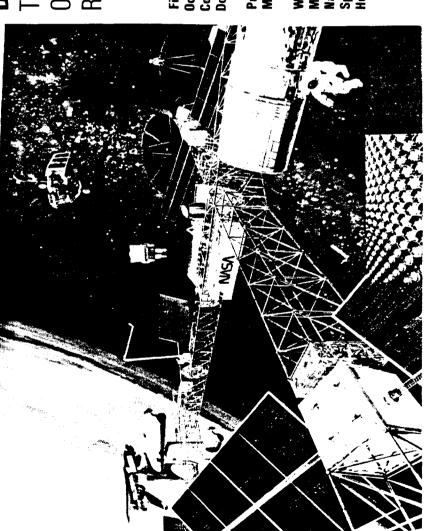
Design, Fabrication, and Delivery Concentrator Solar Array System of a Miniature Cassegrainian



Engineering and Test Division

TRW Space & Technology Group Redondo Beach, CA 90278 One Space Park

Marshall Space Flight Center Huntsville, Alabama 35812 **National Aeronautics and** Space Administration **Work Performed for:**

TABLE OF CONTENTS

				PAGE
1.	INTROD	UCTION		1
2.	MCC HI	STORY AT T	RW	8
3.	DESIGN	DEVELOPME	NT	13
3.1	OBJECT	IVES AND P	ROGRESS	13
3.2	TASK S	TATEMENTS	>	14
3.3	OPTIC	INVESTIGAT	ION AND TEST	15
	3.3.1	NAS8-3563	5 Investigation	15
		3.3.1.1	Physical Measurements	15
		3.3.1.2	Measurement of Optical Losses	20
		3.3.1.3	System Effects	21
		3.3.1.4	Summary	24
		3.3.1.5	Electrical Measurements	24
	3.3.2	Analyses		24
		3.3.2.1	Specular Reflectance Analysis	24
		3.3.2.2	Tolerance Analysis	24
		3.3.2.3	Optical Design	28
		3.3.2.4	Support Analysis	33
		3.3.2.5	New Design Optics	39
		3.3.2.6	Part Physical Measurements	39
		3.3.2.7	Optical Measurements	46
		3.3.2.8	Concentration Ratio Check- Energy Throughput	46
		3.3.2.9	Element Performance	46
		3.3.2.10	Coatings	46
		3.3.2.11	Electrical/Optical Test Results of the Improved MCC	57
	·	3.3.2.12	Multi-Element String Measurements	61
		3.3.2.13	Correction Methods for MCC Element and String Test Data	68
3.4	CELL S	TACK DESIG	N AND INVESTIGATION	75
	3.4.1	Solder Inv	vestigation	78
	3.4.2	Alternate	Bonding Methods	78
		3.4.2.1	Adhesive Bonding-Top Contacts	78
		3.4.2.2	Gold Germanium Eutectic	78
		3.4.2.3	Welding	79
		3.4.2.4	Stack Subassembly	82

TABLE OF CONTENTS (CONTINUED)

			PAGE
	3.4.3	Electrically connected Versus Isolated Cell Stack-Heat Sink	82
		3.4.3.1 Heat Sink Bond	85
	3.4.4	Coverglass	85
	3.4.5	Cover Adhesive	85
	3.4.6	Conic Mirror	85
	3.4.7	Cell and MCC Element Electrical Interconnections	88
	3.4.8	Summary	93
3.5	STRUCT	URAL DESIGN OF THE MCC	97
	3.5.1	MCC Primary Mirror	97
	3.5.2	MCC Secondary Mirror	97
	3.5.3	Secondary Mounting	97
	3.5.4	Mirror Manufacturing Methods	101
	3.5.5	MCC Element Bonding Methods	101
	3.5.6	Complete MCC Element Assembly	101
3.6	MCC SU	PPORT STRUCTURE	108
	3.6.1	Frame Design	108
	3.6.2	Insert Design	115
4.	ANALYS	SIS	125
4.1	THERMA	AL CONSIDERATIONS	125
	4.1.1	Thermal Performance for Cell Output	125
	4.1.2	Secondary Mirror Temperatures	125
4.2	WEIGHT	· ·	127
4.3	PERFOR	RMANCE ANALYSIS	130
	4.3.1	Overall electrical Achievement	130
	4.3.2	Electrical Output Corrected for Known Defects	130
4.4	ADVANC	CED DESIGNS	133
	4.4.1	Material Thickness Change	133
	4.4.2	Material Type Change	133
	4.4.3	Coatings	133
	4.4.4	Advanced Cells	133
	4.4.5	Combined	134
	4.4.6	Manufacturing	134
	4 4 7	Offnoint Performance	134

TABLE OF CONTENTS (CONTINUED)

		PAGE
5.	CONCLUSIONS	135
6.	RECOMMENDED FOLLOW-ON WORK	136
APPE	NDICES	138
A	TEST AND INSPECTION DATA	
В	ELECTRICAL MANUFACTURING	
С	MECHANICAL MANUFACTURING	

FIGURE INDEX

Figure	1-1	Miniature Cassegrainian Concentrator Concept	PAGE 2
Figure	1-2	Front of Large Deliverable Panel	3
Figure	1-3	Back Of Large Panel Showing Flat Cable Harness	3
Figure	1-4	Front of Small Panel .	4
Figure	1-5	Back of Small Panel Showing Flat Cable Harness	5
Figure	1-6	15 x 56 Array in Operation	6
Figure	1-7	Close-up of the Assembly Just After Completion in the Manufacturing Facility	7
Figure	2-1	Contract NAS8-34131 Technical Results Summary	9
Figure	2-2	Contract NAS8-35635 Technical Results Summary	10
Figure	2-3	MCC Element Evolution	11
Figure	2-4	Tri-Hex Grid (THG) Panel Evolution	12
Figure	3-1	Front Side View of Predecessor NAS8-35635 MCC Element in Tri-Hex Grid	15A
Figure	3-2	Surface Accuracy Error Measurements for #15 Primary and Secondary	16
Figure	3-3	Surface Accuracy Error Measurements for #12 Primary and Secondary	17
Figure	3-4	Element #12 Tolerance Errors	18
Figure	3-5	Element #15 Tolerance Errors	18
Figure	3-6	Rounded Areas of the Primary were Found not to Contribute to Collection Efficiency as Designed	19
Figure	3-7	NAS8-35635 Mirrors were Relatively Diffuse	22
Figure	3-8	Distortion can Cause Significant Loss of Output	23
Figure	3-9	Test Result-70 vs 77% Optical Transmission Investigation	25
Figure	3-10	Test Results-Off Axis Performance Investigation	26
Figure	3-11	Effect of Mirror Finish on Performance	27
Figure	3-12	Through 3-17 Effect of Selected Tolerances on MCC Performance New vs Old Design	29

			PAGE
Figure	3-18	Multiple Misalignment Test Case vs Two Measured Assemblies	30
Figure	3-19	MCC Element Off-Pointing Performance with Concentration Ratio as a Parameter	31
Figure	3-20	MCC Element Off-Pointing Performance of CODE V Optimized Designs	32
Figure	3-22	New Design Showing Ray Trace for Entrance of Rays with Zero Pointing Error	34
Figure	3-23	New Design Showing Ray Trace for Entrance from Three Degrees from the Left	35
Figure	3-24	New Design Showing Ray Trace for Entrance from Three Degrees from the Right	35
Figure	3-25	Energy on Cell vs Tracking Error Collimated Source	36
Figure	3-26	Rays Reaching Cell vs Variations of Secondary Offpoint Collection Angles	37
Figure	3-27	New vs Hyperbolic Output	38
Figure	3-28a	The New Primary MCC 000 Rev E.	40
Figure	3-28b	Coatings on the Front and Back Provide Precise Optical and Thermal Properties MCC 000 Sheet 2	41
Figure	3-29a	The New Secondary MCC 010B	42
Figure	3-29b	Equation for the Secondary Mirror Surface	43
Figure	3-30	The New Cone Provides Tooling Reference Points	44
Figure	3-31	Tolerance Allowance for Nominal Offpoint Performance	45
Figure	3-32	The Specularity of the Uncoated Mirror is a Factor of Ten Improved Over the Previous Design	47
Figure	3-33	Specularity of the New Mirror Remains Five Times Better Than the Previous Design After Coating	48
Figure	3-34	MCC Off-Point Curves for LIPS III Hardware	49
Figure	3-35	Coating Sequence for Optic Surfaces (Primary Sub-assembly Without Spider Shown)	5 1

			PAGE
Figure	3-36	Front of New Element Shown While Operating, Spider and Secondary Back are Painted with S13GLO	52
Figure	3-37	Back of MCC Element Showing Mounting Position, Solder Bonds for Electrical Interconnection, and Complete S13GLO Coating	53
Figure	3-38	Method for Finding Specular Reflectance of Cone	55
Figure	3-39	Conic Mirror to Cell Output Ratio as a Function of Cone Reflectance	56
Figure	3-40	Total Fraction of Light to Reach Cell Which is First Redirected by the Conic Mirror (Zero and Typical Tolerance Allowances Shown)	58
Figure	3-41	Both Deliverable Panels were Tested Using a Solar Tracker, Adapted from a Celestron Telescope Mount	59
Figure	3-42	The Operation of the Seven Accepted Secondary Proof Items Shows Higher Than Desired Variation, But Still Within Reason in the Projected Operating Maximum Angle of 1.1 Degrees	60
Figure	3-43	Reasonable Shaped I-V Curves Result from Operation of a Six Element String Near Normal Offpoint	62
Figure	3-44	Some Mismatch Phenomena Are Visible in the String I-V Performance	63
Figure	3-45	Large Mismatch Losses are Easily Visible in a Number of Severely Offpointed Strings	64
Figure	3-46	Reverse Bias Test of Element Within String in Natural Sunlight (No Corrections)	65
Figure	3-47	Five Six-Element By One-Element Strings of a Group Designated "A" Show Some Variation from Ideal Output After Correction for the Conic Mirror	66
Figure	3-48	Strings of Group "B" Show Less Variation than Group "A"	67
Figure :	3-49	Offpoint Performance of Two Sub-Arrays (5 Parallel x 6 Series) Compared to Perfect Optic Performance (Corrected for Cone Deficiency R = 70%)	69

		PAGE
Figure 3-50	Temperature vs Resistance Reading for Mounted Thermistor 1M001-XXX	70
Figure 3-51	Illustration of Mismatch Caused by Cell Efficiency Combined with Mirror Offpoint	72
Figure 3-52	Small Panel Mismatch Tally and Calculation	74
Figure 3-53	Test Result-Assembly Loss (11%) Investigation	76
Figure 3-54	Solder Test Investigation Data	77
Figure 3-55	Cell Performance Test (100 Sun Flasher Intens., Room Temperature) Before & After Weld/Solder Of Front Cell Contact	80
Figure 3-56	Weld Schedules Developed for All Vendors	81
Figure 3-57	Cell Performance Before and After Vapor Phase Soldering of Cell Rear Contact to be BeO Substrate	83
Figure 3-58	Cell Heat Spreader Trade	84
Figure 3-59	SK-MCC-063 Insulator, Heat Sink	86
Figure 3-60	Cell Cover (Plain) MCC 050	87
Figure 3-61	Cell Stack Mechanical Attachments Investigated	89
Figure 3-62	Adhesive Trade for Cone to Cover Bond	90
Figure 3-63	Cell Top Interconnect	91
Figure 3-64	Interconnect to Heat Sink	92
Figure 3-65	Interconnect to Heat Sink Weld Test Results	93
Figure 3-66	Cell Stack Electrical Interconnection Design	95
Figure 3-67	Cell Stack Materials Trade	96
Figure 3-68	Assembly with Secondary Mirror Shown	98
Figure 3-69	Mechanical Design Options	99
Figure 3-70	Picture of Spider to Primary Mounting Position Showing Mounting Boss	100
Figure 3-71	Mirror Material and Manufacturing Trade	102
Figure 3-72	Optic Mechanical Attachments Investigated	103

FIGURE INDEX APPENDICES

		PAGI
APPENDIX A:		
Figure Al	Materials Used on Test Plate for Acoustic Exposure and Thermal Cycling	A2
Figure A2	Thermal Cycling Results	A2
Figure A3	Acoustic Spectrum	A 5
Figure A4	Half String Outputs for 15" x 21" Panel Corrected for Insolation and Temperature	A6
Figure A5	Combined Strings Corrected for Insolation and Temperature	A 9
Figure A6	Combined and Individual Half String Data Normalized for Output at ISC and Corrected for Conic Mirror Reflectance of 0.70	A 10
Figure A7	Data for 15 x 56 Panel Corrected for Temperature and Insolation	A12
Figure A8	Data from 15 x 56 Panel Corrected for Conic Mirror Reflectance of 0.70	A 15
Figure A9	Secondary Proof Mirrors Effect on Offpoint	A21
Figure Al0	Secondary Proof Normalization and Conversion	A22
Figure All	Coating and Part Defects in Small 15" x 21" Panel	A24
Figure Al2	Inspection Results of 15" x 56" Panel	A25
Figure Al3	Electrical Test notes showing locations of shorted and open cells	A26
APPENDIX B:		
Figure Bl	Be0 welding tool (left) and conic mirror course alignment tool	B4
Figure B2	Conic mirror to coverglass bonding tool.	В6
Figure B3	Cell and BeO insulator to primary vapor phase solder tool, and secondary to spide vapor phase solder tool	В9
Figure B4	MCC Vapor Phase Yields	B11
Figure B5	MCC Panels - Kitting Plan	B16

		PAGE
Figure 3-7	3 Complete Miniature Cassegrainian Concentrator Assembly	104
Figure 3-7	4 Assembly of MCC Element into Panel Showing Detail of Snap Insert	105
Figure 3-7	5 Third Generation MCC Hardware from the NAS8-36159 Contract	106
Figure 3-7	6 Existing MCC Assembly Process Flow Diagram	107
Figure 3-7	7a Large Tri Hex Grid	109
Figure 3-7	7b Small Tri Hex Grid	110
Figure 3-7	7c Detail Assembly of MCC Elements into Tri Hex Grid	111
Figure 3-78	8 Hex vs Tri-Hex Trade	112
Figure 3-79	THG Fabrication Process Trades	113
Figure 3-80	Compaction Methods	114
Figure 3-81	THG Mechanical Attachments Investigated	116
Figure 3-82	2 Fixed Insert	117
Figure 3-83	3 Sliding Insert	118
Figure 3-84	The sliding-to-fixed insert bond	119
Figure 3-85	THG Insert Design Requirements	121
	Insert Materials	122
Figure 3-87	Plastic Options for Baseline Insert Design	123
Figure 3-88		124
Figure 4-1	The latest temperature prediction for LEO	126
Figure 4-2		128
Figure 4-3	Weight of Piece Parts and Weight Summary	129
Figure 4-4	-	131
Figure 6-1	Recommended Follow-On Development Plan	137

FIGURE INDEX APPENDICES (Continued)

		PAGE
Figure B6	Harness Fabrication Instructions for 15 \times 21 and 15 \times 56 Panels	B17
Figure B7	Schematic (66 Optic Panel)	B19
APPENDIX C	:	
Figure Cl	Trapped Rubber Molding Concept	C2
Figure C2	Strip Samples and Tooling	С3
Figure C4	Cross Strip Sample in Test Fixture	C4
Figure C5	Mini Panel with Tooling	C6
Figure C6	Insert tooling for Tri Hex Grid	C 7
Figure C7	Rubber Insert Mold	C8
Figure C8	The Screw Pin Concept allowed easy disassembly	C9
Figure C9	Baseline Insert Assembly Design	Cll
Figure Cl0	THG Process Manufacturing Development	C12
Figure Cll	Tooling for the small THG panel	C14
Figure Cl2	Tri-Hex Grid Specifications	C15
Figure Cl3	15" x 21" Panels with 15" x 56" Layup Tool	C16
Figure Cl4	Drawing TOW Through Die	C18
Figure Cl5	Layup Process	C19
Figure Cl6	Rubber Inserts Installed in Panel	C20
Figure Cl7	Straightening Setup	C21
Figure Cl8	15" x 56" Flatness Results	C21

ACKNOWLEDGEMENTS

The following personnel contributed to this project in the capacities shown:

IRA ALLARD MANUFACTURING ENGINEERING

PETER BARRETT DYNAMIC ANALYSIS

SAUL BASHIN " PRODUCT DESIGN

FRED DENINGER MANUFACTURING ENGINEERING

MANNY GARZA ELECTRICAL TESTING

LARRY GILMAN MECHANICAL DESIGN

JERRY JACOBY OPTICAL DESIGN

MARK KRUER PROJECT MANAGER

JOEL MARKS ELECTRICAL TESTING

GEORGE MESCH MANUFACTURING

MARK MYERS MANUFACTURING

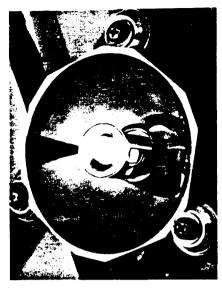
DEBBIE TILLER SUBCONTRACTS

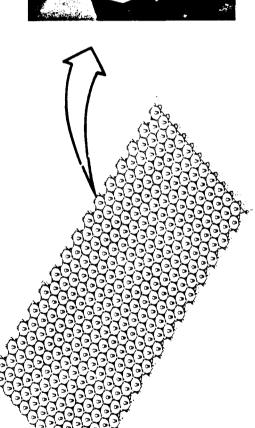
Special thanks to Mr. Mark Myers and Mr. Fred Deninger of the manufacturing division for long hours of painstaking effort beyond the call of duty.

1. INTRODUCTION

This miniature cassegrainian concentrator (MCC) development project is third in a series of NASA sponsored programs conceived to advance photovoltaic concentrator designs for spaceborne arrays. Achieved during this project were broadened solar acceptance angle, increased optical efficiency, and increased manufacturability of both the optical elements and the support structure. The MCC was raised to NASA development level 5 (Component of engineering model tested in relevant environment) through thermal cycle and qualification acoustic testing. A pilot line quantity (270) of MCC elements were produced, three of which were submitted for flight on the LIPPS III experimental satellite.

Previously set goals of >28W/kg at the panel levels and >160W/m 2 are projected to have been achieved by the present hardware and new capability projections of as much as 87W/kg using ultra lightweight optics and advanced 27.5% silicon concentrator cells seem feasible, all at a cost of less than \$500/W.


Shown in figure 1-1 is the basic operational characteristics of a cassegrainian type concentrator. The chief advantages are small storage volume, passive thermal cooling and the capability to fine tune the optical input through multiple mirror surface shape reflectance control.


Figures 1-2 and 1-3 show the back and front of the large fully operational 35×142 cm panel built during this contract. Figures 1-4 and 1-5 show the back and front of the small fully operational 35×53 cm panel built during this contract. Figure 1-6 shows a close up of the panel in operation. Figure 1-7 is a close up at the completion of assembly in the manufacturing area.

Engineering and Test Division TRW Space & Technology Group

Miniature Cassegrainian **Concentrator Concept**

POOR QUALITY

Required cell area reduced by 99%

Secondary Reflector

13mm


Primary Reflector

Incident Light

GaAs Solar Cell

Light Catcher

Permits cost-effective use of high-efficiency solar cells Provides potential for significant reduction in array cost and area

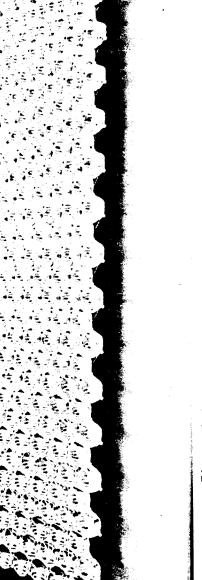


Figure 1-2. Front of Large Deliverable Panel.

ORIGINAL PAGE IS OF POOR QUALITY.

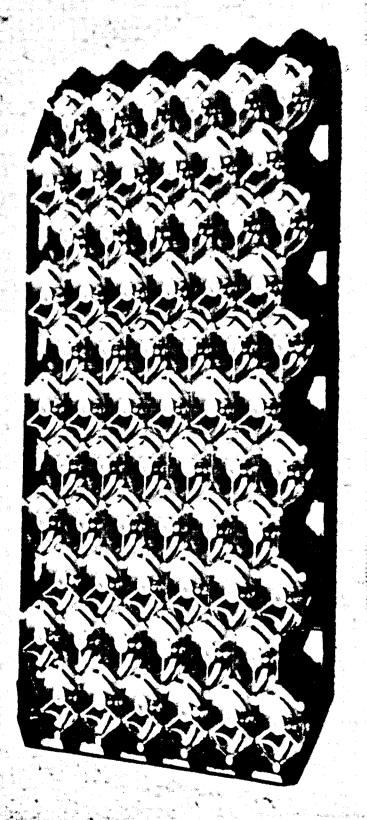


Figure 1-4. Front of Small Panel.

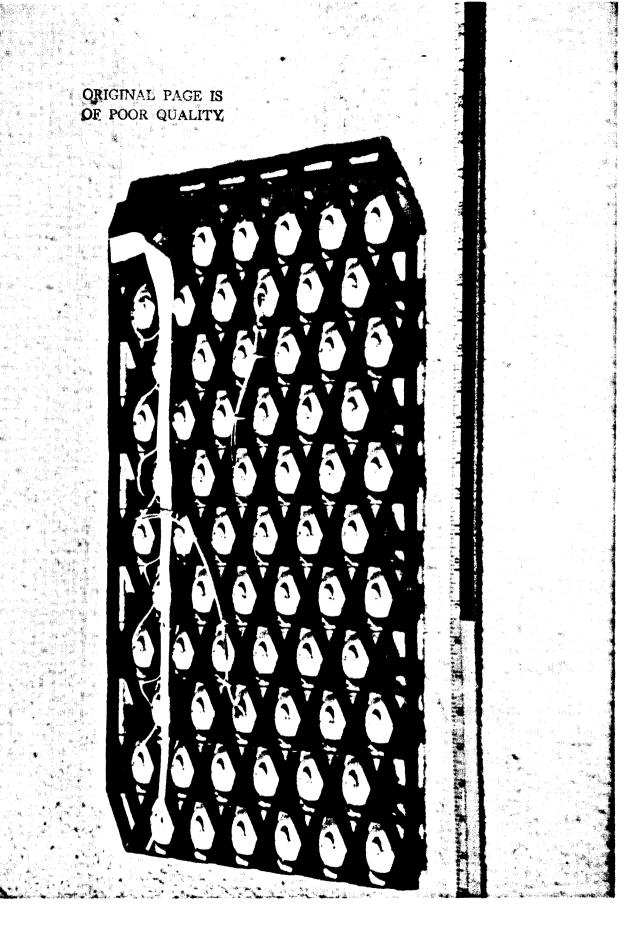


Figure 1-5. Back of Small Panel Showing Flat Cable Harness.

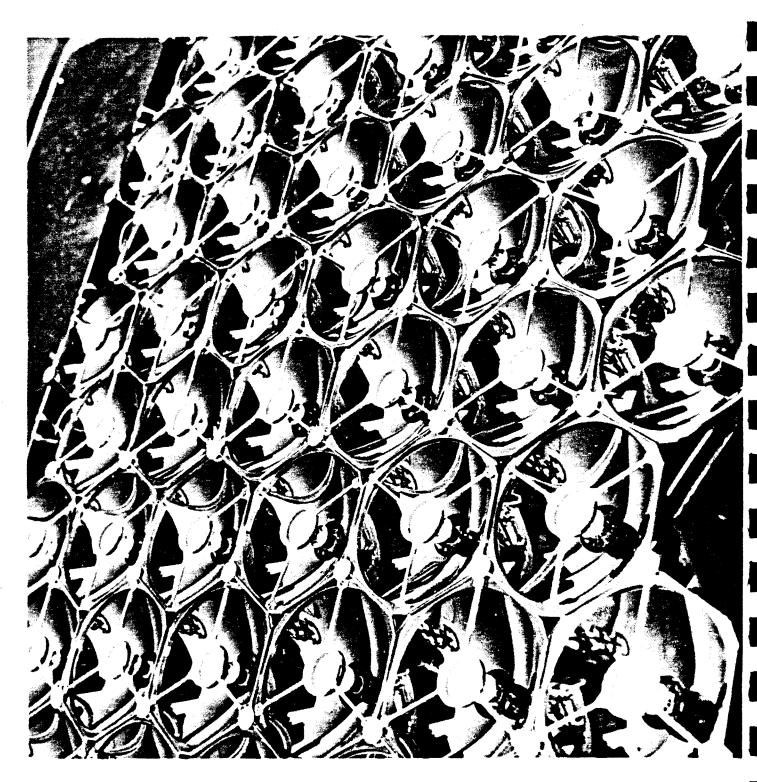


Figure 1-6. 15×56 Array in Operation.

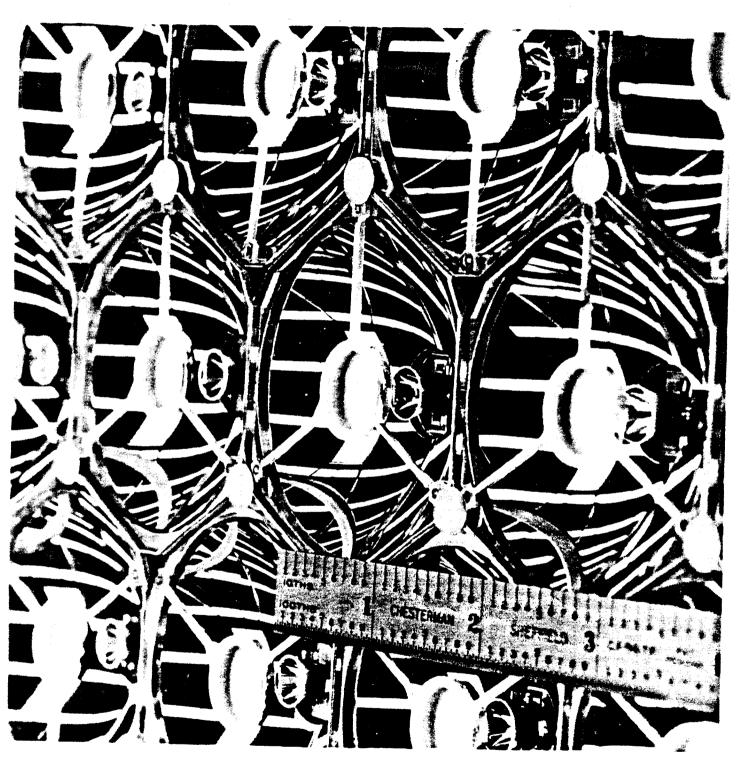


Figure 1-7. Close-up of the Assembly Just After Completion in the Manufacuring Facility.

ORIGINAL PAGE IS OF POOR QUALITY

2. MCC HISTORY AT TRW

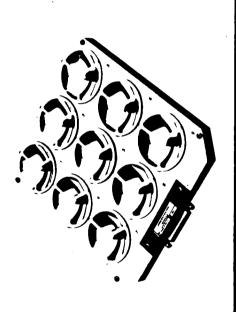
Figure 2-1 shows the early development of the MCC design under contract NAS8-34131. Goals of 160 W/m^2 and 28 W/kg were established as reasonable for the MCC design assuming current technology capabilities. Feasibility was demonstrated through construction and test of a nine element module.

Figure 2-2 presents the results of the immediate predecessor contract for MCC development, NAS8-35635. Significant improvements were made in the pursuit of the goals established in NAS8-34131.

The evolution into third generation hardware of the element (Figure 2-3) and the support structure (Figure 2-4) were set as goals for the present NAS8-36159 contract. All goals have been met by analysis of test articles.

Figure 2-1

Contract NAS8-34131 Technical Results


Engineering and Test Division TRW Space & Technology Group

Summary

TEST RESULTS SUPPORT TECHNICAL FEASIBILITY

• 85°C CELL TEMPERATURE IN LOW EARTH ORBIT CONFIRMED BY THERMAL VACUUM TEST

 CELL STACK ASSEMBLED USING CONVENTIONAL JOINING PROCESSES OPTICAL ELEMENTS ALIGNED
 USING MECHANICAL INTERFERENCE
 ELT

CASSEGRAINIAN CONCENTRATOR

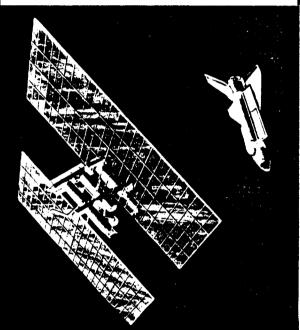
NINE-ELEMENT

DEMONSTRATION MODULE

TWO WING DESIGN BASELINED BUT CONFIGURATIONS ARE NOT CONSTRAINED

► FOLD-OUT RIGID PANELS WITH FOLDING BEAM SUPPORT (USED ON SKYLAB)

MODULAR CONCEPT (12.5 KW PER SUBWING MODULE)

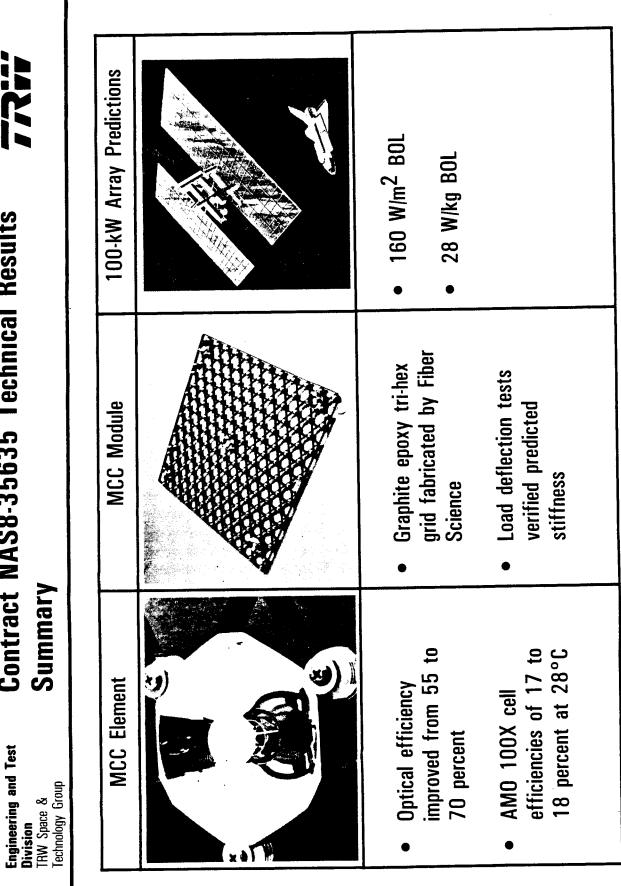

ACCURATE ELEMENT POINTING (MAXIMUM RSS OF 1.1⁰)

• 160 W/m² (CURRENT TECHNOLOGY)

28 W/kg (CURRENT TECHNOLOGY)
 POTENTIAL OF 60 W/kg WITH

TECHNOLOGY DEVELOPMENT

 ERECTABLE (EVA) ARRAY OPTIONAL



CASSEGRAINIAN CONCENTRATOR SOLAR ARRAY SYSTEM STUDY

100 KW BOL

Contract NAS8-35635 Technical Results

Summary

MCC Element Evolution

Engineering and Test

Technology Group

TRW Space &

Division

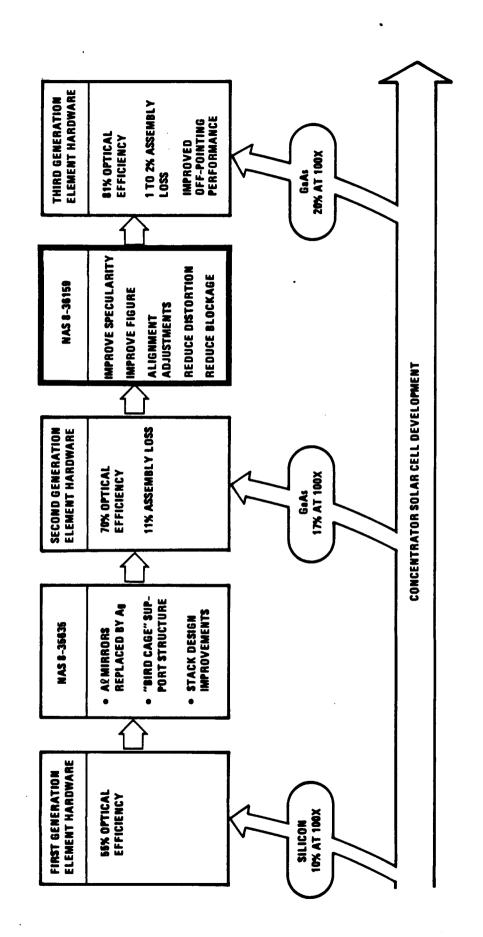


Figure 2-3

Engineering and Test Division

TRW Space & Technology Group

Tri-Hex Grid (THG) Panel Evolution

SECOND GENERATION TRI-HEX GRID **60% FIBER VOLUME** • THERMALLY COM-PATIBLE INSERTS • 33W/KG (PANEL LEVEL)* ELIMINATE ALUMINUM INSERTS NAS 8-36159 INCREASE FIBER VOLUME ALUMINUM INSERTS FIRST GENERATION TRI-HEX GRID ● 20 TO 30% FIBER VOLUME • 26W/KG (PANEL LEVEL)

*CORRESPONDS TO 28W/KG AT THE ARRAY SYSTEM LEVEL

3. DESIGN DEVELOPMENT

3.1 OBJECTIVES AND PROGRESS

The objectives of this contract were to :

- a. Improve the miniature Cassegrainian concentrator (MCC) optic design in terms of total energy throughput and offpointability
- b. Design a cell stack compatible with the MCC and capable of low earth orbit operation for five years
- c. Manufacture the complete optic and cell stack and measure the improvements
- d. Further develop the support structure of the MCC panel
- e. Manufacture the improved support structure and enough MCC elements to fully populate two testable panels.

All objectives have been met.

3.2 TASK STATEMENTS

The task statements listed here were followed in performance of this contract. NASA directed modifications to the tasks following the basic statements.

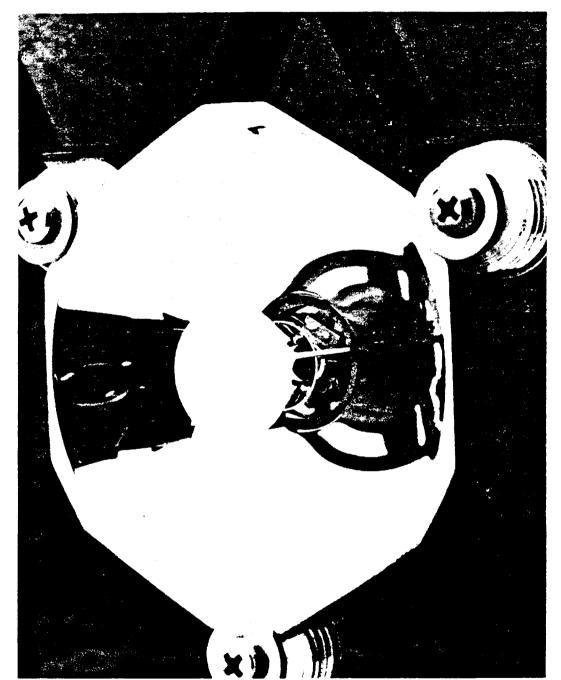
- o Element Optical Design
 - Improve normal and off-pointing performance
 - Select materials and process based upon performance and cost
- o Cell Stack Development
 - Isolated/nonisolated element designs
 - Analysis/development test for 30,000 LEO cycle goal
- o Panel Development
 - Select substrate type (hexagonal/trihex grid)
 - Incorporate redesigned element
 - Finalize element attachment design
 - Test development hardware (elements, substrated, attachments)
 - Design panel wiring for 30,000 LEO cycles, manufacturability, low cost
 - Fabricate 15" x 56" panel (IO active elements)
 - Perform development tests in support of LEO goal
- o Pre-prototype Panel
 - Panel level design update
 - Fabricate 15" x 21" panel (100% active elements)
 - Deliver for long-term thermal cycling
- o NASA Modifications
 - Deliver the three elements developed in tasks 1 and 2 to NRL to support launch of test articles
 - Paint the primary and secondary emitting surfaces with S13GLO white thermal control coating

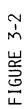
3.3 OPTIC INVESTIGATION AND TEST

Two efforts were initiated to improve the optic design of the MCC elements as compared to the design produced and tested under contract NAS8-35635 pictured in Figure 3-1.

The first effort was directed at finding reasons why performance of the design was not significantly in accordance with predictions. The second effort was directed to finding how to improve the offpoint performance of the design by changes in the mirror surface and interrelated geometries.

3.3.1 NAS8-35635 Investigation


3.3.1.1 Physical Measurements


The size and geometry of the primary mirrors was measured using a Cordex 3000 by sampling points along the surface in an absolute coordinate system. Results shown in Figures 3-2 and 3-3 indicate $\pm .0025$ inch error in the figure X coordinates compared to the theoretical design values. This is equivalent to a 6' arc error. The cup bottom on which the birdcage assembly rests was flat to within $\pm .0005$ inch. The cup center was offset from the primary surface figure center by 2 mils.

The center of the front surface of the solar cell was offset from the cup center by 3.8 mils. The height of the front surface of the solar cell from the cup interior surface was 1 mil lower than the designed placement.

The placement of the secondary in the birdcage brought the tip of the secondary 12.5 mils above the nominal Z direction design point. The secondary was found to be tilted by .12° compared to the XY reference plane of the primary cup. A Numerex Surface Profilometer measured the surface of the secondary by dragging a scribe across in various radial directions. The surface geometry was within a 6' arc error.

When combined with the birdcage offsets, the secondary absolute position in the XY plane was found to be 10 mils offset from the primary mirror cup center.

SURFACE ACCURACY ERROR MEASUREMENTS FOR #15 PRIMARY AND SECONDARY

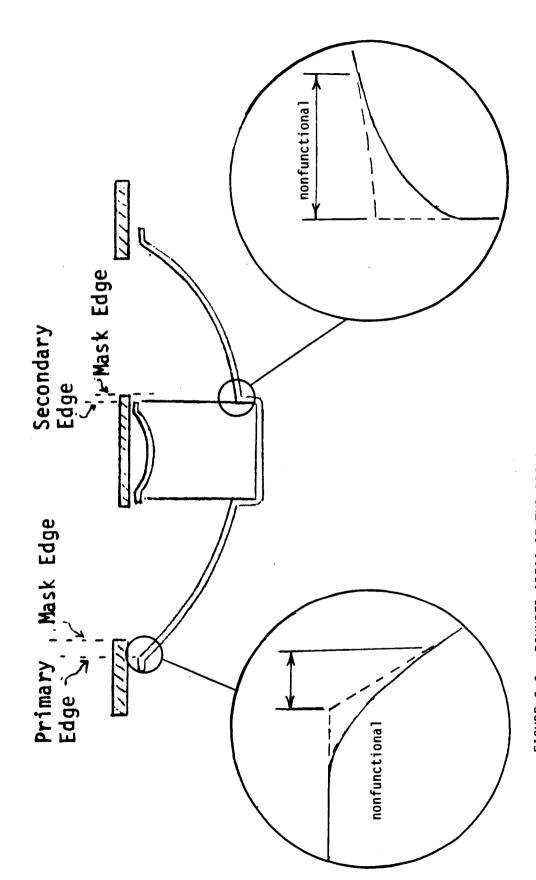
Engineering & Test Division TRW Space & Technology Group

		0	09	120	180	240	300	THEORY	×	۵	۵	TILT
PARABOLA	0							0				
	.294	0770	.0765	.0755	.0755	.0751	.0763	.0770	.0761	.0010	(0000)	.27°
	.305	.0810	.0807	.0802	96/0.	.0795	9080.	. 0802	.0803	9000.	.0001	.14°
	.438	.1301	.1292	.1290	.1288	.1289	.1299	.1293	.1293	.0005	0	°60.
	.532	.1763	.1775	.1765	.1745	.1765	.1776	.1746	1765	.0011	.0019	.17°
	.633	.2355	.2356	.2344	.2334	.2345	.2359	.2331	.2349	6000.	.0018	.11°
	.742	.3105	.3099	.3080	3075	.3082	.3100	.3076	.3090	.0013	.0014	.11°
	.844	.3915	.3907	.3889	.3884	.3896	.3911	.3880	.3900	.0013	.0020	.10°
	.938	.4741	.4734	.4727	.4708	.4725	.4743	.4712	.4730	.0013	.0018	$.10^{\circ}$
	1.012	.5343	.5397	. 5359	.5356	.5344	. 5422	.5370	.5370	.0032	0	.22°
	1.025	.5348	.5346	. 5349	. 5346	.5346	.5349	.5370	.5347	.0002	.0023	
+ FIXT		.5855	. 5852	. 5853	. 5850	.5851	. 5855					
HYPERBOLA	0	.4392						.4328			.0064	
	•	.4723		.4701		.4720		.4656	.4715	.0012	.0059	.63°
	. 200	.5107	.5085	. 5080	. 5086	.5099	.5110	.5032	. 5095	.0013	.0063	.43°
	.250	.5437	.5437	.5427	.5418	.5426	.5434	.5369	.5430	.0007	.0061	.22°

Engineering & Test Division TRW Space & Technology Group

SURFACE ACCURACY ERROR MEASUREMENTS FOR #12 PRIMARY AND SECONDARY

	0	09	120	180	240	300	THEORY	×	۵	۷	TILT°
PARABOLA 0	.0001	.0002	.0001	0000	.0001	.0002	0				
.22	.0001	.0001	0000.	.0001	.0001	0000.	0				
.294	7770.	.0759	.0750	.0755	.0765	0770.	.0770	.0763	.0010	(.0007)	.26°
.305	.0810	.0801	7620.	.0802	.0804	.0800	.0802	.0802	.0004	0	.12°
.438	.1300	.1286	.1283	.1280	.1285	.1289	.1293	.1287	.0007	(9000')	.11°
.532	.1762	.1765	.1759	.1742	.1764	.1773	.1746	.1761	.0010	.0015	°80.
.633	.2356	.2346	.2342	.2332	.2344	.2354	.2331	.2346	6000.	.0015	°90°
.742	.3110	.3087	.3078	.3079	.3082	.3093	.3076	.3088	.0012	.0012	.12°
.844	.3919	.3892	.3883	.3890	.3889	.3910	.3880	.3897	.0014	.0017	.12°
. 938	.4755	.4721	.4712	.4722	.4710	.4732	.4712	.4725	.0017	.0013	.14°
1.012	.5342	.5352	.5418	.5424	.5335	.5359	.5370	.5372	.0039	.0002	!!!
1.025	. 5348	. 5347	.5350	.5349	.5349	.5348	.5370	. 5349	.0001	(.0021)	900.
HYPERBOLA 0	.4453						.4328	.4453		.0125	
.132	.4776	.4773	.4768	-	.4767	1	.4656	.4771	.0004	.0115	.13°
. 200	.5160	.5156	.5142	.5149	.5149	.5163	.5032	.5153	.0008	.0121	.30°
.250	. 5482		.5479		.5489		.5369	. 5483	.0005	.0114	.11°
FIXTURE LIP	.0507	9050	.0504	.0504	.0505	.0506					
			-			-		_			


FIGURE 3-3

.12° SECONDARY TILT .6° BIRDCAGE TILT 1.8° CONE TILT SECONDARY XY DISPLACEMENT .0118 .005 CONE XY DISPLACEMENT .0125 SECONDARY + Z DISPLACEMENT CONE + Z DISPLACEMENT .024 6' PRIMARY ARC ERROR 61 SECONDARY ARC ERROR 31.1° CONE ARC ERROR (.4) .0038 BIRDCAGE XY DISPLACEMENT (CELL DISPLACED)

FIGURE 3-4: ELEMENT #12 TOLERANCE ERRORS

.006 SECONDARY XY DISPLACE .006 SECONDARY X DISPLACE UP .010 CONE DISPLACE Z UP .005 CONE D'ISPLACE XY .12 SECONDARY TILT 0.8 CONE TILT BIRDCAGE DISPLACE X AXIS 0 .6 BIRDCAGE TILT MINUTE PRIMARY ARC ERROR 6 2 MINUTE SECONDARY ARC ERROR 31.10 CONE ARC ERROR

FIGURE 3-5: ELEMENT #15 TOLERANCE ERRORS

ROUNDED AREAS OF THE PRIMARY WERE FOUND NOT TO CONTRIBUTE TO COLLECTION EFFICIENCY AS DESIGNED. FIGURE 3-6.

The cone lower edge was 10 to 20 mils above the cell. This compares to a design goal of zero Z displacement. The cone XY plane offset was measured at 5 mils from the cup center. The cone angle designed to be 31.5° , was measured to be 31.1° . The cone as mounted in the birdcage was tilted from the XY plane by 1.3° .

The average measurements above are summarized from Figures 3-4 and 3-5.

3.3.1.2 Measurement of Optical Losses

Primary Mirror. It was noted that there was some rounding of the optic edges at the inside and outside of the primary (Figure 3-6). To see if this contributed to energy collection losses, a number of masks were created to successively shadow more and more portions of the mirror in those positions using the theory that shadowing of unused portions would produce no change in output. The optic was set in a solar tracker specially designed for this application and current output was monitored. Successive masking of the outer edge was performed until a noticeable drop in current was seen. The size of the mask inner diameter was compared to the optic design and was noted to be approximately 19 mils less in radius than the primary mirror outer edge. This represented a 4% loss in collection efficiency from expected.

More masks were placed on the secondary mirror with successively greater diameters until again a noticeable drop in output was noted. This radius represented the unusable portion of the primary mirror near the inner cup edge. The distance, .298 mils or 33 mils greater than the inner cup radius design, represented approximately 2% loss in collection efficiency.

The primary mirror was physically distorted by screwing the edges down in the holding fixture with excessive force to see the effective change in output. A 2.1% loss in output was noted at the extreme range of distortion, estimated at 10 to 20 mils of "squeeze."

Conic Mirror. The gap between the cone and the cell represented an "escape" route for the collected light. To check this the optic was mounted in a fixture such that the cone could be varied from 0 to 80 mils from the surface of the cell. The measured loss was 0.3%/mil of gap for 0 pointing error and with a 15 mil gap, a 14% loss was experienced at 2° offpoint.

3.3.1.3 System Effects

Mirror Reflectance. The reflectance of each mirror has a direct effect on energy throughput. In all positions, the primary and secondary mirrors will redirect the light with some resulting reflectance loss composed of absorbed light and diffusely reflected light not reaching the cell. The amount of light reflected by the cone is a function of offpoint. reflectance of silver is generally quoted at 95% energy throughput. Since the GaAs cell only responds to light with wavelength between 0.4 and 0.9 micrometer,, the reflectance of the mirrors in this range is of interest and must be used for energy throughput calculations as measured by a GaAs device. this end, spectral reflectance measurements of primary and secondary mirror samples were made. Based upon these measurements, the effective reflectance in the band 0.4 to 0.9 micrometer, was calculated for solar outputs of AMO, AM1, and The AMO reflectance averaged 0.965 for the secondary and 0.985 for the primary, and was not significantly different when calculated for AM1 and AM2 standard suns.

<u>Specular Reflectance</u>. Mirror samples were submitted for overall scatter measurements. A measurement is shown in Figure 3-7. The measurement corresponds to roughly 11% loss of usable light in the MCC optical system.

Misalignment Effects. The intention of this test was to get a feel for the sensitivity of the optics to possible assembly misalignments. A MCC element was mounted in the solar tracker and the birdcage containing the cone and secondary were misaligned from the most stable position. Slight movements (5 to 10 mils) of the birdcage resulted in output changes of up to 10% (see Figure 3-8).

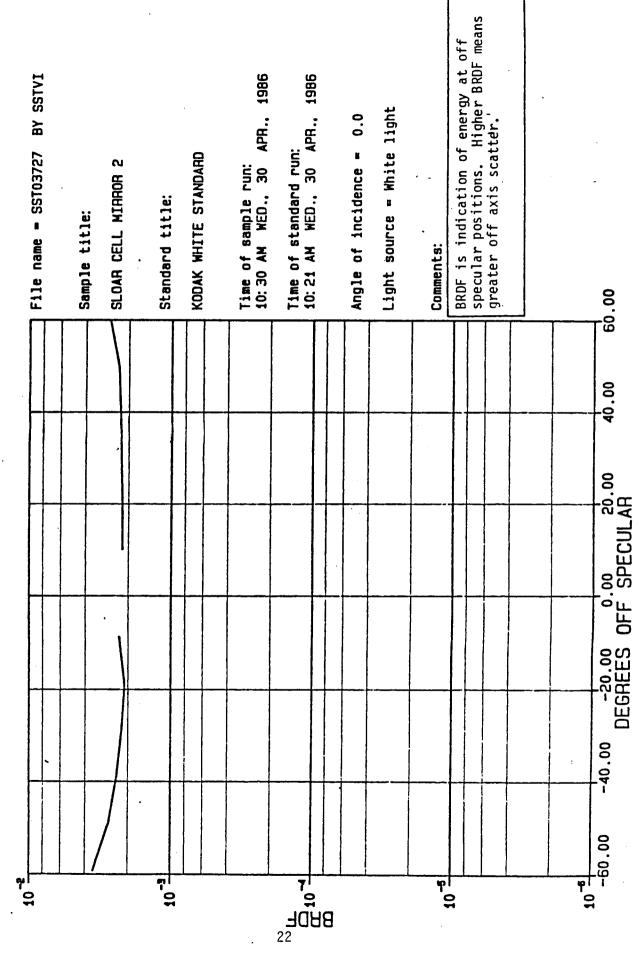


FIGURE 3-7. NAS8-35635 MIRRORS WERE RELATIVELY DIFFUSE.

Distortion Can Cause Significant Loss of Output

ELEMENT 15

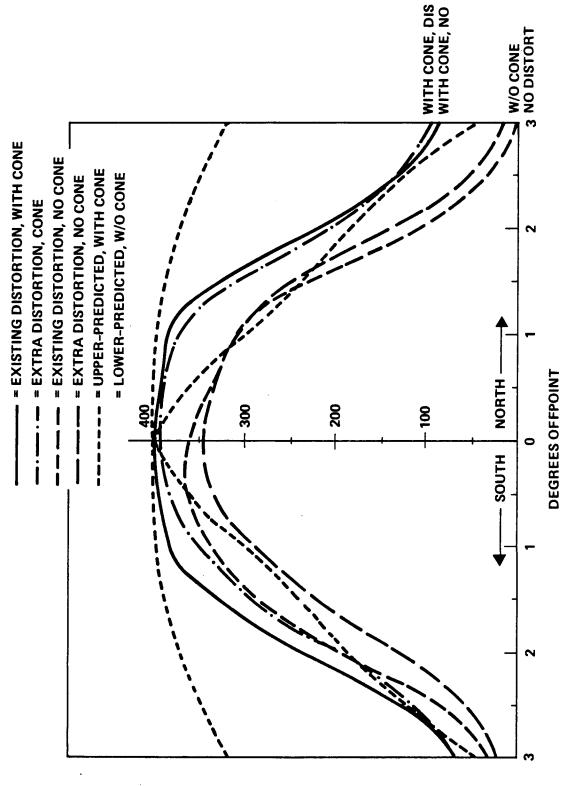


Figure 3-8

3.3.1.4 Summary

A summary of the optical testing of the NAS8-35635 design is shown in Figure 3-9 for on point measurements and Figure 3-10 for offpoint measurements.

