1		
PERLNI) 14		73.65	RCHRES	9	1		
PERLNI	15		154.06	RCHRES	9	1		
PERLNI	16		23.23	RCHRES	9	1		
IMPLNI) 1		36.67	RCHRES	9	2		
*** C1	hhadin	9b to Pond RCHRES V	720					
		9D CO POILO RCHRES V		RCHRES	20	1		
PERLNI								
PERLNI				RCHRES		1		
PERLNI				RCHRES		1		
PERLNI				RCHRES		1		
PERLNI) 9		66.66	RCHRES	20	1		
PERLNI	10		20.97	RCHRES	20	1		
PERLNI) 11		35.70	RCHRES	20	1		
PERLNI	12		14.62	RCHRES	20	1		
PERLNI				RCHRES		1		
						1		
DERINI								
PERLNI				RCHRES				
PERLNI	15		13.10	RCHRES	20	1		
	15		13.10		20			
PERLNI PERLNI) 15) 16		13.10 3.38	RCHRES RCHRES	20 20	1 1		
PERLNI) 15) 16		13.10	RCHRES RCHRES	20	1		
PERLNI PERLNI IMPLNI	0 15 0 16 0 1		13.10 3.38 3.91	RCHRES RCHRES RCHRES	20 20	1 1		
PERLNI PERLNI IMPLNI *** Su) 15) 16) 1 lbbasin	10a to Pond RCHRES	13.10 3.38 3.91 V19 (702.90	RCHRES RCHRES RCHRES) ac)	20 20 20	1 1 2		
PERLNI PERLNI IMPLNI *** Su PERLNI) 15) 16) 1) 1)bbasin) 5	10a to Pond RCHRES	13.10 3.38 3.91 V19 (702.90 17.00	RCHRES RCHRES RCHRES) ac) RCHRES	20 20 20 19	1 1 2 1		
PERLNI PERLNI IMPLNI *** Su) 15) 16) 1 ubbasin) 5) 6	10a to Pond RCHRES	13.10 3.38 3.91 V19 (702.90 17.00 27.32	RCHRES RCHRES RCHRES) ac) RCHRES RCHRES	20 20 20 19 19	1 1 2 1 1		
PERLNI PERLNI IMPLNI *** Su PERLNI) 15) 16) 1 lbbasin) 5) 6	10a to Pond RCHRES	13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01	RCHRES RCHRES RCHRES () ac) RCHRES RCHRES RCHRES	20 20 20 19 19 19	1 1 2 1		
PERLNI PERLNI IMPLNI *** Su PERLNI PERLNI) 15) 16) 1) 1) 1) 0) 5) 6) 7	10a to Pond RCHRES	13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01	RCHRES RCHRES RCHRES) ac) RCHRES RCHRES	20 20 20 19 19 19	1 1 2 1 1		
PERLNI PERLNI IMPLNI *** Su PERLNI PERLNI PERLNI) 15) 16) 1) 1) 5) 6) 7) 8	10a to Pond RCHRES	13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15	RCHRES RCHRES RCHRES () ac) RCHRES RCHRES RCHRES	20 20 20 19 19 19 19	1 1 2 1 1 1		
PERLNI PERLNI IMPLNI *** Su PERLNI PERLNI PERLNI PERLNI	 15 16 1 bbasin 5 6 7 8 10 	10a to Pond RCHRES	13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99	RCHRES RCHRES RCHRES D ac) RCHRES RCHRES RCHRES RCHRES	20 20 20 19 19 19 19 19 19	1 1 2 1 1 1 1		
PERLNI PERLNI IMPLNI *** Su PERLNI PERLNI PERLNI PERLNI) 15) 16) 1) 1) 5) 6) 7) 8) 7) 8) 10) 11	10a to Pond RCHRES	13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19	1 1 2 1 1 1 1 1		
PERLNI PERLNI *** Su PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI	<pre>> 15 > 16 >> 1 >> 1 >> 1 >> 5 >> 6 >> 7 >> 8 >> 10 >> 11 >> 12 >> 12</pre>	10a to Pond RCHRES	13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16	RCHRES RCHRES D ac) RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** Su PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI) 15) 16) 1) 5) 6) 7) 8) 10) 11) 12) 13 	10a to Pond RCHRES	13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41	RCHRES RCHRES D ac) RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** Su PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI	<pre>> 15 > 16 > 16 > 1 > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 11 > 12 > 13 > 14</pre>	10a to Pond RCHRES	13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30	RCHRES RCHRES CHRES CHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI	<pre>> 15 > 16 > 16 > 1 bbbasin > 5 > 6 > 7 > 8 > 10 > 1 > 12 > 13 > 14 > 15</pre>	10a to Pond RCHRES	13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14	RCHRES RCHRES CHRES CHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19	1 1 2 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI	<pre>> 15 > 16 > 16 > 1 bbbasin > 5 > 6 > 7 > 8 > 10 > 11 > 12 > 12 > 12 > 14 > 14 > 15 > 16</pre>	10a to Pond RCHRES	13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43	RCHRES RCHRES RCHRES CHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI	<pre>> 15 > 16 > 16 > 1 bbbasin > 5 > 6 > 7 > 8 > 10 > 11 > 12 > 12 > 12 > 14 > 14 > 15 > 16</pre>	10a to Pond RCHRES	13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43	RCHRES RCHRES CHRES CHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19	1 1 2 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI	<pre>> 15 > 16 > 16 > 1 > 1 > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 1 > 10 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1</pre>	10a to Pond RCHRES	13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50	RCHRES RCHRES RCHRES CHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI	<pre>> 15 > 16 > 16 > 1 > 1 > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 1 > 10 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1</pre>	10a to Pond RCHRES	13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50	RCHRES RCHRES RCHRES CHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI IMPLNI	<pre>> 15 > 16 > 16 > 1 bbbasin > 5 > 6 > 7 > 8 > 10 > 12 > 10 > 11 > 12 > 13 > 14 > 15 > 16 > 17 > 10 > 11 > 10 > 10 > 10 > 10 > 10 > 10</pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33	RCHRES RCHRES RCHRES CHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** St PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI XMPLNI	<pre>> 15 > 16 > 16 > 1 > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 7 > 8 > 10 > 11 > 12 > 12</pre>	10a to Pond RCHRES 10b to RCHRES 10 (8	13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 203.15 ac)	RCHRES RCHRES RCHRES CHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 2		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI IMPLNI *** SU	<pre>> 15 > 16 > 16 > 1 > 1 > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 12 > 13 > 12 > 13 > 14 > 12 > 13 > 14 > 15 > 16 > 1 > 1 > 1 </pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 303.15 ac) 1.23	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1		
PERLNI PERLNI IMPLNI *** St PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI XMPLNI	<pre>> 15 > 16 > 16 > 1 > 1 > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 12 > 13 > 12 > 13 > 14 > 12 > 13 > 14 > 15 > 16 > 1 > 1 > 1 </pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 303.15 ac) 1.23	RCHRES RCHRES RCHRES CHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 2		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI IMPLNI *** SU	<pre>> 15 > 16 > 16 > 1 bbasin > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 1 > 10 > 1 > 12 > 13 > 14 > 15 > 16 > 17 > 12 > 13 > 14 > 12 > 12 > 12 > 13 > 14 > 12 > 12 > 12 > 12 > 12 > 12 > 12 > 12</pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 303.15 ac) 1.23 14.32	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI IMPLNI *** SU PERLNI	<pre>> 15 > 16 > 16 > 1 > 1 > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 1 > 10 > 1 > 10 > 1 > 10 > 1 > 10 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1</pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 803.15 ac) 1.23 14.32 0.08	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI	<pre>> 15 > 16 > 16 > 1 bbbasin > 5 > 6 > 7 > 8 > 10 > 1 > 10 > 1 > 12 > 13 > 14 > 15 > 16 > 17 > 12 > 16 > 17 > 1 > 1 > 1 > 2 > 3 > 1 > 3 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1</pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 803.15 ac) 1.23 14.32 0.08 22.12	RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI	<pre>> 15 > 16 > 16 > 1 > 1 > 1 > 1 > 1 > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 1 > 12 > 12 > 13 > 14 > 12 > 13 > 14 > 15 > 10 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1</pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 803.15 ac) 1.23 14.32 0.08 22.12 4.29	RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI	<pre>> 15 > 16 > 16 > 1 > 1 > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 7 > 8 > 10 > 12 > 12 > 13 > 14 > 12 > 14 > 12 > 13 > 14 > 12 > 16 > 1 > 1 > 2 > 3 > 2 </pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 303.15 ac) 1.23 14.32 0.08 22.12 4.29 25.92	RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI	<pre>> 15 > 16 > 16 > 1 > 1 > 1 > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 1 > 10 > 1 > 10 > 1 > 10 > 1 > 10 > 1 > 10 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1</pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 803.15 ac) 1.23 14.32 0.08 22.12 4.29 25.92 0.88	RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI	<pre>> 15 > 16 > 16 > 1 bbbasin > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 1 > 12 > 12 > 12 > 14 > 15 > 16 > 17 > 12 > 14 > 15 > 16 > 17 > 12 > 12 > 14 > 12 > 14 > 15 > 16 > 10 > 1 > 1 > 10 > 1 > 2 > 3 > 1 </pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 803.15 ac) 1.23 14.32 0.08 22.12 4.29 25.92 0.88 33.88	RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** St PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI	<pre>> 15 > 16 > 16 > 1 > 16 > 1 > 16 > 1 > 5 > 6 > 7 > 8 > 10 > 1 > 12 > 13 > 12 > 13 > 14 > 15 > 10 > 12 > 13 > 14 > 15 > 10 > 1 > 1 > 1 > 1 > 5 > 7 > 8 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1</pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 03.15 ac) 1.23 14.32 0.08 22.12 4.29 25.92 0.88 33.88 2.29	RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI	<pre>> 15 > 16 > 16 > 1 > 1 > 1 > 1 > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 12 > 13 > 12 > 13 > 14 > 12 > 13 > 14 > 15 > 16 > 1 > 1 > 1 > 2 > 3 > 1 > 5 > 6 > 6 > 7 > 7 > 8 > 1 0 1 > 1 0 2 > 3 > 1 0 2 > 1 0 1 0 1 0 2 0 1 0 1 0 1 0 1 0 2 0 1 0 1 0 1 0 2 0 1 0 1 0 1 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1</pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 303.15 ac) 1.23 14.32 0.08 22.12 4.29 25.92 0.88 33.88 2.29 7.95	RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI	<pre>> 15 > 16 > 16 > 1 bbbasin > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 1 > 10 > 1 > 10 > 10 > 10 > 11 > 12 > 13 > 14 > 15 > 16 > 17 > 1 > 16 > 10 > 7 > 7 > 8 > 10 > 11 > 12 > 12 > 11 > 12 > 12 > 16 > 17 > 12 > 16 > 17 > 16 > 17 > 17 > 16 > 17 > 16 > 17 > 16 > 17 > 17 > 16 > 17 > 16 > 17 > 16 > 17 > 17 > 16 > 17 > 16 > 17 > 17 > 16 > 17 > 16 > 17 > 17 > 16 > 17 > 17 > 16 > 17 > 17 > 16 > 17 > 17 > 17 > 16 > 17 > 17 > 17 > 16 > 17 > 17 > 17 > 17 > 16 > 17 > 17 > 17 > 17 > 17 > 17 > 17 > 17</pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 303.15 ac) 1.23 14.32 0.08 22.12 4.29 25.92 0.88 33.88 2.29 7.95 26.00	RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI PERLNI	<pre>> 15 > 16 > 16 > 1 > 1 > 1 > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 7 > 8 > 10 > 1 > 10 > 1 > 10 > 12 > 13 > 14 > 15 > 16 > 12 > 13 > 14 > 15 > 16 > 17 > 12 > 13 > 17 > 16 > 10 > 12 > 16 > 17 > 10 > 12 > 16 > 17 > 17 > 16 > 17 > 16 > 17 > 16 > 17 > 17 > 16 > 17 > 17 > 16 > 17 > 17 > 17 > 16 > 17 > 17 > 16 > 17 > 17 > 17 > 17 > 17 > 16 > 17 > 17 > 17 > 17 > 17 > 17 > 16 > 17 > 17 > 16 > 17 > 17 > 17 > 16 > 17 > 17 > 17 > 17 > 17 > 16 > 17 > 17 > 17 > 16 > 17 > 17 > 16 > 17 > 17 > 17 > 17 > 17 > 17 > 16 > 17 > 17 > 17 > 17 > 17 > 17 > 17 > 17</pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 303.15 ac) 1.23 14.32 0.08 22.12 4.29 25.92 0.88 33.88 2.29 7.95 26.00 4.38	RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** St PERLNI	<pre>> 15 > 16 > 16 > 1 > 16 > 1 > 16 > 1 > 16 > 7 > 8 > 10 > 7 > 8 > 10 > 12 > 13 > 14 > 12 > 13 > 14 > 15 > 16 > 17 > 16 > 17 > 10 > 12 > 13 > 14 > 15 > 16 > 17 > 16 > 17 > 10 > 12 > 13 > 16 > 17 > 10 > 12 > 13 > 16 > 17 > 16 > 16 > 17 > 17 > 16 > 17 > 16 > 17 > 17 > 17 > 17 > 17 > 17 > 17 > 17</pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 03.15 ac) 1.23 14.32 0.08 22.12 4.29 25.92 0.88 33.88 2.29 7.95 26.00 4.38 3.74	RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI	<pre>> 15 > 16 > 16 > 1 > 16 > 1 > 1 > 1 > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 12 > 13 > 12 > 13 > 14 > 12 > 13 > 14 > 15 > 16 > 17 > 12 > 13 > 14 > 15 > 16 > 17 > 12 > 13 > 14 > 15 > 16 > 17 > 12 > 13 > 16 > 17 > 12 > 13 > 16 > 17 > 10 > 12 > 13 > 16 > 17 > 10 > 12 > 13 > 16 > 17 > 16 > 17 > 10 > 12 > 13 > 16 > 17 > 10 > 16 > 17 > 10 > 16 > 17 > 10 > 10 > 10 > 10 > 10 > 10 > 10 > 10</pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 803.15 ac) 1.23 14.32 0.08 22.12 4.29 25.92 0.88 33.88 2.29 7.95 26.00 4.38 3.74 46.72	RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** St PERLNI	<pre>> 15 > 16 > 16 > 1 > 16 > 1 > 1 > 1 > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 12 > 13 > 12 > 13 > 14 > 12 > 13 > 14 > 15 > 16 > 17 > 12 > 13 > 14 > 15 > 16 > 17 > 12 > 13 > 14 > 15 > 16 > 17 > 12 > 13 > 16 > 17 > 12 > 13 > 16 > 17 > 10 > 12 > 13 > 16 > 17 > 10 > 12 > 13 > 16 > 17 > 16 > 17 > 10 > 12 > 13 > 16 > 17 > 10 > 16 > 17 > 10 > 16 > 17 > 10 > 10 > 10 > 10 > 10 > 10 > 10 > 10</pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 803.15 ac) 1.23 14.32 0.08 22.12 4.29 25.92 0.88 33.88 2.29 7.95 26.00 4.38 3.74 46.72	RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI	<pre>> 15 > 16 > 16 > 1 > 1 > 1 > 1 > 1 > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 1 10 > 12 > 13 > 14 > 12 > 13 > 14 > 15 > 16 > 1 > 10 > 10 > 10 > 11 > 12 > 13 > 14 > 16 > 17 > 10 > 11 > 112 > 112 ></pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 303.15 ac) 1.23 14.32 0.08 22.12 4.29 25.92 0.88 33.88 2.29 7.95 26.00 4.38 3.74 46.72 19.79	RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1		
PERLNI PERLNI IMPLNI *** SU PERLNI	<pre>> 15 > 16 > 16 > 16 > 1 > 16 > 16 > 10 > 5 > 6 > 7 > 8 > 10 > 7 > 8 > 10 > 12 > 13 > 14 > 15 > 16 > 17 > 17 > 16 > 17 > 1 > 16 > 17 > 1 > 16 > 17 > 16 > 17 > 16 > 17 > 16 > 17 > 17 > 16 > 17 > 16 > 17 > 17 > 16 > 17 > 16 > 17 > 16 > 17 > 16 > 17 > 16 > 17 > 16 > 17 > 17 > 16 > 17 > 16 > 17 > 16 > 17 > 17 > 16 > 17 > 16 > 17 > 16 > 17 > 16 > 17 > 16 > 17 > 17 > 16 > 16 > 17 > 16 > 17 > 16 > 16 > 17 > 16 > 16 > 16 > 17 > 16 > 16 > 17 > 16 > 16 > 16 > 16 > 16 > 16 > 16 > 16</pre>		13.10 3.38 3.91 V19 (702.90 17.00 27.32 19.01 7.15 61.99 147.16 49.16 37.41 18.30 144.14 110.43 37.50 26.33 303.15 ac) 1.23 14.32 0.08 22.12 4.29 25.92 0.88 33.88 2.29 7.95 26.00 4.38 3.74 46.72 19.79 15.86	RCHRES RCHRES	20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

