On the Equivalence of a Class of Inverse Decomposition Algorithms for Solving Systems of Linear Equations

Nai-kuan Tsao
Wayne State University
Detroit, Michigan

and Institute for Computational Mechanics in Propulsion
Lewis Research Center
Cleveland, Ohio

May 1989
rescrve unversity

On the Equivalence of a Class of Inverse Decomposition Algorithms for Solving Systems of Linear Equations

Nai-kuan Tsao*
Wayne State University
Detroit, Michigan
and Institute for Computational Mechanics in Propulsion
Lewis Research Center
Cleveland, Ohio 44135

Summary

A class of direct inverse decomposition algorithms for solving system of linear equations is presented. Their behavior in the presence of round-off errors is analyzed. It is shown that under some mild restrictions on their implementation, the class of direct inverse decomposition algorithms presented are equivalent in terms of our error complexity measures.
*This work was supported in part by the Space Act Agreement C99066G while the author was visiting
ICOMP NASA Lewis Research Center ICOMP. NASA Lewis Research Center.

1. Introduction

Given a system of linear equations

$$
A x=b
$$

where

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 N} \\
a_{21} & a_{22} & \ldots & a_{2 N} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & a_{N 1}
\end{array}\right], b=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\cdot \\
\cdot \\
b_{N}
\end{array}\right], x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{N}
\end{array}\right]
$$

the solution vector x can be found as

$$
x=A^{-1} b
$$

provided A is non-singular. Using direct methods the A^{-1} is usually decomposed as a product of elementary matrices which reduces the original A to an identity matrix. This is true whether the method selected is of the Gaussian Elimination type which triangularize A or the Gauss-Jordan type in which diagonalization of A takes place. In actual computation the decomposed A^{-1} is of course only an approximation to the exact one due to round-off errors incurred during the execution of the computational steps of the specific method chosen. Since there are many variations in this class of decomposition methods, one wonders whether one variation is "better" than the other in terms of accuracy of the computed solution.

In this paper we show, under mild restrictions on the implementation of some algorithms, that all decomposition methods are "equivalent" in terms of our error complexity measures. Some preliminary results are presented in Section 2. The classification and analysis of decomposition methods are given in Section 3.

2. Some Preliminary Results

Given a normalized floating-point system with a t-digit base β mantissa, the following equations can be assumed to facilitate the error analysis of general arithmatic expressions using only ,,$+- *$, or / operations[1]:

$$
\begin{equation*}
f(x \# y)=(x \# y) \Delta, \quad \# \in\{+,-, *, /\} \tag{2.1}
\end{equation*}
$$

where

$$
|\Delta| \leq 1+u, u \leq\left\{\begin{array}{l}
\frac{1}{2} \beta^{1-t} \text { for rounded operations } \\
\beta^{1-t} \text { for chopped operations }
\end{array}\right.
$$

and x and y are given machine floating-point numbers and $f($ (.) is used to denote the computed floating-point result of the given argument. We shall call Δ the unit Δ-factor.

In general one can apply (2.1) repeatedly to a sequence of arithmetic steps, and the computed result z can be expressed as

$$
\begin{equation*}
z=\frac{z_{n}}{z_{d}} \equiv \frac{\sum_{i=1}^{\lambda\left(z_{n}\right)} z_{n i} \Delta^{\sigma\left(z_{n i}\right)}}{\sum_{j=1}^{\lambda\left(z_{d}\right)} z_{d j} \sigma^{\sigma\left(z_{d j}\right)}} \tag{2.2}
\end{equation*}
$$

where each $z_{n i}$ or $z_{d j}$ is an exact product of error-free data, and Δ^{k} stands for the product of k possibly different Δ-factors. We should emphasize that all common factors between the numerator and denominator should have been factored out before z can be expressed in its final rational form of (2.2). Following [2], we shall henceforth call such an exact product of error-free data a basic term, or simply a term. Thus $\lambda\left(z_{n}\right)$ or $\lambda\left(z_{d}\right)$ is then the total number of such terms whose sum constitutes z_{n} or z_{d}, respectively, and $\sigma\left(z_{n i}\right)$ or $\sigma\left(z_{d j}\right)$ gives the possible number of round-off occurrences during the computational process. As an example, consider the solution of two linear equations in two variables as follows:

$$
\begin{aligned}
& a x_{1}+b x_{2}=c \\
& d x_{1}+e x_{2}=f
\end{aligned}
$$

The exact solution x_{2} can be found as

$$
x_{2}^{*}=\frac{f-\frac{d}{a} * c}{e-\frac{d}{a} * b}
$$

The computed x_{2} is the result of the following expression:

$$
\begin{gathered}
x_{2}=f\left(w_{1} / w_{2}\right), w_{1}=f\left(f-f_{1}\right), \quad w_{2}=f l\left(e-c_{1}\right), \\
f_{1}=f l\left(d_{1} * c\right), e_{1}=f\left(d_{1} * b\right), \quad d_{1}=f l(d / a) .
\end{gathered}
$$

Applying (2.1) repeatedly to the above expression, we have

$$
x_{2}=\frac{f \Delta-\frac{d c}{a} \Delta^{3}}{e \Delta-\frac{d b}{a} \Delta^{3}}=\frac{a f \Delta-d c \Delta^{3}}{a e \Delta-d b \Delta^{3}}
$$

which is of the form of (2.2). We define the following two measures:
maximum error complexity:

$$
\begin{equation*}
\sigma\left(z_{n}\right) \equiv \max _{1 \leq i \leq \lambda\left(z_{n}\right)} \sigma\left(z_{n i}\right), \sigma\left(z_{d}\right) \equiv \max _{1 \leq j \leq \lambda\left(z_{d}\right)} \sigma\left(z_{d j}\right) \tag{2.3}
\end{equation*}
$$

cumulative error complexity:

$$
\begin{equation*}
s\left(z_{n}\right) \equiv \sum_{i=1}^{\lambda\left(z_{n}\right)} \sigma\left(z_{n i}\right), s\left(z_{d}\right) \equiv \sum_{j=1}^{\lambda\left(z_{d}\right)} \sigma\left(z_{d j}\right) . \tag{2.4}
\end{equation*}
$$

Different algorithms used to compute the same z can then be compared using the above error complexity measures and the number of basic terms created by each algorithm.

For convenience we will use \bar{z}_{d} and \bar{z}_{n} to represent the 3 -tuples $\left\{\lambda\left(z_{d}\right), \sigma\left(z_{d}\right), s\left(z_{d}\right)\right\}$ and $\left\{\lambda\left(z_{n}\right), \sigma\left(z_{n}\right), s\left(z_{n}\right)\right\}$, respectively, so that the computed z of (2.2) is fully characterized by

$$
\bar{z} \equiv \frac{\bar{z}_{n}}{\bar{z}_{d}} .
$$

In division-free computations any computed z will have only the numerator part z_{n}. The following lemma is useful in dealing with intermediate computed results:

Lemma 2.1 Given x and y with their associated \bar{x}_{n} and \bar{y}_{n},
(i) if $z=x y$, then

$$
\bar{z}_{n} \equiv \bar{x}_{n} \bar{y}_{n}=\bar{y}_{n} \bar{x}_{n}=\left\{\lambda\left(x_{n}\right) \lambda\left(y_{n}\right), \sigma\left(x_{n}\right)+\sigma\left(y_{n}\right), s\left(x_{n}\right) \lambda\left(y_{n}\right)+\lambda\left(x_{n}\right) s\left(y_{n}\right)\right\},
$$

(ii) if $z=x \pm y$, then

$$
\bar{z}_{n} \equiv \bar{x}_{n}+\bar{y}_{n}=\bar{y}_{n}+\bar{x}_{n}=\left\{\lambda\left(x_{n}\right)+\lambda\left(y_{n}\right), \max \left(\sigma\left(x_{n}\right), \sigma\left(y_{n}\right)\right), s\left(x_{n}\right)+s\left(y_{n}\right)\right\} .
$$

Proof. The results can be obtained easily by expressing x and y as

$$
x=\sum_{i=1}^{\lambda\left(x_{n}\right)} x_{n i} \Delta^{\sigma\left(x_{n i}\right)}, \quad y=\sum_{j=1}^{\lambda\left(y_{n}\right)} y_{n j} \nu^{\sigma\left(y_{n j}\right)}
$$

and applying (2.3), (2.4) and the definition of $\lambda\left(z_{n}\right)$ to find \bar{z}_{n}. Q.E.D.