The many potential loss mechanisms that were apparent could easily account for the nine percent onpoint loss (7%/77%). Offpoint losses for the design could be even worse especially due to the misalignments inherent in any manufacturing process.

3.3.1.5 Electrical Measurements

Electrical output measurements of the optics studied above were reported in NAS8-35635 as 9 to 11% loss in output during onpoint with the expected concentration ratio of 127 not met by the test measurements of ~114. These measurements were reconfirmed. Offpoint testing was also performed as in Figure 3-8 to reconfirm the data.

3.3.2 Analyses

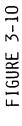
Two analyses were performed to support the investigation and testing of the NAS8-35635 MCC.

3.3.2.1 Specular Reflectance Analysis

A computer model of the MCC element was generated and energy loss due to scatter from the mirror surface was calculated as a function of overall mirror reflectance and RMS surface roughness. The results, shown graphically in Figure 3-11, indicate that surface roughness must be tightly controlled to minimize scatter losses. The NAS8-35635 polished to a "commercial" finish had a finish between 200 angstrom to 1000 angstrom roughness. At 200 angstrom and .98 mirror reflectance, the loss of energy attributable to scatter alone was 0.19 $-[1-(.98)^2] = .15$ i.e., 15%.

3.3.2.2 <u>Tolerance Analysis</u>

The mirror assembly was analyzed for output using the IPAGOS optical analysis program as modified for the MCC system to determine collection efficiency as a function of offpoint. The standard curve for perfectly aligned optics is the one shown for technology development goals. However, since mirrors are


TEST RESULT - 70 vs. 77% OPTICAL TRANSMISSION INVESTIGATION

Engineering & Test Division TRW Space & Technology Group

P01	POTENTIAL LOSS MECHANISM A. GAP BETHEEN CONE AND CELL	TEST .	METHOD OF INVESTIGATION e gap from 0 to 80 mils distance from cell easure output. (Note gap _ 40 mils, should	% LOSS EFFECT 0.3%/mil
		ANAL YSIS		Ox all distances
	LIGHT NOT FOCUSED COMPLÉTELY ON CELL (DISTORTION OR FIGURE IRREGULARITIES)	TEST	Test element with and without cone in place. Note any stray light not hitting cell.	.2% to .7%
	MISALIGNMENT OF ASSEMBLY PARTS	TEST ANAL YS IS	Purposely misalign mirrors to see effect on output Tolerance analysis as above	up to 10% for small dev.
	DISTORTION OF MIRRORS (INDUCED BEYOND ALREADY DISTORTED UNRESTRICTED MIRROR.)	TEST ANAL YS IS	Distort mirrors while testing. Note types of distortions and effect on output. Tolerance analysis as above	.9 to 2.1%
	MIRRORS OUT OF SPECIFICATION REQUIREMENTS	TEST ANAL YS IS	Shadow various portions of mirror surface to find effect on output. Compare to theoretical effect on output. Tolerance analysis as above.	54 O
	SPECTRAL SHIFT OF AMI SUNLIGHT THROUGH OPTICAL ELEMENTS	TEST ANAL YS IS	Measure spectral reflectance of mirrors. Calculate mirror reflectance based on cell response wavelengths 0.38 to 0.93 µm and AMO and AMI solar spectrum.	N/A -5.6%
	NON SPECULAR REFLECTANCE	TEST ANAL YS IS	Use modified integrating sphere for direct vs. diffuse reflectance from mirror parts. BRDF measurement equipment. Calculate effect of progressively diffuse surface hased on surface roughness and spectral reflectance	up to 40%
	TEST EQUIPMENT	TEST	Check wiring. Check sun tracking capability. Acquire GaAs standard for incorporation into test setup.	0 0 + 1.5%
	PROGRAM ERROR	ANALYSIS		3-6

FIGURE 3-9

TEST RESULTS - OFF AXIS PERFORMANCE INVESTIGATION

Engineering & Test Division TRW Space & Technology Group

	POTENTIAL LOSS MECHANISM		METHOD OF INVESTIGATION	% LOSS EFFECT
A.	GAP BETWEEN CONE AND CELL	TEST	Change gap from 0 to 80 mils distance from cell and measure output. (Note gap $\simeq 15$ mils, should be 0).	1° - 2% 2° - 14% 3° - 38%
		ANALYSIS	Tolerance analysis of sub assemblies and piece parts for effect on output.	1° - 7.6%/10 mils 2° - 13.1%/10 mils 3° - 42%/10 mils
В.	LIGHT NOT FOCUSED COMPLETELY ON CELL (DISTORTION OR FIGURE IRREGULARITIES)	TEST	Test element with and without cone in place. Note any stray light not hitting cell.	10 - 9% 2° - 1% 3°4%
ن ا	MISALIGNMENT OF ASSEMBLY PARTS	TEST ANLAYSIS	Purposely misalign mirrors to see effect on output. Tolerance anlaysis as above.	F.3-12 - 3-17
0.	DISTORTION OF MIRRORS (INDUCED BEYOND ALREADY DISTORTED UNRES- TRICTED MIRROR).	TEST ANALYSIS	TEST Distort mirrors while testing. ANALYSIS Tolerance analysis as above.	1° - 5% 3° - 12% 2° - 11% 3° - 12% F.3-12 - 3-17
ui ui	MIRRORS OUT OF SPECIFICATION REQUIREMENTS	TEST	Shadow various portions of mirror surface to find effect on output. Compare to theoretical effect on output.	Same as on axis
		ANAL YS IS	Tolerance analysis as above	F. 3-12 - 3-17
u.	PROGRAM ERROR	ANALYSIS	Change method of ray trace inputs to see if variation causes change in offpoint prediction	1° - 7% 2° - 10% 3° ~ 0%

Effect of Mirror Finish On Performance

- AVERAGE MEASURED ROUGHNESS FOR NAS8-35635 WAS 170 Å
- OUTPUT REDUCTION EXPECTED: 10.3% RELATIVE TO 78% NORMALIZATION: 7%
- \bullet BASED ON GAAS RESPONSE REGION 0.4 TO 0.9 μm , AM0
- BASED ON MCC BASELINE CONCENTRATING OPTIC

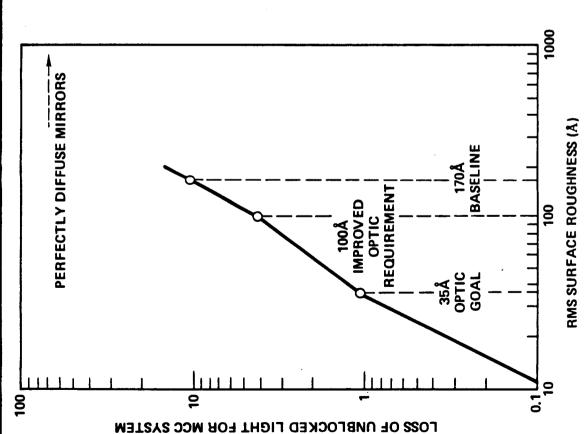


Figure 3-11

not ideal surfaces due to inherent piece part manufacturing tolerance allowances, and mirror assemblies further suffer from tolerance allowances, it was decided to investigate the sensitivity of the optic design to these tolerances.

Each mirror component was considered separately and then as a typical composite based on measurements of the optics as assembled from section 3.3.1.1.

Each component was analyzed for the effect on energy collection as a function of translations along three orthogonal axes, rotations about three orthogonal axes and surface allowances as called out in the mirror manufacturing specifications such as the 10 arc minute allowance variation in the figure of the primary mirror or the $31^{\circ}\pm.5^{\circ}$ cone angle allowance.

The results are illustrated in Figures 3-12 to 3-17, for individual components. In some cases, the design is very sensitive to tolerances which are fairly tight in the design. When a combination of factors is considered, the resulting offpoint is illustrated in Figure 3-18. Included in the figure are the test results from two measured optics. The test performance is actually better than that predicted since the prediction assumed all worst case directions for output loss.

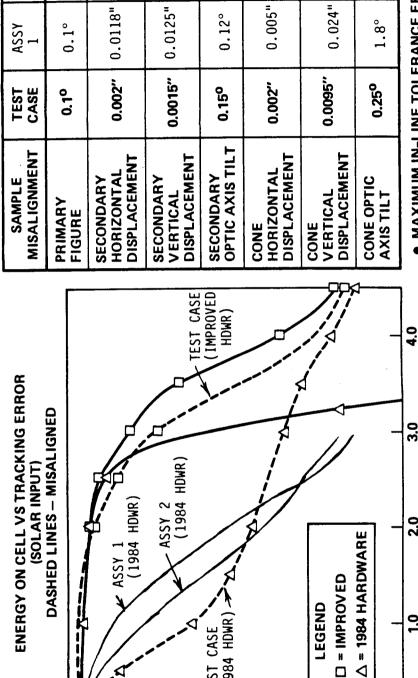
3.3.2.3 Optical Design

The design of the conventional Cassegrain system was varied to determine what improvements in offpointability could be achieved without significantly decreasing onpointed output. Results from an IR&D project showed that changing the geometric concentration ratio from the baseline 163 to lower values improved offpointability at increasing loss of optical transmission (Figure 3-19).

If the thickness of the system was allowed to vary, improvements in offpointability could also be achieved (Figure 3-20) but with significant decrease in volumetric packing for launch.

Some slight improvements could be made by varying the conic mirror surface, but none would address the inherent problem of tolerance allowance losses (missing of the mirror entirely).

SECONDARY DISPLACEMENT CONE DISPLACEMENT B DISPLACEMENT (DEGREES) heta DISPLACEMENT (DEGREE) 2.2.5 IMPROVED BASELINE BASELINE IMPROVED 2.5 EFFECT OF SELECTED TOLERANCES ON MCC PERFORMANCE PERCENT ENERGY ON CELL PERCENT ENERGY ON CELL SECONDARY DISPLACEMENT 0.012 CONE DISPLACEMENT BASELINE DISPLACEMENT (INCHES) NEW VS. OLD DESIGN. MPROVED 2.5 DISPLACEMENT (INCHES) BASELINE - IMPROVED 3 FIGURES 3-12 to 3-17. 78 2 8 2 PERCENT ENERGY ON CELL PERCENT ENERGY ON CELL SECONDARY DISPLACEMENT CONE DISPLACEMENT BASELINE IMPROVED DISPLACEMENT (INCHES) DISPLACEMENT (INCHES) - MPROVED - BASELINE 20 PERCENT ENERGY ON CELL PERCENT ENERGY ON CELL


29

Technology Group TRW Space &

Multiple Misalignment Test Case

 0.12°

0.005"

0.010"

0.8°

0.006"

 0.1°

ASSY 2

0.006"

MAXIMUM IN-LINE TOLERANCE EFFECT

BASELINE SENSITIVE TO MULTIPLE TOLERANCES

TRACKING ERROR (DEGREES)

0.00

LEGEND

20.0

 IMPROVED DESIGN SIGNIFICANTLY **LESS SENSITIVE**

FIGURE 3-18

60.0

80.0

100.0

(1984 HDWR) **TEST CASE**

40.0

NOBWALIZED ENERGY ON CELL

Engineering and Test Division TRW Space & Technology Group

Optical Design Investigation Performance versus Concentration Ratio

Reduced concentration ratio:

- Improves off pointing
- Degrades on pointing
- Significantly increases cost (GaAs solar cell size)

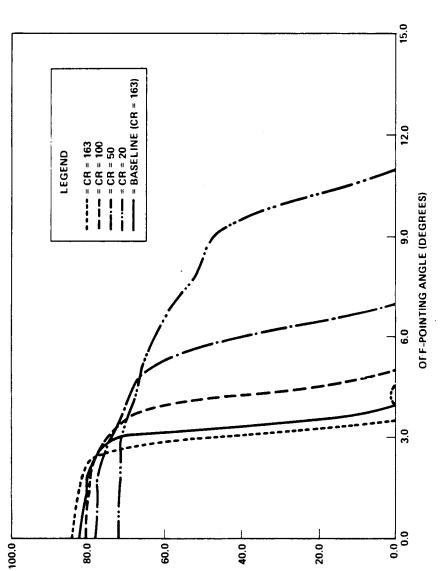


FIGURE 3-19 MCC ELEMENT OFF-POINTING PERFORMANCE WITH CONCENTRATION RATIO AS A PARAMETER

ELEMENT OPTICAL TRANSMISSION (%)

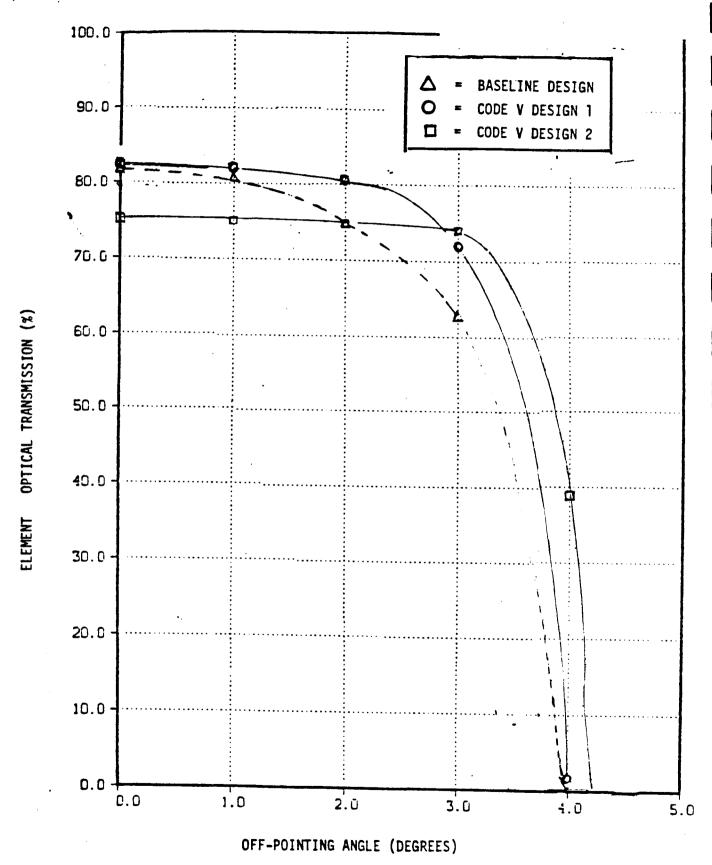


FIGURE 3-20: MCC Element Off-Pointing Performance of CODE V Optimized Designs

It was decided to dispense with conventional optical design techniques to achieve offpoint enhancement. Instead, a technique was conceptualized to use portions of the secondary mirror to redirect light from the primary during offpoint conditions toward the cell (Figure 3-21) as well as modify the surface figure of the portions used during onpointing to also direct any remaining offpointed light to the cone and thence to It was decided to optimize the design for three degrees of offpoint. The NAS8-35635 secondary mirror blockage diameter of 0.564 inches was retained to allow comparison with the NAS8-35635 design even though the actual mirror surface was only 0.50 inches in diameter. After a number of two dimensional iterations of the optic stack surface figures, the resulting operation of the stack in two dimensions seemed satisfactory as shown in Figures 3-22 through 3-24. Except for a very few rays, all rays entering the optic reach the cell.

3.3.2.4 Support Analysis

A three dimensional computer model was constructed for IPAGOS analyses. Calculation of the offpoint performance showed tremendous improvement over the baseline design (Figure 3-25).

The model was analyzed for tolerance effects as was the baseline and again tremendous improvement was seen. Figures 3-12 through 3-17 show the improved capabilities compared to the baseline design. The multiple parameter tolerance buildup was input to the model and again the improvement was great (Figure 3-18).

The secondary mirror was further optimized for output by consideration of changing the angles of the mirror portion devoted to redirecting the offpointed rays. Figure 3-26 shows the effect of varying the inner and outer zones from the baseline.

The design was checked against an optimal hyperbolic secondary which used the full 0.564 diameter of the secondary mirror blockage size for light collection. Cone angle was varied to check for possible synergistic design effects. Figure 3-27 displays the results of this comparison. The new secondary is clearly superior in the quantity of light collected.

HYPERBOLOID OPTIMIZED FOR:

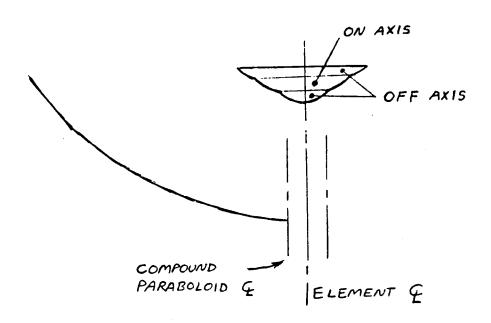


FIGURE 3-21: CONCEPT USED TO REDESIGN THE COMPLETE MCC 'OPTICAL STACK.

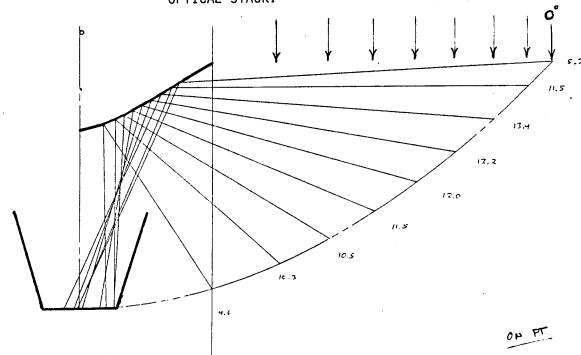


FIGURE 3-22: NEW DESIGN SHOWING RAY TRACE FOR ENTRANCE OF RAYS WITH ZERO POINTING ERROR.

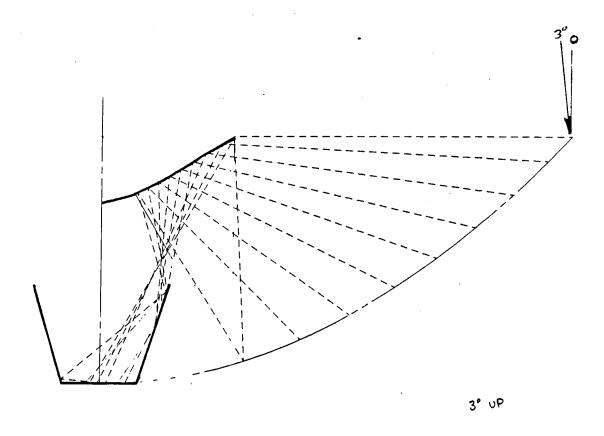


FIGURE 3-23: NEW DESIGN SHOWING RAY TRACE FOR ENTRANCE FROM THREE DEGREES FROM THE LEFT.

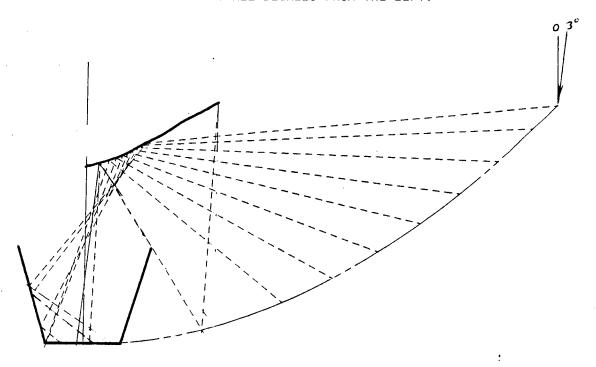
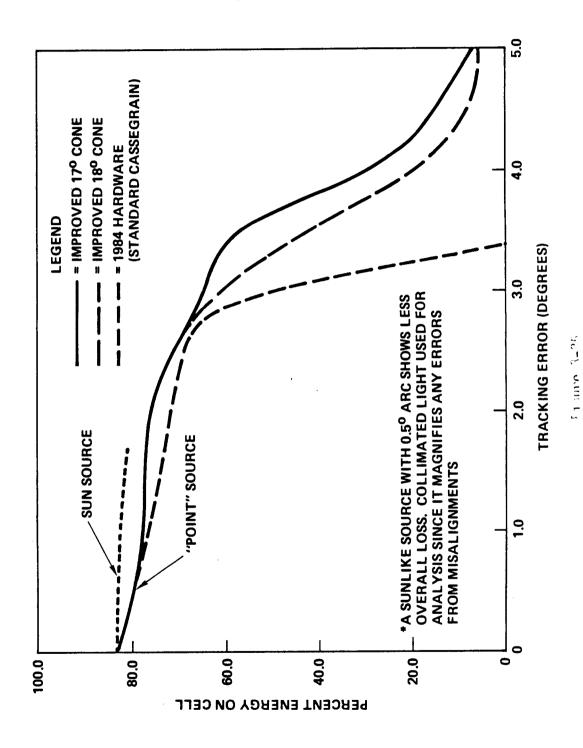
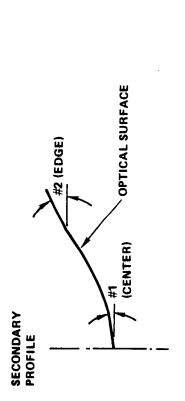



FIGURE 3-24: NEW DESIGN SHOWING RAY TRACE FOR ENTRANCE FROM THREE DEGREES FROM THE RIGHT.

Energy on Cell vs Tracking Error Collimated Source*


Figure 3-26

Rays Reaching Cell versus Variations of Secondary Offpoint Collection Angles.

The New Design is Fairly Insensitive to Figure Errors

OFFPOINT	BASELINE	٩٨	VARY ANGLE 1	1	VARY A	VARY ANGLE 2*
ANGLE	(15 ⁰) (30 ⁰)	10 ⁰ (30 ⁰)	10° (30°) 20° (30°) 25° (30°)	25 ^o (30 ^o)	(15°) 27°	(15°) 33°
0	4524	4254	4524	4524	4524	4524
2	4286	4286	4286	4286	4286	4286
2.5	4039	4039	4039	4031	4035	4047
က	3698	3698	3698	3686	3680	3718
3.5	3222	3183	3218	3202	3190	3139
4	1686	1600	1680	1662	1647	1260
4.5		908	806	868		
NAME	SEC140	SEC640	SEC540	SEC440	SEC141	SEC142

*NORMALIZED TO SAME OBSCURATION AS BASELINE

NEW SECONDARY OFFPOINT ANGLE HYPERBOLIC AND THE NEW SECONDARIES HAVE SAME OBSCURATION HYPERBOLIC SECONDARY BASELINE 17° CONE 18° CONE 20° CONE New vs Hyperbolic Output 0.5 0.4 9.0 0.8 6.0 0. 0.7 TUTTUO BVITAJAR

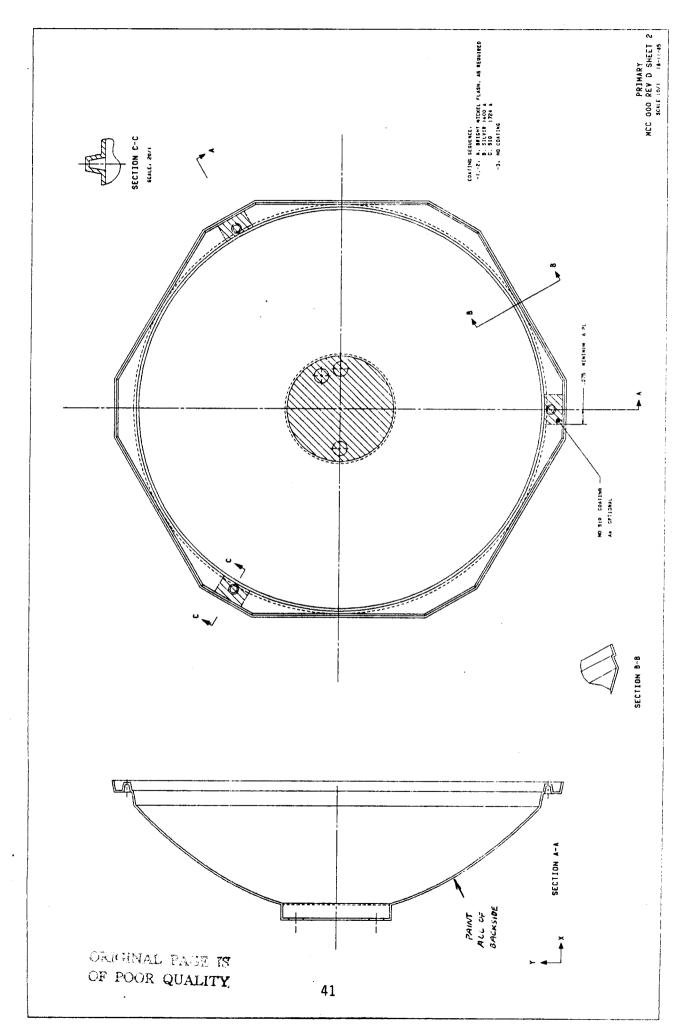
Figure 3-27

38

The cone angle for the new system was optimized at 17° . A 17° versus 18° cone angle comparison is shown in Figure 3-25.

3.3.2.5 New Design Optics

The new primary is shown in Figure 3-28. The new secondary is shown in Figure 3-29 and the new cone in Figure 3-30.


3.3.2.6 Part Physical Measurements

New optics were ordered to the design derived in the above analyses. The first articles were measured for surface figure and part tolerances. Since the parts were designed with keying for assembly measurements to these keys were added together for the various components to create tolerance build up potential offsets.

As for the NAS8-35635 design, the positioning of the cell surface and XY placement within the cup, the XYZ positioning of the secondary mirror considering the tolerances measured, and the XYZ positioning of the cone considering the tolerances measured were determined. All part dimensions except for the secondary figure were found to be within the tolerance allowances generated for the part manufacturing specifications (Figure 3-31) from the tolerance analyses. Actual values are given in Appendix A.

A Jones & Lambson EPIC 30 comparator was used to check for figure accuracy of the cone, secondary and primary against an accurate mylar of the drawings in the appropriate magnification range. A casting of the primary was made from the first article which was then checked on the comparator at 10 x magnification. The cone and the secondary were directly checked at 20 x. The primary and cone were within the required figure tolerance. The secondaries (ten in all) deviated from the required figure by varying amounts. Due to schedule constraints, it was decided to use seven of them which were believed to be close enough but not within tolerance, with the intention of checking the effect of the variations by electrical measurements of a single standard primary subassembly which included everything except the secondary and secondary mounting.

FIGURE 3-28 a: THE NEW PRIMARY INCORPORATES MANY IMPROVEMENTS

COATINGS ON THE FRONT AND BACK PROVIDE PRECISE OPTICAL AND THERMAL PROPERTIES. FIGURE 3-28b:

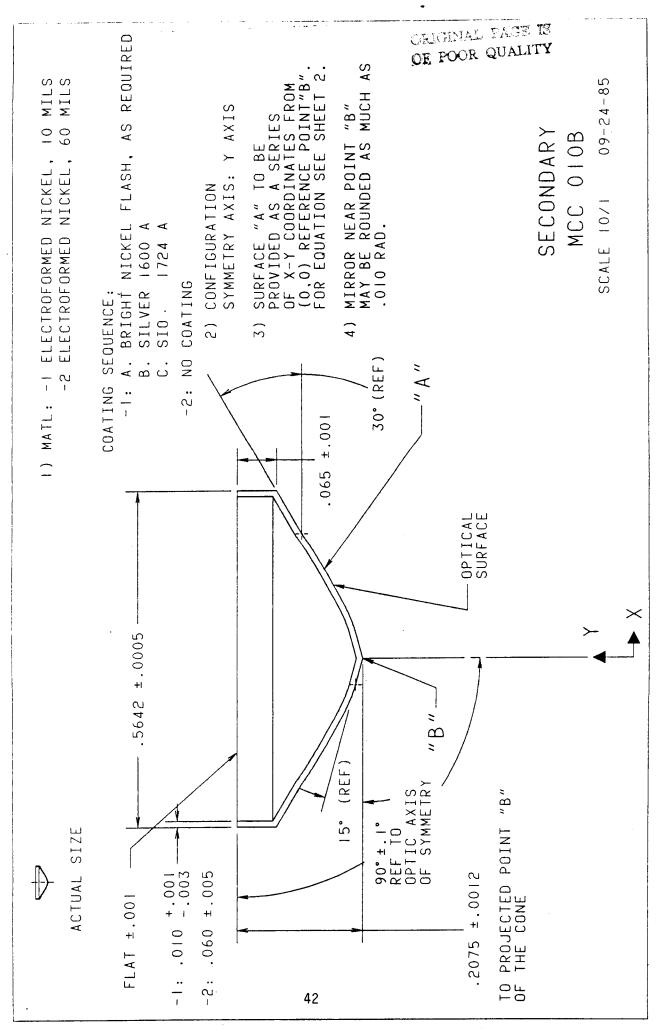


FIGURE 3-29a: THE NEW SECONDARY IS A PRECISION OPTIC COMPONENT.

Secondary Reflector - Sheet 2 of MCC-010B

This reflector is a surface of revolution whose profile is defined in the x, y plane by the following table of points. The origin of the x, y coordinate system is defined in Sheet 1 of MCC-010B

x	<u>Y</u>	x	Y	x	<u> </u>
0	0	.099620	.035240	.159421	.068776
.044298	.011870	.101384	.036190	.161206	.069854
.044366	.011889	.103148	.037144	.162991	.070931
.046296	.012430	.104908	.038101	.164775	.072008
.048220	.012990	.106668	.039060	.166561	.073084
.050139	.013569	.108427	.040021	.168347	.074158
.052051	.014167	.110185	.040983	.170135	.075229
.053956	.014785	.111943	.041945	.171924	.076298
.055858	.015423	.113701	.042908	.173716	.077364
.057752	.016078	.115459	.043870	.175508	.078427
.059638	.016752	.117216	.044831	.177300	.079491
.061519	.017443	.118975	.045794	.179092	.080557
.063394	.018152	.120732	.046756	.180882	.081626
.065262	.018878	.122490	.047720	.182668	.082701
.067124	.019620	.124247	.048684	.184450	.083782
.068979	.020379	.126004	.049650	.186227	.084872
.070827	.021153	.127759	.050616	.187998	.085972
.072669	.021943	.129514	.051584	.189761	.087084
.074505	.022749	.131268	.052554	.191515	.088210
.076334	.023569	.133021	.053526	.193259	.089351
.078156	.024403	.134772	.054500	.194993	.090508
.079972	.025250	.136522	.055477	.196715	.091681
.081782	.026110	.138270	.056456	.198431	.092865
.083586	.026982	.140017	.057438	.200141	.094056
.085385	.027865	.141763	.058423	.201851	.095248
.087179	.028758	.143506	.059411	.203564	.096436
.088968	.029661	.145248	.060402	.205279	.097621
.090752	.030573	.146987	.061398	.206995	.098804
.092533	.031493	.148724	.062397	.208712	.099986
.094309	.032420	.150484	.063415	.210429	.101168
.096083	.033355	.152275	.064482	.210445	.101178
.097854	.034295	.154063	.065552	.282101	.142548
		.155851	.066625		
		.157636	.067700		

FIGURE 3-29b: EQUATION FOR THE SECONDARY MIRROR SURFACE

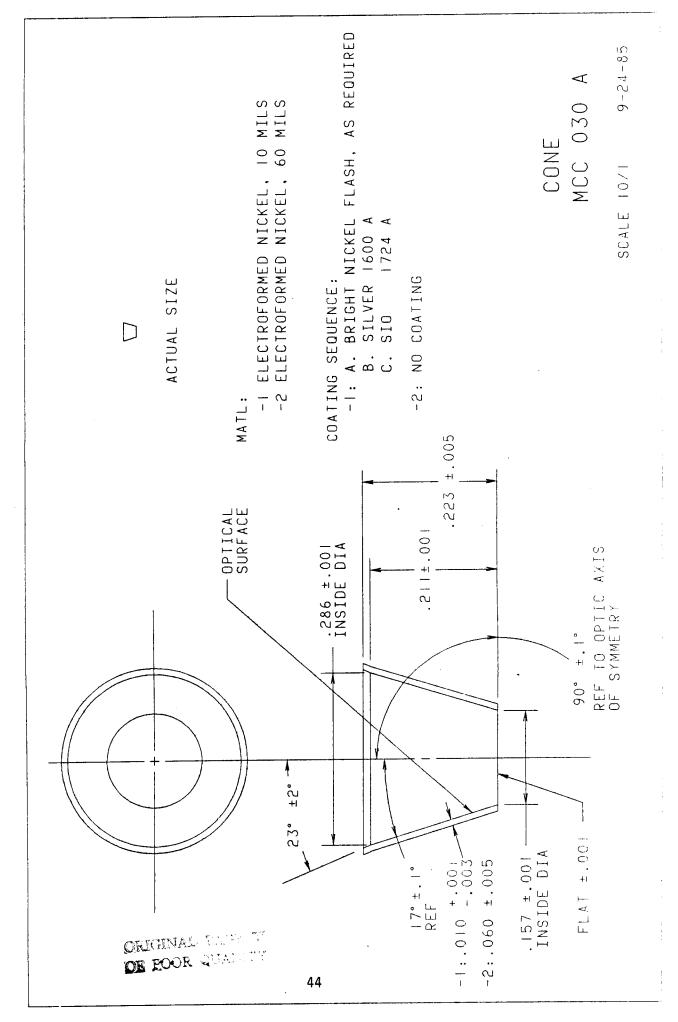


FIGURE 3-30: THE NEW CONE PROVIDES TOOLING REFERENCE POINTS.

ASSEMBLED ITEM	2.5	က်
Y, X AXIS DISPLACEMENT OF SECONDARY	0.002	.0005
Z AXIS DISPLACEMENT OF SECONDARY	.0025	.0005
TILT OF SECONDARY	.05°.0005 spid∆ .02° .0025 para∧	.02°
Y, X AXIS DISPLACEMENT OF CONE	.002	.0003
Z AXIS DISPLACEMENT OF CONE RELATIVE TO CELL SURFACE	.0035	.0003
TILT OF CONE	.7° (2 mils \triangle)	.9.
SLOPE DEVIATION OF PRIMARY	1,	.5-
SLOPE DEVIATION OF SECONDARY	> 10'	3.5'
SLOPE DEVIATION OF CONE	> 1°	.05°

ASSUME 1% LOSS AT ANGLE ALLOWED PER ITEM FOR TOTAL 8/5% LOSS AT ANGLE. DOUBLE ALLOWED LOSS GIVE DOUBLE TOLERANCE ALLOWANCE.

Figure 3-31. Tolerance Allowance

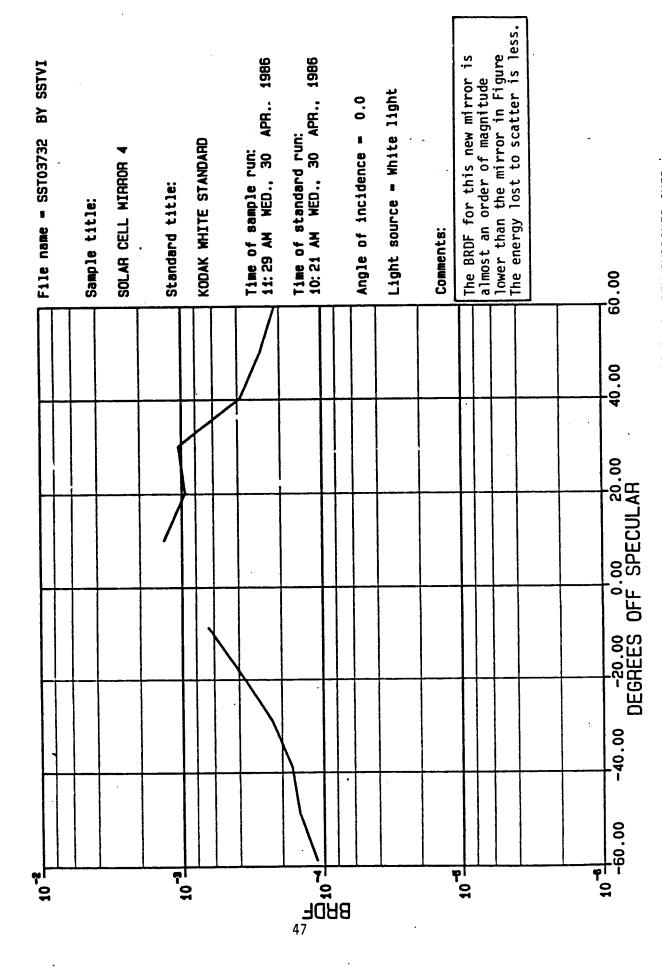
3.3.2.7 Optical Measurements

The specular reflectance of a primary mirror sample was measured to be a factor of ten improved over the NAS8-35635 hardware before coating and a factor of five improved after coating (Figures 3-32 and 3-33). As required, all mirror edges were sharp and no unusual surface variations were observed. Testing for poor output portions of the mirror due to surface or figure variations was therefore not required.

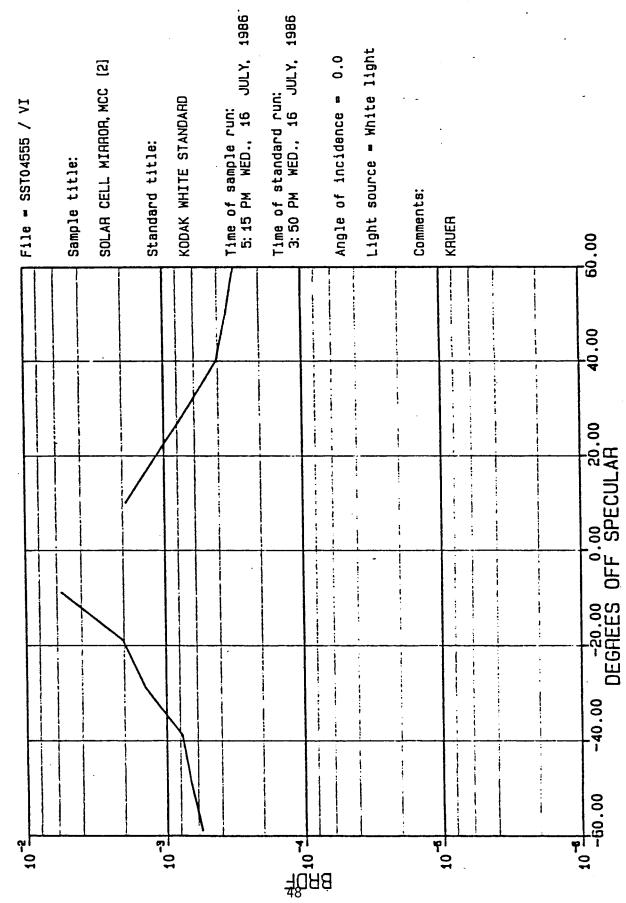
The gap between the cone and the cell was set at 8 \pm 1 mils by the cover and adhesive (see cell stack design).

3.3.2.8 Concentration Ratio Check - Energy Throughput

Two optics were measured for energy throughput by measuring current of the cell with and without the secondary in place. A mask with a hole the size of the cell active area was placed over the cone to measure 1 sun output without the secondary in place, then the mask was removed, the secondary was replaced, and the total MCC element output at concentration was measured.


The measured concentration ratio was 114 and 117 versus an expected concentration ratio of 134.7. When corrected (section 3.3.2.13) for known deficiencies in the conic mirror (see Coatings), the CR became 134.4.

3.3.2.9 Element Performance


The offpoint performance of three MCC elements was measured (Figure 3-34). As expected, the performance was significantly improved over the NASS-35635 hardware, though slightly lower than predictions. The lower offpoint output was subsequently explained to be due to conic mirror coating deficiency (see Coatings). At this time, the decision was made to continue with the design into Phase 4, complete population of the deliverable panels with MCC elements of the new design.

3.3.2.10 Coatings

It was not the intent of the design program to address coating applications. Only data and design concepts which were applicable to this design and available from scientific or engineering literature were incorporated into the design. A brief summarization follows.

THE SPECULARITY OF THE UNCOATED MIRROR IS A FACTOR OF TEN IMPROVED OVER THE PREVIOUS DESIGN. FIGURE 3-32:

SPECULARITY OF THE NEW MIRROR REMAINS FIVE TIMES BETTER THAN THE PREVIOUS DESIGN AFTER COATING. FIGURE 3-33:

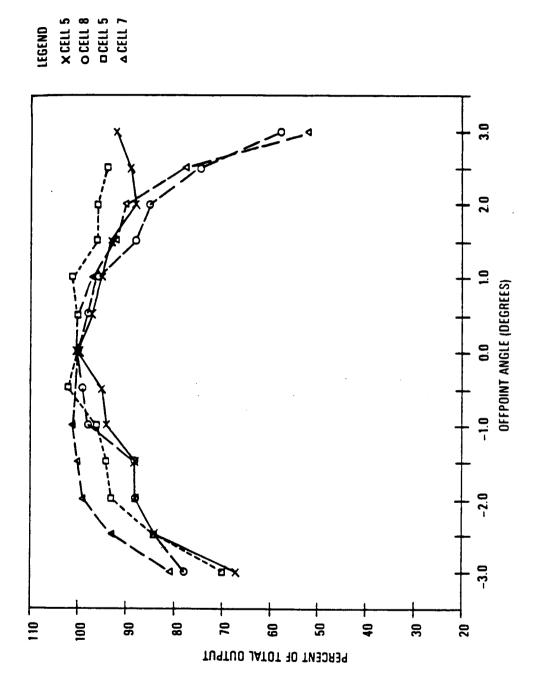
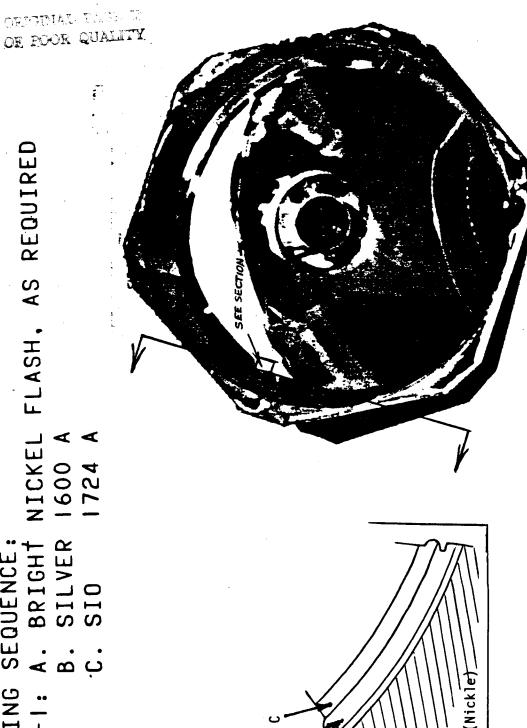
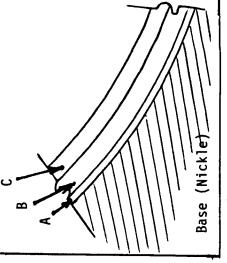


Figure 3-34: MCC Off-point Curves for LIPS III Hardware

Optical Coatings. The coatings required for this design were identical to those for contract NASS-35635 hardware. Silicon oxide of 1700 Å was vacuum deposited over 1600 Å of silver which was vacuum deposited on the reflective nickel surface of the mirrors (Figure 3-35). The SiO coating is projected to be able to protect the optic from atomic oxygen effects based on extensive analyses performed by many companies and NASA centers nation wide. Other coatings such as indium tin oxide are also acceptable and can be incorporated as they are defined and tested.

<u>Protective Coatings</u>. Only the solar cell interconnect with silver metallization is subject to environmental attack in this design. A thin coating of silicone adhesive could be used for protection. It was not included in the present design.


Thermal Control Coatings. An added task to the design was the incorporation of S13GLO paint for thermal control of the MCC element. This silicone based white paint was used to coat the back (sun facing) surface of the secondary mirror, the sun facing surface of the spider mount for the secondary mirror (Figure 3-36) and the back surface of the primary optic (Figure 3-37).


Standard procedures using solvent wipe of the nickel and aluminum surfaces prior to a spray paint coating with the S13GLO were found to be sufficient for good adhesion of the paint to the painted surfaces. To test for adhesion, a MIL SPEC procedure was followed which consisted of scribing the painted surface of a sample, applying tape, and pulling the tape from the sample. No failure occurred. The sample was thermal shock cycled 100 times from -192° to +60°C. The tape test was performed again and no adhesion failures were observed.

Other Considerations

o Primary and Secondary Mirror Coating Quality. The adhesion of the optical coatings was of varying quality. The mirror vendor used two vendors as coating subcontractors but did not maintain traceability. Subsequent assembly of the primary and secondary mirrors incorporated the use of a protective and cleaning polymer which was spread on the surface, let dry, and removed with tape. When the polymer coating was pulled off, the surface coating of some

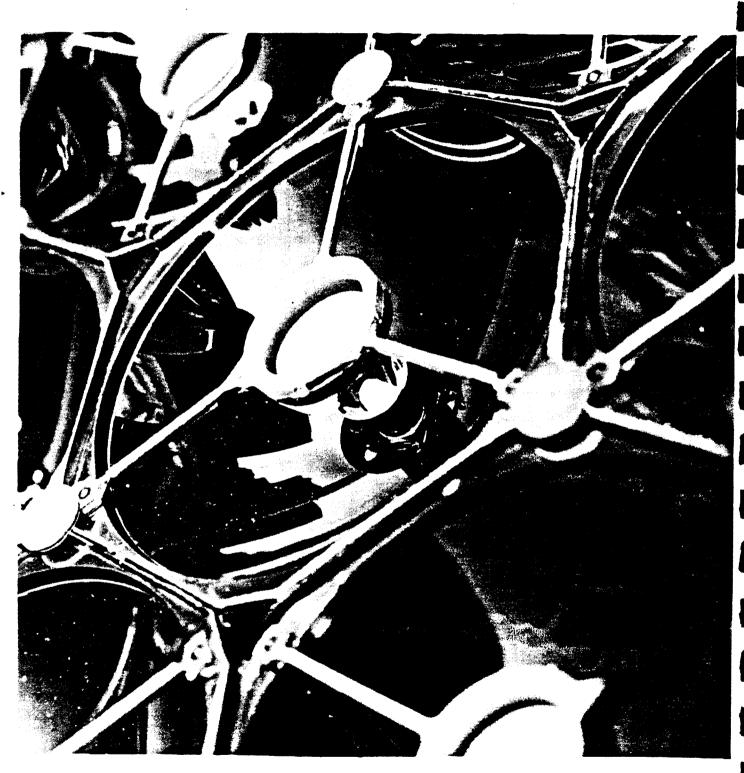


Figure 3-36. Front of New Element Shown While Operating, Spider and Secondary Back are Painted with S13GLO.

ONS THE LACE IS ORIGINAL PAGE IS OF FUUR QUALITY OF POOR QUALITY

Figure 3-37. Back of MCC Element Showing Mounting Position, Solder Bonds for Electrical Interconnection, and Complete S13GLO Coating.

primaries and secondaries (portions of the SiO and SiO+Ag) were removed as well. Discussion with the vendors determined that the coating adhesion should have been much greater than the adhesion of the polymer, and that the failures were most likely attributable to insufficient surface cleaning prior to The only fix available was to strip and then re-deposit the coatings. Since the effect of stripping on the mirror surface was unknown (such as potentially roughening the polished surface), and the damage was apparent on only a few optics, it was decided to leave the coatings as is without testing the remaining coatings. Temperature shock testing of a mirror already showing partial coating failure did not induce any further degradation or removal of the coatings. Coating failures from thermal cycling or other stress during NASA testing will not be considered as design failures since an in-place acceptance test would find coating manufacturing problems for any flight optics. The use of the polymer as an acceptance test is recommended for such acceptance testing.

Conic Mirror Coating Quality. All conic mirrors were visually inspected for coating defects such as missed or darkened sections or localized haziness. Coating quality in terms of absolute reflectance was not measured. After the measurement of offpoint performance of a large number of optics showed significantly high losses at small offpoint angles, test data was reevaluated to determine the cause. Data for output of the cell stacks with a cell sized mask was compared to output of the cone and cell combination with no secondary mirror (Figure 3-38). Since all light entering the cone would be absorbed by the cell, the reflectance of the cone could be backed out of the measurements as shown in Figure 3-39. for four optics showed that the conic mirror reflectance only achieved 65 to 70% in the 0.4 to 0.9 The reasons for this micrometers GaAs response range. were unknown. However, after questioning the coating vendors, it was found that a "proper" mounting procedure in the coating chamber to guarantee uniform coating quality was not used due to schedule and cost pressures from the electroforming vendor. physical reason for the loss whether due to scatter or absorptance should be investigated. It is known that the loss is not caused by contamination. A series of cleaning fluids, acetone followed by freon followed by isopropyl alcohol, had negligible effect on most conic optics. Those improvements that were measured only increased total reflectance of the cone from 0.65 to 0.67 in a limited number of cases.

To check the extent of the low conic reflectance, all 180 optics to be mounted in the large deliverable panel were checked on an X25 solar simulator for total reflectance as measured by the GaAs cell in the

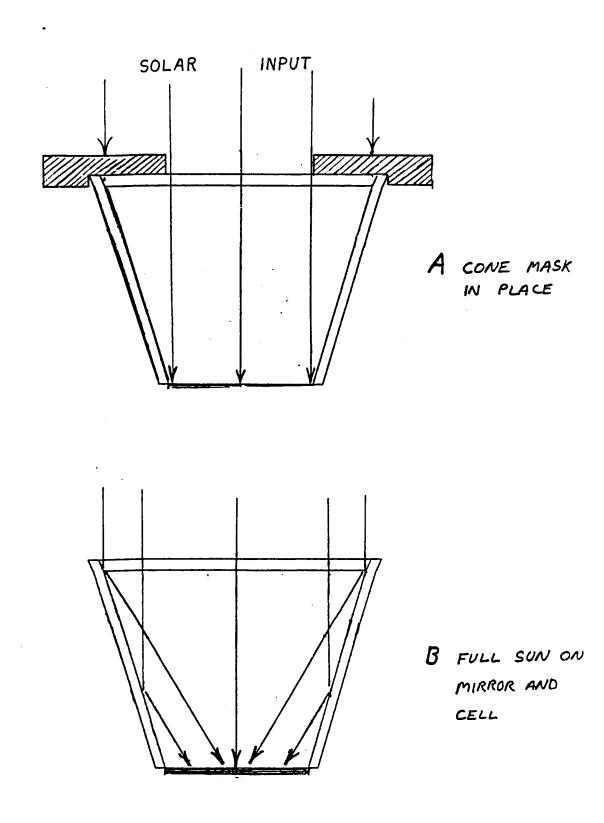


FIGURE 3-38 METHOD FOR FINDING SPECULAR REFLECTANCE OF CONE.

