
NASA 
Tech n i ca I 
Memorandum 

NASA TM-86579 
I 

( N A S A -  Ttl- E6 5 7 9) 

ON THE ANALYTICAL DETERMINATION OF RELAXATION 
MODULUS OF VISCOELASTIC MATERIALS BY PRONY'S 
INTERPOLATION METHOD 

By Pedro I. Rodr iguez  

Structures and Propulsion Labora to ry  
Science and Enginee r ing  Di rec to ra t e  

December 1986 

C N  3 f i E  A N A I k I I C A Z  
D E T E R E F N A T I G N  C E  E E L A X B T I C ~  ~ C E U L U S  OF 

I N 2 E R E O L A S l C U  M E I H O D  ( L A S A )  , I  F CSCL I L A  U n c l a s  
V l S C O E L A S T I C  B A I I E E I A L S  BY E I i C Y Y  ' 5  

G3/b4 43E55 

National Aeronautics and 
Space Administration 
George C. Marshall Space Flight Center 

MSFC - Form 3190 (Rev. May 1983) 



ACKNOWLEDGMENTS 

The author would like to express his appreciation to Mrs. Caroline Wimer for 
her enthusiasm and patience in typing, proofreading, and the retyping the manuscript. 
To her I am truly grateful. 

c 



TABLE OF CONTENTS 

INTRODUCTION .............................................................. 
DESCRIPTION OF PRONY 'S METHOD .......................................... 
COMPUTER IMPLEMENTATION ................................................ 
NUMERICAL EXAMPLES ....................................................... 

TP-H1148 Solid Propellant .............................................. 
V- 747- 75 Fluorocarbon 0 - R i n g  Material .................................. 

DISCUSSION OF RESULTS .................................................... 
CONCLUSIONS ............................................................... 
APPENDIX A . CURVE FITTING PRONY'S EQUATION BY THE METHOD 

OF LEAST SQUARES ......................................... 
REFERENCES ................................................................. 

Page 

1 

2 

6 

7 

7 
1 2  

16 

1 9  

21  

25 

iii 



LIST OF ILLUSTRATIONS 

Figure 

1 . 
2a . 
2b . 
3 . 
4 . 
5 . 

6a . 
6b . 
7 . 
8 . 

Title 

TP-H 1148 Relaxation Modulus ......................................... 
TP-H 1148 Modulus versus actual time ................................. 
TP-H1148 B-Spline Modulus versus actual time ........................ 
TP-H 1148 Modulus (first 0.020 min) ................................... 
TP-H 1148 curve fi t  (Prony's method) ................................. 
V- 747- 75 Relaxation Modulus .......................................... 
V- 747- 75 Modulus versus actual time .................................. 
V- 747- 75 B-Spline Modulus versus actual time ......................... 
V-747-75 Modulus (first 0.080 min) ................................... 
V- 747- 75 curve fit (Prony's method) .................................. 

Page 

7 

8 

8 

9 

11 

12 

13 

13 

14 

17 



LIST OF TABLES 

Table 

1. 

2.  

3. 

4. 

5 .  

A-1. 

Title Page 

FORTRAN Program PRONY ........................................... 6 

10 

V- 747- 75 Fluorocarbon Relaxation Modulus ............................ 15 

TP-H1148 Result Comparison Chart ................................... 18 

V- 747- 75 Result Comparison Chart .................................... 18 

FORTRAN Program CFIT ............................................. 24 

TP-H 1148 Propellant Relaxation Modulus.. ............................. 



TECHNICAL MEMORANDUM 

ON THE ANALYTICAL DETERMINATION OF RELAXATION MODULUS OF 
VISCOELASTIC MATERIALS BY PRONY'S INTERPOLATION METHOD 

INTRODUCTION 

When analyzing materials with time dependent mechanical properties, it is Of 
vital importance that the characterization of such properties be accurately defined. 
For viscoelastic materials, properties such as Relaxation Modulus, Creep Compliance, 
and time-dependent Poisson's Ratio are of utmost importance for numerical and closed- 
form solutions to various problems. 

