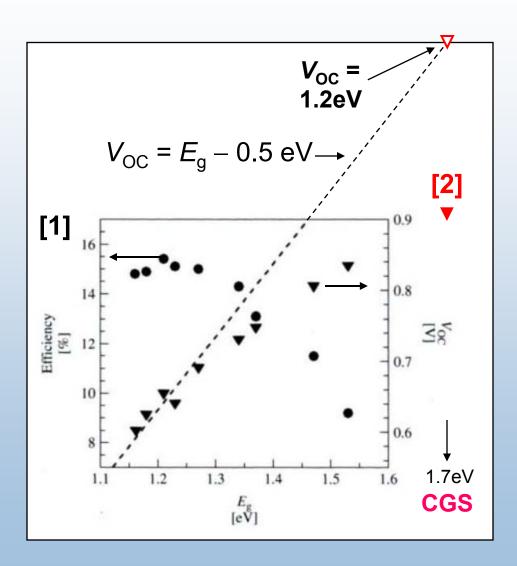
Innovation for Our Energy Future

Intrinsic *DX* centers in ternary chalcopyrite semiconductors

"Why metastable intrinsic defects cause open-circuit-voltage limitation and how they can be avoided"

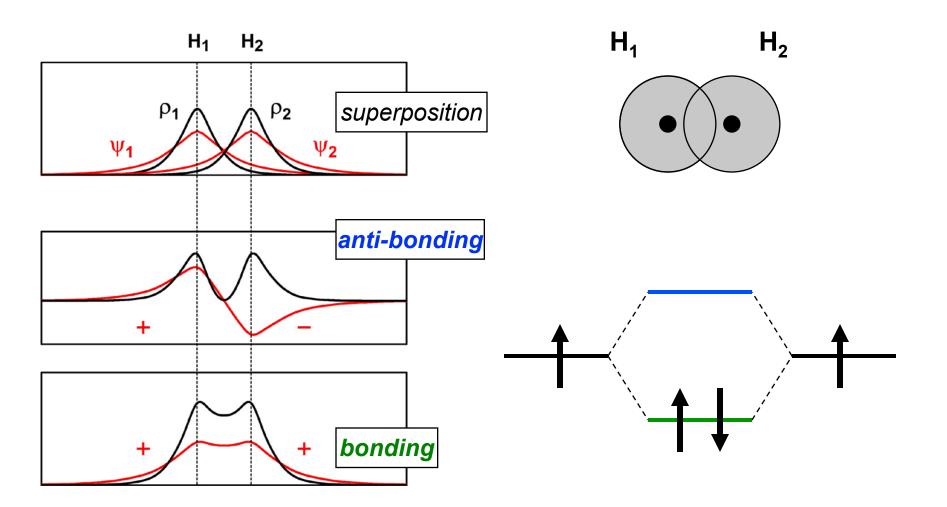
Stephan Lany and Alex Zunger


NREL/PR-590-43272

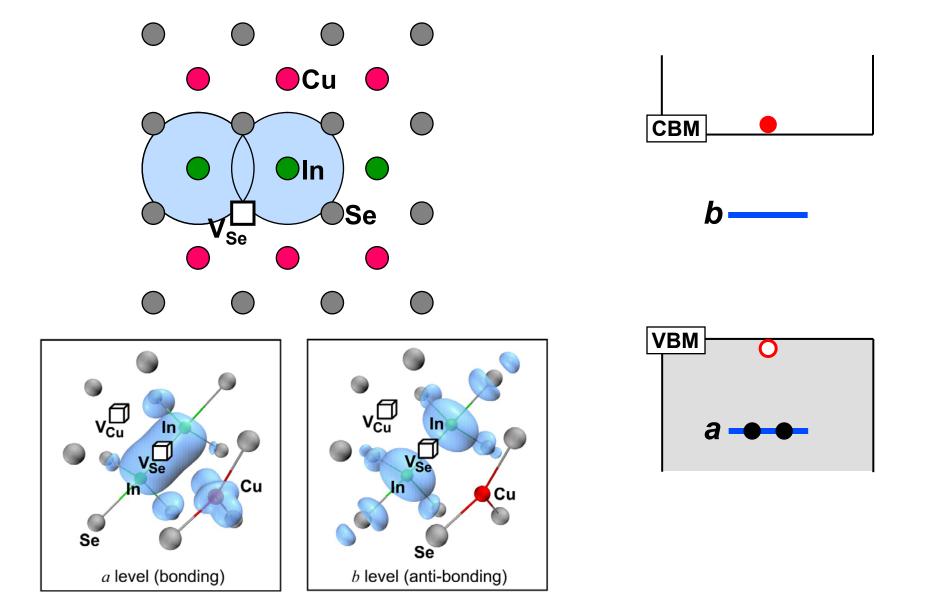
Presented at the 33rd IEEE Photovoltaic Specialist Conference held May 11-16, 2008 in San Diego, California

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-99GO10337 with the National Renewable Energy Laboratory.