The unit Δ-factor is then defined as

$$
\begin{equation*}
\bar{\Delta} \equiv\{1,1,1\} . \tag{2.5a}
\end{equation*}
$$

One can obtain easily using Lemma 2.1 to get

$$
\begin{equation*}
\bar{\Delta}^{i}=\{1, i, i\} . \tag{2.5b}
\end{equation*}
$$

For general floating-point computations, we have the following lemma:

Lemma 2.2 Given x and y with their associated

$$
\bar{x}=\frac{\bar{x}_{n}}{\bar{x}_{d}} \equiv \frac{\left\{\lambda\left(x_{n}\right), \sigma\left(x_{n}\right), s\left(x_{n}\right)\right\}}{\left\{\lambda\left(x_{d}\right), \sigma\left(x_{d}\right), s\left(x_{d}\right)\right\}}, \bar{y}=\frac{\bar{y}_{n}}{\bar{y}_{d}} \equiv \frac{\left\{\lambda\left(y_{n}\right), \sigma\left(y_{n}\right), s\left(y_{n}\right)\right\}}{\left\{\lambda\left(y_{d}\right), \sigma\left(y_{d}\right), s\left(y_{d}\right)\right\}},
$$

(i) if $z=f(x \pm y)$ and there is no common factors between x_{d} and y_{d}, then

$$
\bar{z}=\frac{\bar{z}_{n}}{\bar{z}_{d}}=\frac{\bar{x}_{d} \bar{y}_{n} \bar{\Delta}+\bar{y}_{d} \bar{x}_{n} \bar{\Delta}}{\bar{x}_{d} \bar{y}_{d}}
$$

where

$$
\begin{aligned}
& \lambda\left(z_{n}\right)=\lambda\left(x_{n}\right) \lambda\left(y_{d}\right)+\lambda\left(y_{n}\right) \lambda\left(x_{d}\right), \\
& \lambda\left(z_{d}\right)=\lambda\left(x_{d}\right) \lambda\left(y_{d}\right), \\
& \sigma\left(z_{n}\right)=1+\max \left(\sigma\left(x_{n}\right)+\sigma\left(y_{d}\right), \sigma\left(y_{n}\right)+\sigma\left(x_{d}\right)\right), \\
& \sigma\left(z_{d}\right)=\sigma\left(x_{d}\right)+\sigma\left(y_{d}\right), \\
& s\left(z_{n}\right)=\lambda\left(x_{n}\right) s\left(y_{d}\right)+\lambda\left(y_{d}\right) s\left(x_{n}\right)+\lambda\left(y_{n}\right) s\left(x_{d}\right)+\lambda\left(x_{d}\right) s\left(y_{n}\right)+\lambda\left(z_{n}\right), \\
& s\left(z_{d}\right)=\lambda\left(x_{d}\right) s\left(y_{d}\right)+\lambda\left(y_{d}\right) s\left(x_{d}\right) ;
\end{aligned}
$$

(ii) if $z=f(x \times y)$ and there is no common factors between x_{n} and y_{d} or between y_{n} and x_{d}, then

$$
\bar{z}=\frac{\bar{z}_{n}}{\bar{z}_{d}}=\frac{\bar{x}_{n} \bar{y}_{n} \bar{\Delta}}{\bar{x}_{d} \bar{y}_{d}}
$$

where

$$
\begin{aligned}
& \lambda\left(z_{n}\right)=\lambda\left(x_{n}\right) \lambda\left(y_{n}\right), \\
& \lambda\left(z_{d}\right)=\lambda\left(x_{d}\right) \lambda\left(y_{d}\right), \\
& \sigma\left(z_{n}\right)=1+\sigma\left(x_{n}\right)+\sigma\left(y_{n}\right), \\
& \sigma\left(z_{d}\right)=\sigma\left(x_{d}\right)+\sigma\left(y_{d}\right), \\
& s\left(z_{n}\right)=\lambda\left(x_{n}\right) s\left(y_{n}\right)+\lambda\left(y_{n}\right) s\left(x_{n}\right)+\lambda\left(z_{n}\right), \\
& s\left(z_{d}\right)=\lambda\left(x_{d}\right) s\left(y_{d}\right)+\lambda\left(y_{d}\right) s\left(x_{d}\right) ;
\end{aligned}
$$

(iii) if $z=f(x / y)$ and there is no common factors between x_{n} and y_{n} or between x_{d} and y_{d}, then

$$
\bar{z}=\frac{\bar{z}_{n}}{\bar{z}_{d}}=\frac{\bar{x}_{n} \bar{y}_{d} \bar{\Delta}}{\bar{y}_{n} \bar{x}_{d}}
$$

where

$$
\begin{aligned}
& \lambda\left(z_{n}\right)=\lambda\left(x_{n}\right) \lambda\left(y_{d}\right) \\
& \lambda\left(z_{d}\right)=\lambda\left(x_{d}\right) \lambda\left(y_{n}\right), \\
& \sigma\left(z_{n}\right)=\sigma\left(x_{n}\right)+\sigma\left(y_{d}\right)+1, \\
& \sigma\left(z_{d}\right)=\sigma\left(x_{d}\right)+\sigma\left(y_{n}\right) \\
& s\left(z_{n}\right)=\lambda\left(x_{n}\right) s\left(y_{d}\right)+\lambda\left(y_{d}\right) s\left(x_{n}\right)+\lambda\left(z_{n}\right), \\
& s\left(z_{d}\right)=\lambda\left(x_{d}\right) s\left(y_{n}\right)+\lambda\left(y_{n}\right) s\left(x_{d}\right) .
\end{aligned}
$$

Proof. First we apply (2.1) to each case and obtain

$$
z=f l(x \# y)=(x \# y) \Delta, \# \in\{+,-, \times, /\}
$$

The results can then be obtained easily by using (2.3) and (2.4). Q.E.D.

Often one needs to add up an extended sum given by

$$
\begin{equation*}
\hat{z}=\sum_{i=1}^{k} x_{i}=\frac{\hat{z}_{n}}{\hat{z}_{d}}=\frac{1}{\hat{z}_{d}} \sum_{i=1}^{k} \hat{z}_{n i} \tag{2.6}
\end{equation*}
$$

The order of summation certainly has to be specified. One would like to select an order to minimize the incurred additional error complexities of the final computed z. We consider the following four strategies.

If the items are added recursively in parallel by divide-and-conquer, then the strategy is called left-heavy if

$$
\hat{z}=\hat{z}_{1}+\hat{z}_{2}
$$

where

$$
\hat{z}_{1}=\sum_{i=1}^{\lceil k / 2\rceil} x_{i}, \quad \hat{z}_{2}=\sum_{i=\lceil k / 2\rceil+1}^{k} x_{i}
$$

Similarly the strategy is called right-heavy if

$$
\hat{z}=\hat{z}_{3}+\hat{z}_{4}, \quad \hat{z}_{3}=\sum_{i=1}^{\lfloor k / 2\rfloor} x_{i}, \quad \hat{z}_{4}=\sum_{i=\lfloor k / 2\rfloor+1}^{k} x_{i}
$$

If the items are summed up in sequential order, then we have the common strategies of left-to-right or right-to-left. We have the following useful lemma:

