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FOREWORD

This is a progress report on the research project "Numerical Solutions
of Three-Dimensional Navier-Stokes Equations for Closed-Bluff Bodies," for
the period ending June 30, 1987. Specific attention has been directed to
investigate the “"Conservative Finite Volume Solutions of a Linear Hyperbolic
Transport Equation in Two and Three Dimensions Using Multiple Grids." This
work was supported by the NASA/Langley Research Center (Computer Appli-
catiqns Branch, Analysis and Computation Division) through the cooperative
agreement NCC1-68. The cooperative agreement was monitored by Dr. Robert E.

Smith of the Computer Applications Branch, ACD.
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CONSERVATIVE FINITE VOLUME SOLUTIONS OF A LINEAR HYPERBOLIC TRANSPORT
EQUATION IN TWO AND THREE DIMENSIONS USING MULTIPLE GRIDS
By
M. Kathong! and S.N. Tiwari?

ABSTRACT

The feasibility of the multiple grid technique is investigated by
solving Tinear hyperbolic equations for simple two- and three-dimensional
cases. The results are compared with exact solutions and solutions obtained
from the single grid calculations. It is demonstrated that the technique
works reasonably well when two grid systems contain grid cells of compar-
ative sizes. The study indicates that use of the multiple grid does not
introduce any significant error and that it can be used to attack more com-

plex problems.

1 Graduate Research Assistant, Department of Mechanical Engineering and
Mechanics, 01d Dominion University, Norfolk, Virginia 23529.
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1. INTRODUCTION

In recent years much progress has been made in the solutions of steady
state equations of motion in both two and three dimensions. For complex
shapes these calculations are usually based on a body-fitted curvilinear
grid. For general three-dimensional bodies (for example, an aircraft
configuration), it is very difficult to construct a body-fitted coordinate
system [1]*. To simplify this problem, it is becoming more common to use
several grids (multiple grids) at once, each in a different coordinate
system [2-4]. This approach results in new boundaries within the given
region at the interfaces of the various grids (Fig. 1.1). In order that
information be transferred from one grid to another accurately, it is impor-
tant to treat grid points on the interfaces with care. The non-linear
nature of the equations of motion permits solutions with discontinuities
such as shocks and slip surfaces. In order that such discontinuities assume
the right strength and physical location, it is imperative that the scheme
used for the calculations be conservative [5]. In a multiple grid calcu-
lation, it is important that the interfaces are also treated in a conser-
vative manner so that the discontinuities can move freely across these
interfaces.

The question of conservation when switching between two different grids
or numerical schemes has been considered by several authors. Warming and
Beam [6] derived transition operators for switching conservatively between
MacCormack's method and a second order upwind scheme. Hessenius and Pulliam

[7] applied this transition operator approach to derive so-called zonal

*The numbers in brackets indicate references.



Fig. 1.1. .Zoning of multiply connected region.



interface conditions, but with a significant loss of accuracy at the zonal

interfaces. Rai [8] has developed conservative zonal interface conditions
for zonal grids which share a common grid line, and has nice calculations
demonstrating the shock capturing ability of zonal grids with a discontinu-
ity crossing zones. Earlier work in the area of multiple grids includes
that of Cambier et al. [9] who analyzed the zonal-boundary problem for a
system of hyperbolic equations and used the compatibility equations to de-
velop a zonal-boundary scheme. Good results are presented for transonic
channel flow. However, the use of the compatibility equations results in a
zonal-boundary scheme that is not conservative and, hence, unsuitable for
problem in which flow discontinuities move from one grid to another. Rai
et al. [10] present results obtained on metric discontinuous grids; the
integration scheme used is the Osher upwind scheme. Reference 11 gives
results obtained on overlaid grids in conjunction with the stream function
approach. For more information on multiple grid one should refer to [12-
20]. the need for conservative grid interfaces is illustrated by Benek,
Steger, and Doughtery [3].