A popular method of obtaining analytical expressions for these properties con- 
sists of obtaining discrete values as a function of the logarithm of time and curve 
fitting the data to an appropriate expression. Due to the decaying nature of such 
properties as Relaxation Modulus and Poisson's Ratio, they are conveniently repre- 
sented as a series of exponential functions. A widely used form of these functions is 
the so-called Prony series (due to Gaspard Francois Clair Marie Riche de Prony, 
1755- 1839), which can be expressed as, 

i= 1 

When using expressions such as this for curve fitting it is noted that there are 
too many unknowns for the amount of equations available for simultaneous solving. 
This generally leads to a trial-and-error approach where values of yi are assumed, 
and an expression for the time-dependent variable is obtained. 
repeated until a satisfactory curve fit has been obtained. 

This process is 

The intent of this paper is to demonstrate that with the use of the Intergraph 
Interactive Graphics Design System (1.G .D. S .) and its three-dimensional sculptured 
surfaces capability the true Prony method can be efficiently used, and the trial and 
error approach totally eliminated. 
to a third-degree, B-Spline interpolation which can be done quickly and with double 
precision accuracy on the I.G.D.S. 
desired number of equally spaced increments of time for the application of Prony's 
method. 
order to apply the method properly. 
results is not compromised by the introduction of the intermediate step of the B-spline 
interpolation. 

This is accomplished by curve fitting the test data 

The resultant curve can then be divided into the 

It must be stated at this time that equal time increments are necessary in 
I t  will  also be shown that the accuracy of the 

The method is applied in this paper to a solid rocket propellant (TP-H1148) and 
a fluorocarbon elastomer commonly used as O-ring material (V-  747-75). 

The calculations are performed on a Univac 1108 computer and the graphics on 
a VAX 780 computer, both with double precisis: accuracy. 



DESCRIPTION OF PRONY'S METHOD 

This method is well documented [7,1,6] and will  be explained here as a means 
of describing the Fortran program PRONY which will solve, without trial and error,  
for the exponents yi. 

Let Prony's equation be of the form 

m 

where k = 0,1,2,. . .n ;  i = 1,2,3, .  . . m ;  and n L 2m - 1. 
value of Y i  
the successive values of time (abscissa) must form an arithmetic progression, that is 
tk = to + kw, where w is the difference between any two successive values of time. 
Equation (1) can now be expressed as, 

We first intend to obtain the 
We must remember at this time that, and then the values of A and Bi.  

n i= 1 

It is convenient to use the following a,,revia 

Y i W  
V. = e 

1 

Yito C. = B. e 
1 1 9 

therefore, equation (1) becomes the set of equations 

m 

T ( t )k  = A + x  C . V F  1 
. 

i= 1 

ions to simp ify equation ( 2 ) ,  

( 3) 

( 4 )  

( 5 )  

Willers E71 explains how the process of obtaining the yi can be simplified by 

forming the difference between two successive ordinates in order to conveniently 
eliminate A from the approximating equations. A s  an example, take 4 equidistant 
measurements and 3 exponential terms or k = 0 ,1 ,2 ,3  and i = 1 , 2 , 3 ;  this will lead to 
the following set of equations ( 5 ) ,  

2 



= A + c1v13 + c ~ v ~ ~  + c3v3 3 
f;t), 9 

the differences can be expressed as ,  

- 
( t l0  

A 1-0 = C1(V1-1) + C2(V2-1) + C3(V3-1) = P(t)l  - T  

- 
= C,(V,-1)V12 + c2(v2-l)v22 + C3(V3-1)V,2 = F(t)3 - A 3-2  

- 
A 4-3 = cl(vl-1)v13 + c2(v2-1)v23 + c3(v3-1)v33 = F- ( 0 4  - %I3 

If we let the values of Vi be the roots of the equation 

m - 2  + vm + s1 v m-l  + s2 v ... + smLl v + s  m = o  

then we can solve for the values of yi from equations ( 3 )  or 

1 = - log, vi . Y i  w 

When trying to interpolate with three or more exponential 
tion ( I ) ]  there is the possibility of encountering complex roots Vi. 
precludes successful curve fitting. It does, however, change the final form of equa- 
tion (1) thus forcing the analyst to utilize an expression with a combination of expo- 
nential and harmonic terms [ 1 , 7 ]  . On the other hand, if the value of Vi is a negztive 