184 Appendix 5

*** Sub	basin	10b	to	Pond	RCHRES	V18			
PERLND	1					21.31	RCHRES	18	1
PERLND	2					36.56	RCHRES	18	1
PERLND	3					50.50	RCHRES	18	1
PERLND	4					5.61	RCHRES	18	1
PERLND	5					6.05	RCHRES	18	1
PERLND	б					36.19	RCHRES	18	1
PERLND	7					43.73	RCHRES	18	1
PERLND	8					14.45	RCHRES	18	1
PERLND	9					112.20	RCHRES	18	1
PERLND	10					25.07	RCHRES	18	1
PERLND	11					68.31	RCHRES	18	1
PERLND	12					18.67	RCHRES	18	1
PERLND	13					10.56	RCHRES	18	1
PERLND	14					22.49	RCHRES	18	1
PERLND	15					53.35	RCHRES	18	1
PERLND	16					17.20	RCHRES	18	1
IMPLND	1					24.22	RCHRES	18	2

*** Gelhaus Lane (Lower Gage) at exit to RCHRES 10-----

*** Subbasin 11 to RCHRES 11 (756.41 ac)

*** Sub	basin 11	to RCHRES	11 (756.41 ac)			
PERLND	1		27.31	RCHRES	11	1
PERLND	2		91.05	RCHRES	11	1
PERLND	3		82.08	RCHRES	11	1
PERLND	4		12.82	RCHRES	11	1
PERLND	5		3.45	RCHRES	11	1
PERLND	6		49.82	RCHRES	11	1
PERLND	7		14.45	RCHRES	11	1
PERLND	8		58.63	RCHRES	11	1
PERLND	9		17.44	RCHRES	11	1
PERLND	10		11.04	RCHRES	11	1
PERLND	11		60.82	RCHRES	11	1
PERLND	12		32.72	RCHRES	11	1
PERLND	13		12.81	RCHRES	11	1
PERLND	14		41.58	RCHRES	11	1
PERLND	15		17.86	RCHRES	11	1
PERLND	16		17.07	RCHRES	11	1
IMPLND	1		9.77	RCHRES	11	2
*** Su	bbasin 1	1 to Pond H	RCHRES V17			
PERLND	1		5.29	RCHRES	17	1
PERLND	2		17.93	RCHRES	17	1
PERLND	3		33.37	RCHRES	17	1
PERLND	5		2.15	RCHRES	17	1
PERLND	б		12.77	RCHRES	17	1
PERLND	8		11.95	RCHRES	17	1
PERLND	9		2.84	RCHRES	17	1
PERLND	10		13.59	RCHRES	17	1
PERLND	11		40.01	RCHRES	17	1
PERLND	12		15.55	RCHRES	17	1
PERLND	13		2.47	RCHRES	17	1
PERLND	14		13.75	RCHRES	17	1
PERLND	15		13.18	RCHRES	17	1
PERLND	16		6.74	RCHRES	17	1
IMPLND	1		4.10	RCHRES	17	2
*** Sub	basin 12	to RCHRES	12 (284.78 ac)			
PERLND	1		1.70	RCHRES	12	1
PERLND	2		46.47	RCHRES	12	1
PERLND	3		23.29	RCHRES	12	1
PERLND	4		42.30	RCHRES	12	1
PERLND	5		0.19	RCHRES	12	1
PERLND	6		0.14	RCHRES	12	1
PERLND	8		0.19	RCHRES	12	1
PERLND	9		1.02	RCHRES	12	1
PERLND	10		2.17	RCHRES	12	1
PERLND	11		20.00	RCHRES	12	1
PERLND	12		0.55	RCHRES	12	1
PERLND	13		1.63	RCHRES	12	1
PERLND	14		31.67	RCHRES	12	1
PERLND	15		6.14	RCHRES	12	1
PERLND	16		5.66	RCHRES	12	1
IMPLND	1		5.36	RCHRES	12	2

	, .	1.0			-		a			
*** Suk		12	to	Pond	RCH	RE	S V16 0.31	DOIDEO	10	1
PERLND PERLND	1 2						0.31	RCHRES RCHRES	16 16	1
PERLND	3						0.02	RCHRES	16	1
PERLND	4						2.40	RCHRES	16	1
PERLND	5						2.74	RCHRES	16	1
PERLND	б						3.55	RCHRES	16	1
PERLND	7						0.06	RCHRES	16	1
PERLND	8						3.31	RCHRES	16	1
PERLND	9						2.64	RCHRES	16	1
PERLND	10						2.57	RCHRES	16	1
PERLND	11						14.70	RCHRES	16	1
PERLND	12						5.44	RCHRES	16	1
PERLND	13						2.19	RCHRES	16	1
PERLND	14						18.72	RCHRES	16	1
PERLND	15						3.48	RCHRES	16	1
PERLND	16						3.72	RCHRES	16	1
IMPLND	1						2.30	RCHRES	16	2
*** Sub	obasin	13	to	RCHRI	rs 1	3	(1,401.30ac)			
PERLND	1	10	00	iceine	10 1	5	34.70	RCHRES	13	1
PERLND	2						97.30	RCHRES	13	1
PERLND	3						38.38	RCHRES	13	1
PERLND	4						72.98	RCHRES	13	1
PERLND	5						82.05	RCHRES	13	1
PERLND	б						335.34	RCHRES	13	1
PERLND	7						1.83	RCHRES	13	1
PERLND	8						102.39	RCHRES	13	1
PERLND	9						4.34	RCHRES	13	1
PERLND	10						31.63	RCHRES	13	1
PERLND	11						84.09	RCHRES	13	1
PERLND	12						6.28	RCHRES	13	1
PERLND	13						1.04	RCHRES	13	1
PERLND	14						11.41	RCHRES	13	1
PERLND	15						30.84	RCHRES	13	1
PERLND	16						5.29	RCHRES	13	1
	1						0 00	DOUDDO		
PERLND	17						0.22	RCHRES	13	1
	17 1						0.22	RCHRES RCHRES	13 13	1 2
PERLND IMPLND	1	13	to	Pond	RCH	RE	32.85			
PERLND IMPLND *** Suk	1 Dbasin	13	to	Pond	RCH	RE	32.85 S V15	RCHRES	13	2
PERLND IMPLND *** Suk PERLND	1	13	to	Pond	RCH	RE	32.85 S V15 16.20	RCHRES RCHRES	13 15	
PERLND IMPLND *** Suk	1 obasin 1	13	to	Pond	RCH	RE	32.85 S V15	RCHRES	13	2
PERLND IMPLND *** Suk PERLND PERLND	1 obasin 1 2	13	to	Pond	RCH	RE	32.85 S V15 16.20 35.74	RCHRES RCHRES RCHRES	13 15 15	2 1 1
PERLND IMPLND *** Suk PERLND PERLND PERLND	1 Dbasin 1 2 3	13	to	Pond	RCH	RE	32.85 S V15 16.20 35.74 21.63	RCHRES RCHRES RCHRES RCHRES	13 15 15 15	2 1 1 1
PERLND IMPLND *** Suk PERLND PERLND PERLND PERLND	1 Dbasin 1 2 3 4	13	to	Pond	RCH	RE	32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76	RCHRES RCHRES RCHRES RCHRES RCHRES	13 15 15 15 15	2 1 1 1 1
PERLND IMPLND *** Sub PERLND PERLND PERLND PERLND PERLND	1 0basin 1 2 3 4 5	13	to	Pond	RCH	RE	32.85 S V15 16.20 35.74 21.63 6.91 7.69	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	13 15 15 15 15	2 1 1 1 1 1
PERLND IMPLND *** Sul PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 bbasin 1 2 3 4 5 6 8 10	13	to	Pond	RCH	RE	32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	13 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Suł PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 bbasin 1 2 3 4 5 6 8 10 11	13	to	Pond	RCH	RE	32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	13 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND **** Suł PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 1 2 3 4 5 6 8 10 11 12	13	to	Pond	RCH	RE	32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 1 2 3 4 5 6 8 10 11 12 13	13	to	Pond	RCH	RE	32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14	13	to	Pond	RCH	RE	32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Suł PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15	13	to	Pond	RCH	RE	32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Sul PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16	13	to	Pond	RCH	RE	32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Suł PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16 1						32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04 7.21	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Sut PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND YERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16 1 bbasin						32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04 7.21 (837.85 ac)	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
PERLND IMPLND *** Sui PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND IMPLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16 1 0 bbasin						32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04 7.21 (837.85 ac) 34.12	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Sui PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND IMPLND *** Sui	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16 1 bbasin 1 2						32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04 7.21 (837.85 ac) 34.12 138.32	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
PERLND IMPLND *** Sub PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND IMPLND *** Sub PERLND PERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16 1 0 bbasin 1 2 3						32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04 7.21 (837.85 ac) 34.12 138.32 54.74	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Sui PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND IMPLND *** Sui PERLND PERLND PERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16 1 bbasin 1 2 3 4						32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04 7.21 (837.85 ac) 34.12 138.32 54.74 127.54	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Sui PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND IMPLND *** Sui PERLND PERLND PERLND PERLND PERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16 1 0 bbasin 1 2 3 4 5						32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04 7.21 (837.85 ac) 34.12 138.32 54.74 127.54 15.21	RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Sul PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND IMPLND *** Sul PERLND PERLND PERLND PERLND PERLND PERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16 1 2 3 4 5 6						32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04 7.21 (837.85 ac) 34.12 138.32 54.74 127.54 15.21 217.48	RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Sui PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND IMPLND *** Sui PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16 1 2 3 4 5 6 7						32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04 7.21 (837.85 ac) 34.12 138.32 54.74 127.54 15.21 217.48 7.70	RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Sui PERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8						32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04 7.21 (837.85 ac) 34.12 138.32 54.74 127.54 15.21 217.48 7.70 176.23	RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Sui PERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 1 2 3 4 5 6 8 10 11 12 13 14 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 12 13 14 15 16 10 10 11 12 15 16 10 11 12 15 16 10 10 11 15 16 10 11 12 13 14 15 16 10 11 12 16 10 10 10 10 10 10 10 10 10 10						32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04 7.21 (837.85 ac) 34.12 138.32 54.74 127.54 15.21 217.48 7.70 176.23 1.47	RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Sui PERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 10 11 12 13 14 5 16 7 8 10 11 12 13 14 15 16 8 10 11 15 16 8 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 15 16 10 11 12 15 16 10 11 12 15 16 10 11 12 15 16 10 11 11 12 15 16 10 11 11 11 11 11 11 11 11 11						32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04 7.21 (837.85 ac) 34.12 138.32 54.74 127.54 15.21 217.48 7.70 176.23 1.47 9.41	RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Sui PERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 10 11 12 13 14 5 16 7 8 10 11 12 13 14 15 16 8 10 11 15 16 8 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 15 16 10 11 12 15 16 10 11 12 15 16 10 11 12 15 16 10 11 11 12 15 16 10 11 11 11 11 11 11 11 11 11						32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04 7.21 (837.85 ac) 34.12 138.32 54.74 127.54 15.21 217.48 7.70 176.23 1.47	RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Sui PERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 7 8 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 10 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 10 10 10 10 10 10 10 10 10						32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04 7.21 (837.85 ac) 34.12 138.32 54.74 15.21 217.48 7.70 176.23 1.47 9.41 15.91	RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Suł PERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 1 2 3 4 5 6 8 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14						32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04 7.21 (837.85 ac) 34.12 138.32 54.74 127.54 15.21 217.48 7.70 176.23 1.47 9.41 15.91 9.25	RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PERLND IMPLND *** Sui PERLND	1 bbasin 1 2 3 4 5 6 8 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 1 2 3 4 5 6 8 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14						32.85 S V15 16.20 35.74 21.63 6.91 7.69 20.76 0.01 77.56 174.75 20.40 2.95 1.42 30.07 5.04 7.21 (837.85 ac) 34.12 138.32 54.74 127.54 15.21 217.48 7.70 176.23 1.47 9.41 15.91 9.25 5.39	RCHRES RCHRES	13 15 15 15 15 15 15 15 15 15 15 15 15 15	2 1 1 1 1 1 1 1 1 1 1 1 1 1