Lemma 2.3 Given (2.6) and it is desired to find

$$
z=f\left(\sum_{i=1}^{k} x_{i}\right)=\frac{z_{n}}{\hat{z}_{d}}
$$

where

$$
\begin{gathered}
z_{n}=f\left(\sum_{i=1}^{k} \hat{z}_{n i}\right), \\
2^{k-2} \lambda\left(\hat{z}_{n 1}\right)=2^{k-2} \lambda\left(\hat{z}_{n 2}\right)=2^{k-3} \lambda\left(\hat{z}_{n 3}\right)=\ldots=2^{0} \lambda\left(\hat{z}_{n k}\right), \\
\sigma\left(\hat{z}_{n 1}\right)+k-1 \leq \sigma\left(\hat{z}_{n 2}\right)+k-1 \leq \sigma\left(\hat{z}_{n 3}\right)+k-2 \leq \ldots \leq \sigma\left(\hat{z}_{n k}\right)+1,
\end{gathered}
$$

then
(i) $\lambda\left(z_{n}\right)=\lambda\left(\hat{z}_{n}\right)=\sum_{i=1}^{k} \lambda\left(\hat{z}_{n i}\right)$ regardless of the strategy chosen,
(ii) $\sigma\left(z_{n}\right)=\sigma\left(\hat{z}_{n k}\right)+w$ where $w=\left\{\begin{array}{l}\lceil\log k\rceil \text { if the strategy is right-heavy, } \\ \lfloor\log k\rfloor \text { if the strategy is left-heavy, } \\ k-1 \text { if the strategy is right-to-left, } \\ 1 \quad \text { if the strategy is left-to-right. }\end{array}\right.$
(iii) $s\left(z_{n}\right)=\sum_{i=1}^{k} s\left(\hat{z}_{n i}\right)+\left\{\begin{array}{l}\left(2^{k}-2\right) \lambda\left(\hat{z}_{n 1}\right) \text { if the strategy is left-to-right, } \\ {\left[1+(2 k-3) 2^{k-2}\right] \lambda\left(\hat{z}_{n 1}\right) \text { if the strategy is right-to-left, }}\end{array}\right.$
(iv) $\sum_{i=1}^{k} s\left(\hat{z}_{n i}\right)+\lfloor\log k\rfloor 2^{k-1} \lambda\left(\hat{z}_{n 1}\right) \leq s\left(z_{n}\right) \leq \sum_{i=1}^{k} s\left(\hat{z}_{n i}\right)+\lceil\log k\rceil 2^{k-1} \lambda\left(\hat{z}_{n 1}\right)$ if the strategy is either left-heavy or right-heavy.

Proof. The results for $\lambda\left(z_{n}\right)$ are obvious. For error complexities consider first the sequential stratcgies. If the strategy is left-to-right, then we can easily obtain

$$
z_{n}=\hat{z}_{n 1} \Delta^{k-1}+\hat{z}_{n 2} \Delta^{k-1}+\ldots+\hat{z}_{n k} \Delta^{1} .
$$

Applying Lemma 2.1 to the above equation, we obtain

$$
\begin{aligned}
\sigma\left(z_{n}\right) & =\max \left(\sigma\left(\hat{z}_{n 1}\right)+k-1, \sigma\left(\hat{z}_{n 2}\right)+k-1, \ldots, \sigma\left(\hat{z}_{n k}\right)+1\right) \\
& =\sigma\left(\hat{z}_{n k}\right)+1
\end{aligned}
$$

by assumption. Also

$$
\begin{aligned}
s\left(z_{n}\right) & =\sum_{i=1}^{k} s\left(\hat{z}_{n i}\right)+(k-1) \lambda\left(\hat{z}_{n 1}\right)+(k-1) \lambda\left(\hat{z}_{n 2}\right)+\ldots+(1) \lambda\left(\hat{z}_{n k}\right) \\
& =\sum_{i=1}^{k} s\left(\hat{z}_{n i}\right)+\left(2^{k}-2\right) \lambda\left(\hat{z}_{n 1}\right)
\end{aligned}
$$

by simplification. Hence the theorem is true.

If the strategy is right-to-left, then we have

$$
z_{n}=\hat{z}_{n 1} \Delta^{1}+\ldots+\hat{z}_{n, k-1} \Delta^{k-1}+\hat{z}_{n k} \Delta^{k-1}
$$

By repeated application of Lemma 2.1 we have certainly

$$
\sigma\left(z_{n}\right)=\sigma\left(\hat{z}_{n k}\right)+k-1 .
$$

Also

$$
s\left(z_{n}\right)=\sum_{i=1}^{k} s\left(\hat{z}_{n i}\right)+\lambda\left(\hat{z}_{n 1}\right)+2 \lambda\left(\hat{z}_{n 2}\right)+\ldots+(k-1)\left[\lambda\left(\hat{z}_{n, k-1}\right)+\lambda\left(\hat{z}_{n k}\right)\right]
$$

which can also be simplified to the desired form. Hence the theorem is true in this case. For the parallel strategies, the computed z_{n} can be expressed as

$$
z_{n}=\hat{z}_{n 1} \Delta^{j_{1}}+\hat{z}_{n 2} \Delta^{j_{2}}+\ldots+\hat{z}_{n k} \Delta^{j_{k}}
$$

where

$$
\begin{aligned}
& j_{1}=\lceil\log k\rceil \geq j_{2} \geq \ldots \geq j_{k}=\lfloor\log k\rfloor \text { if the strategy is left-heavy, } \\
& j_{1}=\lfloor\log k\rfloor \leq j_{2} \leq \ldots \leq j_{k}=\lceil\log k\rceil \text { if the strategy is right-heavy, }
\end{aligned}
$$

Now if the strategy is right-heavy, it is obvious that

$$
\sigma\left(z_{n}\right)=\sigma\left(\hat{z}_{n k}\right)+\lceil\log k\rceil
$$

If the strategy is left-heavy, then by assumption we have

$$
\sigma\left(\hat{z}_{n k}\right)+\lfloor\log k\rfloor \geq \sigma\left(\hat{z}_{n i}\right)+\lfloor\log k\rfloor+k-i \geq \sigma\left(\hat{z}_{n i}\right)+\lceil\log k\rceil \text { for } i<k
$$

Hence

$$
\sigma\left(z_{n}\right)=\sigma\left(\hat{z}_{n k}\right)+\lfloor\log k\rfloor .
$$

The cumulative error complexity results are obvious. This completes our proof. Q.E.D.

Now from the results of Lemma 2.3 we see obviously that $\sigma\left(z_{n}\right)$ will be minimal if the strategy is left-to-right. For $s\left(z_{n}\right)$ we see that

$$
2^{k}-2 \leq\lceil\log k\rceil 2^{k-1} \leq\left[1+(2 k-3) 2^{k-2}\right], \text { for } k>3 \text { or } k=2 .
$$

Furthermore for $k=3$ then we have

$$
z_{n}=\left\{\begin{array}{l}
\hat{z}_{n 1} \Delta^{2}+\hat{z}_{n 2} \Delta^{2}+\hat{z}_{n 3} \Delta \text { if the strategy is left-heavy } \\
\hat{z}_{n 1} \Delta+\hat{z}_{n 2} \Delta^{2}+\hat{z}_{n 3} \Delta^{2} \text { if the strategy is right-heavy. }
\end{array}\right.
$$

Hence

$$
s\left(z_{n}\right)=s\left(\hat{z}_{n 1}\right)+s\left(\hat{z}_{n 2}\right)+s\left(\hat{z}_{n 3}\right)+\left\{\begin{array}{l}
6 \lambda\left(\hat{z}_{n 1}\right) \text { if the strategy is left-heavy } \\
7 \lambda\left(\hat{z}_{n 1}\right) \text { if the strategy is right-heavy } \\
6 \lambda\left(\hat{z}_{11}\right) \text { if the strategy is left-to-right, } \\
7 \lambda\left(\hat{z}_{n 1}\right) \text { if the strategy is right-to-left. }
\end{array}\right.
$$

Thus the left-to-right strategy gives us, in all cases, the minimal cumulative error complexity also in the computed result. We conclude with the following theorem:

Theorem 2.1 If (2.6) is to be computed and the conditions specified in Lemma 2.3 are satisfied, then one should choose the strategy left-to-right in order to minimize both the maximum and cumulative error complexity of the computed extended sum.