This by no means 

( 9 )  

terms [ m  2 3 in equa- 

3 



real value then equation (9 )  becomes unsolvable due to the fact that the natural 
logarithm of a negative number is undefined. 
impressive accuracy can be obtained, for the materials in question, by using 2 expo- 
nential terms in equation (1) , precluding the necessity for value of m greater than 2. 
Our problem now becomes that of obtaining the values of the S. in equation (8 ) .  
Equations ( 7 )  can exist simultaneously if we write 

Fortunately, it has been found that 

1 

If we have a total of n+l  data points and m exponential terms in the Prony series, we 
can obtain a total of n-m+l equations of the form (10)  or 

- 
S + ' 2 -1  S m - 1  + ... + a = o  '1-0 m ( m + l ) - m  

- - 
'3-2 s m + a  4-3 S m - 1  + . ' *  + ' (m+3)-(m+2) = o  

Equations (11) can readily be expressed in matrix form as 

r - - - ' ( m + l ) - m  ... ' 1-0 '2 -1  
- ' 2 - 1  

or simply 

161 {SI = 0 

'rn 

'm- 1 

1 

= o  

where the 6 matrix contains the ak-(k-l) coefficients and, in this case, k = 1,2 , 3.. .n. 
We can express (13a) in tensor notation as 

- 
6 s r = o  

q r  

4 



where 

q = 1 , 2 , 3  ... n-m+l 

r = 1,2,3 ... m + l  3 

- - - 
etc. From equations (13) we can - 

'3-2' in this manner we have Tl1 = A l-o, 6 22 - 
form a set of normal equations [ 1 , 7 ]  by the method of least squares which written in 
matrix form are 

In the tensor notation we have 

ajR s = E. a 1  

where 

j , R  = 1 ,2 ,3 ,  ... m 

and 

n-m+l 

q= 1 

n-m+l 

q= 1 

where p = m + l .  

Once the and E. are obtained, equation (14a) can be solved for {SI  by 
'j 1 

premultiplying both sides of the equation by the inverse of [a] or 

Equation (8)  can now be solved for the Vi and from equation ( 9 )  the exponents yi can 
be obtained. 

5 



COMPUTER IMPLEMENTATION 

Table 1 is the listing of the FORTRAN program PRONY 
method. The program reads the xi and yi, in this case time 
and forms the a matrix. It is then inverted by means of the 
method and the values of S are obtained as in equation (17) .  

Once the Si are obtained, then the yi can be obtained. 

implementing the Prony 
and Relaxation Modulus, 
Gauss-Jordan reduction 

It is then a simple 

more to solve for the constants A and Bi by means of the least-squares method. 

TABLE 1. FORTRAN PROGRAM PRONY 

PEOROBIN197*ME799(1) .PRONV 
1 
2 
3 
4 
5 
6 
7 
B 
9 

1 0  
1 1  
12 
1 3  
14 
1 5  
16 
1 7  
18 
19 
20 
2 1  
2 2  
2 3  
2 4  
25 
26 
2 7  
28 
2 9  
30 
31 
32 
33 
3 4  
35 
36 
37 
38 
39 
4 0  
4 1  
4 2  
4 3  
44 
45 
4 6  
4 7  
4 8  
49 
50 
51 
52 
53 
54 
55 
56 
5 7  
58 
59 
60 
61 
62 
63 

PARAMETER N.32, M = 2 ,  NM1 =N- 1 ,  MP 1 =M+ 1. M 2 = 2 + M  
PARAMETER NM1M=NMl-M.M2PZ12*M+2,M4P4=4*M+4 
DIMENSION J C ( 1 2 )  
DOUBLE PRECISION R O O T ( M 2 P 2 ) . A A ( M 2 P 2 ) , 6 B ( M Z P Z )  
DOUBLE PRECISION CC(M4P4).W.GAM.GAMMA 
DOUBLE PRECISION V(P) .S (MPl )  
DOUBLE PRECISION E ( N ) . T ( N ) . O I F F ( N M l ) . O E L T A ( N Y 1 M . M P 1 )  
DOUBLE PRECISION ALPHA(M.YPl) .EPS(M) 
00 10 K - l . N  
REA0(5 ,100)T (K) .E (K)  
WRITE( 10 .100)T (K) ,E (K)  

100 FORMATO 
10 CONTINUE 

00 1 1  K- l .NM1 
KP1=K+1 
O I F F ( K ) - E ( K P l ) - E ( K )  

00 12 1-1.NM1M 
00 1 2  J - l . M P 1  
J J = I + J -  1 . 

