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1 INTRODUCTION

Because they provide high stiffness and strength and are relatively light
weight, continuous fiber reinforced laminated composite materials are candi-
dates for use in large space structures. One of the significant differences
between these composites and more conventional engineering materials is that
laminated composites develop a considerable amount of large-scale damage.
Numerous ply cracks and delaminations may develop in a laminate early in its
load history.

Unlike fiber breaks and fiber-matrix debonds, which tend to influence
only a small volume of material, ply cracks and delaminations can cause sig-
nificant changes in the Bulk properties of a laminate. Numerous researchers
have studied and modelled the influence of ply cracking [1,2,5]) and
delamination [3,6] on the elastic behavior of laminated composites. But while
significant increases in damping have been observed as a result of damage
development [7,8], and modelling efforts have predicted that significant
changes in the dynamic response of structures can result from changes in mate-
rial damping [9,10), existing models of damping in composites [11,12] have
not included the effects of damage on damping.

This report summarizes the work completed under NASA Grant NAG-9-192.
This research effort had as its objective the development of a damage depen-
dent constitutive model for predicting the influence of damage on the damping
properties of laminated composites. In particular, the beam bending behavior
of cross-ply laminates was studied. The damage mode of interest was ply
cracking. The research proceeded along two fronts. The primary effort was to
develop a continuum damage model based on internal state variables to describe
the viscoelastic behavior of laminates as a function ply cracking. In support
of the continuum modelling, an experimental program was implemented to deter-
mine stiffness and damping as a function of damage. A second effort involved

the development of a micromechanics model of damage dependent damping.



2 CONTINUUM DAMAGE MODEL

2.1 Theoretical Development

The constitutive model used in this study follows the model developed [4]
and used by Allen, et al. to predict the damage dependent elastic response of
laminated composites containing ply cracks [5] and delaminations [6]. For a

given ply, the ﬁniaxial constitutive equation has the form
o, =~E(e,,~a)) , (2.1)

where E is the modulus of the material, and a, is an internal state variable
which reflects the effect of ply cracking on ply behavior. In general, there
would be one internal state variable (ISV) for each different damage mode.
Multiaxial behavior requires a tensor quantity to characterize the effect of
damage.

In the earliest version of the model [13,14,15]}, it was assumed that a

Ply could be modelled as a Voigt material, which has the mechanical analog

shown in Fig. 1. For such a material, the constitutive equation has the form

O, =Fe, +ne,, ., (2.2)
where the term ne,, represents the viscous part of the material response.
This equation can be made to fit the form Eqn. (1) by taking a,=—§é,x. In

fact, two ISV's, one representing stiffness changes due to ply cracking and
the other representing damping changes due to ply cracking, were used in the
analysis. Strictly speaking continuous fiber reinforced materials do not
behave like Voigt materials, within a limited range of frequencies and ampli-
tudes appropriate Voigt material parameters can be chosen to provide a reason-

able representation of ply response.
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Figure 1.The Voigt model.



While the Voigt model was useful in the early stages of the development
of the damage dependent constitutive model, it was somewhat restrictive. For
example, Voigt type ply response led to a linear frequency dependence on lami-
nate damping [13,14,15}. This frequency dependence was not observed in subse-
quent experimental results. A more general formulation has since been
developed which uses a complex modulus representation of viscoelastic ply
properties [16]. It is this second formulation which will be discussed here.

In this formulation, the damage dependent, elastic constitutive relation has

the form

o,=Fe, +Ia, , (2.3)

xx

where now the term /a, captures the damage dependence. For a linear viscoe-

lastic material under sinusoidal loading, the constitutive relation takes the

form
G,=EE. +I1'a, . (2.4)
where
E'=E"+i{E"
I=1"+il"
€., =€, e



Using the viscoelastic constitutive relation above, it can be shown that

the energy dissipated by a ply per cycle of loading is given by
Aw=nE"e,+nl"a, €, , (2.9)
and the stored energy during the peak displacement is given by

U=[E‘€2+1'€,a,,1/2 . (2.6)

1t then follows that the loss factor is

E"ei+1"a,,€, ‘ (2.7)

===
E'ef+]"a €,

With the additional assumptions that

I"a, ,=AE7¢,

(2.8)
I'a,,=AEF’¢, .
we arrive at the expression for the loss factor
E"+AE”
"EvaE 22

The complex modulus of a laminate may be determined from the ply level

constitutive relations using classical lamination theory [17] to be

P18 : ‘
E =t—32(23-23-1)5.~ : (2.10)
i=1

where E" is the complex modulus of the laminate, h is the thickness of the

laminate, N is the number of plies in the laminate, E; is the damage dependent



complex modulus of ply i, and the z, are the coordinates of the ply inter-
faces. For a symmetric cross-ply laminate, a symmetric laminate consisting of

0° and 90° plies, the expression above reduces to
E'=aE}+bE; (2.11)

if the laminate is undamaged. In Eqn. (2.11), a and b depend on laminate
geometry, and E; and F; are the complex moduli of the 0° and 90° plies, respec-

tively. The flexural damping is given by

aE”,+bE",

— t - 7 2.12
oE b, ( )

tang,=n=

In the present study, it was assumed that ply cracking would affect E;

but not £; . It follows that for a damaged laminate, the flexural damping is

given by

QE",+bE";+CAE";

- 2.13
afE’ +bE";+CAE’"; (2.13)

n

where CAE"; and CAE’; are functions of the total crack surface area and loca-
tion of the cracks. Both AF"; and AE’; can be determined from experimental
data from a single laminate, and then can be used to predict behavior in other

laminates via Eqn. (2.13).
2.2 Experimental Program

In order to evaluate the analytical model, damping was measured as a
function of damage in a variety of graphite/epoxy cross-ply laminates [14,15].
Damage was introduced into étraight sided coupon type specimens under uniaxial

tensile loading in an MTS servohydraulic testing machine. Edge replication



was used to monitor the development of 90° ply cracks during tensile loading.
At various stages of damage development, the tensile test was interrupted, so
that the specimen could be removed and its flexural damping measured.