Dukowicz [21] described a rezoning method for arbitrary quadrilateral
meshes in two dimensions. Ramshaw [22] suggested a procedure which is sim-
ilar to the method of Dukowicz, but is simpler and more direct. Note that
they defined rezoning as a method for transferring a conserved quantity, Q,
from one generalized mesh to another when the volumetric density of Q is
uniform within each cell of the original mesh. A computer program which
follows Ramshaw's procedure has been written and tested with various types
of grids and variables. The program seems to be working well. The objec-
tive of this study is to establish whether or not this technique is feasible

for various grid systems while keeping the governing equation simple.



For simplicity, the scalar 2D and 3D hyperbolic equations are chosen
for this study. Hyperbolic equations have had a history of being used as
model equations for testing newly developed schemes, for example, see [23-
30]. Finite volume approach is chosen along with three-stage Runge-Kutta
time integration. The three-stage Runge-Kutta integration is of 2nd order
accuracy. Many authors have applied the finite volume approach and Runge-
Kutta to their numerical calculations [38-42].

This study can be divided into two portions. First, the scalar 20D
hyperbolic equations, q + aq + bqy = 0 is considered. Here, the equation
is solved on a two dimensional grid system which is changed into another
grid system at some time, say t = tl. The information obtained from the
first grid calculation is transferred to the second grid by Ramshaw's tech-
nique. Many authors, for example Berger [43], suggested that in order to
retain the conservative property of the numerical scheme, the interpolation
of flux across the interface is needed. For this problem, q itself is the
flux. Ramshaw's technique is used to transfer q across the interface.

The second portion of this study is to examine the technique with the scalar
3D hyperbolic equation, q, + aq, + bqy +cq, = 0. This equation is more
suitable as the model equation of the equations of motion. Here, the grid
system is changed from one to another at some x = y plane, say plane z = Zl'

Plane Z4 is the interface mentioned previously. For this problem, the flux

is going through this plane, i.e., flux in z direction = h = cq, needs to be

transferred across the plane. Again, Ramshaw's technique is implemented in
doing so. Details and procedures of solving both 2D and 3D hyperbolic
equation is given in later sections. The results are compared with exact
solutions and solutions obtained from the single grid calculations, i.e.,

without applying the Ramshaw's technique. It is important to note that




the objective of this study is to determine whether the technique is appli-
cable for these simple governing equations. If it is applicable, one may
have some confidence that it will be applicable for more complicated equa-
tions. It is expected that the results from this study will yeild a signi-
ficant contribution in the area of Computational Fluid Dynamics.

In Sec. 2, a brief discussion on Ramshaw's technique is given. Sec-
tions 3 and 4 are concerned about the two and three dimensional hyperbolic

equation, respectively. Finally, the conclusion is given in Sec. 5.

2. DISCUSSION ON CONSERVATIVE REZONING ALGORITHM

Rezoning is a method for transferring a conserved quantity Q from one
generalized mesh to another when the volumetric density of Q is uniform
within each cell of the orginial mesh. The need for rezoning was discussed
in Sec. 1. A rezoning method for arbitrary quadrilateral meshes in two
dimensions has recently been described by Dukowicz [21]. Ramshaw [22]
suggested the procedure in doing so which is similar in spirit to the method
of Dukowicz, but is simpler and more direct. A computer program following
this procedure has been written and is working well for example grids and a
wide variety of choice of variables.

By far the most common type of generalized mesh is the arbitrary quad-

rilateral mesh, which is convenient to work with because it has the same
simple topological and logical structure as a square or rectangular mesh.
the basic idea behind the rezoning is simple. Here, two grid systems are
overlapped each other in some fashion (Fig. 2.1). The conserved quantity,
denoted by on], is to be transferred from the old grid system (Aok] is the

area of each mesh in the old grid system) to the new grid system in which
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A"ij is the area of each. The quantity Q"ij is denoted as the transferred

quantity in each mesh of the new grid system. Thus, Qnij can be computed
by:
Qn.s = 2(Qo,q) (Ano, ) = (go,4) (Ano,,)