1 1  CONTINUE 

O E L T A ( I . J ) = O I F F ( J J )  
1 2  CONTINUE 

00 1 4  I - l . M  
00 1 4  J'1.M 
ALPHA( I, J ) * O .  0 
DO 1 4  K= l .NMIM 
A L P H A ( I . J ) - A L P H A ( I , J ) + O E L T A ( K . I ) + D E L T A ( K . J )  

00 1 5  I'1.M 
E P S ( 1 ) - 0 . 0  
00 15 J = l . N H l M  
EPS(I)=EPS(I)+OELTA(~,I~*OELTA~d,MPl) 

00 16 I.1.M 
ALPHA(I.MPl)=-l.O*EPS(I) 

1 6  CONTINUE 
V ( 0 ' 4 . 0  
CALL O G J R ( A L P H A . M P 1 . M . M . M P 1 . $ 3 0 0 . J C . V )  

1 4  CONTINUE 

15 CONTINUE 

300 W R I T E ( 6 , 3 0 1 ) J C ( O  
3 0 1  FORMAT(' SYSTEM SOLVE0 UP TO EOUATION NO. ' .13/ / )  

S( 1 ) = 1 . 0  
00 1 7  I - l . M  
J = M - I + Z  
S(J )=ALPHA( I .MP l )  

00 18 I -1 .MP1 
WRITE(6 .400)  I . S ( I )  

1 7  CONTINUE 

400 FORMAT(' S ( ' . I 2 . ' ) * ' . E 2 0 . 6 )  
1 8  CONTINUE 

TOL-1 .0 -16  
CALL ROOTZ(S.M.ROOT.AA.BB.CC.TOL)  
W R I T E ~ 6 . 6 l ~ ~ R O O T ~ I ~ . I - l . M 2 ~  

61 F O R M A T ( 2 0 X . ' R O O T ' . 5 X . 2 E 3 0 . 8 )  
W.T(3)-1(2) 
00 19 I.1.M 
NN- 2 * I - 1 
GAM=ROOT(NN) 
GAMMA.(OLOG(GAM) ) / W  
WRITE(6.700)GAMMA 

700 F O R M A T ( 2 O X . ' E X P O N E N T ' . E 3 0 . 8 )  
1 9  CONTINUE 

STOP 
E N 0  

eBRKPT PRINTS 

6 
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NUMERICAL EXAMPLES 

TP-H 1148 SRM Propellant 

Figure 1 shows a plot of the Relaxation Modulus versus log of time as obtained 
from a stress relaxation test [21 . 

- 1.659583-3 to 1.659583+1 min. In order to properly apply this method, this data must 
be plotted in real time and then divided into equal time increments, w. This would be 
close to an impossible task unless performed on a graphics computer with the capabili- 
ties of I.G.D.S. 

A s  can be seen, the time range extends from 

-1.78 -1.28 -0.78 -0.28 0.22 0.72 122 -2.78 -2.28 

LOO OF TIME IN MINUTES 

Figure 1. TP-H 1148 Relaxation Modulus. 

A s  can be seen in Figure 2a, we have plotted seven of the nine data points 
presented in Figure 1. 
curve, even though all nine points are used when performing the B-Spline interpola- 
tion shown in Figure 2b. As can be seen, the greatest relaxation occurs during the 
first 0.020 min of the test, and therefore we shall concentrate on this portion of the 
curve. 

This is done in order to show with clarity the shape of the 

By llzoorning-inl' to the portion of interest, we can take increments of time of 
0.001 min. 
The I.G.D.S. can accurately locate the intersection between the B-Spline curve and 

These values can be read directly off the screen and tabulated as 1.n Table 2 .  This 
is the basic information required in order to run PRONY. 

Figure 3 shows the portion between 0.002 and 0 .020  min of Figure 2b. 

- the time increments to yield values of Relaxation Modulus, E ( t )  , at each intersection. 
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20 

15 

E (t) 
KSI 

10 

5 

0 .005 .010 .015 .020 

TIME IN MINUTES 

Figure 3 .  TP-H1148 modulus (first 0.020 min). 

