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Multi-Scale Physics in Li-lon Battery

Requirements & Resolutions

“Requirements” are usually defined
in a macroscale domain and terms.

©

(+)

Performance
Life

Cost

Safety

10™

1 |

Design of Materials

Voltage

Capacity

Lattice stability
Kinetic barrier
Transport property

Design of Electrode
Architecture

Li transport path (local)
Electrode surface area
Deformation & fatigue
Structural stability
Surface physics

Design of Electrodes
Pairing and Lithium
Transport

Electrodes selection
Li transport
Porosity, tortuosity
Layer thicknesses
Load conditions

Design of Electron
Current & Heat
Transport

Electric & thermal
connections
Dimensions, form factor
Component shapes

National Renewable Energy Laboratory

Innovation for Our Energy Future

[m]



Need a Multi-Scale Model?

Numerical approaches focusing on different length scale physics

Oriented
NT arrays

L
(Electroly\y & o=

a) Quantum mechanical and molecular dynamic modeling

b) Numerical modeling for addressing the impacts of architecture of
electrode materials

c) 1D performance model capturing solid-state and electrolyte diffusion
dynamics

d) Cell-dimension 3D model for evaluating macroscopic design factors
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Why macro-scale transport becomes critical?

Sub-electrode scale physics
Kinetics

Li diffusion

lon transport <
Heat dissipation

Size Effect

» Spatial variation of ...

Design of current and
heat flow paths * Electric potentials

* Temperatures
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Approach in the Present Study

Multi-Scale Multi-Dimensional (MSMD) Modeling

To address ...
« Multi-scale physics from sub-micro-scale to battery-dimension-scales

« Difficulties in resolving microlayer structures in a computational grid
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Solution Variables

Detailed ~ Cell Dimension + Electrode Scale
Structure Transport Model Submodel (1D)
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Previous Study

AABC 08, Tampa, May 2008
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“Poorly designed electron

el N0 and heat transport paths can
cause excessive nonuniform use of materials
and then deteriorate the performance and
shorten the life of the battery.”
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Analysis

Comparison with Experimental Results
B Model Validation against JCS VL41M Test Data

Macro-Scale Design Evaluation Analysis
B /mpacts of Aspect Ratio of a Cylindrical Cell
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Comparison with Experimental Results
B Model Validation against JCS VL41M Test Data

The JCS VL41M cell was chosen as a candidate for several reasons:
« 1-D electrochemical model was previously validated vs. VL41M current/voltage data.

« Thermal imaging experiments were recently run.
Future calorimeter test data will allow for further refinement & validation of the model.
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Approach

JCS VL41M Multi-Scale Multi-Dimensional (MSMD) Model
Thermal Imaging Test Detailed - Cell Dimension + Electrode Scale
Structure Transport Model Submodel {1D)
. ~ X! -
l r—
Data » < , 3
used for R
model
validation APy ~ ! -

1) 1-D Electrochemical Model Validation
» Measured current & temperature profiles used as inputs to model
» Model predicts voltage & heat generation rate

2) Multi-Scale Multi-Dimensional (*“MSMD?”) Model Validation

« Utilized 3D thermal model results to extract thermal boundary conditions
« Measured surface temperature compared to model prediction of jelly-roll
surface temperature.

3) MSMD Model Predictions
 Multidimensional features
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1) 1D Electrochemical Model Validation
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1) 1D Electrochemical Model Validation

5 charge depletion cycles + 60 charge sustaining cycles per USABC manual (BSF = 39)

Test Profile:
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Irreversible heat generation rate
predicted by 1-D electrochemical model
compares well with calculated value
using measured current and voltage and
model open-circuit voltage.

Qirr = Imeas(OCPmodeI - Vmeas)

e 1 __________________________ _

» Entropic heat effects seem to be non-
negligible and may need to be included
in the model.

* More rigorous heating rates and specific heat
to be measured in upcoming calorimeter testing.
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2) MSMD Model Validation

Assumption for Model Simplification

Extended Foil

AN

\

Extended Foil Axisymmetric

Note: The schematics shown above do not represent actual JCS VL41M.
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2) MSMD Model Validation

Retrieving information from 3D Thermal Model for MSMD model input

« Complex thermal pathway was captured in 3D thermal model, then
appropriate thermal boundary condition was evaluated for MSMD model

IR Image __Model

__ji

100 A Geometric Cycle - Stévady

- General system response for temperature
distributions at cell skins, terminals and bus bars
is well predicted and reveals how heat is
transferred through the 3 cell assembly.
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2) MSMD Model Validation

Evaluating thermal boundary conditions at jelly-roll surfaces
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2) MSMD Model Validation

Comparison with Measured Temperature
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Measured can surface temperature and model-predicted jelly-roll temperature
agree reasonably well. Without an internally-instrumented cell, it is not possible to
directly validate the MSMD model’s jelly-roll temperature predictions.
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3) MSMD Model Prediction