*** ch	annel	linkages				
RCHRES	23	11111ageb	1.00	RCHRES	1	4
RCHRES	1		1.00	RCHRES		4
RCHRES	2		1.00	RCHRES		4
RCHRES			1.00	RCHRES		4
RCHRES			1.00	RCHRES		5
RCHRES			1.00	RCHRES		5
RCHRES			1.00	RCHRES		5
RCHRES			1.00	RCHRES		5
RCHRES			1.00	RCHRES		4
RCHRES			1.00	RCHRES		5
RCHRES			1.00	RCHRES		4
RCHRES			1.00	RCHRES		4
RCHRES			1.00	RCHRES		5
RCHRES			1.00	RCHRES		4
RCHRES			1.00	RCHRES		4
RCHRES			1.00	RCHRES		5
RCHRES			1.00	RCHRES		4
RCHRES			1.00	RCHRES		4
RCHRES			1.00	RCHRES		4
RCHRES			1.00	RCHRES		5
RCHRES			1.00	RCHRES		4
RCHRES			1.00	RCHRES		4
	10		2.00	iteliitii b		-
*** ===	=====				====	
		rations for use wit				
*** Cop	y ope		h HSPEXP			
*** Cop ***	у оре 	rations for use wit	h HSPEXP			
*** Cop *** **** M	y ope fact	rations for use wit	h HSPEXP			
*** Cop *** **** M	y ope fact	rations for use wit is CUMULATIVE contr	h HSPEXP	rea to:		
*** Cop *** **** M *** U	y ope fact pper	rations for use wit is CUMULATIVE contr	h HSPEXP ibuting a Parkway	rea to:		
*** Cop *** **** M *** U	y ope fact pper 1	rations for use wit is CUMULATIVE contr	h HSPEXP ributing a Parkway Area (ac)	rea to: COPY	100	
*** Cop *** **** M *** U **** PERLND	y ope fact pper 1 2	rations for use wit is CUMULATIVE contr	th HSPEXP ributing a Parkway Area (ac) 76.36	copy COPY COPY COPY	100	90
*** Cop *** **** M *** U **** PERLND PERLND	y ope fact pper 1 2 3	rations for use wit is CUMULATIVE contr	th HSPEXP ributing a Parkway Area (ac) 76.36 19.66	copy COPY COPY COPY	100 100	90 90
*** Cop *** **** M *** U **** PERLND PERLND PERLND	y ope fact pper 1 2 3 4	rations for use wit is CUMULATIVE contr	th HSPEXP tibuting a Parkway Area (ac) 76.36 19.66 49.30	rea to: COPY COPY	100 100 100	90 90 90 90
*** Cop *** **** M *** U **** PERLND PERLND PERLND PERLND	y ope fact pper 1 2 3 4 5	rations for use wit is CUMULATIVE contr	th HSPEXP tibuting a Parkway Area (ac) 76.36 19.66 49.30 5.28	COPY COPY COPY COPY COPY COPY	100 100 100 100 100	90 90 90 90 90
*** Cop *** **** M *** U **** PERLND PERLND PERLND PERLND	y ope fact pper 1 2 3 4 5 6	rations for use wit is CUMULATIVE contr	th HSPEXP tibuting a Parkway Area (ac) 76.36 19.66 49.30 5.28 79.35	COPY COPY COPY COPY COPY COPY COPY	100 100 100 100	90 90 90 90 90 90
*** Cop *** **** M *** U **** PERLND PERLND PERLND PERLND PERLND PERLND	y ope fact pper 1 2 3 4 5 6 7	rations for use wit is CUMULATIVE contr	h HSPEXP ributing a Parkway Area (ac) 76.36 19.66 49.30 5.28 79.35 126.31	COPY COPY COPY COPY COPY COPY	100 100 100 100 100 100	90 90 90 90 90 90 90
*** Cop *** **** M *** U **** PERLND PERLND PERLND PERLND PERLND PERLND	y ope fact pper 1 2 3 4 5 6 7 8	rations for use wit is CUMULATIVE contr	h HSPEXP ributing a Parkway Area (ac) 76.36 19.66 49.30 5.28 79.35 126.31 163.95	COPY COPY COPY COPY COPY COPY COPY COPY	100 100 100 100 100 100 100	90 90 90 90 90 90 90 90
*** Cop *** **** M *** U PERLND PERLND PERLND PERLND PERLND PERLND PERLND	y ope fact pper 1 2 3 4 5 6 7 8 9	rations for use wit is CUMULATIVE contr	h HSPEXP ributing a Parkway Area (ac) 76.36 19.66 49.30 5.28 79.35 126.31 163.95 20.87	COPY COPY COPY COPY COPY COPY COPY COPY	100 100 100 100 100 100 100 100	90 90 90 90 90 90 90 90 90
*** Cop *** **** M *** U PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	y ope fact pper 1 2 3 4 5 6 7 8 9 10	rations for use wit is CUMULATIVE contr	h HSPEXP ributing a Parkway Area (ac) 76.36 19.66 49.30 5.28 79.35 126.31 163.95 20.87 173.82	COPY COPY COPY COPY COPY COPY COPY COPY	100 100 100 100 100 100 100 100	90 90 90 90 90 90 90 90 90
*** COP *** COP **** U **** U PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	y ope fact pper 1 2 3 4 5 6 7 8 9 10 11	rations for use wit is CUMULATIVE contr	h HSPEXP ributing a Parkway Area (ac) 76.36 19.66 49.30 5.28 79.35 126.31 163.95 20.87 173.82 200.78	COPY COPY COPY COPY COPY COPY COPY COPY	100 100 100 100 100 100 100 100 100	90 90 90 90 90 90 90 90 90 90
*** Cop *** **** U *** U PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	y ope fact pper 1 2 3 4 5 6 7 8 9 10 11 12	rations for use wit is CUMULATIVE contr	th HSPEXP ributing a Parkway Area (ac) 76.36 19.66 49.30 5.28 79.35 126.31 163.95 20.87 173.82 200.78 124.43	COPY COPY COPY COPY COPY COPY COPY COPY	100 100 100 100 100 100 100 100 100 100	90 90 90 90 90 90 90 90 90 90 90 90
*** Cop *** **** U **** U PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	y ope fact pper 1 2 3 4 5 6 7 8 9 10 11 12 13	rations for use wit is CUMULATIVE contr	h HSPEXP ributing a Parkway Area (ac) 76.36 19.66 49.30 5.28 79.35 126.31 163.95 20.87 173.82 200.78 124.43 217.21	COPY COPY COPY COPY COPY COPY COPY COPY	100 100 100 100 100 100 100 100 100 100	90 90 90 90 90 90 90 90 90 90 90 90 90
*** COP *** COP **** U *** U PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	y ope fact pper 1 2 3 4 5 6 7 8 9 10 11 12 13 14	rations for use wit is CUMULATIVE contr	<pre>h HSPEXP cibuting a Parkway Area (ac) 76.36 19.66 49.30 5.28 79.35 126.31 163.95 20.87 173.82 200.78 124.43 217.21 159.06</pre>	COPY COPY COPY COPY COPY COPY COPY COPY	100 100 100 100 100 100 100 100 100 100	90 90 90 90 90 90 90 90 90 90 90 90 90
*** COP *** COP **** U **** U PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	y ope fact pper 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	rations for use wit is CUMULATIVE contr	h HSPEXP ributing a Parkway Area (ac) 76.36 19.66 49.30 5.28 79.35 126.31 163.95 20.87 173.82 200.78 124.43 217.21 159.06 54.92 366.60	COPY COPY COPY COPY COPY COPY COPY COPY	100 100 100 100 100 100 100 100 100 100	90 90 90 90 90 90 90 90 90 90 90 90 90 9
*** COP *** COP *** COP **** U PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	y ope fact pper 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	rations for use wit is CUMULATIVE contr	h HSPEXP ributing a Parkway Area (ac) 76.36 19.66 49.30 5.28 79.35 126.31 163.95 20.87 173.82 200.78 124.43 217.21 159.06 54.92	COPY COPY COPY COPY COPY COPY COPY COPY	100 100 100 100 100 100 100 100 100 100	90 90 90 90 90 90 90 90 90 90 90 90 90 9
*** COP *** COP **** COP **** COP PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	y ope fact pper 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	rations for use wit is CUMULATIVE contr	h HSPEXP ributing a Parkway Area (ac) 76.36 19.66 49.30 5.28 79.35 126.31 163.95 20.87 173.82 200.78 124.43 217.21 159.06 54.92 366.60 422.56	COPY COPY COPY COPY COPY COPY COPY COPY	100 100 100 100 100 100 100 100 100 100	90 90 90 90 90 90 90 90 90 90 90 90 90 9
*** COP *** COP **** COP **** COP PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	y ope fact pper 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	rations for use wit is CUMULATIVE contr	h HSPEXP ributing a Parkway Area (ac) 76.36 19.66 49.30 5.28 79.35 126.31 163.95 20.87 173.82 200.78 124.43 217.21 159.06 54.92 366.60 422.56	COPY COPY COPY COPY COPY COPY COPY COPY	100 100 100 100 100 100 100 100 100 100	90 90 90 90 90 90 90 90 90 90 90 90 90 9
*** Cop *** **** U PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	y ope fact pper 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1	rations for use wit is CUMULATIVE contr	<pre>h HSPEXP ributing a Parkway Area (ac) 76.36 19.66 49.30 5.28 79.35 126.31 163.95 20.87 173.82 200.78 124.43 217.21 159.06 54.92 366.60 422.56 464.51 236.96</pre>	COPY COPY COPY COPY COPY COPY COPY COPY	100 100 100 100 100 100 100 100 100 100	90 90 90 90 90 90 90 90 90 90 90 90 90 9

* * *								
* * *				total	3445.14			

*** I	ower	Gage	at	Gelhaus La	ine			
PERLND	1				123.92	COPY	101	90
PERLND	2				120.75	COPY	101	90
PERLND	3				177.17	COPY	101	90
PERLND	4				40.80	COPY	101	90
PERLND	5				128.05	COPY	101	90
PERLND	6				289.91	COPY	101	90
PERLND	7				228.27	COPY	101	90
PERLND	8				92.75	COPY	101	90
PERLND	9				431.18	COPY	101	90
PERLND	10				452.09	COPY	101	90
PERLND	11				833.93	COPY	101	90
PERLND	12				726.04	COPY	101	90
PERLND	13				371.30	COPY	101	90
PERLND	14				239.08	COPY	101	90
PERLND	15				861.47	COPY	101	90
PERLND	16				725.91	COPY	101	90
PERLND	17				546.58	COPY	101	90

IMPLND	1			425.11	COPY			
IMPLND	2			512.31	COPY	101	91	
* * *								
* * *				7326.62				
*** D ****	S at	Seatonville	Rd - M	Nouth Area (ac)				
PERLND	1			243.55		102	90	
PERLND				548.22	COPY	102	90	
PERLND	3			430.68	COPY COPY	102	90	
PERLND				305.75				
PERLND				241.53	COPY	102	90	
PERLND PERLND				929.77 252.31	COPY COPY	102	90 90	
PERLND				445.46	COPY	102		
PERLND				459.46	COPY COPY	102	90	
PERLND	10			592.12		102	90	
PERLND				1237.71	COPY	102	90	
PERLND				822.89	COPY COPY	102	90	
PERLND PERLND	13 14			403.64 363.02	COPY	102		
PERLND				972.08	COPY	102	90	
PERLND				777.28	COPY COPY	102	90	
PERLND	17			546.80				
IMPLND				494.89				
IMPLND	2			512.31	COPY	102	91	
* * *								
***			total	10579.47				