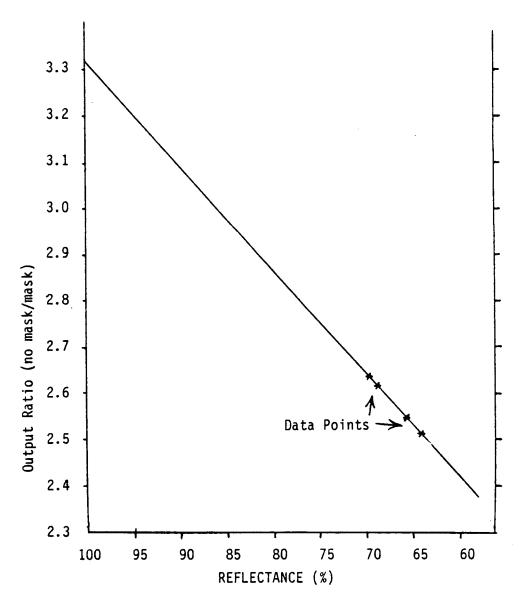
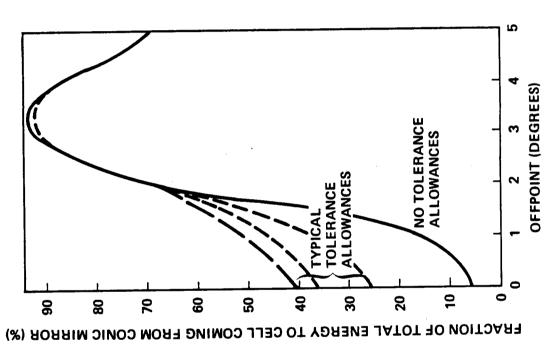


FIGURE 3-39 Conic mirror to cell output ratio as a function of cone reflectance.

subject optic using the same methods as outdoor sun tracking testing. The range of reflectance was measured to be 59 to 71% with an average of 66% and a standard deviation of 5%. The $\pm 5^{\circ}$ illumination angle from normal as is typical for the X25 due to geometry of the simulator did not skew the results since even 5° illumination angles for light rays would still reach the cell.

The effect of the low conic reflectance was checked in the previous tolerance analyses by looking at the total light reaching the cell via the cone for all pointing conditions. Figure 3-40 is a plot of the percent of light versus pointing angle for the new design which first bounces from the cone. It was obvious that the conic mirror was as important as the primary and secondary mirrors when considering the total system performance.

Using the average measured cone reflectance it was possible to recalculate from the test data the normalized offpoint characteristics of the MCC elements, substrings, and modules if the conic mirror had been 97% reflective. The absolute output of the onpointed and offpointed elements could be similarly corrected. All plots of output versus offpoint for the small and large panel strings were corrected accordingly. The plots showed very good agreement with the response as analyzed during the tolerance analysis. Variations due to other electrical effects are discussed in section 3.3.2.11.


3.3.2.11 <u>Electrical/Optical Test Results of the Improved MCC Element</u>

Measurements of individual optic/electrical performances, performance of strings of a single element in parallel by six elements in series, and 5 elements in parallel by six in series were made using the solar tracker and mounting hardware designed especially for this application (Figure 3-41). All measurements were corrected to 1 sun AMO exposure using a GaAs standard cell and were further corrected for temperature based upon readings from thermistors mounted on the back of two randomly selected elements.

Output Variation with Multiple Secondary Mirrors. The "proof" secondaries were tested for variations in offpointability using a single primary subassembly. Figure 3-42 shows the performance of each of the seven accepted secondary mirror samples from the separate electroforming tools as corrected for the cone reflectance losses discussed in the "Coatings" section. The variability is fairly significant in terms of expected offpoint

Total Fraction of Light to Reach Cell Which Is First Redirected by the Conic Mirror (Zero and Typical Tolerance Allowances Shown)

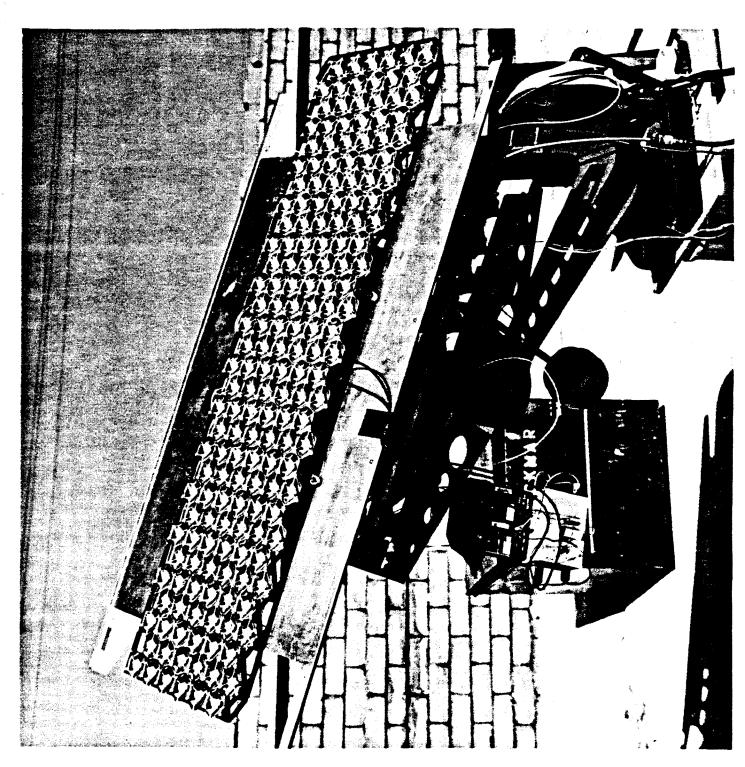
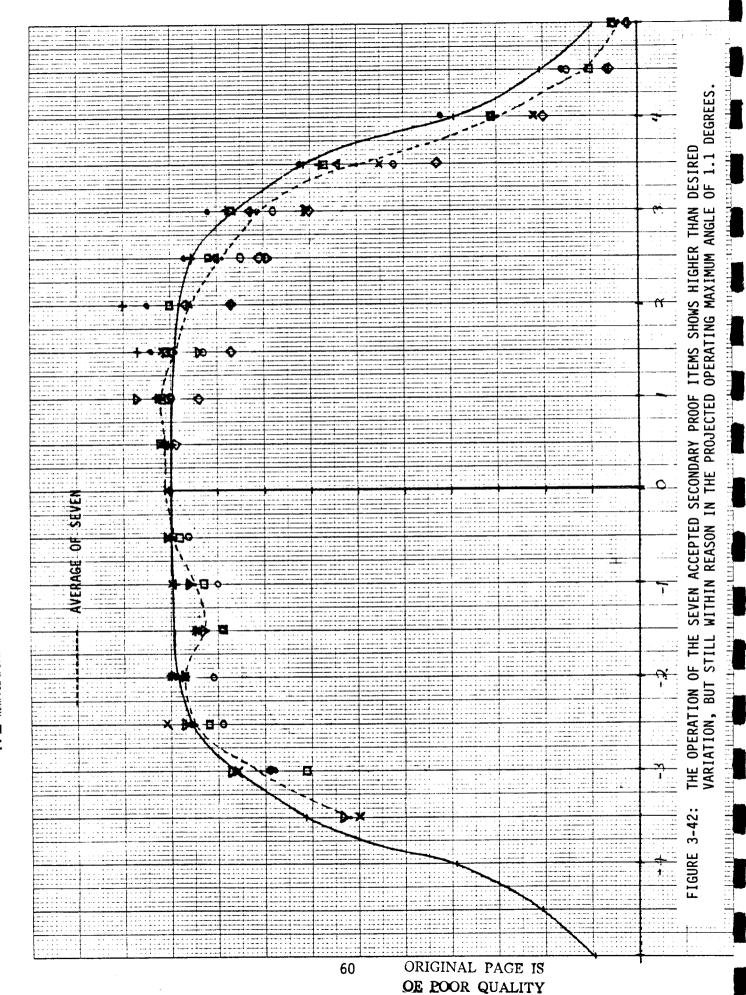
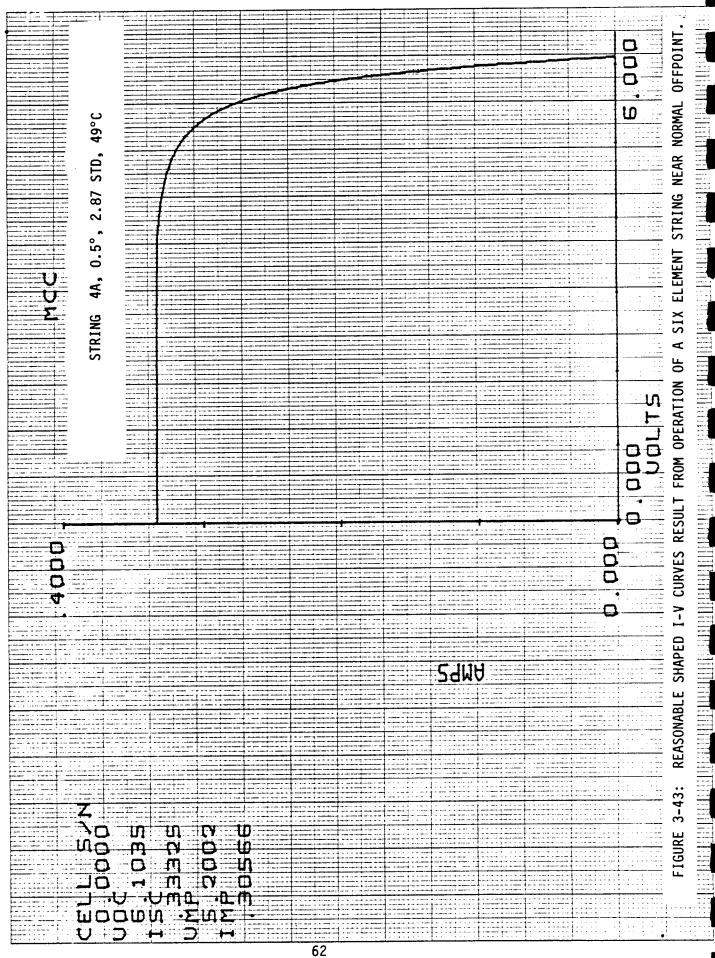



Figure 3-41. Both Deliverable Panels were Tested Using a Solar Tracker, Adapted from a Celestron Telescope Mount.

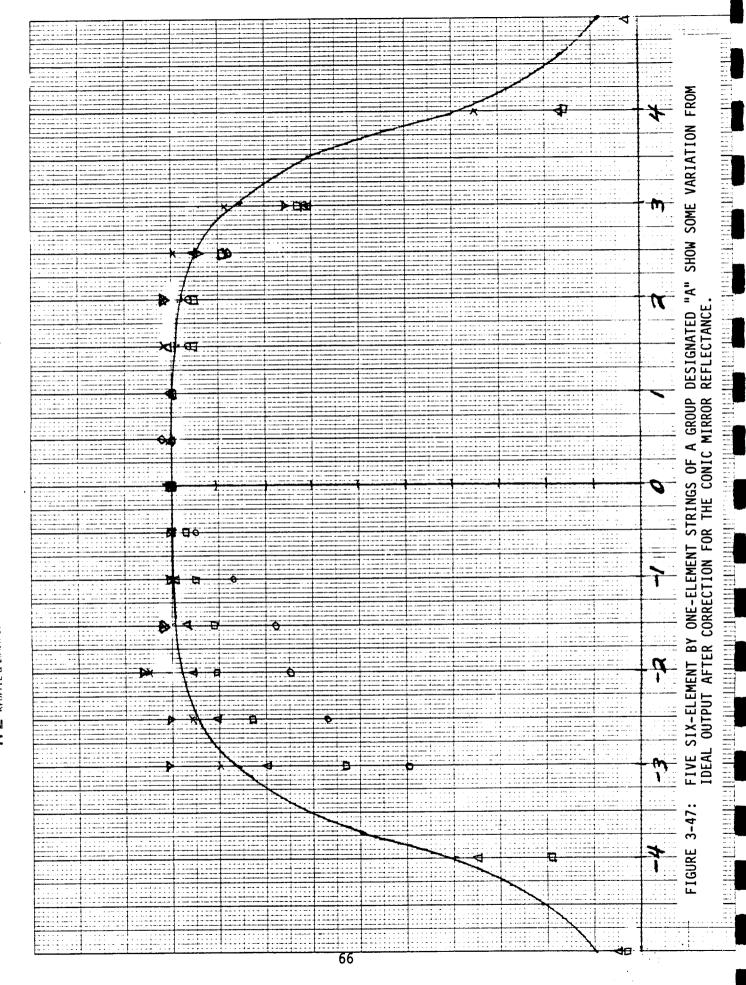

performance of a mixture of the secondaries but it is important to note the relatively flat response each achieves for three degrees of total offpoint, near the center of the performance band.

3.3.2.12 Multi-Element String Measurements

Full current voltage (IV) curves were generated for each six cell in series substring located on the small and large deliverable panels. Zero degrees through three degrees and in some cases up to five degrees variation from normal sun were measured using a NORLAND 3001 data acquisition system with a fast load, and a concentrator one sun standard traceable to a balloon GaAs standard. The pertinent data from all measurements are located in Appendix A.

Offpoint Performance. The optics for the small 35 x 53 cm panel were chosen from optics with the initial high efficiency (>20.6%) cells available from ASEC. As expected, some loss due to matching of efficiency rather than matching of current at a set voltage was encountered. Essentially, each string is limited by the lowest MCC element current performance, which is in turn a combination of absolute cell output after assembly, mirror tolerance buildup effects on light collection efficiency and relative pointing of each of the elements. An ideal measurement of a well matched string is shown in Figure 3-43 for one substring. Figure 3-44 shows the effect of current limiting on the IV characteristic of another string. The sudden current increase near short circuit with a sharper knee indicates mismatching of output is occurring within the string. 3-45 shows even greater mismatching to occur. A single MCC element which was found to be significantly low in output in string 3B was measured for the reverse voltage of the element as a function of string loading (Figure 3-46). The low output element ran quite hot in reverse as expected, but did not degrade after more than three minutes in the condition of approximately three volts at 300 mA across the cell.

The normalized offpoint performance of each of the strings of the small deliverable panel as corrected for conic mirror poor reflectance is shown graphed in Figures 3-47 and 3-48.


- 14

				<u>v</u>
ā ā				NGS.
SECT	49			STRINGS
A I GH				OFFPOINTED
STR.				06.51
¥ .				ELY
	A H			SEVERE
Id	NG S			0F S
	E E E			T S NUMBER
	, in the second			
				O O NI
				0 8
				ISI I
				1
8				EAS
4				ARE
				LOSSES A
			SAWU	
				MISMATCH L
				MIS
				LARGE
				der en emperature personal
Z	m m v	,		FIGURE 3-45:
- Vo	m in in i			RE 3
				FIGURE
HO.	OUN -ENE			
U-	$\supset H \supset H$	64		

FIGURE 3-46

REVERSE BIAS TEST OF ELEMENT
WITHIN STRING IN NATURAL SUNLIGHT (NO CORRECTIONS)

STRING 3B		CONDITION	
	Α	<u> </u>	<u> </u>
String Voltage	1.50V	2.96V	4.95V
String Current	300mA	300mA	294mA
Voltage Element 7	.816	.790	.842
8	.868	.840	.867
9	.890	.880	.893
10	.844	.780	.869
. 11	-2.78	-1.23	589
12	.886	.900	.915
Mismatch Excluding #11	5.5%	6%	4.2%

Paralleling of two sets of substrings into two groups for measurements with five elements in parallel by six elements in series was performed. The measured output of the groups were compared to the expected output based upon the individual component substrings within the group. Excellent correlation was found (see Figure 3-49).

3.3.2.13 Correction Methods for MCC Element and String Test Data

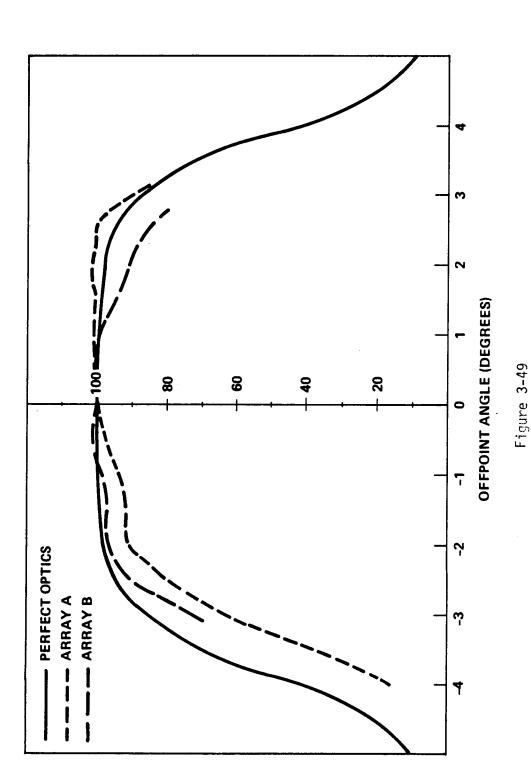
All test data was corrected for known test conditions and test item deficiencies.

AMO Sun. The correction to AMO sunlight was simply accomplished by using test standard composed of a GaAs concentrator cell calibrated to a balloon flown GaAs primary standard. The GaAs test standard was monitored continuously during test of the test items.

Std AMO cal. value x test item reading = corrected reading Std Test value

Temperature. The correction for temperature for panel string tests was accomplished by mounting two thermistors to the back of randomly selected elements on the panel, and reading the resistances on Fluke 8060A calibrated meters. Each resistance was compared to a resistance versus temperature calibration chart (Figure 3-50) to define the base temperature, and then 6°C was added to the readings due to the known temperature difference between the cell and the thermistor mounting position including bond thermal resistance.

The current correction factor used was 0.045%/°C. The voltage correction factor was -1.6 mV/°C. The factors were derived from thermal testing of two elements on the panel while on the solar tracker. Both factors corresponds closely with data available from GaAs cell literature.


$$V_{meas} + (T-28)(-1.6 \text{ mV/}^{\circ}\text{C}) = V_{correct}$$

 $I_{meas} \times [1 + (T-28)(.0045)] = I_{correct}$

Conic Mirror Reflectance

o Based on Figure 3-40 and assuming typical tolerances apply to the onpointed MCC element output, the correction for conic mirror reflectance rho at 0° is:

Compared to Perfect Optic Performance (Corrected for Cone Deficiency R=70%) Offpoint Performance of Two Sub-Arrays (5 Parallel x 6 Series)

Temperature vs Resistance Reading for Mounted Thermistor 1M001-XXX

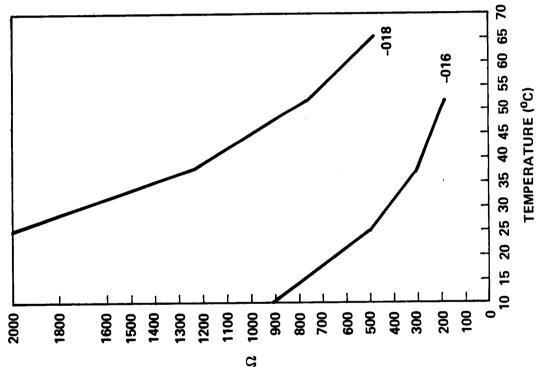


Figure 3-50

$$\frac{\text{current}}{\text{(.41 x rho)} + .59} = \text{corrected current}$$

o For offpointing measurements, the perfectly aligned optic reflectance curve was used to correct the measurements.

Data presented for offpoint check was only corrected using the perfectly aligned optic correction. The result is that in many cases, the output at offpoint angles was corrected to be greater than the 0° offpoint condition.

For onpointed measurement for concentration ratio and absolute output of the elements, the 41% conic reflection represents a maximum and will vary between 25 and 41%. Similarly, the reflectance of the cones vary between 59 and 71% with an average of 66%. Therefore, the range of correction factors is as follows:

$$\frac{1}{(.41 \times .59) + .59} = 1.202$$
 high
$$\frac{1}{(.25 \times .71) + .75} = 1.078$$
 low
$$\frac{1}{(.36 \times .65) + .64} = 1.144$$
 average

Corrections for groups of elements in strings have a higher probability of being near the average values.

Mismatch Effects. Cell mismatch for the concentrator design is complicated by the additional consideration required due to variability of manufactured element tolerance effects. A high efficiency cell matched with a less quality optic may be equivalent to a lower efficiency cell in a high quality optic, but this would change as a function of offpoint. Conceptually, this is illustrated in Figure 3-51. Therefore, it can be expected that if low mismatch losses are desired, extensive testing and matching of a large population of MCC elements would be required.

Due to the small population of MCC elements available for this contract, the variability of the assembly tolerance effects, and the need for a dedicated grader for MCC element output which was not available, and the short time available for assembly and test, elements for the small deliverable panel were kitted into strings according to cell efficiency measured after the welding process used for electrical connection of the contacts.

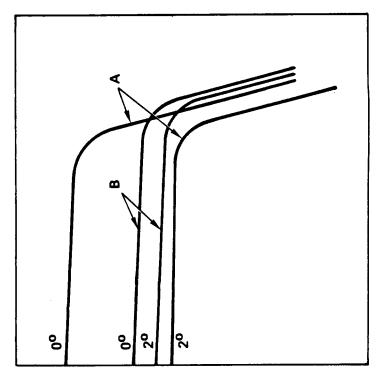

ELEMENT VOLTAGE

Illustration of Mismatch Caused by Cell Efficiency Combined with Mirror Offpoint

A = HIGH CELL η , WORSE OFFPOINT CAPABILITY B = LOW CELL η , BETTER OFFPOINT CAPABILITY

AT 0°, B LIMITS CURRENT AT 2°, A LIMITS CURRENT

АВЅОГОТЕ ЕГЕМЕИТ СОЯВЕИТ

The MCC elements were mounted in the panel and tested. One shorted element was subsequently removed and replaced. Offpoint testing was performed. The panel was later tested for the output of each element at short circuit and open circuit. The results of that test, presented in 3-52, show a number of elements with substandard output at short circuit. The mismatch which results, especially due to current limiting as seen in the current voltage (IV) curves of Figures 3-44 and 3-45, directly reduces the maximum power of the tested string or strings.

As a rough approximation, the short circuit current of each of the elements in a string can be averaged to get an average string current which may then be divided into the lowest element short circuit current in a string to derive an effective mismatch, all assuming the open circuit voltage of the elements are very close in value.

Shown in Figure 3-52 are the average current for the six cell string, the calculation of mismatch for the string, and the calculation of average mismatch for all the strings, which is 7.7%.

For the larger deliverable panel, all 180 elements as completed were measured for current at 85% of open circuit voltage using the x25 solar simulator and matched as best as possible prior to assembly into the panel. As an additional complication, the cells from the three cell vendors were kept in separate strings. It was noted that the MCC elements with Varian cells were particularly poor in output due to the welding difficulties encountered (section 3.4.2.3).

Min/ Avg	.837	.948	.923	
mA	427 458 425 440 350 413 418	447 435 445 469 418 432 441	6° = VIW	
Λm	1048 1022 1052 1055 1058 1058	1056 1059 1057 1055 1033 1031	, ,	ć
MCC	128439 X	7 8 9 10 11 12 X	AVERAGE	
String	5A	58		
Min/ Avg	.915	. 936	.835	.942
m.A	452 438 430 389 420 422 422	421 392 394 432 438 438 438	442 355 416 450 452 432 425	425 405 445 437 435 435 435
N	1039 1066 1069 1079 1071	1073 1074 1079 1073 1067	1062 1053 1026 1031 1049 1058	1058 1051 1061 1055 1053
MCC	⊓06480 ×	7 8 9 10 11 12 X		7 8 9 10 11 12 X
String	3A .	38	4A	48
Min/ Avg	.945	.955	. 944	.977
шА	424 442 430 423 422 400 424	426 418 445 422 414 402 421	441 444 403 422 434 419 427	439 427 420 436 424 436 436
Λm	1054 1074 1078 1079 1085 1091	1048 1065 1073 1072 1062 1075	1069 1070 1017 1075 1086 1082	1080 1078 1079 1072 1082 1086
MCC	108459 ×	7 8 9 10 11 12 X		7 8 10 11 12 X
String	1A	18	2A	28

FIGURE 3-52: SMALL PANEL MISMATCH TALLY AND CALCULATION

3.4 CELL STACK DESIGN AND INVESTIGATION

The baseline design for electrical interconnection was soldering of both the top and the bottom connections as was performed for the MCC element designed under NAS8-35635. It was noted under that contract that significant degradation of the current and voltage was experienced by the cell after soldering. Measurements were performed under 1 sun AMO.

To determine the possible causes, various portions of the stack assembly process were investigated. Figure 3-53 records the investigation areas. A plan was developed to test the cells for gross effects. The bare cells were tested at one sun AMO. A number of configurations using solder versus no solder were run through heating cycles as used for the cell stack assembly. Samples were heated in both vapor phase solder station (VPS) and a hot plate. In most conditions the samples degraded similarly to those in contract NAS8-35635. The sample size was large enough to show that soldering was the degrading mechanism. results are shown in Figure 3-54. Average losses were computed for the various processes by combining data of similar origin. For example all cells with solder on the front contact were grouped together, ignoring other factors in the process such as mounting method. This enabled gross judgements of defect mechanisms. As a second refinement, successively greater narrowing of the error band and grouping of the cells within the band, helped establish that it was the soldering process itself that was causing the degradation and probably the front contact solder bond.

Subsequent discussion with the vendors indicated that unlike silicon, GaAs will be wet by solder. Therefore, in any environment where the solder cannot be precisely controlled, a potential for solder flowing over the GaAs and shorting the junction exists. Both the hot plate and the vapor phase solder method are not precision controlled for solder placement.

The soldering process (front contacts versus rear contacts) was investigated by substituting another process for the soldering and checking the results. In parallel with this, the mechanism of degradation caused by the solder was investigated. Effort was concentrated to make connection on the front contact. The options were soldering, welding, and adhesive bonding.

Engineering & Test Division TRW Space & Technology Group

A.	CELL JUNCTION DEGRADATION	TEST	Put cell stack in various stages of assembly through vapor phase reflow equipment.	3 - 60%
			Use oven heated and unheated cells for control.	
ъ.	TEST EQUIPMENT ERROR		Review test procedures for error propagation. Test cell output.	0
		TEST	Test cell output. Modify test fixture. Test cells again.	2.5% (1)
			Calibrate X25 simulator for uniformity in test area.	+1.5% (1)
ن	TEMPERATURE UNCONTROLLED	TEST	Attach thermocouple to cell and MCC element back. Calibrate temperature gradient. Check output against temper- ature reading.	0.7% (V)
0.	SPECTRAL SHIFT AFTER HEATING. USE OF SILICON	PROCUREMENT	Acquire balloon traceable GaAs standard cells.	N/A
	STANDAKU.	TEST	Compare output using Si standard vs out- put using GaAs standard.	+1.5%

FIGURE 3-53

	•	-5.069 1	0. 0.	10.9		47.364	2.195	1.603	-36.603 -		2.63.1 1.935	12.039	-37.672		1.318	-58.378	- 1	0.03	AVENDE	-10.265	13.601	-8.082	-10.269	-13.568	90.7	7.07	7
	A ME.TA	0.0390181						-		-0.0016412	0.0196994	-0.0025586		-0.3823197	0.0101355	-0.4266702	.0256460	0.0001859									
ted		-	0.7622568	0.6588639 -0											•	0.3042050		1360351 -0	1								
ed g investiqated	MOTOR	0.7697207 0.0.7831781 0.	10.7567323 0.	0.7394956 0.		0.5436654 0.	0.7614067 O. 0.7533302 O.	0.7851262 0.7489700 0.7443930 0.7486262	00	0.1907666 0.	0.7545477 0.	16.4077579 0.8051993 10.7487335 0.6585955	0.7430951 0.7430107 0.7714420 0.4808236	0.7753236 0. 0.7525989 0.		0.7535751 0. 0.7306752 0.	0.7125753 0. 0.7600178 0.	7301678 0. 7442210 0. 7377331 0.			-						
ked ng inve	-	-7.10											-55.781 10.						AVERAGE	# F F F F F F F F F F F F F F F F F F F	23.361	15.450	-18.827	-12,156	-11.695	24.61	-11.476
to beryllia looked size by discarding dering should be in	A MGM	-0.1462374 -0.0344009	5604095	22723	0.2914512		•	-0.1477199	•									0957216	ŭ l	• •		J' '	1 6		7.	1 7 7	r •
ryllia y disca should	E	1.9109975 -0.1 2.2471119 -0.0	1 2.1572606 -0.0604895	64074	1.7752998 -0.1	6959867 -1.0	1.4949245 -0.	2.1174651 -0.	1.8922739 -0.	3174943 -0.	2.2657889 0.0	4.3376773 -0.					99	.0751481 -0. .0822654 -0.	۵								
to ber size by	ESTATE ANTER	12.0572349 1.91	12.2377501 2.15	91309 1.64	2.0467510 1.77	1.7788727 0.69		51050 2.11	2.0999238 0.54	12.3313703 2.20	12.2146127 2.24	2.4094306 2.3376773	2.0837686 0.92		11.9632775 1.72 12.0342605 1.97		~ ~	2.1940769 1.54 1.9708697 1.87 2.1139500 2.04	Ā								
ting toles:	-	-1.977 12.05	172 12.23	550 12.0091309			-15.566 12.06					12 898 12.40			-3.434 11.96 0.661 12.03			-25.210 12.19 -3.191 11.97 -1.226 12.11	AVERACE	-10.357	-13.209 -13.209	931	372	.109 .109	2.73 1.83		. S
and mounting the sample contact sol	A 1011				6.0254	5 5	2 2	0207		0.0078 0				-0.2505 -31 -0.0393 -5	0.0066 0			2056 -25 0247 -1 0098 -1	A 8	271	757	177	27.7	= 7	? 1 '	rf:	7
and mof f the	V THE		200				12.5	99			0.9126 -0.	• •		0.5325 -0.	0.7620 -0.	4097		6.6099 6.7481 6.7864 6.06	20/								
front contact Fine tuning of wed that front	and a	0.1905	0.0315	90	727.0	0.7603	0.01	0.7991	0.6223	0.9153	0.9170	0.9230	0.797	0.7830		0.1564	0.744	0.1727 0.1761	>								
nt col e tun' that	•	£ 2	7.7	, o ,	: 3 £	79	•	9	0.047	900	99	-1.208		99	1.928	6.79 5.810	1.108	6. 621 6. 621 6. 289	S AVERAGE	-0.673	9 9 9	- 9	-0.603	9.5	1.30		-1.122
0	1 / 102.74	6.025	9				•	6 0.0216		90				٠.	1 -0.0285	3 -0.0280		9 6.0121 7 -0.0215 6 -0.0104									
r on the causes. cells sho	SETTLE SETTLE	-	.5562 3.4790	~ ~ ~	5317 3.4059		3354 3.3568	· • •	-	eri eri	-		, m		-	263 3.4983 112 3.2130	.5733 3.6129 .5610 3.5831	868 3.5989 772 3.4051 992 3.5886	ISC								
a	-	1.923										-							Ch ACE	.936	<u> </u>	508	309	985	-17.555	600	933
Initially, sold to be candidate very large loss	2		65.0			2390 -11		9 9		-0.0252								-0.2044 -30 -0.0232 -3 -0.0105 -1	S AVENAG	77		77	2 5	7		i i	4
tially, be candi y large	< 25	0.6323	0.6665 -0	0.5681 -0	0.5969	0.3425	0.5115	0.6360 -0	0.2595 -0	0.7722 -0	0.7676	0.7866	0.6514 -0	0.3276 -0	0.6367 0		0.3477 -0		VMP								
	I MOTORE	0.6592	0.69	0.6602	0.6331	0.5015	0.612	0.6794	0.6736	0.7795		0.8001		0.6567	0.6521	0.6758	0.5935	0.6780 0.6309 0.6472	_								
3-54.	# #																	2.370 -1.226 0.126	S AWERD	-6. 103	-5.87	25.3	22.5	97	-5.273	-4.510	7 °
FIGURE 3	1 A ME.	6.0 0.0 0.0 0.0 0.0		-6.075 64 -0.075 85				21 -0.0045	64 -6.860C	94 -0.0313 60 -0.0002	10 0.0164	16 -0.0394	10 0.0495	63 -1.046¢	12 -0.1395	71 0.0001 31 -1.3732	11 -0.5624	22 0.0367 0.0383 0.0013	_								
F16	THE APPLE	3.0079	74 3.2367	33. 33.		2.031					50 2.9710		3.0470					3.2362 3.3129 3.1241 3.0454 · 3.2662 3.2703	IMP								
	-																			٠							
	C JOHN NO.						i i i	ب ر م	F #	3 ñ	. = = 							***		1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		i 2 2	E E	FRONT	101	PLATE	710CES
		- ~	n= 1	n • •		-2:	2 2	ż×	2 5	= =	20.7	2 :	: X	2 %	28 -	22	XX	*			-	₹ §					2

Process = all cells put through some part of soldering process no Front = all cells with no solder melted onto front contact no Process = all cells not put through some part of soldering no Flux = all cells not using flux during solder operation Front = all cells with solder melted onto front contact Flux = all cells using flux during solder operation Oven = all cells heated in solder reflow oven Plate = all cells heated on hot plate process (except heating) no Back = all cells with no solder melted onto back contact BeO = all cells mounted on BeO insulator/thermal conductor Back = all cells with solder melted onto back contact 40 - all cells exposed to 410 F(210 C) for 40 seconds no Cu = all cells not mounted to BeO and copper plate 20 = all cells exposed to 410 F(210 C) for 20 seconds Cu = all cells mounted to BeO and copper plate no BeO = all cells not mounted on BeO

3.4.1 Solder Investigation

It was surmised that the solder was flowing over the top edges of the GaAs wafer and shorting the exposed junction at the edge of the cell. As a first attempt to control this perceived mechanism, a number of cells were sent back to the supplier, ASEC, and an SiO coating was applied to the sides of the cells.

Assembly of some of these cells in the VPS station yielded no better results than before. Since the back contact of the cell was required to make full-intimate contact with the heat sink, and solder was the best viable material, elimination of the uncontrolled VPS method was not considered practical. After success with another process (welding) was established, further process investigation was halted.

3.4.2 <u>Alternate Bonding Methods</u>

Any method to bond the top contacts had to be able to survive a vapor phase solder reflow process without debonding or shorting the cell. The reflow would be used for the bottom contact and/or the heat sink to primary bond.

3.4.2.1 Adhesive Bonding-Top Contacts

A silver filled adhesive was identified as a potential alternate to solder. Epoxies, polyimides, and even ceramics were considered. These processes were to be investigated in another ongoing program for which the results were made available. No effort was spent on this contract on these alternatives. The ceramic adhesive has good promise. The other adhesives degraded greater than 5% in thermal cycling. Scatter of the data was high.

3.4.2.2 Gold Germanium Eutectic

A gold germanium eutectic (350°C flow) was also considered but again results were available from another program. The bonds could not be made without significant degradation.

3.4.2.3 Welding

Since it was clear that soldering would not be viable with cell top contact installation, welding, a method with which TRW has had considerable development experience on silicon but not with GaAs was attempted. Initial trials developed good bonds but shorted the cell. The weld voltage was decreased until a good bond was retained and average cell maximum power point degradation was less than 1.2% (Figure 3-55). Testing was performed with a LAPSS moved to a range corresponding to 100 suns AMO exposure. The weld voltage range to maintain good electrical and mechanical bonding was more narrow than typically used ranges for silicon cells.

It was found that the weld schedule for GaAs was very specific to the cell manufacturer, most likely as a function of both cell construction and metallization method. For engineering purposes, an individual weld schedule was developed for each the ASEC, Spectrolab and Varian cells, without further investigation into exact weld metallurgy phenomena. The weld schedule for each vendor is shown in Figure 3-56.

Both the ASEC and Spectrolab cells had silver final metallization on the front and back contacts. The Varian cells had gold contacts. Contact metallization material was not specified for the cells for this application due partly to the original assumption that the cells would be soldered.

The silver interconnect to silver contact weld achieved the highest consistent weld strength of greater than 1 kilogram pull (shear only). An attempt to weld silver interconnects to the gold contacts was not successful due to the very low (<.05 kg) pull strength. Therefore, additional unplated interconnects were plated with gold of the same thickness as the silver interconnects and welding was again attempted. The resulting welds were significantly lower in strength (<.4 kg) and good adhesion was very difficult to attain without significant degradation of the cells (>10%) as evidenced by the extremely narrow weld schedule. Backing off of the time and increasing the voltage, and increasing time with decreased voltage compared to the baseline weld schedule yielded even worse results.

FIGURE 3-55: CELL PERFORMANCE TEST (100 SUN FLASHER INTENS., ROOM TEMPERATURE) BEFORE & AFTER WELD/SOLDER OF FRONT CELL CONTACT

	WELD	SCHEDULE			ELEC	TR. BEF	ORE		ELECT	R. AFTE	R	
GaAs CELL NO.	VOLTAGE (V)	TIME (MS)	PRESS (Kg)	Isc (MA)	Voc (V)	Pop (MW)	PULL STRENGTH (1b.)	Isc (MA)	Voc (V)	Pop (MW)	PULL STRENGTH (1b.)	PA/PB
27	.56	100	1			346.7						0
9	.56					341.7				335.3		.981
21	.56					338.7				342.9	5.0I	1.012
31	.56					348.0				347.7		.999
51	58			j		343.0				337.5	2.8W	.984
80A	.58					341.6				336.8		.986
56	.58					342.9				342.7		.999
28	.58					347.7				335.9		.966
43A	.60			1		335.0				332.7		.993
88	.60					340.0				333.2	1.00	.980
24	.60					344.2				345.4		1.003
23	.60					336.3				332.5	3.2W	.989
36	.60					332.4				329.3		.991
10	.60			1		346.9				341.3		.984
5	.60			į		335.2				329.7		.984
70	.60					338.3				335.9	4.5C	.993
49	.62					344.2				343.9		.999
41	.62					324.4				326.9	3.7W	1.008
83	.64					339.3				338.7	3.5W	.998
4	.70					341.6		<u> </u>		337.0	5.5W	.987
95	.72	100	1			335.1						0
	DURAT (DIAL)	APLIT. (DIAL)	PRESS (1b.)						(99	Shorte	d) Average	.991
*94	8	5.5	1			345.2						0
*9 9						346.4				341.0	5.01	.984
*13				ļ		349.2				335.3	5. 5S	.960
*17				373.6	1.08	348.1		367.2	1.08	341.3		.983
*96A						344.2				250.7		(.728)
21	1					347.9						0
13						339.5						0
53						335.6				314.8		.938
55A						332.9				332.1	5.51	.998
16	8	5.5	+			341.2				342.3		1.003
·———				<u> </u>				.	(30% S	horted)	Average	.978

^{*} EDGE COATED CELLS/NO = SHORTED CELLS

Engineering & Test Division TRW Space & Technology Group

WELD SCHEDULES DEVELOPED FOR ALL VENDORS

.56 .58 WELD VOLTAGE SILICON RANGE (ALL VENDORS) 0 0

FIGURE 3-56

.015" x .025% .70 100 ms 1.0 kg . 68 WELD SCHEDULE - TIME
- PRESSURE
- VOLTAGE
- ELECTRODE
SIZE 99. .64 (SPECTROLAB (NO DATA SHOWN) MECOMMENDED WELD VOLTAGE RANGE .62 0 0 .60 O ASEC * VARIAN SHORIS NO PULL
STRENGTH MARGINAL
STRENGTH
VARIAN . 54 . 52 . 50 .48 .46 .44 .42 ELECTRICAL LOSS 1.00 6. . 96

Although the degradation of output of the Spectrolab cells was slightly greater than the ASEC cells after welding, the sample size was insufficient to determine if this was significant. No more cells were available for these experimental purposes.

All future subcontracts to vendors will require the cell to be silver metallized since the silver welds were so successful and there is no compelling reason to retain gold contacts.

3.4.2.4 Stack Subassembly

Pretested welded cells were placed in a VPS fixture to bond the cell to the heat sink with a one mil solder preform between the cell and heat sink. The preform was slightly smaller than the cell. After soldering, the cells were tested. Degradation averaged only one percent (Figure 3-57). The welded front contact with VPS rear contact was made baseline.

Thermal shock testing (100 cycles, liquid nitrogen to 100°C) showed no additional degradation of the substacks.

3.4.3 Electrically Connected Versus Isolated Cell Stack-Heat Sink

The heat sink for the solar cell could be made either electrically conductive or insulative. The heat sink exists to isolate the brittle cell from the thermal expansion mismatched copper nickel mirror. The heat sink is required to have an expansion coefficient very near to that of the GaAs cell to minimize stress on the cell.

A molybdenum sink would provide a conductive path to the MCC mirror. An alumina or beryllia sink would provide insulation from the mirror.

In light of the goal of low cost and light weight a comparison was made between advantages and disadvantages as shown in Figure 3-58.

Clearly, an electrically insulated design is most desirable since it simplifies control of the electrical power without compromising the design of the conductive graphite substrate and mirror mounts.

Engineering & Test Division TRW Space & Technology Group

CELL PERFORMANCE BEFORE AND AFTER VAPOR PHASE SOLDERING OF CELL REAR CONTACT TO BE BEO SUBSTRATE

GaAs		SOLDER		ELECTR	ELECTRICAL BEFORE	FORE	ELECTR	ELECTRICAL AFTER	TER	P AFTER /
CELL	TYPE	TEMP.	TIME	ISC	Voc	Pmp	Isc	Voc	Ртр	
№		(°F)	(SEC)	(mA)	3	(mm)	(mA)	3	(MM)	P BEFUKE
28				364.4	1.073	335.2	363.1	1.075	332.7	.993
30				371.2	1.080	346.3	370.9	1.080	342.8	066.
10	Sn62	419	15	370.4	1.076	342.1	368.8	1.076	339.6	.993
6				357.4	1.080	333.0		356.2 1.081	328.3	986.
80				359.3	359.3 1.082	336.5	358.5	1.082	331.8	986.
43				371.3	1.066	331.2	370.9	1.066	326.7	986
26				372.9	1.075	342.4	371.6	1.077	339.0	066.
36	INDALLOY	320	15	366.6	1.080	328.0	364.5	364.5 1.080	321.0	626.
49	#5			370.4	1.078		343.0 369.5	1.077	338.0	. 985
24				375.7	375.7 1.076	344.7	373.3	1.077	342.8	. 994
	INDALLOY									
S.	#3	428	70	357.7	1.082	357.7 1.082 325.0 353.4 1.079	353.4	1.079	316.0	.972

Sn62 Pavg = .990

Indalloy #2 Pavg = .987

FIGURE 3-57

	Be0	ALUMINA	MOLYBDENUM
THERMAL CONDUCTANCE Btu	120	18	84.5
ELECTRICAL CONTROL	ISOLATED	ISOLATED	DIFFICULT
TEMP COEFFICIENT(CM°C × 10-6)	5.9	6.4	5.04
ELECTRICAL CONNECTION	Requires Metallizing	Requires Metallizing	Requires Metallizing
DENSITY (g s)	3.9	3.94	10.2

FIGURE 3-58: CELL HEAT SPREADER TRADE

Beryllia was selected over alumina due to its high thermal conductivity and hence, lower effective operating temperature. The cost of alumina versus beryllia is not significant once the cost of metallization and high precision manufacturing are factored into the total cost.

The heat sink is shown in Figure 3-59. The two isolated metallized pads were provided before it was found that no mechanical attachment of the cone to the heat sink would be required. The pads will be eliminated in any future procurement.

3.4.3.1 Heat Sink Bond

The heat sink was bonded to the primary mirror using the vapor phase solder method. A pre-fluxed preform of 1 mil Sn62 solder was held tightly between the heat sink and the nickel surface of the mirror in a specially designed tool which was then lowered into the vapor phase station.

3.4.4 <u>Coverglass</u>

A coverglass (Figure 3-60) was incorporated into the cell stack to protect the cell from electron, proton, and other corpuscular radiation. Protection from atomic oxygen is also provided. The cover material was antireflection coated CMX, a ceria doped borosilicate glass manufactured by Pilkington, Great Britain. CMX was chosen over fused silica due to cost, wide use in other programs, and better thermal expansion match to GaAs, and to the nickel conic mirror.

3.4.5 Cover Adhesive

The cover adhesive is Dow Corning 93-500 silicone. This adhesive is standard to the solar array manufacturing industry. Adhesive bonding was chosen over mechanical capture of the cover over the cell. The darkening of this adhesive in this application should be investigated and is recommended for any future contract.

3.4.6 Conic Mirror

As defined in the Statement of Work for NAS8-36159, the conic mirror is considered part of the cell stack. A number of options were considered for mounting of this mirror to the cell

FIGURE 3-59

ORIGINAL PAGE IS OF POOR QUALITY

ACTUAL SIZE

-1 FUSED SILICA -2 CMX CELL COVER (PLAIN)
MCC 050

SCALE 10/1

 stack (Figure 3-61). A cover with metallization could be used to solder from the cone to the cover. Potential thermal mismatch stresses, cost of the specialized metallization process (even for over 100,000 units), and loss of cone to cell optical centering flexibility, excluded this choice. The cone to heat sink solder bond was excluded due to added complexity of a new part and lack of precise positioning control in the soldering process. Direct soldering of the cone to the glass was considered. Indium solders wet well to glass but the process required (brushing with a metallic brush wet with the solder at elevated temperatures) made this impractical. Adhesives which were considered are shown in Figure 3-62.

DC93500 was a low strength candidate chosen chiefly for its low (around -120°C) glassing point, lower than the -80°C temperature minimum expected in a low earth orbit for the array. This would yield low glass to nickel strain and therefore little likelihood of failure under thermal cycling. DC61104 was chosen for its higher strength, and low temperature compliance. Lefkoweld epoxy was chosen for its resilience and availability as well as experience with flight space- craft. Another epoxy (EA934) was considered as a stronger material, but it had somewhat less resilience. Of the cone to cover adhesive bonding methods, the Dymax 628T ultraviolet curing acrylic adhesive was selected for high processibility, relative low thermal stress, and high strength. Considerable mechanical and thermal cycle stress testing was performed to assure the capability of withstanding a LEO environmental exposure.

3.4.7 Cell and MCC Element Electrical Interconnections

The cell stack electrical interconnect designs were patterned after similar TRW manufactured interconnects used on flight hardware. The cell top contact interconnect (Figure 3-63) was a plated kovar material chosen for thermal expansion match to GaAs. The physical configuration incorporated two bonding pads at the corners of the cell, and an out of plane thermal expansion loop.

The interconnect for the back contact (Figure 3-64) was designed to pick up the gold plating electrical path on the beryllia heat sink upon which the cell backside was soldered.

Engineering and Test
Division
TRW Space & Attacl

Cell Stack Mechanical Attachments Investigated

BE.	PARTS TO BE JOINED	О	OPTIONS	VIEW	PRESENT CHOICE
-	CELL	ADHESIVE	MECHANICAL		SELECTED
-0R	COVER	ADHESIVE	SOLDER		SELECTED
	BeO	SOLDER	ADHESIVE		∀ ∕ N
	PRIMARY	SOLDER	ADHESIVE		SELECTED
TERMINALS	PRIMARY	SOLDER	PRESS FIT. + BOND		SELECTED

CONSIDERED BEST MANUFACTURING OPTION

	RADIATION RESISTANCE	EXCELLENT	EXCELLENT	EXCELLENT	0005	G00D	٠.
_	OUTGASSING	POOR	G00D	0005	FAIR	G00D	FAIR
	THERMAL CYCL E TEST	PASSED	PASSED	PASSED	PASSED	PASSED	PASSED
	OXYGEN ATOMIC	EXCELLENT	EXCELLENT	EXCELLENT	٤	خ	٠
_	ADHESION	EXCELLENT	FAIR TO POOR	GOOD TO FAIR	EXCELLENT	G00D	0009
-	RESILIENCE	G00D	G00D	0009	VERY GOOD	FAIR (Brittle)	VERY GOOD
	TYPE OF BOND	TACK	FULL	TACK	TACK	TACK	FULL
	YIELD STRENGTH	450 PSI	300 PSI	400 PSI	2200 PSI	3500 PSI	1800 PSI
	MFG HANDL ING	FAIR	G00D	FAIR	FAIR	FAIR	EXCELLENT
		RTV 3145	DC93 500	DC6-1104	LEFKOWELD EPOXY	EA 934	DYMAX 628T

FIGURE 3-62: ADHESIVE TRADE FOR CONE TO COVER BOND

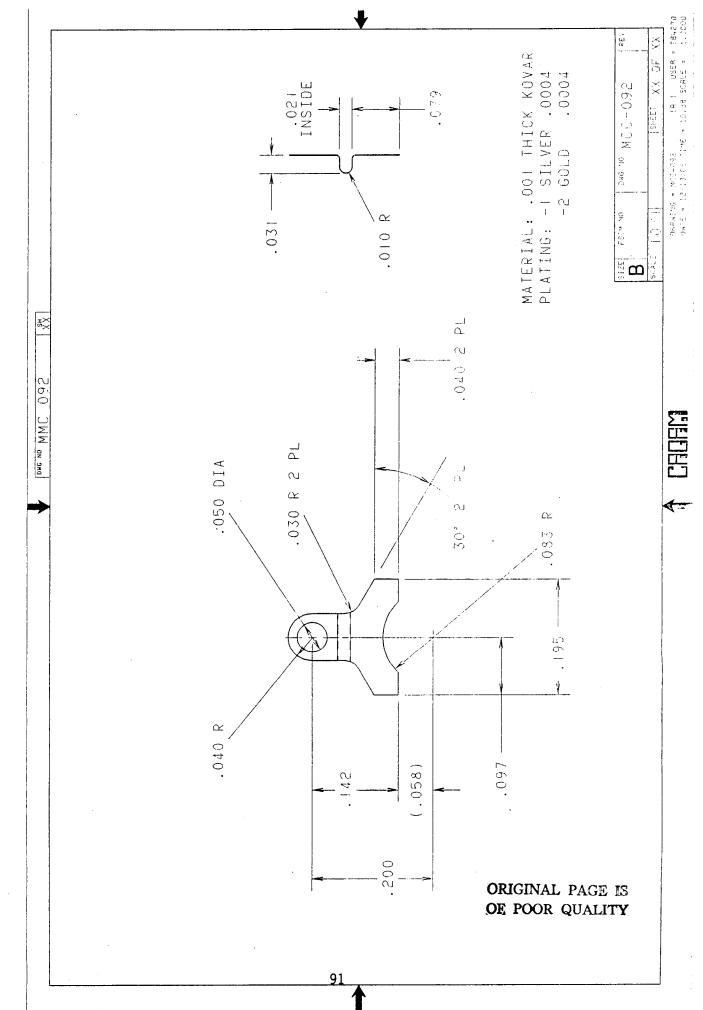


FIGURE 3-63: CELL TOP INTERCONNECT.

