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National Aeronautics a d  Space Administration 

L a i s  Research Center 
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Tests uere conaucted t o  investigate the e f f ec t  o f  v x u e  o c i l i t y  pressure on the pcrfwmUue 
o f  upall-thruster nozzles. Thrust oasureaents o f  two conveqing-diveqing nozzles w i th  m a+cr 
r a t i o  of i40 ana an o r i f i c e  p la te  flowing unheated nitrogen ana hydrogen uere t i t e n  over r r i d e  range 
of vacuum f aci 1 i t y  pressures ar.a nozzle throat  Reyno Ids nubers. I n  tk keynolas number rum of 
2200 t o  12 there was no discernable viscous e f fec t  on th rus t  b e l a  m arpbient-to-total-pn s u n  f r a t i o  of lo!? I n  nearly a l l  cases, f low separation occurred a t  a pressure r a t i o  of a b t  10- . 
th ls  was the upper l i m i t  for  obtaining an accurate th rus t  wasuremmt f o r  conical n o l ~ i e  w i th  
area r a t i o  of 140. 

A, area o f  nozzle e x i t  plane 

k* nozzle throat area 

d* nozzle throat d i a e t e r  

Fc reasured th rus t  corrected f o r  the ambient-pressure force 

F, seasirred thrust  a t  f i n i t e  ambient pressure 

F, vacuum thrus t  o r  thrust  measured a t  near-spwe conditions 

g acceleration o f  gravi ty  

ISp vacuW speci f ic  i lpulse. F,I:~ 

; piass f lo* ra te  

Pa arnbient o r  vacbM f a c i l i t y  pressure 

Ye s t a t i c  pressure o f  flow a t  nozzle-exit plane 

Po nozzle ChdPlber t o t a l  pressure 

he throat Reynolds number, 46/d*" 

u nozzle e x i t  veloci ty  

r a t i o  of specific heats 

r visccrsity a t  nozzie chamber t o t a l  temperature 

INTAOWCTION 

North South station-keeping o f  many sa te l l i t es  i s  being met using thrusters i n  the 0.2 t o  0.4 
h thrust  range. Performance ca l ib ra t ion  o f  these thrusters i s  generally undertaken i n  v w u u  fwi l -  
i t i e s  wi th ambient pressures i n  the range o f  a few hundred microketers o f  mercury. Relat ively h igh 
propel iant  flow rates usually preclude the use o f  d i f fus ion  p u p s  and large cryo-puped f a c i l i t i e s  
are not widely available. 

The thrust  measured i n  a f i n i t e  ambient pressure, assuming uniform propert ies a t  the n0ZZle 
exit,  i s  given by 

t ,  = i u  + (Pe - Pa)Ae, (1) 

an9 the thrust  i n  vacuum i s  

F V  = :U + PeAe. 

Approve9 f o r  publ ic  release; d i s t r i bu t i on  i s  unlimited. 



Therefore the thrust measured i n  a f i n i t e  d i e n t  pressure corrected t o  vwum conditions i s  given t y  

Equation (3) should y ie ld  the correct s p u e - v u w  thrust providing that the r a t i o  of Vbient pres- 
sure t o  nozzle i n l e t  to ta l  pressure (PaIP ) i s  suffZcicntly la so that shock waws are not 
present i n  the nozzle. Furthemre, i n  tk case o f  low Reynolds ncsbcr flaw, the Ybient  pressure 
u s t  be suf f ic ient ly  la so that i t  u s  not influence the nozzle flow f ie ld.  

