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TECHNICAL MEMORANDUM 

ELECTRICAL PROPERTIES OF Al-In-Sn ALLOYS DIRECTIONALLY 
SOLIDIFIED IN HIGH AND LOW GRAVITATIONAL FIELDS 

Center Director's Discretionary Fund Final Report 

INTRODUCTION 

The feasibility of producing high volume fraction immiscible alloys with finely 
dispersed microstructure by low-gravity solidification was demonstrated in 1974 r 11 . 
Ga-Bi samples solidified in free fall, with a gravity level of 10-4 g (g = 980 cm/s2), had 
much finer microstructure than the control samples solidified in normal gravity. It 
was also found that the electrical properties of the low-gravity solidified materials 
were significantly different from those of the control samples solidified under the 
same conditions except at one gravity [ 21. The potential to synthesize in space a 
new class of electronic materials was suggested by these initial experiments. How- 
ever, extensive studies along this line in space are limited due to high cost and 
limited access to orbital experimentation facilities. 

In an attempt to gain more insight into the low-gravity processing on the 
material properties of immiscible alloys, we decided to carry out a systematic study 
of materials solidified directionally in a Bridgman furnace on NASA's KC-135 aircraft. 
The advantages of using KC-135 are that it is relatively inexpensive, has a short 
turnaround time, and provides the capability when combined with unidirectional 
solidification of having in one sample a series of identifiable sections grown in low-g 
or high-g [3-51. The material chosen in this study is the ternary Al-In-Sn alloy [ 6 ] .  
This alloy was chosen because the A1-In binary has been well studied and the addi- 
tion of Sn to the A1-In binary would alter the interphase interfacial energy and the 
morphology of the solid-liquid interface and therefore the cast structure. 
would then help to identify the role of interphase interfacial energies during solidi- 
fication with varying g levels. 
AI-In, Al-Sn, and In-Sn alloys have been extensively studied. Therefore, an exten- 
sion of the study to the ternary system is a logical choice. 
studied in this report is the A1-18.9In-14.6Sn in weight percent. 

This study 

In addition, the electrical properties of the binary 

The specific material 

EXPERIMENTALS 

The Al-In-Sn alloys were directionally solidified in a high temperature Bridgman- 
type furnace with a water-cooled quench block. 
process samples during maneuvers of NASA's KC-135 aircraft. The aircraft flies a 
series of parabolas during which the onboard experiment experiences up to 30 s of 

Therefore, a sample which is being solidified experiences a repetitive sequence of 
low-g and high-g forces parallel to the longitudinal growth axis. The acceleration 
during processing is monitored by three accelerometers mounted on the furnace on 
orthogonal axes with one parallel to the longitudinal growth axis. For a typical 
maneuver during low-g, the acceleration on all axes averages below 10-2 g [ 71. 
During pullout and climb, the high-g acceleration parallel to the sample longitudinal 

The furnace system was used to 

. low gravity and up to 1.5 min of pullout and climb with up to 1 .7  g acceleration. 



axis reaches 1.7 g while the acceleration on the other axes is less than 0.15 g. 
growth rate for the A1-18In-14Sn sample was 0.5 c m  per minute. This results in 
low-g sections of about 2.5 mm alternating with high-g sections of about 7.5 mm. 
The samples were positioned relative to the thermal gradient of the furnace to allow 
about 2 cm of the sample to remain unmolten prior to directional solidification. 

The 

The solidified sample (8 cm long x 5 mm dia.) was first cut and mounted longi- 
tudinally, then polished using successively smaller grit. 
polished sample was examined under an optical microscope in reflected light to deter- 
mine the location of the boundary where directional solidification was initiated. 
Growth rate and accelerometer data were then used to correlate position on the 
sample with gravitational acceleration during solidification. 
Al- 18.9In- 14.6Sn flight sample for which properties data are reported here is shown 
in Figure 1. Samples of different gravity level were sectioned using a diamond saw, 
and smaller samples of dimension 1 mm x 1 mm x 3 mm were cut and used for elec- 
trical and magnetic properties measurements. The conventional d. c. o r  a. c. four- 
probe method was used for the electrical resistivity measurements. 
bridge operated at 40 H z  was used to measure the magnetic susceptibility. Trans- 
verse sections of different gravity level were mounted and polished for scanning 
electron microscope (SEM) study. 
employed to determine the chemical composition of the samples. 