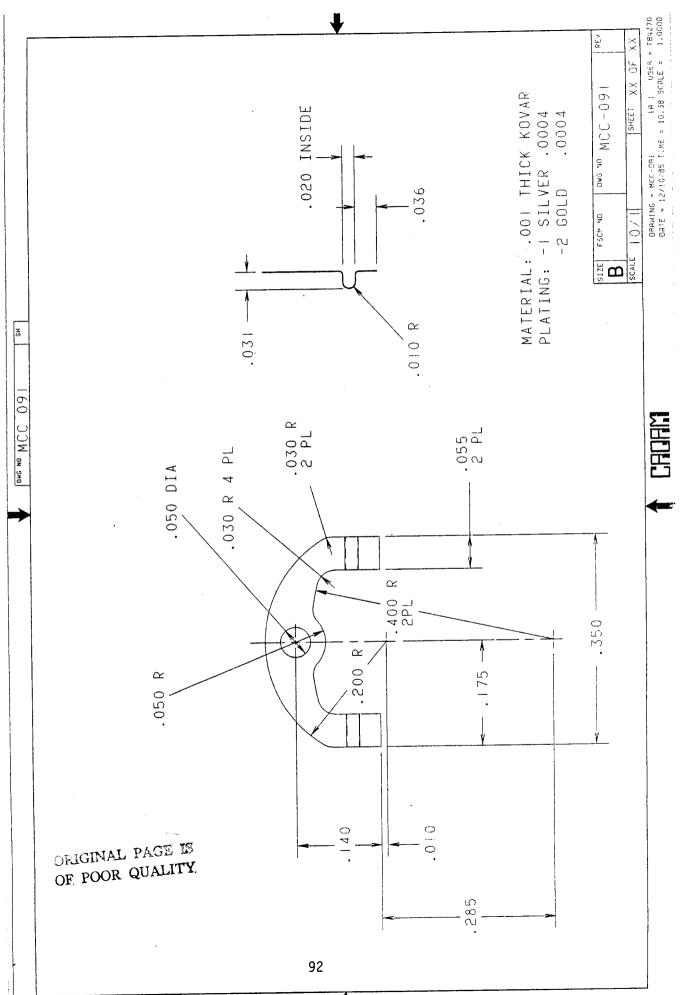
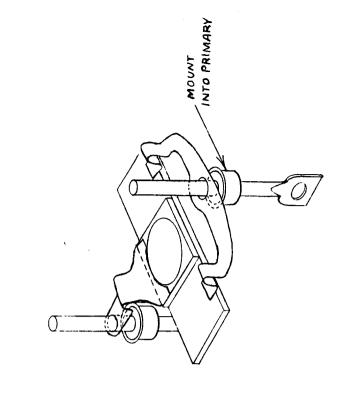


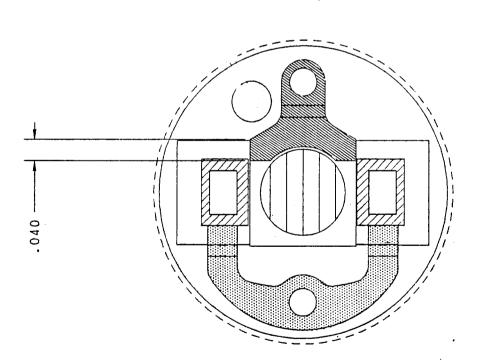
FIGURE 3-64: INTERCONNECT TO HEAT SINK.

Two contact positions were provided on the interconnect which were then welded to the beryllia metallization. A gold to gold weld was chosen over soldering due to a manufacturing process desire to use vapor phase soldering for subsequent assembly steps. The interconnect has out of plane expansion loops to minimize the contact stresses. The weld schedule and strength are shown in Figure 3-65.

Each of the interconnects was mounted to special terminals using a standard SN62 solder. Posts on the terminals fit through holes in the interconnect as a mechanical bond (Figure 3-66).

The terminals are commercially available hermetically sealed feedthrough systems (HSC Series 1000 SP30, Hermetic Seal Corp.) which incorporate a glass bead to electrically isolate the electrical feedthrough post from the mechanical mounting. The glass perimeter is covered by metallization which may be used for solder mountings. In this application, the terminal is soldered to the feedthrough holes in the primary mirror cup. Electrical connection between optics is via wire soldered to the terminals showing on the backside of the cup (Figure 3-37).

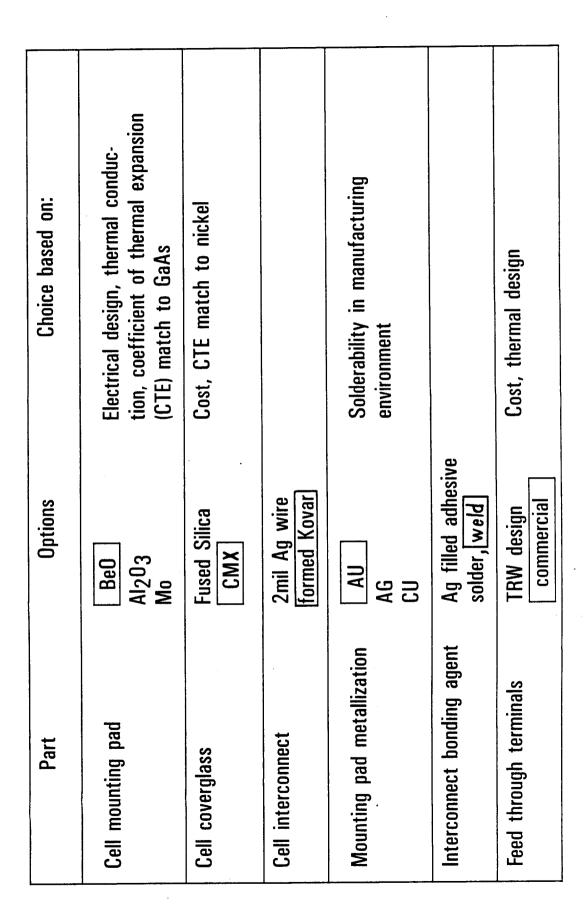

3.4.8 Summary


Figures 3-62 and 3-67 summarize the cell stack materials and bonding methods trades.

GaAs CELL No.		
5	0K	1.4
9	*	
10	0K	1.3
24	0K	2.1
30	0K	1.4
36	0K	1.5
43	0K	2.2
49	0K	2.1
56	0K	1.9
80	0K	2.0

FIGURE 3-65 INTERCONNECT TO HEAT SINK WELD TEST RESULTS

^{*} Ribbon removed in therms.



CELL ELECTRICAL INTERCONNECT ASSEMBLY

FIGURE 3-66: CELL STACK ELECTRICAL INTERCONNECTION DESIGN.

Cell Stack Materials Trade

3.5 STRUCTURAL DESIGN OF THE MCC

3.5.1 MCC Primary Mirror

The primary mirror built for contract NAS8-35635 was found to be less stiff than desirable as an unassembled piece. This resulted in unacceptable distortions when mounted to a structural assembly, as reflected by the tolerance analysis.

To stiffen the structure, two items were incorporated into the design. Stiffening rings were designed into the rim of the mirror and the edge of the flange to provide rigid right angle joints and minimize deflections.

The spider structure mount for the secondary mirror acts as an additional stiffener across the bowl of the primary when the MCC is completely assembled.

3.5.2 MCC Secondary Mirror

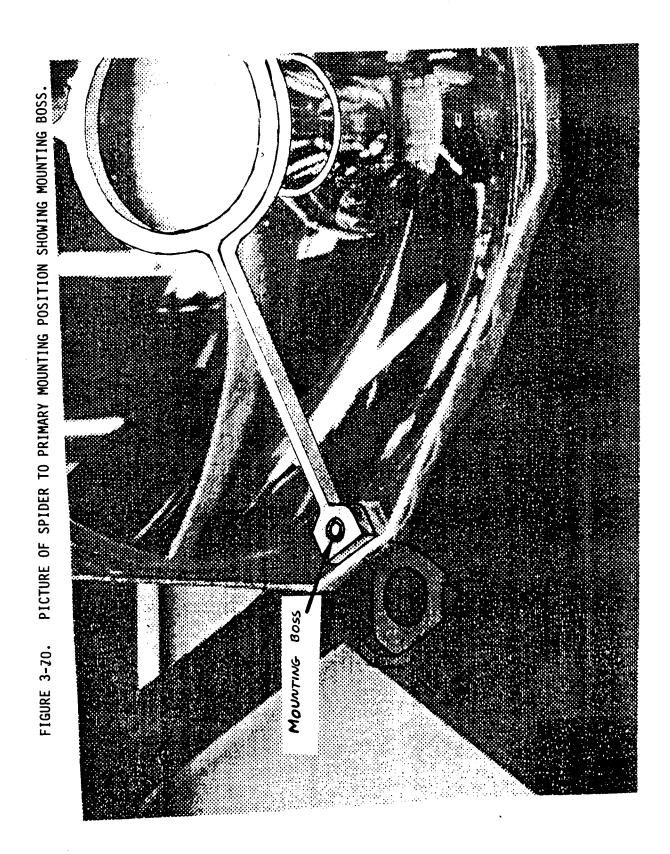
The secondary mirror of contract NAS8-35635 was found to be sufficiently rigid. However, the new secondary design did not have a similar flat flange at the rim. A stiffening ring was therefore incorporated at the rim.

3.5.3 <u>Secondary Mounting</u>

The secondary mounting was changed from the "birdcage" approach (Figure 3-1) in NAS8-35635 to a "spider" approach (Figure 3-68). A leg was incorporated to provide stiffness in a third direction if necessary, but was later deleted after testing showed sufficient strength and stiffness to pass launch dynamic inputs. The change to a spider was made to decrease effective blockage of the collection aperture, to decrease the cost of the mounting system, and to improve the manufacturability of the MCC element (Figure 3-69). Mounting bosses were incorporated into the primary mirror flange to facilitate accurate assembly of the spider to the primary (Figure 3-70). The spider was produced by wire electrical discharge machining of a stack of plates with the correct dimensional characteristics.

ASSEMBLY WITH SECONDARY MIRROR SHOWN. SPIDER. FIGURE 3-68.

Mechanical Design Options


- DESIGN FOR RIGID STRUCTURE, LIGHT WEIGHT, MINIMUM OBSCURATION
- SECONDARY SUPPORT

COMMENTS	COSTLY	SIMPLE TO PRODUCE HEAVY	SIMPLE TO PRODUCE ASSEMBLY MODERATELY DIFFICULT SECONDARY HEIGHT FINE TUNABLE
OBSTRUCTION	%	. 14 %	%*
VIEW	\bigoplus		
CONTRACTS	NAS8 35635	NAS8 34131	NAS8 36159
STRUCTURE	BIRDCAGE	2-D SPIDER	3-D SPIDER

PRIMARY DISTORTION

	SOME PACKING FACTOR LOSS. BEST CHOICE FOR MANUFAC. TURABILITY	DIFFICULT TO IMPLEMENT. MAY NOT ELIMINATE INITIAL MANUFACTURING PROCESS	INSUFFICIENT TO PREVENT MIRROR DISTORTION
CONTRACT	NAS8 36159	Ø/Z	NAS8 35635
VIEW	الم		/
STIFFENING RING	ELECTROFORMED DOUBLE FLANGE	SECONDARY BONDED RING	ELECTROFORMED FLANGE

Figure 3-69

100

3.5.4 Mirror Manufacturing Methods

Methods for manufacture of the mirrors are shown in Figure 3-71. The baseline method of electroforming was chosen for direct comparison of the new design with the model developed in NAS8-35635 and because surface replication was known to be excellent.

3.5.5 MCC Element Bonding Methods

The joints for the cell, interconnects, cover and cone interfaces were considered under cell stack design. The joints for the secondary to spider and spider to primary were developed in parallel with that effort. The options for the secondary to spider bond are shown in Figure 3-72. Solder was chosen for its high thermal conduction path to the spider and the manufacturability inherent in the reflow design. Testing in acoustic and thermal cycling environments (Appendix A) confirmed the capability. The options for the spider to primary bond are also shown in Figure 3-72. Adhesive bonding with DYMAX 628T was chosen for good bond strength, good thermal cycling capability and ease in assembly.

3.5.6 Complete MCC Element Assembly

An assembly drawing of the MCC element is shown in Figure 3-73. Photographs of the assembly showing the assembly method to the support structure are shown in Figures 3-74 and 3-75. Manufacturing methods (Figure 3-76) employed for the production of MCC elements are described in Appendix B.

Mirror Material and Manufacturing Trade

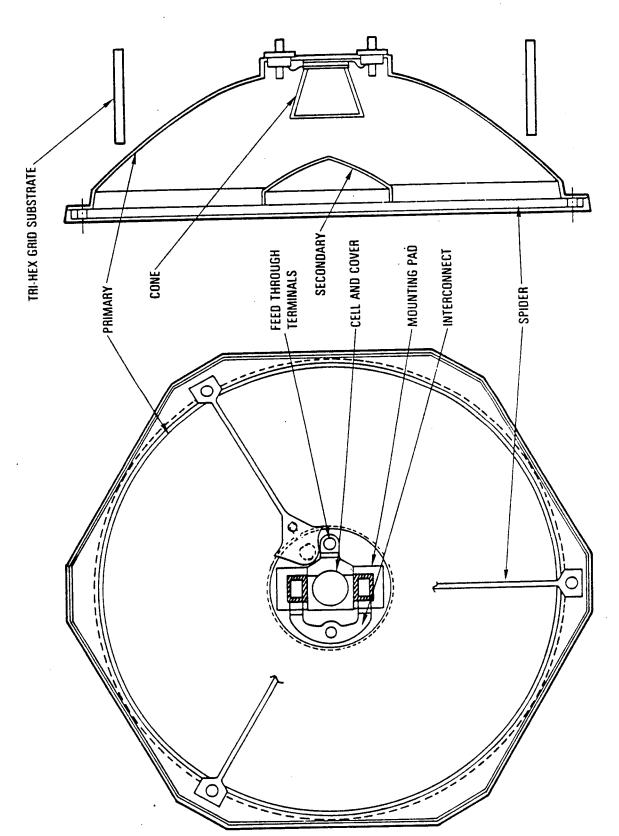
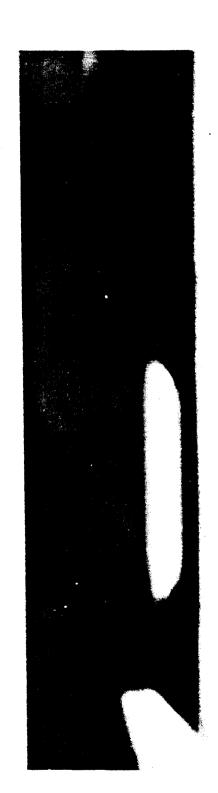

	SURFACE REPLICATION GOOD, SURFACE FINISH GOOD, NECES- SARY FOR DESIGN COMPARISON WITH PREVIOUS CONTRACT	PREVIOUS USE FOR MIRRORS, SURFACE REPLICATION GOOD, UNKNOWN SURFACE QUALITY, UNKNOWN METALLIZATION ADHERENCE, REQUIRES REDESIGN, LIGHT WEIGHT	GOOD SURFACE REPLICATION, ADDITIONAL POLISHING	SURFACE QUALITY POOR, ACCURATE FIGURE REPLICATION POOR, REQUIRES ADDITIONAL POLISHING, MACHINING	NOT STUDIED	BEING STUDIED ON SEPARATE CONTRACT, RESULTS TO BE AVAILABLE IN FUTURE	NOT STUDIED	NOT STUDIED	SURFACE MAY BE SECONDARILY BONDED TO ANY OF THE ABOVE BASE MATERIALS. AS ACCURATE AS ELECTROFORM
SET ESTIMATE AND 100,000 PARTS	15.00	0.80	12-20	1-10		15-30	1-6	1-20	Δ15
RANK	(1) BASELINE	(2) BEST CHANCE FOR SIGNIFICANT COST/WEIGHT REDUCTION	(3) NEXT BEST CANDIDATE	(8)	(4)	(9)	(2)	(7)	A
MATERIAL	Ni, Cu	PLASTICS	Cu, Al, Be	₹ .	Ti, Al, Zn	Al, Be	GLASS	CERAMICS	۷ ۷
MANUFACTURING METHOD	ELECTROFORM	INJECTION MOLD, COMPRESSION MOLD	POWDERED METAL	STAMPING	SUPERPLASTIC FORMING	MACHINING (DIAMOND TURNING)	BLOW MOLDING	SLURRY MOLDING	REPLICATION

Figure 3-72

Optic Mechanical Attachments Investigated


Engineering and Test Division TRW Space & Technology Group

PRESENT CHOICE		
VIEW		
OPTIONS	ADHESIVES	MELDING
Ō	SOLDER	SOLDER
PARTS TO BE JOINED	SPIDER	PRIMARY
PARTS TC	SECONDARY	SPIDER

3-73: COMPLETE MINIATURE CASSEGRAINIAN CONCENTRATOR ASSEMBLY FIGURE

Or poor quality

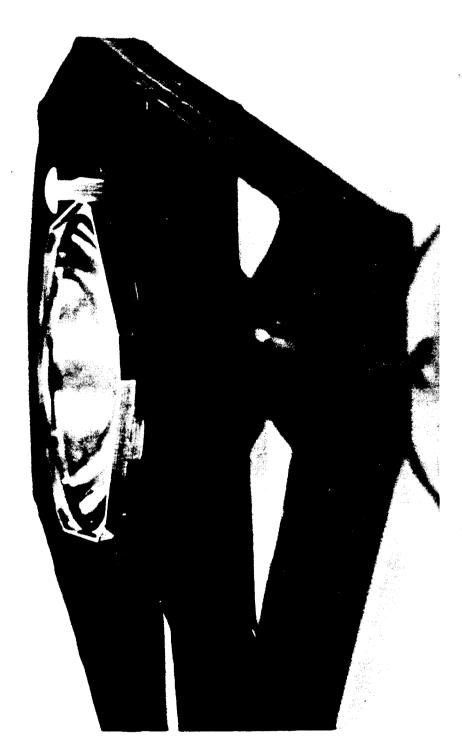
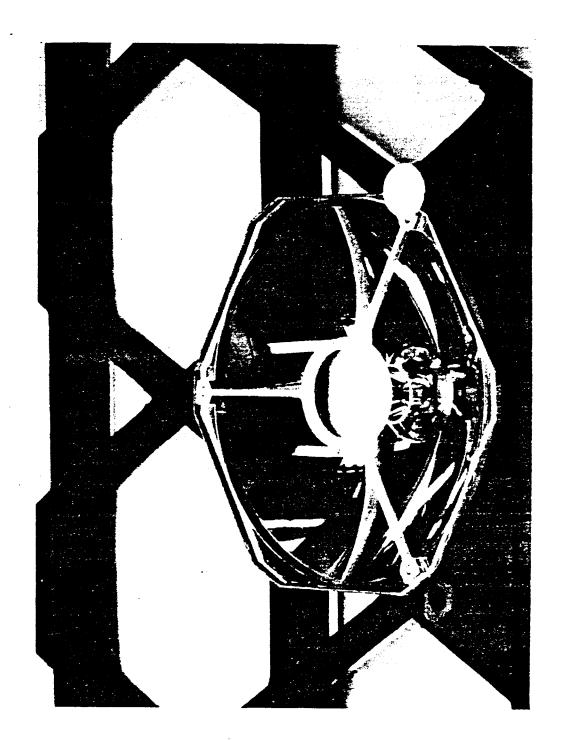



FIGURE 3-74: ASSEMBLY OF MCC ELEMENT INTO PANEL SHOWING DETAIL OF SNAP INSERT.

Third Generation MCC Hardware from the NAS8-36159 Contract FIGURE 3-75:

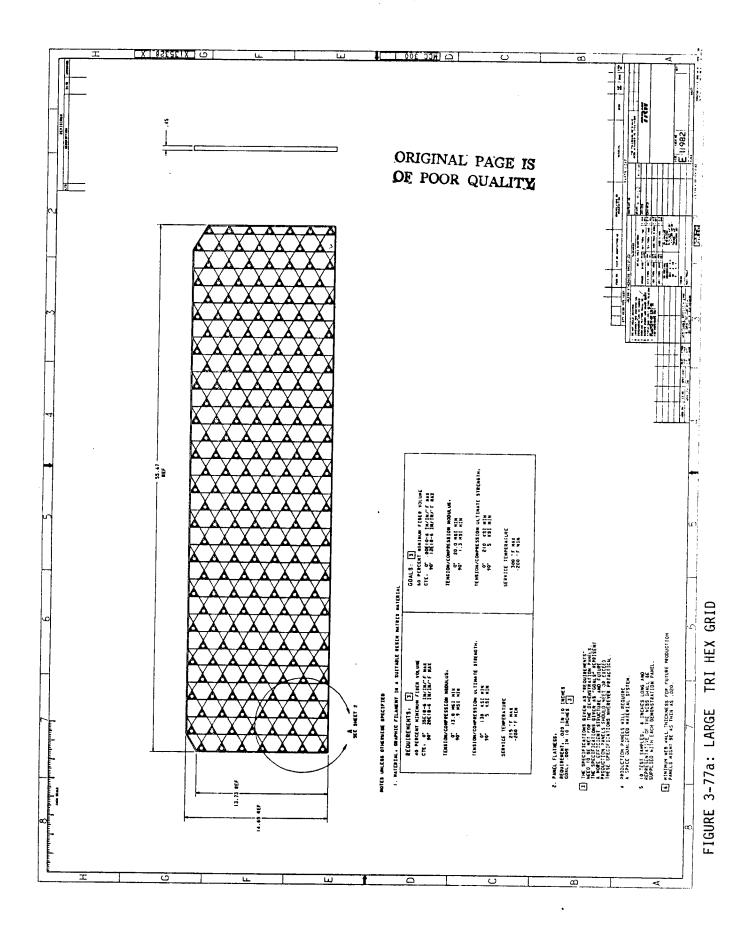
ORIGINAL PAGE IS OE POOR QUALITY

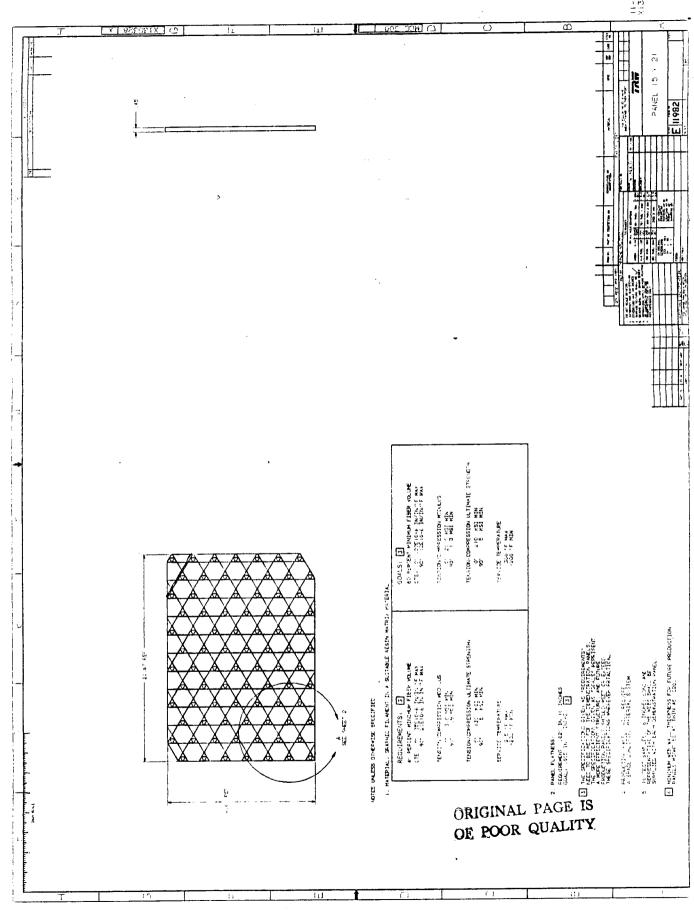
Figure 3-76: Existing MCC Assembly Process Flow Diagram

3.6 MCC SUPPORT STRUCTURE

3.6.1 Frame Design

The main component of the structure, the tri hex grid design (THG) (Figure 3-77), was retained from NAS8-35635. This structure was compared with a competing hexagonal structure for stiffness and manufacturability. The significantly greater stiffness of the tri hex grid for unit weight (Figure 3-78) combined with the inherently simpler manufacturability confirmed the selection of this design as baseline to the program.


Potential materials were reviewed for cost and manufacturability (Figure 3-79). The Syalon ceramic material was rejected for difficult process control (shrinkage) which may have required secondary machining. A Beryllium structure was defined and found to be manufacturable at a reasonable cost for a large order of units. However, for potential low cost applications, a graphite fiber reinforced epoxy (GFRP) system was selected to explore manufacturability and cost. The inherent material cost was lower and overall fabrication cost was found to be less than that for beryllium. (For a more detailed discussion of processes see MFG-Panel in Appendix C.)


The GFRP layup methods used in previous contracts and TRW internal research resulted in a structure higher in resin content than desirable. Methods to compact the structure walls and achieve high fiber content (>60%) were considered (Figure 3-80).

The trapped rubber mold method had been used previously in commercial applications for squeezing resin from composite systems. Application to the array was believed to be the best choice for success.

As built, the small GFRP strips and a four element panel exceeded the goals for stiffness, fiber volume and void content.

The large 37 x 53 cm and 37 x 142 cm panels built under this contract met most or all requirements as initially manufactured. Some bowing of the larger panel out of specification was alleviated through a secondary cure process wherein the panel was heated to a higher temperature than that used for cure, stressed to counter any bowing and held for a specific time. After this, the panel was within specification.

111

Hex versus Tri-Hex Trade

		+		*	
TRI-HEX		BENDING 1.50 TORSION 9.60	WINDING	LOWEST	PERMITS USE OF ADJUSTABLE INSERTS
нех		BENDING 1.00 TORSION 1.00	WINDING	MODERATE TO LOW	PRECLUDES USE OF ADJUSTABLE INSERTS
PARAMETER	CONFIGURATION	SPECIFIC STIFFNESS FACTOR	FABRICATION OPTIONS	PROJECTED COST	MCC ASSEMBLY TO PANEL

*KEY

Figure 3-78

THG Fabrication Process Trades

KEY FEATURES	● LIGHTEST WEIGHT	POTENTIAL FOR LOW COST	TECHNOLOGY STATE OF THE ARTPOTENTIAL 300 MSI/LB SPECIFIC STIFFNESS	STIFFEST STRUCTURE WELL KNOW TECHNOLOGY	HINGE AND STRUCTURAL DETAIL JOINING SIMPLE	600 MSI/LB SPECIFIC STIFFNESS	• 10% ELONGATION MATERIAL (NON BRITTLE) AVAILABLE	WEIGHT ≈ ALUMINUM	NEW TECHNOLOGY	 MAY BE SLURRY MOLDED 	300 MSI/LB SPECIFIC STIFFNESS	
VIEW							side Top					
MATERIAL AND PROCESS	 CARBON FIBER REINFORCED PLASTIC (GFRP) 	• WINDING	RUBBER COMPACTION DURING CURE		• BERYLLIUM	FORMED STRIP			SYALON (Si, AI, O, N-CERAMIC COMPOSITE)	SLURRY MOLD	• SINTER	

Compaction Methods

Engineering and Test Division

TRW Space & Technology Group

SIMPLE BUT CONFINEMENT AT TOP COMPLEX SELECTED BASED ON EASE OF IMPLEMENTATION IN MANUFACTURING COMMENTS COMPLEX TOOLING. DANGEROUS **COMPLEX TOOLING** BULK DIFFERENTIAL THERMAL EXPANSION METHOD MECHANICAL PRESS HYDRAULIC PRESS PNEUMATIC PRESS .350 9 RUBBER RUBBER

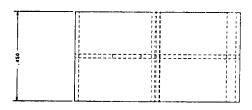
3.6.2 <u>Insert Design</u>

The tri hex grid panel required mounting provisions for the MCC elements. The natural location for the mounts were at the triangular sections formed by the THG geometry. The mounts were designated "inserts" which consisted of two or more components: a fixed insert in the panel; a fastener for the MCC element; a sliding insert for flatness control; a snubber for positive gripping of the MCC element. The design for the NAS8-35635 contract consisted of an aluminum female threaded part bonded in the THG, an aluminum male threaded part to fit in the female part allowing adjustment of the height above the panel and on which the MCC was positioned, a washer and a screw threaded for the interior of the male part which held the MCC in place.

To simplify assembly and manufacture, and decrease weight, a new part was designed with the intent to use a commercially available snap fastener to hold the MCC in place. The simplest process for bonding the fixed insert in place was to co-cure the insert with the THG manufacturing process. Since the flatness of the panel could not, at that time, be predicted, a sliding insert was designed to secondarily bond in place and minimize any out-of-tolerance flatness achieved during manufacturing (Figure 3-81).

A commercially available snap fastener was located which met overall dimensional requirements (Figure C-8). The fixed insert (Figure 3-82) was designed to be lightweight yet resistant to pressures developed in the trapped rubber mold manufacturing process. The insert was triangular and of a slightly large than nominal THG triangle size to ensure good bonding over the exterior surface with the graphite fibers. A triangular sliding insert (Figure 3-83) was designed to mount into the fixed insert and accurately slide within the hole provided with little rocking or offsetting. A snubber was designed which consisted of a washer-like 2 mil piece of kapton coated on one side with RTV silicone adhesive (General Electric RTV-142). The washer fit on the snap fastener such that the RTV faced the MCC element (away from the head of the fastener) (Figure C-8). The sliding insert mounting surface was modified with a groove to allow for MCC primary nickel material overgrowths (Figure 3-84).

115


STATUS	SELECTED	SELECTED	SELECTED
VIEW	ATTACHMENT AREA	ATT ACHMENT AREA	ATTACHMENT AREA
OPTIONS	SNAP PART	SECONDARY BOND	SCREW PIN
.d0	SCREWS	CO CURE	BOND
JOINED	ADJUSTING INSERT	TRI HEX FRAME	FIXED
PARTS TO BE JOINED	MCC AI	FIXED	ADJUSTING INSERTS

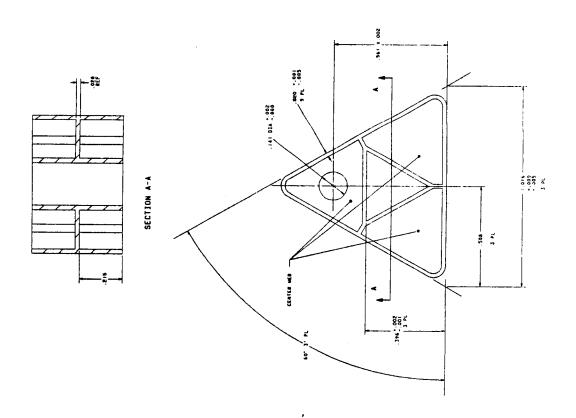
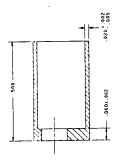
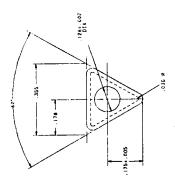

MCC 135

FIGURE 3-82: FIXED INSERT


ORIGINAL PAGE IS OF POOR QUALITY



117

ORIGINAL PAGE IS OF POOR QUALITY

SLIDING INSERT

FIGURE 3-83:

BONDING MATERIAL POSITIONS

A Interior Surface

Groove to allow for primary

rough edge clearance.

B Interior Edge Fillet

Exterior Edge Fillet

The sliding-to-fixed insert bond was tested with five bonding materials and three bonding positions as illustrated. FIGURE 3-84:

The sliding and fixed inserts were designed to meet requirements as shown in Figure 3-85. Materials considered were plastic, metal, and ceramic (Figure 3-86). Plastics were selected for easy, least cost manufacturing and best thermal expansion match to the THG GRFP material.

The plastic material choices needed both high (200°C) and low (<-170°C) temperature tolerance, low thermal expansion coefficients, and high tolerance to corpuscular radiation. Atomic oxygen susceptibility was an unknown, but coatings could be used if necessary. Of the four plastics finally considered (Figure 3-87), three were used to manufacture the inserts: polyetheretherketone, poly(amide)imide, and polyphenylene sulfide (PEEK, TORLON, RYTON).

Bonding Methods. Three methods for bonding the sliding to the fixed inserts were considered: adhesive, welding (plastic thermal reflow), and staking. The least effort method (adhesive bonding) was tried first.

The requirements of the bond were resilience, adequate strength for assembly (>3 lbs push force which was 50% above the snap fastener maximum push force), and good thermal cycling stability and reworkability.

A number of adhesives (Figure 3-88) were considered. The selected choice of Dymax 628T adhesive was based on adequate strength, good stability under thermal shock and deep thermal cycling environments, and reworkability with solvents. In addition, the fast 15 second set time made manufacturing a high productivity effort.

To provide an absolutely flat surface the THG panel was suspended by shims above a micro flat table, the inserts were carefully slid into place, the adhesive was applied, and quickly cured. The error was less than three mils on any insert.

THG Insert Design Requirements

Engineering and Test Division TRW Space & Technology Group

Light weight

Low cost

Thermal expansion coefficient compatible with THG

Environmentally stable under thermal cycling, UV, e $\dot{}$, P+, γ

Easily manufactured

Compatible with commercially available snap fastener

Adjustable height from grid surface

Compatible with THG fabrication method (co-curable)

Figure 3-85

Insert Materials

Engineering and Test Division TRW Space & Technology Group

Comments

Plastic

Material

May be filled with carbon fiber for characteristic modifications

Light weight

May be injection molded

Lowest cost (0.30 ea/1000)

Metal

Moderate weight

High strength

Tolerances hard to hold without machining

Powder metal process best option

Moderate cost

Ceramic

Brittle

Moderate weight

Tolerances hard to hold without machining

Slurry mold best option

Plastic Options For Baseline Insert Design

Four engineering plastics, all carbon fiber filled

Polyethersulfone

Polyetheretherketone

Polyphenylene sulfide

Poly(amideimide)

All plastics have

High (>400°F) temperature capability with no flow High P+, e ', γ radiation resistance High UV resistance

Have been used in low (near cryogenic) temperatures

Best choice to be made after 30,000 thermal cycles performed by NASA

FIGURE 3-88 PUSH STRENGTH (LBS) FOR ADHESIVES FOR SLIDING INSERT

		INSERT MA	TERIAL
	TORLON	RYTON	PEEK
Dymax 628T*	6-22	4-6 M	6-11
DC93500	-	0-3 X	-
RTV 3145*	-	5-12	22-28
DC6 1104	-	2-10 X	4-12 M
Lefkoweld Type 46*	4-22 M	18-32	-
RTV 118	-	-	2-5 X
Cyanoacrylate*	>220	3.5 X	4.5 M
EA 934*	61-65	5-44	4-36 M

X = Cannot Use

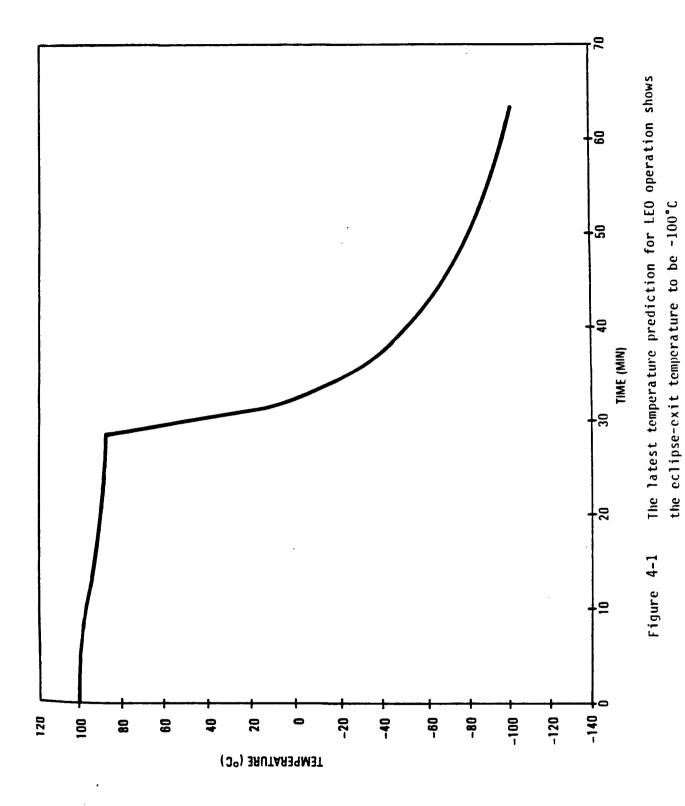
M = Marginal

* = All adhesives tested in thermal cycling had greater than
4 lbs residual push strength.

4. ANALYSES

4.1 THERMAL CONSIDERATIONS

4.1.1 Thermal Performance For Cell Output


The new design of the MCC element was checked against thermal analyses for designs from previous NASA contracts. The essential components of an 8 mil copper optic/radiator have not changed. Thermal response in a low earth orbit for a typical element is as shown in Figure 4-1.

4.1.2 <u>Secondary Mirror Temperatures</u>

The temperature reached by the secondary mirror is important for both possible alignment distortions due to thermal mismatch and for long term stability of any materials used in the manufacture of the mirror and support structure.

A simplistic analysis assuming no fin cooling from the spider showed that the present design should run between 130 and 140°C. This is acceptable for the materials used. Consideration of the fin effect due to the aluminum spider should significantly reduce this range.

Thermally induced mismatch between the 80°C primary and a 138°C spider structure would cause a relative growth difference of only 0.8 mils which is much less than the 2 mil allowance at the local spider to primary bond interface. Very little optical distortion can be expected from this source.

4.2 WEIGHT

Shown in Figure 4-2 is the weight goal for a flight ready panel compared to the achieved weight of the NAS8-35635 contract and the new achieved weight of this contract.

Figure 4-3 displays the weight of each piece part of the MCC panel and summarizes the total average weight achieved per element.

The THG framework has reached the design weight goals originally set for it. The insert attachment hardware is greater than fifty-five percent decreased from the NAS8-35635 design but requires a two thirds reduction to meet the design goal. The MCC elements mounted on the large panel have achieved the flightweight design goal. The harnessing is 15% less than the flightweight goal. Altogether, the system weight per element as presently achieved is only 11% greater than the flightweight design, that is 14.17 g/element versus 12.60 g/element.

To achieve the design weight goal it is only necessary to order primary optics nominally 8 mils instead of nominally 9 mils thick as with the current manufacturing process. This has been discussed with the electroform vendor, Optical Radiation Corporation, and has been found to be easily achievable with only small risk of decreased yield. For example the 10 mil nominal thickness secondary mirrors were actually delivered as 4 to 6 mils thick and primary mirrors as delivered ranged from 6 to 11 mils thick.

MCC Panel Weight Analysis

Engineering and Test Division TRW Space & Technology Group

	NAS8-	NAS8-35635		NAS8-	31659 (Pi	NAS8-31659 (Present Contract as built)	ıtract as	built)		FLIG	FLIGHTWEIGHT DESIGN*	SIGN
COMPONENT	Proje(Projected weight fron as-built data(# Panel	Projected weight from as-built data(# Panel	Weight Demonst	Weight of large(15" Demonstration Panel	Weight of large(15"x56") Demonstration Panel	PROJECT	PROJECTED WEIGHT FOR FULLY POPULATED QUARTER PANEL	JR FULLY R Panel	WEIGHT F	WEIGHT FOR FULLY POPULATED QUARTER PANEL	DPULATED EL
	UNIT MASS	QUANTITY	TOTAL MASS (g)	UNIT MASS (g)	DUANTITY	TOTAL MASS (9)	UNIT MASS (g)	QUANTITY	TOTAL MĀSS (g)	UNIT MASS (g)	QUANTITY	TOTAL MASS (g)
TRI-HEX GRID PANEL AND FRAME	1509	1	1509	421	1	421	737	-	737	714	1	714
MCC ELEMENT (CELL STACK AND OPTICS)	9.6	330	3168	9.6	180	1730	9.6	330	3171	9.6	330**	3168
ELEMENT ATTACH- MENT HARDWARE	3.3	372	1224	1.5	217	326	1.5	372	558	0.5	372	186
PANEL WIRING AND CONNECTOR	91	1	- 91	74	-1	74	85	П	85	91	П	91
TOTAL PANEL MASS			5342			2550			4551			4159***

*PANEL DESIGN CONSISTENT WITH 28 WAg ARRAY SYSTEM PERFORMANCE (BEGINNING OF LIFE)

••330 ELEMENTS PRODUCE 137W AT THE ARRAY SYSTEM LEVEL
•••ARRAY STRUCTURE ADDS AN ADDITIONAL 19.5% IN MASS

WEIGHT ANALYSIS SHOWING PREVIOUS CONTRACT CAPABILITY, PRESENT CONTRACT AS-BUILT WEIGHT FOR THE LARGE PANEL, PROJECTED WEIGHT FOR A QUARTER PANEL(26" X 56"), AND ULTIMATE FLIGHT GOAL. FIGURE 4-2:

FIGURE 4-3: WEIGHT OF PIECE PARTS AND WEIGHT SUMMARY

(EIGHT (GRAMS)	233625	ж –	OVERALL 14.67g/element 14.17g/element 12.60g/element)
WEIGHT (GRAMS		goal) LARGE qoal) SMALL	
MISCELLANEOUS ELECTRICAL	wire 28 AWG large panel wire 28 AWG small panel connector bonds & ties large panel small panel	DENSITY g/cm³ .069gcm³ (0.67g/cm³ goal) .071q/cm³ (.067q cm³ goal)	
AVERAGE WEIGHT (GRAMS)	1.080 .281 .119 .005 .014 1.50 (GOAL 0.50)	WEIGHT (GRAMS) 421.4 159.7	968g = 2550g
ELEMENT ATTACHMENT COMPONENTS	fixed insert sliding insert snap fitting snubber adhesive TOTAL (GOA	STRUCTURE (THG)	2 + 26 + 2 = 45 + 26 + 3
AVERAGE WEIGHT (GRAMS)	7.538 .459 .116 .047 .011 .007 .018	.112 .450 .9.61	GHT (ESTIMATE) (9.61 x 66) + (84 x 1.5) + 159.7 + 1 (9.61 x 180) + (217 x 1.5) + 421.4 +
MCC ELEMENT COMPONENTS	primary secondary cone cell glass insulator (BeO) interconnect top interconnect bottom terminals (2) spider	adhesive paint TOTAL (GOAL	TOTAL WEIGHT (ESTIMATE) SMALL (9.61 x 66) + LARGE (9.61 x 180) +
	129		

4.3 PERFORMANCE ANALYSIS

4.3.1 Overall Electrical Achievement

Figure 4-4 shows the capability of the as-built MCC element configuration for this contract, compared to the goals set for the MCC technology. Also shown is the projected capability of the current design when the effect of known manufacturing defects is eliminated.

4.3.2 Electrical Output Corrected for Known Defects

The outputs for the substrings of the 37 cm x 53 cm panel are shown in Appendix A. At 0° offpoint the average power for a six element in series substring is 2.14 W after AMO and temperature correction. This amounts to 0.357 W/element. When corrected for the poor reflectance of the conic mirror (from 0.66 to 0.98), using the method specified in 3.3.2.13, the power jumps to 0.419 W. When corrected for mismatch also as described in section 3.3.2.13, the power achieved is 0.453 W. Performance at 85°C would be 0.419 W.

An element under 1 sun AMO, 85° C should be capable of 0.162 x .1353 W/cm² x pi(2.54 cm)² = 0.444 W with a 20% efficient at 85° C cell in the present design. Correction to 28° C is [1 + (57°C) x (.13%/°C)] x 0.444 = 0.478 W.

The cells used for this small panel were initially 20.6% efficient at 28° C or 19.1% efficient at 85° C. Allowing for an increase to 20% efficiency cells at operating temperature, the current design would achieve (20/19.1) x .453 = .475 W at 28° C at the element level which is very close to the 0.478 W as expected from the above calculations.

The corrected measurements achieve the capability goals of the design. There are no unexplained losses in the system.

FIGURE 4.4: MCC ELEMENT CAPABILITY

	NASA	NASA	•	
	35635 ACHIEVED	36159 ACHIEVED	CORRECTED	GOAL
	ACHIEVED	ACHIEVED	CORRECTED	GUAL
OPTIC TRAIN	:			
BLOCKAGE	.86	.91	.91	.89
PRIMARY REFLECTANCE	.97	.98	.98	.98
SECONDARY REFLECTANCE	.97	.98	.98	.9 8
CONIC REFLECTANCE	.97	.86*	.99	.99**
SCATTER LOSS	.93	.96	.96	.96
GLASSING LOSS		1.0	1.0	1.0
MISALIGNMENT	.96	.99	.99	.99
TOTAL	.70(.79)	.714(.81)	.822	.80
CELL STACK				
CELL EFFICIENCY @ 85 ⁺⁺ °C	.138	.194	.194	.200
FABRICATION LOSS	.89	. 98	.98	N/A
TOTAL	.123	.190	.190	.200
PANEL LEVEL				
MISMATCH	N/A	.94	.99	.98
ELEMENT PACKING	.79	.82	.82	.79
WIRING & DIODE LOSS***	.97	.97	.97	.97
OFFPOINT ERROR (1.1°)	.98	.99	.99	.98
TOTAL	.75	.74	.78	.74
OVERALL SYSTEM EFFICIENCY	.067	.100	.122	.118
w/ element	(.130) .184	.277	.334	.324
o APPLIES IN MEASURED CONDITION w/m²	(.357) 90.8	136	165	160

⁺⁺Conversion 28°C to 85°C is .955 factor. Cell average on small panel was .203 @ 28°C.

Applies in the measured condition.

[†]Corrected for known manufacturing deficiencies.

^{*}Based on 66% cone reflectance, $0.60 + (0.40 \times 0.66)$.86

^{**}Based on 98% cone reflectance, $0.60 + (0.40 \times 0.98)$.99

^{***}Actual losses were negligible. This is shown for comparison to a system design only.

Based on the achieved weight calculated per element in section 4.2, the specific power of the design is 29.6 W/kg at the panel level and 24.7 W/kg at the array system level using the 100 kW array parameters from NAS8-34131, and the corrected performance values shown above.

4.4 ADVANCED DESIGNS

To surpass the weight goal of 28 W/kg there are many categories of change which can have significant impact.

4.4.1 Material Thickness Change

The optics may be changed from the present 9 mil thickness to 4.5 mils thickness. Counting only the primary mirror, this would be equivalent to a 3.8 g per optic drop or 1244 g per quarter panel for a total of 3307 g remaining or 35.2 W/kg at the array level.

4.4.2 Material Type Change

With the proviso that the mirror surface could be replicated and secondarily bonded into place, a 30 mil magnesium casting could be used to achieve 3.5 g optic drop or nearly that of the 5 mil copper optic.

The best candidate is to compression mold graphite fiber cloth whose thermal conductivity is near that of aluminum structure (66 Btu/hr ft $^{\circ}$ F) such that no secondary radiator would be required. Five mils of this material at 1.7 g/cm 3 would total only 0.8 g per primary for a savings over the baseline of 6.8 g/optic or 2244 g of element weight. Subtracting from 3168 nominal element weight leaves 924 g. Combined with the other articles and a 0.5 g element attachment hardware, the total weight would be 1915 g with .444 W element x 330 = 146.6 W. With 19.5% backup structure, the system watt/kg is

$$\frac{146.6}{1915 \text{ g x 1.195}}$$
 or 64 W/kg

4.4.3 Coatings

The coverglass may be coated with an infrared reflecting filter for a potential of 11°C drop or 1.43% improvement.

4.4.4 Advanced Cells

The concentrator may use any advanced cells as they become available and in a size which may be relatively easy to produce. A twenty-seven percent efficient cell which has been reported would increase power to 197.9 W on a quarter panel or 39.8 W/kg.

4.4.5 Combined

The combined potential of the above design changes could make the MCC concentrator achieve 1.35 x 1.0143 x 64 W/kg = 87 W/kg.

4.4.6 Manufacturing

If compression molding were implemented, the piece part price could be reduced to less than two dollars a part depending on final complexity.

4.4.7 Offpoint Performance

Quick research into historical analyses discovered that a focusing refracting lens placed on top of the cone would increase offpointability by an extra degree. This remains to be seen with the new element optical design. The lens could be used in place of the protective glass cover.

5. CONCLUSIONS

The optical design of the miniature Cassegrainian concentrator (MCC) element has been improved for both offpoint and onpoint power capability. The cell stack design has shown no losses under the high short term thermal stresses imposed by component level test and is projected to be capable of greater than five years thermal cycle life in low earth orbit. The structural design met all requirements for stiffness and flatness and requires adjustable inserts for fine tuning of the GFRP structure to meet flatness goals. The completed, fully populated small and large MCC panels deliverable under this contract perform electrically as expected.

A solid acceptance inspection program to guarantee quality of all purchased parts, and continued manufacturing process improvements will make the MCC design a viable low cost alternative to standard flat panel technology. Minor improvements to the cell stack design of the MCC element can make significant improvements in both the performance and manufacturability of the MCC system.

6. RECOMMENDED FOLLOW-ON WORK

The following schedule shows recommended follow-on work to be accomplished prior to acceptance of the MCC array system as a low risk alternative to flat panel technology arrays.