Aoy,

ij =

where An0 is the portion of the area Anij which is contained in the area
k1

Aok], and the summation is up to the number of the old meshes contained in
Anij' The quantity Gkl = on] represents the volumetric density of on]
and is assumed to be uniform within each cell. The task, now, is to find
Ano, , and the number of the old meshes contained in each Anij‘ The area of

k1
the polygon P is given by [44]

3
=1 e (% -5 %),
2 S S

where the summation is over all the sides of P, and eg

is either +1 or -1
depending on whether P lies to the left or right of side s. Note that the
endpoint coordinates (xi, yi) and (xz, ysz) are considered to be associated
with the side s and not with the particular polygon P.

Figure 2.2 shows arbitrary overlap grids. The overlap areas are poly-
gons whose sides are segments of the old-mesh lines. The number of sides of
each type, and total number of sides, will be different for different over-

lap areas. Each side is common to two overlap areas, the one on the left

(L) and the one on the right (R), and these overlap areas may be considered
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to be associated with the side.

The objective is to apportion a conserved quantity Q, whose volumetric
density q 1is considered uniform within each cell of the old mesh, into the
cells of the new mesh. It would be inefficient and difficult £o automate in
a computer, to naively sweep over the overlap areas directly. Instead,
Ramshaw suggests to evaluate the same contributions by sweeping over the
sides or segments s. The side or segment s 1is any side or segment of the
polygon (overlap area). The coordinate of the two endpoints of side s
will be denoted by (xi, yi) and (XZ, y;).

If the side s is a segment of the old mesh, then the quantity Q in

the new-mesh cell containing side s 1is to be incremented by an amount:

o_1 S S s S
bs =3 (q. - aq) (x{s ¥5) and (x5, y;)

If the side s 1is a segment of the new mesh, then the contribution to cell

S S

. . N_1 s s .
on its left is As = E-q (qL - qR) (xl, y2) and (x2, yl) while the

0
contribution to the cell on its right is just -Ag, where 9 is the

volumetric density of the quantity Q of the old mesh cell in which side s
lies. Adding A: and Ag for each of the new mesh cell yields the quantity Q

contained in each of the new mesh cells.

3. TWO-DIMENSIONAL HYPERBOLIC EQUATION

Consider the two-dimensional hyperbolic equation,

q, *+ag, + bqy = 0, 0 <x<1, 0<y<1 (3.1a)




with the initial condition,
q(x,y,0) = f(x,y) (3.1b)
The exact solution of Eq. 3.1 can be found as
a(x,y,t) = f(x - at, y - bt) (3.2)

This problem is well posed [45] if boundary conditions are specified at
the boundaries where the dot product, (a,b)s W > 0; here (a,b) = a@; +
be and 7 is the unit normal at the boundaries. This problem is solved on a
multiple grid system using the finite-volume approach along with the three-
stage Runge-Kutta integration in time. Section 3.1 is concerned with the
formulation of the 2D hyperbolic equation on the curvilinear grid system.
The implementation on multiple grid system is briefly discussed in Sec. 3.2.
Finally, the results and discussion on various grid configuration and ini-

tial condition are given in Sec. 3.3.

i
3.1 Formulation of 2D Hyperbolic Equation on Curvilinear Grid !

Recall Eq. 3.1,
q; + aq, + bqy =0

Since a and b are constants, one can write Eq. 3.1 in the conservation

for as [46].

q +f, + 9, = 0 (3.2)
where

f =aq, g = bg

10



Equation 3.2 could be solved on any (x,y) coordinates, called physical
coordinates. Instead, one normally solve Eq. 3.2 on the orthogonal
coordinates system, called computational coordinates [47]. Thus, equation
3.2 needs to be transformed to the computational coordinates. Even though
the transformation into the computational coordinates produces some
additional terms in the transformed partial differential equation (thus
increases the amount of computation required), it has some advantages.
Boundary conditions can be treated in the straight forward way. Also,
transformed equations are solved in the simple orthogonal and possibly equal
spaced region. Severe departure from orthogonality will introduce
truncation error in difference expressions [47]. Figure 3.1 illustrates the
physical versus computational domain in a two-dimensional space. By using

the chain rule, Eq. (3.2) is written as:
+ + + =
q + (FE, + 98 ) + (fn +gn) =0 (3.3)