The experimental setup used in performing the damping measurements is
shown schematically in Fig. 2. The specimen was cantilevered from a support
housed in a vacuum chamber. All damping data was obtained in vacuum. A
motorized wheel with a contacting rod was used to deflect the specimen and
excite its first mode of free vibration. Care was used to insure that the
initial deflection was small, so that no new damage would be introduced during
the damping test. A strain gage mounted on the specimen near the cantilevered
support was used-to monitor the surface strain in the specimen during free
vibration. A personal computer with an A/D board was used to start and stop
the motor, and to record strain data.

After capturing the strain data, the peaks in the strain versus time
curve were obtained. A representative plot of log strain amplitude versus
cycle number is shown in Fig. 3. The decay of strain amplitude is seen to be
nearly linear on a semi-log plot. The slope of the best fit straight line to

the log strain amplitude data was taken to be the logarithmic decrement, which

is directly related to damping.
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2.3 Ccomparison of Theory and Experiment

From measured values of the stiffness and damping of laminates containing
all 0° and all 90° plies, the parameters E°;,, E°y, E”;,, and E"; can be deter-
mined. These parameters can in turn be used to predict the damping of other
laminates consisting of combinations of 0° and 90° plies. A comparison of the
predicted and observed damping in several cross-ply laminates is presented in
Fig. 4. Agreement between theory and experiment is quite reasonable. The 90¢°
plies exhibit matrix dominated behavior, and hence are the primary contrib-
utors to damping in laminates. In addition, the effect of a 90° ply increases
with distance from the midplane.

In order to predict the influence of damage on damping, it was necessary

to determine the parameters AE’y and AF"; as a function of crack surface area.

Since the elastic properties of the graphite/epoxy laminates are dominated by
the 0° plies, AE’; term was assumed to have a negligible effect on the denomi-
nator of the right hand side of Eqn. (2.13). Further, damage dependent damp-

ing data from [0/90/0], specimens was used to determine

AE",(s)=57.97x107°[0.0002(s)~1.7108x107%(s?%)] ,

where s is the crack surface area in the 90° ply. Using this expression in
Eqn. (2.13), damping was predicted as a function of damage in other cross-ply

laminates.

Figures 5, 6, and 7 present a comparison between predicted and observed
damping values in [90/0/90],, [0/90]);,, and [90/0/90,]; laminates at two dif-
ferent damage states. Generally, agreement between theory and experiment is
quite good. The effect of damage on the behavior of the [0/90),; is smaller
than the effect of damage on the behavior of the other laminates because the
90° plies are located closer to the midplane. Thus, any influence of the 90°
plies on the flexural damping is reduced. This stacking sequence dependence

is also reflected in a smaller damping value for the [0/90],, laminate.

10
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3 MICROMECHANICS MODEL

3.1 Theoretical Development

In order to better understand the details of damage-induced damping, a
micromechanics model of damaged crossply laminates was developed [19]. The
model is based on shear lag theory, and explicitly includes 90° ply cracks.
In fact, two versions of the model were developed. In the first, each ply is
treated as an Euler-Bernoulli beam, while in the second, each ply is treated
as a Timoshenko beam. The Timoshenko beam version will be described below.

For the Timoshenko model, the axial displacement in layer i is given by

u(x,z;)=ug(x)+zk(x) ., : (3.1

where
d
k,.(x)-=[3i(x)—a% . (3.2)

In Eqn. (3.2) w is the deflection of the ply, which is assumed to be the same
as the deflection of the laminate. The Euler-Bernoulli model does not include
the ply shear term, which is represented by B.

Ply equilibrium equations are obtained by performing force and moment
summations on a differential element taken from the ply. Such an element is
shown in Fig. 8. The interlaminar shear stresses shown in this figure are
determined using the shear lag assumption, i.e., they are assumed to be pro-
portional to the difference in ply displacements across the interface.

In fact, the shear strain in the interfacial region is given by the differ-
ence in the axial displacements of the two plies divided by the thickness of
the shear transfer region. Stresses are obtained by multiplying by an
appropriate shear modulus for the shear transfer region. Following this pro-

cedure, the shear lag assumption yields

15
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G a a;-
T ™ g(um_E‘kl—um-l——é—kl—l)

(3.3)
G al ai'l
Tl.:°l='g(um—?kt—um'l-__z—_knl)
Axial equilibrium for the ply has the form
G . a-, Ay .
m(zuo"uoo-l'uo:"l‘—‘z‘_ka—l"'z_km)'uoi =0 . (3.4)
equilibrium in the z direction yields
0., =0 . (3.5)
and moment equilibrium has the form
6G a,., a,., 126G 4z,
E'aizb(aikx"’um-l—u04~l+_?kl-l+_é_khl)+ E,a? K
(3.6)
12G,, n 126,.V
_.._n—‘ ze,kl' -k -—
Ea?) Gu, ' Ea}) G
j=1 =1

Exterior plies have slightly different equilibrium equations owing to the fact
that on one side of such a ply there is no neighboring ply, and thus there are

no interlaminar shear stresses.
The equilibrium equations for the plies within a laminate can be

assembled into a system of coupled, second order differential equations in the

form

B{y}y-{y"}=Ac} . (3.7)

17



where the column vector (y) has as its components the midply displacements u,i
and the ply rotations k,. These governing equations are applied to a region
of the laminate which corresponds to one-half of the crack spacing. Such a
region is shown in Fig. 9. At x=0, the displacement in the uncracked plies is
zero, while in the cracked plies, the crack surfaces are stress-free. A
symmetry condition at x=1 requires that ply displacements be equal at the ply
interfaces. Applied loads then determine the midplane displacement and rota-
tion at this end.

The system of linear ordinary differential equations was solved using
techniques commonly used for analyzing dynamic systems [20]. This approach
requires the determination of eigenvalues and eigenvectors of the coefficient

matrix [B]. The solution takes the form of a linear combination of "mode

shapes":

=3 = 1na, (v . (3.8)

where the a, are the eigenvalues and the {y;} are the eigenvectors. Boundary
conditions determine the coefficients A; in the solution.

The viscoelastic problem was also solved in order to determine the effect
of cracking on damping. This was accomplished using complex moduli in the
analysis described above, and obtaining the corresponding solution. Note that
only material viscoelastic behavior was included, and that other dissipation

mechanisms, such as friction, were ignored.