Recommended Follow-On Development Plan

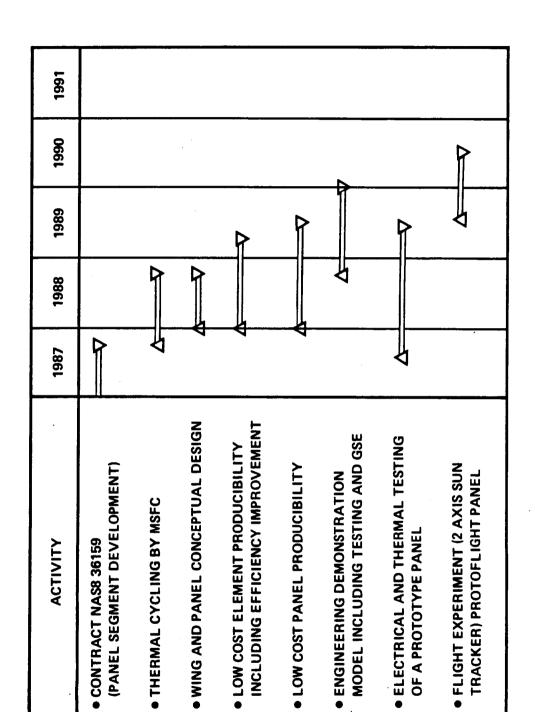


Figure 6-1

APPENDIX A ENVIRONMENTAL AND ELECTRICAL TEST RESULTS

1. INTRODUCTION

This section presents the parameters and results of selected environmental and electrical testing performed to support this contract.

2. ENVIRONMENTAL TESTING

2.1 THERMAL CYCLING

The following tests were performed.

		•
CONDITIONS	TEST ARTICLES	RESULTS
A. 200 cycles -160 to 10 ^O C	20 weld joints to cell,	1 failure due to incipient cell crack failure
	20 solder joints to cell, 6 weld joints to BeO,	<pre>no failures 1 failure due to Au metal-</pre>
	6 solder joints to BeO	lization failure no failures
B. 120 cycles (shock) -65 to +124 ^o C	10 cells mounted on BeO, 10 silver welds of cells, 15 gold welds to BeO, 3 each Torlon, Ryton, Peek sliding insert to fixed insert epoxy bond	no failures no cracks
C. 470 cycles -150 to+65°C *(-170 to +80°C)	<pre>small tri-hex panel with bonded inserts, *small parts from (B) above</pre>	no failures, partial loss of epoxy strength but no effect on capability
D. 100 cycles (shock) -80 to +100°C	Plastic parts as in (B) except with UV628 bonds, cone to cover UV bonds, 2 completed unpainted optic element with spider bond with UV 628, sliding inserts with epoxy 9321	no failures, no visible degradation
E. 100 cycles -80 to +80°C	5 cones with covers, UV cure adhesive	no failures, no visible degradation, bond strength greater than glass
F. 5 cycles (shock-LN ₂ Dip) -196 to 66 ⁰ C	2 completed optic elements with S13GLO paint (bonds-Dymax	no bond failures, no Ag, SiO coating failures, no paint failures (passed UV628, DC93500) tape test)
G. 100 cycles +80 to -80°C (3 openings)	See Figure A-1	See Figure A-2

PLATE METAL SPIDER METAL	ALUMINUM ALUMINUM	ALUMI MUM ALUMI NUM	ALUMINUM	
SPIDER-TO-PLATE BOND	93-500	93-500	93-500	
SECONDARY METAL	STAINLESS	STAINLESS	STAINLESS	
SPIDER-TO-SECONDARY BOND	93-500	93-500	93-500	
CONE HETAL		NICKEL		
CONE-TO-GLASS BOND		93-500		
PLATE METAL	ALUMINUM	NICKEL	NICKEL	
SPIDER METAL	NICKEL	ALUMINUM	ALUMINUM	
SPIDER-TO-PLATE BOND	93-500	93-500	142	
SECONDARY METAL	STAINLESS	NICKEL	NICKEL	
SPIDER-TO-SECONDARY BOND	93-500	93-500	INDIUM #2	
PLATE METAL	NICKEL	NICKEL	NICKEL	
SPIDER METAL	NICKEL	NICKEL	NICKEL	
SPIDER-TO-PLATE BOND	93-500 W/CABOSIL	LEFKOWELD	INDIUM #2	
SECONDARY NETAL	NICKEL	NICKEL	NICKEL	
SPIDER-TO-SECONDARY BOND	99-500 W/CAB0S1L	LEFKOWELD	INDIUM #2	
CONE METAL		STAINLESS		
CONE-TO-GLASS BOHD		93~500		 .
CONE METAL		STAINLESS		

Figure Al materials used on test plate for acoustic exposure and thermal cycling

LEFKOWELD

CONE-TO-GLASS BOND

TEMPERATURE RANGE

• +80 to -80°C (+176 to -112°F)

MAY 1, 1986 (0 CYCLES)

 Initial inspection & photo. Cone accidentally debonded by technician.

May 5, 1986 (30 CYCLES)

No change

May 12, 1986 (76 CYCLES)

Additional (unplanned) cold temp exposure; ∿180°C/15 hrs.

Additional cone debonded (adhesive failure to cone; 93-500)

May 14, 1986 (100 CYCLES)

Spider debonded by technician upon removing from chamber; 93-500 failed adhesively to spider

NO APPARENT CHANGE WAS NOTED ON TEST PANEL BEFORE ACCIDENTAL COLD TEMPERATURE SOAK AT LIQUID NITROGEN TEMPERATURES. EVEN AFTER COLD SOAK LITTLE DAMAGE WAS APPÄRENT.

Figure A2 THERMAL CYCLING RESULTS

2.2 ACOUSTIC EXPOSURE

The test panel from 2.1G above was subjected to an acoustic exposure prior to thermal cycling. The acoustic spectrum is plotted in Figure A-3. Overall pressure level was 146 dB. No failures were observed as a result of the test.

3. ELECTRICAL TESTING

3.1 CELL ELECTRICAL OUTPUT

The cell data curves for forward one sun, 100 sun, dark forward, and dark reverse testing are too numerous to present here. All data is held at the contractor. A summary of the data is provided.

All efficiencies reported below are at 100 AMO sun intensity.

The cells from ASEC all performed between nineteen and twenty one percent at 28°C with a few stragglers above and below this range. An additional 100 cells from ASEC produced and received as replacements for those with contact problems had efficiencies all above 20% at 28°C. As noted in the text, the Spectrolab cells averaged 18% efficient with a range of 17.5% to 18.5%. The Varian solar cells averaged 16% with a range of 11% to 18.5%. (Known contact and batch problems with the delivered lot caused the low efficiency, but time constraints precluded waiting for another batch. Cells received for another TRW program all ranged near 20% at 80°C.)

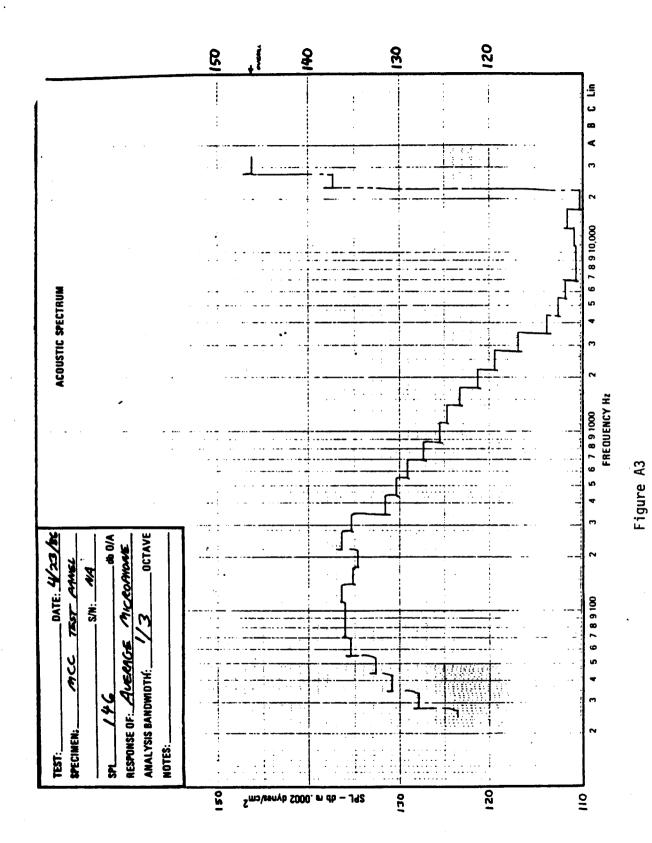
The dark forward characteristics showed no notable changes from the 100 sun data.

The dark reverse testing for the cells revealed significantly different characteristics from typical measurements of silicon cells. The reverse breakdown voltage ranged between 1 and 2 volts for most samples. No samples exhibited breakdown at any greater than 6 volts. No damage was apparent after reverse testing. For comparison, 2x4 data for silicon cells typically shows a breakdown >20V with a range between 5 and 50 V.

3.2 SMALL PANEL STRING OUTPUT DATA

The small panel contains MCC elements with copper nickel sandwich primary mirrors. The best cells of the ASEC quantity were reserved for this panel. All matching was performed based upon pre-welded outputs. No equipment was available to match elements The MCC elements were arranged in strings of twelve in series. Measurements were performed on half strings (6 in series) to avoid some equipment limitations in voltage. After data was gained on each of the 11 half strings, five of the "A" half strings were put in parallel and measured. The same was done for the "B" half strings. All data was corrected for solar intensity using a GaAs concentrator cell transfer standard at 1 sun and corrected for temperature using the average of two thermistors mounted on the back of elements and including a known steady state temperature drop of Some data may be off by 3 to 5°C at random due to some transient wind cooling but effort was made to wait for steady state conditions.

Data for the strings was then corrected for the conic mirror coating defects as discussed in section 3.3.2.10 using an average reflectance of 0.70.


Both the data corrected to 28°C and standard conditions and corrected for the average conic reflectance loss are reproduced here in figures A4 and A6.

Data for the combined strings are contained in Figures A5 and A6.

3.3 LARGE PANEL STRING OUTPUT DATA

The large panel contains all nickel MCC elements with various strings composed entirely of cells from each of ASEC, Spectrolab, and Varian solar cell manufacturers. Specific kitting may be found in Appendix B.

Data was measured for individual six element in series half strings as in 3.2. However a 3 month time lag between measurements occurred between measurements of elements 1A through 4D and 5A

A5

CORRECTED FOR	
(21" PANEL .	
HALF STRING OUTPUTS FOR 15" x 21" PANEL	O DITION AND TEMPERATION
FIGURE A4 HAL	

:			IA	7.86 6	c corrected	bapa					٩	;	. 1	2	18 18		corrected	norm con	CORE MOTOR	{	7/ 1	7
									15.3		Ы	١	13c	٨٣٨	407	92		9	\vdash	\vdash	╄	۱.
θ	Isc	7	Inc	Pmp	FF	Procin	colf norm	STP	H		И	351.5	110.	5.17#	010.	150.	.784	440.				
3 (,73	298	254	273	15.1	08	בור,		181	34		5 -	6.193	.063	5.830	.053	.307	. 793	. (43				43.7
	.332	65.5	3/2	12.7	8	,807	.77	1.85	35		m	6.364	. 30t	5.959	511.	1.01	, 803.	484.				\$
	382	5.37	388	161	.78	106	88.	28	37		2.5	6.399	662.	5.306	442'	146.1	.807	.670				
10	4/2	4 40	784	000	.79	726	.95	1.89	38		ĸ	6.405	.334	5.839	1387	1.677	808	.780		_		.
_	677	277	100		7	986	76'	0.0	39		5,1	6.403	1381	5.650	ics.	1.868	808	698.			8:45	
V		24.5	280	ָּהָירָ קיריי	0 6	101	86		2	NATEDS	~	6.413	.340	5.627	.360	820.2	118.	. 943	_		51.5	
	477	777	, 90	2 0		2	00.7		• •	0	ρį	6.431	504	5,621	.377	2.117	. 812	586.	. 96.2		23	
200	.734	X, 7.1	,370	· · ·		9 (- 6	22	3	4	, 0	6.437	# 77	5.623	.383	2.185	.792	866	1,00	2.8	5/.5	
05.9	126'	5,35	.370	7,07	<u>.</u>	<u>.</u>	,,,		-	.) (457 3	2 62	5 154	164	1.002		2,77 5	58.3	*
K	114.	2,40	,379	3.05	.78	76'		1.81	\$) ₁	, i,	2			2 121	29.0	482	8.86		54.5 4	16.
2 1 6,38	125'	2,46	,337	1.84	.78	18'		03.7	34		Ų.	6.437	3/16	2.674	, , ,	, ,	101	6/2	_	_		34
2.5 16 6,38	146.	86.5	1311	1.70	,78	80	4.	1.8	38		_	6.436	504.	5.586	.3/0	7.067	54.	76.7		_		. 1
7	292	i,	200	29 1	28	87	_	8.7	37		5.1	016.9	175.	145.5	348,	1.936	809	% 8.			_	^
4,	1000	, e		, ,	<u>۽</u> ڊ	877	_	. 6	72		"	6.402	,337	12.67	112.	1.766	818.	128.	008	2.79 4	49.2 44	.
37	٥ ر	7.7.7	۲ (70.7	6	26	200	2.07	3		2.5	206'2	102	2,747	385.	1.636	848'	194.	, sv.		_	•
9	11115	227	. 103				100				۲۹	6.37/	7%	5.873	102.	1.180	786	645'	195	-		45.5
· ;						•							200	C.77.2	8	273	058	12.7	124	4 66.6	435 43	~
16			7/.	B 28°C	: corrected	te (7			0:100	· ^ ^	```								
								-			١											
	,306	5.66	182.	1.59	,83	۲.	12. 0	2.19	77	•					90	200	Latina					
1525 6.29	· 347	5,53	,329	1.83	±8.	,86 6			%		:		*		9	0		3	100			
1 6.30	.392	5,43	368	7.00	<u>,</u>	46.	6.	2.15	37									1	!	200	⊢	١.
7.	714.	5,43	782	2,10	08.	66.	197		38		b	2.887	910:	5.799	510.	500.	1/8:	:033	_			
	479	5.50	386	2.14	29	1.00	1.00		39	:	7	6.332	ci.	5.843	103	.599	.807	, 264				
٨	027	643	295	71 2	19	1.01	7.00	2.17	40	NEEDS	M	6.442	,293	5.9/4	.258	1.538	0/8'	,672				ا ما
1 0		67	286	717	- 62	1.00	3.8		7+	1° SWET	25	154.9	346	5,738	,333	1.909	558'	048.				41.5
-	617	3	200	2 12		00	86		42	-	~	6.951	.382	5.53	.353	1.963	762.	:863				43.5
78.0	262	80.5	17.	200		56	93		+		15	6.400	404.	5,586	,372	2.078	562.	1/6.	. 245.		_	\ 0
	ָרָ ק	2//		187	, %	\	۵		3	:	_	124.9	, 430	5.617	562'	2,217	866.	279.	1.002			Ŋ
16.3	7	1/2	576	15.1	27	, ,		2.00	39		Ń	6.475	. 433	127'5	.393	2.305	286.	07.6.	1.007		_	vs.
.		200	001	ā	74	5		101	72		0	186.9	056	5.660	403	2.275	618.	1.00.1	1.802		49.5 43	~
7 0 7000	20	, r	860		, ,	; ;	, 6	63 /	34		0	164.5	824.	359.5		2.271	818.	. 499		56.K	44.5 44	
2000	, , ,		2 6	, ,	\$	ָּיָרָ יָּי		7.87	6		بر	565	428	5.636		2.140	.773	146.	866	2.95 5		۰.
+			562				<u>}</u>				-	694 7	421	5.590		2.159	.793	.450	186.	2.95	56 15	1.
:										a.		250	780	175.3		1.942	.m2	458.	988'	36.2	94 15	
ΟI											2 0	2 3	727	708.5	296	1.7.7	<i>518</i> ·	254,	_	2.95	50	44.5
											26	2 6 7	301	5787		1.693	448.	,745 G	,702	26.5	50 %	₩.S G
											 } ~	1387	62.5	5.778		1.292	088'	568 6	,536		5 Sb	5 94
OF	NA										1 3-	6.196	070.	5.5%		.371	. 860	.163		2.97		42.5
											. V	2745	010	5.057	600.	860.	Sz.	120.	.033	\neg	70 37	_
Q)											,	1		,							İ	

ORIGINAL PAGE IS OF POOR QUALITY

		٦-												-	-1			1	Γ	-												7							
	ì	1													1				L																				
	í	<u>و</u> ًا:	46	65	20	65	47.5	47.5	64	64	80	47	45	48					2.5	45.7	46.3	53	5.66	4.5	45,7	4.7	7. S.	46.3	41	ا نور	ž į	2							
	j	2/2	7.87	3.8	2.85	58	7.85	84	24	23	98	35	2	22 6					99	7	60	//	, ,	6.	5	<u>, , , , , , , , , , , , , , , , , , , </u>	ò	2	y '	2 9	. i								
	•	7				3.85		7.84	7.87	7.87	3.86		2.85	2.6					3.66			7.1			_				7.78	2.59	2.57		/Ří	Cii	¥ A T		PAG		
	70		, <u>y</u>	.63	222	158.	646.	864.	1.003	1.011	176.	.80	,812	707					025	346	,836	.863	.765	57.6.	1.005	.995	1.07	886.	.932	.777.	3	þ	E	PO	OR	Q Q	UAI	E) IT	is V
_	ě		<u> </u>	2	3		_	9	9	৬	_	R	F	9 6	-1				4E 8		0 1	9 6	0 2	35	0 4	3	4									•		1	±j
28°C coneda	Ş.	? <u>\$</u>	.548	559.	.763	.863	196,	.99.5	7.8	1.022	626.	,903	.8/5	5%			7	Į	895'	669.	.83	.949	536.	, 455	/.87	.93	1.00	. 977	646.	087.	<u>}</u>	?							
3	į	1 1	803	+18	628	292	684	666.	644.	.786	111	466.	886,	1/8,			Lateral		727.	744	770	.780	787.	466,	684.	787	.790	,783	808	.795	/24/	2							
, 20 20 20 20 20 20 20 20 20 20 20 20 20		-												•	+		78.0)					-						<u>.</u>		•	4							
44	٥	2 2	1.173	1.604	1.635	1.849	2.058	2.138	3118	4.189	2.076	1.934	562.1	1.554			ñ		1.313	1.492	1.773	7.025	2.051	X.038	2.197	2.130	7:16	7,084	7,075	1 664	261								
7			ور	•	<u>ر</u>									٠.			27	5	- 8	8	ba	-										_							
	۲	ا ا	30%	245	562.	,336	,374	.395	<u>\$</u>	404.	.390	.360	.334	27.9					\$02.	1259	,318	,369	.370	115.	.387	,382	,394	.375	98.	27.6	· ·	./67							
	_	2 2 2	5.704	157'5	5.542	2.484	2.500	5.408	5.353	5.416	5.334	5.37	5,385	5.563					5.838	5,772	5.568	5,493	5,537	286'5	5.576	5,553	2,487	5,563	5,570	5.617	554	7.764							
		Ľ		<u>ن</u>	7,	Ŋ	7.	Ŋ	ķ	lý.	13	4	'n	ν v					5,	γ,	6	4	<u>رې</u>	ķ	5	Š	2,	7	<u>`</u>	,	۱ ۱	2							
	۲	7 20	233	STS.	315	.371	.413	,435	.437	144.	924.	388	,354	307					796	318	,356	014.	114.	4/4	.428	£5.	6431	124.	125	155,	3 5 6	501							
		2,7													4				_	_												\dashv						_	_
	2	6.317			6.275	6,285	6.31	6.316	6.300	6.330	6.381	6.277	6,264	6.247	١				6,312	6.305	6.310	6.332	6.338	6.358	6.363	6.34	6,346	6.335	6.33	6.320	6.308	2						בו בו	1010
	đ	, ~	2	K	2	-	Ŋ	0	0	Ņ	*	1.5	K	2.5	7			Ī	М	2.5	К	1.5	-	'n	0,1	5 .	ν.	- !	5 (٧ ,	ζ, ι	7						(CONTINUED)	1
													_		<u>'</u>							!	_	:		·			1								<u></u> .	, CO	5
A	34.5	41	4	43	45	43	*	3	#	41	4	ī	#3	∓ {	37	36			1	33	7	38	14	15	1 +	14	7	2 6	% (75	ر ا رو	, e) ×	es e	37	Ą		77	† (
F	41.7	64	48.5	495	50.7	49.5	20	ls.	49	र १	7	47	47.5	45	3 6	38.2				36	47	47	54	84	48	\$0 \$	_		h			, c		, ,	37.5	٦.		FICHDE	7
als	46.8	2, 26	2																														•			7		F101	<u> </u>
		295	2.2	'n	2.9	2.85	7.84	ñ	2,95	2.9	'n	7.3	7.94	4.0	6,0	2.93			l	12.2	2.88	2,89	2.89	2.5	2,9	7.7	7.7	X 7	; e	250		2,62	7 6	3.68	2.69	3			
, Secondary	040.	819	727	813		496.	,190	1.005	566	.790	.964	616	948.	825.	129	017				080	138.	ζ,	131	813	156.	284.	344.	8 8	6/4.	80.7	77.	308	200	869.	365	5			
ام ق	' SS !) 00	3	*				7 0	~	8	7 50	88	৬	<u>ن</u> د م		~					<u> </u>	9	7	5	20	•	۵	3 (? :	3 4	2 4	9	4		1			
prized BBG	.035	9	.733	*/s.	406,	.970	999	1.007	<u>.8</u>	886.	.957	016.	898.	<u> </u>	77	610		corrected		.o.	·3.	.736	1807	.877	156.	<u>.</u>	1.03/	3 8		1.017	-700	× 0 × 0	800	512	22.				
28°C corrected	.746	20,00	.777	.784	.786	.783	.787	.787.	,776	.776	,778	<i>444.</i>	803	708,	757	.743		Š		.794	.837	,835	,833	008	746	74.	. 7/1	<u>.</u> 8	0 0	2 2	7 00	2 8	418	.830	2775	2			
88	2 73	2												_			-	286	}	_											_					1			
3A Pm	.073	1.276	1.517	1.709	1.8%	2.035	2.097	2.113	2.084	2.073	2.004	1.909	1.872	1.633	336	,026			,	164	. 790	1.573	1.749	1061	7.061	2.147	XXXX) ; ; ; ;	200		2 6	() \$ ()	1,734	1.550	.545	2			
- 0	اري ا	٠ ۵		ક	53				_									33		6	و	-	۳	-	,	-	_					<u></u>			<u>* '</u>	•			
H	510.			,305			.379	,384	1377	,380	.37	:253	,339	202,	. 042	.006		•	'	1000	.136	1274	.3.3	1347	,373	M .	.37.5	786.	1000	787	77.7	305	306	.369	460.				
7.00	5.043	38.8	5,783	2,612	125.5	5.538	5.535	5.498	5.529	5.452	5,413	5.403	5,374	5.417	5.634	4.343				5.690	81815	5.7	5,613	5.485	5.534	5,603	5.638	3 6 6	5,5,5	5,276	3.75	24.0	5.675	5.759	5.777				
				Ť	- ;				Ŋ	<u>را</u>	7	4	L	٠ <i>ن</i>	, (v)	3			ļ	7	Š	ч	Ġ	'n	Ġ	v,	<u>, v</u>	ν ,	۸ ۱	· (٠ <u>٠</u>	· •	<u>, , , , , , , , , , , , , , , , , , , </u>	; \(\(\)	43 (
75.	.07	250	.306	342	.379	906.	.417	, 473	614.	417	304.	.387	,356	73.7	250	100		•		ġ	150	,3%	.329	. 373	70%	١4٦.	. 426	ָרְאָל בּיִילָ	4 (774	277	ر کور کور	334	378	5113				
ي																	_		ł					-	:					-						+			
Vac	5.648	7.368		6.373	6.374	6.398	6.397	6.341	6.403	6.403	6.359			6.352						6.105	6.311	6.370	6.370	C.364	6.339	6.394	6.54	9 70 7	722	CLE	ر د د د د	6. 36 k	6.358	6.340	1,4.5 87.887.8				
Φ	ls :	- m	25	K	1.5	_	r.	0	0	Ń	_	1.5	n	4 1	۴ (•	Α7		J.	4	3	25	K	5.		3 6), C	۱ ۱	ý -	Ų		<u></u>		₽ ſ	-			
				i			•									. 1			[•	1			- 2	5	-						:						

	7.2	_																		•	\																_
	F	34	33.5	7	, ,	; ;	` ;	3.4	335	35	34	24	,	34.5	34.5	34	33			19.9% 600	estunded	40	ŧ ,	: 5	, ,	7	40.5	2 4	7 4	1 1	\$ 5	<u> </u>	23	64	85 *	S	23
	E	547	1.44	. 33	77 7		7	2 :	ベナ、フ	65.1	651	16		1.50	1.50	1.51	7.57					2.63	3.61	176	ָ ֓֞֞֞֞֓֓֓֓֓֓֓֓֞֜֓֞֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֡֓֓֓֡֓֡֓֓֡֓֡֓֡֓֡	()	100	2.60	3	, ,	7.60	7,63	2.67	2.66	3.06	3.69	3.68
	7673	240	622.	62.6	8	() 0,	744.	66,	00.1	1.003	985	967		٠ 8 > ٧		,636	.500			OSCION A MANAGE		577	717	797	228	100	5 6		, ,	2000		996.		122.	059		ost,
	3	E		_		4		_	20	20	Se		3 4	_	Δ	4 0	20			7497	TO TAKE	F			_				1 ,					<u>,</u>	m	~	
ectal	0.00 0.40	1				<u>. </u>	_		.995	7.00	7,005		_				265.					89.			<u>`</u>			·	_					122	.653		755
28° corrected	IT	548	8/8	600	֓֞֜֝֓֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֜֜֜֓֓֓֓֓֡֓֜֓֡֓֡֓֡֓֡֓֜֝֓֡֓֡֡֡֡֓֜֜֡֓֡֓֡֡֡֜֝֓֡֡֡֡֡֡֡֡	5 6) a	. / 7.2	787.	,788	.807	0		008,	503'	666'	.796			Pomle	, ,	.827		, ,	1771	(0)	108.	177.	5 8	200	,78	,795	1788	018'	308,	\$28.	. 825
SC 28	9	21.12	85.7		9 0	٠ (04.7	1.96	1.96	1.97	86.7		2	06.1	1.50	1.26	86.			ucor @ Comle	٠ ا ا	267	000	200	8 lY'	, Y.	, , , ,	193	1 6	745'	384	425'	125'	784	,256	822	. 140
S	<u>-</u>	200	, 27.2		505	102,	,355	,358	,358	358	7,7	1 0	541	.304	366	.222	.172			Ę	121	690	יייייייייייייייייייייייייייייייייייייי	, , ,	7367	3/5	۲14.	95.	144	666.	.434	.426	378	330	388	45%	157
	7	A wh	יין זין	7 !	5.73	5,45	5,35	5.46	5,49	15'5	547		5,45	2,57	2.62	2.67	12.5				OFFFORM	100	1/8/	488.	1.4.	,873	15 1	(88)	588.	188	.875	.878	248'	888,	018'	300	.892
	,	156	517.	0.X.	,333	,356	.375	394	398	.399	600		.377	340	.399	,253	661.			71	1-61 1797	,	, , , ,	7,4%	\$ / \$ 1	. 408	144.	.470	.476	.477	.477	126.	014.	**	310	.269	167
	;	30/	6.19	6.44	6.33	و,٤)	6.25	6.27	6.268	6.37	. 0	ه ۲	6,26	6.34	6.33	6.22	6.30			•	J	91	1.017	\$10.1	0201	1.024	1.035	1.027	1,027	1.024	1.024	1.031	2507	2201	,033	440,	020,
	Œ	1	, מ												7		_					-	1	2,0	"	<u>ب</u>			_	0	٥	Ŋ	_				7
					í													•				ı					:				:			1			
																			<u>.</u>																		
																			<u>.</u>								;			•				:			ORI OF
	Ι,			_	34.5	36	41.7	485	3.7.5	5 (``	36.5	36	36	35.7	_					# 5	32.5	32.5	<u> </u>	33	34	*	31.5	31.0	315	31.5	_	_		2000		ORI OF
	Ι,		_	_			2.31 41.7					_	1.64 36		1.59 35.7	_	15.			┝				1.30 32.5			151	_		1.24 31.5		_	3/2		-		
	dis.	1.78	1.61	_				-	19.7	12		_	_	1.58	65.	1.52	†		•	┝			7.3					_				1.12	100,	176 (1.3)	-		
3	GDE Tec STD	87.7 577. G	19.1 708. 0	19.1 688. 0	29.1 946. 4	6.979 1.67	6 ,998 2,31	G 1.002 2.42	197 196	77 1 20 0	146	6 ,762 1.13	49.1 7164	85.1 358 45	65) 656 65	25/ 585 45	+/22/1/25/1			┝	56 .470 1.30	th.1 012. ds	35.1 EOT. 42	sp .779 1.30	To .917 1.43	TD .974 1.43	151 5001 4	5.1 846 63	TD .998 1.15	12 .983 1.24	179 941 1.29	6 869 1.22	700	776 (133)	16 1.6rc 11.15 1		
corrected	Tec STD	37.7 STT, 9 48T.	19:1 708. 0	19.1 688.	29.1 946.	19.1 86.	15.2 846.	1.002 2.42	197 196	77 1 20 0	144' 5	1,762 1.13	49.1 7.64	851 958 45	65) 856 65	25/ 585 45	+/22/1/25/1			┝	08.1 07P. ds 38P.	44.1 019. ds 589'	13.2 EOT. 42 PET.	.805 las 277 1.30	1.43 1.43	567 426 42 486	1.51 500.1 4 500.1	1995 6 1998 1.25	S11 866, 07 489.	474 12 .983 1.24	927 149 941 1.29	954 6 879 1.33	700 / 000	776 (1.3)	1.686 11.12		
28°C cornected	GDE Tec STD	87.7 577. G	19.1 208. 0 E2L.	19.1 688. 0	29.1 946. 4	6.979 1.67	1.009 6 ,998 2,31	1995 G 1.002 2.42	1971 1991 1.61	7.1.	146' 5 766'	6 ,762 1.13	49.1 7164	851 358 48 345	153 62 256 (.59	257 285 45 657	+ /22/ /25/ /05/		7%°C	┝	56 .470 1.30	th.1 012. ds	1.35 EOT. 42 PET. 228.	sp .779 1.30	To .917 1.43	TD .974 1.43	13.1 2001 of 2001 x97.	1995 6 1998 1.25	SI-1 866, at 489, E87,	4x.1 889. 974 479. 385.	782 927 14 1.29	954 6 879 1.33	700 / 000	. 178 5 176 11.33	16 1.6rc 11.15 1		
SA 28°C corrected	FF Para CODE TEE STD	37.7 STT, 9 48T.	19.1 208. 0 E2L.	19.1 688. Q 558.	.928 D .946 1.62	1.809 1.85 6 .978 1.67	1806 1.009 6 ,998 2,31	242 5001 5 365	1971 366 5 200	72.1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	969 6 ,762 1.13	49.1 616, 9 1/6,	851 358 ds 349. 06C	65.) 875 62 235 608	25/ 285 40 600 000	/ /25 /05 OV 0		5B 28°C	┝	08.1 07P. ds 38P.	44.1 019. ds 589'	13.2 EOT. 42 PET.	.805 las 277 1.30	1.43 1.43	567 426 42 486	1.51 500.1 4 500.1	1995 6 1998 1.25	SI-1 866, at 489, E87,	474 12 .983 1.24	782 927 14 1.29	783 954 6 829 1.33	700 / 000 / 000	. 178 5 176 11.33	1 (1.18) .64/ 10 1.640 1.1.7		
	FF Para CODE TEE STD	37.1 STT. 9 4ET. 02T.	19.1 308. 0 527. 537.	19.1 688. 0 558. ELL.	1.972 789 .928 0 .946 1.62	73.093 .809 .785 6 .978 1.67	2,143 806 1.009 6 ,998 2,31	242 501 6 1.002 242	1971 366 5 200	17. 13. Soul 808 . 15.1.X	2.116 ,807 ,996 5 ,941	1810 ,969 6 ,962 1.13	49.1 216 9 416, 408, 546,1	851 958 ds 345, 665, 7651	651 652 65 535 608 651	25/ 285 40 600 000 000/	(22, 25, 105; 000; 000)			┝	0E.1 07. ds 384. 1E8.	44.1 019. 05 SE3. 8E8.	1.35 EOT. 42 PET. 228.	08.1 PTT. as 208, 528.	1813 1940 10 049. 518.	E41 416 07 486 661	13.1 2001 of 2001 x97.	2.073 .790 .995 6 .998 1.25	SI-1 866, at 489, E87,	2.029 ,786 ,974 10 ,983 1.24	1.931 782 927 141 1.29	787 964 6 869 123	700 / 000 / 000	1,067 1,10 1,78 0,176 1,33	1 (1.18) .64/ 10 .640 1.13		
	FF Para CODE TEE STD	37.7 277, 9 4ET. 025. 825.1 PT. 1.	1.630 308. D 807. E37. D 806. 1.61	19.1 [188. D 228. ELL: 518.1	362 1.972 ,789 .928 0 .946 1.62	387 2.093 809 .985 6 .978 1.67	393 2,143 806 1.009 6 ,998 2,31	285 0114 793 995 6 1.003 242	1971 366 5 100 000 110. 0 100.	75. X, 1.57	391 2.116 3807 ,996 5 198.	2.059 1810 ,969 G ,762 P.CS	49.1 216 9 416, 408, 546,1	851 358 98 349 995 1.58	65.1 87.5 6.7 57.5 6.7.1	25/ 285 40 600 000 000/	12. 12. 105. Oxa			┝	1.012 079. 48 384. 153. 510.1	44.1 012, 02 283. 888. 458.1	25.1 EOT. 42 PET. 258. OF2.1	1.678 .872 ,805 sp .779 1.30	1.960 ,813 ,940 070 ,911	2.051 479 984 47 470 120.5	13.1 2001 at 2001 297, 270.2 188.	.388 2.073 .790 .995 6 .998 1.25	21.1 899, 4T 489, E87, OSO.E	45.1 2.029 , 786 .974 TP .983 1.24	3 .363 1.931 782 .937 178 .941 1.29	735 1779 787 954 6 829 1.32	24.1 /or / oor oor oor n// 1	131 1.667 1.10 1.78 0 1.76 1.33	(1.11 545. 5 765. 547. 555.		
	IMP PMP FF POR ODE ISE STD	1.558 1.558 A 4ET. 027. 828.1 PTS.	16.1 508. D 837. 563 1.61 1.61	19.1 (88. 0 228. ETT. 218.1 TXE.	362 1.972 ,789 .928 0 .946 1.62	5.407 387 2.093 .809 .985 6 .979 1.67	5 448 393 2,143 806 1.009 6 ,998 2,31	242 5001 2 395 6 1.00 242	19.7 196 & Day 000 45. 6 Day 1.1.5	5.706 . 575 X,137 808	5.406 ,391 2.116 ,807 ,996 5 ,996	379 2.059 .810 ,949 6 ,972 1.13	49.1 719, 2 419, 408, 549, 828	851 388 ds 349, 997, 397, 975	65,1 870 67 775 677 775	5.7 42 42 622 000 000 000 000 000	12. 12. 105. Oxa			┝	081 079, 42 384. 188, 510.1 081.	44.1 012. 02 283. 888. 428.1 4EE.	22.1 EOT. 42 PET. 228. OF5.1 PDE.	05.1 PT. 02 208, 528. 873.1 995.	54.1 11P. 0T 04P. 518, 02P.1 828,	E4.1 479 484 484 120 2 975,	13.1 2001 at 2001 297, 270.2 188.	5,342 388 2.073 790 ,995 6 ,998 1.35	S1.1 899, 47 489, E87, OSO, E82, 525,2	5,32 ,379 2,029 ,786 ,974 TD ,983 1.24	5.328 363 1.931 782 927 10 941 1.39	2207 735 1779 787 864 6 869 1.32	700 / 000	131 1.667 1.10 1.78 0 1.76 1.33	STILL STR. 199 199 199 1980		
	VMP IMP PMP FF POR UDE ISE STD	37.7 STT, 9 4ET. 03T. 825.1 PT. 888.2 88E.	13.1 5.559 292 1.630 763 637. D 386 1.61	13.1 188. 0 228. ETT. 218.1 TE. 442.2 575.	24.9 04.9 0 362 1.972 889 0 946 B. 362 362 1.62	19.1 6.407 387 2.093 809 .985 6 .978 1.67	1373 C 448 393 2,143 806 1.009 6 ,998 2,31	542 501 2 895 EPT. 411 0 285 Try 2 424	19.1 186 5 Jan 900 He 7 Jan 700 CC	77. S.706 . 575 X.137 808	2.11 146 2 966 108' 911'8 168' 906'5 114'	(2) 574, 3 436, 018. P20.5 978, 354.2 704.	49.1 (216) 2 416 408 2661 852 1263 882	35.7 358 98 340 399 390 300 300 300 300 300 300 300 30	(5) 600 60 500 500 500 500 500 500 500	57 - 48 69 000 000 000 000 /200 000	1,27 3,186			┝	08.1 07. ds 384. 183. 510.1 081. 486 S 891.	44.1 012. as 253, 858. 458.1 455. 833.2 725.	22. 50T. 42 PCT. 228. OF2. P2C. 443.8 375.	05.1 PTC. 02 308, 578. 873.1 995. 413.5 825.	585 874, 07 04P. 518. 02P.1 82E, 854,2 288.	EP.1 479 47 489, 897, 120.5 814,8 014.	13.1 500.1 at 2001 297, 2792 1.005 17.51	1.420 5,342 388 2.075 570 995 6 5425 054.	21.1 899, 47 489, E85, OSO. R 885, SZE, OXP,	41. 5.92 01 476. 386, 920. 278. 52. 52. 414.	787 787 789 341 1.39	261 678 9 658 582 6661 352 505 3 75	7 00 00 00 00 00 00 00 00 00 00 00 00 00	25. 5.7. 5.1. 1.667 1.607 1.76 1.35 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76	1 (1-11 549.1 5) 149. 1847. 1 Sec. 1 XSX. 1847. 5 184.		
	ISC VMP IMP PMP FF PAR CODE ISE STD	8.582 ,279 1.558 ,005, 94ET. Q 4ET. 825.2	16.1 508. D 857. E37. 053.1 595. PS.5.2	19.1 888. 0 228. ETT. 218.1 TXE, 445.2	4.452 362 1.972 789 .928 D .946 1.62	19.1 6.407 387 2.093 809 .985 6 .978 1.67	15.43 69, 393 2,143 .806 1.009 6 ,948 2,31	1703 444 5 477 285 14 1 793 1995 G 1.003 247	19:1 186 m 200 mc 2 200 / 11:0 / 12:0	6.335 ,744 5.706 , 575 , 7,1.57 , 808 , 1.005	2.406 391 2.116 307 ,996 3 301.5	5.426 379 2.059 810 ,969 G 342 1.13	49.1 719, 3 419, 408, 549, 855, 154.5	851 358 98 340 967 7671 200 500 500 500	65) 876 67 576 608 6077 506 674 7 106 106	5.2. 5. 5. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	1,27 3,186				05.1 07. 42 384, 183, 510.1 081, 455.2	44.1 012, as 283, 888, 458.1 485. 832, 8 725, 115.3	22. 50T. 42 PCT. 228. OF2. P2C. 443.8 375.	05.1 PT. 02 308, 528. 873.1 992. 413.2	Et.1 119. 07 049, 518, 029.1 828, 834,2	54.1 479 479 984 143 Pt. 120.5 Pt. 814.2	13.1 500.1 at 2001 297, 2792 1.005 17.51	5,342 388 2.073 790 ,995 6 ,998 1.35	S1.1 899, 47 489, E87, OSO, 2 882, 525,2	5,32 ,379 2,029 ,786 ,974 TD ,983 1.24	787 787 789 341 1.39	201 678 9 636 882 6421 322 6023 372 1123	100 Jan 100 1111 1111 1111 1111 11111 11111	25. 5.7. 5.1. 1.667 1.607 1.76 1.35 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76	16116 319. 31 /49. 143. 143. 148. 164/ 15. 148. 161/19		

FIGURE ASSET ASSETS ASSESSED A

-								•														
	STRINK	STRINGS I THRUGH S"A" IN PARALEL (28°C COMBESTION)	s Hona	, w .k.	אפארבר	28°C c	COPPERCTION	×					STRINGS		ROVEH	I THROUGH S'B" IN PARALLEL (28°C CONTECTION)	PARAL	יובר (sec a	WECTON	_	
100	15c	Vmp	Imp	Pmp	FF	Are cost	s Isc	STD	TI. 7	72	8	Voc	Isc	7,00	Imp	Pone	FF	Pare COPE	TEC T	215	7	d
88'5	9/1	5.14	./3	19.	12.	10.		_	<u> </u>	37.5	4	6.07	84.	5,23	525	1.29	.77			3.08	30.5	33
6.13	.45	5:46	.34	7.7	.78	12'			23	39	ک ر	1	1	1		;	í			ž	ç	ļ
9) a	5,25	3/1	4,3	-77	.42	ž.			<u> </u>	۳۱.	6,29	/6:	5.54	9 (7,80		3-a (-	; ;	, ,	، ډ
6.3	1, 29	15'5	1.16	6.43	17	G.				<u> </u>	2,5	6.35	1.64	5.53	1.50	8,79	.79	7.		7,77	5 6	9 ;
6.34	1.57	5.47	1.47	8.04	/8/	.79				<u>.</u>	~	6.35	1.55	5.52	14.	18.2	.77	.77			34.5	35
6.33	1.73	2,36	1.63	8,75	08:	28.			43 47	7	1,5	98'9	1.73	2.48	55'/	8.51	.78	۶.			-	34
6,35	\$8.1	\$,33	1.76	9,36	.78	.93	26.		43 47		_	£'3	82.1	5.43	1.63	8.87	,79	6- 6-			36	36
6:38	2.01	5:33	1.88	66.6	32'	86.			96 54	<u></u>		6.37	2.04	5,33	887	86.6	27.	10.1				35.5
6.390	1.936	5,336	1.897	10.10	28,	8:			47 24	44.5		6.37	١٥٠٢	5.31	1.83	9.70	.76	000,			34.5	×
6,37	2.06	5.34	16.1	61.01	,78	001				ر ا		6,36	66.1	5,38	1.83	18.6	.77	66.		1.83	ä	325
6:39	2,05	5,40	1.90	10,24	%	00.7	00"		45 45		'n	6.37	30.0	5:35	881	10.04	.77	۱.03		2012	285	295
6.37	2.02	5.43	1.85	10.04	82'	66.				_	_	6.38	96.1	5,33	18:1	8.63	37.	- 36	•	80.1	38.5	33
6.37	1.93	5.40	1.76	84.6	.77	.93			42.5 40		57		ļ					7				
6.36	1.78	5.40	19.1	8.71	77	, L					,							<u> </u>				
200	171	1 1 1	000	7 00	: }	3 1			77		٠,											
3 !	- (e	717		90')				_			2,5											
6.33	5 % .	5,50	1.26	16:9		. 68	69.	_	-	-	٣		•					₹				
6.30	1.16	5,50	66.	2,44	24,	53	_	37.38	40 39		3.5			8	DATA	DUE TO	CLOUDS	ı				
126	/8:	5.50	.68	3,75	40.	.37	╗	7	40 37		*											ļ
		: .					•									4			(-
•	STRWGS	I THROUGH	, v V F:		IN PARALLEL 1	ROTATED 90° (28°C	5).06		CORRECTION		•	ST	STRING-S	1 THROUGH	b	"B" 1N PA	IN PARALLEL	ROTAL	ROTATED 90	28,5	. consection)	(var)
5,70		4.92	60.	.43	99.	+0.	20,	-	32.5 33.5		4.5.AF	5,93	٠، د	5,24	.13	99.	575	90.	\$0.	30.6	3/	33
5.47	.38	2.17	.23	41.1		÷	./3	1.93			\$,		
6.19	#9,	5,50	+5.	7.97	,75	.38	30 %		34 35.5	-	35.75	6.24	54.	5.63	29:	3.69	.79	کڌ.	95.	86.1		20
6.76	1.03	5.56	06.	5,03		.48	66.				3 23	6.30	6/1	2.60	1.06	5,43	٠79	.57	ķ	1.95	34	36
6,30	1.38	5,52	1.33	6.77	-	.64	1 59.		35 36.5		XX	6.33	1.57	2,57	1.43	7.95	°8°	96.	₹.	1.98	1	36
6.31	1.63	5.54	1.45	8.05		.76					r t	6,33	1.73	5.53	1.59	8.80	08.	.8	.82	1.91	35	37
,33	08.1	5,45	1.63	8,88		48.			37 39.5		15.	6.35	681	5.48	41.7	15.6	.79	16:	۰۴.	/8/		36
6.37	1.95	2.47	1.78	8.7								6.36	2.03	5,43	1.89	82.01	٤.	34.	%:	68.1		36
.37	_	5.43	1.88	10.21			.97	_	40.5 39.5			6.36	7:1	5.43	1.93	16.01	32.	.49	1.00		35.5	37.5
139		5,45		10.23				<u> </u>				6.36	2.11	62'3	1.93	10.36	.77	- 66.	00.			39
6.40	3.11	5,45	46.1	10.57			-					6,37	3.11	5.44	1.93	84.01	.78	۱. %	1.00	2.13	35.5	37.5
.39		5,43		10.43									7.11	5,39	16.1	10.33	11.	86.	۰۰۰/	72.21	36	39
.39		2.46		10,37			_	2.35				6,35	2.07	5.39	1.86	20.01	.78	% .	76:		-	39
6.38	1.97	5,37	7.83	9.80			_						1.83	2,47	1.66	4.07	.78	-82	.87	12.2		40
あら		2.41	1.67	9.03	.79						1.		17.7	5.53	1.49	8.34	18.	92:	.76	3.13	37	39
秀		5,50		66'8									¥.′	5.63	1:31	2,38	/8:	٥٤.		1.78		37
6,33	1.43	5,53	1.33	7.38	03.			3.31	43 43.5													
38	7	5.5%	-	5,03		86.	.47 2				3.5.H	6.24	z.	5.62	99.	3.68	ż	.35	1.34	2.01	33.5	35

FIGURE A6 COMBINED AND INDIVIDUAL HALF STRING DATA NORMALIZED FOR OUTPUT AT ISC AND CORRECTED FOR CONIC MIRROR REFLECTANCE OF 0.70

OFFICIAL E			INDIVIDUAL	DUAL	HALF	STR	STRINGS					E. S.	0. 1.0	-04	· Especial	- o	96
,	14	18	24	28	34	38	44	8+	SA	85	SC	4	Ā	4	B		8
h			,03	Ş	500	01.	٠								ı		
3			19	۶.	×.	sh.		-					0/0	11.			
7	990		.63	183	8.	E,	.49	08'	101	19:	.70	32	55.	49.	67	.73	
2,5	%:		:	1.01	16.	16.	.67	ġ	101	200	16.	.87	<i>pr.</i>	18.	6:	.93	
K	1.05	±8°	16:	1.06	96.	.97	.75	66.	90%	\$	8.	.94	%	16.	26.	.97	
1.5	1.02	.87	.93	1.01	.97	1.03	.78	1.04	103	.84	.46	.94	96	.93	36	.97	
_	00%)	.93	36:	1.03	66.	101	28.	66.	107	46.	26.	96.	46.	*6.	86.	8.	
'n	8.	86.	.97	1.02	00-1	1.00	.95	86.	1.00	86.	001	86.	66.	86.	.8	101	
0	100	1.00	1.00	7.00	1.00	1.00	1.00	1.00	700	7.00	1.00	1.00	1.00	700	1.00	1.00	
0.	1.00	1.00	7.00	1.00	1.00	1.00	007	001	1.00	00'/	1.00	1.00	001	001	7.00	001	
Ŋ	1	10.1	99.	1.00	1.00	101	1.02	1.02	1.00	1.00	8.	1.00	101	1.01	10.1	1.01	
7	1.00	1.01	.99	101	1.00	1.01	1.00	1:01	. 99	1.01	86.	1.00	101	10.1	101	.99	
15	1.02 1.00	1.00	.95	195	007	46.	26.	1.00	66.	101	260	36'	101	007	86	36.	
ď	1.02	1.02	315	16'	107	%.	%:	.93	1.02	103	.89	8.	1.02	1.02	%:	%	
2.5	.99	.90	.89	.88	.95	86'	88.	275	.95	.99	.79	.92	97	1.00	36	28.	
ر	88.	09.	52:	010	12'	16.	11.	950	2/2	.89	.65	.75	06.	88.	.73		
ۍ.	35	17	31.	ÿ	11.	34							.50				
ح	١			,03	.03	.05				•							
	×		a		Φ		0		۵			*	П	٧	0	Δ	
	;		:	; ;							<						

ORIGINAL PAGE IS OF POOR QUALITY

through 10D. During that time the panel was stored but not bagged in the array manufacturing area as well as the test stand. It was noted that additional contamination of the mirrors was evident. Strings 1A through 1D and 2D were remeasured to see this effect. An apparent 1 to 12% loss in output was recorded compared to earlier readings. The average was near 5%. Also noted was additional conic mirror coating degradation in terms of actual increases in defect areas. It was not possible to determine the relative contributions of the contamination and conic mirror degradation to the total loss recorded. Data for the remeasured mirrors is noted as strings 1A2 through 1D2 and 2D2.

As with the small panel data, the large panel data is shown corrected to standard conditions in Figure A7 and corrected for conic mirror average loss (0.70) in Figure A8. Note that with reference to efficiency in Figure A8, an efficiency of 15.5% would represent a 20% efficient cell in an optic with nominal capabilities as defined in the main text figure 4-4 "corrected".

3.4 SECONDARY MIRROR TESTING

The secondary proof mirrors (bare nickel) were checked by bonding each to a dedicated nickel spider and then successively measuring the short circuit current output of two primary subassemblies at various pointing angles. Figure A09 shows the current and normalized output recorded for eight proof secondaries corrected for intensity only. Figure A-10 shows the normalized data corrected for conic mirror reflectance of 0.70.