3. Inverse Decomposition Methods

To find the inverse decomposition, one applies a sequence of elementary trasformations to the matrix A so that zeroes are created in the lower and upper parts of the matrix. The final reduced matrix is of course the identity matrix so that an implicit A^{-1} can be obtained as a product of the sequence of elementary matrices which can then be applied to b to obtain the desired solution $x=A^{-1} b$. In general a large collection of methods can be classified as the usual triangular decomposition of A into a product of lower and upper triangular matrices followed by explicitly or implicitly inverting the calculated triangular matrices. To see this consider the diagonalization of an $N \times N$ matrix. We shall assume that pivoting is not necessary. The Gauss-Jordan method would crcate a sequence of matrices C_{1}, C_{2}, \ldots and C_{N} such that

$$
C_{N} \ldots C_{2} C_{1} A=D, \quad C_{i}=I_{N}-\sum_{j=1, j \neq i}^{N} c_{j i} e_{j} e_{i}^{T}
$$

where I_{N} and e_{i}^{T} represent the $N \times N$ identity matrix and the transpose of the i-th column of the identity matrix , respectively. The matrix C_{i} is chosen such that the transformed matrix $C_{1} C_{1-1} \ldots C_{1} A$ will have all its off-diagonal elements of the first i columns zeroed. It is also obvious that the matrix C_{i} depends on the previously generated $C_{i-1}, C_{i-2}, \ldots, C_{1}$ and A. Now C_{i} can be expressed as

$$
C_{i}=I_{i} U_{i}=U_{i} I_{-i}, \quad L_{l}=I_{N}-\sum_{j=i+1}^{N} c_{j i} c_{j} e_{i}^{T}, \quad U_{i}=I_{N}-\sum_{j=1}^{i-1} c_{j i} c_{j} c_{i}^{T}
$$

where U_{i} and L_{i} represent, respectively, the upper and lower part of C_{i}. Furthermore we can easily show by induction that

$$
C_{N} \ldots C_{2} C_{1}=U_{N} \ldots U_{3} U_{2} L_{N-1} \ldots L_{2} L_{1}
$$

Hence

$$
U^{-1} L^{-1} A=D, \quad U^{-1}=U_{N} \ldots U_{3} U_{2}, L^{-1}=L_{N-1} \ldots L_{2} L_{1} .
$$

Since the steps in $L^{-1} A$ describe the elimination stage of the Gaussian Elimination method in converting A to an upper triangular form and the subsequent $U^{-1}\left(L^{-1} A\right)$ is the result of a forward elimination process to create zeroes in the upper triangular $L^{-1} A$ by columns, the Gauss-Jordan method is therefore numerically equivalent to the elimination stage of Gaussian Elimination method followed by a forward-elimination process to diagonalize the intermediate upper triangular form. More precisely, the Gaussian Elimination method explicitly finds a matrix L whose inverse L^{-1}, in implicit product form, is used to reduce the matrix A to an upper triangular matrix U such that

$$
A=L U, L^{-1} A=U .
$$

The Gauss-Jordan method creates the same L and an explicit unit-diagonal upper triangular matrix M such that

$$
M L^{-1} A=D
$$

Henceforth we shall restrict our attention to the class of methods by which the matrix A is decomposed first into a product of lower and upper triangular matrix in one of the following two forms:

$$
\begin{equation*}
A=L U \tag{3.1a}
\end{equation*}
$$

$$
\begin{equation*}
A=P R \tag{3.1b}
\end{equation*}
$$

where L and R are unit-diagonal lower and upper triangular matrix, respectvely; and P and U^{\prime} are general lower and upper triangular matrix, respectively. Once the matrix A is decomposed, then L, U, P, and R can be explicitly or implicitly inverted so that A^{-1} can be obtained.

Expanding the products in (3.1a) and (3.1b) explicitly, the decompositions can be obtained by the following recursive equations:

$$
\begin{align*}
& u_{k j}=f\left(a_{k j}-\sum_{t=1}^{k-1} l_{k t} u_{i j}\right), \quad 1 \leq k \leq j \leq N, \\
& l_{j i}=f l\left(\left(a_{j i}-\sum_{i=1}^{i-1} l_{j t} u_{i i}\right) / u_{i i}\right), \quad 1 \leq i<j \leq N, \tag{3.1al}
\end{align*}
$$

$$
\begin{align*}
& p_{j k}=f\left(a_{j k}-\sum_{t=1}^{k-1} p_{j l} r_{t k}\right), \quad 1 \leq k \leq j \leq N, \tag{3.161}\\
& r_{i j}=f 7\left(\left(a_{i j}-\sum_{t=1}^{i-1} p_{i r} r_{j j}\right) / p_{i i}\right), \quad 1 \leq i<j \leq N .
\end{align*}
$$

The equations in (3.1a1) simply say that any $u_{k j}$ can be computed as soon as the k-th row of L and the first $k-1$ elements of the j-th column of U are available, and any $l_{j i}$ can be computed as soon as the first $i-1$ elements of the j-th row of L and the i-th column of U are available. Equation (3.1bl) can be interpreted similarly. The only freedom left to an algorithm designer is the order in which the summations in (3.1al) and (3.1bl) should be excuted. We shall call an order optimal if the computed result has the minimal maximum and cumulative error complexities. We have the following theorem:

Theorem 3.1 Let the given matrix A be such that

$$
\bar{a}_{11}=c_{1^{*}}=\{1,0,0\}, \quad \bar{a}_{i j}=c_{1}=\{1,0,0\}, \quad\left(i_{\imath}\right) \neq(1,1) .
$$

The optimal order to compute the summations in (3.1al) and (3.1bl) is the left-to-right strategy for their evaluation using the explicit expressions given by

$$
\begin{align*}
& u_{k j}=f l\left(a_{k j}-l_{k 1} u_{1 j}-l_{k 2} g_{2 j}-\ldots-l_{k, k-1} u_{k-1, j}\right), \quad 1 \leq k \leq j \leq N, \\
& l_{j i}=f l\left(\left(a_{j i}-l_{j 1} u_{1 i}-l_{j 2} u_{2 i}-\ldots-l_{j, i-1} u_{i-1, i}\right) / u_{i i}\right), \quad 1 \leq i<j \leq N \tag{3.1a2}\\
& p_{j k}=f l\left(a_{j k}-p_{j 1} r_{1 k}-p_{j 2} r_{2 k}-\ldots-p_{j, k-1} r_{k-1, k}\right), \quad 1 \leq k \leq j \leq N, \\
& r_{i j}=f l\left(a_{i j}-p_{i 1} r_{1 j}-p_{i 2} r_{2 j}-\ldots-p_{i, i-1} r_{i-1, j}\right), \quad 1 \leq i<j \leq N \tag{3.1b2}
\end{align*}
$$

and the computed $u_{k j}, l_{j i}, p_{j k}$, and $r_{i j}$ satisfy

$$
\begin{aligned}
& \bar{u}_{k k}=\bar{p}_{k k}=\frac{c_{k^{*}}}{c_{1^{*}} c_{2^{*}} \ldots c_{k-1^{*}}}, \bar{u}_{k j}=\bar{p}_{j k}=\frac{c_{k}}{c_{1^{*}} c_{2^{*} \ldots c_{k-1^{*}}}}, \quad k+1 \leq j \leq N, \\
& \bar{l}_{j i}=\bar{r}_{i j}=\frac{c_{i} \bar{u}}{c_{i^{*}}}, \quad 1 \leq i<j \leq N
\end{aligned}
$$

where

$$
\begin{aligned}
& c_{k+1^{*}}=\left\{\lambda\left(c_{k+1^{*}}\right), \sigma\left(c_{k+1^{*}}\right), s\left(c_{k+1^{*}}\right)\right\}=c_{k+1}=\left\{\lambda\left(c_{k+1}\right), \sigma\left(c_{k+1}\right), s\left(c_{k+1}\right)\right\}=c_{k} c_{k} \bar{\Delta}_{13} \\
& \bar{\Delta}_{13} \equiv \bar{\Delta}+\bar{\Delta}^{3}, \quad 1 \leq k \leq N-1
\end{aligned}
$$

Proof. See Appendix I.

