

Multi-Scale Multi-Dimensional Model for Better Cell Design and Management

Ist International Conference on Advanced Lithium Batteries for Automotive Applications
Argonne, September 15–17, 2008

Gi-Heon Kim Kandler Smith

National Renewable Energy Laboratory

NREL/PR-540-44245

Presented at the 1st International Conference on Advanced Lithium Batteries for Automotive Applications held September 15-17, 2008 in Argonne, Illinois

Multi-Scale Physics in Li-Ion Battery

Requirements & Resolutions **Performance** Life "Requirements" are usually defined Cost in a macroscale domain and terms. Safety 10⁻¹⁰ 10⁻² 10⁻⁴ 10⁻⁶ 10⁰ [m]**Design of Materials Design of Electrode Design of Electrodes Design of Electron Architecture Pairing and Lithium** Current & Heat **Transport Transport** Voltage Li transport path (local) Capacity Electrode surface area Electrodes selection Electric & thermal Lattice stability Deformation & fatigue Li transport connections Porosity, tortuosity Kinetic barrier Structural stability Dimensions, form factor Surface physics Layer thicknesses

Load conditions

Transport property

Component shapes

Need a Multi-Scale Model?

Numerical approaches focusing on different length scale physics

- a) Quantum mechanical and molecular dynamic modeling
- b) Numerical modeling for addressing the impacts of architecture of electrode materials
- c) 1D performance model capturing solid-state and electrolyte diffusion dynamics
- d) Cell-dimension 3D model for evaluating macroscopic design factors

Why macro-scale transport becomes critical?

Sub-electrode scale physics
Kinetics
Li diffusion
Ion transport
Heat dissipation

Spatial variation of ...

Design of current and heat flow paths

• Electric potentials
• Temperatures

Size Effect

Approach in the Present Study

Multi-Scale Multi-Dimensional (MSMD) Modeling

To address ...

- Multi-scale physics from sub-micro-scale to battery-dimension-scales
- Difficulties in resolving microlayer structures in a computational grid

Solution Variables

NOTE:

Selection of solution scheme for either grid system is independent of the other.

Previous Study

AABC 08, Tampa, May 2008

NREL National Renewable Energy Laboratory **Current Production** – 2-min 200 A discharge Current Production [A/m2] Current Production [A/m2] Larger Overpotential **Higher Temperature** Faster Reaction $i_{max}-i_{min} = 13.2 \text{ A/m}^2$ $i_{max} - i_{min} = 4.54 \text{ A/m}^2$

"Poorly designed electron and heat transport paths can

cause excessive nonuniform use of materials and then deteriorate the performance and shorten the life of the battery."

Analysis

Comparison with Experimental Results

Model Validation against JCS VL41M Test Data

Macro-Scale Design Evaluation Analysis

Impacts of Aspect Ratio of a Cylindrical Cell

Analysis

Comparison with Experimental Results

Model Validation against JCS VL41M Test Data

The JCS VL41M cell was chosen as a candidate for several reasons:

- 1-D electrochemical model was previously validated vs. VL41M current/voltage data.
- Thermal imaging experiments were recently run.
- Future calorimeter test data will allow for further refinement & validation of the model.

Macro-Scale Design Evaluation Analysis

Impacts of Aspect Ratio of a Cylindrical Cell

Approach

1) 1-D Electrochemical Model Validation

- Measured current & temperature profiles used as inputs to model
- Model predicts voltage & heat generation rate

2) Multi-Scale Multi-Dimensional ("MSMD") Model Validation

- Utilized 3D thermal model results to extract thermal boundary conditions
- Measured surface temperature compared to model prediction of jelly-roll surface temperature.

3) MSMD Model Predictions

Multidimensional features

1) 1D Electrochemical Model Validation

Measured current and skin temperature* profiles from thermal imaging test used as inputs to lumped thermal/1-D electrochemical model.

3.8

3.6

3.4

7100

7200

7300

Model voltage prediction compares favorably with data.

• Error generally < 50 mV

Test Profile:

5 charge-depletion cycles + 60 charge-sustaining cycles per USABC manual (BSF = 39)

* Skin temperature measured via thermocouple on can wall, 3" from bottom.

100

200

3.6

1) 1D Electrochemical Model Validation

Test Profile:

5 charge depletion cycles + 60 charge sustaining cycles per USABC manual (BSF = 39)

Irreversible heat generation rate predicted by 1-D electrochemical model compares well with calculated value using measured current and voltage and model open-circuit voltage.

$$Q_{irr} = I_{meas}(OCP_{model} - V_{meas})$$

• Entropic heat effects seem to be nonnegligible and may need to be included in the model.

^{*} More rigorous heating rates and specific heat to be measured in upcoming calorimeter testing.

Assumption for Model Simplification

Note: The schematics shown above do <u>not</u> represent actual JCS VL41M.