18
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3.2 Comparison with Experiment

Experimental data for bending stiffness as a function of crack density
was obtained for [0/90,]), and [90,/0,)}, glass/epoxy laminates. A glass/epoxy
system was chosen because it is a less fiber dominated system than graphite/e-
poxy, and thus should exhibit larger property changes due to damage develop-
ment. Specimens were loaded in quasi-static tension in order to introduce
damage, which was monitored using edge replication. Four-point bending tests
were used to determine the bending stiffness at a variety of damage states.
This data was compared to model predictions.

Figures 10 and 11 present the theoretical and experimental bending stiff-
ness data for the [0/90;]; and [90,/0,], laminates, respectively. Note that in
Fig. 10, there is little bending stiffness reduction observed. This is
because the 0° plies are located at the exterior of the laminate. In light of
this small stiffness reduction, the predicted responses are in reasonable
agreement with experiment. The Timoshenko model provides slightly better pre-
dictions than the Euler-Bernouli model. The [90,/0,] laminate (Fig. 11)
exhibits larger stiffness changes. The Timoshenko model provides a reasonable
estimate of laminate response up to crack densities of about 13 cracks/in., at
which point delaminations begin to develop.

Fig. 12 shows the predictions of loss factor as a function of crack den-
sity in a [90,/0;]; laminate. At low crack densities, the damping increases
with cracking. But at larger crack densities, damping decreases with
cracking. It is believed that this behavior is a result of excessive load
transfer from the relatively viscoelastic 90° plies to the relatively elastic
0° plies that occurs at high crack densities. At lower crack densities,
stress concentrations in the shear transfer region are able to generate an
increase in damping. This decrease in damping is not observed in the labora-
tory. At present, it is believed that other dissipation mechanisms, such as

friction between rubbing crack faces, account for the discrepancy. With

20
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additional effort, it should be possible to use the micromechanics model to

estimate frictional dissipation.
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4 CONCLUSIONS

A constitutive model -has been developed for predicting damping as a func-
tion of damage in continuous fiber reinforced laminated composites. The dam-
age model is a continuum formulation, and uses internal state variables to
quantify damage and its subsequent effect on material response. The model is
sensitive to the stacking sequence of the laminate. Given appropriate base-
line data from unidirectional material, and damping as a function of damage in
one crossply laminate, damping can be predicted as a function of damage in
other crossply laminates. Agreement between theory and experiment has been
quite good.

A micromechanics model has also been developed for examining the influ-
ence of damage on damping. This model explicitly includes crack surfaces.

The model provides reasonable predictions of bending stiffness as a function
of damage. Damping predictions are not in agreement with experiment. This is
thought to be a result of dissipation mechanisms such as friction, which are

not presently included in the analysis.
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ABSTRACT

. An Experimental Investigation of Damage-Dependent Material Damping
of Laminated Composites. (May 1988)
Scott Andrew Smith, B.S., Texas A&M University

Co-Chairs of Advisory Committee: Dr. Alton L. Highsmith
Dr. Charles E. Harris

An experimental program was developed in which the material damping
of laminated graphite/epoxy specimens was measured as a function of matrix
cracking. The damping test apparatus was designed to measure the first mode
free vibration responsé,o'f a cantilevered beam. Matrix crécks were introduced
into cross-ply laminates, and damping, calculated by the logarithmic
decrement method, was measured at several levels of damage.

The 90 degree plies were found to have a greater damping capacity than
the 0 degree plies, and placement of the 90 degree plies away from the mid-
plane of the laminate thickness resulted in a higher damping measurement.
Matrix cracks in the 90 degree plies were seen to significantly increase the
damping of the cross-ply laminates. In addition, the matrix cracks which
formed in 90 cegree plies near the specimen surface, caused a greater increase
in damping than matrix cracks near the mid-plane. Finally, a damage-
dependent material damping model was applied, which closely predicted the

measured damping values.
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ABSTRACT

Matrix Cracking and Bending Stifiness Reduction
in Composite Laminates. (December 1988)
James Alan Frailey, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Alton L. Highsmith

Shear-lag theory was used in the development of two mathematical models
to predict the behavior of cracked, cross-ply, laminated composites. One model] used
Euler-Bernoulli beam theory to model the deformation of each ply while the other
used the Timoshenko beam theory. Solutions to the governing sysiem of difierential
equations provide displacements and stresses throughout a representative volume
of the laminate. The models were used to predict the response of laminztes under
two loading conditions: axial, pure bending.

Analvtical results were compared to experimental data for axial and bend-
ing stifiness reductions with matrx crack demsity. Glass/epoxy ;0/90s], znd

[90,/02}, laminates were selected for the analytical-experimental comparison.



ABSTRACT

An Investigation of Damping Behavior of
Fiber Reinforced Composite Materials. (May 1989)
Shankar Kalyanasundaram, B.Tech., Madras Institute of Technology
M.S., Oklahoma State University

Co-Chairmen of Advisory Committee: Dr. David H. Allen
Dr. Walter E. Haisler

Advanced fibrous composite materials are known to exhibit viscoelastic be-
havior, which in turn contributes to the damping of these materials. This study
has investigated the efiect of shear deformations, rotary inertia and matrix crack
damage on the damping characteristics of composite materials. For 2 composite
beam the influence of shear deformation and rotary inertia depend on the ratios of
E'/G' ,Tan®c/Tan®g, the length 1o thickness ratio and mode number. For highly
anisotropic beams the loss factors in shear are substantially higher than longitudinal
loss factor. This leads to large differences between the damping predictions obtaiﬁed
from Euler-Bernoulli and Timoshenko beam theories. The resulis of this study show
that for highly anisotropic slender beams in which the ratio of Tan®s/Tan®g and
E'/G' ere high, the infiuence of shear damping is important even in low vibrational
modes. A constitutive model has been developed for predicting the effect of mi-
crostructural damage on the dynamic response of composite materials. This model
is valid for 2 fixed damage state and small amplitude vibrations. The theoretical
formulation has been verified for crossply graphite-epoxy laminates with transverse

matrix crack damage. For crossply laminates the loss factor in shear is of the same
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order as the longitudinal lqss factor and Euler-Bernoulli theory has been found to
be adequate for obtaining dynamic properties. Damage dependent material con-
stants obtained from [0/90/0], laminates have been used to predict the increase
in damping in [90/0/90},,[0/90},, and [90/0/90,], laminates for different matrix
crack damage states. Damping has been found to be more sensitive to matrix crack
damage than the stifness loss. Thus, damping measurements hold some promise for

further studying the damage development in composite structural components.
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8.1 Dynamic Response of a Viscoelastic Timoshenko Beam



DYNAMIC RESPONSE OF A VISCOELASTIC TIMOSHENKO BEAM

S. Kalyanasundaram*
D.H. Allen**

R.A. Schapery***

Texas AM University
College Station, TX 77843

. Abstract

The analytical determination of the steady
state and transient flexural vibrations of beams
is often based on the Euler-Bernoulli equation.
In this theory what are normally secondary
effects, such as shear deformations and rotary
inertia are not included; but these effects may
significantly influence the vibrational response
under certain conditions.