By Theorem 3.1 we see that all variations of the class of methods for decomposing A into $L U$ or $P R$ are equivalent among those methods of their respective class in terms of our complexity measures as long as the left-to-right strategy is adhered to in the evaluation of (3.1a2) or (3.1b2). Two variations each for the decompositon of A into forms given by (3.1a) and (3.1b) are listed below:

Algorithm G \{Gaussian elimination for $A=L U\}$

$$
\begin{gathered}
\text { for } i=1 \text { to } N-1 \text { do } \\
\text { for } j=i+1 \text { to } N \text { do } \\
l_{l_{i j}}=f l\left(a_{j i} / a_{i j}\right) \\
\text { for } k=i+1 \text { to } N \text { do } \\
a_{j k}=f l\left(a_{j k}-l_{j i} \times a_{i k}\right) \\
\text { for } k=1 \text { to } N \text { do } \\
\text { for } j=k \text { to } N \text { do } \\
u_{k j}=a_{k j}
\end{gathered}
$$

Algorithm DI. \{Doolittle method for $\left.A=L L^{\prime}\right\}$

$$
\begin{aligned}
& \text { for } j=1 \text { to } N \text { do } \\
& \qquad \begin{aligned}
& \text { for } i=1 \text { to } j-1 \text { do } \\
& l_{j i}=f l\left(\left(a_{j i}-\sum_{k=1}^{,-1} l_{j k} u_{k i}\right) / u_{i i}\right) \\
& \text { for } k=j \text { to } N \text { do } \\
& u_{j k}=f l\left(a_{j k}-\sum_{i=1}^{1-1} l_{j j} g_{t k}\right)
\end{aligned}
\end{aligned}
$$

Algorithm G1 \{Gaussian Elimination for $A=P R$ \}

$$
\begin{aligned}
& \text { for } i=1 \text { to } N-1 \text { do } \\
& \text { for } k=i+1 \text { to } N \text { do } \\
& r_{i k}=f l\left(a_{i k} / a_{i i}\right) \\
& \text { for } j=i+1 \text { to } N \text { do } \\
& \quad a_{j k}=f l\left(a_{j k}-a_{j i} \times r_{i k}\right) \\
& \text { for } k=1 \text { to } N \text { do } \\
& \text { for } j=k \text { to } N \text { do } \\
& p_{j k}=a_{j k}
\end{aligned}
$$

Algorithm CR \{Crout method for $A=P R$ \}
for $k=1$ to N do

$$
\text { for } j=1 \text { to } k \text { do }
$$

$$
p_{k j}=f l\left(a_{k j}-\sum_{m=1}^{j-1} p_{k m} r_{m j}\right)
$$

$$
\text { for } j=k+1 \text { to } \stackrel{m=1}{N} \text { do }
$$

$$
r_{k j}=f l\left(\left(a_{k j}-\sum_{m=1}^{k-1} p_{k m} r_{m j}\right) / p_{k k}\right)
$$

We are now ready to find the inverses of L, U, P, R either implicitly or explicitly. Given L, the product form of L^{-1} can be obtained without additional computation as

$$
\begin{equation*}
L_{G}^{-1}=L_{N-1, c}^{-1} \cdots L_{1 c}^{-1}, \quad L_{i c}^{-1}=I_{N}-\sum_{j=i+1}^{N} l_{j i} e_{j} e_{i}^{T}, \quad 1 \leq i \leq N-1, \tag{3.2a}
\end{equation*}
$$

$$
\begin{equation*}
L_{D L}^{-1}=L_{N-1, r}^{-1} \ldots L_{2 r}^{-1}, \quad L_{i r}^{-1}=I_{N}-\sum_{j=1}^{i-1} l_{i j} e_{i} e_{j}^{r}, \quad 2 \leq i \leq N . \tag{3.2b}
\end{equation*}
$$

On the other hand, one can also obtain explicitly a lower unit-diagonal matrix M such that $M I=I_{A}$ and

$$
\begin{equation*}
L_{M c}^{-1}=M_{\mathrm{lc}} \ldots M_{N-1, c}, \quad M_{i c}=I_{N}-\sum_{j=i+1}^{N} m_{j i} e_{j} e_{i}^{T}, \quad 1 \leq i \leq N-1, \tag{3.2c}
\end{equation*}
$$

$$
\begin{equation*}
L_{M r}^{-1}=M_{2 r} \ldots M_{N r}, \quad M_{i r}=I_{N}-\sum_{j=1}^{i-1} m_{i j} e_{i} e_{j}^{T}, \quad 2 \leq i \leq N \tag{3.2d}
\end{equation*}
$$

Note that (3.2a), (3.2b), (3.2c), and (3.2d) can be regarded as methods creating zeroes in the given L by column-wise forward, row-wise forward, column-wise backward, and row-wise backward elimination, respectively.

Solving for $M L=I_{N}$ we find that

$$
m_{i+k, i}=f l\left(l_{i+k, i}-\sum_{j=1}^{k-1} m_{i+k, i+j} l_{i+j, i}\right), \quad 1 \leq k \leq N-1, \quad 1 \leq i \leq N-k .
$$

In other words, $m_{i+k_{i}}$ depends on those elements of the $(i+k)$ th row of M to its right, as well as $l_{t+k, i}$ and those above it in the i-th column of L. A proper algorithm is the following:

```
Algorithm M
for \(k=1\) to \(N-1\) do
    for \(i=1\) to \(N-k\) do
        \(j=i+k\)
        \(m_{j i}=f l\left(l_{j i}-m_{j,-1} l_{j-1, i}-\ldots-m_{j, i+1} l_{i+1, i}\right)\)
```

We have the following theorem:

Theorem 3.2a Given L whose error complexities satisfy Theorem 3.1, then the optimal order to find M using Algorithm M is again the left-to-right strategy for the summations. The computed M has error complexities given as

$$
\bar{m}_{i+k, i}=\left(\prod_{j=1}^{k} c_{i+j-1}\right) \bar{\Delta}_{13}^{k-1} \bar{\Delta} /\left(\prod_{j=1}^{k} c_{i+j-1^{*}}\right) .
$$

Proof. See Appendix II.

Since L^{-1} is applied to A and $L^{-1} A=U$, the same operations need to be applied to the right hand side vector b in solving $A x=b$ so that the reduced system $U x=f$ can be solved later where $f=L^{-1} b$. One natural question is whether (3.2a) through (3.2d) are equivalent in the sense that the computed f using any of them will have the same error complexities. For (3.2a) and (3.2b) this is true as we can simply augment A with b as its $(N+1)$-st column and a decomposition of $A=L$. U can be performed with U being a trapezoidal matrix having f as its last column. For (3.2c) and (3.2d) the results of Theorem 3.2 a can be applied and we can easily obtain the following theorem by induction:

Theorem 3.2b If the given right hand side vector b is such that $\bar{b}_{i}=\{1,0,0\}$, then the computed

$$
f=f 7\left(L^{-1} b\right)
$$

using any one of (3.2a) through (3.2d) is such that

$$
\bar{f}_{i}=\bar{u}_{i N}, \quad l \leq i \leq N
$$

provided the summations used to evaluate f_{i} in (3.2b) and (3.2d) are carried out using the left-toright strategy in the following expressions:

$$
\begin{align*}
& f_{i}=f l\left(b_{i}-l_{i} f_{1}-l_{i 2} f_{2}-\ldots-l_{i, i-1} f_{i-1}\right), \quad 1 \leq i \leq N-1, \tag{3.2bl}\\
& f_{i}=f l\left(b_{i}-m_{i, i-1} b_{i-1}-m_{i, i-2} b_{i-2}-\ldots-m_{i 1} b_{1}\right), \quad 1 \leq i \leq N-1 . \tag{3.2dl}
\end{align*}
$$

To find P^{-1} the situation is similar. Two different forms of P^{-1} can be found without additional effort:

$$
\begin{gather*}
P_{G 1}^{-1}=D_{N}^{-1} P_{N-1, c}^{-1} \ldots D_{2}^{-1} P_{1 c}^{-1} D_{1}^{-1} \tag{3.3a}\\
P_{C R}^{-1}=D_{N}^{-1} P_{N r}^{-1} \ldots D_{2}^{-1} P_{2 r}^{-1} D_{1}^{-1} \tag{3.3b}
\end{gather*}
$$

where

$$
D_{i}=I_{N}-c_{i} e_{i}^{T}+l_{i i} e_{i} e_{i}^{T}, \quad P_{i c}^{-1}=I_{N}-\sum_{j=i+1}^{N} p_{j i} e^{j} e_{i}^{T}, \quad P_{i r}^{-1}=I_{N}-\sum_{j=1}^{i-1} p_{i j} e_{i} e_{j}^{T} .
$$

Using an additional $O\left(N^{2}\right)$ divisions one can also obtain the following two forms easily:

$$
\begin{equation*}
P_{G i 11}^{-1}=D^{-1} P_{N-1, c^{\prime}}^{-1} \ldots P_{1 c^{\prime}}^{-1}, P_{i c^{\prime}}^{-1}=I_{N}-\sum_{j=i+1}^{N} p_{j i j} e_{j} e_{i}^{T}, 1 \leq i \leq N-1, \tag{3.3c}
\end{equation*}
$$

$$
\begin{equation*}
P_{C R 1}^{-1}=D^{-1} P_{N r^{\prime}}^{-1} \ldots P_{2 r^{\prime}}^{-1}, P_{i r^{\prime}}^{-1}=I_{N}-\sum_{j=1}^{i-1} p_{i j}^{\prime} e_{i} e_{j}^{T}, \quad 2 \leq i \leq N \tag{3.3d}
\end{equation*}
$$

where

$$
p_{j i}^{\prime}=f\left(p_{j i} / p_{i i}\right), \quad D=\operatorname{diag}\left[p_{11}, \ldots, p_{N N}\right] .
$$