With la Reynolds n u b t r  (Re) nozzle flow, several  investigator^^'^ have found signif icant 
variation i n  thrust over a range o f  vacuum f a c i l i t y  pressure from about 1x10'~ t o  1 t rr where the P ramp? f PalPo was wel; below the point dun shocks would be present. Page e t  al. and Yoshida 
e t  11.9.3 found an appreciable variation i n  thrust with v w u u  ch-r pressure usin) hydrogen and 
r r t n i a  ns is to je ts .  I n  the i r  wort, a 17 t o  19 percent degradation i n  thrust occurred dwn tk 
ambient pressure was varied fram about 5 x 1 0 ~  t o  1 t o r r  after xcount i  3 for the vlbient pressure 
force over the nozzle ex i t  as ue i l  as recirculation effects i n  the v ruun  ch rb t r .  T k i r  45 dl 
hydrogen a d  amonia resistojets nn operated at throat Reynolds nub t r s  of 100 a d  800, respec- 
t ively. They conjectured that the vicuue c h r l w r  pressure affected the nozzle f la through the Sub- 
sonic boundary layer. 

~othe' did a detailed investigation of lowdeynolds n d r  nozzle flow over a Reynolds nrdcr 
range o f  50 t c  780. He measured density and t c q t r a t u n  distributions i n  the nozzle fla f i e l d  using 
an electron-be- method. He also detemined shock patterns and f la separation by f la visualiza- 
tion. His tests were conducted wi4-h unheated nitrogen flowing through two CWI~CII n~zzles, each of 
20' half-angle and area r a t i o  (+/A*) of  66, and each having a di f ferent throat diameter. Rothe's 
data showed that at a Reynolds nulber of 50, the flow on the nozzle axis decelerated t o  s l i  t l y  less f than Uach f at the ex i t  plane. Density prof i les  a t  various axial stations i n  the nozzle $1 ustrated 
that the flow was f u l l y  viscous with no evidence o f  an inviscid core. A t  a Reynolds n r r k r  of 300, 
the f lor was characterized by a narrow i n v i x i d  c o n  enveloped by a thick viscous outer layer that 
extended t o  the ualls. The inviscid core gradually dissipated un t i l  i t  was no longer evident a t  the 
ex i t  plane. nit flo* on the axis m a i m d  supersonic. 

I n  inves t iaa t ie  the effect o f  a&ient pressure on t flow. Rothe shoed that a t  a Reynolds hS nubcr  of  780, an anbient-to-total-pressure r a t i o  o f  3x10- was not enough t o  maintain f u l l  fla i n  
the nozzle. A barrel-shaped shock was present upstream of the nozzle ex i t  a d  the f low was sepc 
rated from the wall. As the arrbient pressure was raised, the separation point mved further in to  
tk nozzle. 

Rothe's ifivestiaation showed that la-Reynolds-nunbcr flow i n  a converging-diver~ing nozzle i s  
characterized by a large subsonic outer region and a n a m  supersonic core. Hence at  la R e w l d ~  
nunbers the ambient pressure could conceivably affect the flow through th is  large subsonic 
and may explain the effect exhibited i n  Refs. 1 to  3. Rothe's work also showed that as the Reynolds 
nuder was increased, the f low amre closely rescrbled isentropic flow and that shock waves wen 
present when the flow had to  adjust t o  a high anbient pressure. 

To further investigate the effects of  ad ient  pressure on low-Reynolds nusbtr nozzle flow and 
the i l~p l icat ions of testing small thrusters i n  a f i n i t e  aabient pressure, tests were conducted with 
several nozzles on unheated nitrogen and hydrogen over a Reynolds nulbcr range of W t o  12 000. 
Nozzle thrust was measured at various v r u m  f a c i l i t y  pressures ranging from 3rlO-' co 1 tow.  
The Ateasured alues o f  thrust corrected fo r  the ambient-pressure force were canparej t o  the deep- I vacuun (3x10- t ow )  value i n  an attenpt t o  investigate the range of Reynolds nubers where the 
ambient pressure might have a signif icant ef fect on thrust as exhibited i n  Refs. 1 through 3. An 
attempt was also made to  irivestiaate the effect of  Reynolds nu#&+ on the point where the flow begins 
t o  separate within the nozzle from the onset of  a shock wave. This e f fo r t  was undertaken t o  help 
define where thruster test data taken i n  a f i n i t e  a6 i en t  pressure can be accurately corrected t o  
space-vacuum conditions. 