DATA FOR STRING 3A CORRECTED FOR TEMPERATURE AND INSOLATION BUT NOT CONIC MIRROR QUALITY ANGLE VOC 1SC VMP IMP PMP FILL ORIG TEMP (DE6) 5.620 362 4.648 318 1.476 726 39.2 1.9 1.0 5.623 384 4.637 321 1.488 726 38.9 1.1 2.0 5.594 234 4.637 321 1.488 775 38.6 1.0 2.5 5.591 234 4.933 1.96 0.965 774 38.3 1.4 3.0 5.525 161 5.029 136 0.686 769 37.2 1.4 3.0 5.525 161 5.029 136 0.686 769 37.2 1.4 3.0 5.527 290 4.823 257 1.238 763 38.5 0.5 -2.0 5.542 0.98 5.103 0.80 0.410 752 31.0 0.6 -2.5 5.542 0.98 5.103 0.80 0.410 7752 29.3 0.6	DATA FOR STRING 3B CORRECTED FOR TEMPERATURE AND INSOLATION ANGLE VO ISC WHP IMP PMP FILL ORIG TEMP ANGLE (V) (A) (V) (W) (W) FACTOR TEMP CDEG, (V) (A) (V) (A) (W) FACTOR TEMP CD 6.271.412 5.582.385 2.147.831 25.6 0.3 1.0 6.278.369 5.717.333 1.902.821 25.3 0.1 2.0 6.278.369 5.717.333 1.902 821 25.3 0.1 2.5 6.243.143 5.931.122 0.724 813 24.4 0.8 3.0 6.254.081 5.958.069 0.409 811 22.8 0.6 0.0 6.317.409 5.512.384 2.153.833 23.3 1.1 2.0 6.288.409 5.512.384 2.153.833 23.3 1.1 2.0 6.323.355 5.620.338 1.898 847 21.2 1.2 2.5 6.310.298 5.642.285 1.607 856 20.7 1.7 2.6 6.312.211 5.855.186 1.090 817 18.5 0.4	DATA FOR STRING 3C CORRECTED FOR TEMPERATURE AND INSOLATION ANGLE VOC 1SC VMP IMP PMP FILL ORIG TEMP OLO 6.045 .365 5.169 .346 1.788 .809 27.7 0.5 1.0 6.083 .397 5.087 .368 1.878 .776 25.3 1.1 2.0 6.084 .391 5.029 .355 1.788 .776 25.3 1.1 2.5 6.071 .375 5.041 .322 16.625 .714 23.5 0.8 3.0 6.044 .357 5.047 .322 16.625 .714 23.5 0.8 3.0 6.044 .357 5.075 .299 1.516 .703 25.0 0.7 0.0 6.044 .357 5.075 .299 1.516 .703 25.0 0.7 0.0 6.044 .357 5.075 .299 1.516 .703 25.0 0.7 0.0 6.044 .357 5.075 .299 1.516 .703 25.0 0.7 0.0 6.044 .357 5.075 .299 1.516 .703 25.0 0.7 0.5 0.0 6.044 .357 5.075 .299 1.516 .703 25.0 0.7 0.5 0.5 0.0 6.044 .357 5.055 .349 1.349 .846 .30.5 0.2 0.2 0.5 0.910 .102 5.542 .091 0.504 .833 32.4 0.9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	DATA FOR STRING 3D CORRECTED FOR TEMPERATURE AND INSOLATION BUT NOT CONIC MIRROR QUALITY ANGLE VOC ISC VMP IMP PMP FILL ORIG TEMP (DEG) (V) (A) (V) (A) (W) FACTOR TEMP ERROR 0.0 5.894 4.85 4.793 3.94 1.887 7.36 32.8 5.3 1.0 6.012 424 4.885 3.89 1.901 7.76 22.1 1.2 2.5 5.899 3.33 5.064 3.12 1.579 7.76 22.1 1.2 2.5 5.899 3.33 5.064 3.12 1.579 7.72 2.0 6.034 4.85 4.85 7.859 1.777 7.76 22.1 1.2 0.0 5.914 2.79 5.050 2.57 1.349 8.18 27.4 1.1 0.0 5.921 4.35 4.805 3.39 1.750 7.72 33.4 3.2 2.10 5.874 4.09 4.724 3.70 1.750 7.28 33.4 3.2 2.2 5.809 2.87 4.893 7.75 7.75 7.75 33.4 2.3 2.2 5.809 2.87 4.890 2.87 4.893 7.75 7.75 33.4 2.3 2.2 5.809 2.87 4.840 2.35 1.13 0.555 7.67 26.9 0.4
DATA FOR STRING 2A CORRECTE BUT NOT CONIC MIRROR QUA ANGLE VOC ISC VMP IM (DEG) (V) (A) (V) (A) 0.0 6.175.336 5.585.30 1.0 6.184.413 5.340.38 2.0 6.134.416 5.251.37 2.5 6.090.387 5.213.35 3.0 6.094.354 5.313.35 0.0 6.131.334 5.552.29 -1.0 6.083.264 5.605.23 -2.5 6.053.069 5.655.05 -3.0 5.953.038 5.413.03	DATA FOR STRING 2B CORRECTER BUT NOT CONIC MIRROR QUAL ANGLE VOC 1SC VMP IMI O 0.0 6.185 .334 5.414 .405 LO 6.170 .425 5.386 .394 LO 6.170 .425 5.386 .394 LO 6.170 .425 5.386 .394 LO 6.099 .272 5.562 .241 TO 6.099 .272 5.562 .241 TO 6.099 .372 5.562 .241 LO 6.099 .373 5.313 .400 LO 6.099 .374 5.302 .336 LO 6.099 .375 5.562 .241 LO 6.099 .375 5.562 .241 LO 6.099 .375 5.395 .395 .334 LO 6.099 .375 5.395 .334		DATA FOR STRING 2D CORRECTED FOR TEMPERATURE AND INSOLATION BUT NOT CONIC MIRROR QUALITY ANGLE VOC 1SC VMP IMP PMP FILL ORIG TEMP (DEG) (V) (A) (V) (A) (W) FACTOR TEMP ERROR 0.0 6.080 425 5.140 399 2.050 .794 34.5 2.6 1.0 6.091 324 5.420 283 1536 .780 33.1 1.7 2.0 6.069 324 5.420 283 1536 .780 33.1 1.7 2.5 6.061 268 5.526 227 12.56 .772 32.7 1.2 3.0 6.008 138 5.576 154 0.859 .766 32.6 0.2 0.0 6.140 402 5.142 373 1.920 .781 31.0 3.0 -2.0 6.081 329 5.253 333 1.647 823 32.7 1.9 -2.0 6.081 329 5.253 333 1.647 823 32.7 1.9 -2.0 6.082 294 5.215 280 1.462 .820 32.8 2.6 -3.0 6.029 218 5.416 1.93 1.046 .796 31.7 0.4
DATA FOR STRING 1A CORRECTED FOR TEMPERATURE AND INSOLATION ANGLE VOC 1SC VMP IMP PMP FILL ORIG TEMP (DEG) (V) (A) (W) (M) FACTOR TEMP ERROR 0.0 4.981 440 4.207 394 1.658 .757 45.0 4.2 1.0 5.084 432 4.310 392 1.688 .768 38.9 1.3 2.0 5.046 380 4.23 3.355 1.503 .784 38.7 1.5 2.5 5.066 380 4.23 3.355 1.503 .784 38.7 1.5 2.5 5.066 380 4.23 3.34 1.378 .840 37.8 1.0 0.0 5.039 434 4.250 391 1.662 .760 40.3 0.2 -1.0 5.056 4.11 4.240 .314 1.378 .840 37.8 1.0 -2.0 5.032 .328 4.407 .312 1.374 .832 40.7 2.2 -2.0 5.032 .288 4.407 .312 1.374 .832 40.7 2.2 -2.0 5.043 .285 4.418 .272 1.202 .840 41.4 2.2 -3.0 5.043 .213 4.479 .188 0.844 .787 38.5 1.4	DATA FOR STRING BUT NOT CONI ANCLE VOC 15 (DEG) (V) (A 1.0 6.090 39 2.0 6.070 33 3.0 6.065 32 3.0 6.060 33 3.0 6.060 33 3.0 6.060 33 3.0 6.060 33 3.0 6.107 41 3.0 6.134 31 3.0 6.111 23	ULC MIRROR QUALITY VIC MIRROR QUALITY (A) (V) (A) (W) FALL ORIG TEMP (A) (V) (A) (W) FACTOR TEMP ERROR 115 (198 :371 1.929 .768 39.7 1.5 390 5.182 .363 1.883 .796 38.6 0.7 353 5.282 .333 1.761 .819 36.8 0.8 354 5.282 .333 1.761 .819 36.8 0.8 355 5.649 .181 1.024 .850 36.4 0.8 198 5.649 .181 1.024 .850 36.4 0.8 198 5.649 .181 1.024 .850 36.4 0.8 115 5.65 .366 1.922 .769 36.5 0.1 117 5.255 .366 1.922 .769 36.5 0.1 118 5.602 .119 0.667 .513 32.2 0.5 119 6.667 .513 33.2 30.0 119 6.67 .513 3.0	DATA FOR STRING 1D CORRECTED FOR TEMPERATURE AND INSOLATION BUT NOT CONIC MIRROR QUALITY ANGLE VOC 1SC VMP IMP PMP FILL ORIG TEMP (DEG) (V) (A) (Y) (A) (W) FACTOR TEMP ERROR 0.0 6.140 .415 5.339 .370 1.977 .776 34.4 2.2 1.0 6.083 .331 5.313 .369 1.921 .808 37.3 0.5 2.0 6.057 .336 5.359 .313 1.679 .826 37.9 1.0 2.5 6.054 .288 5.483 .264 1.448 .831 37.7 0.9 3.0 6.023 .235 5.486 .314 1.77 .832 38.1 1.3 0.0 6.145 .415 5.330 .371 1.978 .776 34.3 0.5 1.0 6.206 .376 5.449 .335 1.823 .781 28.7 1.0 2.0 6.145 .309 5.530 .264 1.461 .768 30.6 0.1 2.5 6.138 .249 5.599 .204 1.42 .748 31.2 1.1 1.3 0.6 6.63 .138 5.509 .113 0.621 .741 30.9 1.5

DATA FOR STRING 6A CORRECTED FOR TEMPERATURE AND INSOLATION BUT NOT CONIC MIRROR QUALITY ANGLE VOC ISC VMP IMP PMP FILL ORIG TEMP (DEG) (V) (A) (V) (A) (V) (A) END FILL ORIG TEMP 0.0 5.895 .381 5.016 .357 1.793 .798 51.5 2.1 1.0 5.860 .318 4.974 .305 1.517 .815 51.3 2.1 2.0 5.903 .250 5.051 .240 1.214 .821 47.1 3.3 2.5 5.905 .192 5.177 .184 0.952 .839 44.4 2.8 3.0 5.831 .121 5.130 .116 0.598 .844 42.6 3.5 0.0 6.033 .378 5.142 .354 1.821 .799 43.5 2.3 1.0 6.019 .361 5.216 .339 1.767 .812 44.5 1.9 2.0 5.971 .275 5.380 .257 1.380 .839 45.4 1.7 2.5 5.919 .249 5.314 .231 .228 .833 47.2 0.8 2.5 5.917 .204 5.395 .184 0.995 .826 46.1 2.0	DATA FOR STRING 6B CORRECTED FOR TEMPERATURE AND INSOLATION BUT NOT CONIC MIRROR QUALITY ANGLE VOC 1SC VMP IMP PMP FILL ORIG TEMP (DEG) (V) (A) (V) FACTOR TEMP ERROR 0.0 5.757 395 4.678 351 1.644 7.23 48.5 1.5 1.0 5.733 334 4.705 312 1.644 7.23 48.3 1.4 2.0 5.782 2.237 4.986 227 1.331 825 42.4 0.7 2.5 5.715 185 5.056 117 0.597 849 43.0 2.7 0.0 5.810 391 4.724 350 1.652 727 45.1 3.7 -1.0 5.787 388 4.732 341 1.614 7.19 46.0 3.4 -2.0 5.742 315 4.667 287 1.339 7.40 45.1 3.3 -2.5 5.731 255 4.725 241 1.140 7.89 43.2 3.3 -3.0 5.692 2.206 4.881 1.98 0.967 824 43.4 4.0	DATA FOR STRING 7A CORRECTED FOR TEMPERATURE AND INSOLATION BUT NOT CONIC MIRROR QUALITY ANGLE (V) (A) (W) (A) (W) FILL ORIG TEMP (DEG) (V) (A) (W) FILL ORIG TEMP (DEG) (V) (A) (W) FACTOR TEMP ERROR (O) (A,797 3.64 4.184 .347 1.451 832 49.7 6.2 (1.0 4.774 3.21 4.022 3.02 11.216 7.93 50.8 8.3 (2.5 4.824 2.894 4.136 2.62 1.085 7.79 45.8 4.1 (3.0 4.849 2.17 4.204 2.07 0.871 826 42.2 3.3 (0.0 4.849 3.68 4.210 3.50 11.473 82.5 48.5 \$12.7 (1.0 4.836 3.19 4.282 3.06 13.11 851 48.1 9.4 (2.5 4.776 1.80 4.407 1.72 0.759 88.2 48.1 8.3 (3.0 4.777 1.133 4.438 1.28 0.557 8.91 45.6 8.4	DATA FOR STRING 7B CORRECTED FOR TEMPERATURE AND INSOLATION BUT NOT CONIC MIRROR QUALITY ANGLE VOC 1SC VMP IMP PMP FILL ORIG TEMP (DEG) (V) (A) (W) FACTOR TEMP ERROR 0.0 5.643.368 4.695.332 1.560 751 48.5 1.6 1.0 5.598 346 4.695.332 1.560 751 49.4 1.1 2.0 5.588 256 4.802 237 1.140 801 49.4 1.1 2.5 5.519 216 4.826 220 0.972 816 49.2 2.0 3.0 5.514 313 4.843 1.65 0.801 840 46.6 1.4 0.0 5.691 367 4.761 330 1.570 752 46.8 0.9 -1.0 5.664 342 4.753 329 1.564 807 47.1 1.5 -2.0 5.587 2.24 4.685 2.70 1.266 370 47.1 1.7 -2.1 5.63 2.284 4.710 240 1.128 794 46.2 3.0 -3.0 5.579 2.01 *4.908 1.74 0.856 7.73 44.5 4.0	
DATA FOR STRING SA CORRECTED FOR TEMPERATURE AND INSOLATION BUT NOT CONIC MIRROR QUALITY ANGLE VOC 1SC VMP IMP PMP FILL ORIG TEMP (V) (A) (V) (A) (W) FACTOR TEMP ERROR 0.0 6.325 4.47 5.229 3.76 1.968 7.73 21.4 3.3 1.0 6.287 4.22 5.191 3.89 2.021 762. 19.8 1.9 2.0 6.248 3.62 5.220 3.35 1.750 7.73 21.4 1.2 2.5 6.255 3.19 5.288 3.01 1.592 7.73 21.4 1.2 2.5 6.255 3.19 5.289 3.01 1.592 7.73 22.1 1.2 3.0 6.228 2.79 5.429 2.60 1.414 815 21.2 1.2 1.2 0.0 6.239 4.16 5.186 3.72 1.929 7.73 22.8 1.7 6.25 3.19 5.384 1.62 0.873 7.94 20.3 1.6 -2.5 6.045 1.37 5.259 1.24 0.650 7.87 21.6 0.6 -2.5 6.045 1.37 5.259 1.24 0.650 7.87 21.6 0.6 -2.5 6.045 1.37 5.259 1.24 0.650 7.87 21.6 0.6 -2.5 6.045 1.37 5.259 1.24 0.650 7.87 21.8 1.1	DATA FOR STRING SB CORRECTED FOR TEMPERATURE AND INSOLATION BUT NOT CONIC MIRROR QUALITY ANGLE VOC 1SC VMP IMP PMP FILL ORIG TEMP (DE6) (V) (A) (A) (W) FACTOR TEMP ERROR 0.0 6.003 384 5.087 3.65 1.856 .804 43.1 0.6 1.0 6.043 381 5.152 3.54 1.826 .794 41.0 0.6 2.0 5.994 3.24 5.156 331 1.606 .827 42.7 0.3 2.5 5.995 2.88 5.155 2.44 1.413 .821 42.4 0.4 3.0 5.968 2.55 5.155 2.42 1.250 .822 42.1 0.7 0.0 6.055 383 5.146 3.64 1.874 809 39.4 2.1 -1.0 6.044 3.57 5.143 334 1.718 7.95 39.3 1.4 -2.0 6.010 2.79 5.250 2.62 1.373 8.20 39.3 1.1 -2.5 6.007 2.28 5.255 2.16 1.37 8.88 38.1 1.6 -2.5 6.007 2.28 5.255 2.16 1.37 8.28 38.1 1.6 -2.0 5.9878 .092 5.363 .087 0.466 .860 37.2 2.9	DATA FOR STRING SC CORRECTED FOR TEMPERATURE AND INSOLATION BUT NOT CONIC MIRROR QUALITY ANGLE VOC 1SC VMP IMP PMP FILL ORIG TEMP (DEG.) (V) (A) (A) (W) FACTOR TEMP ERROR 0.0 5.966 385 5.231 355 1.858 808 40.1 0.6 2.0 5.958 345 5.233 324 1.698 826 39.8 1.0 2.0 5.958 345 5.233 324 1.698 826 39.8 1.0 2.5 6.016 300 5.345 2.233 1.511 838 36.6 1.4 3.0 5.972 2.53 5.354 2.242 1.295 887 37.9 2.1 0.0 5.947 383 5.242 356 1.868 821 41.0 1.5 1.0 5.947 325 5.404 2.35 1.208 883 39.3 0.3 2.5 5.940 352 5.404 2.39 1.77 0.955 849 37.6 1.9 2.5 5.904 131 5.368 1122 0.654 847 33.9 2.9	DATA FOR STRING 5D CORRECTED FOR TEMPERATURE AND INSOLATION BUT NOT CONIC MIRROR QUALITY ANGLE VOC. ISC. WMP IMP PMP FILL ORIG TEMP (DEG) (V) (A) (W) (A) (W) FACTOR TEMP ERROR 0.0 5.829 4.03 4.884 3.40 1.660 7.07 51.0 3.4 1.0 5.839 3.55 4.902 3.02 1.479 7.14 49.2 2.1 2.0 5.782 2.27 4.799 2.40 1.150 7.18 49.0 2.2 2.5 5.782 2.25 4.764 1.188 0.895 6.95 49.5 1.9 2.5 5.788 2.25 4.764 1.188 0.895 6.95 49.5 1.9 2.6 5.786 3.98 4.920 3.38 1.662 7.09 47.5 0.5 2.7 5.869 3.98 4.920 3.38 1.662 7.09 47.5 0.5 2.7 5.873 2.22 4.764 1.18 0.895 6.95 49.3 1.1 2.2 5.864 3.95 4.885 3.46 1.443 7.80 46.3 2.8 2.5 5.873 2.71 4.916 2.57 1.262 7.98 46.9 3.5 2.5 5.832 2.71 4.916 2.57 1.262 7.98 46.9 3.5	SE EIGURE A7 (CONTINUED)
DATA FOR STRING 4A CORRECTED FOR TEMPERATURE AND INSOLATION BUT NOT CONIC MIRROR QUALITY ANGLE VOC 1SC VMP IMP PMP FILL ORIG TEMP (DEG) (V) (A) (V) (A) (W) FACTOR TEMP ERROR 0.0 5.860 4.415 4.883 .367 1.793 .737 32.3 0.7 1.0 5.836 .390 4.842 .352 1.706 .749 33.5 1.4 2.0 5.841 .314 4.986 .298 1.484 .808 31.2 1.5 2.5 5.822 .218 5.228 1.484 .808 31.2 1.5 2.5 5.822 .218 5.228 1.484 .808 31.2 1.5 2.5 5.822 .218 5.235 1.062 .837 28.1 1.6 2.5 781 .379 4.778 .345 1.779 .733 33.5 0.2 1.0 5.781 .379 4.778 .345 1.647 .752 35.6 0.8 2.5 5.711 .262 4.816 .302 1.454 .779 31.1 1.8 2.5 5.771 .262 4.818 .249 1.204 .797 .394 1.9	DATA FOR STRING 4B CORRECTED FOR TEMPERATURE AND INSOLATION BUT NOT CONIC MIRROR QUALITY ANGLE VOC ISC VMP IMP PMP FILL ORIG TEMP (0EG) (V) (A) (W) FACTOR TEMP ERROR 0.0 6.148 4.08 4.915.346 1.701.678 29.7 2.4 1.0 6.091.407 4.832.327 1.579.637 32.8 1.2 2.0 6.012.344 4.803.309 1.483.716 36.3 0.2 2.0 6.012.344 4.803.309 1.483.716 36.3 0.2 2.0 6.012.344 4.803.309 1.483.716 36.3 1.2 2.0 6.012.344 4.803.309 1.703 39.3 31.1 2.0 6.079 4.05 4.922.346 1.703 692 34.4 1.2 1.0 6.104 367 5.154 342 1.765 7.787 33.3 1.1 2.2 6.098 271 5.485 245 1.343 814 31.4 1.2 2.5 6.106 217 5.577 1.94 1.083 818 29.5 1.3 3.0 6.113 1.57 5.667 1.37 0.777 812 26.5 1.4	CD DATA FOR STRING 4C CORRECTED FOR TEMPERATURE AND INSOLATION BUT NOT CONIC MIRROR QUALITY ANGLE VOC 1SC VMP IMP PMP FILL ORIG TEMP (DEC) (V) (A) (V) FACTOR TEMP ERROR (D.6. 6.171 410 5.433 .381 2.073 .820 24.3 2.6 2.8 1.0 6.171 410 5.433 .381 2.073 .820 24.3 2.6 2.6 6.171 410 5.433 .381 1.075 .887 25.5 2.5 3.0 6.119 .287 5.402 .350 1.888 .823 24.3 3.0 2.5 6.134 .331 5.387 1.521 .887 25.5 3.0 6.119 .287 5.566 .341 1.895 .826 27.8 3.0 0.0 6.113 .375 5.566 .341 1.895 .826 27.8 3.0 6.119 .215 5.655 .189 1.073 .812 23.3 4.4 2.5 6.129 .183 5.865 .160 0.909 .809 2.2 0 3.3 3.3 6.121 .151 5.630 .132 0.745 .804 20.4 3.1	DATA FOR STRING 4D CORRECTED FOR TEMPERATURE AND INSOLATION BUT NOT CONIC MIRROR QUALITY ANGLE VOC ISC VMP IMP PMP FILL ORIG TEMP (DEG) (V) (A) (W) FATCH REPROR 0.0 6.199 419 5.399 402 2.171 836 23.9 1.7 1.0 6.240 409 5.422 388 2.106 824 19.9 1.9 2.0 6.172 327 5.535 307 1.702 843 21.9 2.0 2.5 6.120 220 5.561 2.70 1.502 847 24.5 0.4 70 3.0 6.172 405 5.372 385 2.069 828 23.9 1.7 4.0 6.173 382 5.382 1.313 849 26.1 1.3 49 -1.0 6.173 382 5.384 382 1.948 826 23.9 1.7 -2.0 6.137 244 5.529 235 1.300 866 21.9 1.7 -2.5 6.137 244 5.529 235 1.300 866 21.9 1.7 -3.0 6.116 1.58 5.681 1.42 0.806 834 19.6 2.0	QUALITY

NOIL	110N		
CORRECTED FOR TEMPERATURE AND INSOLATION RROR QUALITY (MP MP MP FILL ORIG TEMP (MR MP MP FILL ORIG TEMP (MR MP MP MP FACTOR TEMP (MR MP MP MP FACTOR TEMP (MR MR MP MP MP MP MP MP	INSOLATION TEMP ERROR 3.8 3.2 3.1 0.8 0.8 0.5 0.5 1.1		
IRE AND ORIGE TEMP TEMP 38.5 38.5 38.5 38.0 38.0 38.2 38.2 38.2 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5	ORIGORIO ORIGO ORIGINA		
4PERATU F11L FACTOR 733 757 823 823 823 717 717 685	F11L F11L 789 .789 .787 .787 .771 .771 .791 .800 .812 .767		
FOR TEI TY PMP (W) 1.727 1.655 1.480 0.989 0.989 0.989 1.727 1.570 1.570 1.570 0.610	STRING 2D2 CORRECTED FOR TEMPERATURE AND IN COLIC MIRROR QUALITY () (A) (Y) (A) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M		
ECTED (UAL) IMP (A) .345 .337 .228 .312 .343 .312 .253 .312 .253 .312	ECTED QUALLIMP (A) 1370 1370 1370 1370 1370 1370 1370 1370		
C CORRECTED WIRROR QUALITY (V) (A) 5.006 .345 5.28 2.28 5.33 .185 5.039 .343 5.008 .35 6.009 .35 6.009 .25 8.28 6.38 6.38 6.38 6.28 6.38 6.38 6.38 6.38 6.38 6.38 6.38 6.3	MIRROR WAR WAR WAR WAR WAR WAR WAR WAR WAR WA		
ING 1D2 CONIC MI 1SC (A) 391 392 392 5.366 4.37 5.302 5.308 5.309 5.300	ING 2C CONIC ISC (A) .396 .392 .337 .293 .231 .394 .342 .217		>
255566666666	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ORIGINAL	PAGE IS
DATA FOR BUT (DEG) (C) (BUT (NEC) (N	OE POOR C	QUALITY
-			~
ATION	INSOLATION TEMP ERROR 1.5 1.0 0.7 0.0 1.3 0.7 0.3	INSOLATION TEMP 0.0 0.0 0.1 0.1 1.5	INSOLATION TEMP 6.5 0.7 1.1 1.1 1.1 1.6 0.5 0.5
INSOL TEMP ERROR 1.9 0.1 0.6 0.3 0.3 0.4 1.7			
ORIG ORIG TEMP 42.2 42.8 41.2 39.8 41.4 47.7 41.4 43.0	TEMPERATURE AND P FILL ORIG 9) 6814 38.5 91 8821 38.5 91 8821 38.3 34.9 6834 37.1 92 8846 37.2 899 846 37.1	TY PMP FILL ORIG (W) FACTOR TEMP 11.746 .802 38.7 11.571 .783 36.2 11.436 .740 37.6 0.856 .746 37.5 0.856 .746 37.5 11.758 .801 38.9 11.758 .801 38.9 11.758 .801 38.9 11.758 .801 38.9	TURE AND THE A
FILL FACTOR 723 . 723 . 665 . 689 . 732 . 732 . 759 . 775	MPERATU F1LL FACTOR .814 .821 .834 .833 .781 .781 .781	FILL FACTOR . 802 . 793 . 791 . 746 . 801 . 801 . 801 . 801 . 801 . 808 . 808 . 808 . 808 . 808 . 808	EMPERATU F 11LL 789 . 789 . 843 . 841 . 787 . 787 . 787 . 787 . 797
FOR TEMPERATURE AND INSOLATION PMP FILL ORIG TEMP (W) FACTOR TEMP ERROR 0.704 .723 42.2 1.9 0.897 .665 42.8 0.6 0.914 .689 41.2 0.1 0.843 .759 41.6 0.3 0.732 .759 41.6 0.3 0.775 .775 45.3 0.1 0.775 .775 47.4 0.3 0.681 .712 43.0 1.7 0.4 0.681 .712 43.0 1.7 0.4 0.421 .743 40.7 2.3	FOR TE ITY (W)	FOR TE PMP PMP (W)	STRING ICZ CORRECTED FOR TEMPERATURE AND TOT CONIC MIRROR QIALLIY 10. (A) (V) (A) (W) FILL ORIG 60. 403 5.251 373 1.956 .789 31.1 31. 389 5.252 3.66 1.920 .805 33.1 15. 285 5.332 330 1.759 .823 33.9 15. 285 5.533 2.84 1.467 .841 32.4 183 .181 5.692 .165 0.937 .852 32.7 885 .406 5.165 0.937 .852 32.7 885 .256 3.38 1.768 .764 36.3 885 .227 3.28 1.271 1.431 .797 37.6 885 .237 5.287 .191 1.008 .709 38.5
CORRECTED IRROR QUALI IMP IMP IMP IMP 1899 243 920 307 952 310 952 310 1071 275 1071 275 1083 251 1083 224 844 204 844 204	ECTED QUAL IMP (A)	XECTED FOR QUALITY MP PR (A) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	RECTED F R QUALIT IMP (A) 373 1373 1373 1373 1373 1376 1376 1376 1
	11C MRROR QUALITY 11C MRROR QUALITY 11C WMP IMP PMP 122 3.441 404 1.39 13.445 3.79 1.30 13.446 3.46 1.19 13.446 3.46 1.19 13.446 3.46 1.19 13.448 3.15 267 0.94 13.43 3.87 1.32 13.43 3.87 1.32 13.43 3.87 1.32 13.43 3.87 1.32 13.43 3.87 1.32	CONIC MIRROR QUALITY ISC WMP IMP (A) (V) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	C2 CORRE WIP NAP NAP NAP NAP NAP NAP NAP NAP NAP NA
ING 108 CONIC M 1SC (A) 2.250 2 2.290 3 2.246 3 2.251 3 2.216 2 2.216 2	TRING 1A2 1 CONIC MI 1 SC (A) (A) (A) 2 (A2) 3 (A) 6 (A6) 3 (A) 6 (A6) 7 (A) 8 (A) 9 (A)	AING 1 CONIC CONIC ISC (A) .363 .334 .365 .263 .365 .366 .366 .366 .367 .368	RING 1 CONIC ISC ISC (A) .403 .389 .350 .285 .285 .285 .285 .298
OR STRIN JI NOT CO VOC I 3.887 .2 3.950 .3 3.952 .3 3.957 .3 3.915 .2 3.882 .2 3.882 .2 3.852 .2 3.852 .2 3.852 .2	NOU~40004440040	ST 9993 997 031 031 031	
DATA FOR BUT I VANGLE V((DEG.) (((DEG.) 2.0 3.2 2.0 3.2 2.0 3.0 0.0 3.2 2.0 3.2 2.0 3.2 2.0 3.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	DATA FOR ANGLE VO (DEG) (V (DEG) (V (DEG) (V (DEG) (V (DEG) (V (DEG) (DE	BUT ANGLE WANGLE WANGLE WOLES (CO.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	DATA FOR BUT I ANGLE V (DEG) 6. 1.0 6. 2.5 6. 3.0 6. 6.0 6. 1.0 6. 2.5 5.
_			
AND INSOLATION RIG TEMP ERROR 18.0 2.2 12.8 3.1 15.6 2.8 15.6 2.8 15.6 3.6 15.6 3.6 15.8 3.5 15.8 3.5 16.9 3.6 17.9 3.5	INSOLATION TEMP ERROR 2.5 2.7 2.7 3.3 3.3 3.9 3.9 3.9 3.3	INSOLATION TEMP ERROR 1.9 1.9 3.7 1.1 1.5 1.7 3.1 4.2 3.2	INSOLATION TEMP ERROR 1.5 2.1 2.7 2.8 2.0 3.0 2.2 3.0 2.1 4.3
	AND DRIG TEMP 45.8 45.8 442.3 441.5 441.9 441.9	AND ORIG 47.0 44.9 44.9 44.6 43.1 43.2 43.9 43.9	E AND ORIG TEMP 41.0 38.7 39.1 41.6 44.5 44.5 44.5 44.5 37.1 37.1
TEMPERATURE MP FILL M) FACIOR 138 .655 134 .697 134 .697 135 .755 138 .760 139 .765 139 .765	MPERATURE FILL FACTOR 776 776 778 763 738 738 860 861 863	TEMPERATURE WP FILL WJ FACTOR 138 708 187 741 964 763 964 763 964 763 964 763 964 763 964 763 964 763 967 706	TEMPERATURE M) FILL M) FACTOR 331 612 339 612 339 612 559 565 502 029 910 625 514 444 182 371
OR TEMPI Y PMP (W) F/ (W) F/ 1.505 1.134 1.134 1.134 1.518 1.518 1.635 1.083 1.083	ECTED FOR TEMP QUALITY IMP PMP (A) 328 1.344 .289 1.155 .248 0.999 .2248 0.999 .325 1.206 .325 1.206 .325 1.206 .325 1.200 0.854 .168 0.501	FOR TEMI PMP (W) 1 1.438 1.187 0.964 0.954 1.024 1.025 1.052	TY PMP (M) 0.931 0.559 0.055 0.055 0.0574 0.307 0.114
	CTED F QUALITIMP (A) .328 .332 .289 .289 .248 .202 .325 .310 .200	ECTED FOR MALEY (UNALITY MMP PM) (M) (M) (M) (M) (M) (M) (M) (M) (M) (CLTED FOR QUALITY PM (A) (M) (A) (M) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A
CORRECTED VMP IMP IMP (V) (A) (V) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	CORR WMP (V) .119 .994 .987 .987 .987 .259	MIRROR VMP (V) 4.918 4.918 5.115 5.102 5.034 4.820 4.830 4.830	9B CORREC MIRROR Q WP (WP 0) 3 (U) 7 3.000 . 7 3.000 . 7 4 2.925 . 4 2.925 . 4 2.949 . 2 2.774 .
TRING 8A C CONIC MIR 1SC V (A) (6 392 4-1 6 391 4-2 2 280 4-2 2 280 4-2 2 280 4-2 3 228 4-3 3 228 4-4 4 144 4-4	NG BE 11SC N 11SC N 1357 357 353 310 326 326 326 326 326 326 326	ING SONIC ISC (A) 348 . 377 . 277 . 277 . 277 . 277 . 277 . 277 . 278 . 324 . 324 . 324 . 295 . 295 . 210	100 100 100 100 100 100 100 100 100 100
NF0~6119988814	OR STR NOT C VOC VOC VOC VOC VOC VOC VOC VOC VOC V	FOR STRICT NOT CCC (V)	NOT
DATA FOR BUT NO	DATA FOR STRI BUT NOT CC ANGLE VOC (DEG) (V) 0.0 4.868 2.0 4.878 3.0 4.885 0.0 4.985 0.0 4.985 1.0 4.919 1.2 4.862 1.3 4.885 1.4 4.885 1.6 4.885 1.6 4.885 1.7 4.885 1.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4	BUTA FE BUTA FE BUTA FE BUTA FE ANGLE ANGLE CO.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	DATA FE BUT ANGLE (DEG) 0.0 2.0 2.5 2.5 3.0 0.0 -2.5 -2.5
		A14	

E1	L
DING NORM PMP 1.00 1.26 1.25 1.25 1.25 1.26 0.41 0.61 0.88 0.88 0.88 0.88	NORM PMPP PMPP PMPP PMPP PMPP PMPP PMPP P
INCLUDING INCLUDING NORM NOR IMP PM 1.00 1.0 1.31 1.2 1.31 1.2 1.31 1.2 1.31 1.2 1.31 1.2 1.31 1.2 1.31 1.2 1.31 1.2 1.31 1.2 1.31 1.2 1.31 1.2 1.31 1.2 1.31 1.2 1.30 1.0 0.40 0.4 0.84 0.8 0.84 0.8 0.84 0.8 0.73 0.7 0.73 0.7 0.09 0.09	INCLUD INCLUD IMP IND
1100NS NORM NORM NORM NORM NORM NORM NORM NORM	DITTONS ONEM INCOMING
ALL CONDI SET TO IMP, AND EFFCY (%) 8 11.48 1 14.41 1 14.41 6 4.35 6 14.35 6 14.35 6 14.35 6 14.35 7 1.38 IMP, OR PM FFCY (%) 7 1.38 1 1.34 1 1.3.44 1 1 13.44 1 1 13.44 1 1 13.44 1 1 12.64 1 1 12.64 1 1 13.60 1 2.64 8 2.60 8 2.60 8 2.60	T CON
OR PMP (W) 1338 135 137 100 100 100 100 100 100 100 100 100 10	NOE SI PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM
RECTED F IMP (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	TLED MAD A MAD A
CORR CORR 1.258 1.258 1.255 1.255 1.255 1.255 1.255 1.355 1.356 1.	MAP IIITY (RECORRES DEGREES DE
RING 2A 18 18 18 18 18 18 18 18 18 18 18 18 18	RRING 2B RQUALI 150 0 DE 150 0 DE
DATA FOR STR CONIC MIRROR NORMALIZED I ANGLE VOC 1.0 6.18 1.0 6.18 1.0 6.18 1.0 6.09 1.0 6.09 1.0 6.09 1.0 6.09 1.0 6.18 1.1 6.18 1.1 6.13 1.2 6.09 1.1 6.13 1.2 6.09 1.1 6.13 1.2 6.09 1.3 6.09	1118 ST
747A T T T T T T T T T T T T T T T T T T T	DATA FO CONIC R NORMALI (000)
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	QQXXQ0-100-100-100-100-100-100-100-100-100-1
L	-
NORM PMP PMP 1.00 12.00	NORM PMP PMP PMP PMP PMP PMP PMP PMP PMP P
INCLUDING NORM NORM IMP PM 1.00 0.30 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.98 1.00 0.	INCLUDING NORM NOR IMP PM 1.00 1.0 1.01 1.00 1.0 1.02 1.00 1.0 0.34 0.93 0.94 0.93 0.35 0.56 0.75 0.69 0.77 0.89 0.89 0.91 0.97 0.90 0.97 0.90 0.97 0.90 0.97 0.90 0.97 0.90
CONDITIONS INC. (**) AND PHP NORH (**) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	110NS NORM NORM 11.00 0.97 0.59 0.71 1.00 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0
L. COND M. AND M. AN	ALL CONDI MP, AND (%) (%) (%) (3) (3) (3) (4) (4) (4) (4) (4) (4) (5) (6) (1) (6) (1) (6) (1) (1) (2) (3) (3) (4) (4) (4) (4) (5) (6) (6) (7) (7) (7) (1) (8) (1) (1) (1) (1) (2) (3) (4) (1) (4) (6) (1) (1) (1) (1) (2) (3) (4) (1) (1) (2) (2) (3) (4) (1) (1) (1) (2) (3) (4) (4) (5) (6) (1) (1) (1) (1) (1) (1) (2) (2) (3) (4) (4) (6) (1) (1) (1) (1) (1) (1) (1) (2) (2) (3) (4) (6) (6) (7) (7) (6) (7)
OR AU (PM) (PM) (PM) (102) (103) (103) (103) (104) (104) (105) (107) (10	NNOR (MA) (MA) (MA) (MA) (MA) (MA) (MA) (MA)
11	RRECTED F (REFLECTA (A) (A) (A) (A) (A) (A) (B) (B) (B) (B) (B) (B) (B) (B
ING 1C CORREC QUALITY (REF 0 0 DEGREES F 0 0 DEGREES F 10 0 DEGREES F 10 0 0 DEGREES F 10 0 0 DEGREES F 10 0 0 0 DEGREES F 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ALITY (R ALITY (R ALITY (R V) PEGREES (V) (V) PEGREES
IRING DR QUAI DR QUAI TO 0 0 TO 0 0 TO 0 0 A65 A65 A66 A66 A66 A66 A66 A70 A71	RRING 1 170 0 D 170 0 D 170 0 D 180 180 180 180 180 180 180 180 180 180
FOR S. MIRRR (V)	MIRR MIRR MIRR MIRR MIRR MIRR MIRR MIRR
DATA FOR STANDERS OF STANDERS	DATA F CONTC NOTE: THE PROPERTY PARKET PARKE
ORIGINAL PAGE IS	
OF POOR QUALITY	NG PMP PMP PMP PMP PMP PMP PMP PMP PMP PM
INCLUDING INCRM NORM IMP PMPP 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.02 0.89 0.92 0.89 0.92 0.89 0.92 0.99 0.99 0.97 0.94 0.94 0.96 0.94 0.96 0.95 0.86 0.95 0.86	LE 000000000000000000000000000000000000
NS INCLUMP IN 100 1 100	INCLUMB INCLUM
DITION. NORM DISCRETE DISCRET	DITTIONS III NORM III 1.00 1.00
LL CON MP AN E	LL CONE EFFC TO (%) 13.51 13.51 13.55 13.55 13.60 13.14 13.14 13.39 13.30 13.3
FOR ALL TANCE STANCE ST	ECTANCE ST TO RISC, IMP, AND IP PMP EFFCY IV (W) (%) 17 2.223 13.51 18 2.203 13.39 18 2.203 13.39 18 2.226 13.53 18 2.226 13.53 19 2.226 13.53 19 2.226 13.53 19 2.226 13.53 19 2.226 13.53 19 2.226 13.53 19 2.226 13.53 19 2.226 13.53 19 2.226 13.53 19 2.226 13.53 19 2.226 13.53 19 2.228 13.50 19 15.29 9.29 19 1.529 9.29 19 1.529 9.29 19 2.226 13.53 19 2.226 13.53 19 2.226 13.53
FOR STRING 1A CORRECTED FOR ALL CONDITIONS IN MIRROR QUALITY (RFFLECTANCE SET TO .7) LIZED TO DEGREES FOR ISC, IMP, AND PMP NOC ISC WM IMP PMP FFFY NORM NOC ISC WM IMP PMP FFFY NORM NOC ISC WM IMP PMP FFFY NORM NOC ISC WM 423 442 1859 13.56 1.00 1.5.08 4.93 4.21 442 1859 13.56 1.00 1.5.05 4.44 4.23 4.45 1.985 14.48 0.98 1.5.07 445 4.39 4.31 1.895 13.83 0.90 0.5.07 475 4.24 4.32 1.832 13.56 0.98 0.5.07 4.75 4.24 3.36 1.58 11.58 0.77 0.5.05 4.48 2.59 1.161 84.7 0.60 0.125 TO THE MAXIMUM OF ISC, IMP, OR PMP WITH ARESPECT TO ISC WMP IMP PMP FFFY NORM NOC ISC WMP IMP PMP FFFY NORM NOC ISC WMP IMP PMP FFY NORM NOC ISC WMP IMP IMP IMP IMP IMP IMP IMP IMP IMP I	RING IB CORRECTED F R QUALITY (REFLECTA TO 0 DEGRES FOR 15 SC VMP (A) (A) (A) (A) (A65 5.21 .427 432 5.21 .427 432 5.40 .368 1350 5.41 .435 444 5.21 .424 444 5.21 .437 445 5.18 418 (A) (V) (A) (A) (V) (A) (A) (V) (A) (A) (V) (A)
1A CORI DEGREE (W) (W) (W) (W) 4.21 4.23 4.24 4.24 4.25 (W) (W) (W) (W) (W) (W) (W) (W) (W) (W)	18 CORR ELLITY (CVP VGRE ELLITY (CVP VGR
TRING QUAL QUAL QUAL QUAL QUAL QUAL QUAL QUAL	GTV DATA FOR STRING I MORMALIZED TO 0 DANGLE VOC ISC (DEG) (V) (A) 0.0 6.09 465 1.0 6.09 465 1.0 6.09 465 1.0 6.09 470 4.0 6.09 470 4.0 6.09 470 4.0 6.09 470 4.0 6.09 4.00 6.09 4.00 6.09 4.00 6.00 4.00 4
DATA FOR ST CONIC MIRRO NORMALIZED ANGE (V) 0.0 4.98 1.0 5.08 2.0 5.07 3.0 5.07 -2.0 5.03 -2.5 5.02 -2.5 5.02 -2.5 5.02 -2.5 5.02 -2.5 5.02 -2.5 5.02 -2.5 5.03 -2.0 5.03 -1.0 5.04 -1.0 5.04	ALIZED (V) (V) (V) (V) (O) (O) (O) (O) (O) (O) (O) (O
DATA NORM NORM 100 100 100 100 100 100 100 100 100 10	ANGER
	M19

NORM PMP 0.95 0.95 0.94 0.96 0.95 0.85 0.85

NORM 1.00 0.98 0.92 0.98 0.98 0.98 0.98

EFFCY (%) 12.86 13.47 12.68 11.28 11.28 12.29 11.45 9.14

	_
ING WORM 1.00 1.00 1.00 1.10 1.11 1.00 0.32 0.32 0.32 0.17 0.98 0.98 0.99 0.92 0.92 0.93 0.93 0.93	NORM PMP PMP PMP PMP PMP PMP PMP PMP PMP P
INCLUDI INCLUDI INP IND IND IND IND IND IND IND IND IND IND	NORM I MP 11.02 11.02 0.03 0.03 0.97 0.90 0.70 0.34
ITONS ITONS ITONS ITONS ITONS ITONS ITONS ITONS ITONS ITON ITON ITON ITON ITON ITON ITON ITON	PMP NORM 1 1SC 11.00 11.00 0.90 0.90 0.70 0.70 0.70 0.36 0.36
No. 10 and 10 an	ET 10
A STANDARD	MCC SET (MP) (MP) (MP) (MP) (MP) (MP) (MP) (MP)
PMP PNR 2.004 PNR	I S S S S S S S S S S S S S S S S S S S
RRECTED (REFLECES FOR IM) (M) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	(REFLER) IMP (A)
ALITY OF GREEN CONTRACT OF CON	MP (V)
TRING 1 SC (AS) (A	12C QU D TO QU
FOR S ALIZED VOC (V) 66.05 66.08 66.08 66.04 FESPI RESPI RESPI RESPI 60.05	AL MIR AL MIR VOC 5.89 5.99 5.99 5.93 5.93 5.83 5.83 5.83 5.83 5.83
DATA CONTA CONTA ANGLE COE D.0 D.0 D.0 DATA CONTA DATA CONTA DATA CONTA DATA CONTA DATA CONTA DATA DATA	ANGRI PAR 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ING PWRP PWRP 1.00 1.04 1.00 0.57 0.57 0.45 0.17 RESET PMP PMP PMP PMP PMP PMP PMP PMP PMP PM	NORM PMP 1.00 0.59 0.23 0.23 1.01 0.98 0.62 RESET
INCLUDI INCLUD	CC C C C C C C C C C C C C C C C C C C
1100S 11 PMP NORM N NORM N 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.19 0	100 1 100 1
0 0	F. T. CO. C.
□S₹	
CTANCE (CTANCE	ELT TOK AN
RRECTE (REFLEE IMP (1MP (356 (356 (358 (188 (188 (198 (1	(REFLE (REFLE (REFLE (REFLE (REFLE (REFLE (REFLE (REFLE (REFLE (REFLE) (REFLE (REFLE (REFLE (REFLE) (REFLE (REFLE) (REFLE (REFLE) (REFLE (REFLE) (REFLE (REFLE) (REFLE) (REFLE) (REFLE (REFLE) (REFLE
3A CO VMP VMP VMP VMP VO VMP VO VMP VMP VMP VMP VMP VMP VMP VMP	AMITY (A) 18 (A)
TRING (A)	ROR QUI ROR QUI D ISC 0 ISC (A) -427 -427 -445 -445 -445 -393 -291 D TO T
ALIZED TG WIRROR 18/00 TG WIRR	CONIA PUR SIR NORMALIZED T NORMALIZED T NOEG (V) (0.0 6.27 1.0 6.28 2.0 6.24 3.0 6.24 1.0 6.29 -1.0 6.29 -2.0 6.32 -2.0 6.32 -2.5 6.31 -3.0 6.31 -3.0 6.33 -3.0 6.33 -3.0 6.34
DATA FOR CONIC MILE VOC MILE V	DONING NORMAN NO
DING MORM PMP 1.00 0.96 0.66 1.00 1	M 00 11 SET SET
- 4	NORM NORM NORM NORM NORM NORM NORM NORM
	·^ ====================================
EFFCY (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	FOR ALL CONDI 15A, CE SET TO 15A, CE SET TO PMP EFFCY (W) (%) 2.298 13.97 2.298 13.97 1.915 11.64 1.660 10.09 1.181 7.18 2.220 13.49 2.053 12.48 1.931 11.74 1.931 11.74
FOR ALL STANCE S ISS., IM PMP PMP PMP PMP PMP PMP PMP PMP PMP	PMP (W)
CORRECTED FOR ALL GREES FOR ISC, 11 MP IMP PMP V) (A) (W) V) (A) (W) V) (A) (W) V) (A) (B) (B) (B) (B) (B) (B) V) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	2 2D CORRECTED DOLORE CITY (REFLEC ODLITY (REFLEC OTL) (V) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A
C CORP. (VMP (FR E 19) (VMP (FR E 19) (VMP (VMP E 19) (1177 (VA) VVA) VVA) VVA) 55.19 55.28 55.25 55.25 55.25 55.25 55.25 55.25
RING 2 R QUAL 10 0 DL 15C (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	RING 2 R QUAL 170 0 D 180 0 D 1476 .476 .405 .354 .257 .474 .410 .300
DATA FOR STRING 2C CONIC MIRROR QUALING MIRROR QUALING MIRROR QUALING MIRROR QUALING MIRROR CONIC MIRROR CONI	MIRRO MIRRO 11ZED 70C 70C 7.08 7.09 7.00 7.00 7.00 7.00 7.00 7.00 7.00
DATA FE CONIC P (CDE) (C	AND
A STATE OF THE STA	A16 *=