*** "GW	see	page" betweer		riegel and	Gelhaus g	ages		
*** "GW RCHRES	see 8			riegel and 1.00	Gelhaus g COPY	ages 105	95	
*** "GW RCHRES RCHRES	1 see 8 9			riegel and 1.00 1.00	Gelhaus g COPY COPY	ages 105 105	95 95	
*** "GW RCHRES	1 see 8 9			riegel and 1.00 1.00	Gelhaus g COPY	ages 105 105	95 95	
*** "GW RCHRES RCHRES RCHRES	see 8 9 10		n Ruckr	riegel and 1.00 1.00 1.00	Gelhaus g COPY COPY	ages 105 105	95 95	
*** "GW RCHRES RCHRES RCHRES	see 8 9 10 ER a	page" betweer	n Ruckr	riegel and 1.00 1.00 1.00 PO4 1.00	Gelhaus g COPY COPY COPY	ages 105 105 105	95 95 95 97	
*** "GW RCHRES RCHRES RCHRES *** GEN RCHRES RCHRES	see: 8 9 10 ER a 6 10	page" betweer	n Ruckr	riegel and 1.00 1.00 1.00 PO4 1.00 1.00	Gelhaus g COPY COPY COPY GENER GENER	ages 105 105 105 1	95 95 95 97 97	
*** "GW RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	(see 9 10 ER a 6 10 8	page" betweer	n Ruckr	riegel and 1.00 1.00 1.00 PO4 1.00 1.00 1.00	Gelhaus g COPY COPY COPY GENER GENER GENER	ages 105 105 105 1 2 3	95 95 95 97 97 97	
*** "GW RCHRES RCHRES RCHRES *** GEN RCHRES RCHRES	(see 9 10 ER a 6 10 8	page" betweer	n Ruckr	riegel and 1.00 1.00 1.00 PO4 1.00 1.00 1.00	Gelhaus g COPY COPY COPY GENER GENER	ages 105 105 105 1 2 3	95 95 95 97 97 97	
*** "GW RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	see 9 10 ER a 6 10 8 14	page" betweer	n Ruckr diss.	riegel and 1.00 1.00 1.00 PO4 1.00 1.00 1.00 1.00	Gelhaus g COPY COPY COPY GENER GENER GENER GENER	ages 105 105 105 1 2 3 4	95 95 97 97 97 97 97	
*** "GW RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES **** Co	(see) 9 10 ER a 6 10 8 14 9 9 9 7 9 9 9 9 9 9 9 9 9 9 9 9 10	page" between dds sus. and	n Ruckr diss. check a	riegel and 1.00 1.00 1.00 PO4 1.00 1.00 1.00 1.00 1.00 avg soil te of PERLND	Gelhaus g COPY COPY COPY GENER GENER GENER GENER mps by la area in e	ages 105 105 105 1 2 3 4 nd us ach L	95 95 95 97 97 97 97 97	lass
*** "GW RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES **** CO *** th PERLND	(see 9 10 ER a 6 10 8 14 Py o e MF 1	page" between dds sus. and peration to o	n Ruckr diss. check a	riegel and 1.00 1.00 1.00 PO4 1.00 1.00 1.00 1.00 0.00 Avg soil te of PERLND 0.16	Gelhaus g COPY COPY COPY GENER GENER GENER GENER MMPS by la area in e COPY	ages 105 105 105 1 2 3 4 nd us ach L 106	95 95 95 97 97 97 97 97 97 97 97 97 97 97	Lass
*** "GW RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES **** CO *** th PERLND PERLND	(see 9 10 ER a 6 10 8 14 Py 0 6 e MF 1 2	page" between dds sus. and peration to o	n Ruckr diss. check a	riegel and 1.00 1.00 1.00 PO4 1.00 1.00 1.00 1.00 1.00 0.00 Avg soil te of PERLND 0.16 0.36	Gelhaus g COPY COPY COPY GENER GENER GENER GENER area in e COPY COPY	ages 105 105 105 1 2 3 4 nd us ach L 106	95 95 95 97 97 97 97 97 97 97 97 96 96	Lass
*** "GW RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES **** Co *** th PERLND PERLND PERLND	(see 8 9 10 (ER a 6 10 8 14 (PY 0) 1 2 3	page" between dds sus. and peration to o	n Ruckr diss. check a	riegel and 1.00 1.00 1.00 PO4 1.00 1.00 1.00 1.00 1.00 0.16 0.36 0.28	Gelhaus g COPY COPY COPY GENER GENER GENER GENER area in e COPY COPY COPY	ages 105 105 105 1 2 3 4 nd us ach L 106 106	95 95 95 97 97 97 97 97 97 97 97 97 96 96 96 96	lass
*** "GW RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES **** CO *** th PERLND PERLND	(see 8 9 10 (ER a 6 10 8 14 (PY 0) 1 2 3	page" between dds sus. and peration to o	n Ruckr diss. check a	riegel and 1.00 1.00 1.00 PO4 1.00 1.00 1.00 1.00 1.00 0.00 Avg soil te of PERLND 0.16 0.36	Gelhaus g COPY COPY COPY GENER GENER GENER GENER area in e COPY COPY	ages 105 105 105 1 2 3 4 nd us ach L 106 106	95 95 95 97 97 97 97 97 97 97 97 97 96 96 96 96	Lass
*** "GW RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES **** Co *** th PERLND PERLND PERLND	(see 8 9 10 (ER a 6 10 8 14 (PY 0) 1 2 3	page" between dds sus. and peration to o	n Ruckr diss. check a	riegel and 1.00 1.00 1.00 PO4 1.00 1.00 1.00 1.00 1.00 0.16 0.36 0.28	Gelhaus g COPY COPY COPY GENER GENER GENER GENER area in e COPY COPY COPY	ages 105 105 105 1 2 3 4 nd us ach L 106 106	95 95 95 97 97 97 97 97 97 97 97 97 96 96 96 96	lass
*** "GW RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES **** Co *** th PERLND PERLND PERLND	' see 8 9 10 IER a 6 10 8 14 12 3 4 5 6	page" between dds sus. and peration to o	n Ruckr diss. check a	riegel and 1.00 1.00 1.00 PO4 1.00 1.00 1.00 1.00 1.00 0.00 0.16 0.28 0.20 0.13 0.50	Gelhaus g COPY COPY GENER GENER GENER GENER area in e COPY COPY COPY COPY	ages 105 105 105 105 105 4 ach L 106 106 106	95 95 97 97 97 97 97 97 97 97 97 96 96 96 96 96 96	Lass
*** "GW RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES **** Co *** th PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	see 8 9 10 ER a 6 10 8 14 2 3 4 5 6 7	page" between dds sus. and peration to o	n Ruckr diss. check a	riegel and 1.00 1.00 1.00 PO4 1.00 1.00 1.00 1.00 1.00 0.16 0.36 0.28 0.20 0.13 0.50 0.13	Gelhaus g COPY COPY COPY GENER GENER GENER area in e COPY COPY COPY COPY COPY COPY COPY COPY	ages 105 105 105 105 1 2 3 4 nd us ach L 106 106 106 106 107 107	95 95 95 97 97 97 97 97 97 97 97 96 96 96 96 96 96 96	lass
*** "GW RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES **** th PERLND PERLND PERLND PERLND PERLND	' see 8 9 10 IER a 6 10 8 14 12 3 4 5 6	page" between dds sus. and peration to o	n Ruckr diss. check a	riegel and 1.00 1.00 1.00 PO4 1.00 1.00 1.00 1.00 1.00 0.00 0.16 0.28 0.20 0.13 0.50	Gelhaus g COPY COPY GENER GENER GENER GENER area in e COPY COPY COPY COPY COPY	ages 105 105 105 105 105 105 106 106 106 106 106 107 107	95 95 97 97 97 97 97 97 97 97 97 96 96 96 96 96 96	lass
*** "GW RCHRES R	see 8 9 10 ER a 6 10 8 14 12 3 4 5 6 7 8	page" between dds sus. and peration to o	n Ruckr diss. check a	riegel and 1.00 1.00 1.00 PO4 1.00 1.00 1.00 1.00 1.00 0.16 0.36 0.28 0.20 0.13 0.24	Gelhaus g COPY COPY GENER GENER GENER GENER MIPS by la area in e COPY COPY COPY COPY COPY COPY COPY COPY	ages 105 105 105 105 105 105 105 106 106 106 106 106 107 107 107	95 95 95 97 97 97 97 97 97 96 96 96 96 96 96 96 96 96	lass
*** "GW RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES **** Co *** th PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	see 8 9 10 ER a 6 10 8 14 2 3 4 5 6 7	page" between dds sus. and peration to o	n Ruckr diss. check a	riegel and 1.00 1.00 1.00 PO4 1.00 1.00 1.00 1.00 1.00 0.16 0.36 0.28 0.20 0.13 0.50 0.13	Gelhaus g COPY COPY COPY GENER GENER GENER area in e COPY COPY COPY COPY COPY COPY COPY COPY	ages 105 105 105 105 1 2 3 4 nd us ach L 106 106 106 106 107 107	95 95 95 97 97 97 97 97 97 97 97 96 96 96 96 96 96 96	lass
*** "GW RCHRES R	see 8 9 10 VER a 6 10 8 14 2 3 4 5 6 7 8 9	page" between dds sus. and peration to o	n Ruckr diss. check a	riegel and 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.10 0.16 0.28 0.20 0.13 0.24 0.14 0.15 0.31	Gelhaus g COPY COPY GENER GENER GENER GENER GENER COPY COPY COPY COPY COPY COPY COPY COPY	ages 105 105 105 105 105 105 105 106 106 106 106 106 107 107 107 107 107	95 95 95 97 97 97 97 97 97 97 96 96 96 96 96 96 96 96 96 96	Lass
*** "GW RCHRES R	ER a 6 10 10 9 14 9 9 0 7 6 7 8 9 10 11 12	page" between dds sus. and peration to o	n Ruckr diss. check a	riegel and 1.00 1.00 1.00 PO4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.10 0.16 0.36 0.28 0.20 0.13 0.24 0.14 0.15 0.31 0.21	Gelhaus g COPY COPY GENER GENER GENER GENER area in e COPY COPY COPY COPY COPY COPY COPY COPY	ages 105 105 105 105 105 105 105 106 106 106 106 106 106 107 107 107 107 107 107	95 95 97 97 97 97 97 97 96 96 96 96 96 96 96 96 96 96 96 96 96	Lass
*** "GW RCHRES PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	See 8 9 10 IER a 6 10 8 14 2 3 4 5 6 7 8 9 10 11	page" between dds sus. and peration to o	n Ruckr diss. check a	riegel and 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.10 0.16 0.28 0.20 0.13 0.24 0.14 0.15 0.31	Gelhaus g COPY COPY GENER GENER GENER GENER GENER area in e COPY COPY COPY COPY COPY COPY COPY COPY	ages 105 105 105 105 105 105 105 105 106 106 106 106 106 107 107 107 107 107 107	95 95 95 97 97 97 97 97 96 96 96 96 96 96 96 96 96 96 96 96 96	Lass
*** "GW RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	8 9 10 EER a 6 10 8 14 2 3 4 5 6 7 8 9 10 11 12 13	page" between dds sus. and peration to o	n Ruckr diss. check a	Fiegel and 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.16 0.36 0.28 0.20 0.13 0.20 0.13 0.24 0.14 0.15 0.31 0.21 0.10	Gelhaus g COPY COPY GENER GENER GENER GENER GENER COPY COPY COPY COPY COPY COPY COPY COPY	ages 105 105 105 105 105 105 105 106 106 106 106 106 107 107 107 107 107 107 108 108 108 108 108 108	95 95 95 97 97 97 97 97 97 97 96 96 96 96 96 96 96 96 96 96 96 96 96	lass
*** "GW RCHRES PERLND	See 8 9 10 IER a 6 10 8 14 2 3 4 5 6 7 8 9 10 11 12 13 14	page" between dds sus. and peration to o	n Ruckr diss. check a	riegel and 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.10 0.16 0.28 0.20 0.13 0.20 0.13 0.24 0.14 0.15 0.31 0.21 0.10 0.09	Gelhaus g COPY COPY GENER GENER GENER GENER COPY COPY COPY COPY COPY COPY COPY COPY	ages 105 105 105 105 105 105 105 105 106 106 106 106 106 107 107 107 107 107 107 107 107 108 108 108 108	95 95 95 97 97 97 97 97 96 96 96 96 96 96 96 96 96 96 96 96 96	lass
*** "GW RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	8 9 10 EER a 6 10 8 14 2 3 4 5 6 7 8 9 10 11 12 13	page" between dds sus. and peration to o	n Ruckr diss. check a	Fiegel and 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.16 0.36 0.28 0.20 0.13 0.20 0.13 0.24 0.14 0.15 0.31 0.21 0.10	Gelhaus g COPY COPY GENER GENER GENER GENER GENER COPY COPY COPY COPY COPY COPY COPY COPY	ages 105 105 105 105 105 105 105 106 106 106 106 106 107 107 107 107 107 107 108 108 108 108 108 108	95 95 95 97 97 97 97 97 97 97 96 96 96 96 96 96 96 96 96 96 96 96 96	lass
*** "GW RCHRES PERLND	ER a 10 ER a 10 8 14 PY OF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	page" between dds sus. and peration to o	n Ruckr diss. check a	riegel and 1.00 1.00 1.00 PO4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.13 0.28 0.20 0.13 0.24 0.14 0.15 0.31 0.21 0.10 0.09 0.42	Gelhaus g COPY COPY GENER GENER GENER GENER COPY COPY COPY COPY COPY COPY COPY COPY	ages 105 105 105 105 107 106 106 106 106 106 107 107 107 107 107 107 108 108 108 108 108 108	95 95 95 97 97 97 97 97 96 96 96 96 96 96 96 96 96 96 96 96 96	lass

END SCHEMATIC

*** MASS-LINK Block 4.6.4 page 574 *** Specific TS transferred between oper * * * * * * Specific TS transferred between operations ***** *** MFACT 0.08333333 = 1/12 ft/in (convert runoff in inches to ac-ft for routing MASS-LINK *** PERLND's route water & QW from pervious areas to channels ------MASS-LINK 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # # *** <Name> <Name> # #<-factor->strg <Name> PERLND PWATER PERO 0.08333333 RCHRES INFLOW IVOL *** MFACT is the proportion of sand, silt, and clay RCHRES 0.02 PERLND SEDMNT SOSED INFLOW ISED 1 PERLND SEDMNT SOSED 0 38 RCHRES INFLOW ISED 2 PERLND SEDMNT SOSED 0.60 RCHRES INFLOW ISED 3 *** PO4 simulated as Agrchem PERLND*** PHOS TSP4S 1 PERLND*** PHOS TSP4S 5 RCHRES INFLOW NUIF1 4 RCHRES INFLOW NUIF1 4 PERLND*** PHOS SSP4S 3 RCHRES INFLOW NUIF1 4 PERLND*** PHOS SEDP 2 0.01 RCHRES INFLOW NUIF2 1 2 PERLND*** PHOS PERLND*** PHOS
 SEDP
 2
 0.20

 SEDP
 2
 0.79
 RCHRES INFLOW NUIF2 2 2 RCHRES INFLOW NUIF2 3 2 *** PO4 simulated as PQUAL INFLOW NUIF1 PERLND PQUAL SOQO 1 RCHRES PERLND PQUAL SOQS 1 0.01 RCHRES INFLOW NUIF2 1 2 PERLND PQUAL SOQS 1 0.20 RCHRES INFLOW NUIF2 2 2 PERLND PQUAL SOQS 1 0.79 RCHRES INFLOW NUIF2 3 2 END MASS-LINK 1 *** IMPLND's - route water & QW from impervious areas to channels ------MASS-LINK 2 <-Grp> <-Member-><--Mult--> <Tarq> <-Grp> <-Member-> *** <Srce> <Name> <Name> # #<-factor-> <Name> <Name> # # *** <Name> <Name> 0.08333333 INFLOW IVOL IWATER SURO RCHRES TMPLND *** MFACT is the proportion of sand, silt, and clay SOLIDS SOSLD 0.02 IMPLND RCHRES INFLOW ISED 1 SOLIDS SOSLD INFLOW ISED TMPLND 0 38 RCHRES 2 TMPLND SOLIDS SOSLD 0.60 RCHRES INFLOW ISED 3 *** sus. PO4 is porportioned: 1% on sand, 20% on silt, & 79% on clay RCHRES INFLOW NUIF1 4 IMPLND IQUAL SOQO 1 1 0.01 TMPL/ND IQUAL SOQS RCHRES INFLOW NUIF2 1 2 IQUAL SOQS 1 0.20 IQUAL SOQS 1 0.79 TMPLND RCHRES INFLOW NUTE2 2 2 IMPLND RCHRES INFLOW NUIF2 3 2 END MASS-LINK 2 *** RCHRES - route water & QW from channel to channel with 1 outflow gate ----MASS-LINK 4 <Srce> <-Grp> <-Member-><--Mult--> <Tarq> <-Grp> <-Member-> *** <Name> <Name> <Name> # #<-factor-> <Name> <Name> <Name> # # *** RCHRES ROFLOW 1.0 RCHRES INFLOW *** NOTE: the above mass-link is equivalent to what follows since group * * * members are not specified all active members are targeted RCHRES*** ROFLOW ROVOL 1.0 RCHRES INFLOW IVOL
 KOFLOW KOVOL
 1.0
 RCHRES
 INFLOW IVOL

 (1st mem# 1-sand, 2-silt, 3-clay, 4-total; 2nd mem#. 2- PO4)

 RCHRES***
 SEDTRN ROSED 1
 1.0
 RCHRES

 RCHRES***
 SEDTRN ROSED 2
 1.0
 RCHRES
 INFLOW ISED

 RCHRES***
 SEDTRN ROSED 3
 1.0
 RCHRES
 INFLOW ISED
 2 3 ***(NUCF1 -diss 4-PO4;NUCF2 particulate 1-sand,2-silt,3-clay, 2nd mem# 2-PO4)
 RCHRES***
 NUTRX
 NUCF1
 4
 1.0

 RCHRES***
 NUTRX
 NUCF2
 1
 2

 RCHRES***
 NUTRX
 NUCF2
 2
 1.0

 RCHRES***
 NUTRX
 NUCF2
 2
 2
 1.0

 RCHRES***
 NUTRX
 NUCF2
 3
 2
 1.0
 RCHRES INFLOW NUIF1 4 RCHRES INFLOW NUIF2 1 INFLOW NUIF2 1 2 RCHRES INFLOW NUIF2 INFLOW NUIF2 2.2 RCHRES 32 END MASS-LINK 4