Advanced fibrous composite materials are
known to exnibit viscoelastic behavior, which in
turn contributes to the damping of these
materials. The analysis presented in this study
deals with the vibratory response of viscoelastic
Timoshenko beams under the assumption of small
material loss tangents. The appropriate method
of analysis employed here may be applied to more
complex structures.

This study compares the damping ratios
obtained from the Timoshenko and Euler-Bernoulli
theories for a given viscoelastic material
system. From this study the effect of shear
deformation and rotary inertia on damping ratios
can be jdentified.

*Research Assistant, Aerospace Engineering
Department

Student Member AIAA

**Associate Professor, Aerospace Engineering
Department

Member AlAA

***Professor, Civil and Aerospace Engineering
Department

Member AIAA

Nomenclature

E* Complex Longitudinal Modulus

G* Complex Shear Modulus

A Cross Sectional Area

o Mass Density

w Total Deflection

v Bending Slope

L Length of the Beam

1 Area Moment of Inertiz of Cross
Section

k Numerical Shape Factor for Cross
Section

n Mode number

3 Longitudinal Storage Modulus

G' Shear Storage Modulus

Taan Longitudinal Loss Facter

TancG Shear Loss Factor

h Thickness of the Beam

b Width of the Beam

Introduction

The study of vibration damping properties of
advanced composites is important for several
reasons. An automatically controlled fiexible
space structure may act either docile or
unmanageabie depending on the level of damping in
higher vibration modesl. It is also known that
damping is sensitive to microstructural detail so
that damping measurements can be used to study

damage development in composite membersz.

The analytical determination of the dynamic
properties of beams generally employs the Euler-
Bernoulli equation. for highly anisotropic
beams, neglacting shear deformations and rctary



inertia can result in relatively large errors in
the predicted dynamic properties, for long
slender beams composed of undirectional composite
laminae in which the ratio of longitudinal
modulus (E£;)) to the shear modulus (Gy,) is high,
deformations can  become

transverse shear

significant even in lower vibrational modes.

In experiments3 conducted on unidirectional
E-glass composite beams, the measured values of
longitudinal loss modulus are typically 50 to 80
percent higher than the prediction obtained from
Euler-Bernoulli beam thecry. Adams, et a1.4'6
indicated that the measured damping
values may depend on shear effects. Schultz and
Tsai7'8 have used the damping ratios measured for
three fiber orientation angles to predict the
The damping ratios

have also

damping ratio for any angle.

exnhipited qualitative but not quantitative
agreement with the predicted properties.

There is a need to develop an improved mode}
for the analysis of large space structures which
global structural

representation of

dgescribing
accurate

is capable of
response including
damping

components.

characteristics of structural
The global dynemic response of space
modeiled with equivalent

Q
Sun, et al.”

structures can be
continuum beam and plate models.
constructing
It was

have presented procedures for

severg] equivalent continuum models.
found that tne Timoshenko beam and Mindlin plate
theories were suitable for eguivelent continuum
modeiling. Material damping10 of structural
members can be included in such formulations.
For small tangents the dynamic
steady-~-state and
viscoelastic Timoshenko beam and other structures
can be predicted by simple technigues described
by Schaperyll.

The Timoshenko beam theory
the effects of

inertia, has been wused to

material 1loss

transient response of a

12 hich includes

shear deformation and rotary

predict flexural
resonance freguencies obtained for anisotropic
specimens such eas wood13 and fiber reinforced
compositele. Althouah the Timoshenko theory was
originally ceveloped for isciropic materials, it
may be applied to anisotropic beams, providing
the appropriate longitudinal and shear moduli and
associated loss

factors are employed in the

model. When the wave lengths of the deformation
response are relatively small, a higher order
shear deformable theory may be necessary in order

predict dynamic properties of
15,16.

to accurately

composite beams

The goal of the present investigation is to
compare the free-vibration damping obtained from
Timoshenko and Euler-Bernoulli beam theories for
a simply supported beam. From this study the
effect of shear deformation and rotary inertia on
damping can be identified. The results of the
study can be used to interpret the difference
between experimental and predicted damping values
for beams and to guide a more general study of

passive damping in large space structures.

Analysis

The governing differential equation of the
free vibrations of an elastic Eoler-Bernoulli

beam is given by

: 2y (1)
El = + A5 =0 1
ax* at?

The solution for free vibrations can be written

in the form
w{x,t) = W(x) exp(iwt) (2)
where W(x) is the displacement amplitude at any

sufficiently small
viscoelastic

point din the beam. For

damping, free vibrations of &
structure decay very slowly, which permits the
use of an approximétion wherein stress-strain
equations for steady-state harmonic vibration are
employed. Thus, by the correspondence principle
of linear viscoelasticity, the elastic Young's

replacad by the corresponding

modulus £ is
*
compiex modulus E , where



which, in general, depends on frequency. The
boundary conditions for the simply supported
Euler-Bernoulli beam are

at x=0, L (4)

The deflection of the nth mode of vibration is
given by

nrex i
unt

wn(x.t) = h,sin—T"e (n=1,2,...) (5)

The freguency equation is given by

=
Since £ is complex, the frequency values are
also complex and can be written as

w_ o =e +iu - (7)

Observe that when o, > 0, the displacement,
equation (5), is predicted to decay
exponentially. Separating the real and imaginary

parts of eguation (6) results in

4 llz
' pAL '2 n
£ e 20 )
d u.n
I (o) Ju)? <<,
. a o
g 2B .2 @)
nan I
Also,

Tan 2 wa u;' 2w
¢ = Ty D = T
‘ ;;?(1 -y op) n

. (9)