The metallographically 

A photomicrograph of 

An a.c. inductance 

Wavelength dispersive x-ray (WDX) analysis was 

RESULTS 

Typical resistance, R ,  of samples solidified at different gravity levels is shown 
It can be seen that the resistance of low-g in Figure 2 as a function of temperature. 

samples is less temperature-dependent . 
of the samples measured which includes the sample section prior to directional solidi- 
fication and In-Sn alloys of two selected compositions. The resistance ratio [ defined 
as R(300  K)/R(Tc) where Tc is the onset temperature of the superconducting transi- 
tion] of high-g samples is larger than that of low-g samples. 
room temperature resistivity of the low-g samples is about a factor of 10 larger than 
that of the high-g samples. 
function of temperature for typical semi-metal and metal with a superconducting 
transition at low temperature. 
teristic curves in Figure 3 clearly indicate that the low-g sample behaves more like a 
semi-metal while the high-g sample is essentially metallic. 

Table 1 summarizes the electrical properties 

On the other hand, the 

Figure 3 is a schematic plot showing resistance as a 

Results given in Figure 2 in comparison to the charac- 

All samples studied become superconducting with an onset temperature ranging 
from 7.8 K to 6.3 K .  
and magnetic susceptibility at low temperature for a high- and low-g sections. 
average transition width is 3 K ,  showing the inhomogeneous character of our material. 
Since our main interest lies in the comparison of the characteristics of the low-g and 
high-g samples, we have taken the onset temperature of the transition as Tc. 
resistance ratio, and the gravitational acceleration parallel to the growth axis during 
solidification as plotted versus sample position are shown in Figure 5. 

Figure 4 shows the temperature dependence of the resistance 
The 

Tc ,  

In Figure 6 ,  we have shown an example of the detailed resistive behavior of a 
sample (Section 7) at low temperature. 
both low-g and high-g samples in the temperature regime right before the complete 
superconducting transition. 
denly rises before the complete transition. 
the measuring currents. 

An unusual electrical anomaly is observed for 

The resistance first decreases on cooling and then sud- 
The magnitude of the anomaly depends on 

A measuring current larger than 10 mA is found to 
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completely suppress the anomaly, leaving only the lower temperature superconducting 
transition (where T, is defined). An external magnetic field of 300 G is also found 
to suppress the observed anomaly. It should be noted that such an anomaly is not 
characteristic of an inhomogeneous sample with broad superconducting transition. 
addition, such an anomaly was not observed in the ground processed In-Sn samples. 

In 

Microstructure and chemical composition analyses of the samples have been per- 
formed using a SEM fitted with a WDX analyzer. 
the samples consist of particles of 1 0  to 50 v m  in size embedded in the aluminum 
matrix. 
dark and light particles in the light field SEN;. 
dark phase is about one-third of the particles. 
entirely of In and Sn. 
wt.% Sn and the Sn content does not change with g-level during solidification. 
the other hand, the Sn concentration of the light phase of the particles does appear 
to vary with gravity level. 
while its counterpart in high-g is mainly In-Sn with 75 w t . %  Sn. A summary of the 
results is also given in Table 1. 
variation in overall composition as function of gravity level. 