Also using the chain rule, one can write:

dx = x + x d
EdE ndn

d +yd
y yEdE Y dn

which can be written in the matrix form as:

11
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The inversion of the matrix yields:

de | _ Xp X dx (3.4)
dn yE Xn &
Similarly, & = sxdx + Eyﬁy
dn = nxdx + nydy
& | _ £, ey dx
dn "y My dy (3.5)

3 Ey - XE xn - 1 xn -xn -] yn -xn
- - - 3.6
Ny My Yo Yy, XY= VX Yy X Yo X% | (3.6)
where J = 1 (3.6a)
XYy = Ye%

is the Jacobian of transformation. Obviously, Eq. 3.6 exists when J # = or
1 _Ix  x

="t "n| # O.
A

From Eg. 3.6 it is found that Ex

"
<
<
m
I
]
&

(3.6b)

3
u
Cu

~<
3
"
[
x
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Equation 3.3 can be written as:

Lo+ (L (fe +ge)) # 1 +on) =0.
J J 3 J n

q, * fE + 9, = 0 (3.7)
q = q/d
f = 1_(1’6X + gsy) = fyn - 9x (3.7a)
J
= + = - +
g=1(fn, +gn)=-fy +gx

Equation 3.7 is the transformed equation which is solved on the

computational coordinates.

3.1.1 Difference Equation

In this section, the finite volume approach is applied to Eq. 3.7 along
with three-stage Runge~Kutta integration in time. The formulation of the
difference equations on the equally spaced in each direction (¢ - n),
computational domain is given below.

Consider a computational cell illustrated in Fig. 3.2. Recall Eq. 3.7

+ + =
qt fE gn 0

14
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Integrating over the cell yields
N
[e Q€ = - [¢ (F, + 7 )dE.

E n

Using the divergence theorem, one obtains
A - . ,-\_A. . /\—‘*.—‘
qutdE = (fcfsn ds + fcqnn ds)

Applying this to Fig. 3.2, one can write

A\
AE Ang = -an(f -f,
R I A R, n(1’+1,j+l ij+l)
2 2 2 2
AN N\
-Ag(gi_’__l-,\].’.l g1+l’ J')
2 2
A\ Pl
lqt1+l,3+_]._—--]; (f'i+1’\]+_1_-f1,j+_];)
J 2 A 2 2
N\ 7\
L0, 501 %1,y
An 5 5
N\
9%l i+1,3+1°7 I +1, j+1 -1 (fi +1, j+
Ag
N\
‘L(gi"'_l_,j'*l
An 2
n



Each term on the right hand side of Eq. 3.8 can be written as

/N
f'i’j"‘_:l_: (fyn-gxn)1°+l,j+_l_
2 2
= a(.Y.ia .] +1 -‘yi,j)-b(x‘i’ J +1 'x.is J) E_i’ .] +l
An 2
/\ = | =
gT*l,J"(fys+g£)1+l,J
2 2
L SR T R TR Ut RS T B O B RS A
AE 2
= +
I L T e I L TRS NE RS UL S W
2 2 2 2 2 2 2
RIS RE SIS N I
2 2 2 2 2
1 1+l,3+_1_=(x£‘yn-xny5)1+l,J+l
J 2 2 2 2
= - -X
¥ li+l, j+1 Loy 51 ™ g1 i, g L
2 2 2 AE AE
Y 1‘+1,a+f3(y1+1,j+1"i,a‘+1+yi+1,3"i,a)
2 2 2 AE AE

17




X = - . . A 3

N =

™~ |
N =

An An

Yo i+, dv1 e ger Vi g g1 Vg
2

>
2 An An

(y y

N -

The exact boundary conditions, q(xl, ¥ps t) = f(x1 - at, ¥y - bt), are

given where the product (a, b)  n > 0, and the extrapolated values of q

are given at the boundaries where (a, b) « n < 0. This is due to the nature

of the hyperbolic equations.