*** RCHRES's - route water & QW from channel to channel with 2 outflow gates --

MASS-LINK	5					
	<-Member-> <m< td=""><td>11t></td><td><tarq></tarq></td><td><-Grp></td><td><-Membe</td><td>er-> ***</td></m<>	11t>	<tarq></tarq>	<-Grp>	<-Membe	er-> ***
	<pre>> <name> # #<-fa</name></pre>		<name></name>			# # ***
RCHRES OFLOW			RCHRES	INFLOW		
	v gate - main flo					
	sediments downs)	
	NOSED 21	1.0	RCHRES	INFLOW	ISED	1
RCHRES SEDTR	NOSED 22	1.0	RCHRES	INFLOW	ISED	2
RCHRES SEDTR	NOSED 23	1.0	RCHRES	INFLOW	ISED	3
*** route diss	. and sus. PO4 d	ownstream				
	NUCF9 2 4	1.0	RCHRES	INFLOW	NUIF1	4
	OSPO4 2 1	1.0	RCHRES	INFLOW	NUIF2	
	OSPO4 2 2	1.0	RCHRES		NUIF2	
	OSPO4 2 3	1.0	RCHRES	INFLOW	NUIF2	3 2
	v gate - "GW see					
	sediments downs					_
	NOSED 11		RCHRES	INFLOW		1
	NOSED 12		RCHRES	INFLOW		2
	NOSED 13	1.0	RCHRES	INFLOW	ISED	3
	PO4 downstream 1			THEFT OF		1 0
	OSPO4 1 1		RCHRES		NUIF2	
	OSPO4 1 2 OSPO4 1 3				NUIF2 NUIF2	
RCHRES NUTRX END MASS-LINK		1.0	RCHRES	INFLOW	NULFZ	3 2
FUD MASS-TINK	5					
*** MASS-LINK fo	COPY operation	s for HSPE	XP			
1100 11111 10	our operation		***			
<srce> <-Grp</srce>	<pre>> <-Member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-><member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></member-></pre>	ult>	<targ></targ>	<-Grp>	<-Membe	er-> ***
<name> <name< td=""><td>> <name> # #<-fa</name></td><td>ctor-></td><td><name></name></td><td><name></name></td><td><name></name></td><td># # ***</td></name<></name>	> <name> # #<-fa</name>	ctor->	<name></name>	<name></name>	<name></name>	# # ***
MASS-LINK	90					
PERLND PWATE	R SURO		COPY	INPUT	MEAN	1
PERLND PWATE	R IFWO		COPY	INPUT	MEAN	2
PERLND PWATE	R AGWO		COPY	INPUT	MEAN	3
PERLND PWATE	R PET		COPY	INPUT	MEAN	4
PERLND PWATE	R TAET		COPY	INPUT	MEAN	5
PERLND PWATE			COPY	INPUT		6
PERLND PWATE			COPY	INPUT	MEAN	7
END MASS-LINK	90					
	0.1					
MASS-LINK	91					-
IMPLND IWATE	R SURO		COPY	INPUT		1
IMPLND IWATE	R SURO R PET		COPY	INPUT	MEAN	4
IMPLND IWATE IMPLND IWATE IMPLND IWATE	R SURO R PET R IMPEV				MEAN	-
IMPLND IWATE	R SURO R PET R IMPEV		COPY	INPUT	MEAN	4
IMPLND IWATE IMPLND IWATE IMPLND IWATE END MASS-LINK	R SURO R PET R IMPEV 91	rations	СОРҮ СОРҮ	INPUT INPUT	MEAN MEAN	4 5
IMPLND IWATE IMPLND IWATE IMPLND IWATE	R SURO R PET R IMPEV 91	rations	СОРҮ СОРҮ	INPUT INPUT	MEAN MEAN	4 5
IMPLND IWATE IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo	R SURO R PET R IMPEV 91 c other COPY ope:		СОРҮ СОРҮ	INPUT INPUT	MEAN MEAN	4 5
IMPLND IWATE IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo	R SURO R PET R IMPEV 91 C other COPY ope: Channel loss to 0	GW seepage	COPY COPY to WDM file	INPUT INPUT	MEAN MEAN	4 5
IMPLND IWATE IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate	R SURO R PET R IMPEV 91 C other COPY ope: Channel loss to 0	GW seepage	COPY COPY to WDM file	INPUT INPUT	MEAN MEAN	4 5
IMPLND IWATE IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate *** NOTE GW See	R SURO R PET R IMPEV 91 c other COPY ope: Channel loss to o page loss is not	GW seepage	COPY COPY to WDM file any other part	INPUT INPUT of the	MEAN MEAN	4 5
IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate *** NOTE GW See MASS-LINK	R SURO PET IMPEV 91 c other COPY ope: Channel loss to o page loss is not 95	GW seepage	COPY COPY to WDM file any other part	INPUT INPUT of the	MEAN MEAN watersh	4 5
IMPLND IWATE IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate *** NOTE GW See MASS-LINK RCHRES HYDR END MASS-LINK	R SURO R PET R IMPEV 91 r other COPY ope: Channel loss to Co page loss is not 95 0 1 95	GW seepage routed to	COPY COPY to WDM file any other part COPY	INPUT INPUT of the	MEAN MEAN watersh	4 5
IMPLND IWATE IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate *** NOTE GW See MASS-LINK RCHRES HYDR END MASS-LINK *** Soil temp.	R SURO PET IMPEV 91 c other COPY ope: Channel loss to c page loss is not 95 0 1	GW seepage routed to	COPY COPY to WDM file any other part COPY	INPUT INPUT of the	MEAN MEAN watersh	4 5
IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate *** NOTE GW See MASS-LINK RCHRES HYDR END MASS-LINK *** Soil temp. MASS-LINK	R SURO PET IMPEV 91 c other COPY ope: Channel loss to c page loss is not 95 0 1 95 and sediment from 96	GW seepage routed to	COPY COPY to WDM file any other part COPY	INPUT INPUT of the INPUT	MEAN MEAN watersh MEAN	4 5 ned 1
IMPLND IWATE IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate *** NOTE GW See MASS-LINK RCHRES HYDR END MASS-LINK *** Soil temp. MASS-LINK PERLND PSTEM	R SURO PET IMPEV 91 c other COPY ope: Channel loss to 0 page loss is not 95 0 1 95 and sediment from 96 P SLTMP	GW seepage routed to	COPY COPY to WDM file any other part COPY COPY	INPUT INPUT of the INPUT INPUT	MEAN MEAN watersh MEAN MEAN	4 5 ned 1
IMPLND IWATE IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate *** NOTE GW See MASS-LINK RCHRES HYDR END MASS-LINK *** Soil temp. MASS-LINK PERLND PSTEM	R SURO R PET R IMPEV 91 r other COPY ope: Channel loss to 0 page loss is not 95 0 1 95 and sediment from 96 96 96 91 95 96 96 91 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 96 96 96 96 96 96 96 96 96	GW seepage routed to	COPY COPY to WDM file any other part COPY COPY	INPUT INPUT of the INPUT INPUT INPUT	MEAN MEAN watersh MEAN MEAN MEAN	4 5 ned 1 2
IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate *** NOTE GW See MASS-LINK RCHRES HYDR END MASS-LINK *** Soil temp. MASS-LINK PERLND PSTEM PERLND PSTEM	R SURO PET IMPEV 91 c other COPY ope: Channel loss to 0 page loss is not 95 0 1 95 and sediment from 96 P SLTMP P ULTMP	GW seepage routed to	COPY COPY to WDM file any other part COPY COPY COPY COPY	INPUT INPUT of the INPUT INPUT INPUT INPUT	MEAN MEAN watersh MEAN MEAN MEAN MEAN	4 5 ned 1 2 3
IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate *** NOTE GW See MASS-LINK RCHRES HYDR END MASS-LINK *** Soil temp. MASS-LINK PERLND PSTEM PERLND PSTEM	R SURO PET IMPEV 91 c other COPY ope: Channel loss to 0 page loss is not 95 0 1 95 and sediment from 96 P SLTMP P ULTMP	GW seepage routed to	COPY COPY to WDM file any other part COPY COPY COPY COPY COPY	INPUT INPUT of the INPUT INPUT INPUT INPUT INPUT	MEAN MEAN watersh MEAN MEAN MEAN MEAN	4 5 1 1 2 3 4
IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate *** NOTE GW See MASS-LINK RCHRES HYDR END MASS-LINK *** Soil temp. MASS-LINK PERLND PSTEM PERLND PSTEM PERLND SEDMN PERLND SEDMN	<pre>& SURO & PET & IMPEV 91 c other COPY ope: Channel loss to o page loss is not 95 0 1 95 and sediment from 96 c SLTMP 2 ULTMP c LGTMP f SOSED f DETS</pre>	GW seepage routed to	COPY COPY to WDM file any other part COPY COPY COPY COPY COPY	INPUT INPUT of the INPUT INPUT INPUT INPUT	MEAN MEAN watersh MEAN MEAN MEAN MEAN	4 5 ned 1 2 3
IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate *** NOTE GW See MASS-LINK RCHRES HYDR END MASS-LINK *** Soil temp. MASS-LINK PERLND PSTEM PERLND PSTEM	<pre>& SURO & PET & IMPEV 91 c other COPY ope: Channel loss to o page loss is not 95 0 1 95 and sediment from 96 c SLTMP 2 ULTMP c LGTMP f SOSED f DETS</pre>	GW seepage routed to	COPY COPY to WDM file any other part COPY COPY COPY COPY COPY	INPUT INPUT of the INPUT INPUT INPUT INPUT INPUT	MEAN MEAN watersh MEAN MEAN MEAN MEAN	4 5 1 1 2 3 4
IMPLND IWATE IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate *** NOTE GW See MASS-LINK RCHRES HYDR END MASS-LINK *** Soil temp. MASS-LINK PERLND PSTEM PERLND PSTEM PERLND PSTEM PERLND SEDMN PERLND SEDMN PERLND SEDMN PERLND SEDMN	<pre>& SURO & PET & IMPEV 91 e other COPY ope: Channel loss to 0 page loss is not 95 0 1 95 and sediment from 96 P SLTMP P ULTMP P LGTMP F SOSED DETS 96</pre>	3W seepage routed to π PERLND's	COPY COPY to WDM file any other part COPY COPY COPY COPY COPY COPY COPY	INPUT INPUT of the INPUT INPUT INPUT INPUT INPUT	MEAN MEAN watersh MEAN MEAN MEAN MEAN MEAN MEAN	4 5 ned 1 2 3 4 5
IMPLND IWATE IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate *** NOTE GW See MASS-LINK RCHRES HYDR END MASS-LINK *** Soil temp. MASS-LINK PERLND PSTEM PERLND PSTEM PERLND SEDMN PERLND SEDMN PERLND SEDMN END MASS-LINK *** Mass-link fo	<pre>& SURO & PET & IMPEV 91 e other COPY ope: Channel loss to of page loss is not 95 0 1 95 and sediment from 96 e SLTMP e ULTMP C SOSED F DETS 96 e GENER operation</pre>	3W seepage routed to π PERLND's	COPY COPY to WDM file any other part COPY COPY COPY COPY COPY COPY COPY	INPUT INPUT of the INPUT INPUT INPUT INPUT INPUT	MEAN MEAN watersh MEAN MEAN MEAN MEAN MEAN MEAN	4 5 ned 1 2 3 4 5
IMPLND IWATE IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate *** NOTE GW See MASS-LINK RCHRES HYDR END MASS-LINK *** Soil temp. MASS-LINK PERLND PSTEM PERLND PSTEM PERLND SEDMN PERLND SEDMN PERLND SEDMN END MASS-LINK *** Mass-link fo MASS-LINK	<pre>& SURO & PET > IMPEV 91 c other COPY ope: Channel loss to 0 95 0 1 95 and sediment from 96 > SLIMP > ULTMP > LGTMP C SOSED C DETS 96 c GENER operation 97</pre>	3W seepage routed to π PERLND's	COPY COPY to WDM file any other part COPY COPY COPY COPY COPY COPY COPY COPY	INPUT INPUT of the INPUT INPUT INPUT INPUT INPUT	MEAN MEAN watersh MEAN MEAN MEAN MEAN MEAN MEAN	4 5 ned 1 2 3 4 5
IMPLND IWATE IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate *** NOTE GW See MASS-LINK RCHRES HYDR END MASS-LINK *** Soil temp. MASS-LINK PERLND PSTEM PERLND PSTEM PERLND SEDMN PERLND SEDMN PERLND SEDMN END MASS-LINK *** Mass-link fo MASS-LINK RCHRES NUTRX	<pre>& SURO & PET > IMPEV 91 c other COPY ope: Channel loss to 0 page loss is not 95 0 1 95 and sediment from 96 P SLTMP P LITMP P LITMP P LITMP P LITMP P SOSED C SO</pre>	3W seepage routed to π PERLND's	COPY COPY to WDM file any other part COPY COPY COPY COPY COPY COPY COPY COPY	INPUT INPUT of the INPUT INPUT INPUT INPUT INPUT INPUT	MEAN MEAN watersh MEAN MEAN MEAN MEAN MEAN MEAN MEAN	4 5 ned 1 2 3 4 5
IMPLND IWATE IMPLND IWATE IMPLND IWATE END MASS-LINK *** MASS LINK fo *** Acummulate *** NOTE GW See MASS-LINK RCHRES HYDR END MASS-LINK *** Soil temp. MASS-LINK PERLND PSTEM PERLND PSTEM PERLND SEDMN PERLND SEDMN PERLND SEDMN END MASS-LINK *** Mass-link fo MASS-LINK	<pre>& SURO & PET > IMPEV 91 c other COPY ope: Channel loss to 0 page loss is not 95 0 1 95 and sediment from 96 e SLTMP P ULTMP P ULTMP C SOSED C DETS 96 c GENER operation 97 NUCF9 2 4 NUCF2 4 2</pre>	3W seepage routed to π PERLND's	COPY COPY to WDM file any other part COPY COPY COPY COPY COPY COPY COPY COPY	INPUT INPUT of the INPUT INPUT INPUT INPUT INPUT	MEAN MEAN watersh MEAN MEAN MEAN MEAN MEAN MEAN MEAN	4 5 ned 1 2 3 4 5

END MASS-LINK

*** F1	TABLES Blo		*********** page 565	*********************************	* * * * * * *
*** De	escribes f	unctional	relation b	etween area-storage-discharge ******	***
FTABLES					
FTABLE ROWS COLS '	11 *** (RCH	RES 14)	C	henoweth #11	
20 4	(iteli	KEBO II,	C.		
DEPTH	AREA	VOLUME	DISCH	DISCH ***	
(FT)	(ACRES)	(AC-FT)	(CFS)	(CFS) ***	
494.800	0.000 0.882	0.000 0.305	0.00 2.00		
495.000 495.500	3.086	1.068	7.00		
496.000	7.646	3.152	24.00		
496.500	9.457	5.567	54.00		
497.000	10.661	8.499	97.00		
497.500 498.000	11.526 13.358	11.609 15.446	154.00 223.00		
498.500	14.790	17.936	268.00		
499.000	15.852	20.643	324.00		
499.500	19.937	27.755	462.00		
500.000	25.428	38.696	698.00		
500.500 501.000	31.935 41.677	57.742 78.785	1132.00 1588.00		
501.500	54.226	111.002	2301.00		
502.000	62.733	146.911	3135.00		
502.500	69.885	186.059	4134.00		
503.000	75.604	228.889	5318.00		
504.000 505.000	85.176 91.923	322.198 423.101	8206.00 11796.00		
END FTABLE		123.101	11/90.00		
FTABLE	12				
ROWS COLS *		ES 13)	Shink	s Branch #12	
16 4					
DEPTH	AREA	VOLUME	DISCH		
(FT) 530.000	(ACRES) 0.000	(AC-FT) 0.000	(CFS) 0.00	* * *	
530.100	0.000	0.100	1.00		
530.600	3.846	1.785	27.00		
531.100	5.868	5.246	114.00		
531.600	9.260	10.194	256.00		
532.100 532.600	14.240 18.830	15.703 27.779	418.00 804.00		
533.100	24.827	43.473	1347.00		
533.600	29.038	61.919	2032.00		
534.100	34.437	83.052	2859.00		
534.600 535.100	38.468	106.240 130.123	3830.00 4931.00		
535.600	41.025 42.768	154.281	4931.00 6158.00		
536.100	44.081	179.091	7534.00		
536.600	45.626	204.657	9034.00		
537.100	46.673	230.240	10651.00		
END FTABLE	5 12				
FTABLE ROWS COLS '	13 *** (RCH	RES 12)	Ch	enoweth #13	
20 4					
DEPTH (FT)	AREA (ACRES)	VOLUME (AC-FT)	DISCH (CFS)	DISCH *** (CFS) ***	
524.000	(ACRES) 0.000	(AC-FI) 0.000	0.00	(Crb)	
524.200	0.672	0.338	7.20		
524.500	1.679	0.846	18.00		
525.000	2.491	2.101	64.00		
525.500	2.849	3.445	132.00		
526.000 526.500	3.448 4.391	4.997 6.808	220.00 325.00		
527.000	5.556	9.078	448.00		
527.500	6.636	11.508	588.00		
528.000	7.953	14.771	797.00		
528.500	9.515	18.558	1038.00		
529.000 529.500	11.403 13.584	24.020 31.265	1390.00 1862.00		
530.000	15.530	40.031	2416.00		
530.500	17.200	49.596	3070.00		
531.000	18.858	59.783	3811.00		
531.500	19.949 21.503	69.721 90.044	4627.00		
		30.044	6495.00		
532.500					
	22.637	111.139 130.456	8671.00 10787.00		