APPARATUS A10 PfiOtEDURE 

Two convergin+diverging nozzles and an o r i f i ce  plate were used i n  the tests. Table I l i s t s  
the i r  dimensions, pressures, and flow rates. Nozzle A was similar to the nozzle on the TRY High 
Performance Electrothema1 Hvdrazine Thruster (H~PEHT)' and had an area r a t i o  o f  147. Wozzle B had 
a relat ively laroe throat d i e t e r  and was operated at nearly the same flow rates as nozzle A t o  
achieve lower throat Reynolds n-rs. Nozzle B i n i t i a l l y  had an area r a t i o  of  140 and was cut down 
t o  an area r a t i o  of 38 for subsequent tests. The o r i f i ce  plate had a conical i n l e t  with a 45. 
half-angle. 

Thrust measurements were mad on a thrust Stand that consisted of a ~or izonta l  mounting plate 
supported by four flexure plates.' Force i n  the horizontal direction either from thrust or applica- 
t ion of calibration weights was @asured by a strain-gage load cel l .  Prf~pellant was fed t o  the 



thrust  stand i n  a 3.2 m (118 i n )  d i e t e r ,  t h i ~ a 1 1 ,  stainless steel tube that  acted as a f i f t h  
flexure. Thrust-stand tares w e n  highly reproducible and load-cell d r i f t  was i n s i g n i f i c m t  f o r  
operation wi th  unheated propel lmts.  The estiamted precision of the thrust  e a s u n w n t  i s  rbout 
N.4 #. Tht uncertainty i n  the thrus t  r w a s u r c l l ~ ~ t  r a m  from t0.5 percent a t  75 di t o  tz.7 percent 
a t  22 * which was the rmqe of thrust  values f o r  the tests. 

Yindigc effects, o r  the c i rcu la t ion  o f  gases i n  the tes t  f a c i l i t y ,  produced a thrust-stmd 
deflection opposing the d i m t i o n  o f  mtzzle t h  st. Sow o f  the thrust  stand m r s  rpparently act 
as a osa i l o  i n  the c i rcu la t ing  gas e n r i r a n t ?  The windage e f fec t  was exzmined by f lawing gas 
thrwgh the o r i f i c e  p la te  which was located very m a r  but d i sconmc td  from the thrus t  stand aount- 
ing plate. Thrust s t m i  deft t ions w e n  m i t o r e d ,  at  the fla rates of interest, over a vacuu 
f a c i l i t y  pressure ramp o f  10' t o  LO tow.  The largest windage ef fects occurnd a t  an a i e n t  
pressure o f  about 0.05 tom. The nux i ru l  thrust correction f o r  windage was 1.5 percent f r nitrogen 
and 3 percent for  hyd-. T h e  windage corrections a t  ambient p m s u r ? s  less than 1x1OJ t o r r  
and greater than 0.3 t o r r  were always less than 1 percent. 

Gas f low rates were measured w i t h  mass-fla-rate transducers which used a heated cap i l la ry  tube 
t o  re la te  t h e m 1  changes t o  *ass flow ra te  and the ads heat capacity. The fla tranducers *tn 
calibrated r i t h  e i ther a i r  o r  nitrogen using a volume d i s p l u e r m t  mthod. A fla ra te  ca l ib ra t ion  
f o r  hydrogen was obtained using gas conversion factors supplied by the transducer venoor. Thus a 
greater uncertainty exists i n  the hydrogen flow ra te  measurement. 

The chnbCr pressure f o r  nozzle B was d i rec t l y  measured. The chvlbcr pressure f o r  nozzle A was 
assumed t o  be b e t e  the l i n e  pressure a d  the mini- chebcr  pressure calculated assuaing a 
thrust  c n f f i c i e n t ,  FvlPoA*, o f  1.6. A value of 1.6 was based on analysis and exptrir;cnt f ra~ 
Refs. 6 and 7. 