3.1.2 Three-Stage Runge-Kutta Integration

Recall that Eq. 3.8 is written as

2 2
where
n
q =q(tn)i+_];,J+l
2 2

By applying three-stage Runge-Kutta, one may express:

*
" =g+ atf(e")
*%k *
N+ qn +1 Atf(qn) + l_Atf(qn 1 )
2 2
*%*
" e s 1atf(e) +1atfe” )

18



3.2 Implementation on Multiple Grid System
As mentioned previously, for muitiple grid system, the interpolation of
flux will yield a conservative scheme. For the scalar 2D hyperbolic
equation, Eq. 3.1, q itself is the flux transporting in time. ‘For this
problem, the difference equations as described in Sec. 3.1.1 are solved on
one grid system from initial time t = O up to some time, say t = tl. Then,

at t = t. the grid system is changed and the difference equations are solved

1
on this new grid system. The initial conditions for the new grid system are
obtained by the interpolation of the final values in the old grid system,
i.e., q(x,y,tl). Ramshaw's technique, as described in Sec. 2, is
implemented in doing so. The results at t = tfina1 are compared with the
exact solutions and with the solutions obtained by using the new grid system

for all time, i.e., fromt =0 to t = without changing the grid

final
system.

3.3 Results and Discussion
Various grid systems, as shown in Figs. 3.3 - 3.5, and initial
conditions are implemented as described in Sec. 3.2. The results are
compared with the exact solutions and the solutions obtained by using the

second grid system for all time. For the case of exponentially stretching,

the derivative contained in the Jacobian of transformation, J, XE’ xn, etc.

can be computed analytically. Here, results using both analytically

19
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computed derivatives and numerically computed derivatives are shown.

Before discussing any results, it should be noted that some error
should be expected since Ramshaw's technique assumes constant volumetric
density of the conserved quantity in each grid cell. But in this study, the
analytic initial conditions which vary within grid cells have been selected.
However, the objective of this study is to determine whether the errors grow
significantly as Ramshaw's idea is implemented.

Tables 3.1 and 3.2 show the root mean square errors at final time,

t =t (both tables are at 200 time steps). If errors are defined as the
difference between the calculated solutions and the exact solutions. the

root mean square errors can be obtained as

2
rms. error = [Ierror

Mx N

where m x n are the number of cells contained in the grid system where the
errors are computed.

Tables 3.1 and 3.2 indicate that the technique does not introduce
significant errors to the solutions. The errors introduced by the technique
can be seen clearly by looking at the top row of Table 3.2. In the case of
constant mesh size with linear initial conditions, the finite volume calcu-
lation should yield the exact solutions. Note that multiple grid calcu-
lations even yield smaller errors than the single grid calculation in some
cases. Thus, it can be concluded that the technique does not introduce
significant errors to the solutions, especially when it is implemented on

two grid systems which contain grid cells of comparative sizes.

21



Table 3.1 Root Mean Square Errors, 2D Case 1

initial conditions, q = Rcos(!x)sin(gy)

exact solutions, q = Qcos(!(x-at))sin({(y-bt))
1 grid vs. mxn|mxn]|rmns.error| rms.error | rms. error
2 grid 1 grid|2 gridl 1 grid 2 grid | multiple grid
constant 11x1t |21x21 | .0110307 . 0027987 . 0029005

mesh size

expo anal. | 11xi11 |21x&1l |.028259 . 007452 . 007656
k=1.5 num. 11x11 |21x21 | .0281S5 . 007414 . 00762
Fig 3.3a vs. 3.3b | 11x11 |21x21 |.0216039 . 009214 . 0102846