[ ) [}
which shows that “n /un is small when the
material loss tangent tane is small,
The coupled equations for the total

deflection w and bending slope ¢ for  the

Timoshenko Deam17 are as follows:

El % k(o)A - Io i =0 (10)
axZ X at2
2 2
3w L _

pA ;;? -k (;xz - 3;) AG = 0 (11)

Eliminating 4 from equations (10) and (11), the
following equation in w is obtained:

4 2 4
El s w  o°w 1 2w
= -+ - = (1+E/KG)
N axst?
+ ol A 0 (12)
kGA 8t4

The boundary conditions for the simply supported
Timoshenko beam are given by

o
€

0 at x=0,L {(13)

£
[}
I
]

o
>

The deflection of the nth mode of vibration is

given by

_ soonax et
wn(x.t) = Ans1n e n (14)

As in the £fuler-Bernoulli theory for smzl)
damping, tne complex frequency eguation is
obtained by using eguation (14) in (12) and by
replacing £ and G by the complex moduli £ and

*
G , where



E = £'(1 + 1 Taneg) (15)
and
6" = G (1« i Tane) (16)
Therefore,
. a4 2.2 .
Elns nr 1 3 2
- 11+ (1+==)lw

oA L4 LZ A kG n

. LI' u: = 0 (17)

kG A

Now consider again equation (7) and the small
loss tangent approximation, such that

“’r‘mlz 2 2
e < 1, Tan e << 1, Tan g << 1 (18)
“n
2 '2 . Yn
wo = oep (1’21—7
“n
[ =
wi e S0+ 41 R (19)
W
n

Using (19) in (17) and separating the real and
imaginary parts results in two equations.
Setting the real paert equal to zero gives the
following equation:

! 4 4 2z 2 '
Eln's n 1 £
— - w ([l + ———— (1 + )}
oA L4 n A kG
+ | 2 nzn ! :' - (T T .

2 AL ange - °n°G) _‘!)
“n

or
‘., 4.4 2.2 !
Elns n“a" 1 E ‘2
-— -1 1+ s (l+=)lw
oA L4 L2 A kG n
P 1 S (21)
ke A "

whicn is identical to the frequency equation for
an elastic beam except E‘and G' appear in place
of elastic constants. Similarly, by setting the
imaginary part equal to zero, the following
equation is obtained:

1 &3

s 2l ¢'3§ (22)
kG A

Cbserve that w, €an be obtained from egquation
(21) for each n. This value can then be
substituted into equation (22) to obtain

u;I. w; can be easily
when n n I/L A is a small quantity.
approximation, it can be shown 12 that the last
term in equation (21) is small compared

to . nZnZI/L A. Neglecting the last term, the

estimated

Using this

frequency “n is given by

111e 54y (23)
kG

nl.2

]
|
N =t
p o

u; AN PR

Tane for the viscoelastic Timoshenko beam is

defined eas,



Tane = —¢ (24)

where w; and u; are found from equation (22).

This loss tangent provides a measure of the decay
per cycle of free vibration, which can be shown
by substituting equation (7) into (5). and
replacing w;. in favor of tane by means of
equation (24). The ratio of displacement at
time t + Zl/u; to that at time t 1{is found to
be exp(-»tans). Note that tane = tanep for the
fuler-Bernoulli theory, equation (9).

Discussion of Results

The influence of shear deformation on the
damping will depend on the ratios of
E'/G'. Tan;G/Tan:E, the length to thickness
ratio, and mode number. F?r unidirectional

)
composites, the ratios £ /& and TancE/TaneG

depend on the volume fraction of fibers and

matrix and the moduli of fibers and matrix. By
considering different material systems and
different orientation angles it is possible to
variations in the ratios
In the continuum model of

have wide
E}G'and TangE/Tangs.
large space structures, the effective shear and
longitudinal moduli can be varied independently
of each other by changing the configuration of
the individual cells. A1l the results presented
in this study will be given in a dimensionless
form.

The material properties and dimensions of
the beam are given in Table 1. For the purpose
of illustration the loss factors and storage
modulus are assumed to be independent of the
frequency.

Table 1

Typica) Properties of A Composite Beam

£ = 20x00%si £ .- 10-40
6
L = 50 in % « 20~100
TaneG
TancG = 0.05 W = 100-1

o = 0.065 1b/in> width b = 1.0 in

shape factor k = 5/6

The influence of £ /G, TancG/TanoE. L/h and mode
numbers on the ratio of damping predicted by the
Timoshenko and Euler-Bernoulli theories are shown

in Figs. 1 through 8.

Figure 1 is a ploet of Tanc/TancE for
Tan.;G/TancE varying from 100 to 1. The first
mode of vibration (n=1) is considered. The
length to tnickness ratio of the beam is 100. It
is found that Tor large values
of Tancs/Tan¢E(100) the damping values predicted
by Timoshenko theory are 9% to 38% higher than
the prediction by Euler-Bernoulli theory
depending on the ratio of El/G:
Increasing E'/G' increases the shear effects.

The third mode of vibretion (n=3) is
considered in Fig. 2. The effect of shear
damping 1is more pronounced than in the first-
mode. figures 3 and 4 illustrate similar trends
for a beam of smaller length to thickness ratio
(50). The damping Tane predicted by the
Timoshenko theory 1is substantially higher than

Tan:E (384 to 1300% for Tan;G/TancE = 100).
It is interesting to note that when the
difference between TancG and Tan:E becomes small
the difference in predicted damping values
obtained from the Timoshenko and Euler-Bernouiii
theories is very small.

In Figs. 5 and 6 damping is predicted for
different modss while keeping the ratio of



E /G constant. For higher modes the shear

effects become important and this effect {s
enhanced as the ratio of TanoG'/TanoE is
increased.