The tes ts  re re  conducted i n  a vxuua chgber  measuring 4.6 m i n  d i r ~ t e r  by 19 m lang8. The 
puq ing  systes i s  corprised of 20 o i l  l i f f u s i o n  pumps wi th four lobe-type blowers ins ta l led  i n  par- 
a l le l ,  for lowed by four ro ta t ing  piston-type roughing puaps. Vacuum c h d c r  pressures i n  the vicin- 
i t y  of the thr:cst s t m  w e n  easured r i t h  a hot cattmle ionizat ion gauge f o r  pressu es less than 
3xl(r4 tow,  & co ld  cathode gauge f rm lw4 t o  0.2 tc r r ,  an Alphatron gauge from l(Tf t o  0.5 tor., 
and a bourdon-tube gauge fe r  pressures greater than 0.5 tom. The indicated pressures were cor- 
rected for  gwge sens i t iv i ty  t o  propellant type. The uncertainty i n  the aabient pressure (Pa) m?+ 
sureant  belau 0.5 t o r r  ras es t im ted  t o  be less than $8 percent. The uncertainty i n  the pressure 
r a t i o  (PalPo) fo r  nG.:le A was less than *40 percent ana nozzle B, *ZO percent. 

A t yp i ra i  p l o t  o f  thrust  versus ambient pressure for nozzle A flawing hydrogel i s  shown i n  
Fia. 1. i t e  men symbols are the d i rec t  thrust apasurenpnts, F,, and the so l id  symbols are Fm 
corrected for the wbient  pressure force. 

The a i f fus ion pumps could maintain operation a t  pressures up t o  4x10-~ t o r r  f o r  0-1  g l s  of 
nitrogen 3nd 9x10'~ t o r r  f o r  the 0.03 g l s  o f  hydrogen. A fla ra te  o f  0.1 g l s  o f  nitrogen corns-  
ponded t o  a thrust o f  abwt  70 &. 

RESULTS AN0 DISCUSSIOU 

The r a t i o  o f  measured-to-vacum thrust f o r  the two convergingdi verging 9 2 2  les i s  pteSentcd 
fo r  throat Reynolds nunbers of 70C t o  12 000 as a function of PalPo. Since n, d*, P , and Po 
*ere a l l  varied, i t  was necessary t o  choose Re and PalPo as the independent variabfes. Measured 
thrust  refers t o  the thrust measured a t  a par t icu lar  vacuum chanbtr o r  anbient pressure. Vacuusl 
thrust i s  defined as the thrust masured a t  deep vdcclm (Pa c 5x10-~ t o r r )  . 

For reference, thrust measurements wi th the o r i f i c e  plate were taken over a range of d i e n t  
pressures. The aattient pressure had no e f fec t  on the thrust  measur nts. or  nitrogen, the thrust 
varied less than ' 2  percent over the range o f  pressure ra t ios  o f  10ISCto The thrust  was 
nominally 42 nN at a f lo* ra te  of 0.0786 91s. 

Figures ;! and 3 show the effect of aubient pressure on thrust f o r  nozzle A. Figure 2 shows the 
data taken wi th hydrogen and Fig. 3 the data wi th nitrogen. The open symbols are the actual ma- 
SurcARnts and the sol i d  symbols are the measurements corrected f o r  the ambient-pressure force. A t  
pressure ra t i os  less than 3x10-~ the ambient-pressure force i s  negligible. A t  Reynolds n-rs 
from 2000 t o  12 000 there i s  no discernable viscous ef fect  on thrust  below an mbient-to-total p n s -  
sure r a t i o  of 1x10-~. Relo* t h i s  pressure r a t i o  the corrected thrust i s  generally w i th in  *2 per- 
cent o f  the vacuum thrust. 

I n  the case where a shock stands i n  the nozzle, the thrust r a t i o  (F IFv) w i l l  be greater 
than 1.0 when Fm i s  corrected using the actual nozzle e x i t  area. I n  t 6 i s  case, the nozzle has 
an effective area less than the geometrical e x i t  area and F, i s  thus overccrrected. The c r i t e r i a  



that was used t o  determine the onset o f  flow reparation, or  the point where a shock roves in to  the 
nozzle, was the point *htn F IFv just  started t o  exceed 1.0. This point was considend the upper 
l i m i t  fo r  testing a nozzle desjgncd f o r  supersonic operation i n  space s imc  the thrust measured at  
higher pressure ra t ios cannot be c o r r u t t d  t o  v u w r  conditions. Data at  pressure ra t ios higher 
thrn the point where Fc/Fv > 1.0 wen consequently not c f  interest i n  t h i s  investigation. 