The micrographs clearly show that 

It is found that there are two different phases in these particles, viewed as 
The apparent volume fraction of the 
These particles are made almost 

The dark phase of the particles consists of In-Sn with 25 
On 

The low-g light particle is mainly In-Sn with 25 wt.% Sn, 

WDX measurements at 200X magnification show little 

DISCUSSION 

The results given in Table 1 and Figure 5 clearly demonstrate that the accel- 
erations during solidification greatly affect the electrical properties of the sample. 
The electrical behavior evidenced by small overall resistance ratio indicates that the 
samples studied are indeed inhomogeneous or  polyphase. 
dominated by the scattering of electrons by the dispersion of second phase which is 
the precipitated In-Sn embedded in the aluminum matrix if we consider the connecting 
path of the electron is the aluminum matrix. 
of an alloy depend on its particle size and the interface between particles [ 81.  
Smaller particles will lead to an increase in the surface-to-volume ratio with a subse- 
quent increase in electron scattering and interface effects. 
resistance ratio and the larger room temperature resistivity of the low-g sample over 
those of the high-g samples suggest that samples solidified at low-g may consist of 
finely dispersed particles. Unfortunately, we do not see any clear difference in 
particle size between low- g and high-g samples from photomicrographs. 
that the conducting path may be different for samples solidified at different gravity 
level. 

Their resistivities are 

It is known that the electrical properties 

The relatively smaller 

This suggests 

Based on the WDX composition analysis, it can be inferred from the phase 
diagram that low-g samples contain mainly f3 phase ( 2 5  wt.% Sn) In-Sn particles, 
while the high-g samples consist of small portions of 6 phase particles randomly 
distributed in the larger y phase (75  wt.% Sn) particles. 
unreasonable to assume that for the high-g samples, the connectivity of the conducting 
path is through the aluminum matrix, and for the low-g samples, it is through the 
precipitated In-Sn particles. This model is shown schematically in Figure 7. The 
observation of the resistive behavior of the ground processed In-Sn samples, which 
is similar to that of the low-g samples but different from that of the high-g samples, 
seems to support such an assumption. 
then the smaller dark particles and the larger light particles for the low-g and high-g 
samples, respectively. 
one-third that of the light particles. 

Therefore, it is not 

With this model, the scattering centers are 

A s  mentioned earlier, the size of the dark particles is about 
This corresponds to a factor of 10  reduction 
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in surface-to-volume [8] ratio for the dark particles. 
resistivity in low-g samples is then expected. This is consistent with the observed 
difference in room temperature resistivity and resistance ratio between the low- g and 
high-g samples. A photomicrograph study of the deep etched sample indeed shows 
that the precipitated particles are more dense in the low-g sections than in the high-g 
sections, but attempts to  quantitatively verify the difference in the connectivity of 
the In-Sn phase have been thus far inconclusive. 

A factor of 10 increase in 

The superconductivity observed is attributed to the presence of the In-Sn 
phase. 
It was found that Tc of the quenched samples varies from 7.8 K to 5.5 K with Sn 
content [ 9 ] .  
while y phase alloys have Tc on the order of 6 K .  
perature of In-Sn alloys as a function of Sn content along with the In-Sn binary 
phase diagram is shown in Figure 8. 
low-g samples have Tc about one degree higher than that of the high-g samples, and 
our hypothesis based on WDX analysis that the low-g particles are essentially f3 phase 
while high-g sections contain mainly y phase particles. 

Superconductivity of the In-Sn system has been extensively studied [ 9- 111 . 
Peak Tc of 7.8 K occurs at the f3 phase with composition of 30 wt. % Sn, 