OF POOR QUALITY

	.	-
	NORM PHO	NORM NORM NORM NORM NORM NORM NORM NORM
	INCLUDING NORM NOR IMP PM IMP PM IMP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 IMP PM I	INCLUDING INCRM NORM INCRM NOR I 1.00 1.0 0.95 0.9 0.82 0.8 0.82 0.8 0.85 0.9 0.80 0.8 0.80 0.8 0.80 0.8 0.90 0.9 0.90 0.9 0.00 0.9 0.90 0.9 0.90 0.9 0.90 0.9 0.90 0.9
	110NS 17) 10NS 1SC 1SC 1.04 0.97 0.97 0.38 0.39 0.39 0.39 0.39 0.39	100 PMP 100 PM
	EFFCY N (%) 11.55 0 11	EFFCY NO PHP OF PROPERTY OF P. AND PROPERTY NO PHP OF PROPERTY NO PHP
	FOR ALL CONDITANCE SET TO PMP EFFCY (W) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	ALC (May
	TSC. (1757-1757-1757-1757-1757-1757-1757-1757	ECTANCE SET TO PMP EFFCY PMP EFFCY (W) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
	RECTEE (REFLECTEE STORY (A)	TIMP IN THE COLUMN TO THE COLUMN
	5A CORRECTION OF	178 COV WAP COV
	489 911 45 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	000 000 000 000 000 000 000 000 000 00
	A FOR STRING WALLIZED TIC MIRROR WALLIZED TO TIC MIRROR IS (V) (V) (A) (V) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	FOR STATES OF ST
	DATA NORMA ANGLE (DEG) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	DATA PART NO P
		40 1111 401 11111
	EG00840086788	TA 200 01 00 01 00 00 00 00 00 00 00 00 00 0
	INCLUDING NORM NORM NORM 1.00 1.00 1.14 1.10 1.00 1.00 1.05 0.57 0.55 0.57 0.55 0.57 NORM NORM NORM NORM NORM NORM 1.00 1.00 1.00 1	INCLUDING NORM NORM NORM NORM NORM NORM NORM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
		-
	DITTIONS 7 7 100RM 15C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	CONDITIONS T TO . 7) FFCY NORM FFCY NORM 5.73 1.00 6.83 1.01 7.94 0.71 7.95 0.83 7.94 0.71 7.95 0.83 7.96 0.97 7.97 0.99 7.97 0.99 7.97 0.99 7.97 0.99 7.97 0.99 7.97 0.99 7.97 0.99 7.97 0.99 7.97 0.99 7.97 0.99 7.97 0.99
	A TOO TO	EFFCY (%) 14.79 11.56 11
	FOR ALL FANCE SE: (SC, IMP) EIG (N) (SC, IMP) EI	MCE SE MAD E MAD E M
<i>5</i> 0 ∖	LECTARION ISSUES SERVICE SERVI	22211222111
E IS LITY	CORRECT STATE OF STAT	(REFLEE (REFLEE IMP (M) 0 .451 2 .4383 3 .313 3 .31
PAGE IS QUALITY	TRING 4C CORRECTED OR QUALITY (REFLEC) TO 0 DEGREES FOR 1 INP	AMD NAME NAME NAME NAME NAME NAME NAME NAME
AL R G	STRIN ROW 10 150 150 140 140 140 140 140 140 140 14	STRING 4 TO 0 C TO 0
ORIGINA OF POOR	DATA FOR STRI CONIC MIRROR NORMALIZED TO ANGLE VOC 1S (006) 6.18 (4) 0.0 6.17 (4) 2.5 6.18 (3) 3.0 6.12 (3) 3.0 6.12 (2) 2.5 6.14 (2) 2.5 6.14 (2) 2.5 6.14 (2) 2.5 6.14 (2) 2.5 6.14 (2) 3.0 6.12 (2) 4.00 6.11 (4) 1.0 6.16 (4) 1.0 6.16 (4) 1.0 6.16 (4) 1.0 6.11 (4) 2.0 6.11 (3) 2.0 6.12 (3) 2.0 6.11 (3) 2.0 6.11 (3) 2.0 6.11 (3) 2.0 6.11 (3) 2.0 6.11 (3) 2.0 6.11 (3) 2.0 6.11 (3) 2.0 6.12 (2) 2.1 (4) 2.1 (4) 2.1 (4) 3.2 (5) 3.3	CONIC MIRROR NURMALIZED TO ANGLE VOC [15] ANGLE VOC [15] OLO 6.20 4 1.0 6.17 4 1.0 6.17 4 1.0 6.17 4 1.0 6.17 4 1.0 6.17 4 1.0 6.17 4 1.0 6.17 4 1.0 6.17 4 1.0 6.17 4 1.0 6.17 4 1.0 6.17 4 1.0 6.18 1.0 6.18 1.0 6.18 1.0 6.20 1.0 6.20 1.0 6.20 1.0 6.20 1.0 6.20 1.0 6.20 1.0 6.20 1.0 6.20 1.0 6.20 1.0 6.17 1.0 6.17 1.5 6.12 1.0 6.17 1.0 6.12 1
OR Or	DATA CONTROL OF THE PROPERTY O	DATA NOISE NOISE (DEG) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
	·-·	
	500000400000 FF00000400000	E400//00/00/00 F400/00/00/00/
	## ## ## ## ## ## ## ## ## ## ## ## ##	LLUC 00000000000000000000000000000000000
	NNS INCLL IMP NORM NORM NORM 1.00 1.0	INCLUMENT INCLUM
	MORPO	CONDITIONS AND PMP AND PMP (1.0.7) S9 1.00 (1.0.9) (1.
	(%) AN (%	11. CONN 11. S9 11.
	AMCE 48 SC, IN PMP PMP C (10) 1.972 1.083 1.083 1.093 1.093 1.097 1.003	ECTANCE SET TO PRINCE SET TO S
	EFLECT IMP (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	(REFLECTA F IS I I I I I I I I I I I I I I I I I
	DATA FOR STRING 4A CORRECTED FOR ALL CONDITIONS INC CONIC MIRROR QUALITY (REFLECTANC STT 10 7) NORMALIZED TO DEGREES FOR ISC, IMP, AND PMP ANGLE VOC ISC WMP IMP PMP EFFCY NORM NOF COLO 5.86 4.66 4.88 412 2.010 12.0 1.10 1.0 5.84 451 4.84 407 1.972 11.99 0.97 0.97 2.0 5.84 322 4.99 3.71 1850 11.24 0.84 0.62 0.63 3.0 5.79 222 5.28 2.66 1.403 8.53 0.48 0.62 1.0 5.78 438 4.78 399 1.994 12.12 1.00 1.10 1.0 5.81 401 4.82 376 1.891 11.02 0.86 0.52 2.5 5.77 346 4.84 329 1.591 9.67 0.74 0.62 2.5 5.77 346 4.84 329 1.591 9.67 0.74 0.62 2.5 5.77 346 4.84 329 1.994 11.12 0.04 0.57 2.6 5.77 346 4.84 329 1.994 11.27 0.04 0.57 2.7 5.70 4.94 2.23 1.102 6.70 0.49 0.57 2.8 5.77 346 4.84 329 1.591 9.67 0.74 0.62 2.9 5.77 346 4.84 412 2.010 2.22 1.00 1.00 2.8 6.466 4.88 412 2.010 12.22 1.00 1.00 2.8 6.466 4.88 4.07 1.972 11.99 0.97 0.97 2.0 5.84 456 4.88 4.07 1.972 11.99 0.97 0.97 2.0 5.84 466 4.88 4.07 1.972 11.97 0.94 0.97 2.0 5.84 466 4.88 4.09 1.994 12.12 1.00 0.97 2.0 5.84 466 4.88 4.09 1.994 12.12 1.00 0.97 2.0 5.84 466 4.88 4.09 1.994 12.12 1.00 0.97 2.0 5.84 466 4.88 4.78 3.99 1.904 11.57 0.94 0.97 2.0 5.84 466 4.88 4.78 3.99 1.904 12.12 1.00 0.97 2.0 5.84 466 4.88 4.78 3.99 1.904 12.12 1.00 0.97 2.0 5.84 466 4.88 4.78 3.99 1.904 12.12 1.00 0.97 2.0 5.84 466 4.88 4.78 3.99 1.904 12.12 1.00 0.97 2.0 5.84 466 4.88 4.78 3.99 1.904 12.12 1.00 0.97 2.0 5.84 466 4.88 4.78 3.99 1.904 12.12 1.00 0.97 2.0 5.84 466 4.88 4.78 3.99 1.904 10.97 0.74 0.88 2.0 5.77 3.46 4.88 3.29 1.591 9.67 0.74 0.88 2.0 5.77 3.46 4.88 3.29 1.591 9.67 0.74 0.88 2.10 5.77 3.46 4.84 3.29 1.591 9.67 0.74 0.89 2.10 5.77 3.46 4.84 3.29 1.591 9.67 0.74 0.89 2.10 5.77 3.46 4.84 3.29 1.591 9.67 0.74 0.89 2.10 5.77 3.46 4.84 3.29 1.591 9.67 0.74 0.89	LONIC MIRROR QUALITY (REF ANGRALIZED TO DEGREES FORMALIZED TO THE 4.90 133 1.0 6.10 4.24 4.92 135 1.0 6.10 4.35 5.15 135 13.0 6.11 2.286 5.57 13.0 6.11 2.286 5.57 13.0 6.11 2.286 5.57 13.0 6.11 2.286 5.57 13.0 6.11 2.286 5.57 13.0 6.11 2.286 5.57 13.0 6.11 2.286 5.57 13.0 6.11 2.286 5.57 13.0 6.11 2.286 5.57 13.0 6.11 2.286 5.57 13.0 6.11 2.286 5.57 13.0 6.11 2.286 5.57 13.0 6.10 6.15 4.58 4.92 13.0 6.00 6.15 4.58 4.92 13.0 6.00 6.15 4.58 4.92 13.0 6.00 6.15 4.58 4.92 13.0 6.00 6.15 4.58 4.92 13.0 6.00 6.15 4.58 4.92 13.0 6.00 4.25 5.15 13.0 6.10 13.7 5.48 13.0 6.10 13.7 5.48 13.0 6.10 13.7 5.67 11.0 6.11 2.286 5.58 12.0 6.10 12.286 5.58 12.0 6.10 13.37 5.48 13.0 6.10 13.15 5.67 11.0 6.11 2.286 5.58 12.0 6.10 1.286 5.58 12.0 6.10 1.286 5.58 12.0 6.10 1.286 5.58 12.0 6.10 1.286 5.58 12.0 6.10 1.286 5.58 12.0 6.10 1.286 5.58 12.0 6.10 1.286 5.58 12.0 6.10 1.286 5.58 12.0 6.10 1.286 5.58 12.0 6.10 1.286 5.58 12.0 6.10 1.285 5.67 11.0 6.10
	ING 4A QUAL IA QUAL	NG 48 QUALI QUALI QUALI O DE V V V V V V V V V V V V V V V V V V V
	R STRING NO. 10 10 10 10 10 10 10 10 10 10 10 10 10	TRANSTANDO DE CONTROL
	MALI MALI C MALI	TARALIZA (VOC. 00 00 00 00 00 00 00 00 00 00 00 00 00
	A M M M M M M M M M M M M M M M M M M M	400 NAC
	The second secon	

	_	E
	NORM PMP 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.0	NORM PMP PMP PMP PMP PMP PMP PMP PMP PMP P
	INCLUDING NORM NOR IMP PM IMP PM IMP 0.97 0.9 0.97 0.99 0.8 0.98 0.8 0.6 0.58 0.6 0.58 0.6 0.58 0.6 0.58 0.6 0.58 0.6 0.58 0.6 0.58 0.0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99	INCLUDING NORM NORM IMP PM 1.00 1.0 0.10 0.10 0.73 0.8 0.61 0.6 0.61 0.6 0.91 0.9 0.91 0.9 0.91 0.9 0.91 0.9 0.91 0.9 0.91 0.9 0.91 0.9 0.91 0.9 0.91 0.9 0.91 0.9 0.91 0.9 0.93 0.6
	TIONS 17) PMP NORM ISC 10.09	MORM ISSENTING I
	LL CONDI 4P, AND EFFCY (%) 11.95 11.06 10.46 8.30 7.31 11.05 1	L CONDIT L C
	OR ALL NCE SE (C, IMP) (W) (W) (W) (S) (W) (S) (W) (W) (W) (W) (W) (W) (W) (W) (W) (W	OR ALL OR ALL OR ALL OR
	ECTED F EFLECTA FOR ISS IMP (38) (38) (38) (37) (37) (37) (37) (37) (37) (37) (38) (38) (4) (7) (8) (8) (9) (10	7B CORRECTED FOR ALL CONDIT (117) (REFLECTANCE SET 10) DEGREES FOR ISC, IMP, AND PWP EFFCY IN (W) (A) (W) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A
	TY (REE EGREES WAP III (V)	CORRES CO
	RING 7A R QUALI 10 0 DE ISC V (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	110.0 QU QU QU QU QU QU QU QU QU QU QU QU QU Q
	MIRROR (V) ((V) ((V) ((V) (V) (V) (V) (V) (V) (MINIO (000) 100 100 100 100 100 100 100 100 100
	DATA F CONIC NORMAL VANGE V V V V V V V V V V V V V V V V V V V	DATA F CONIC CONIC CONIC (DEG) (0.0) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
	NORM PMP PMP PMP PMP PMP PMP PMP PMP PMP P	NORM PMP PMP 11.00 0.92 0.63 0.45 11.00 0.90 0.81 0.77 0.63 0.45 11.00 0.90 0.90 0.90 0.90 0.90 0.90 0.9
	NCLUG ORM 1 IMP 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	INCLUDING NORM NOR 1.00 1.0 0.52 0.9 0.52 0.9 0.52 0.0 0.53 0.6 0.41 0.4 1.00 1.0 0.91 0.9 0.81 0.8 0.72 0.7 0.70 0.7 0.70 0.7 0.70 0.7 0.70 0.7 0.70 0.7 0.70 0.7 0.70 0.7 0.70 0.7 0.70 0.7 0.70 0.7
	110NS 1.710NS 1.710NS 1.710NS 1.710NS 1.710NS NORM NORM NORM NORM NORM NORM NORM NORM	MMP
IS	EFFCY NU EFFC	ET TO
PAGE IS QUALITY	ED FOR ALL CONDITIONS I ECTANCE SET TO 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FOR ALL CONDITANCE SET TO
ORIGINAL PAGE OF POOR QUALIT	FECTED FF	CTED MMP MMP MMP MMP MMP MMP MMP MM
JGINAI POOR	A CORRELEGE (REFERENCE) (V) ((V) ((V) (V) (V) (V) (V) (V) (V)	ALITY (REFLEC DEGREES FOR WP IMP (V) 4.68 .394 4.68 .394 4.70 .361 4.72 .392 4.72 .392 4.72 .392 4.72 .394 4.67 .358 4.67 .358 4.72 .399 4.67 .399 6.09 .283 5.09 .162 4.72 .399 4.72 .399 6.09 .283 5.09 .283 4.68 .394 4.70 .361 4.70 .361 4.70 .361 4.70 .361 4.70 .363 4.72 .392 4.72 .393 4.72 .394
ORI OF	9_6	~ ~ ~
	MIRROR MIRROR MIRROR 100 100 100 100 100 100 100 100 100 10	MIRROR MI
	DATA FOR STRING CONIC MIRROR (NORMALIZED TO CONIC MIRROR (NO (A)	DATA FOR STRING CONIC MIRROR QUANCHLIZED TO 0 ANGLE (V) (N) (O) 5.76 (-10) 0.0 5.76 (-10) 0.0 5.78 (-10) 0.0 5.78 (-10) 0.0 5.81 (-10) 0.0 5.81 (-10) 0.0 5.81 (-10) 0.0 5.81 (-10) 0.0 5.81 (-10) 0.0 5.81 (-10) 0.0 5.81 (-10) 0.0 5.81 (-10) 0.0 5.81 (-10) 0.0 5.81 (-10) 0.0 5.81 (-10) 0.0 5.81 (-10) 0.0 5.81 (-10) 0.0 5.78 (-10) 0.0 5.78 (-10) 0.0 5.79 (-10) 0.0 5.79 (-10) 0.0 5.74 (-10) 0.0 5.79 (-10) 0.0 5.
	117788811888 SET	E900444004780
	INCLUDING NORM NOR IMP PM IMP PM 11.00 1.0 0.94 0.9 0.94 0.9 0.95 0.90 0.70	INCLUDING NORM NOR IMP PW 1.00 1.00 0.52 0.9 0.78 0.7 0.97 0.9 0.97 0.9 0.97 0.9 IMP PW IMP
	ν <u>Ε</u>	TIONS IN TO SERVE TO
	L CONDITIONS FF, AND PAP FF, AND PAP (%) 12.70 13.70 13.70 10.83 12.13 10.92 110.83 10.92 110.83 10.92 110.83 10.92 110.83 10.92 110.83 10.92 110.83 10.90 110.83 10.90 110.83 10.90 110.83 10.90 110.83 110.93 110.93 110.93 110.93 110.93 110.93 110.93 110.94 110.95 110.96 110.	EFFCY NORM EFFCY NORM (%) 13.9 0.91 11.32 1.00 11.32 0.06 7.48 0.69 11.32 1.00 11.32 1.00 11.32 1.00 11.32 1.00 11.32 1.00 11.32 1.00 11.32 1.00 11.32 1.00 11.32 1.00 11.32 1.00 11.33 0.99 10.99 10.39 0.90 8.72 0.65 7.20 0.65 7.20 0.65 7.20 0.65 7.30 11.31 0.99 11.33 0.90 11.33 0.70 11
	ED FOR ALL CONDITED FOR TO TO THE TO TO THE	D FOR ALL CONDITIONS (MP, AND FIFTY PMP EFFTY PMP EFFTY PMP EFFTY PMP EFFTY PMP EFFTY PMP EFFTM PMP EMP EMP EMP EMP EMP EMP EMP EMP EM
	FED FOR INC. 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1	ECTED FOR INP PR (A)
	SC CORRECTED DIGRES FOR II	ITY (REFLECTANCE SET 1174 (REFLECTANCE SET 1174 (REFLECTANCE SET 1174 (MP 174 17
	10 C C C C C C C C C C C C C C C C C C C	
	DATA FOR STRING SC. CONIC MIRROR QUALITION ON OPERALIZED TO DEC. ANGLE VOC 10.0 5.96 .430 5.10 5.96 .430 5.25 6.02 .396 5.30 6.30 6.30 6.30 6.30 6.30 6.30 6.30 6	WECONIC MIRROR GUAGE TO BE CONTROLLE WITH THE CONTROLLE WITH WITH RESPECT TO ANGLE WITH RESPECT TO ANGLE WITH RESPECT TO ANGLE WITH WITH RESPECT TO S. 83 452 2.0 5.84 410 3.0 5.78 345 410 5.89 345 410 5.89 345 5.74 2.27 4.0 5.81 335 5.74 2.27 4.0 5.81 335 5.74 2.27 4.0 5.88 335 5.74 2.27 4.0 5.81 335 5.74 2.27 4.0 5.88 335 5.74 2.27 4.0 5.88 335 5.74 2.27 4.0 5.88 335 5.74 2.27 4.0 5.88 335 5.74 2.27 4.0 5.88 335 5.74 2.27 4.0 5.88 335 5.74 2.27 4.0 5.88 335 5.74 2.27 4.0 5.88 335 5.74 2.27 4.0 5.88 335 5.74 2.27 4.0 5.88 335 5.74 2.27 4.0 5.88 335 5.74 2.20 5.81 335 5.74 2.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20
	MATA FOR MAT	ATA FOR ALL ALL ALL ALL ALL ALL ALL ALL ALL AL
	922500000000000000000000000000000000000	VIS :

	_ L		
	INCLUDING ORM NORM 1MP PMPP .00 1.00 .30 1.31 .42 1.45 .33 1.41 .18 1.28 .33 1.41 .19 1.29 .99 0.96 .19 0.96 .17 0.66 ANGLE RESI	PMP 0.77 0.95 1.00 0.95 0.86 0.91 0.91 0.76	INCLUDING ORM NORM ORM 1MP PMP 0.00 1.00 1.00 1.00 1.97 0.93 1.81 0.83 1.89 0.99 1.89 0.99 1.99 0.99 1.99 0.99 1.99 0.99 1.99 0.99 1.99 0.99 1.99 0.99 1.99 0.99 1.99 0.99 1.99 0.99 1.99 0.99 1.99 0.99 1.99 0.99 1.99 0.99
		NORM IMP 0.78 0.96 1.00 0.91 0.81 0.87 0.86 0.79	NORM IMP 1.00 0.97 0.95 0.95 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
	ITTIONS (7) PMP NORM ISC 150 1.40 1.41 1.00 1.00 1.00 1.00 1.00 1.0	NORM 1SC 0.75 0.99 0.90 0.80 0.78 0.78	100 100 100 100 100 100 100 100 100 100
	See and an an an an an an an	(%) 7.42 0 9.17 0 9.17 0 9.17 0 8.30 0 8.81 0 8.54 0 7.31	LL CONDITION PM
	ALL CC IMP, AN IMP, AN		ED FOR ALL COND ECTANCE SET TO ISC, IMP, AND WW (%) I.558 14.21 I.558 14.21 I.558 14.21 I.558 13.72 I.448 13.53 I.448 13.53 I.475 13.45 I.370 12.49 I.370 12.49 I.370 12.49 I.370 12.49 I.558 14.21 I.558 I.558 I.558 I.475 II.588 I.475 II.588 I.475 II.588 I.475 II.588 I.578 II.598 I.578 II.598 II.598 II.5
	ECTANCE : ISC, IMP (M) 0.789 (M) 0.789 (M) 0.789 (M) 0.789 (M) 0.789 (M) 0.882 (M) 0.895 (M) 0.767 (M) 1.101 (M) 1.005 (M) 1.0	PMP (W) (W) 0.813 1.005 1.005 1.006 0.912 0.916 0.936	F 1 1.5 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	RECTE (REFLE (REFLE (A) 1MP (A) 1355 1355 1355 1359 1361 1361 1361 1361 1361 1361 1361 136	IMP (A) .281 .344 .358 .328 .291 .291 .309 .282	
	MALITY (RALITY (RALITY (RALITY (RALITY (N) (V) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	(V) 2.90 2.92 3.07 3.13 3.03 3.08 2.84	QUALITY (REFLO DEGREE S FOR VMP (MP (MP (MP (MP (MP (MP (MP (MP (MP (
	NG 0000 0000 0000 0000 0000 0000 0000 0	22333343333 2233333433333 2033333433333	NING 1/2 OR QUAR QUAR QUAR QUAR QUAR QUAR QUAR QUA
	MIRR ST. (C. C. C	70 93 93 93 93 93 93 93 93 93 93 93 93 93	A FOR STRING 1 VIC MIRROR QUA ALIZED TO 0 E VOC ISC (V) A73 4.03 .451 4.03 .431 4.04 .472 4.01 .384 4.03 .402 4.01 .384 4.04 .473 4.04 .473 4.04 .473 4.04 .473 4.03 .484 4.03 .484
	DATA FO CONIC CONIC CONIC NORMALI NORMALI NO GOO 3 (1) (1) (1) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		DATA NORMAL NORM
	D N N O O O O O O O O O O O O O O O O O		AN A
SI 7	P P P P P P P P P P P P P P P P P P P	ギケのやでとすのと4で と	. #G044160668488
PAGE 13	INCLUDING NORM NORM INP PMP 1.00 1.00 0.36 0.35 0.72 0.34 0.32 0.34 1.00 1.00 0.78 0.77 1.00 0.95 0.91 0.77 1 ANGLE RESI	NORM PMP PMP PMP PMP PMP PMP PMP PMP PMP P	INCLUDING NORM NORM NORM NORM NORM NORM NORM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
1.3	—	IMP IMP 1.00 0.72 0.72 0.32 0.97 0.97 0.96	NORM IMP I
INA	1110NS 7 7 7 7 7 7 1 10NS 11 10 1 10 10 10 10 10 10 10 10 10 10 10	NORM ISC 11.00 0.82 0.52 0.37 0.99 0.96	NORTH
Original page of poor qualit	FOR ALL CONDITIONS ISC, IMP, AND PMP PMP EFFCY NORM (%) ISC (M) INTICIPATION ISC (M) INTICIPATION INTICIPATION ISC (M) INTICIPATION INTICIPA	EFFCY (%) 9.80 8.34 7.31 5.06 9.70 7.19 9.24 8.45 7.50	L COND EFF CV EFF CV (%) 9.51 9.51 9.00 9.00 9.00 9.00 9.60 9.60 9.60 9.60
c 5	FOR ALL SE SC, IMP E (W) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M	PMP E (W) 1.612 1.372 1.202 0.833 0.542 1.596 1.183 1.520 1.235 1.235	OR ALL INCE SE PMP E PMP
	ED FO ECTAN P P P P P P P P P P P P P P P P P P P	585 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	TAN 14000100001 1100010000
	RRECTED (REFLECT (REFLECT IMP (A) (A) (A) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	MA W 2 2 2 1 1 E 2 E 2 E 2 E	A M M M M M M M M M M M M M M M M M M M
	ALLITY (RE DEGREE'S VMP II (WP	VMP (V) (V) (V) (V) (V) (V) (V) (V) (V) (V)	ALITY ((V) 13.01 3.01 3.01 1.80 (V) 4.01 1.80 (V) 3.01 3.01 1.80 (V) 4.01 1.80 (V) 4.0
		180 (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	MIRROR QUALITY IZED TO DEGRE OC ISC WP V (A) (A) (A) (B) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A
	FOR S (VOC (VOC (VOC (VOC (VOC (VOC (VOC (VOC	55.83 55.83 55.83 55.83 55.83 55.83 55.84 55.86	A FOR S A LIZE A LIZE A LIZE A LIZE B 3 3 96 3 3 96 3 3 96 A LIZE A LIZE B 3 3 96 B 3 96
	DATA FOR ST CONIC MIRRO NORMALIZED ANGLE VOC (DEG) (V) 0.0 5.77 1.0 5.77 3.0 5.83 2.5 5.87 3.0 5.88 0.0 5.88 -1.0 5.90 -2.5 5.84 -2.5 5.84 -2.5 5.84	ANGLE (DEG) 0.0 0.0 1.0 2.5 3.0 0.0 -2.5 -2.5 -3.0	DATA FOR CONIC MILES AND
	NORM PMP PMP PMP PMP PMP PMP PMP PMP PMP P	MORM PMP 0.99 0.99 0.083 0.068 0.068 0.097 0.79 0.73	NORM PMP PMP PMP PMP PMP PMP PMP PMP PMP P
		E400000000480	11
	(10NS 1) 1	N N N N N N N N N N N N N N N N N N N	ITIONS IN NORM NO 11.00
	ONDIT	25 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CONDITIONS AND PMP AND PMP AND PMP (CV NORM) (CV O) 100
	ALL CALL CALL CALL CALL CALL CALL CALL	EFF 7 10. 7 10. 8 10. 8 10. 8 10. 8 2 7 7 7 8 8 10. 8 10. 8 3 5 8 8 10.	ALL COMMISSET TO IMP, AND IMP, OR IMP,
	PMP (W) 1.68 1.68 1.68 1.68 1.65 1.70 1.70 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23	(W) 1.68 1.68 1.28 1.28 1.165 1.35 0.85	ECTANCE SET 10 R ISC, IMP, AND PHOF EFCY N PMP EFCY N (W) (%) 7 1.512 11.03 14 1.576 11.50 8 1.320 9.62 8 1.062 7.75 1.612 11.03 1.440 10.59 1.441 10.32 1.65 11.03 1.66 7.75 1.612 11.03 1.67 11.03 1.67 11.03 1.68 11.03 1.69 11.03
	RECTEL S FOR IMP IMP 384 386 320 220 270 270 371 288 371 265	IMP (A) 384 320 220 270 270 371 371 265 188	RECTEE IMP IMP IMP IMP IMP IMP IMP IMP
	DATA FOR STRING BA CORRECTED FOR ALL CONDITIONS INCOMALIZED TO DEGREES FOR ISC, IMP, AND PMP ANGLE VC ISC WMP IMP PMP EFFCY NORM NOF UCS, IV, (A) (W) (X) ISC WMP IMP PMP EFFCY NORM NOF UCS, IV, (A) (W) (X) ISC II.0 5.86 .439 4.40 .384 1.687 10.26 1.03 1.0 5.82 .452 4.35 .388 1.686 10.25 1.03 1.0 2.0 5.81 .349 4.42 .320 1.414 8.60 0.80 0.82 2.5 5.73 .344 2.299 1.286 7.82 0.78 0.72 2.5 5.73 .344 2.30 2.79 1.286 7.82 0.78 0.72 2.5 5.73 .344 2.30 2.79 1.162 7.06 0.71 0.70 0.70 5.87 4.39 4.43 .384 1.702 10.35 1.00 1.0 1.0 5.87 4.39 4.43 .384 1.702 10.35 1.00 1.0 1.0 5.87 4.39 4.47 .371 1.658 10.08 0.91 0.9 2.20 5.85 5.85 5.85 5.85 5.85 5.85 5.85 5.8	VMP (V) (V) (V) (V) (V) (V) (V) (V) (V) (V)	STRING BB CORRECTED FF (OR QUALITY (REFLECTAR) TO DEGREES FOR 1ST 15 (WP 1MP 1MP 1MP 1MP 1MP 1MP 1MP 1MP 1MP 1M
	ING 8 QUAL O O D D SC D D SC D D 3349 3349 3349 3349 306 278 278	SSC AA) A439 3349 3342 3342 401 401 198	11NG 8 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	IRROR IIRROR IIRROR II	25 C C C C C C C C C C C C C C C C C C C	HRROR 11 TROR 12 ZED T 1
	ATA FC PARALITA FC PARALITA FC PARALITA FC PARALITA PARAL	E	DATA FOR STRING B NORMALIZED TO D DATA FOR STRING ROLL OF COLUIS
	00 X X 00 1 0 0 0 1 0 0 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	**************************************	413 £ 900 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

ORIGINAL PAGE IS OF POOR QUALITY

NORM PMP PMP PMP PMP PMP PMP PMP PMP PMP P	NORM PAP 1.00 0.99 0.98 0.94 0.69 0.69	UDING NORM PMP 1.00 1.00 1.00 0.85 0.69 0.69 0.63 0.63	NORM PMP 0.97 1.00 0.91 0.67 0.88 0.88 0.77 0.61
INCLL NORM IMP 1.00 1.00 1.00 0.91 0.66 1.00 0.094 0.682 0.682	NORM 1MP 0.99 0.99 0.93 0.93 0.69	NORM IMP II.00 11.	NORM 1MP 1.00 0.97 0.87 0.97 0.96 0.59 0.59
ITTIONS .7) PMP .7) NORM ISC 0.97 0.097 0.63 1.00 1.00 0.95 0.63 0.63	NORM ISC 0.98 0.95 0.84 0.73 0.62 1.00 0.95 0.95	JITIONS .7) PMP NORM 1SC 11.00 11.02 0.95 0.95 0.72 0.73 0.73 0.73 0.74 0.75 0.7	NORM 1 SC 1 SC 1 . 00 0 . 93 0 . 70 0 . 76 0 . 76 0 . 76 0 . 76 0 . 76
SET TOO FF, AND FF, AND (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	EFFCY (%) 111.77 111.63 111.22 19.86 88.27 111.77 111.03 9.72 88.09 8.27 88.09	ALL COME SET TO SET TO	EFFCY (%) 12.98 13.37 11.03 9.00 12.99 11.71 10.34 8.15
FOR ALL AND E STANCE S C. IMPROPENDE S C. IMPROPENDE S C. 1936 1 . 913 1 . 946	PMP (W) (W) (936) 913] 913] 913] 914 915 915 916) FOR AU ISC, IMF PMP E (W) 2.135 2.205 1.995 1.814 1.814 1.814 1.814 1.814 1.927 1.	PMP (W)
RECTED REFLECT FOR 1S IMP (A) .387 .387 .387 .381 .361 .361 .361 .361 .361 .377 0W OF 17	(A)	RECTED REFLECT FOR IS IMP (A) 2.4218 2.373 1.335 1.267 11.267 11.267 11.267 11.267 11.261 11.	(A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
S S	NC (V) ((V) ((V) ((V) (V) (V) (V) (V) (V)	DD CORR LITY (R EGREES VMP I VMP I 55.14 (S 5.14 (S 5.	
ALMO 100 OFFICE	-	RING 2D OR QUAL 150 O DE 150 O	-
FOR STR ALIZED TO WOC (V) (V) (V) (S 6.03 (V) 6.03 (V) 6.04 (C) 6.04 (C) 6.06 (C) 6.05 (C) 6.05 (C) 6.05 (C) 7.07 (C) 7.	ຼ	IC MIRRO IC MIRRO ALIZED VOC IV 6.09 6.09 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03	ږ
CONIC CONIC CONIC AND CONIC (0.06) (0	417H R 46LE V(46LE V(46LE V) 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DATA F CONIC CONIC NORMAL ANGE W ANGE W (0.0 6 11.0 6 22.0 6 6.2.0 6 6.2.0 6 6.2.0 6 6.2.5 6 6	
1 2400144407			
66 68 1 3 6 6 7 8 6 6 7 8 6 6 7 8 8 1 3 8 6 7 8 8 1 8 8 8 1 8 8 1 8 1 8 1 8 1 8 1 8	E-7-00008800004	SET	£46067882001
NORM NORM NORM NORM 0.91 0.00 0.91 0.00 0.00 0.00 0.00 0.00		NORM PMP PMP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	NORM PMP 0.99 0.99 0.58 0.98 0.92 0.92
NORM IMP 100 0.96 0.96 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	NORM IMP 0.97 0.93 0.59 0.95 0.95 0.95 0.95	NORM IMP IMP 1.00 0.98 0.54 0.54 0.50 0.00 0.00 0.00 0.00 0.00	NORM IMP 0.99 1.00 0.94 0.54 1.00 0.93 0.60 0.60
DITION . 7) PMP . 1) PMP	NORM ISC 0.97 0.93 0.63 0.98 0.96 0.98 0.73	DITION .7 PMP .7 PMP NORM ISC 1.00 1.00 0.83 0.53 0.097 0.091 0.091 0.097	NORM 1 SC 0.99 0.99 0.83 0.55 0.97 0.69 0.69
LL CONN SET TO P, AND P, AND (%) (%) (11.90 11.98 11.98 12.25 11.78 11.78 11.78 11.78	EFFCY (%) 11.90 11.04 10.88 9.32 7.16 11.98 11.78 11.78 11.78 9.08	LL CON SET TO P, AND P, AND 13.33 13.49 13.49 11.78 11.78 11.78 11.83 11.83 11.83 11.85 11	EFFCY (%) 13.33 13.33 13.49 13.25 13.25 10.85 8.09 3.64
FOR AUGUST 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PMP (W) 1.957 1.817 1.791 1.791 1.178 1.178 1.939 1.784 1.784 1.784	FOR A CALL TANCE A CALL TANCE (W)	PMP (W) 2.193 2.220 2.193 1.937 1.289 2.180 2.044 1.785 1.331 0.599
ECTED (EFLECTED MP 1379 3379 3357 331 331 331 331 331 331 331 331 331 33	IMP (A) 362 362 331 331 331 343 343	RECTED (EFLEC FOR II MP (A)	IMP (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
HITTY (REGREES WMP 1) (V) (V) (V) (V) (V) (V) (V) (V) (V) (V	SC (V)	CC CORR CORR (V) (V) (V) (V) (V) (V) (V) (V)	55.25 55.25 55.25 55.25 55.23 55.23
ING 18 QUAIN	SSC (A)		(SC (A)
MIRRG MIRRG MIRRG 1 200 1 000 000 000 000 000 000 000 000 000	KESPECT (V) (VOC 1) (V) (V) (V) (V) (V) (V) (V) (V) (V) (V	FOR STR MILIZED 1 VOC 1 (6.16) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
	WITH R ANGLE V (DEG) ((DEG) (1.0 5 3.0 5 3.0 5 3.0 5 6 4.0 6 6 0.0 6 0.0 6 6 0.0 6 0	DATA F. CONICO C	-
4		A20 ~	

SECONDARY PROOF MIRRORS

OFFPOINT DATA CORRECTED TO AMO AND 28°C ONLY

Engineering & Test Division TRW Space & Technology Group

Angle Offset	•	_	•		•		•				•					
	•		•	7	"		ഹ		•		^				.	o.
က	139	84.	164	.61	136	.46	168	.61	134	.55	199	99.	187	.62	139	.60
2.5	195	.67	212	.78	194	99.	197	.71	180	74	224	.75	232	.77	176	.11
2	228	.78	228	.84	238	.81	214		198	-82	241	8.	247	.82	192	.83
1.5	238	-82	238	88.	248	-84	230	.83	202	.83	257	98.	256	.85	200	.87
-	252	98.	259	96.	260	88.	245	88.	220	.91	271	8.	282	.94	217	.94
ທຸ	274	.94	268	66.	586	.97	263	.95	234	.97	290	.97	262	.97	228	66.
0	262	1.00	270	1.00	294	1.00	276	1.00	239	.99	297	86.	297	66.	229	1.00
0	292	1.00	271	1.00	293	1.00	277	1.00	242	1.00	300	1.00	300	1.00	230	1.00
s.	298	1.02	267	66.	536	1.01	278	1.00	244	1.01	295	.98	301	1.00	230	1.00
-	293	1.00	272	1.00	596	1.01	268	.97	240	66.	277	.92	539	86.	231	1.00
1.5	303	1.04	267	66.	291	66.	238	98.	227	.94	243	.81	279	.93	224	.97
2	254	.87	253	.93	278	.95	203	.73	204	.84	219	.73	247	.82	203	.88
2.5	212	.73	509	.77	237	.81	188	.68	178	.74	195	.65	217	.72	179	.78
m	185	.63	183	.68	214	.73	167	9.	163	.67	163	.54	192	.64	164	.71
3.5	191	.55	140	.52	185	.63	112	.40	124	.51	86	.33	147	.49	126	.55
4					123	.42	99	.24	28	.24	47	.16	71	.24	75	.33
4.5		-			25	.18	33	.12	19	80.	16	.05	17	90.	30	.13
rc.							11	•04	6	•04	2	-02	7	.02		
10										•			93	0043		
15													.91	0030		
Shadowed *							.25	6000.								
Offpoint > 15**							۶.	.0025								

NOTES: * Shadowed output is shadow equal in size to optic. This represents background.

 $[\]star$ Offpoint > 15 represents output due to scatter from primary and secondary.

SECONDARY PROOF NORMALIZATION AND CONVERSION

Engineering & Test Division TRW Space & Technology Group

	1	2	က	2	9	7	œ	6	AVG
3.5	.63		.60						.62
т	.87	.79	98.	.79	.71	98•	.80	.78	.81
2.5	76.	.97	1.01	89.	.92	.94	96.	96.	.95
2	.97	1.00	1.00	.91	.97	96.	.97	-96	.97
1.5	.93	.95	.95	-88	68.	.94	.92	.94	.93
1	96.	66.	1.0	96.	.93	.93	96.	96.	.95
ις	1.01	1.00	1.01	96.	. 86	66.	.98	1.00	66.
0	1.02	1.00	1.01	1.00	1.00	1.00	1.01	1.01	1.01
0	1.02	1.00	1.01	1.00	1.0	1.00	1.00	1.00	1.00
ς.	1.01	1.00	1.02	1.01	1.02	66.	1.01	1.01	1.01
_	1.07	1.03	1.02	1.00	1.02	.94	1.01	1.03	1.02
1.5	.94	1.07	1.02	.93	1.01	.87	1.00	1.04	66*
2	.87	1.10	96.	.87	1.00	.87	.97	1.05	96.
2.5	.79	96.	.91	.85	.92	.81	.90	.97	.89
3	17.	88.	.82	.78	.87	.70	.83	.92	.81
3.5		.68	.53	.52	.67	.43	.64	.72	9.
4			.23	.31	.31	.20	.31	.42	.30
4.5				.15	.10	90.	.07	.16	11.
ß				•05	•05	.02	.02		.04

4.0 INSPECTION RESULTS

The small panel was checked and mapped for defects in the primary mirror coating and for weld joint integrity. Figure All is a sketch of the defects found.

The large panel was inspected in the same manner as the small panel. It was noted that 5 mechanically produced nickel conic mirrors originally machined as test articles with no coatings or polish found their way onto the panel as noted in Figure A12. What is surprising is that the machined parts had relatively small effect on output of the strings involved. Apparently the coating degradation is approximately equal in effect to a bare nickel machined part.

Lack of schedule precluded replacing these machined conic parts.

Figure A13 presents electrical inspection remarks as determined during output testing. A number of elements were found to be open or shorted as shown. The Varian string 10A was not possible to electrically measure due to the characteristics of the string. Some elements had essentially 0 current but full voltage capability and acted as reverse diodes in series with the string. It was not practical to jumper the effected elements as only 1 element was actually producing power correctly. This string will be monitored only for mechanical degradations.

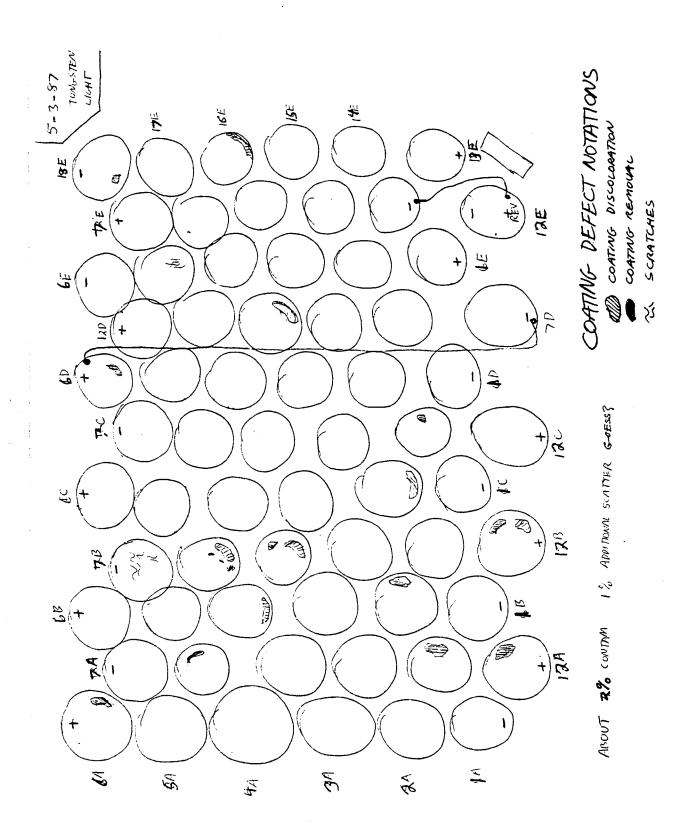


FIGURE A12 INSPECTION RESULTS OF 15" x 56" PANEL.

õ X = high voltage but no current which needed to be manually bypassed to read string.
L = low voltage capable cell (< .8 V open circuit. Normal cells >1 V.) 43 24 1D 'n 34 20 8B 8A 7B 7A 6B 6A 5D 5C 5B SA 4D 4C 4B 4A 3D 3C 3B - unreadable output too many poor output elements 0 = open cell (bypassed) S = shorted cell 0 NB 10A 9B 9A 0 A26

Electrical Test notes showing locations of shorted and open cells as well as thermistor locations. FIGURE A-13.

Appendix B - MCC

ELECTRICAL MANUFACTURING

1. FABRICATION

Items required for fabrication:

CELL I/C

BeO I/C

Spider

Washers

1.1 CELL AND BEO INTERCONNECTS

Approximately 300 interconnects for the cell and BeO cell mounting were required for the MCC job. Kovar was chosen as base material due to close match in CTE with the GaAs cell, and by availability. The Kovar was cut into 0.001" x 1" x 6" strips which were plated with nickel, copper and either silver or gold as required. Plated strips were then stacked and machined using a wire electro-discharge process. Cut rates were extremely slow to avoid fusing strips together and alloying of base material with platings. Final cut stacks were then separated as individual piece parts. Stress relief loops were formed in each part using a two piece die; five parts were formed per cycle. Completed parts were then cleaned in a solvent bath and protective packaged for later use.

1.2 SPIDER

Approximately 270 spiders were required. Fabrication techniques were almost identical to those used for the interconnects. Base material for the spider was chosen as Aluminum; weight was a major driver. The aluminum plates were stacked as limited by the machine wire tolerance and, again, a slow burn rate was used to avoid fusing parts and/or alloying of plating and base material. Cut stacks were separated and sent to a silver plating bath. The silver plate allowed the use of solder to bond the secondary mirror to the spider. The parts were then protective packaged for later use.

1.3 WASHERS

Approximately 250 Kapton/RTV washers were required for the MCC job. These washers are used at installation of the MCC element into the Tri-Hex grid. Commercially available pop-pins (snap inserts) were used to hold the MCC elements in place. An uneven top surface of the three elements held by the pop-pins created non-uniform pressure on the elements, tending to distort the surface or the pin. Therefore, it was desirable to have a pliable surface between the element and the pop-pin surface.

This surface was created by making washers the size of the the pop-pin head. These washers were made from Kapton and RTV. A 0.002" Kapton sheet was covered with a thin layer 0.001-0.002" of RTV 142. After cure, the outside diameter of the washers were punched, one unit at a time. Concentric with the 0.D., an inner circle of material was removed that matched the pin shaft 0.D., completing the washer.

2. SUBASSEMBLIES REQUIRED

Washer to Pop-pin
Cell I/C to Cell
BeO I/C to BeO
Coverglass to Cone
Secondary to Spider

2.1 WASHER TO POP-PIN

The completed washer was installed to the pop-pin. Since the pop-pin shaft 0.D. is much larger at the pressure fitting than the washer I.D., tooling was required to compress the pop-pin shaft. This avoided splits to the Kapton washer during installation. The completed pin washer assembly was then stored for later use.

2.2 CELL AND BEO INTERCONNECT ATTACHMENT

As discussed in section 3.4.2.3, welding was selected for joining I/Cs to both the cell and BeO pads. Tooling was fabricated for both of these operations. The cell or BeO were loaded into a cavity and solvent cleaned. The interconnects as made in section 1.1 of this appendix were centered over a locating pin and rotated over the cell and/or BeO until desired location was achieved (Figure B1, Left tool). The weld was then made in two places for each interconnect. The completed joints were then cleaned and the completed assembly was boxed for later use.

For the cells, all were measured for I/V characteristics prior to the welding and identified. After a weld schedule had been developed for each vendor, the cells were then grouped by performance and welded. It was assumed that performance degradation would be relatively constant for all cells, by vendor. The cells were re-grouped by "performance prior to welding," after welding. These groups were selected to develop a kitting plan to group similar performance cells at the panel level.

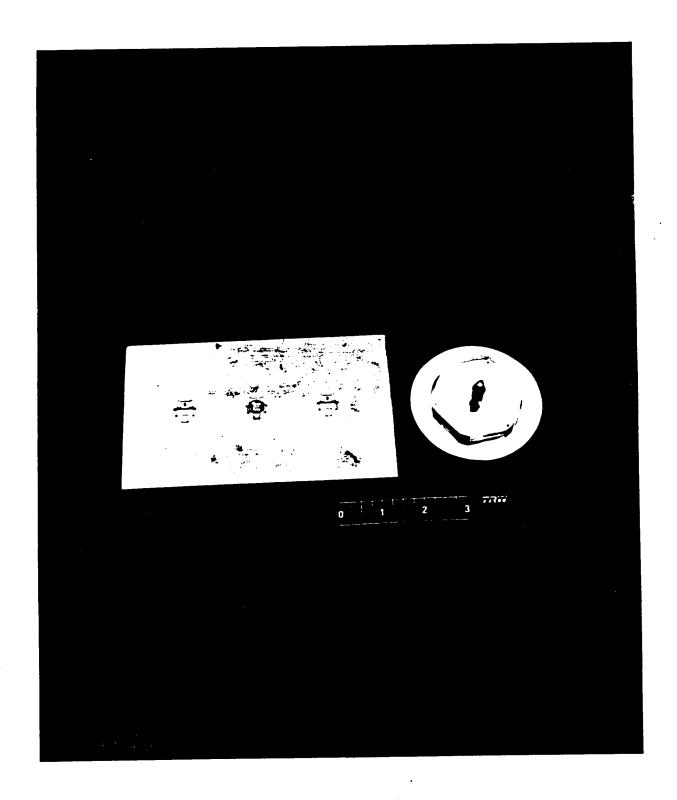


FIGURE B-1. BeO welding tool (left) and conic mirror coarse alignment tool (right).

ORIGINAL PAGE IS DE POOR QUALITY

2.3 COVERGLASS TO CONE BONDING

As discussed in section 3.4.6, several options were evaluated for joining the cone to the coverglass. This joint was critical in that the cone must be perpendicular to the glass and that no bonding material could be allowed on the interior of the cone. Reduced viscosity bonding materials were ideal for good filleting but "leaked" under cone to inside surfaces. Higher viscosity materials did not provide filleting, or the force required for filleting caused mis-mating of the two components. Dymax 628, a UV curing adhesive was chosen. This material has a very low viscosity but can be kept from "leaking" by accelerated cure under intense UV exposure.

A multiple place tool was constructed for this operation (Figure B2) Five coverglasses were loaded into cavities for locating and cleaning. Five cones were then loaded onto the tool and centered by estimation. Centering spindles made of nylon and match ground to the base ID of the cone were lowered into the cone and brought down flush to the glass. The centering nylon could touch only the base of the ID of the cone. This locked the two components for bonding. A small dot (5 mg) of the UV adhesive was placed on the side wall of the cone. As the material ran down the wall of the cone and filleted the coverglass, it was exposed to high intensity UV light for 10-15 seconds. This operation was repeated for all four corners of the coverglass. The resulting bond was then baked for 30 minutes at 100°C in air to ensure full cure.

Cleanup and rework was accomplished by flushing the bond with acetone and IPA. Care was taken to avoid contamination of the interior cone surface.

This bond was tested by thermal cycling sample components in air from +100°C to -100°C, 200 cycles in duration. Also, sample components were exposed to acoustic protoqual pressure levels. No joints showed evidence of delamination or failure.

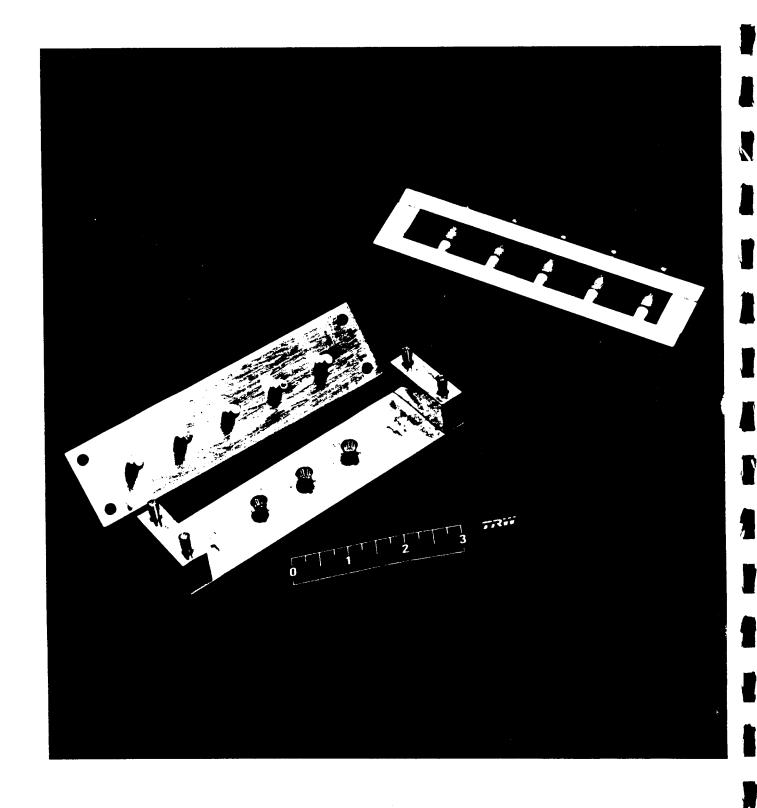


FIGURE B-2. Conic mirror to coverglass bonding tool.

OF POOR QUALITY

2.4 SECONDARY TO SPIDER JOINTS

Adhesive bonding was selected as a baseline process for joining the secondary mirror the the spider support. This baseline was a very difficult method. To keep the secondary pointed and true to the cone, the adhesive layer had to be perfectly flat and continuous. Low viscosity materials were investigated, however, bond strength was marginal. Paste adhesives resulted in inconsistent bond thickness. Attempts to eliminate the interface bond and fillet the joint with paste adhesives were equally unsatisfactory as well as extremely time consuming to complete.