Retrieving information from 3D Thermal Model for MSMD model input

 Complex thermal pathway was captured in 3D thermal model, then appropriate thermal boundary condition was evaluated for MSMD model

100 A Geometric Cycle - Steady

- General system response for temperature distributions at cell skins, terminals and bus bars is well predicted and reveals how heat is transferred through the 3 cell assembly.

Evaluating thermal boundary conditions at jelly-roll surfaces

Heat transfer coefficient at jelly-roll surfaces of the middle cell

Area Weighted Averages

 h_{top} = 22.6 W/m²K h_{side} = 8.7 W/m²K h_{bottom} = 12.4 W/m²K

Axisymmetric MSMD Model

Comparison with Measured Temperature

Measured can surface temperature and model-predicted jelly-roll temperature agree reasonably well. Without an internally-instrumented cell, it is not possible to directly validate the MSMD model's jelly-roll temperature predictions.

3) MSMD Model Prediction

Snapshots at the end of CHARGE DEPLETING cycles

3) MSMD Model Prediction

Ah-throughput during CHARGE DEPLETING cycles

X (mm)

Analysis

Comparison with Experimental Results

Model Validation against JCS VL41M Test Data

The JCS VL41M cell was chosen as a candidate for several reasons:

- 1-D electrochemical model was previously validated vs. VL41M current/voltage data.
- Thermal imaging experiments were recently run.
- Future calorimeter test data will allow further refinement and validation of the model.

Macro-Scale Design Evaluation Analysis

Impacts of Aspect Ratio of a Cylindrical Cell

Aspect Ratio of Cylindrical Cells

PHEV10 application

US06 cycle discharges 3.4 kWh in 12 minutes (~3C rate)

20 Ah cell

- Well suited for PHEV10
- BSF = $78 \rightarrow V_{\text{nom}} \approx 290V$

US06 CD cycle

• P_{avg} = 14 kW, P_{RMS} = 32 kW

Brief Look at "What H/D Ratio Means"

$$P_{loss,foil} \sim \frac{\rho \cdot i''^2}{\delta} H^2$$

$$\Delta V_{foil} \sim \frac{\rho \cdot i''}{\delta} H^2$$

i": current [A/m²]

 ρ : resistivity

 δ : foil thickness

Volume = const

 $H \times W = const$

Foil thicknesses

Al: 20 μm

Cu: 15 µm

10s Power Capability Comparison

 Large H design has almost 10% less power capability.

US06 CD Cycle x 2, Natural Convection

Large H cell has greatest temperature rise owing to long electronic current paths resulting in high foil heating.

Foil heat contribution to total:

- 15% Large H
- 1.7% Nominal
- < 0.1% Large D

Large H cell has greatest internal temperature imbalance.

US06 CD Cycle x 2, Natural Convection

Summary

- Nonuniform battery physics, which is more probable in large-format cells, can cause unexpected performance and life degradations in lithium-ion batteries.
- A Multi-Scale Multi-Dimensional model was developed as a tool for investigating interaction between micro-scale electrochemical process and macro-scale transports using a multi-scale modeling scheme.
- The developed model will be used to provide better understanding and help answer engineering questions about improving *cell design*, *cell operational strategy*, *cell management*, and *cell safety*.

Engineering questions to be addressed in *future works* include ...

What is the optimum form-factor and size of a cell?

Where are good locations for tabs or current collectors?

How different are measured parameters from their nonmeasurable internal values?

Where is the effective place for cooling? What should the heat-rejection rate be?

How does the design of thermal and electrical paths impact under current-related safety events, such as internal/external short and overcharge?

Acknowledgments

Vehicle Technologies Program at DOE

- Tien Duong
- Dave Howell

NREL Energy Storage Task

Ahmad Pesaran

Thank you!

Additional Slides

Heat Transfer – 100 A Geometric Cycle

- Skin temperature of Cell C is low, because it is directly connected to the cable through the positive terminal.
- There are inflows of heat through the positive thermals at Cell A and Cell B which are connected to the negative terminals of the neighbor cells.
- Most heat is rejected through cell side surfaces. About 10% of heat is dissipated at bus bar surfaces. 12% runs away through cables.

Percentage of Heat Rejection from Each Cell

Percentage of Heat Rejection from Assembly

3) MSMD Model Prediction

Temperature Distribution after 30 sec 300 A discharge

Temperature Distribution after 20 min 100 A geometric cycling

US06 CD Cycle x 2, Natural Convection

Temperature Distribution

US06 CD Cycle, Natural Convection

Forced Convection

Forced convection – negligible impact on where heat is generated

Large Dia. Cell

R (mm)

14

0

50

100

Natural: -0.1% to +0.1% Forced: -0.3% to +0.2%

Forced Convection

X (mm)

200

150

300

250

Despite additional thermal imbalance, forced convection does not drastically change localized material usage.

Comparison of natural and forced convection