Superconducting transition tem- 

This is consistent with our observations that 

The resistive anomaly observed at low temperature is rather unusual. The 

It suggests that the sample 
dependence of the anomaly on transport currents and external magnetic fields indi- 
cates that the anomaly is superconducting in origin. 
undergoes a normal + superconducting -+ normal -+ superconducting transition. I t  
is known that a granular superconductor, in which the superconducting grains are 
coated with an insulating layer or imbedded in an insulating matrix, may exhibit 
reentrant superconductivity [ 12-14] .  
sample, it is very possible that there exist small superconducting grains coated with 
thin insulating film that have relatively larger Tc than that of the major In-Sn 
particles. 
temperature decreases, superconductivity appears in the small grains and phase 
matching between grains is established through Josephson coupling, resulting in the 
decrease in resistance. Upon further cooling, decoupling between the superconducting 
grains occurs when the resistance of the insulating fi lm reaches a certain value and 
results in an increase in resistance. However, at a lower temperature where the 
major In- Sn particles become superconducting, a complete transition occurs through 
the connectivity of these particles. The facts that a magnetic field of 300 G and a 
current density of 1 A / cm2  completely suppressed the anomaly indicate that the 
superconductivity of these small grains is a weak coupling type. 
whether the exact origin of this superconductivity is due to the In-Sn micrograins or 
some unidentified phases (such as interfacial effects [ 151 between particles) is 
unknown. The absence of the anomaly in the ground processed In-Sn samples 
suggests that the presence of aluminum may play an important role. 
noted that such a "tricriticle transition" has been observed in an Au/Ge alternating 
ultra-thin layered film [ 161 . 

In view of the inhomogeneous nature of our 

The observed resistive behavior can then be understood as follows: as 

At this moment, 

It should be 

The observation of a preferential phase formation at different gravity of the 
Al-In-Sn system is surprising. 
being pursued, 
diagram is underway. 

More detailed compositional study of the samples is 
A careful analysis of the microstructure in relation to the phase 

The results will be presented in a separate paper. 

In conclusion, w e  have studied the ternary, Al- 18.9In-14.6Sn directionally 
Electrical properties measurements of the samples 

(1) Low-g samples behave more like a 
solidified in NASA KC- 135 aircraft. 
solidified at different g levels show that: 
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semi-metal while high-g samples are e s s e n w y  metallic. 
samples are superconducting but Tc of 1o.w-g samples is 1 K higher than that of 
high-g samples. 
observed in the samples studied. 

( 2 )  Both low-g and high-g 

(3) A resistive anomaly attributed to reentrant superconductivity is 

I 
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TABLE 1. ELECTRICAL PROPERTIES OF Al- 18.9In- 14.6Sn 

Sn Con ten t  
(wt  . %) 

Sample No. ~ ( 2 7 3  K )  ( V Q - c m )  p(273 K ) / p ( T c )  Tc ( K )  (LPP)  (DPP) G 

1 13.5 38.3 6.5 24 19  1 

2 121.2 1.54 7.4 26 25 Low 

3- 1 9.3 25.4 6.7 72 19  High 

3- 2 103.2 7.9 7.1 22 19  Low 

4 19.1 15.2 6.5 68 2 1  High  

5 123.6 5.6 7.8 26 19  Low 

6 14.9 4.7 6.7 50 2 1  High  

7- 1 731.7 0.78 7.3 21 26 Low 

7- 2 395.2 1.8 7.4 2 1  26 Low 

8 15 .5  13.9 6 .5  73 26 High  

9 

A1 

46.7 2.4 7.3 - - Low 

1.17 4.2 l o 3  1.17 

In7sSn25 ( 6 )  56.1 2.15 7.1 

1n25Sn75 (Y) 70.1 2.57 6.4 

LPP:  L i g h t  Phase Particles 
DPP: D a r k  P h a s e  Particles 
G :  Level  of Accelerat ion 

. 
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Figure 2. Normalized resistance R(Tc)/R(300 K) as a function of temperature of 
Al- 18.9In- 14.6Sn sections solidified under different levels of acceleration. 
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Figure 3 .  Schematic plot illustrating the characteristic behavior of 

resistance as a function of temperature for semi-metal and for 
metal with superconducting transition at low temperature. 
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LOW-G SAMPLE 

HIGH-G SAMPLE 

Figure 7. Schematic plot showing the proposed model for the current 
conducting path for sample solidified in low g and in high g. 
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