Equation (1) shows the general form of the Prony series used in our discussion. 
For this example let us take m = 2 since at m 2 3 we have encountered complex values 
of Vi. By inputing the data from Table 2 into our program we obtain the following 
form of equation (8) : 

V 2  - 0.822591 V + 0.095196 = 0 

where, 

S1 = -0.822591 

S2 = 0.095196 

The solution of equation (18) yields the following roots 

9 



TABLE 2 .  TP-H 1148 PROPELLANT RELAXATION MODULUS 

TIME 
(MINUTES) 

.002 

.003 

.ow 

.005 

.006 

.007 

.008 

.009 

.010 

.011 

.012 

.013 

.014 

.015 

.016 

.017 

.018 

.019 

.020 

V 1  = 0.6832668 

V 2  = 0.1392342 

20.3704 
18.1835 
16.0257 
14.4590 
13.3989 
12.6508 
12.1197 
11.7508 
1 1 5090 
11.3706 
11.2952 
11.2244 
11.1563 
11.0909 
1 1.0282 
10.9683 
10.9112 
10.8569 
10.8056 

Substitution of equat ions  (19 )  into equations ( 9 )  yield the values of the required 
exponential term c o n s t a n t s .  

- loge 0.6832668 = -380 .8698 y 1 -  o.001 

loge 0.1393242 = -1971.8239 1 - 
y 2  - m 

We can now rewrite our P r o n y  equation as 

-380.8698 t + B2 e -1971.8239 t E ( t )  = A + B 1  e 

10 



where t = time in minutes, and A ,  B 1 ,  and B 2  are constants to be determined by the 
method of least-squares [ 51.  These constants are,  

A = 10973.3 

B1 = 23397.3 

B 2  = -79056.7 

It should be noted that equation (21)  is valid only for the time range 0.002 to 0.020 
min and that extrapolation beyond this range can lead to erroneous results. 
shows a plot of equation ( 2 1 )  as compared to the B-splined experimental data. 
can be seen extremely good accuracy is obtained with only 2 terms. 

Figure 4 
A s  

E (t) 
KSI 

20 

15 

10 

5 

0 

- - -  
I 

t 
I 

I 

I 

I 

I 
I 
I 
I 

- - - -  
I 1 - -  

RELAXATION MODULUS FROM B-SPLINED TEST DATA : 
I 

I , --- LEAST SQUARES CURVE FIT 
* . . I  

.006 .010 .015 .020 

TIME IN MINUTES 

Figure 4. TP-H 1148 curve fit (Prony's method). 
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V- 747- 75 Fluorocarbon 0-Ring Material 

Figure 5 shows a plot of the Relaxation Modulus versus log of time as obtained 
Once again the time range extends from 1.659583-3 from a stress relaxation test [ 41. 

to 1.659583+1 min. 
followed in order to obtain values of E(t) as a function of equal time increments w .  
Figures 6a and 6b are plots of actual data points and B-Spline interpolation, respec- 
tively. 

The same procedure as for the TP-H1148 solid propellant is 

5 0 0 0  

4 0 0 0  

3 0 0 0  

2 0 0 0  

1 0 0 0  

0 

I I I I I  
V-747-75 FLUOROCARBON O-RING 
MATERIAL AS MEASURED TEST DATA 
AT 3OoF AND 2% STRAIN 

- 2 . 7 8  - 2 . 1 8  - 1 . 7 8  - 1 . 3 8  - 1 . 0 8  -0 .90  - 0 . 7 8  0.22 1.22 

LOG OF TIME IN MINUTES 

Figure 5. V- 747- 75 Relaxation Modulus. 

For this example we shall take equal increments of time of 0.0025 min and 
analyze the portion of the curve that extends to 0.0800 min. 
equal time increments, and Table 3 shows their respective values of Relaxation Modulus 
as obtained from the I .G .D . S .  

Figure 7 shows the 

With this information we are again ready to run PRONY. 

Again we have found that for m 1 3 we encounter complex values of Vi; there- 
fore, for m = 2 we obtain the following form of equation (8). 

2 V - 1.14458 V + 0.255224 = 0 

with 

S1 = -1.14458 

S 2  = 0.255224 . 