Fig 3.4a vs. 3.4b | @1x21 [21x21 |.002740 . 009214 . 009668

Fig 3.5a vs. 3.5b | 1i1x11 |21x21 |.0241553 « 0099474 . 0108937

22




Table 3.2 Root Mean Square Errors, 2D Case 2

initial conditions, q = A+x+y

exact solutions, qQ = A+{(x-at)+(y-bt)

1 grid vs. mx nlimxn |rms.error] rms.error| rms.error
2 grid 1 grid| 2 grid| 1 grid 2 grid multiple grid
constant 11x11 | 21x21 ].0000001 |.0000000 . 0009590
mesh size
expo anal. 11x11 |21x21 |.0067252 |.0017874 . 0020591
k=1.5 num. 11x11 j21x21 ].0064324 |.0016984 . 0019984
THg 3.3b vs. 11x11 [21x21 [.0025948 |.0052553 . 0075165
IFig 3.3a & 3.4a 21x21 |21x21 [.0006518 |.00352553 . 0053213
Fig 3.5a vs. 3.5b 1ix11 |21x21 |.00852474 |.0042585 . 0043775
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4. THREE-DIMENSIONAL HYPERBOLIC EQUATION
Consider the three-dimensional hyperbolic equation,
q, *+ ag, + bqy tcq, =0 0<x<1,0 <y<1, 0 <z1
with the initial condition,

q(x, y, z, 0) = f(x, y, z)

The exact solution of this equation can be found as
aq(x, y, z, t) = f(x-at, y-bt, z-ct)

As mentioned in Sec. 3, this problem is well posed if one specifies the
boundary conditions at the boundaries where the dot product ( a,b,c) e o
0, where (a,b,c) = 53; +b€& +C€é and 7 is the unit normal at the boundaries.

This problem is solved on the multiple grid system using the finite-
volume approach along with the three-stage Runge-Kutta integration in time.
In Sec. 4.1, the formulation of the 3D hyperbolic equation on the curvilin-
ear grid system is described. The brief discussion on the implementation on
the multiple grid is given in Sec. 4.2. Section 4.3 discusses the results
from various grid configurations and initial conditions. Note that the 3D
hyperbolic equation is more suitable to test Ramshaw's technique. This is
because most real physical computations are performed on a three dimensional

space and the governing equations are similar to the 3D hyperbolic

equation.
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4.1 Formulation of 3D Hyperbolic Equation on Curvilinear Grid
Consider the three dimensionl hyperbolic equation,
q, +aq, + bqy tcq, = 0 (4.1)

which can be written in the conservative form as [46]

1]
(e
—
K=
n
~—

Qg * fy * Iy th,

where

f =aq, g =bg, h=cqg
and a, b, ¢ are constants.

This section shows the formulation of the transformed equation of Eq.
4.2 on the computational coordinates (¢-n-z). The advantages of trans-

forming Eq. 4.2 into the computational coordinates were mentioned in Sec.

3.1. Figure 4.1 illustrates the physical versus computational domain.

By using the chain rule, Eq. 4.2 is written as

q + (fg +9.8 + hEEZ) + (fnnX tgm, hn"z)

£ Y

After some mathematics manipulations, one can write

-2 't

(La) { + (L, f + 1 g+ 16 h) + (Inf+ingsinh)
J J J J J J J
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t(lg f+lggtleh) =0 (4.3)

J J J
where
1-1
e £y Ey f_xg X %
Ny My Mg = Yo % Yr
Ty ty & Z 7, 7
S p—

— — —-1
EX Ey Ey F;E Xy X
1 =
— "My "z L Yewy
J J
Z, C, & 2 7, 2
y °z 3 4
L ] L ]
l-Ex T I T LY lpx = - (ygz; Zgyc), lcx = ygzn' Zgyn
J J
l§y - (an B anc)’ lpy = Xe% 2% —FY ) -(yazn- Zsyn)
J J
%z XYt Yk Ing = lxy - k) %Cz = XYy ek

Equation 4.3 can be written as
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where

VaN
f: + + = - - - + -
1 (Exf Eyg Ezh) (ynz; Znyc)f (anc znxc)g (xnyC ynx;)h

|

/N

= + + h) = - - f + - - - h
g %(n o ngtn, ) (,vgzc zgyc) (xgzc zgx;)g (xgyc ygxc)
N\

= + + = - - - + -
h % (2, f ¢ 9 z_h) (ygzn zeyn)f (xezn zgxn)g (xgyn ygxn)h

Equation 4.4 is the transformed equation which is solved on the computa-

tional coordinate (£,n,z).