FTABLE		14			
ROWS CC	LS ***	* (RCH	RES 11)	Razor Bran	nch #14
15	4				
DEF	TH	AREA	VOLUME	DISCH	* * *
(F	T)	(ACRES)	(AC-FT)	(CFS)	* * *
536.0	00	0.000	0.000	0.00	
536.2	00	1.842	0.689	12.00	
536.7		4.163	3.716	102.00	
537.2	00	6.321	7.950	254.00	
537.7		8.460	13.017	461.00	
538.2	00	10.931	19.071	718.00	
538.7	00	14.808	32.868	1342.00	
539.2		16.934	43.068	1860.00	
539.7		18.795	53.838	2450.00	
540.2	00	20.324	63.911	3040.00	
540.7		21.574	73.570	3642.00	
541.2		22.780	84.814	4380.00	
541.7		23.970	96.668		
542.2		25.343		6169.00	
542.7	00	26.712	127.164	7458.00	
END FI	ABLE 1	14			

ROWS COLS	*** (RC	CHRES 10)		Chenoweth	#21
20 4					
DEPTH	AREA	VOLUME	DISCH	DISCH	* * *
(FT)	(ACRES)	(AC-FT)	(CFS)	(CFS)	* * *
536.000	0.000	0.000	0.00		
536.100	0.757	0.046	0.60		
536.500	0.787	0.228	3.00		
537.000	2.862	1.326	24.00		
537.500	4.599	3.335	81.00		
538.000	5.739	5.846	172.00		
538.500	7.501	9.244	306.00		
539.000	10.143	13.677	486.00		
539.500	12.762	19.057	714.00		
540.000	15.064	25.044	989.00		
540.500	17.737	32.260	1313.00		
541.000	20.690	42.531	1784.00		
541.500	23.445	53.823	2328.00		
542.000	25.426	65.646	2964.00		
542.500	28.206	79.423	3699.00		
543.000	30.145	93.722	4539.00		
543.500	32.067	108.791	5466.00		
544.000	34.085	125.233	6509.00		
545.000	37.268	160.216	8938.00		
545.500	39.377	179.196	10290.00		

END FTABLE 21

FTABLE

21

FTABLE	23				
				Chamarath #0	2
ROWS COLS	(R)	CHRES 9)		Chenoweth #23	3
20 4				DISCH **:	
DEPTH	AREA	VOLUME	DISCH	Diben	
(FT)	(ACRES)	(AC-FT)	(CFS)	(CFS) **:	*
560.100	0.000	0.000	0.00		
560.200	0.260	0.087	0.75		
560.500	1.039	0.351	3.00		
561.000	4.729	2.518	28.00		
561.500	7.136	5.688	84.00		
562.000	8.851	10.027	182.00		
562.500	10.955	15.441	321.00		
563.000	17.026	23.290	494.00		
563.500	23.454	31.320	657.00		
564.000	27.448	41.245	887.00		
564.500	32,216	55.357	1223.00		
565.000	36.995	74.639	1724.00		
	44.557				
	47.789		3097.00		
566.500	50.803	151.146	4001.00		
567.000	53.674	180.548	5018.00		
567.500	56.234	210.879	6141.00		
568.000	58.477				
	60.379				
	62.134	305.930	10126.00		
END FTABL	E 23				

FTABLE	25					
ROWS COLS 20 4	*** (R	CHRES 8)	(Cheno	oweth :	#25
DEPTH	AREA		DISCH		DISCH	* * * * * *
(FT) 580.000	(ACRES) 0.000		(CFS) 0.00		(CFS)	* * *
580.100	0.470	0.118	4.60			
580.500	1.176		23.00			
581.000 581.500	1.890 2.617		80.00 171.00			
582.000	3.430		290.00			
582.500	4.226		441.00			
583.000 583.500	5.534 6.723		619.00 821.00			
584.000	8.200		1068.00			
584.500	9.444		1329.00			
585.000 585.500	10.308 11.103		1635.00 1993.00			
586.000	11.813		2405.00			
586.500	12.399		2890.00			
587.000 588.000	12.911 13.957		3431.00 4653.00			
589.000	15.256		6129.00			
590.000	16.156		7818.00			
591.000 END FTAB	16.915 LF 25	85.784	9915.00			
FTABLE ROWS COLS	28 *** (RC	HRES 7)	Chenoweth	#28		
20 4 DEPTH	AREA	VOLUME	DISCH		DISCH	* * *
(FT)	(ACRES)		(CFS)		(cfs)	* * *
590.000	0.000		0.00			
590.100 590.500	0.049 0.245		2.00			
591.000	0.408		43.00			
591.500	0.503		95.00			
592.000 592.500	0.607 0.705		163.00			
592.500	0.923		249.00 367.00			
593.500	1.089		499.00			
594.000	1.366		644.00			
594.500 595.000	1.704 1.895		820.00 1045.00			
595.500	2.060		1300.00			
596.000	2.242		1575.00			
597.000 598.000	2.807 3.317		2216.00 3117.00			
599.000	3.830		4283.00			
600.000	4.155		5823.00			
601.000 601.500	4.535 4.668		7633.00 8637.00			
END FTAB						
FTABLE	31					
ROWS COLS 20 4	*** (RC	HRES 6)	Chenoweth	#31		
DEPTH	AREA	VOLUME	DISCH		DISCH	* * *
(FT)	(ACRES)		(CFS)		(cfs)	* * *
594.000 594.100	0.000 0.252		0.00 2.30			
594.300	0.758		7.00			
594.800	1.291		35.00			
595.300 595.800	1.668 2.089		83.00 148.00			
596.300	2.590		246.00			
596.800	3.268		359.00			
597.300 597.800	3.706 4.352		488.00 637.00			
598.300	4.861		809.00			
598.800	5.226	14.960	1001.00			
599.300 599.800	6.087 6.929		1215.00 1453.00			
600.800	6.929 8.367		1924.00			
601.800	10.428	37.890	2775.00			
602.800 603.800	13.234		3947.00 5399.00			
603.800	16.268 18.627		5399.00 7168.00			
605.300	19.920		8174.00			
END FTAB	LE 31					

FTABLE ROWS COLS	33 *** (PC	UDEC E)	Chonowoth	#22		
20 4	(RC	HRES 5)	Chenoweth	#33		
DEPTH	ARE				DISCH	
(FT)	(ACRES				(cfs)	* * *
600.400 600.500	0.00					
601.000	0.42					
601.500	0.58					
602.000	0.74					
602.500 603.000	0.88 0.97					
603.500	1.09					
604.000	1.22					
604.500	1.35					
605.000 605.500	1.54 1.79					
606.000	2.11					
606.500	2.37					
607.000	2.66					
607.500 608.000	3.09 3.65					
609.000	5.03					
610.000	6.51					
611.000	7.23	7 31.308	5836.00			
END FTABI	LE 33					
FTABLE	35					
ROWS COLS	*** (RC	HRES 4)	Chenoweth	#35		
17 4 DEPTH	ARE	A VOLUMI	DISCH		DISCH	* * *
(FT)	(ACRES				(cfs)	
606.000	0.00					
606.100	0.18					
606.500 607.000	0.89 1.77					
607.500	2.41					
608.000	3.62					
608.500	4.71					
609.000 609.500	5.96 7.38					
610.000	8.32					
610.500	9.28					
611.000	10.30					
611.500 612.000	11.73 13.29					
612.500	15.19					
613.000	17.88					
613.500	19.17					
614.000 END FTABI	20.28 LE 35	3 91.103	8083.00			
FTABLE ROWS COLS	36 *** (R	CHRES 3)	Reach	#36		
8 4	(10	cincilo 5,	iccaelii	# 50		
DEPTH	ARE					
(FT)	(ACRES			* * *		
710.000 710.100	0.00 1.34					
710.600	6.52					
711.100	13.63	4 14.289	9 193.00			
711.600	20.46					
712.100 712.600	26.29 39.32					
713.100	45.40					
END FTABI						