Snapshots at the end of CHARGE DEPLETING cycles

600 ] T

B

o

o
T

et=1770s
¢ Tcan wall = 31 6°C
* Current=409 A

[
(=3

o o
T

Current (A)

By

&

1=
T

400

Heat Transport

'Reaction 'C'il'rrent )

_ 274~
. E : T .
345 - S sl S

= . NG - /1411
5y e T

o T ozt b AR Il{’,‘;’ﬂ' )

gss.s— X % e e

R’

e b
-
n
&

20 15 10 5 o © X(mm) o
R(mm) R{mm}) 0 X(mm)

A ¢

Electron Transport

2984 T
. / \\\‘\\\‘\\__\_\ . :

Foji Voltage Difference [V]

R{mm) 0o X{mm} Rmm) 0 o

National Renewable Energy Laboratory Innovation for Our Energy Future



3) MSMD Model Prediction

Ah-throughput during CHARGE DEPLETING cycles
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Macro-Scale Design Evaluation Analysis
B /mpacts of Aspect Ratio of a Cylindrical Cell
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Aspect Ratio of Cylindrical Cells

' “Nominal” y

“Large D” “Large H”
PHEV10 application 20 Ah cell US06 CD cycle
USO6 cycle discharges 3.4 *  Well suited for PHEV10 *  Payg =14 kW, Pgys = 32 kW
kKWh in 12 minutes (~3C rate) « BSF=78-V,,~=
290V
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Brief Look at “What H/D Ratio Means”

Volume = const

H x W = const

Foil thicknesses
Al: 20 ym
Cu: 15 um

National Renewable Energy Laboratory
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10s Power Capability Comparison
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US06 CD Cycle x 2, Natural Convection
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US06 CD Cycle x 2, Natural Convection
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Summary

2 Nonuniform battery physics, which is more probable in large-format
cells, can cause unexpected performance and life degradations in
lithium-ion batteries.

= A Multi-Scale Multi-Dimensional model was developed as a tool for
iInvestigating interaction between micro-scale electrochemical process
and macro-scale transports using a multi-scale modeling scheme.

= The developed model will be used to provide better understanding
and help answer engineering questions about improving cell design,
cell operational strateqy, cell management, and cell safety.

= Engineering questions to be addressed in future works include ...

What is the optimum form-factor and size of a cell?

Where are good locations for tabs or current collectors?

How different are measured parameters from their nonmeasurable internal values?
Where is the effective place for cooling? What should the heat-rejection rate be?
How does the design of thermal and electrical paths impact under current-related
safety events, such as internal/external short and overcharge?
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Thank you!
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Additional Slides
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Heat Transfer — 100 A Geometric Cycle
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Percentage of Heat Rejection from Each Cell

0 4.66

39.44
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38.72
38.36
38.00

09.68 O positive cable

B negative cable
O bus bar surfaces
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W top surfaces

O btm surfaces

- Skin temperature of Cell C is low, because it is directly
connected to the cable through the positive terminal.

- There are inflows of heat through the positive thermals at
Cell A and Cell B which are connected to the negative
terminals of the neighbor cells.

- Most heat is rejected through cell side surfaces. About
10% of heat is dissipated at bus bar surfaces. 12% runs Percentage of Heat Rejection from Assembly
away through cables.

068.46
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3) MSMD Model Prediction

Temperature Distribution after 30 sec 300 A discharge

Temperature [OC]
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Temperature Distribution after 20 min 100 A geometric cycling
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US06 CD Cycle x 2, Natural Convection

Temperature Distribution
Tmax-Tmin =1.7°C

Tavg =44.7°C
49 -
50 Tmax-Tmin =1.7°C
45 a5 Tavg = 45.5°C
40 25
= 2
e £ 18{ 1
=5 = F L s . ! :
147 530 — o D— e — I — ) — s —Bl— s — . B0 — . ] — s — . —
95 X ()
20
465 s
10
5
45 S I S |
¥ mrm)
Tmax-Tmin = 3.2°C
44 Tavg = 47.6°C
SR J———
- Y 1 | e = e [ i 7 I Etc | 1 | I -

2o 0rmrr)

National Renewable Energy Laboratory Innovation for Our Energy Future



US06 CD Cycle, Natural Convection
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Forced Convection

Natural Convection Forced Air Convection
(h = 8 W/m2 K) (h = 30 W/m2 K)
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Forced convection — negligible impact on where heat is
generated
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Despite additional thermal imbalance, forced convection
does not drastically change localized material usage.

Amp-hour Large Dia. Cell
Natural: -0.1% to +0.03%
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Comparison of natural and forced convection

att =690 s of US06 cycle
Large D

Tavg (OC) Tmax_Tmin (OC)
Natural 44 .4 1.6
Forced 40.9 4.1
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