4.1.1 Difference Equation

Figure 4.2 illustrates a volume element on the computational coordi-
nates. The difference equations are derived by applying the finite volume
approach to Eq. 4.4 with the volume element as in Fig. 4.2. The details of
the formulation are given below.

Recall Eq. 4.4,

~ N A A
+ f + +h =0
9% £ 9, z
or
~ N AN
£ = Ty 9y N
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i+1l,j+1, k+1

Fig. 4.2.

A typical volume element.
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[ Qdv = [ (F +g +h)av
Yy Yt fy B¢ *3, *n,)

Applying the divergence theorem to the right hand side, the above equation

can be written as

1 =S - £ . A a . A n o dA
[V = -(fF + dA+ [48 « A+ fAhC dA)

Utilizing Fig. 4.2, the difference equation for the above equation can be

written as
AEANAZR = -AnA (?
R E R T I TS SR T TR S RS ¢
2 2 2 2 2
£ )
i, j+1, k+1
~ 2 2
-AEAC(gi*‘l,j"'l, k+l
2 2
Q. )
i+1, 0, k+1
2 2
-agan(h, .
i+l, j+1, k+1
2
VoS
'hi"laj"l’ k) (4.5)
2
o
where, fi, §+1 k+1" [(ynz -z yt)f - (x z_ - znxc)g
2
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Similar expressions can be written for yE, yn, yc, ZE’ Zn’ and zc.

Eq. 4.5 can be written in the form:

Finally,
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h
qt = f (q)
The three-stage Runge-Kutta integration as described in Sec. 3.1.2 can be

applied here.

4.2 IMPLEMENTATION ON MULTIPLE GRID SYSTEM

Figure 4.3 illustrates an example of multiple grid used in this study.
Here, the grid system changes from one to another at the plane z = zy. In
order to solve the difference equations, as in section 4.1.1, on this grid
system, the extra boundary conditions are needed at the interface, i.e.,
plane z = zq where the two single grid system meet. These boundary condi-
tions are not the physical boundary conditions. Many authors refer to them
as interface conditions, for example see Berger [43]. Special treatments
mush be given for these boundary conditions. Figure 4.4 shows the typical
interface in this study.

In Fig. 4.4, h0 denotes the flux h coming out from the first grid
system and hn denotes the flux h going into the second grid system. Here,
h0 is needed for the first grid calculations and hn is needed for the calcu-
Tations on the second grid. They are the extra boundary conditions

mentioned previously. In this study, h_is obtained by the interpolations

0
between the first and the second grid. The flux hn is obtained by trans-

ferring h0 across the interface using the Ramshaw's technique described in
Sec. 2. The calculations begin from initial time, t = 0, to some time, say

t=t The results from the multiple grid calculations are compared

final®
with the exact solutions and the solutions obtained from the single grid

calculations for various grid system and initial conditions.
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4.3 RESULTS AND DISCUSSIONS
Tables 4.1 and 4.2 show the results obtained from the calculations on
various grid systems with two different initial conditions. If the error is
defined as the difference between the numerical solutions and the exact

solutions, the root mean square error can be found as

’ 2
rms. error = | Jerror

where N = total number of grid cells.

Both tables illustrate the rms. errors from the multiple grid calcu-
lations as well as the calculations from each of single grid which compose
the multiple grid. Table 4.1 gives the results with linear initial condi-
tions, while the results with trigonomitrical initial conditions are given
in Table 4.2. It can be seen from both tables that the multiple grid calcu-
lation does not introduce significant errors to the over all solutions. In
some cases, the multiple grid calculations even give better solutions than

the calculations from the single grid.