1 2  
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TABLE 3. V-747-75 FLUOROCARBON O-RING MATERIAL RELAXATION 
MODULUS AS OBTAINED FROM FIGURE 7 ,  FOR TIME BETWEEN 

0.0025 AND 0 .0800 MINUTES 

TIME 
(MINUTES) 

.0025 

.0050 

.0075 

.0100 

.0125 

.0150 
,0175 
.0200 
.0225 
.0250 
.0275 
.0300 
.0325 
.0350 
.0375 
.04W 
.0425 
.0450 
.0475 
.woo 
.0525 
.%50 
.m75 
.moo 
.M25 
.0650 
.0675 
.0700 
.0725 
.07 50 
.0775 
.0800 

3977.9 
3317.1 
3032.1 
2873.1 
2772.4 
2687.4 
2613.8 
2551.3 
2499.9 
2459.7 
2430.5 
241 1.6 
2395.4 
2379.8 
2364.8 
2350.4 
2336.6 
2323.6 
2310.7 
2298.7 
2287.2 
2276.4 
2266.1 
2256.4 
2247.3 
2238.7 
2230.6 
2222.8 
2215.5 
2208.1 
2202.1 
2196.1 

15 



The roots of equation (23)  are 

V1 = 0.84113 

V2  = 0.30345 

The required exponential constants are obtained from equation ( 9 )  as 

1 1 

loge 0.84113 = -69.204 (25a) 
I I 

0.0025 y1 = w loge v1 = 

- log, 0.30345 = -477.017 - 1 
y 2  - w loge '2 - 0.0025 

Our Prony equation for the V-747-75 material during the range 0.0025 5 t L 0.0800 
is now 

- 477.017t 
-69-204t + B 2  e E ( t )  = A + B1 e 

The constants A ,  B 1, and B 2  can be determined by the method of least squares [ 51, 

A = 2239.88 (27a) 

B1 = 1247.08 (27b) 

B 2  = 2253.44 (27c) 

Figure 8 shows a plot of equation (26)  as compared to the B-Splined experimental 
data. Again a good correlation between the data and the curve fit is seen. 

DISCUSSION OF RESULTS 

Tables 4 and 5 show the comparison between the test data and the results from 
We can see in both cases that there is very good accuracy between test PRONY.  

points and curve fit points as long as we maintain ourselves between the time range 
under study or as determined by Tables 2 and 3. In both cases the value of E ( t )  
departs from the actual values as soon as we leave the time range under study. At 
the beginning of the time range this problem can be overcome by extrapolating the 
the test data on to t = 0 [or t = 0.00001 min to avoid numerical problems when plotting 
Log(t)]. A t  the end of the time range the accuracy can be maintained by including 
as  many time points as required for a specific analysis. 

16 



, 
l a 

a n 
r - - - - - - - - - - -  I- 

I - - - - - - - - - - 
. _ _ _ _ _ _ _ _ _ _  
, 
I - - - - - - - - - -  

I - - - - - - - - - -  

c, w 
I- 
n 
w z 
J 
Q 
v) 
I m 
L 

LL 
v) 

2 
3 

0 
L 
z 
0 
i= 
4 
X 

n 

5 
w 
K 

I 

v) 
W c 
3 z 
f 
E 
- 
w 

I- 

8 
d 

17 



TABLE 4. 

Time (min) 

0.00166 

0.00661 

0.01666 

0.04168 

TABLE 5. 

Time (min) 

0.00166 

0.00611 

0.01666 

0.04168 

0.08318 

TP-H1148 RESULT COMPARISON CHART 

Relaxation Modulus (ksi) (0.002 1. t 5 0.020) 

Test Data B -Spline PRONY 

21.114 21 .114  20.412 

12.913 12.913 12.861 

10.992 10.992 11.014 

10.144 10.144 10.973 

V-747-75 RESULT COMPARISON CHART 

Relaxation Modulus (psi) 
(0.0025 I t I 0.0800) 

Test Data B - Spline PRONY 

4247.00 4247.00 2636.05 

3113.00 3113.00 3179.15 

2639.00 2639.00 2634.39 

2341.00 2341.00 2309.58 

2189.00 2189.00 2243.82 

Another point of interest is that if any of the roots of equation ( 8 )  are negative 
we will not be able to solve equation ( 9 )  for that particular yi since the natural 
logarithm of a negative number is undefined. 
not been addressed by any available source on the implementation of Prony's method 
[ 1 , 6 , 7 ]  . 
require that the values of Vi meet the following requirements : 

A method to overcome this problem has 

It is the author's belief that due to the nature of equation (9 )  we must 

1. 