Note the above are forward type of algorithms. In (3.3a) and (3.3b) P is gradually reduced to an identity matrix, whereas in (3.3c) and (3.3d) it is reduced first to a diagonal matrix. If we pre-multiply P first by D^{-1}, then the new matrix becomes a unit-diagonal lower triangular matrix and four new forms similar to (3.2a) through (3.2d) can be derived. By Theorem 3.2b we know that they are equivalent among themselves. We shall only give one of them in detail:

$$
\begin{align*}
& P_{G 12}^{-1}=P_{N-1, c^{c}}^{-1} \ldots P_{1 c^{*}}^{-1} D^{-1}, P_{i c^{\prime \prime}}^{-1}=I_{N}-\sum_{j=i+1}^{N} p_{j i}^{\prime \prime} e_{j} e_{i}^{T}, \tag{3,3e}\\
& p_{j i}^{\prime \prime}=f l\left(p_{j i l} p_{j j}\right), 1 \leq i \leq N-1 .
\end{align*}
$$

Finally P can also be reduced first to diagonal matrix by backward type of algorithms. We have

$$
\begin{equation*}
P_{Q c}^{-1}=D^{-1} Q_{1 c} \ldots Q_{n-1, c}, \quad Q_{i c}=I_{N}-\sum_{j=i+1}^{N} q_{j i} e_{j} e_{i}^{T}, \quad 1 \leq i \leq N-1, \tag{3.3f}
\end{equation*}
$$

$$
\begin{equation*}
P_{\underline{Q}}^{-1}=D^{-1} Q_{2 r} \ldots Q_{N r}, \quad Q_{i r}=I_{N}-\sum_{j=1}^{i-1} q_{i j} e_{i} e_{j}^{T}, \quad 2 \leq i \leq N \tag{3.3~g}
\end{equation*}
$$

where

$$
\begin{align*}
q_{i+k, i}= & f\left(\left(p_{i+k, i}-q_{i+k, i+k-1} p_{i+k-1, i}-\ldots-q_{i+k, i+1} p_{i+1, i}\right) / p_{i i}\right), \tag{3.3h}\\
& 1 \leq k \leq N-1, \quad 1 \leq i \leq N-k .
\end{align*}
$$

The following theorem can be proved using Lemma 2.3 and induction:

Theorem 3.3

(i) Given the matrix P whose error complexities satisfy Theorem 3.1, then the optimal order to find Q using (3.3h) is the left-to-right strategy for the summations. The computed Q has error complexities given as

$$
\bar{q}_{i+k, i}=\bar{m}_{i+k, i}, \quad 1 \leq k \leq N-1, \quad 1 \leq i \leq N-k .
$$

(ii) If the given right hand side vector b is such that $\bar{b}_{i}=\{1,0,0\}, 1 \leq i \leq N$, then the computed

$$
g=f\left(P^{-1} b\right)
$$

using any one of (3.3a) through (3.3g) is such that

$$
\bar{g}_{N}=c_{N} \bar{\Delta} / c_{N^{*}}, \quad \bar{g}_{i}=\bar{r}_{i N}, \quad 1 \leq i \leq N-1
$$

provided the summations used to find g_{i} in (3.3b), (3.3d), (3.3g) are carried out, respectively, using the left-to-right strategy in each of the following expressions:

$$
\begin{gather*}
g_{i}=f l\left(\left(b_{i}-p_{i 1} g_{1}-\ldots-p_{i, i-1} g_{i-1}\right) / p_{i i}\right), \quad 1 \leq i \leq N, \tag{3.3bl}\\
g_{i}=f\left(h_{i} / p_{i i}\right), \quad h_{i}=f l\left(b_{i}-p_{i 1} h_{1}-\ldots-p_{i, i-1} h_{i-1}\right), \quad 1 \leq i \leq N, \tag{3.3~dI}
\end{gather*}
$$

$$
\begin{equation*}
g_{i}=f l\left(\left(b_{i}-q_{i, i-1} b_{i-1}-\ldots-q_{i 1} b_{1}\right) / p_{i i}\right), \quad 1 \leq i \leq N . \tag{3.3gl}
\end{equation*}
$$

Methods for finding R^{-1} and U^{-1} are similar to those for finding L^{-1} and P^{-1}, respectively. We shall simply list them and give the resulting theorems without proofs.

Methods for R^{-1} :

$$
\begin{gather*}
R_{B 1}^{-1}=R_{2 c}^{-1} \ldots R_{N c}^{-1}, \quad R_{i c}^{-1}=I_{N}-\sum_{j=1}^{i-1} r_{j i} e_{j} e_{i}^{T}, 2 \leq i \leq N, \tag{3.4a}\\
R_{B 2}^{-1}=R_{1 r}^{-1} \ldots R_{N-1, r}^{-1}, \quad R_{i r}^{-1}=I_{N}-\sum_{j=i+1}^{N} r_{i j} e_{i} e_{j}^{T}, 1 \leq i \leq N-1, \tag{3.4b}\\
R_{F 1}^{-1}=M_{N c}^{\prime}{ }_{N c} M_{M_{2 c}}^{\prime}, \quad M_{i c}^{\prime}=I_{N}-\sum_{j=1}^{i-1} m^{\prime} j_{j i} e_{j} e_{i}^{T}, 2 \leq i \leq N, \tag{3.4c}\\
R_{F 2}^{-1}=M_{N-1, r}^{\prime} \ldots M_{1 r}^{\prime}, \quad M_{i r}^{\prime}=I_{N}-\sum_{j=i+1}^{N} m_{i j}^{\prime} e_{i} e_{j}^{T}, 1 \leq i \leq N-1 \tag{3.4d}
\end{gather*}
$$

where M^{\prime} is a unit-diagonal upper triangular matrix computed by the following formula:

$$
\begin{gather*}
m_{i, i+k}^{\prime}=f l\left(r_{i, i+k}-m_{i, i+1}^{\prime} r_{i+1, i+k}-\ldots-m_{i, i+k-1}^{\prime} r_{i+k-1, i+k}\right), \tag{3.4e}\\
1 \leq k \leq N-1, \quad 1 \leq i \leq N-k
\end{gather*}
$$

Theorem 3.4
(i) Given R whose error complexities satisfy Theorem 3.1, then the optimal order to evaluate (3.4e) is the left-to-right strategy. The computed M^{\prime} is such that

$$
\bar{m}_{i, i+k}^{\prime}=\bar{m}_{i+k, i}, \quad 1 \leq k \leq N-1, \quad 1 \leq i \leq N-k .
$$

(ii) given g whose error complexities satisfy Theorem 3.3, then the computed

$$
x=f\left(R^{-1} g\right)
$$

using any one of (3.4a) through (3.4d) is such that

$$
\bar{x}_{i}=\frac{c_{i} c_{i+1} \ldots c_{N}}{c_{i^{*}} c_{i+1^{*} \ldots c_{N^{*}}}} \bar{\Delta}_{13}^{N-i} \bar{\Delta}, \quad 1 \leq i \leq N
$$

provided the summations used to evaluate x_{i} in (3.4b) and (3.4d) are carried out in optimal order of the left-to-right strategy, respectively, using the following expressions:

$$
\begin{gather*}
x_{N}=g_{N}, \quad x_{i}=f l\left(g_{i}-r_{i N} x_{N}-\ldots-r_{i, i+1} x_{i+1}\right), \quad 1 \leq i \leq N-1, \tag{3.4dI}\\
x_{i}=f l\left(g_{i}-m_{i, i+1}^{\prime} g_{i+1}-\ldots-m_{i N g_{N}}^{\prime}\right), \quad 1 \leq i \leq N . \tag{3.4~b1}
\end{gather*}
$$