5. CONCLUSIONS
The results from this study have shown that the technique works reason-
ably well when the two grid systems contain grid cells of comparative sizes.
This can be clearly seen when one recalls the assumptions made for the tech-
nique, i.e., each grid cell contains uniform conserved quantity. Since, in
general, this criterion cannot be met in the real physical calculations,
some effort may need to be made to seek for the best possible types of grids

in order to apply the technique. It should be pointed out that only simple
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Table 4.1 Root Mean Square Errors, 3D Case 1.

initial conditions,

exact solutions,

q = A+(x—at)+(y-bt)+(z~ct)

q = A+x+y+2

rms. error

configuration|{ No. of pts. lévs. EM
single grid mul., grid
first second
11x11x11 vs. 2ix21x11].000000}. 000000 |.013660
21x21x11 vs. 11x1iixi1l}].000000]|.000000 |.O000004
17x17x11 vs. 21x21ix11}].000000|. 000000 |.005720
const. mesh 21x21x11 vs. 17x17x11}.000000.000000 |.003334
19x19x11 vs. 21x21x11].000000!}. 000000 |.002163
2ix21x11 vs. 19x19x11 . 000000}.000000 |.001703
exp.streching [21x2ix11 vs. 21x21x11|. 000000 |.002106 .0023B§
with k=3.0 21x21x11 vs. 21x&1ix11}.002106 |. 000000 |.007139
(¥=const. mesh)
O-type vs. H-type
cylinder 2ix2ix11 vs. 21x21x11 [. 000608 }|.015882 |.009620
11x11x11 vs. 21x21x11].002842}.012321 ]|.012883
Butler—-wing 17x17x11 vs. 21x21x11|.001495{.012321 |.008672
2ix2ixil vs. 21x21x11.001275].012321 |.008379
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Table 4.2 Root Mean Square Errors, 3D Case 2

initial conditions, q = Qcos(gx)sin(gy)sin({z)

exact solutions, q = Rcos({(x—at))sin({(y-bt))sin(%(z-ct))

rms&. error

t rd

configuration] No. of pts. f v, 2

single grid | mul. grid

first second

11x11x11 ve. 21ix21x11].005560|.001901 | .019420
21x81x11 vs. 11x11x11]|.001901}.005560 | .003786
corist. mesh |17x17x11 vs. 21x&ix11].002494].001901 | . 006363
2ix2inll vs. 17x17x11}.001901}.002494 | .004219
19%x19%x11 vs. 21x21ix11].002136].001901 |.003414
2ix2ix1l vs. 19x19x11].001901].002136 | . 003070
exp.streching 21x21x11‘vs. 21x21x11].001901].004424 | ,.005578
with k=3.0 21x&ixnll vs. 21x21x1fﬁ.004424 . 001901 | .008z27
(#=const.mesh)
O-type vs. H-type
cylinder 2ix2ixitl ve. 2ix2ix11}.001651}]1.021766 |.011515
11x11x11 vs. 21x21x11].007848}.0211753| .017058
Butler-wing [17x17x11 vs. 21x2ix11].003297]|.0211753] .012327

21x21x11 vs. 21x21x11}.002180].0211753| .011819
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configurations are chosen for this study, i.e., a single grid system can be
generated around these configurations. For more complex bodies, the
multiple grid approach may be the only way to attack the problem if the
complexity of the geometries is to be maintained.

This study demonstrates that use of the multiple grid does not intro-
duce any significant error to the problems. The next step is to apply this
technique to solve the equations of motion over an ideal aircraft config-
uration such as a Butler-Wing configuration (Fig. 5.1). If the results from
the Butler-Wing calculations are satisfied, the next step is to
consider this technique along with the equations of motion over the real
aircraft configuration. It is expected that results from this study will

give some contributions to the field of Computational Fluid Dynamics.
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