Figures 7 and 8.111ustrate the effect of the
length to thickness ratio on
damping. for L/h ratios the damping
predicted by Timoshenko theory is higher than the
prediction by Euler-Bernoulli beam theory.

variation of
small

Conclusions

This study has investigated the effects of

shear deformations and rotary inertia on the

damping characteristics of beams. For typical
longitudinally reinforced composite beams, the
loss factors in shear (TancG), are substantially
leads to

higher than large

differences between the predictions obtained from

TancE. This

Euler-Bernouili and Timoshenko beam theory. The
results of this study indicate that for long
siender which  the
Tan.;G/Tan:.E and £'/G' is large, the influence of

paans in ratio of

important even in low
The methods and results from

shear damping is
vibrational modes.

this investigation can be used to study the role
of snhear damping in higher modes of vibration of

large space structures.
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8.2 Prediction and Experimental Observation of Damage

Dependent Damping in Laminated Composite Beams



PREDICTION AND EXPERIMENTAL OBSERVATION OF DAMAGE DEPENDENT
DAMPING tN LAMINATED COMPOSITE BEAMS

D. H. Allen, C. E. Harris, and A, L. Highsmith

Aarospace Enginesring Deportment
Texas A&M Univenity

ASSTRACT

The equations of motion are developed herein
for laminated composite beams with load-induced
metrix cracking. The damage is accounted for by
utilizing internal state variables. The net
result of -these variables on the field equations
is the introduction of both enhanced damping, and
degraded stiffness. Both guantities are history
dependent and spatially variable, thus resulting
in nonlinear equations of motion. It is
explained briefly how these equations may be
quasi-1inearized for laminated polymeric
composites under certain types of structural
loading, The coupled hezt conduction equation is
developed, and it is shown that an enhanced Zener
damping effect 1s produced by the introduction of
ricrostructural damezge. The resulting equations
ere utilized to demonstrate how damage dependent
material properties may be obtained from dynamic

experiments. Finally, experimenta) resulis are

compared to model predictions for several

composite layups.

ROMENCLATURE

A - beam cross-sectional area

Ay - cross-sectional arez of 1th lamina

*

A - modulus weighted beam cross-
sectional area

Am, L, - coefficients 1n cantilever beam
displacement field

b - beam width

C - viscoelastic modulus )

C, ~ specific heat at constant volume

Gy G - coefficients 1n cantilever beam

displacement field

283

Coliege Station, Texas

viscoelastic material parameters
axial modulus of elasticity

axial modulus of elasticity of {ith
lamina

reference axial modu lus of

elasticity

transverse load applied to free
end of cantilever beam

transverse l1ocad amplitude
beam depth

modulus weighted moment of inertia
about y axis

materizl constant in  internal

state veriable growth law
coefficient of heat conduction

Yoss in heat conduction
coefficient due to damage
beam length

beam moment resultant about y axis
beam moment resultant about y axis
due to temperature change

number of cycles of applied load
number of plies in laminate

material constant in  internal

state variable growth law
beam axial resultant

beam ax{al resultant due to
temperature change



‘xx

Cxxi

beam axial load per unit length

beam transverse load per unit
Jength

heat flux vector
heat source

term wused to obtain laminate
damping coefficient

surface area of matrix cracks in
local volume element ’

temperature

reference temperature
time

axial) displacement

crack opening displacement

axial displacement of neutral
surface

internal energy dissipation per
unit volume due to matrix cracking

total internal energy dissipation
due to matrix cracking

beam shear resultant in 2

direction

transverse displacement of neutral
surface

bezm axjal coordinate direction

beam transverse coordinate

direction

2 component of modulus weighted
centreidal axis

z component of distance from
centroid of 1th ply to modulus
weighted centroid

coefficient of thermal expansion

interna) state variable (ISV) due
to damage

axial component of matrix cracking
damage ISV .

axial component of matrix cracking
damage ISV in 1th lamina

initial dispiacement applied to
free end of cantilever beam

axial strain component

average axieal strain in {th lamina

damping coefficient

- axial damping coefficient in {th

1}

M Jamina

g ~ bending damping coefficient in {th
lamina

Yaq - axia) stiffness loss coefficient

. in 1th lamina .

¥p4 - bending stiffness loss coefficient
in 1th lamina

“n - modal frequency of mth resonant
mode

p - mass density

°A - stress amplitude of cyclic loading

L - axial stress component

%2 - Shear stress component

e - temperature minus reference
temperature

ey - beam rotation about y axis

INTRODUCTION

Microstructural damzge in laminated fibrous
composites has been studied by several
researchers in the past decade. It has been
observed that this damage can result in
significant stiffness loss |1-3). Furthermore,
experimental results indicate that material
damping may increase by an order of magnitude or
more as a result of ocamace [4,5]. Recent
research has indicated that this damage” induced
stiffness loss may have a substantial effect on
the dynamic response of both truss structures [6]
and beams in bending [7]. However, to these
authors' knowledge, no concerted effort has been
previously reported to model the effect of damage
induced damping on dynamic structural response.
While there have been models [£,9] ceveloped for
damping in laminated composites, these models do
not include the effects of microstructural
damage, The primary objective of the research
described herein {s to develop models that
explicitely account for the effect  of
microstructural damage on the stiffpess and
damping in the structural dynamics equations of

motion.

In this paper a2 model 1{s developed for

. predicting the structural dynamics response of

.composite beams in both bending and extension,
where microstructural damage induces both damping
and stiffness loss. The equations of motion are
formulated using the theory of i{nternal state
variables (IS¥'s) to account for damage [10-
12). The resulting equations are cast in such &
way that experimental data can be readily
implemented to the model.

DEVELOPMENRT OF THE EQUATIORS OF MOTION

Consider 2 free body cdiagrem of a laminated
composite beam, as shown in Fig. 1.
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W b Txz kpyy = kpygley) (4d)
! J ////"‘ og where 3 is an internal state variable
M

representing matrix cracking in each ply [9]. It

can be shown that o is & kinematic description

oY
JR( of the 1locally averaged microcrack geometry
[10,11]); that is,

N
|
t
!
N >~ — > x 1
Jueas (5)

v

YA °
. 1Y

¢
where V, {s a loca) characteristic volume which

t
7

]

b

€)7 is large enough to encompass statistically

homogeneous damage. Furthermore, u. 1is the

normal component of crack opening displacement,
V; and S. is the surface ares of cracks in VvV, as
shown in Fig. 2. V, may typically be taken s
one square inch in The x-y plane for laminated
Flg. 1. Free Body Di { ; polymeric composites [3]. For matrix cracking
Y Diagram of Laminated Composile Beam the 2 coordinate is taken to be one ply thickness
111). Equation (4c) 1s termed the internal state
The governing eguations are variable growth law.