Methods for U^{-1} :

where

$$
D_{U i}=I_{N}-e_{i} e_{i}^{T}+u_{i i} e_{i} e_{i}^{T}, \quad U_{i c}^{-1}=I_{N}-\sum_{j=1}^{i-1} u_{j i} e_{j} e_{i}^{T}, \quad U_{i r}^{-1}=I_{N}-\sum_{j=i+1}^{N} u_{i j} e_{i} e_{j}^{T} .
$$

$$
\begin{gather*}
U_{B 3}^{-1}=D_{U}^{-1} U_{2 c^{\prime}}^{-1} \ldots U_{N c^{\prime}}^{-1}, U_{i c^{\prime}}^{-1}=I_{N}-\sum_{j=1}^{i-1} u_{j i j}^{\prime} e_{j} e_{i}^{T}, \quad 2 \leq i \leq N, \tag{3.5c}\\
U_{B 4}^{-1}=D_{U}^{-1} U_{1 r^{\prime}}^{-1} \ldots U_{N-1, r}^{-1}, U_{i r^{\prime}}^{-1}=I_{N}-\sum_{j=i+1}^{N} u_{i j}^{\prime} e_{i} e_{j}^{T}, \quad 1 \leq i \leq N-1, \tag{3.5d}
\end{gather*}
$$

where

$$
u_{j i}^{\prime}=f l\left(u_{i j} / u_{j j}\right), D_{U}=\operatorname{diag}\left[u_{i i}, \ldots, u_{N N}\right] .
$$

$$
\begin{equation*}
U_{B S}^{-1}=U_{2 c^{*}}^{-1} \ldots U_{N c^{\prime}}^{-1} D_{U}^{-1}, \quad U_{i c^{\prime \prime}}^{-1}=I_{N}-\sum_{j=1}^{i-1} u_{j i l}^{\prime \prime} j_{i}^{T}, u_{j i}^{\prime \prime}=f l\left(u_{j l} / u_{j j}\right), \quad 2 \leq i \leq N . \tag{3.5c}
\end{equation*}
$$

$$
\begin{equation*}
U_{F 2}^{-1}=D_{U}^{-1} Q_{N-1, r}^{\prime} \cdots Q_{1 r}^{\prime}, Q_{i r}^{\prime}=I_{N}-\sum_{j=i+1}^{N} q_{i j}^{\prime} e_{i j}^{T}, \quad 1 \leq i \leq N-1 \tag{3.5g}
\end{equation*}
$$

wherc Q^{\prime} is a unit-diagonal upper triangular matrix computed by the following formula:

$$
\begin{equation*}
q_{i, i+k}^{\prime}=f l\left(\left(u_{i, i+k}-q_{i, i+1}^{\prime} u_{i+1, i+k}-\ldots-q_{i, i+k-1}^{\prime} u_{i+k-1, i+k}\right) / u_{i+k, i+k}\right) . \tag{3.5h}
\end{equation*}
$$

Theorem 3.5

(i) Given the matrix U whose error complexities satisfy Theorem 3.1, then the optimal order to find Q^{\prime} using (3.5h) is the left-to-right strategy for the summations. The computed Q^{\prime} has crror complexities given as

$$
\bar{q}_{i, i+k}^{\prime}=c_{i *}\left(\prod_{j=i}^{i+k-1} c_{j}\right) \bar{\Delta}_{13}^{k-1} \bar{\Delta} / c_{i+k^{*}}, \quad 1 \leq k \leq N-1, \quad 1 \leq i \leq N-k .
$$

(ii) Given f whose error complexities satisfy Theorem 3.2 b , then the computed

$$
x^{\prime}=f\left(U^{-1} f\right)
$$

using any one of (3.5a) through (3.5g) is such that

$$
\bar{x}_{i}^{\prime}=\bar{x}_{i}, \quad 1 \leq i \leq N
$$

provided the summations used to evaluate x_{i}^{\prime} in (3.5 b), (3.5 d), (3.5 g) are carried out, respectively, using the left-to-right strategy in each of the following expressions:

$$
\begin{equation*}
x_{i}^{\prime}=f l\left(\left(f_{i}-u_{i N} x^{\prime}{ }_{N}-\ldots-u_{i, i+1} x_{i+1}^{\prime}\right) / u_{i i}\right), 1 \leq i \leq N, \tag{3.5~b1}
\end{equation*}
$$

$$
\begin{equation*}
x_{i}^{\prime}=f l\left(y_{i} / u_{i i}\right), y_{i}=f\left(f_{i}-u_{i N}^{\prime} y_{N}^{\prime}-\ldots-u_{i, i+1}^{\prime} y_{i+1}\right), \quad 1 \leq i \leq N, \tag{3.5di}
\end{equation*}
$$

$$
\begin{equation*}
x_{i}^{\prime}=f l\left(\left(f_{i}-q_{i, i+}^{\prime}+f_{i+1}-\ldots-q_{i N}^{\prime} f_{N}\right) / u_{i i}\right), 1 \leq i \leq N . \tag{3.5~g}
\end{equation*}
$$

By Theorem 3.5 we conclude that the class of inverse decomposition methods based on finding the triangular factors of the matrix A followed by explicitly or implicitly inverting the triangular factors are equivalent among themselves in terms of our error complexity measures.

References

[1] J.H. Wilkinson, Rounding Errors in Algebraic Processes, Englewood Cliffs, NJ: Prentice Hall, 1963.
[2] V.B. Aggarwal and J.W. Burgneier, A round-off error model with applications to arithmetic expressions, SIA.M J. Computing, 8(1979), pp. 60-72.

Appendix I. Proof of Theorem 3.1

We prove by induction on k and i. For $k=i=1$ we have

$$
u_{1 j}=a_{i j}, \quad 1 \leq j \leq N ; \quad l_{t 1}=f l\left(a_{t 1} / u_{11}\right)=a_{t 1} \Delta / a_{11}, 2 \leq t \leq N .
$$

Hence

$$
\begin{gathered}
\bar{u}_{11}=c_{1 *}, \bar{u}_{1 j}=c_{1}, 2 \leq j \leq N, \\
\bar{l}_{t 1}=\bar{a}_{t 1} \bar{\Delta} / \bar{a}_{11}=c_{1} \bar{\Delta} / c_{1}, \quad 2 \leq t \leq N
\end{gathered}
$$

and the theorem is true. Assume the theorem is true for $k=i=r-1$. For $k=i=r$ we assume that in the computation of $u_{k j}$ the given $l_{k t}$ and $u_{i j}$ for $1 \leq t \leq k-1$ are calculated by the optimal ordeŕ and so $u_{k j}$ can be considered as the computed result of

$$
z=y_{1}+y_{2}+\ldots+y_{k}, \quad y_{1}=a_{k j}, \quad y_{t+1}=f l\left(l_{k l} u_{t j}\right), \quad 1 \leq t \leq k-1 .
$$

Now by assumption

$$
\bar{y}_{1}=c_{1}, \quad \bar{l}_{k t}=c_{t} \bar{\Delta} / c_{t^{*}}, \quad \bar{u}_{t j}=\frac{c_{t}}{c_{1^{*}} c_{2^{*}} \cdots c_{t-1^{*}}} .
$$

Hence

Now if exact additions were possible, then

$$
z=\frac{1}{z_{d}} \sum_{t=1}^{k} z_{n i}
$$

where

$$
\bar{z}_{d}=c_{1} * c_{2} * \ldots c_{k-1^{*}}, \quad \bar{z}_{n 1}=c_{1} c_{1} * c_{2} * \ldots c_{k-1^{*}}, \bar{z}_{n, t+1}=c_{t} c_{t} c_{t+1} * c_{t+2^{*}} \ldots c_{k-1} * \bar{\Delta}^{2}, \quad 1 \leq t \leq k-1 .
$$

By definition we have

$$
c_{t+1^{*}}=c_{t+1}=c_{t} c_{t} \bar{\Delta}_{13}=c_{t} c_{t}\{2,3,4\}
$$

Hence

$$
\lambda\left(c_{t+1^{*}}\right)=\lambda\left(c_{t+1}\right)=2 \lambda^{2}\left(c_{t}\right), \quad \sigma\left(c_{t+1^{*}}\right)=\sigma\left(c_{t+1}\right)=2 \sigma\left(c_{t}\right)+3>\sigma\left(c_{t}\right)+1
$$