V_{OC} saturation in CIGS

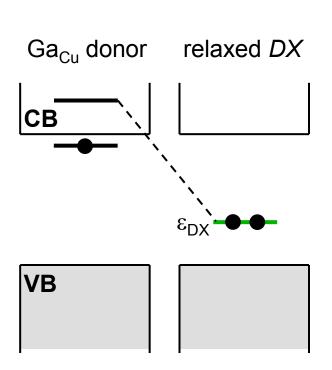


Higher V_{oc}:


- Higher η for single-junction
- Needed for TF tandem
- Reason: Recombination due to deep defects [3]

- [1] W.N. Shafarman and L. Stolt, in: Handbook of Photovoltaic Science and Engineering
- [2] R. Kniese, M. Lammer, U. Rau, M. Powalla, TSF 451-452, 430 (2004).
- [3] G. Hanna, A. Jasenek, U. Rau, H.W. Schock, TSF **387**, 71 (2001).

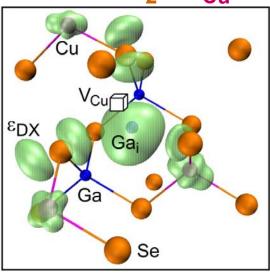
Defects levels (I) – Example: Orbital interaction in the H₂ molecule



Defects levels (II): Se-vacancy in CulnSe₂

Intrinsic DX centers in CIGS

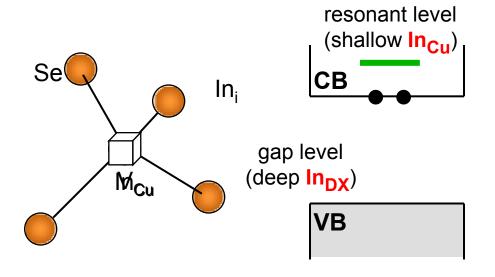
DX centers: Electron traps formed due to lattice relaxations

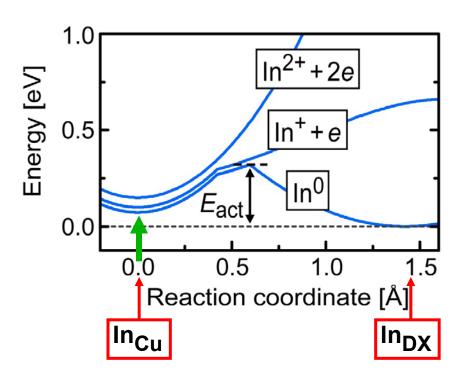


Extrinsic DX in II-VI

ZnSe:Ga_{Zn}

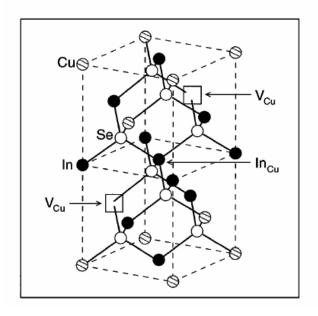
Intrinsic DX in CIGS


CuGaSe₂:Ga_{Cu}

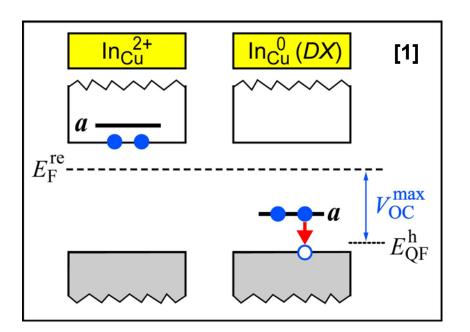


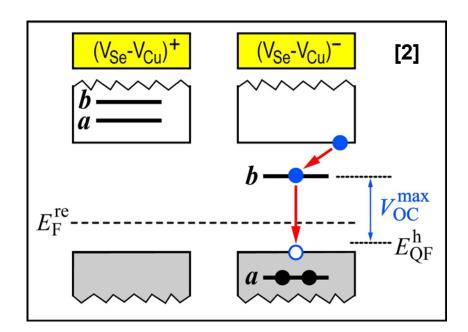
In II-VI, DX centers require **extrinsic** impurities In CIGS, native defects (In_{Cu}, Ga_{Cu}) exhibit DX behavior

S. Lany and A. Zunger, Phys. Rev. Lett. **100**, 016401 (2008).


Evolvement of ionic structure, electron-level, and energy during the transition into the deep DX state

Critical Fermi levels for electron-trapping


 In_{Cu} (Ga_{Cu}) exists isolated or in complexes, e.g., (In_{Cu} -2V_{Cu}) [1]