ROWS COLS **** (RCHRES 2) Chenoweth #37 21 4 DEPTH AREA VOLUME DISCH **** (FT) (ACRES) (AC-FT) (CFS) **** 624.000 0.000 0.000 0.000 624.200 0.400 0.144 2.00 624.200 1.480 1.148 23.00 625.700 3.095 4.433 129.00 625.700 5.232 7.152 216.00 626.700 6.537 10.490 330.00 627.200 7.501 14.295 472.00 628.700 11.563 29.673 1086.00 628.700 13.315 41.884 1652.00 630.700 16.177 56.548 2350.00 631.200 17.882 65.027 2750.00 631.700 19.156 7.376 3186.00 632.700 22.822 95.385 4245.00 633.200 24.40 107.074 4846.00 633.200 24.92 95.385 4245.00 633.200 0.000 0.0	FTABLE	37			
DEPTH AREA VOLUME DISCH **** (FT) (ACRES) (AC-FT) (CFS) **** 624.000 0.000 0.000 0.000 626 624.200 0.400 0.144 2.00 625.200 2.171 2.493 62.00 625.700 3.095 4.433 129.00 626.700 6.537 10.490 330.00 627.200 7.501 14.295 472.00 627.700 8.658 18.672 642.00 628.700 11.563 29.673 1086.00 629.700 13.315 41.884 1652.00 630.200 14.483 48.921 1988.00 630.700 16.177 56.548 2350.00 631.200 17.882 65.027 2750.00 633.200 24.440 107.074 4846.00 633.200 24.440 107.074 4846.00 633.200 24.400 10.00 644.80.0 <t< td=""><td></td><td></td><td>HRES 2)</td><td>Chenoweth</td><td>#37</td></t<>			HRES 2)	Chenoweth	#37
DEFIN ACRES) (AC-FT) (CTS) **** 624.000 0.000 0.000 0.000 625 **** 624.200 0.400 0.144 2.00 625.200 2.171 2.493 62.00 625.200 2.171 2.493 62.00 625.700 3.095 4.433 129.00 626.200 5.232 7.152 216.00 626.700 6.537 10.490 330.00 627.700 8.658 18.672 642.00 628.200 9.991 23.752 846.00 628.200 9.991 23.752 846.00 629.200 12.386 35.689 1361.00 629.200 12.386 35.689 1361.00 630.700 631.700 14.483 48.921 1988.00 630.700 16.177 56.548 2350.00 633.200 24.440 107.074 4846.00 633.200 24.40 107.074 4846.00 633.700 25.981 119.123 5480.00 END FTABLE<		(
624.000 0.000 0.000 0.000 624.200 0.400 0.144 2.00 624.700 1.480 1.148 23.00 625.200 2.171 2.493 62.00 625.700 3.095 4.433 129.00 626.200 5.232 7.152 216.00 627.200 7.501 14.295 472.00 627.700 8.658 18.672 642.00 628.200 9.991 23.752 846.00 628.700 11.563 29.673 1086.00 629.200 12.386 35.689 1361.00 629.200 12.386 35.649 1361.00 630.200 14.483 48.921 1988.00 631.200 17.882 65.027 2750.00 631.200 17.882 65.027 2750.00 633.200 24.440 107.074 4846.00 632.700 22.822 9.385 4245.00 633.200 24.440 107.074 4846.00 643.900 0.000 0.00 0.00 <td>DEPTH</td> <td>AREA</td> <td>VOLUME</td> <td>DISCH</td> <td>* * *</td>	DEPTH	AREA	VOLUME	DISCH	* * *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(FT)	(ACRES)	(AC-FT)	(CFS)	* * *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	624.000	0.000	0.000	0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	624.200	0.400		2.00	
625.700 3.095 4.433 129.00 626.200 5.232 7.152 216.00 626.700 6.537 10.490 330.00 627.200 7.501 14.295 472.00 627.200 7.501 14.295 472.00 628.200 9.991 23.752 846.00 628.700 11.563 29.673 1086.00 629.200 12.386 35.689 1361.00 629.200 14.483 48.921 1988.00 630.200 14.483 48.921 1988.00 631.200 17.882 65.027 2750.00 631.200 17.882 65.027 2750.00 633.200 24.440 107.074 4846.00 633.200 24.440 107.074 4846.00 633.200 24.440 107.074 4846.00 643.900 0.000 0.000 0.000 643.900 0.000 0.000 0.000 644.800 1.458 0.866 22.00 644.800 1.458 0.866 22.00	624.700	1.480	1.148	23.00	
626.200 5.232 7.152 216.00 626.700 6.537 10.490 330.00 627.200 7.501 14.295 472.00 627.200 7.501 14.295 472.00 627.200 9.991 23.752 846.00 628.200 9.991 23.752 846.00 628.700 11.563 29.673 1086.00 629.200 12.386 35.689 1361.00 630.200 14.483 48.921 1988.00 630.700 16.177 56.548 2350.00 631.200 17.882 65.027 2750.00 632.700 22.822 95.385 4245.00 633.200 24.440 107.074 4846.00 633.200 24.440 107.074 4846.00 643.900 0.000 0.000 0.000 END FTABLE 39 ROWS COLS **** (RCHRES 1) Chenoweth #39 22 4 10554 *** (FT) (ACRES) (AC-FT) (CFS) *** 643.900 0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
627.700 8.658 18.672 642.00 628.200 9.991 23.752 846.00 628.700 11.563 29.673 1086.00 629.200 12.386 35.689 1361.00 629.200 13.315 41.884 1652.00 630.200 14.483 48.921 1988.00 630.700 16.177 56.548 2350.00 631.200 17.882 65.027 2750.00 632.200 21.130 84.260 3686.00 632.700 22.822 95.385 4245.00 633.700 25.981 119.123 5480.00 633.700 25.981 119.123 5480.00 END FTABLE 39 22 4 107.074 4846.00 643.900 0.000 0.000 0.000 646.30 644.30.0 1.458 0.806 22.00 644.300 0.569 0.201 4.00 645.800 2.970 2.688 102.00 644.300 1.458 0.806 22.00 646.300 3.654 4.036 179.00 <td></td> <td></td> <td></td> <td></td> <td></td>					
628.200 9.991 23.752 846.00 628.700 11.563 29.673 1086.00 629.200 12.386 35.689 1361.00 629.700 13.315 41.884 1652.00 630.200 14.483 48.921 1988.00 630.700 16.177 56.548 2350.00 631.200 17.882 65.027 2750.00 632.200 21.130 84.260 3686.00 632.200 21.130 84.260 3686.00 633.200 24.440 107.074 4846.00 633.200 24.440 107.074 4846.00 633.700 25.981 119.123 5480.00 END FTABLE 39 ROWS COLS **** (RCHRES 1) Chenoweth #39 22 4 10524 *** (FT) (ACRES) (AC-FT) (CFS) *** 643.900 0.000 0.001 0.00 644.800 1.458 0.806 22.00 644.300 2.659 0.201 4.00 644.800 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
628.700 11.563 29.673 1086.00 629.200 12.386 35.689 1361.00 629.700 13.315 41.884 1652.00 630.200 14.483 48.921 1988.00 630.700 16.177 56.548 2350.00 631.200 17.882 65.027 2750.00 631.700 19.156 73.876 3186.00 632.200 21.130 84.260 3686.00 633.200 24.440 107.074 4846.00 633.700 25.981 119.123 5480.00 END FTABLE 39 ROWS COLS **** (RCHRES 1) Chenoweth #39 22 4 DEPTH AREA VOLUME DISCH *** (FT) (ACRES) (AC-FT) (CFS) *** 643.900 0.000 0.00 644.800 1.458 0.806 22.00 645.300 2.203 1.631 54.00 647.300 6.144 8.139 397.00 647.800 7.460 10.806 537.00 644.800 1.458 1.825					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
629.700 13.315 41.884 1652.00 630.200 14.483 48.921 1988.00 630.700 16.177 56.548 2350.00 631.200 17.882 65.027 2750.00 631.700 19.156 73.876 3186.00 632.200 21.130 84.260 3686.00 632.700 22.822 95.385 4245.00 633.700 22.981 119.123 5480.00 END FTABLE 37 FTABLE 39 ROWS COLS *** (RCHRES 1) Chenoweth #39 22 4 DEPTH AREA VOLUME DISCH **** (FT) (ACRES) (AC-FT) (CFS) *** 643.900 0.000 0.000 0.00 644.800 1.458 0.806 22.00 645.800 2.970 2.688 102.00 646.300 3.654 4.036 179.00 646.800 4.741 5.785 276.00 647.800 7.460 10.806 537.00 647.800 <td></td> <td></td> <td></td> <td></td> <td></td>					
630.200 14.483 48.921 1988.00 630.700 16.177 56.548 2350.00 631.200 17.882 65.027 2750.00 631.700 19.156 73.876 3186.00 632.200 21.130 84.260 3686.00 632.200 22.822 95.385 4245.00 633.200 24.440 107.074 4846.00 633.700 25.981 119.123 5480.00 END FTABLE 39 ROWS COLS **** (RCHRES 1) Chenoweth #39 22 4 DEPTH AREA VOLUME DISCH **** (FT)<(ACRES)					
630.700 16.177 56.548 2350.00 631.200 17.882 65.027 2750.00 631.700 19.156 73.876 3186.00 632.200 21.130 84.260 3686.00 633.200 24.440 107.074 4846.00 633.700 25.981 119.123 5480.00 END FTABLE 39 ROWS COLS *** (RCHRES 1) Chenoweth #39 22 4 0.000 0.000 0.00 643.900 0.000 0.000 0.00 644.300 0.569 0.201 4.00 644.800 1.458 0.806 22.00 645.300 2.203 1.631 54.00 645.300 2.970 2.688 102.00 645.300 2.970 2.688 102.00 646.300 3.654 4.036 179.00 647.800 7.460 10.806 537.00 648.300 8.671 13.525 698.00 647.800 7.460 10.806 537.00 648.8					
631.200 17.882 65.027 2750.00 631.700 19.156 73.876 3186.00 632.200 21.130 84.260 3686.00 632.700 22.822 95.385 4245.00 633.200 24.440 107.074 4846.00 633.700 25.981 119.123 5480.00 END FTABLE 37 FTABLE 39 ROWS COLS **** (RCHRES 1) Chenoweth #39 22 4 DEPTH AREA VOLUME DISCH **** (FT) (ACRES) (AC-FT) (CFS) *** 643.900 0.000 0.000 0.00 644.300 0.569 0.201 4.00 644.800 1.458 0.806 22.00 645.300 2.203 1.631 54.00 645.800 2.970 2.688 102.00 645.800 2.970 2.688 102.00 646.300 3.654 4.036 179.00 647.300 6.144 8.139 397.00 647.300 6.144 8.139 397.00 647.800 7.460 10.806 537.00 648.300 8.671 13.525 698.00 648.800 9.540 16.383 880.00 649.300 11.412 24.845 1469.00 649.300 11.615 33.039 2079.00 640.800 11.412 24.845 1469.00 650.300 12.238 28.774 1758.00 650.800 13.165 33.039 2079.00 651.800 14.498 42.453 2814.00 652.300 15.534 47.373 3229.00 652.800 16.208 52.696 3680.00 653.300 16.962 58.315 4166.00 653.300 16.962 58.315 4166.00 653.300 17.695 64.346 4707.00 654.300 18.580 70.239 5231.00					
631.700 19.156 73.876 3186.00 632.200 21.130 84.260 3686.00 632.700 22.822 95.385 4245.00 633.200 24.440 107.074 4846.00 633.700 25.981 119.123 5480.00 END FTABLE 37 FTABLE 39 ROWS COLS **** (RCHRES 1) Chenoweth #39 22 4 DEPTH AREA VOLUME DISCH **** (FT) (ACRES) (AC-FT) (CFS) **** 643.900 0.000 0.000 0.00 644.800 1.458 0.806 22.00 645.800 2.970 2.688 102.00 646.800 4.741 5.785 276.00 647.300 6.144 8.139 397.00 647.800 7.460 10.806 537.00 648.800 9.540 16.383 880.00 648.800 9.540 16.383 80.00 648.800 9.540 16.383 80.00 649.300					
632.200 21.130 84.260 3686.00 632.700 22.822 95.385 4245.00 633.200 24.440 107.074 4846.00 633.700 25.981 119.123 5480.00 END FTABLE 39 ROWS COLS *** (RCHRES 1) Chenoweth #39 22 4 DEPTH AREA VOLUME DISCH *** (FT) (ACRES) (AC-FT) (CFS) *** 643.900 0.000 0.000 0.00 644.300 1.458 0.806 22.00 645.300 2.203 1.631 54.00 645.800 2.970 2.688 102.00 646.800 4.741 5.785 276.00 647.300 6.144 8.139 397.00 647.800 7.460 10.806 537.00 648.800 9.540 16.383 880.00 649.300 10.669 21.221 1210.00 649.800 11.412 24.845 1469.00 650.800 13.165 3.039					
632.700 22.822 95.385 4245.00 633.200 24.440 107.074 4846.00 633.700 25.981 119.123 5480.00 END FTABLE 37 FTABLE 39 ROWS COLS **** (RCHRES 1) Chenoweth #39 22 4 DEFTH AREA VOLUME DISCH *** (FT) (ACRES) (AC-FT) (CFS) *** 643.900 0.000 0.000 0.00 644.800 1.458 0.806 22.00 645.300 2.203 1.631 54.00 645.300 2.970 2.688 102.00 646.300 3.654 4.036 179.00 647.800 7.460 10.806 537.00 648.300 8.671 13.525 698.00 648.800 9.540 16.383 880.00 649.300 10.669 21.221 1210.00 649.800 11.412 24.845 1469.00 650.300 12.238 28.774 1758.00 651.300					
633.200 24.440 107.074 4846.00 633.700 25.981 119.123 5480.00 END FTABLE 37 FTABLE 39 Chenoweth #39 22 4 DEPTH AREA VOLUME DISCH *** (FT) (ACRES) (AC-FT) (CFS) *** 643.900 0.000 0.000 0.00 644.300 0.569 0.201 4.00 645.300 2.203 1.631 54.00 643.900 0.569 0.201 4.00 644.300 1.458 0.806 22.00 645.800 2.970 2.688 102.00 646.300 3.654 4.036 179.00 647.800 7.460 10.806 537.00 648.300 8.671 13.525 698.00 648.300 8.671 13.525 698.00 649.300 10.669 21.221 1210.00 649.300 11.412 24.845 1469.00 650.300 12.238 28.774 1758.00 651.300 14.440 37.732					
633.700 25.981 119.123 5480.00 END FTABLE 37 FTABLE 39 ROWS COLS **** (RCHRES 1) Chenoweth #39 22 4 DEPTH AREA VOLUME DISCH **** (FT) (ACRES) (AC-FT) (CFS) **** 643.900 0.000 0.000 644.300 0.569 0.201 4.00 644.800 1.458 0.806 22.00 645.300 2.003 1.631 54.00 645.800 2.970 2.688 102.00 646.300 3.654 4.036 179.00 646.300 3.654 4.036 179.00 647.800 7.460 10.806 537.00 647.800 648.800 9.540 16.383 880.00 648.800 9.540 16.383 880.00 649.800 11.412 24.845 1469.00 650.800 13.165 33.039 2079.00 651.800 14.440 37.73 22430.00 651.800					
END FTABLE 37 FTABLE 39 ROWS COLS *** (RCHRES 1) Chenoweth #39 22 4 DEPTH AREA VOLUME DISCH **** (FT) (ACRES) (AC-FT) (CFS) **** 643.900 0.000 0.000 644.300 0.569 0.201 4.00 645.800 2.203 1.631 54.00 645.800 2.970 2.688 102.00 646.800 4.741 5.785 276.00 647.300 6.144 8.139 397.00 647.800 7.460 10.806 537.00 648.800 9.540 16.383 880.00 649.800 11.412 24.845 1469.00 649.800 11.412 24.845 1469.00 650.300 12.238 28.774 1758.00 651.800 14.400 37.732 2430.00 651.800 14.498 42.453 2814.00 652.300 15.534 47.373 3229.00 651.800 14.998 42.453 2814.00 652.300 15.534 47.373 3229.00 651.800 14.998 42.453 2814.					
ROWS COLS **** (RCHRES 1) Chenoweth #39 22 4 DEPTH AREA VOLUME DISCH *** (FT) (ACRES) (AC-FT) (CFS) *** 643.900 0.000 0.000 0.000 644.300 0.569 0.201 4.00 644.800 1.458 0.806 22.00 645.800 2.203 1.631 54.00 645.800 2.970 2.688 102.00 646.300 3.654 4.036 179.00 647.300 6.144 8.139 397.00 647.800 7.460 10.806 537.00 647.800 7.460 10.806 537.00 648.800 9.540 16.383 880.00 649.300 10.669 21.221 1210.00 649.800 11.412 24.845 1469.00 650.800 13.165 33.039 2079.00 651.800 14.440 37.732 2430.00 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
ROWS COLS **** (RCHRES 1) Chenoweth #39 22 4 DEPTH AREA VOLUME DISCH *** (FT) (ACRES) (AC-FT) (CFS) *** 643.900 0.000 0.000 0.000 644.300 0.569 0.201 4.00 644.800 1.458 0.806 22.00 645.800 2.203 1.631 54.00 645.800 2.970 2.688 102.00 646.300 3.654 4.036 179.00 647.300 6.144 8.139 397.00 647.800 7.460 10.806 537.00 647.800 7.460 10.806 537.00 648.800 9.540 16.383 880.00 649.300 10.669 21.221 1210.00 649.800 11.412 24.845 1469.00 650.800 13.165 33.039 2079.00 651.800 14.440 37.732 2430.00 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Nome Construction Construction <thconstruction< th=""> Construction</thconstruction<>					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
DEFT(ACRES)(AC-FT)(CFS)*** (43.900) 0.0000.0000.0000.000 644.300 0.5590.2014.00 644.800 1.4580.80622.00 645.300 2.2031.63154.00 645.800 2.9702.688102.00 646.300 3.6544.036179.00 647.300 6.1448.139397.00 647.800 7.46010.806537.00 647.800 7.46010.806537.00 648.800 9.54016.383880.00 649.300 10.66921.2211210.00 649.800 11.41224.8451469.00 650.800 13.16533.0392079.00 651.800 14.49842.4532814.00 652.300 15.53447.3733229.00 653.300 16.20852.6963680.00 653.300 16.92658.3154166.00 653.300 17.69564.3464707.00 654.300 18.58070.2395231.00	ROWS COLS		HRES 1)	Chenoweth	#39
	ROWS COLS 22 4	*** (RCI			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ROWS COLS 22 4 DEPTH	*** (RCI AREA	VOLUME	DISCH	***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ROWS COLS 22 4 DEPTH (FT)	*** (RCI AREA (ACRES)	VOLUME (AC-FT)	DISCH (CFS)	***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ROWS COLS 22 4 DEPTH (FT) 643.900	*** (RCI AREA (ACRES) 0.000	VOLUME (AC-FT) 0.000	DISCH (CFS) 0.00	***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ROWS COLS 22 4 DEPTH (FT) 643.900 644.300	*** (RCI AREA (ACRES) 0.000 0.569	VOLUME (AC-FT) 0.000 0.201	DISCH (CFS) 0.00 4.00	***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ROWS COLS 22 4 DEPTH (FT) 643.900 644.300 644.800	*** (RCI AREA (ACRES) 0.000 0.569 1.458	VOLUME (AC-FT) 0.000 0.201 0.806	DISCH (CFS) 0.00 4.00 22.00	***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ROWS COLS 22 4 DEPTH (FT) 643.900 644.300 644.800 645.300	*** (RCI AREA (ACRES) 0.000 0.569 1.458 2.203	VOLUME (AC-FT) 0.000 0.201 0.806 1.631	DISCH (CFS) 0.00 4.00 22.00 54.00	***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ROWS COLS 22 4 DEPTH (FT) 643.900 644.300 644.800 645.300 645.800	*** (RCI AREA (ACRES) 0.000 0.569 1.458 2.203 2.970	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688	DISCH (CFS) 0.00 4.00 22.00 54.00 102.00	***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ROWS COLS 22 4 DEPTH (FT) 643.900 644.300 644.800 645.300 645.800 646.300	*** (RCI AREA (ACRES) 0.000 0.569 1.458 2.203 2.970 3.654	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688 4.036	DISCH (CFS) 0.00 4.00 22.00 54.00 102.00 179.00	***
648.800 9.540 16.383 880.00 649.300 10.669 21.221 1210.00 649.800 11.412 24.845 1469.00 650.300 12.238 28.774 1758.00 650.800 13.165 33.039 2079.00 651.300 14.440 37.732 2430.00 652.300 15.534 47.373 3229.00 652.800 16.208 52.696 3680.00 653.300 16.962 58.315 4166.00 653.800 17.695 64.346 4707.00 654.300 18.580 70.239 5231.00	ROWS COLS 22 4 DEPTH (FT) 643.900 644.300 644.800 645.300 645.300 646.300	*** (RCI AREA (ACRES) 0.000 0.569 1.458 2.203 2.970 3.654 4.741	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688 4.036 5.785	DISCH (CFS) 0.00 4.00 22.00 54.00 102.00 179.00 276.00	***
649.30010.66921.2211210.00649.80011.41224.8451469.00650.30012.23828.7741758.00650.80013.16533.0392079.00651.30014.44037.7322430.00651.80014.99842.4532814.00652.30015.53447.3733229.00653.30016.20852.6963680.00653.30017.69564.3464707.00654.30018.58070.2395231.00	ROWS COLS 22 4 DEPTH (FT) 643.900 644.300 644.800 645.300 645.800 646.300 646.300 646.300	*** (RCU AREA (ACRES) 0.000 0.569 1.458 2.203 2.970 3.654 4.741 6.144	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688 4.036 5.785 8.139	DISCH (CFS) 0.00 4.00 22.00 54.00 102.00 179.00 276.00 397.00	***
649.800 11.412 24.845 1469.00 650.300 12.238 28.774 1758.00 650.800 13.165 33.039 2079.00 651.300 14.440 37.732 2430.00 651.800 14.998 42.453 2814.00 652.300 15.534 47.373 3229.00 652.800 16.208 52.696 3680.00 653.300 16.962 58.315 4166.00 654.300 18.580 70.239 5231.00	ROWS COLS 22 4 DEPTH (FT) 643.900 644.800 644.800 645.300 645.800 646.300 646.800 647.300	*** (RCU AREA (ACRES) 0.000 0.569 1.458 2.203 2.970 3.654 4.741 6.144 7.460	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688 4.036 5.785 8.139 10.806	DISCH (CFS) 0.00 22.00 54.00 102.00 179.00 276.00 397.00 537.00	***
650.30012.23828.7741758.00650.80013.16533.0392079.00651.30014.44037.7322430.00651.80014.99842.4532814.00652.30015.53447.3733229.00652.80016.20852.6963680.00653.30016.96258.3154166.00653.80017.69564.3464707.00654.30018.58070.2395231.00	ROWS COLS 22 4 DEPTH (FT) 643.900 644.800 644.800 645.300 645.800 646.800 646.800 647.300 647.800 647.300	*** (RCU AREA (ACRES) 0.000 0.569 1.458 2.203 2.970 3.654 4.741 6.144 7.460 8.671	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688 4.036 5.785 8.139 10.806 13.525	DISCH (CFS) 0.00 4.00 22.00 54.00 102.00 179.00 276.00 397.00 537.00 698.00	***
650.80013.16533.0392079.00651.30014.44037.7322430.00651.80014.99842.4532814.00652.30015.53447.3733229.00652.80016.20852.6963680.00653.30016.96258.3154166.00653.80017.69564.3464707.00654.30018.58070.2395231.00	ROWS COLS 22 4 DEPTH (FT) 643.900 644.800 645.300 645.800 645.800 646.300 646.800 647.300 647.800 648.800	*** (RCU AREA (ACRES) 0.000 0.569 1.458 2.203 2.970 3.654 4.741 6.144 7.460 8.671 9.540	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688 4.036 5.785 8.139 10.806 13.525 16.383	DISCH (CFS) 0.00 4.00 22.00 54.00 179.00 276.00 397.00 537.00 698.00 880.00	***
651.300 14.440 37.732 2430.00 651.800 14.998 42.453 2814.00 652.300 15.534 47.373 3229.00 652.800 16.208 52.696 3680.00 653.300 16.962 58.315 4166.00 653.800 17.695 64.346 4707.00 654.300 18.580 70.239 5231.00	ROWS COLS 22 4 DEPTH (FT) 643.900 644.300 644.800 645.800 645.800 645.800 647.300 647.800 647.800 648.800 649.300 649.800	*** (RCU AREA (ACRES) 0.000 0.569 1.458 2.203 2.970 3.654 4.741 6.144 7.460 8.671 9.540 10.669	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688 4.036 5.785 8.139 10.806 13.525 16.383 21.221	DISCH (CFS) 0.00 4.00 22.00 54.00 179.00 276.00 397.00 537.00 698.00 880.00 1210.00	***
651.800 14.998 42.453 2814.00 652.300 15.534 47.373 3229.00 652.800 16.208 52.696 3680.00 653.300 16.962 58.315 4166.00 653.800 17.695 64.346 4707.00 654.300 18.580 70.239 5231.00	ROWS COLS 22 4 DEPTH (FT) 643.900 644.800 645.300 645.800 645.800 646.800 647.300 647.800 647.800 648.800 649.300 649.300	*** (RCU AREA (ACRES) 0.000 0.569 1.458 2.203 2.970 3.654 4.741 6.144 7.460 8.671 9.540 10.669 11.412 12.238	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688 4.036 5.785 8.139 10.806 13.525 16.383 21.221 24.845 28.774	DISCH (CFS) 0.00 4.00 22.00 54.00 102.00 175.00 698.00 880.00 1210.00 1469.00 1758.00	***
652.30015.53447.3733229.00652.80016.20852.6963680.00653.30016.96258.3154166.00653.80017.69564.3464707.00654.30018.58070.2395231.00	ROWS COLS 22 4 DEPTH (FT) 643.900 644.800 644.800 645.300 645.800 645.800 646.800 647.800 647.800 648.800 648.800 649.300 649.800	*** (RCU AREA (ACRES) 0.000 0.569 1.458 2.203 2.970 3.654 4.741 6.144 7.460 8.671 9.540 10.669 11.412 12.238 13.165	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688 4.036 5.785 8.139 10.806 13.525 16.383 21.221 24.845 28.774 33.039	DISCH (CFS) 0.00 4.00 22.00 54.00 179.00 276.00 397.00 698.00 880.00 1210.00 1469.00 1758.00 2079.00	***
652.80016.20852.6963680.00653.30016.96258.3154166.00653.80017.69564.3464707.00654.30018.58070.2395231.00	ROWS COLS 22 4 DEPTH (FT) 643.900 644.300 644.800 645.300 645.800 645.800 645.300 646.800 647.300 648.800 648.800 649.300 649.800 650.300	*** (RCU AREA (ACRES) 0.000 0.569 1.458 2.203 2.970 3.654 4.741 6.144 7.460 8.671 9.540 10.669 11.412 12.238 13.165 14.440	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688 4.036 5.785 8.139 10.806 13.525 16.383 21.221 24.845 28.774 33.039 37.732	DISCH (CFS) 0.00 4.00 22.00 102.00 179.00 276.00 397.00 537.00 698.00 880.00 1210.00 1469.00 2079.00 2430.00	***
653.30016.96258.3154166.00653.80017.69564.3464707.00654.30018.58070.2395231.00	ROWS COLS 22 4 DEPTH (FT) 643.900 644.300 644.800 645.300 645.800 645.800 647.800 647.800 647.800 648.300 649.300 649.800 650.300 651.800	*** (RCU AREA (ACRES) 0.000 0.569 1.458 2.203 2.970 3.654 4.741 6.144 7.460 8.671 9.540 10.669 11.412 12.238 13.165 14.440 14.998	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688 4.036 5.785 8.139 10.806 13.525 16.383 21.221 24.845 28.774 33.039 37.732 42.453	DISCH (CFS) 0.00 4.00 22.00 54.00 179.00 276.00 397.00 537.00 698.00 1210.00 1469.00 1758.00 2079.00 2430.00 2814.00	***
653.800 17.695 64.346 4707.00 654.300 18.580 70.239 5231.00	ROWS COLS 22 4 DEPTH (FT) 643.900 644.800 644.800 645.300 645.800 645.800 646.800 647.300 647.800 648.800 649.300 649.300 649.300 650.300 651.300 651.800	*** (RCU AREA (ACRES) 0.000 0.569 1.458 2.203 2.970 3.654 4.741 6.144 7.460 8.671 9.540 10.669 11.412 12.238 13.165 514.440 14.998 15.534	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688 4.036 5.785 8.139 10.806 13.525 16.383 21.221 24.845 28.774 33.039 37.732 42.453 47.373	DISCH (CFS) 0.00 4.00 22.00 54.00 102.00 276.00 397.00 537.00 698.00 880.00 1210.00 1469.00 1758.00 2079.00 2430.00 2814.00 3229.00	***
654.300 18.580 70.239 5231.00	ROWS COLS 22 4 DEPTH (FT) 643.900 644.300 644.300 645.300 645.800 645.800 647.300 647.300 648.800 649.300 649.800 649.800 650.800 651.800 652.800	*** (RCU AREA (ACRES) 0.000 0.569 1.458 2.203 2.970 3.654 4.741 6.144 7.460 8.671 9.540 10.669 11.412 12.238 13.165 14.440 14.998 15.534 16.208	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688 4.036 5.785 8.139 10.806 13.525 16.383 21.221 24.845 28.774 33.039 37.732 42.453 47.373 52.696	DISCH (CFS) 0.00 4.00 22.00 54.00 102.00 179.00 276.00 397.00 638.00 880.00 1210.00 1469.00 1758.00 2079.00 2430.00 2430.00	***
	ROWS COLS 22 4 DEPTH (FT) 643.900 644.800 644.800 645.300 645.800 645.800 646.800 647.800 647.800 648.800 649.300 649.800 650.300 651.800 651.800 652.800 652.800	*** (RCU AREA (ACRES) 0.000 0.569 1.458 2.203 2.970 3.654 4.741 6.144 7.460 8.671 9.540 10.669 11.412 12.238 13.165 14.440 14.998 15.534 16.208	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688 4.036 5.785 8.139 10.806 13.525 16.383 21.221 24.845 28.774 33.039 37.732 42.453 47.373 52.696 58.315	DISCH (CFS) 0.00 4.00 22.00 102.00 179.00 276.00 397.00 537.00 688.00 1210.00 1459.00 1459.00 2079.00 2430.00 2814.00 3284.00 3284.00 3680.00 4166.00	***
גנ שוושעום תאים	ROWS COLS 22 4 DEPTH (FT) 643.900 644.300 644.300 645.300 645.800 645.800 645.800 647.300 647.800 648.800 649.300 648.800 649.300 651.300 651.800 652.800 653.300	*** (RCU AREA (ACRES) 0.000 0.569 1.458 2.203 2.970 3.654 4.741 6.144 7.460 8.671 9.540 10.669 11.412 12.238 13.165 14.440 14.998 15.534 16.208 16.208 16.962 17.695	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688 4.036 5.785 8.139 10.806 13.525 16.383 21.221 24.845 28.774 33.039 37.732 42.453 47.373 52.696 58.315 64.346	DISCH (CFS) 0.00 4.00 22.00 54.00 179.00 276.00 397.00 537.00 698.00 880.00 1210.00 1469.00 1758.00 2079.00 2430.00 2814.00 3229.00 3680.00 4166.00	***
	ROWS COLS 22 4 DEPTH (FT) 643.900 644.300 644.800 645.300 645.800 645.800 647.800 647.800 647.800 647.800 649.300 649.800 650.300 651.800 651.800 652.800 653.300	*** (RCU AREA (ACRES) 0.000 0.569 1.458 2.203 2.970 3.654 4.741 6.144 7.460 8.671 9.540 10.669 11.412 12.238 13.165 514.420 14.998 15.534 16.208 15.534 16.208 16.962 17.695 18.580	VOLUME (AC-FT) 0.000 0.201 0.806 1.631 2.688 4.036 5.785 8.139 10.806 13.525 16.383 21.221 24.845 28.774 33.039 37.732 42.453 47.373 52.696 58.315 64.346	DISCH (CFS) 0.00 4.00 22.00 54.00 179.00 276.00 397.00 537.00 698.00 880.00 1210.00 1469.00 1758.00 2079.00 2430.00 2814.00 3229.00 3680.00 4166.00	***