2. 

All Vi shall be positive real values or  complex conjugates. 

If the data to be curve fitted is of a decaying nature as a function of time, 
the Vi must be less than 1.00 except for complex conjugate values. 

the Vi must be greater than zero, with at least one greater than 1, except for com- 
plex conjugate values. 

3. If the data has increasing values of the or'dinate with increasing time, then 
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CONCLUSIONS 

A very good tool for the analytical determination of functions which can be 
represented by a series of exponential terms is available. The method, when utilized 
properly, can provide the analyst accurate expressions of the ordinate in question. 
Although the method leaves the unanswered question of what to do when Vi is a real 
negative number, the author feels that enough accuracy for materials such as elas- 
tomers and solid propellants can be obtained to perform an accurate stress and strain 
analysis of these materials under load. 

. 
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APPENDIX A 

CURVE FITTING PRONY'S EQUATION BY THE METHOD OF LEAST SQUARES 

A f t e r  obtaining the values of the yi exponents, Prony's equation (1) can be 
solved for the A and Bi constants from the data points by using the method of least 
squares [ 5,7] . 

The method, due to Legendre, is applied to Prony's equation as follows. Let 
Prony's equation be 

n 
Yit 

F(t) = A + B~ e 
i= 1 

If we want to approximate a curve with f ( t )  as its discrete data points, we can 
express a deviation for the argument value of t as,  

where m = 1,2,3,. . . , k and k is the total number of data points. 
squares of all the deviations is expressed as,  

The sum of the 

k k 
D = (f(t)m - f ( t )m)2 = 6 m  2 

m = l  m = l  

If we substitute equation (A-1)  into equation ( A - 3 ) ,  we obtain, 

The 
this 

k 

D = C  ( A +  

m= 1 

method of least 
to be true it is 

i= 1 

(A- 3) 

(A-4 )  

squares requires that equation (A-4)  be a minimum. 
necessary that 

In order for 

From equations (A-5)  and (A-4)  we can write, 

(A-5) 
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m= 1 i= 1 

k n 
aF(t) 
a B, - f(t),) - = 0 Yitm l a D  - ( A + C  ~~e 2 aB, 

J ’ m = l  i= 1 

where j = 1, 2 ,  3...n. 

(A-7)  

Equation (A-7)  constitutes a set of n equations or  one equation for each expo- 
nential term. These latter two equations can be rewritten as 

(A-8) 
m = l  i= 1 m= 1 m = l  

For the purpose of writing a computer program that will solve for the constants A and 
B j  , equations (A-8)  and (A-9)  may be expressed in matrix form as follows, 

[ C l  { A )  = {FI (A-10) 

where the vector {A)  holds the sought unknowns A and Bj and the coefficients of IC] 
and { F )  are defined as follows, 

aT(tlm 
= k  cll = c a A  

m = l  

k Yi-1 t m af( t Im 
a A  cli = c e 

m = l  

(A- 11) 

(A- 12) 

(A- 13) 
1 m = l  



J L  m = l  

For equation (A-14)  only we have 

i = j = 2 ,  3,  ... k+l 

whereas for equations (A-12)  and (A-13), 

i = 1, 2 ,  3, ... k 

The coefficients of the vector {F} are defined as, 

m = l  

(A-  14) 

(A-  15a) 

(A- 15b) 

(A- 16) 

( A -  17) 

and in this case the i is defined as  in equation (A-15a). 

Once the C and F coefficients are properly identified, both sides of equation 
(A-10) can be premultiplied by the inverse of [ C ]  to obtain the solution vector {A} 
or , 

CAI = LC1-l {F)  (A- 18) 

Table A - 1  shows a printout of the program CFIT applying the method described above. 
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TABLE A - 1 .  FORTRAN PROGRAM CFIT 

PEOROBIN197*ME799(1).CFIT 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
1 3  
1 4  
15 
16 
17 
18 
1 9  
20 
2 1  
22 
23 
2 4  
25 
26 
2 7  