Transition	occurs above E _F > E _V +
\ln_{Cu}^{2+} + 2e $\rightarrow \ln_{\text{DX}}^{2}$	0.9 eV
$(In_{Cu}-V_{Cu})^+$ + 2e $\rightarrow (In_{D})$	₍ -V _{Cu}) ⁻ 1.1 eV
$(In_{Cu}-2V_{Cu})^0 + 2e \rightarrow (In_{D})^0$	(-V _{Cu}) ²⁻ 1.3 eV

Electron-trapping due to DX centers occurs mainly in wider-gap $CuIn_{1-x}Ga_xSe_2$ alloys with $x \ge 0.3$

V_{OC} limitation by In_{Cu}, Ga_{Cu}, V_{Se} and their complexes with V_{Cu}

 In_{Cu} , Ga_{Cu} : V_{OC} is limited by the transition that causes atomic reconfiguration

V_{se}-V_{cu}: The negative (acceptor) configuration exhibits deep trap level

Both types of defects limit V_{OC} below ~1 eV

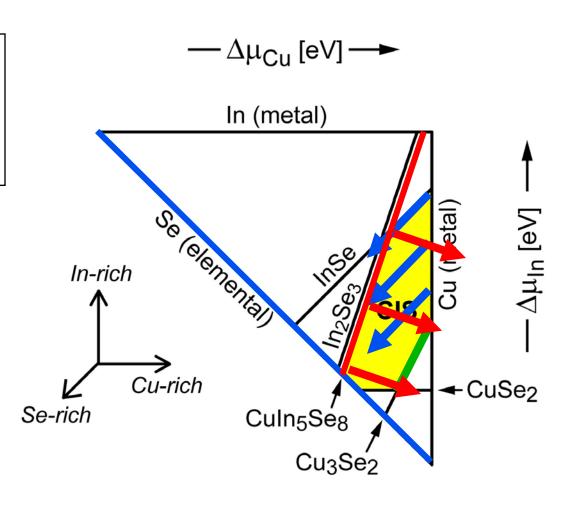
[1] S. Lany and A. Zunger, Phys. Rev. Lett. **100**, 016401 (2008).

[2] S. Lany and A. Zunger, J. Appl. Phys. **100**, 113725 (2006).

How to avoid V_{OC} limiting metastable defects?

Formation energies vs growth conditions

$$\Delta H_{\mathrm{D},q}(\mu, E_{\mathrm{F}}) = [E_{\mathrm{D},q} - E_{\mathrm{host}}] + [\mu_{\mathrm{host}} - \mu_{\mathrm{D}}] + q \cdot E_{\mathrm{F}}$$

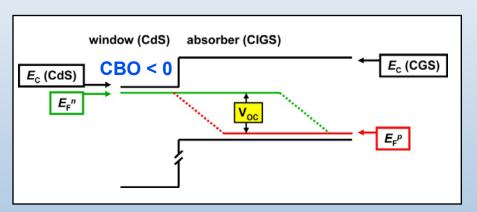

CulnSe₂ stability condition

$$\Delta\mu_{Cu}$$
+ $\Delta\mu_{In}$ + $2\Delta\mu_{Se}$ = $\Delta H_f(CIS)$

Competing phases

e.g.,
$$3\Delta\mu_{Cu}$$
 + $2\Delta\mu_{Se}$ $\leq \Delta H_f(Cu_3Se_2)$

- Minimize In_{Cu}, Ga_{Cu}, (In_{Cu}-2V_{Cu})
- Minimize V_{Se}, (V_{Se}-V_{Cu})
- Cu-rich / Se-rich growth


Trade-offs for minimizing V_{oc} limiting defects

Minimizing defects: Se-rich / Cu-rich

e.g., phase-equilibrium with Cu₃Se₂

Type inversion: Se-poor / III-rich (Cu-deficient) [1]

Other causes of V_{oc} limit.: band-offset [2], ...?

[1] S. Lany et al., Appl. Phys. Lett. 86, 042109 (2005)

[2] M. Morkel et al., Appl. Phys. Lett. 79, 4482 (2001)

Conclusions

- Intrinsic donor-type defects In_{Cu}, Ga_{Cu}, and V_{Se}, and their complexes with V_{Cu} cause metastability, but also act to limit V_{OC}
- Growth conditions which minimize these defects (Cu-rich/Se-rich)
 are very different from those currently used
- Overcoming V_{OC} limitation requires to address other issues and trade-offs

References

- S. Lany and A. Zunger, Phys. Rev. Lett. **100**, 016401 (2008)
- S. Lany and A. Zunger, J. Appl. Phys. 100, 113725 (2006)

Stephan_Lany@NREL.gov