1) resultant loads |13} It
P sAI o 9A (12)

A
7 7 / / 7/

My ;Af o, 20A {1c) o

2) equ}11brium [13], neglecting rotatory inertie
{14
p v
-L- = -p_ <+ ‘:-:—(DA ° (Za)

7/ 7/ //
// 1/
X x 3T ) AN
3V aw ;
2 2 o
= -p, + s7leA 5T) (2b) u
c
S

st

_-v- =V (zc) ' c
Fig. 2. Kinematics of Matrix Cracking
3) kinematic [13,15]

.3_U . . (3) »\.
fxx T 3x & = 5) thermodynamics [16,17]
3w . C :T .
oy = 3;2 (3b) up -eC, Jg - Yy, ter =0 (6)
which 1s a statement of conservation of energy
- . for the material described by equations. (4).
U=t eyz. v uo(x)’ ey = ey(x) (3¢) Although specific forms may be given for uE~as 2
£
where eguation (3c) s the Euler-Bernoulll function of ¢, and oy, this s covered " in 2
assumption. ) Jater section. Note that although the mechanical
formulation 1s one-dimensional 1n the spatial
4) thermomechanical constitution [10,11] : coordinate x, multi-dimensionality must be
. retained in thermodynamic equation (6).
e, = (e, -o,-a8),8=2T-T (4a)
xx XX 1 R Now substitute (3¢) into (3z) to obtain
Qe = =k, = koo )T - (4b)
! i D137, ' U, e,
el va (n

| l
vV =
l z ¢ J oy 04 (1b) - Jid P s /
’ s / e



-~ Substituting the above result into (4a) gives

E1Y) L1 )

Ixx © E(3§2 2 371 - ey - as) (8)

Now substitute (8) into (la) and {lc) to obtain

.U, e £
- -2 s 4
P EIA ix T E1 X AI IIZdA

2 T
- § ek - P (92)
v 98
- —o rk Ty,
Hy £y 3% A / TI 2dA + El ix Iyy
¢ - T
- § (Erenitihy - By (9b)

where e14 {s assumed to be independent of y and
2 in the ith ply [11), and

e %— dh  (102)
P

*

- E ;2 ’
loy =Aj E; 20A (10b)

Furthermore,

P - [ Eaeda (1la)
A

B = [ Easzda (11b)
Y A

The term containing 14 in equation (Sb) does not
go to 2ero even for a symmetric layup
because a4 is not symmetric (due to the crack

opening displacements in equation (5)) during
bending.

. Mow, suppose the modulus weighted centroidal
axis is utilized, such that,

- E
2= [+ 2da=0 (12)
RS .

Note that gsince £ is the initial undamaged
modulus, 2z represents the initial modulus
weighted centroidal axis, which s not damage
dependent. Therefore, using equations (3b) and
(12), equations (9a) and (Sb) simplify to the
following for symmetric layups

v

- % 7 T
P ElA > - §=1E1611A1 - P . (132)
. azuo n T
Hy = ;llyy el ;xiiuliziAi - Hy {12b)

The term containing ayy in equation  (13b)
represents a shift in the centroidal axis due to
metrix cracking, which is nonzero when the matrix
crack displacemegts are not symmetric through the
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thickness. This 1s generally the case in bending
and with asymetric layups [15].

Now substitute (13a) into (2a) to obtain

kit n
) *o T .
wEA s - § Eqoyghy - P)

-1 .
+ 2—( A :EQ) (14)
Py TPt TR

which is the governing equation of motion for
axial displacement.

Similarly, substitute (13b) into (2c) to
obtain

2
"W n

gt 0 3 Ky =y 15

x(Gily T2 §‘151°1121A1 M) =V, (19)

Substituting (15) into (2b) thus gives
2

w

n
2 - 0 - T
—(E,! - E.ay,2.A, - ¥ ) =
=’(2 yy ax2 §‘1 71447 y

aw
-p, (er 510 (16)

which is the governing eguation of motion for
transverse displacement.

Now consider 2 simple example for the
constitutive behavior. Suppose that the stress-
strain relation can be modelled by a Voigt
element, shown in Fig. 3.

The governing differentizl equation for the
analog is

Oex * Ecxx + m':xx - fas (17)

Suppose we let
n
e (18)

c
Ei xxi

%14
Then equation (17) may be written

Ox ™ E(cx"( -8y - ab) (19)

which is equivalent to (42), and (18) replaces
(4c); that is,

t
1
A -A ..
ayg(ty) = J ooy leiyge eaxqe To opqdet

Ny oA
- E; € oxy(ty) (20)

Substituting (7) and (3b) into (1E) gives

(21)
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Flp. 3. Volg! Model

Therefore, substituting (21) into (14) gives

T n 2 i3
2 -« ° HY i w
—{(E,A =2 2. 3
T N T 3]

atax
HY T
) 2P
Tleh g =P+ X (22)

£ te® oo, 22 ) g
.2 -

axé Ly 2) axl ;‘l(ziAi“Ki) Ttex
2
e w W

+ TiB1 2:°A -bAozl - _z_:(oA?g =
deeX
T
Pyt 7 (23)

£ g £
' jhere.ore. i oy and ng; &re constants in
time ¢, the above reduces to linear theory.

Experimenta} evidence indi

p cates that

p91ymer1c coqposites may not be represented by

simple mechanicezl 2nzlogs such as the Voigt model

éggli Oﬁo;hsm:1}]d1splacements 2 single integral
e following form een o be

securate [18): g has been shown to be

t
1., -
Oxx ‘_{ C(t-1) %;(cxx - cé)dr (24)

where the kernel function C is 2 power law in
time, and is 2lso a weak function of camage (for
neer-constant amplitude vibrations); that is,

257

n
C(t) = € + £y(t) | (25)

where Eo - [o(cl). [1 - fl(ol) and n- nl(ol).