Applying the above equations to $\bar{z}_{n, t+1}$ and $\bar{z}_{n t}$ we have

$$
\begin{aligned}
& \frac{\lambda\left(z_{n 2}\right)}{\lambda\left(z_{n 1}\right)}=1, \quad \frac{\lambda\left(z_{n, t+1}\right)}{\lambda\left(z_{n t i}\right)}=\frac{\lambda\left(c_{t}\right)}{\lambda^{2}\left(c_{t-1}\right)}=2, \\
& \sigma\left(z_{n, i+1}\right)-\sigma\left(z_{n i}\right)=\sigma\left(c_{i}\right)-2 \sigma\left(c_{i-1}\right)=3>1
\end{aligned}
$$

The above equations satisfy the conditions of I imma 2.3 , hence by the lemma the best strategy in evaluating

$$
u_{k j}=f l\left(y_{1}+y_{2}+\ldots+y_{k}\right)
$$

is by the left-to-right strategy. Thus by Lemma 2.3 and the induction assumption we have

$$
\begin{aligned}
\bar{u}_{k j} & =\left(\bar{y}_{1} \bar{\Delta}^{k-1}+\bar{y}_{2} \bar{\Delta}^{k-1}+\ldots+\bar{y}_{k-1} \bar{\Delta}^{2}\right)+\bar{y}_{k} \bar{\Delta} \\
& =\frac{\bar{c}_{k-1} \bar{\Delta}}{c_{1^{*}} c_{2^{*}} \cdots c_{k-2^{*}}}+\frac{c_{k-1} c_{k-1} \bar{\Delta}^{3}}{c_{1^{*}} c_{2^{*}} \ldots c_{k-1^{*}}}=\frac{c_{k}}{c_{1^{*}} c_{2^{*}} \ldots c_{k-1^{*}}} .
\end{aligned}
$$

Similar reasoning can be used to show the remaining part of the theorem for $l_{j i}^{\prime}$ s. This completes our proof. Q.E.D.

Appendix I. Proof of Theorem 3.1

We prove by induction on k and i. For $k=i=1$ we have

$$
u_{1 j}=a_{i j}, \quad 1 \leq j \leq N ; \quad l_{t 1}=f l\left(a_{t 1} / u_{11}\right)=a_{t 1} \Delta / a_{11}, 2 \leq t \leq N
$$

Hence

$$
\begin{gathered}
\bar{u}_{11}=c_{1^{*}}, \bar{u}_{1 j}=c_{1}, 2 \leq j \leq N, \\
\bar{l}_{11}=\bar{a}_{t 1} \bar{\Delta} / \bar{a}_{11}=c_{1} \bar{\Delta} / c_{1^{*}}, \quad 2 \leq t \leq N
\end{gathered}
$$

and the theorm is true. Assume the theorem is true for $k=i=r-1$. For $k=i=r$ we assume that in the computation of $u_{k j}$ the given $l_{k t}$ and $u_{i j}$ for $1 \leq t \leq k-1$ are calculated by the optimal order and so $u_{k j}$ can be considered as the computed result of

$$
z=y_{1}+y_{2}+\ldots+y_{k}, \quad y_{1}=a_{k j}, \quad y_{t+1}=f l\left(l_{k t} u_{t j}\right), \quad 1 \leq t \leq k-1 .
$$

Now by assumption

$$
\bar{y}_{1}=c_{1}, \quad \bar{l}_{k t}=c_{t} \bar{\Delta} / c_{r^{*}}, \quad \bar{u}_{t j}=\frac{c_{t}}{c_{1 *}^{*} c_{2^{*} \ldots}} .
$$

Hence

$$
\bar{y}_{1}=c_{1}, \bar{y}_{t+1}=\frac{c_{t} c_{1} \bar{\Delta}^{2}}{c_{1^{*} *} c_{2^{*}} \ldots c_{t^{*}}}, \quad 1 \leq t \leq k-1 .
$$

Now if exact additions were possible, then

$$
z=\frac{1}{z_{d}} \sum_{t=1}^{k} z_{n i}
$$

where

$$
\bar{z}_{d}=c_{1} * c_{2^{*}} \ldots c_{k-1^{*}}, \quad \bar{z}_{n 1}=c_{1} c_{1 *} c_{2^{*}} \ldots c_{k-1^{*}}, \bar{z}_{n, t+1}=c_{t} c_{t} c_{t+1^{*}} c_{t+2^{*}} \ldots c_{k-1 *} \bar{\Delta}^{2}, \quad 1 \leq t \leq k-1
$$

By definition we have

$$
c_{t+1^{*}}=c_{t+1}=c_{t} c_{t} \bar{\Delta}_{13}=c_{t} c_{t}\{2,3,4\}
$$

Hence

$$
\lambda\left(c_{t+1^{*}}\right)=\lambda\left(c_{t+1}\right)=2 \lambda^{2}\left(c_{t}\right), \quad \sigma\left(c_{t+1^{*}}\right)=\sigma\left(c_{t+1}\right)=2 \sigma\left(c_{t}\right)+3>\sigma\left(c_{t}\right)+1
$$

Applying the above equations to $\bar{z}_{n, t+1}$ and $\overline{\bar{z}}_{n t}$ we have

$$
\begin{aligned}
& \frac{\lambda\left(z_{n 2}\right)}{\lambda\left(z_{n 1}\right)}=1, \frac{\lambda\left(z_{n, t}\right)}{\lambda\left(z_{n t}\right)}=\frac{\lambda\left(c_{t}\right)}{\lambda^{2}\left(c_{t-1}\right)}=2, \\
& \sigma\left(z_{n, i+1}\right)-\sigma\left(z_{n i}\right)=\sigma\left(c_{i}\right)-2 \sigma\left(c_{i-1}\right)=3>1 .
\end{aligned}
$$

The above cquations satisfy the conditions of Lemma 2.3, hence by the lemma the best strategy in evaluating

$$
u_{k j}=f f\left(v_{1}+y_{2}+\ldots+y_{k}\right)
$$

is by the left-to-right strategy. Thus by Lemma 2.3 and the induction assumption we have

$$
\begin{aligned}
\bar{u}_{k j} & =\left(\bar{y}_{1} \bar{\Delta}^{k-1}+\bar{y}_{2} \bar{\Delta}^{k-1}+\ldots+\bar{y}_{k-1} \bar{\Delta}^{2}\right)+\vec{y}_{k} \bar{\Delta} \\
& =\frac{\bar{c}_{k-1} \bar{\Delta}}{c_{1} * c_{2^{*}} \ldots c_{k-2^{*}}}+\frac{c_{k-1} c_{k-1} \bar{\Delta}^{3}}{c_{1^{*} * c_{2}^{*} \ldots c_{k-1}}}=\frac{c_{k}}{c_{1^{*} * c_{2} *} \ldots c_{k-1^{*}}} .
\end{aligned}
$$

Similar reasoning can be used to show the remaining part of the theorem for $l_{l i}$ s. This completes our proof. Q.E.D.

1. Report No.	NASA TM-102036 ICOMP-89-11	2. Government Accession No.		3. Recipient's Catalog No.	
4. Title and Subtitle On the Equivalence of a Class of Inverse Decomposition Algorithms for Solving Systems of Linear Equations				5. Report Date May 1989	
				6. Performing Organization Code	
7. Author(s) Nai-kuan Tsao				8. Performing Organization Report No E-4785	
				10. Work Unit No.$505-62-21$	
9. Performing Organization Name and Address National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135-3191				11. Contract or Grant No.	
				13. Type of Report and Period Covered Technical Memorandum	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546-0001					
				14. Sponsoring Agency Code	
15. Supplementary Notes Nai-kuan Tsao, Wayne State University, Detroit, Michigan 48202 and Institute for Computational Mechanics in Propulsion, Lewis Research Center (work funded under Space Act Agreement C99066G). Space Act Monitor: Louis A. Povinelli.					
16. Abstract A class of direct inverse decomposition algorithms for behavior in the presence of round-off errors is analyzed. implementation, the class of direct inverse decompositio error complexity measures. 17. Key Words (Suggested by Author(s)) Gaussian elimination, Gauss-Jordan method; Triangular decomposition; Error complexity; Doolittle method; Crout method			ving system It is shown algorithms	ar equations is er some mild res are equivalent	ented. Their tions on their erms of our
			18. Distribution Statement Unclassified - Unlimited Subject Category 64		
19. Security Cla	(of this report) Unclassified	20. Security Classif. (of this paga) Unclassified		21. No of pages	22. Price*