29 
30 
3 1  
3 2  
33 
3 4  
35 
36 
37 
38 
39 
4 0  
4 1  
42 
4 3  
4 4  
45 
46 
4 7  
4 8  
4 9  
50 
5 1  
52 
53 
5 4  
55 
56 
5 7  
58 
59 
60 
6 1  
62 
63 
64 
65 
66 
67 
68 
69 
7 0  
7 1  
72 
73 
7 4  
75 
76 
7 1  
78 
19 
80 
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PARAMETER K = 2 . K P l = K + l . K P 2 = K + Z  
PARAMETER M = 3 3 , V A L = l O O . . M M = 1 0 0  
D I M E N S I O N  J C ( l P ) . E ( M ) . T ( M )  
DOUBLE P R E C I S I O N  B(K).F(KPl).C(KPl.KP2).PRONV(MM) 
DOUBLE P R E C I S I O N  V(Z ) ,MOD(MM)  
DOUBLE P R E C I S I O N  T T ( M M + l ) . R ( K )  

C I N I T I A L I Z E  M A T R I X  AN0 VECTOR 
DO 10 N = l , K P l  
F ( N ) = O . O  
DO 1 0  L = l . K P Z  
C ( N . L ) = O . O  

R ( 1 ) = 1 1 8 . 1 5 9  
R ( 2  ) = 6 6 1 . 2 2 8  

1 0  CONTINUE 

C R (  3 1.4 15.608 
C R ( 4 1 =500. 

00 1 1  I = l , M  
R E A D ( S . l O ) T (  I 1, E (  I 

1 0 0  F O R M A T O  
1 1  CONTINUE 

C (  1 . 1  ) = l  . O t M  
00 20 N = Z . K P l  
DO 20 I = l , M  
C(l.N)=C(l.N)+EXP(-R(N-l)*T(I)) 
C(N,l)=C(N.l)+EXP(-R(N-l)*T(I)) 

20 CONTINUE 
DO 30 J = Z . K P l  
DO 30 N 5 2 . K P l  
DO 30 I = l , M  
C ( J . N ) = C ( J . N ) + E X P ( - R ( N -  

00 4 0  I Z 1 . M  
F (  l ) = F (  l ) + E ( I )  

DO 50 N.2.KPl 
DO 50 I - 1 . M  
F ( N ) = F ( N ) + E ( I ) * E X P ( - R ( N  

DO 60 N = l . K P l  
C ( N . K P Z ) = F ( N )  

60 CONTINUE 
V I  1 ) = 4 . 0  

30 CONTINUE 

40 CONTINUE 

50 CONTINUE 

C A L L  OG&(C . K P 2  . K P 1  . K P 1  . K P 2 , 5 3 0 0 .  J C  . V )  
300 W R I T E ( 6 . 3 0 1 ) J C ( l )  
301 FORMAT( '  SYSTEM SOLVE0 UP TO EOUATION N O . ' . I 3 / / )  

A = C ( l . K P Z )  
00 7 0  N = Z . K P l  
B ( N - l ) = C ( N . K P Z )  

WRITE(6.102)A.B(l),B(2),B(3) 

TMAX=T ( M )  
T M I N = T (  1 )  
DO 80 I = l . M M  
PRONV ( I ) -0.0 

70 CONTINUE 

1 0 2  F O R M A T ( l O X . 4 E 1 5 . 6 )  

80 CONTINUE 
XINC=(TMAX-TMIN)/VAL 
T T (  1 ) = T M I N  
00 90 I = l . M M  
00 1 0 1  N = Z . K P l  
P R O N V ( I ) = P R O N V ( I ) + B ( N - ~ ) * E X P ( - R ( N - ~ ) ~ T T ( I ) )  

MOO(I)=A+PRONV(I) 
1 0 1  CONTINUE 

T T (  I + l ) = T T (  I ) + X I N C  
90 CONTINUE 

ARG=TMIN 
v1=0.0 
v 2 = 0 . 0  
ARG 1 - 0 . 0  
00 1 1 0  I=!.MM 
W R I T E ( 9 ) A R G l . V l . V Z  
A R G ~ = A L o G ~ O ( A R G )  
C A L L  X N T R P 5 ( A R G . T . E . M . 2 . V l . N )  
V 2 = M 0 0 (  I) 
ARG=ARG+XINC 

C W R I T E ( 6 . 1 0 5 ) A R G . V l . V P  
C 105 F O R M A T ( l O X . 3 E 2 0 . 6 )  

1 1 0  CONTINUE 
STOP 
E N 0  

, 
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