*** NOTE: Pond RCHRES used when drainage area to ponds is >10% of the subbasin

FTABLE	112						
ROWS COLS	*** (Pond	RCHRES 15,	Subbasin	13,	fig.	28)	Chenoweth V12
8 4							
DEPTH	AREA	VOLUME	DISCH	* * *			
(FT)	(ACRES)	(AC-FT)	(CFS)	* * *			
0.000	0.000	0.000	0.00				
8.000	41.900	124.000	0.01				
10.000	44.300	172.000	0.02				
12.000	47.110	226.000	0.03				
13.000	48.100	251.000	250.00				
14.000	49.500	283.000	750.00				
15.000	50.400	310.000	1500.00				
16.000	51.800	339.000	3000.00				
END FTABI	LE112						

FTABLE 113 ROWS COLS *** (Pond RCHRES 16, Subbasin 12) Chenoweth V13 9 4 DEPTH AREA VOLUME DISCH *** (FT) (ACRES) (AC-FT) (CFS) *** 0.000 0.000 0.000 0.00 8.000 3.400 10.100 0.01 10 000 3.600 14 000 0.02 12.000 3.800 18.400 0.03 3.850 19.400 12.500 35.00 13.000 3.900 20.400 75.00 14.000 4.000 23.000 200.00 15.000 4.100 25.200 400.00 16.000 4.200 27.600 800.00 END FTABLE113 FTABLE 114 ROWS COLS *** (Pond RCHRES 17, Subbasin 11) Chenoweth V14 8 4 DEPTH AREA VOLUME DISCH *** (FT) (ACRES) (AC-FT) (CFS) *** 0.000 0.000 0.000 0.00 8.000 8.100 24.000 0.01 10.000 8.600 33.200 0.02 12.000 9.100 43.700 0.03 13.000 9.300 48.500 75.00 14.000 9.600 54.600 200.00 15.000 9.800 60.000 400.00 10.000 16.000 65.600 800.00 END FTABLE114 FTABLE 121 ROWS COLS *** (Pond RCHRES 18, Subbasin 10b) Chenoweth V21 8 4 DEPTH VOLUME DISCH *** AREA (ACRES) (AC-FT) (CFS) *** (FT) 0.000 0.000 0.000 0.00 8.000 17.100 50.700 0.01 10.000 18,100 70.000 0.02 12.000 19.200 92.100 0.03 250.00 13 000 19.600 102 000 14.000 20.200 115.000 750.00 15.000 20.500 126.000 1500.00 16.000 21.100 138.000 3000.00 END FTABLE121 FTABLE 122 ROWS COLS *** (Pond RCHRES 19, Subbasin 10a) Chenoweth V22 8 4 DEPTH AREA VOLUME DISCH *** (FT) (ACRES) (AC-FT) (CFS) *** 0.000 0.000 0.000 0.00 8.000 6.000 17.800 0.01 24.500 10.000 6.300 0.02 12.000 6.700 32.300 0.03 13.000 6.900 35.900 250.00 14.000 7.100 40.400 750.00 15.000 7.200 44.300 1500.00 16.000 7.400 48.400 3000.00 END FTABLE122 123 FTABLE ROWS COLS *** (Pond RCHRES 20, Subbasin 9b) Chenoweth V23 10 4 DEPTH AREA VOLUME DISCH *** (AC-FT) (CFS) *** (FT) (ACRES) 0.000 0.000 0.000 0.00 8.000 6.600 19.500 0.01 6.900 10.000 27.000 0.02 7.400 35.500 12.000 0.03 7.450 12.500 37.500 35.00 7.500 13,000 39,400 75.00 14.000 7.800 44.400 200.00 7 900 400.00 15 000 48.600 16.000 8.100 53.200 800.00 17.000 57.800 1600.00 8.300 END FTABLE123


FTABLE	124				
	*** (Pond)	RCHRES 21,	Subbasin	9a)	Chenoweth V24
8 4		-			
DEPTH	AREA	VOLUME	DISCH	* * *	
(FT)	(ACRES)	(AC-FT)	(CFS)	* * *	
0.000	0.000	0.000	0.00		
8.000	7.100	21.200	0.01		
10.000	7.500	29.300	0.02		
12.000	8.000	38.500	0.03		
13.000		42.700	75.00		
14.000	8.400	48.100	200.00		
15.000	8.600	52.700	400.00		
16.000 END FTABI		57.800	800.00		
END FIABL	16124				
FTABLE	127				
ROWS COLS	*** (Pond	RCHRES 22	, Subbasir	n 8a)	Chenoweth V27
8 4					
DEPTH		VOLUME	DISCH		
(FT)			(CFS)	* * *	
0.000	0.000	0.000	0.00		
8.000	1.600	4.600	0.01		
10.000	1.700	6.400	0.02		
12.000	1.760	8.400	0.03		
13.000	1.800 1.850	9.400	75.00		
14.000 15.000	1.850	10.600 11.600	200.00 400.00		
16.000			800.00		
END FTABI		12.700	000.00		
FTABLE					
	*** (Pond)	RCHRES 23,	Subbasin	1a)	Chenoweth V41
8 4					
DEPTH		VOLUME	DISCH		
(FT)	(ACRES)		(CFS)	* * *	
0.000	0.000 1.250	0.000 3.700	0.00		
8.000 10.000	1.320	5.110	0.01		
12.000	1.400	6.700	0.02		
13.000	1.430	7.500	75.00		
14.000	1.470	8.400	200.00		
15.000	1.500	9.200	400.00		
16.000	1.540		800.00		
END FTABI					
END FTABLES	3				

END RUN

Martin and others—HYDROLOGIC AND WATER-QUALITY CHARACTERIZATION AND MODELING OF THE CHENOWETH RUN BASIN, JEFFERSON COUNTY, KENTUCKY—U.S. Geological Survey Water-Resources Investigations Report 00-4239

U.S. GEOLOGICAL SURVEY 9818 BLUEGRASS PARKWAY LOUISVILLE, KY 40299–1906

Library Rate