From thc so l id  s 1s i n  Figs. 2 and 3 it -ars that flow separation sets i n  at about a 
pressure r a t i o  o f  t o f  the Reynolds ntmber. This com la tes  with Rotk 's  observc 
t ions fo r  flow at  a Reynolds nukr of  780. As a point of reference, f ro  si.ple isentropic-flow 
calculations, a shock w i l l  tud at  the ex i t  of  b nozzle with m m a  ra t i o  (&/A*) of 140 at  a 1 pwssure r a t i o  of &out 10- . 

Figures 4 and 5 display the r a t i o  o f  wasu+cd-to-vacuu thrust fo r  nozzle 0 as a function of 
pnssure ratio. For nozzle 0 the Reynolds nubcr ranged from 680 t o  37M). I n  the case of nozzle B 
there i s  insufficient data t o  discern any v i x w s  effect on thrust a t  pressure ra t ios below the 
point o f  separation. The vacuu f a c i l i t y  could not provide a diffusion-pugcd environrnt a t  pres- 
s u n  ra t ios of i n t ens t  because o f  the re la t ive ly  high flow rates i n  the nozzle. The point o f  flow 
separation w a r s  t o  occur a t  about the s r e  point as f o r  the higher Reynolds nubcr  flows of 
nozzle A. 

W h e n  nozzle 8 was u t  3-1 t o  m area r a t i o  o f  M:l, f low separation occurred at  a higher pres- S sure ratio, about 3x10- (not shown i n  the figures). As expected a higher pressure r a t i o  was 
required t o  cause a shock i n  the nozzle of lower area rat io.  

Figure 6 contains l o s t  o f  the data from Figs. 2 t o  5 i n  a p lo t  of thrust r a t i o  versus pressure 
ratio. Also shown i s  the i s  tropic-flow c lculat ion o f  FdFv as a funct im o f  PalPo for an 
area r a t i o  o f  140. For l J <  PalPo < lr3, the calculated values of F IF are generally 4 t o  
9 percent higher than the measured values. The difference bet- the caTcu!ated and r a s u  
may be attr ibuted t o  the re la t ive ly  large uncertainty i n  P 1 . A t  values o f  PaIP ->  10-p?lucr 
shock stands i n  the nozzle and the isentropic calculation o# ~ J F ,  i s  no longer va?ld as the cal- 
culation w s  not carried through a shock. 

COllCLUDIffi REMARKS 

Thrust measurements of two converging-diverging nozzles and an o r i f i ce  plate flowing unheated 
nitrogen and hydrogen were taken over a wide range of vacuun f a c i l i t y  pressures and nozzle-throat 
Reynolds mrabtrs. The purpose o f  the tests was to  investigate the effect o f  vacuu fdc i  l i t y  pres- 
sure as a function of Reynolds nubcr  on the performance of small nozzles designcd t o  operate i n  
spwe vacuurs. 

I n  the Re) iolds nuslber range of 2200 t o  12 000 t r e  was no discernable viscous effect on hS thrust &?a an adient-to-total pressure r t i o  of  10- . I n  nearly a l l  cases, flow separation 
occurred at a pressure r a t i o  of  about I x I O - ~  This was the upper l i m i t  f o r  obtaining an accurate 
thrust I l e a s u r ~ e t  with the conical nozzles iaving an area r a t i o  o f  140. Tests with a nozzle of 
smaller area r a r l -  moved th is  point t o  a s l ight ly  higher pressure r a t i o  since a hightr  aditnt pres- 
sure would be required t o  cause a shock t o  move in to  the nozzle. 