大·李·李·李·李·李·李

REPORT OF THE PARTY

A secondary system was developed to solder the secondary mirror to the spider. The aluminum spider was silver plated with nickel-copper base. The interior surface of the secondary, electroformed nickel, was not prepared. A silver filled solder, preform was made by wrapping a rod sized slightly larger than the inside diameter of the secondary with solder wire. Preforms were then cut from the rod. The spider was located on a solder fixture (Figure B-3, right tool) on its outside diameter. The solder preform was then fluxed in Alpha flux diluted with isopropyl alcohol. The preform was then located over the spider outside diameter on the fixture. Installation of the secondary mirror on top of the preform capped the assembly. The preform was then pushed inside the secondary mirror and held by "spring action" to the inside surface. The secondary was pressed firm to the spider by slight pressure of a teflom pad.

The fixture containing secondary, spider and preform were then soldered via Vapor Phase soldering on a controlled elevator for time at temperature. Solder schedules were developed for producing 100% filleting to the inside surface. Pressure and flux were critical to achieve wetting to the nickel interior.

None of these subassemblies required rework.

3. OPTIC ASSEMBLY

Cell Stack Installation

Feed Through Post, Installation

Cone/Core Installation

Painting

Secondary/Spider Installation

3.1 CELL STACK INSTALLATION TO PRIMARY MIRROR

The original proposal for installation of the cell stack was to make one joint at a time, using vapor phase solder techniques. However, each subsequent joint had to utilize higher temperature solders to prevent reflow (and misalignment) of the prior joint. This quickly proved unworkable and expensive. A secondary approach called for joining the cell to the BeO and the BeO to the primary mirror in a single vapor phase operation. This method was much more difficult to tool due to the extremely tight tolerance for placement of the cell but was chosen over the method above for cost constraints.

Solder preforms were experimented with and selected at 70% of the total interface area and at 0.001" thick of silver filled solder (to avoid gold migration from the BeO). Tooling fabrication was made to locate the BeO pad and the cell into the Primary. This tool had a two step cavity (Figure B-3, left tool small cylinder with cavity). The first cavity held the solar cell, active surface down with its interconnect. The cell solder preform was then dipped in flux and placed on the back cell surface. Excess flux here broke cells and was minimized. The cavity was made slightly less deep than the cell. The BeO was then placed in the second cavity, over the cell solder preform. The BeO solder preform was then fluxed and added to the back of the BeO. This cavity was also slightly less deep than the BeO.

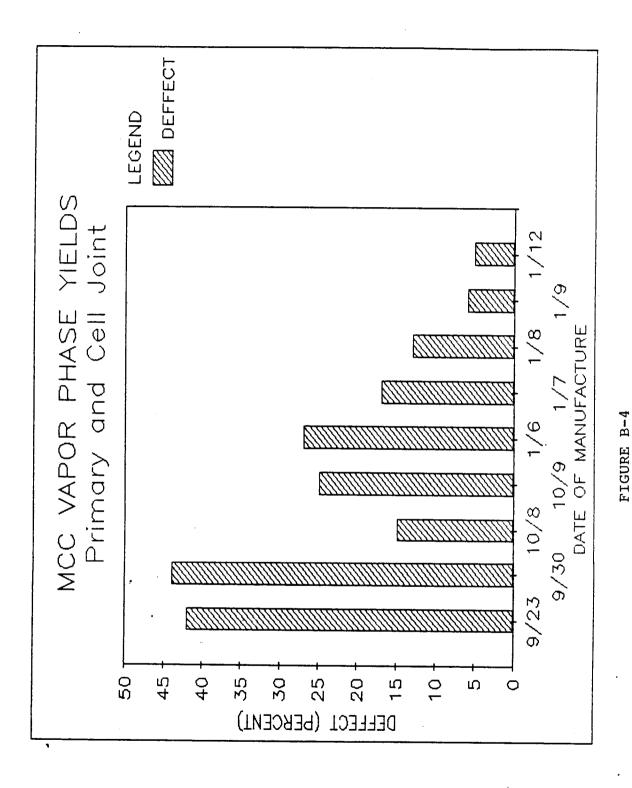
The outside diameter was match ground to the inside diameter of the primary mirror. A through locating pin aligned the tool to the primary mirror, where the tool was inserted and pushed flush with the base of the primary. The undersized cavity created pressure between all components and the preforms. The tool was then clamped to the primary by a mating shell with spring loaded tension (Figure B-3, left tool, hexagonal, with coil interior and leaf exterior springs).

FIGURE B-3. Cell and BeO insulator to primary vapor phase solder tool (left) and secondary to spider vapor phase solder tool (right).

The primary with tool clamped in place, was then soldered in the vapor phase solder machine. A schedule was developed to ensure good wetting of the cell and BeO to each other and to the primary. To maintain schedule, soldering of the cell stacks was done concurrent with the soldering of the spider assemblies noted in B.4.

The soldered primary was then removed from the vapor phase and allowed to cool. A vapor degreaser was used to remove the flux from the tool and completed primary subassembly after soldering and removal of the clamp. The locating tool was then removed. The primary was then identified with the cell and electrical group contained within.

This operation caused the worst cell breakage as the GaAs cell was very brittle and had to be held to the center of the primary. Vent and flux cleaning holes were added to the tool which improved throughput yields, see attached Figure B-4 This area will be further evaluated in follow-on contracts.


The completed cell stacks were then protective packaged, identified, and stored.

3.2 FEED THROUGH POST INSTALLATION

To this point, the interconnected cell and BeO (-)N and (+)P contacts were floating freely in the primary mirror. Hermetically sealed feed through posts as used by the printed circuit board industry were acquired and used to connect the contacts and feed through the base of the primary to form terminations.

Before assembly, the base of the terminals (ground) were coated with encapsulent to prevent shorting of the soldered joints. The back surface of the primary was lightly abraded and cleaned with acetone to prepare it for soldering. The post was then inserted from the backside and soldered to the primary mirror using a hand held iron and silver filled solder. A 50% fillet was required. The joints were tested for isolation between pin and mirror at 500 V. Any failures were reworked. Flux was used as required to activate the surface.

The positive and negative contacts were then made on each assembly using a hand held iron and a mild flux. The assembly was held in a fixture so that the operator could make both joints required without contacting ground (mirror or pin body).

B11

Because the heated flux tended to splatter and contaminate the primary mirror, prior to soldering, the mirror was coated with X59 optic cleaner. The cleaner was recommended for use by the TRW optic lab as its residue is measured in angstroms and it is easily removed. The toluene base material was coated on the interior of all optics and removed after soldering with a touch of masking tape applied to a non mirror surface.

Removal of this material revealed severe plating problems with the primary mirror plating adhesion.

3.3 CONE AND COVER INSTALLATION

The cone and cover assembly was bonded to the cell using a small drop of optical adhesive DC93-500. The rightmost tool in Fig. B-1 was used to install and rough center the cone assembly to the primary. The cone was centered on the cell by visual alignment and tacked in place by using an elevated temperature cure lamp. After tacking, the assembly was baked at 100°C for 90 minutes to full cure the adhesive.

Rework for misalignment was easily performed by swelling the cover adhesive with a chlorinated solvent, manually cleaning, and rebonding.

3.4 PAINTING

Painting of the optics was probably one of the most difficult tasks. The paint, S13GLO a white RTV paint, is difficult to work with and does not adhere well to nickel or silver plating. Two surfaces required application of paint - the backside of the primary mirror and the top side of the spider/secondary assembly.

The primary mirror was placed on a painting aid and bonded in place with double sided tape. Positions of the optics were mapped to show identification and the tags were removed. Surface prep included wipes with acetone and alcohol with one half hour dry times in between. The posts and the mirror support hole were then masked with painting aids and the surface was primed with a thin coat of the vendor supplied primer. The primer was air brushed on in a box coat to a thickness of less than 0.0003". Sl3GLO paint was then mixed and sprayed per the vendor instructions. Approximately 0.001" of paint was applied per session, with an overnight dry between applications. The total paint thickness was targeted at 0.003" to 0.004".

The painted primaries were then removed from the double back tape by cutting an edge in the tape with an "X-Acto" knife. The plugs were removed and the flaking paint at these edges was cleaned with the knife. The part was then bagged and identified from the map.

Secondary mirror subassemblies were loaded into a custom fabricated aid for painting. A sheet of neoprene rubber with a best fit packing factor was cut with through holes that allowed the secondary mirror outside diameter to "press fit" through. The neoprene sheet was supported by "lexan" plastic. The spider assemblies, when placed in the aid, were then masked with masking tape dots at the to be bonded ends of the spider legs. Cleaning, priming and painting were achieved using the same procedure as noted above. The sole exception was that the upper edge of the interior diameter of the secondary was hard brushed with primer and paint.

The spider assemblies were removed and cleaned using a sharp knife to remove excess and flaking paint. Special care was taken not to damage the legs of the spider in removal. The painted parts were then protective packaged for the next assembly.

3.5 SECONDARY/SPIDER INSTALLATION TO PRIMARY

The secondary/spider assembly self aligned to the primary on three mounting posts. The interface between the surfaces was cleaned with acetone and allowed to dry for one half hour. The secondary was then placed on the primary and three small dots of lightweld 628 adhesive were added. The spiders were quickly tacked in place with the UV lightsource used in section 2.3 of this appendix. Final cure was accomplished in an oven at 100°C for 30 minutes. After cure, the completed optic was bagged and identified.

4. PANEL ASSEMBLY

Installation of the Floating Inserts
Optic Installation
Harness Fabrication
Series Stringing and Harnessing
Testing and Rework

4.1 INSTALLATION OF PANEL INSERTS

Three candidate materials were installed to the Tri-Hex grid in the development phase as discussed in the report body. All three candidates were included on the 66 and 180 optic panels.

Installation of the inserts creates the plane that the optics rest on and therefore is critical for electrical performance. This work demonstrated that even though the panel was bowed significantly, the inserts could create a new plane. The panel was placed on a granite table with the optic side down. Spacer shims were then added between the panel and the table rather at random. The inserts were then slid through the panel from the back side of the panel until they located on the granite table. (Note: inserts had to be deburred prior to installation. Burrs were made by the mirror vendor.)

After insertion, three inserts were selected in the middle of the panel that made the largest possible triangle. These three inserts were bonded with UV adhesive noted above, thus creating the optic plane. With great care not to touch or distort the panel, the next intersecting and bisecting triangles were selected and bonded. Soon the panel was sturdy and rested on the bonded inserts; the shims were removed. The remaining inserts were bonded as these first triangles, row by row.

The panel was then inverted and epoxy bond (EA9321) added as a fillet around the top of the insert to add strength to the bond. The panel was then cured at 100°C for two hours. Rework was accomplished by solvent and heat gun removal and subsequent rebonding of the insert on the micro flat granite.

4.2 OPTIC INSTALLATION

The first step towards optic installation was development of a kitting plan. The optics had been identified throughout manufacture with the original cell output data as well as optic type (several optics were of Ni/Cu/Ni sandwich construction). Based on original cell performance data, the optics were kitted to the panel per attached Figure B-5. Roadmaps were made showing the pedigree of each optic as it was loaded to the Tri-Hex grid.

After loading, the optic was fastened to the Tri-Hex with the pop-pin/washer assembly detailed in section 2.1 of this appendix. Each optic was held by three such pins. Pins were all loaded to the floating insert and then pressed into position, one at a time such that the RTV washer captured the lip of the optic. the optics were all oriented so that the feedthrough terminals were aligned for ease of series wiring.

4.3 HARNESS FABRICATION

Two harnesses were fabricated for the MCC panels. Both used rectangular connectors and a three stage potting sequence in a low boot configuration. There was no ground strap or loop. Fabrication and cut length instructions are attached as Figure B-6.

Wire used for the harness was a nylon insulated ribbon cable with 28 Awg wire. The wire was stripped with a laser wire stripper and separated with a sharp knife. Contact fillers were installed as required.

4.4 SERIES STRINGING AND HARNESSING

The harness fabricated above was installed to the panel with lacing ties along the wire bundle. The connector was mounted to the panel by a twin pair of aluminum plates, mounted with hardware, and held in place with by clamping pressure across the width of the Tri-Hex.

Series wiring optic to optic was made with a 26 Awg jumper wire looped between the Tri-Hex grid and stress relieved. Terminations were soldered to the terminal feedthroughs using a silver filled solder and an alpha flux.

Figure B- 5. MCC PANELS - KITTING PLAN

Small Panel:

<u>string</u>	g Oty	Optic	Cell/%	
1	8	Ni	ASEC/19.81-20.1	Set 1
2	15	Ni/Cu/Ni	ASEC/19.81-20.1	Set 1
3	15	Ni/Cu/Ni	ASEC/20.11-20.7	Set 1
4	15	Ni/Cu/Ni	ASEC/20.11-20.7	Set 1
5	<u>15</u>	Ni/Cu/Ni	ASEC/20.11-20.7+	Set 1
	68			

Large Panel:

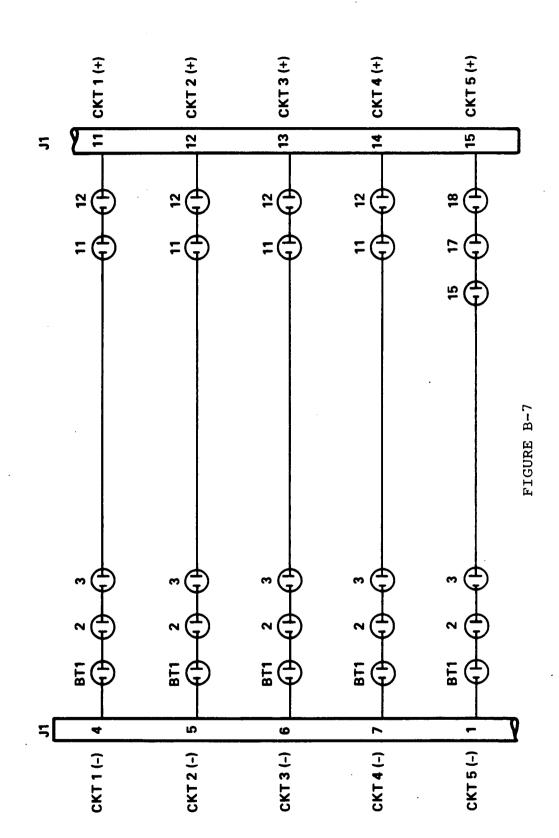
1	12	Ni	Varian		
2	24	Ni	Varian		
3	24	Ni	Spectrolab 17.51	-18.6	
4	24	Ni	ASEC/19.21-20.0	Set 1 &	2
5	24	Ni	ASEC/19.51-20.0	Set 1 &	2
6	24	Ni	ASEC/19.51-20.0	Set 1 &	2
7	24	Ni	ASEC/19.51-20.5	Set 1 &	2
8	<u>24</u>	Ni	ASEC/19.81-20.1	Set 1	
	180				

		(MIN)			(MIN)
PIN#	<u>COLOR</u>	<u>LENGTH</u>	<u>PIN#</u>	<u>COLOR</u>	LENGTH
1	В	65"	1	В	30"
2	R	65 "	2	R	30"
3	В	55"	3	В	25"
4	R	55 "	4	R	25"
5	В	50 "	5	В	20"
6	R	50 "	6	R	20"
7	В	45"	7	В	15"
8	R	45"	8	R	15"
9	В	40"	9	В	10"
10	R	40"	10	R	10"
11	В	30"			
12	R	30"			
13	B·	20"	•		
14	R	20"			
15	В	10"			
16	R	10"			

Figure B-6. Harness Fabrication Instructions for 15 x 21 and 15 x 56 Panels

Terminations were made to the harness bundle in accordance with the attached schematic Figure B-7. The schematic was developed from the best fit kitting plan to avoid electrical mismatch degradation. Terminations to the harness bundle were made using a western union splice soldered as above and sleeved with a shrink sleeve tubing of Kynar co-polymer series.

4.5 TESTING AND REWORK


The completed panel assembly was installed on the solar tracker and tested per procedures noted in the body of the report.

Optics identified with performance problems were removed and replaced with attrition quantities. Removal was difficult as the pop-pin is a one way device. The most effective removal technique was to drill out the pop-pin. A vacuum and shielding were used to protect the optics and chips were removed as they were generated. Replacement optics were installed and tested as above.

Thermistors were added to the panel to collect temperature information during test. Thermistors were bonded to the back of the primary mirror with conductive epoxy in an area where the S13GLO paint had been removed. The paint, however, had left a silicone contamination which made subsequent bonding with non-silicones nearly impossible. Abrasion and cleaning resulted in relatively weak bonds.

Schematic (66 Optic Panel)

APPENDIX C STRUCTURE MANUFACTURING

BACKGROUND:

Previous NASA contracts and a TRW PMI Program demonstrated the feasibility of manufacturing a structurally sound tri-hex grid from a single tow graphite prepreg roving. It was believed that the low fiber volume/high resin content characteristics of panels which were previously fabricated could be improved by utilizing a trapped rubber molding (TRM) expansion process during cure (see Figure C-1). A major goal of the present NAS8-36159 contract was to develop this process, resulting in a higher fiber volume and lower resin content substrate.

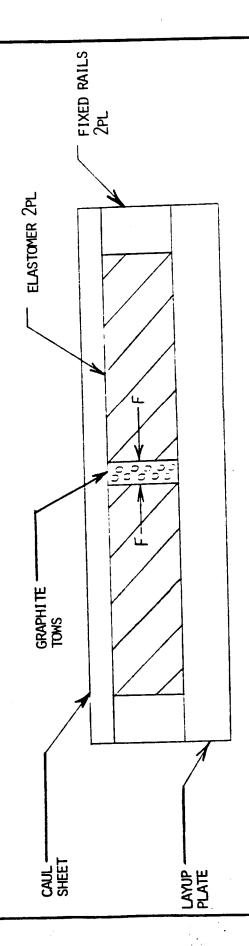
Development and co-curing of lightweight molded inserts, thin uniform wall thicknesses in the substrate and elimination of tool removal problems were also objectives of this contract.

TECHNICAL APPROACH:

The graphite prepreg roving materials chosen for evaluation were 6 K tow T-300/Fiberite 934 (350°F cure) and 6 K tow T-300/Fiberite 982 (250°F cure) systems. The effect of different cure temperatures on the TRM process needed to be established in order to select the best material from which to fabricate the tri-hex grid.

To establish expected material properties and determine the structural effect of crossing yarns, six graphite samples were fabricated using the TRM process. The expandable elastomer chosen was Dapocast 1-100 silicone casting compound (CTE 10.6 x 10^{-5} in/in/ o F).

The rubber inserts were fabricated in the molds used to layup the straight and crossover samples by pouring the rubber with aluminum cores in place which replicated the graphite samples (see Figure C-2).


Three straight and three crossover samples were fabricated. The parts were first tested in bending and then specimens were cut from each part to determine specific gravity, resin content, void content and fiber volume. Findings are shown in Figure C-3. Failure of the straight strips occurred in a buckling mode due to the thin cross section. No structural degradation was seen in the cross strips at crossover points. The bending test set up is shown in Figure C-4.

TRW

MECHANICAL MANUFACTURING ENGINEERING DEPARTMENT

FIGURE C-1: TRAPPED RUBBER MOLDING CONCEPT

- BULK THERMAL DIFFERENTIAL EXPANSION.
- Dapocast 1-100 Silicone Elastomer casting compound (CTE 10.6 x 10^{-5} in/in/ 0 f for aluminum)

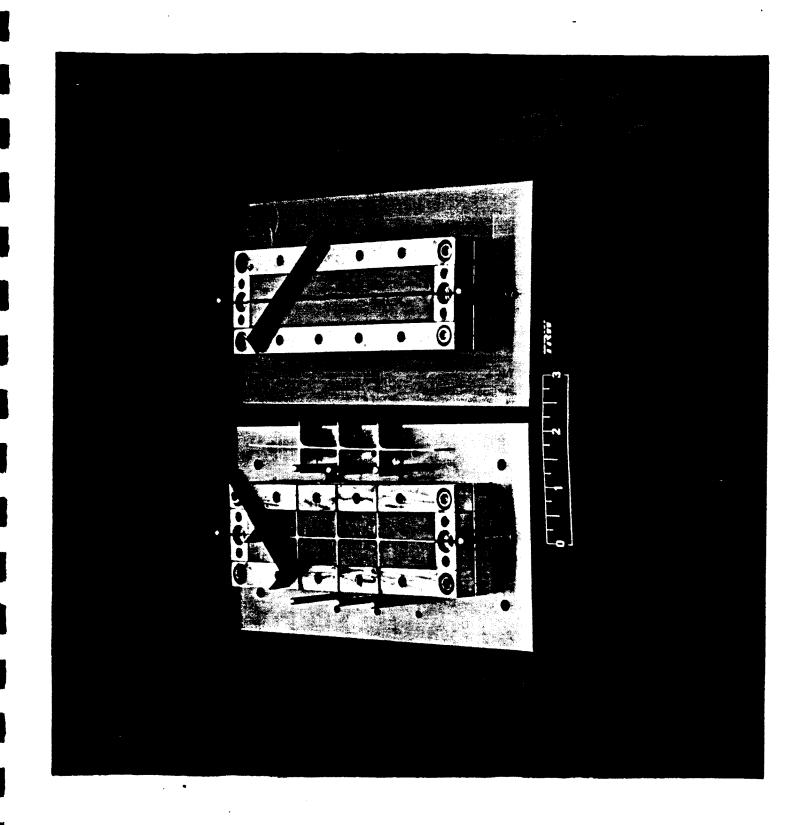


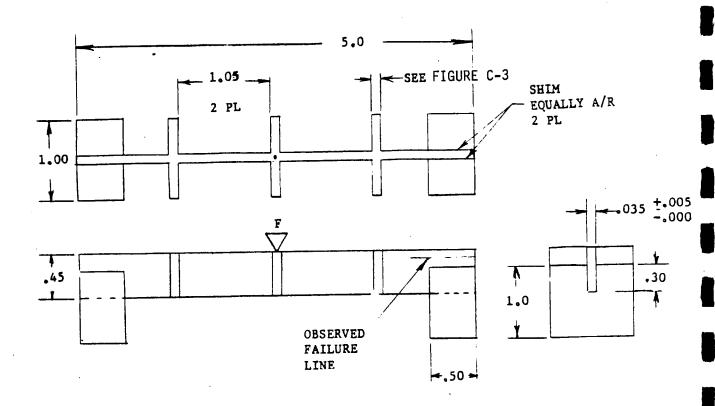
Figure C-2. Strip Samples and Tooling.

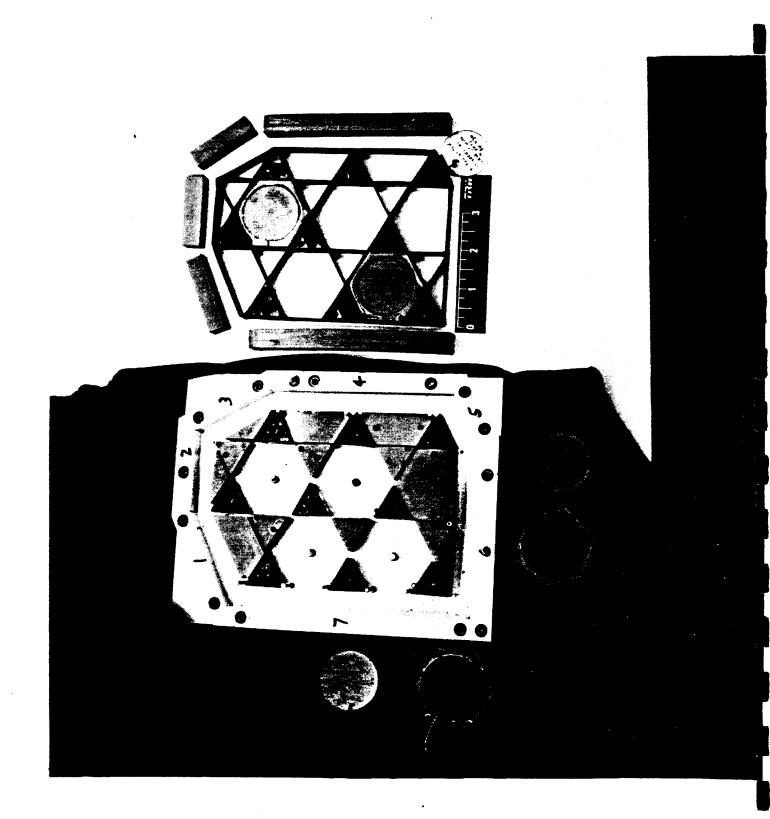
FIGURE C-3: GRAPHITE TRI-HEX SAMPLE FINDINGS

<u>s/n</u>	TYPE	CURE TEMP(OF)	20 YARN HHICKNESS(In)	SPECIFIC GRAVITY (gm/cc)	RESIN CONTENT (%)	VOID CONTENT	FIBER VOLUME (%)	MAXIMUM BENDING LOAD (LB)
3A	CROSS	350	.020023	1.5461	23.0	2.9*	67.9	42.50**
3B	STRAIGHT	350	.021024	1.6367	23.5	0.0	70.1	19.75
4A	CROSS	350	.019022	1.6367	22.5	0.0	72.1	20.85
4B	STRAIGHT	350	.023027	1.6412	21.7	0.0	73.1	20.15
5 A	CROSS	250	.019029	1.5248	27.3	3.9*	66.7	29.35
5 B	STRAIGHT	250	.027030	1.5487	29.3	0.0	64.3	21.50

NOTE THAT SAME NUMBER SAMPLES WERE CURED CONCURRENTLY.

- * VOIDS WERE FOUND IN S/N 3A AND 5A SINCE SPECIMENS WERE CUT TO INCLUDE A CROSSOVER POINT. VOIDS WERE STILL LESS THAN THE ALLOWABLE VALUE OF 4%.
- ** THE HIGH MAXIMUM LOAD FOR S/N 3A WAS DUE TO A LIP WHICH EXISTED ON THE EDGE OF THE SAMPLE CAUSED BY THE INITIAL FABRICATION TECHNIQUE.




FIGURE C-4: CROSS STRIP SAMPLE IN TEST FIXTURE

TRIM AND PANEL LAYUP DEVELOPMENT:

Five mini-panels (5.0" x 6.0") were fabricated-two 350°F cure and three 250°F cure-to develop the optimum wrapping technique and tooling approach, verify the ability to co-cure inserts with the panel, and determine the degree of wall compaction which could be attained in a tri-hex structure (see Figure C-5). During fabrication of the mini-panels, the optimum debulking (compaction) schedule was developed and it was found that debulking after the third, sixth, eighth and ninth course resulted in a uniform structure. It was necessary to debulk around wrapping pins after each course. Debulking was performed using .24" thick x .5" wide stainless steel Starrett shim stock.

Two major tooling innovations were proven out on the mini-panels. The first was to fabricate a two piece rubber hex for expansion molding (see Figure C-6). Initially, all rubber pieces were installed on the layup plate and the tows were wrapped in between them. This was done since it was physically impossible to drop full size rubber pieces between the tows after wrapping without trapping some fibers underneath. A disadvantage of having all rubber pieces on the mold is you are essentially working blind since tows cannot be seen. down the wrapping. The two piece rubber approach was based on the fact that two rubber pieces with the same volume as a single piece should perform the same thermally. This was proven to be The two piece hexes were fabricated by placing 1.500" diameter aluminum plugs in the mold before pouring the rubber The aluminum plugs were removed, the outer hex (Figure C-7). rubber was released and the central rubber core then poured in the same mold. The two rubber pieces were then separated and the outer hex cut through on one side for ease of installation in the layup.

The second major tooling breakthrough was the development of screw pins as wrapping pins (see Figure C-8). Initially, .125" diameter dowel pins, snug slip fit in the layup plate, were used as wrapping pins. The tri-hex grid tended to lock around the pins during cool down making part removal very difficult. By modifying 10-32 socket head cap screws into wrapping pins, we took advantage of the "screw jack" effect which could be used to remove pins from the backside of the layup plate, thus eliminating part removal problems.

OF POOR QUALITY

Figure C-5. Mini Panel with Tooling.

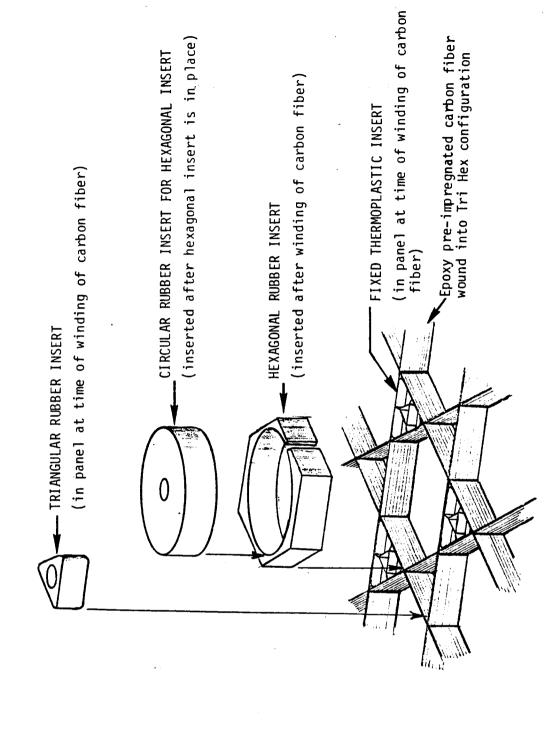


FIGURE C-6: INSERT TOOLING FOR TRI HEX GRID MAKES ASSEMBLY, WINDING OF FIBERS, AND DISASSEMBLY SEMI-AUTOMATION OF PROCESS IS FEASIBLE. AFTER BAKEOUT EXTREMELY SIMPLE.

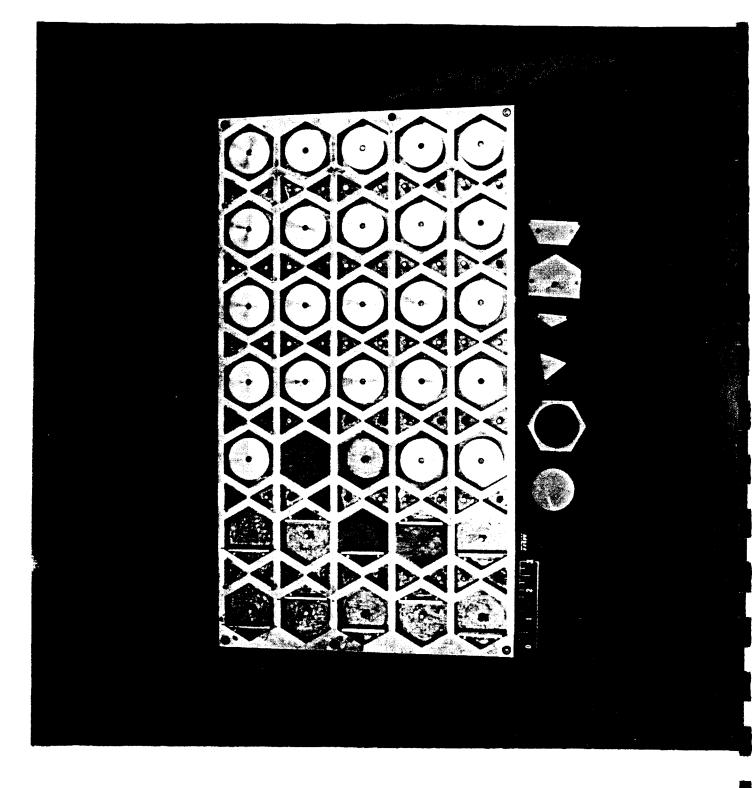
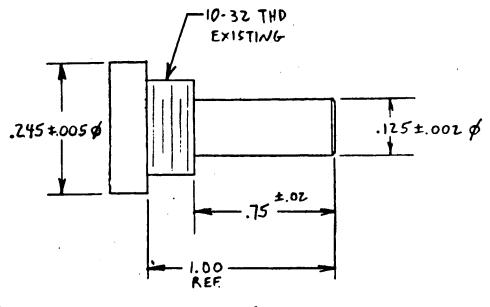



figure C-7. Rubber Insert Mold.

DETAIL -5 SCALE: NONE

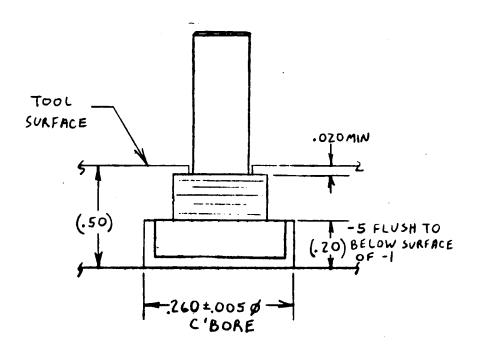


FIGURE C-8: THE SCREW PIN CONCEPT ALLOWED EASY DISASSEMBLY
OF THE THG LAYUP TOOL AFTER CURE.

The first three mini-panels used machined epoxy glass triangular inserts as placeholders. Production type injection molded thermoplastic inserts for element mounting were co-cured with panels number four and five (see Figure C-9). Inserts were molded from 30% graphite fiber filled PPS (RYTON), PEEK and TORLON. It was found the PPS was easiest to mold, requiring very small gates. These gates had to be enlarged slightly for injection of PEEK material and enlarged to the maximum for TORLON. Inserts were tooled to the layup plate using .203" diameter teflon pins for location and 6-32 socket head cap screws for angular clocking and tie down.

The method which evolved as the easiest way to fabricate the several hundred rubber pieces required for the 15" x 21" and 15" x 56" panels was to pour the rubber into an open mold overfilling slightly, and then clamping a caul plate with holes This allowed excess rubber to extrude out and controlled thickness. De-airing of the initial Dapocast mix was found to be critical and allowing air to rise to the surface before covering with the caul plate helped cut down on voids. cross section of the outer hex contributed to voids in some This cross section should be increased slightly for any future fabrication by decreasing the diameter of the aluminum inner hex mold plug. It was found that post curing the Dapocast up to 400°F causes a color change from yellow to rust, but there is no degradation in properties unless continually used at this temperature. It also happened that one Dapocast mix resulted in "soft" rubber pieces. They had a Shore hardness of 30 A versus a normal value of 50 A. These soft pieces exhibited no detrimental difference in CTE when used for TRM.

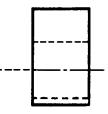
The overall TRM Process Development Plan is shown in Figure C-10.

PANEL FABRICATION:

Based on the properties achieved in the strip samples and evaluation of the mini panels, it was decided to use the T-300/982 resin system for fabricating the 15" x 21" and 15" x 56" panels. Since this is a $250^{\circ}F$ curing system, less internal stress due to thermal growth is built into the panel. The 15" x 21" layup tool and panel configuration is shown in

Baseline Insert Assembly Design

Engineering and Test Division TRW Space & Technology Group


SNAP FASTENER

COMMERCIALLY AVAILABLE

INJECTION MOLDED TO TRW SPECIFICATIONS

SLIDING INSERT

WASHER

INJECTION MOLDED TO TRW SPECIFICATIONS

ASSEMBLY

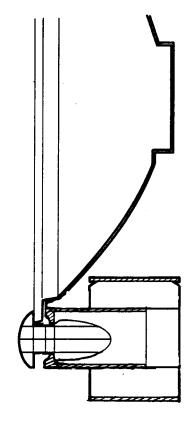


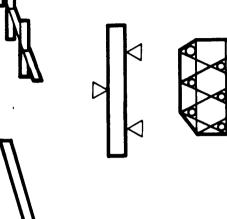
Figure C9

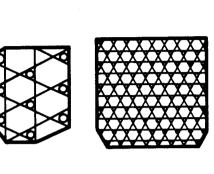
FIXED INSERT

Engineering and Test Division

TRW Space & Technology Group

THG Process Manufacturing Development





MANUFACTURE 18" x 18" GRID

MANUFACTURE 15" X 56" GRID

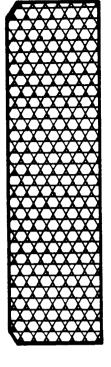


Figure C-11. The wrapping pattern is a six tow sequence (one course) repeated 9 times resulting in a total of 18 tows in each internal wall. The outer frame has a consistent pattern, but does not have the same number of tows at every location. To give a better appearance to the frame and further stiffen the structure, the frame was covered with T-300 6K tow unidirectional tape (MT3-103-3) around the periphery. This tape has a 350°F curing resin so it is not fully cured at the 260°F curing temperature, but it has reached the glassing temperature (Tg) and is securely bonded from the resin in the roving.

The graphite tows were drawn through a series of dies (.052", .043" and .033" diameters) utilizing the technique developed on a previous PMI program. This rounds out the flat fibers and makes it easier to uniformly wrap around inserts and pins. A 108 style bleeder cloth was placed on top of the layup and the caul sheet was clamped down with 1/4-20 socket head cap screws threaded into the layup plate. Rails and inserts were .450" high, but some rubber pieces were slightly higher so this extra clamping helped to eliminate loose tows. The panel was turned over so the bleeder side was down and resin would be soaked up during the three hour, 260°F, vacuum bag cure. The 15" x 21" panel was easily removed from the mold and met all requirements (see Figure C-12). The panel is shown in Figure C-13 with the 15" x 56" layup tool.

Since the tri-hex pattern repeats, the 15" x 21" layup tool was simply extended to accommodate the 15" x 56" panel. The layup procedure was the same as the 15" x 21", but the cure cycle was modified. In an effort to reduce thermal stresses in the part, it was cured for three hours at 200°F (beyond the Tg), wrapping pins were removed and the part was postcured for two hours at 260°F. When removed from the mold, the part was inspected and found to have a .240" bow. The walls of the grid tapered from .015"-.028" and this unbalanced condition was suspected as the cause of the bow. It was decided to build a second panel using a controlled compaction technique to guarantee an equal number of tows above and below the center line of the panel. The second panel was bowed .310" even though the walls were more uniform (.016"-.026"). This taper was

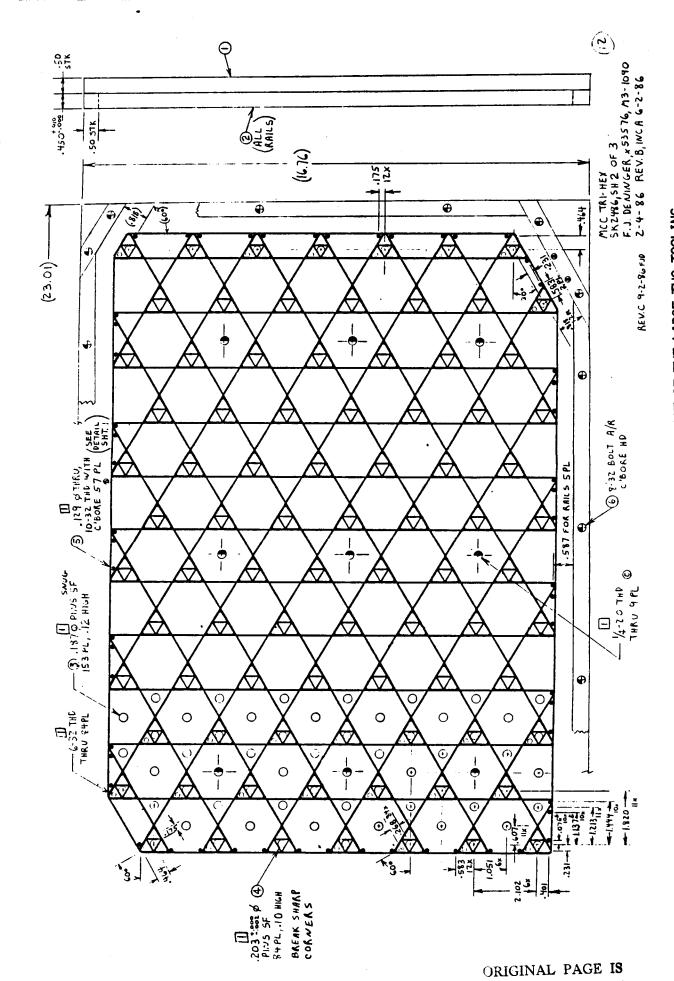


FIGURE C-11: TOOLING FOR THE SMALL THG PANEL WAS ALSO USED AS PART OF THE LARGE THG TOOLING.

OE POOR QUALITY

Tow	MECHAN	MECHANICAL MANUFACTURING	ACTURING
	ENGINI	ENGINEERING DEPARTMENT	RTMENT
Parayeter Fiber volume	FIGURE C-12; IRI-HEX G REQUIREMENT 40% MINIMUM	IRI-HEX GRID SPECIFICATIONS GOAL 60% MINIMM	ACTUAL 64% MINIMM
TENSION/COMPRESSION MODULUS (0 ⁰)	$13 \times 10^6 \text{ PSI MINIMUM}$	$20 \times 10^6 \text{ PSI MIN}$	15 × 10 ⁶ PSI MINIMUM (CALCULATED FROM SYALL BENDING SAMPLES)
WALL THICKNESS	,030" ± ,010"	,020" ± 010"	$0.024'' \pm 0.002'' (15'' \times 21'')$
FLATNESS	.020" IN 10"	,005" in 10"	.014" IN 10" (15" × 21") .017" in 10" (15" × 56" ofter
MEIGHT (LESS INSERTS)	N/A	,067 G/OM ³	.066 G/CM (15" × 21") 060 G/CM (15" × 21") 060 (15" × 56")
INSERT WEIGHT	REDUCE ALUMINUM WEIGHT OF 3.3G	32.	1,5¢ (REDUCED 5:%)
MATERIALS	SPACE COMPATIBLE	N/A	T-300 GRAPHITE/EPOXY PRE-PREGINJECTION MOLDED PEFK, RYTON AND TORLON 30% GRAPHITE FIBER
"REQUIREMENTS" NEED TO BE MET FOR "GOALS" REPRESENT A MORE EFFICIENT SPECIFICATIONS WHEREVER PRACTICAL.	"REQUIREMENTS" NEED TO BE MET FOR NASS-36159 TEST ARTICLES. "GOALS" REPRESENT A MORE EFFICIENT STRUCTURE. FUTURE PRODU SPECIFICATIONS WHEREVER PRACTICAL.	r articles. Jiure production panels	"REQUIREMENTS" NEED TO BE MET FOR NAS8-36159 TEST ARTICLES. "GOALS" REPRESENT A MORE EFFICIENT STRUCTURE, FUTURE PRODUCTION PANELS SHOULD MEET OR EXCRED THESE SPECIFICATIONS WHEREVER PRACTICAL.

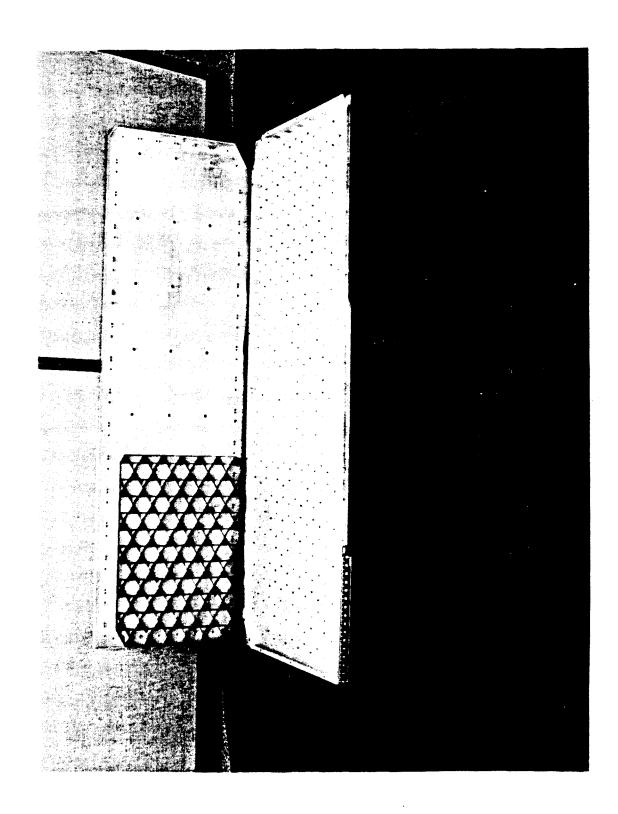


Figure C-13. 15" x 21" Panels with 15" x 56" Layup Tool ${
m C16}$

partially due to rubber triangle inserts allowing fibers to get underneath during wrapping. Longer pins to secure these inserts would eliminate this problem. The layup process is shown in Figures C-14, C-15, and C-16.

The decision was made to straighten both panels to gain data points even though panel #2 was planned for use as the deliverable article since it had a more uniform structure. They were heated to 310F for 16 hours while restrained in the direction opposite the bow as shown in Figure C-17. Panel #2 was placed back into the oven at 360° for 16 hours to further straighten it. The results are shown in Figure C-18. In summary, panel #1 was flat within .020" after one straightening and panel #2 was flat within .040" after two straightenings.

RESULTS/CONCLUSIONS:

- a. All tri-hex grid specifications for this contract have been met or surpassed (see Figure C-12).
- b. The TRM technique was extremely successful in increasing the fiber volume of the tri-hex grid structure.
- c. Injection molded thermoplastic inserts can be successfully co-cured with an epoxy based prepreg roving.
- d. A tri-hex grid can be easily removed from the mold when screw pins are used.
- e. Thermally induced residual stresses are built into the 15" x 56" structure as a result of aluminum layup tool expansion during cure, causing the panel to bow. A graphite layup plate and caul sheet is recommended for fabricating any tri-hex grid panel with a length or width dimension greater than 30".

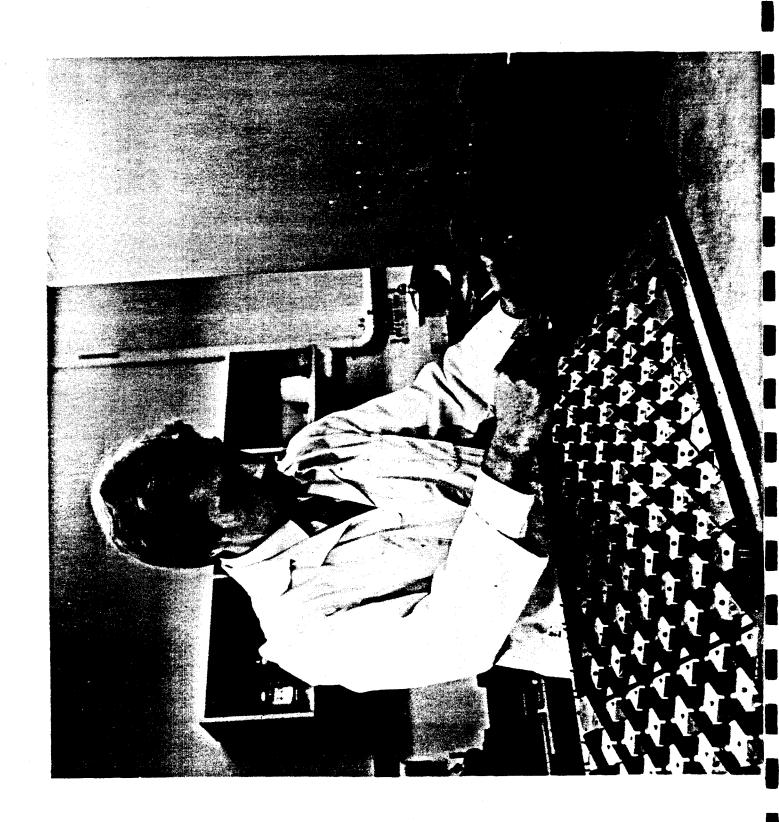


Figure C-14. Drawing TOW Through Die.



Figure C-15. Layup Process.

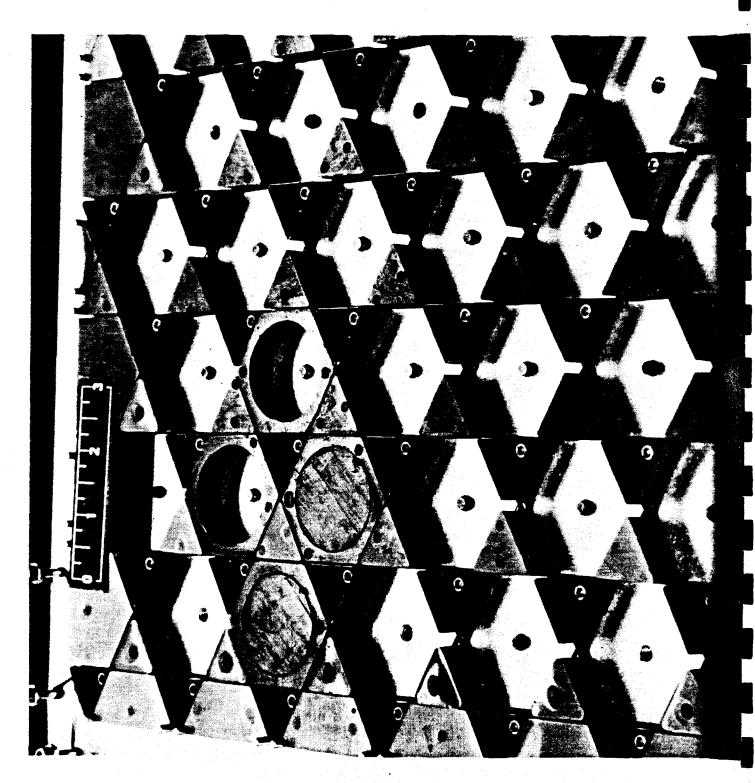


Figure C-16. Rubber Inserts Installed in Panel.

FIGURE C-17: STRAIGHTENING SETUP.

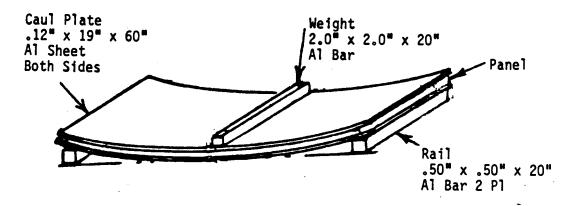
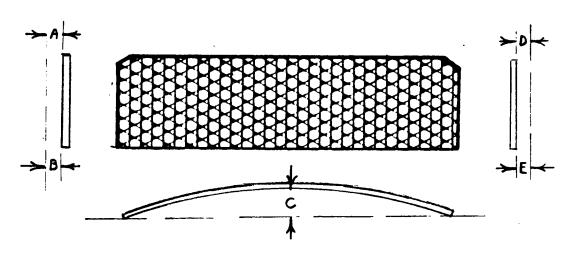



FIGURE C-18: 15" x 56" FLATNESS RESULTS.

PANEL #	DIMENSION	AFTER INITIAL CURE	AFTER FIRST STRAIGHTENING	AFTER SECOND STRAIGHTENING
1	Α	.000	.000	N/A
	В	.000	.020	N/A
	С	.140	.010	N/A
	D	.050	.000	N/A
	E	.000	.010	N/A
2	A	.000	•000	.000
(Deliverable	В	.025	.000	.000
Article)	С	.310	.080	.040
	Ð	.050	.010	.010
	E	.000	.000	.000