Further investigaticn of the viscous effect on thrust w i l l  require that additional tests be 
performed using heated fiow at  loaer f low rates t o  achieve 1-r Reynolds nubers and ambient pns-  
sures than reported i n  th i s  paper. The sensi t iv i ty of  flow separation t o  nozzle area r a t i o  and 
contour i s  also of interest, and further testina i s  required t o  f u l l y  understand that inportant 
relationship. 
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TABLE I. - THRUSTER AND ORIFICE PLATE PARMTERS 

a~ Line pressure. 
b~h&nber pressure. 
CAnmonia. 

Nozzle A 

Nozzle 6 

O r i f  i ce  

res is to je t  

Throat 
dia, nm 

0.64 

2.06 

Area 
r a t i o  

147 

140.38 

Nozzle 
h a l f  

angle 

21' 

20' 

1 

37 

a5.8 
al~.~ 
a13.4 

a34.5 

Hydrogen Nitrogen 

Pressure. 
N I C ~ ~  

a10.7 

Pressuf. 
Nlc 

a10.4 

Flow r a t e  
~ l g l s  

9.8 

9.8 a5.6 ! 38.3 
19.6 a10.4 78.6 
27.1 1 3 4  1 0 4  

Flaq;:te 

38.3 
78.6 

104 
a19.5 
a26.8 

a20.3 :::: a26.6 

C13.9 6.9 

"0.50 
h .01  
"1.41 

a.c30.4 

9.8 b0.55 36.3 
19.6 b1.09 78.6 
27.1 
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Figure 1. - Typical p ld  d measured thrust versus vacuum 
facility pressure. 
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VACUUM VACUUM THROAT 
THRUST, SPECIFIC REYNOUIS 

mN IMPULSE, NUMBER 
s 

0 70.2 264 6100 
0 49.2 256 4400 

1x104 1~10-3 1~10-2 1~10-1 1 10 ~ U I  
VACUUM FACILITY PRESSURE, torr 

0.6 
1~10-7 1~10-6 1~10-5 1x10-4 1~10-3 3x10-2 1x10-1 

RATIO OF VACUUM FACILITY PRESSURE TO THRUSTER 
CHAMBER PRESSURE 

Figure 2. - Effect of vacuum facility pressure on thrust for 
nozzle A using hydrogen. 



VACUUM VACUWH THROAT 
THRUST, SPECIFIC REYNOUIS 

mN IMPULSE, NUMBER 
s 

o 75.1 n 12000 
0 5 4 7  74 9000 

a6 
1 ~ 1 ~ - 7  1~10-6 1~10-5 1~10-4 1~10-3 1~10-2 1~10-1 

RATIO OF VACUUM FACILITY PRESSURE TO THRUSTER 
CHAMBER PRESSURE 

F iq i re  3. - Effect d vacuum facil ity pressure o n  thrust for 
nozzle A us ing  nitrogen. 

VACUUM VACUUM THRWT 
THRUST, SPECIFIC REYNOLDS 

mN IMPULSE, NUMBER 
5 

0 648 247 1900 
0 4 a C  243 1400 
0 22.0 230 680 

0.6 
'. "'7 1x10-6 1x l0 -~  ~ X I O - ~  I X ~ O - ~  1~10'~ 1~10-I 

RATIO OF VACUUM FACILITY PRESSURE TO 
THRUSTER CHAMBER PRESSURE 

Figure 4 - Effect of vacuum facility pressure on th rus t  
for nozzle B us ing hydrogen. 



VACUUM VACUUM THROAT 
THRUST, SPECIFIC REYNOLDS 

mN IMPULSE, NUMBER 
S 

0 747 73.0 3700 
o 27.0 71.9 1 m  r 

-I FclFV -# r 
/' 

0 
F a 
CL 
* 0.9 
V) 
3 
e 
I 
C 

0.8 

0.7 
1x10-~ 1x10-~ 1x10-~ 1x10-~ 1x10-~ 

RATIO OF VACUUM FACILITY PRESSURE TO THRUSTER 
CHAMBER PRESSURE 

Figure 5. - Effect of vacuum facility pressure on thrust 
for nozzle B using nitrogen. 
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Figure 6 -Comparison of thrust ratio for various thrusters 
and propellants. 