In  general, the constitutive model
represented by equation (4a) 1s not in agreement
with equation (24). However, it is our intent to
show that this assumption 1s at  least
epproximstely correct. To do this, first recall
that equation (24) may be represented by en
infinite order differential equation:

i
- de
o = E(c - o8) + £, —= (26)
XX XX ;_1 ] at!

fquation (26) may be written in the same form 2s
equation (17), where in this case
n= "(Exx' Cxx® °°°°* 51) (27) v

Therefore, equations (22) and (23) mey still
be used except that the damping coefficients are
not constant. For near-constant amplitude load
histories, it 1s now assumed that

Cex = Sxx (v o)

Cxx = Exx (v cp)

(28)

Furthermore, experimenta) evidence [20] indicztes
that for constant amplitude cyclic loading

. fy
6y = koA (29)

where k and ny, 2re mzterial constants.
For n2>>1. the azbove may be integrated in time to
give

oy = cl(h. aA) (30)
s0 that eguetion (27) may be simplified to

n = n(cA. «, K) (31)

Now, consider & more generzl representation
of equation (21) given by

.2 2
. v 3 "o I 2 Y,
813 T VA Gx i T2 T E, wnex
r ax
Nip 2 T w
‘Bi = (<]
- z - {(32)
Ei 1 ataxz
where

ngq = nag(opreiR)s mgy = ngylepewsK)
uAi = uAi(cA'UvN)v vBi = Uai(CA,w,N) (33)

Substituting (32) into (14) gives



2

W v

3 e t_0 LI o
UL vaod 1A 1+ gx(ipgh 0%

. 2 3

e w ¢ w
- * 0 3 - *
- sxlvpihe)h —5— + 5, (ng ha )
ax VB T2 ax g1 I
au T
3 (oA —2 . 2P
- 3t(°A at ) -PX + .a'x-— (34)
where
n
C e
Vang E ~ 35
AD EA (352)
n
pe EA 2
Bl hEIA- {35b)
and
n
Y
fapn E - 36
AD R (36a)
n -
A ;,1 mg124hy
ngy T = 365
81 A (36b)

Substituting (32) into (16) gives

>
2 i 3

- i w
o 11 - 5gE 1L =2 - i (5, he AT =2
e B2ty 570 7 7 Bt i)

:? (o o ooy 22 = v
* = (& —=2) + 35 (5,1
ax? ALTl Y a2 (ngo yy ztaxz)

. o
- SpleA ) = = py + 5t (37)

§ (382)

=
>
-

"

T (38b)

i
w
~

"

npE T (392)

fgg ETT (29b)
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The last term in each of equations (34) and
(37) will produce 2ener-like damping due to
thermomechanical coupling in equation (6). To
consider these two terms, the fully coupled field
problem must be solved. That {s, equations (6),
(34), and (37) comprise a set of three coupled
equations in three unknowns, u , v . and T.

Determination of Materia) Dampina Constants

The energy dissipation due to damage must be
at Yeast first order in damage [10}; that is,

¢ (40)

Ul ® ulegye Toop) = ulplege T) v 0y

Therefore, assuming that lener damping may
be neglected, & first order approximation 1is
given by [10,11}

xxal (41)

Thus, the total energy dissipation during &
simple cycle in 2 specimen of length L is given

by

ﬁf =f ¢

tl+2'l/w L
vt = J [ Ec &, dAdxdt (42)
L xx 1
ty 0 A
Substituting equation (3) for the case of
pure bending thus gives
. Itl*ZI/uIL ) ;2"'0 ) ,
Ut = Eh2, — a,,dxdt 43)
L,£1 o0 4ep 11T S
Thus, substituting (32) 1into the eabove
results in

w12

t,+2%/uw 2 3
1 L n :w Pw
c c e 0 3 0
v J J L BN TE w2
\.1 = X dleX
n i‘w
Bi =
-T2y -.2? z)dxdt (44)
1 et X

The above neglects energy losses due to shearing
121], which may not be negligible in laminated

composites {18].

Now consider the case where the damage is
independent of x and no new damage is introduced
during the cycle of interest. It follows that
for symmetric vibrationg, the first term in the
above equation is zero, and equation {44) reduces
to

¢ 7 =2
S U= -8 ) ngiA 2y (45)
1=1
where
Itl*Z{/”IL ;zwo 34w°
S = = dxdt (495)
t 0 axz atzaxz

1
Substituting equation (39b) and rearranging thus
results in

c
L (47)

"gz T T

Iyy S



Therefore, for & beaw of given geometry and
boundary conditions, equation (47) can be used to
obtein  ngo. Equation (39b) can then be

utilized to extract ng, for certain simplified

stacking sequences. This information may then be
vtilized _to predict the damping coefficients
ngq and ngy o5 & function of damage in other

stacking sequences by using equation (39b) for
other conditions.

Athough it 1s in principel possible to
obtain the other coefficients odescribed by
equations (35), (36), (38) and (39), it 1is

difficult to accurately measure UE during
dynamic axial tests, so thet 'v-on and ',y ere

not eesily eveluated by the method described
here. _ However, the stiffness Joss coefficients
¥aor Hg1* VALY and vgy MAY be obteained from

direct static testing |11,12].

fxperimente) Determinztion of Demning

Because of 1ts relative simplicity, e
cantilevered bear has been selected as the
current test configuration for studying materiel
dampinc. (J+ should be noted that the
theoretical development describec in the previous
section is velid for &1l beam bouncary
conditions. We are 2lso investigating other beam
boundery conditions such &s the free-free beam
but will confine the present discussion to the
behavior of & cantilever beam). The laboratory
setup is shown schematicelly in Fig. 4. A coupon
1.0 in. (25.4 mm) wide end 12.0 in. (304.5 mm)
Tong is clamped in & beam bending fixiure to
echieve 2 cantilever of the desired length. The
beam is set into vibretory motion by & motorized
wheel which rotates until & post engages the free
end ©f the bearm, achieves & preselected
oeflection and <then releases the free enc,
Therefore, the freguenzy and zmplitude of the
beam are corirolie¢ by verying the length of the
bear end the initial deflection. The free cecay
response is recordged by & sirzin gage mounied on
the beam nez2r the clamp. The bend fixiure is
housed in & vacuum chamber e&nd the test s
irnitizted externzlly by & computer which 2lso
acguires the sirain gace detez in digitel form.
The output of the strzin gace is recorded 2t 150D
cata points per second. The amplified signal
from the 1000 ohm strzin gage is filtered to
improve the datz reduction accuracy. The damping
of the beam 1is calcuieted by the Jogarithmic
decrement method.

In the present study the outer fiber strain
amplitude was selectec so thzt the logarithmic
gecement response of the beam is linear. The
system (joint) damping has been estimated from
tests on several well known materiecls and has
been subtracted from the experimental damping
values meesured from the composite. It is
recognized by the writers that the caniilever
beam mazy not be the most gesirable test
configuration for a study of meterial damping.
However, our primary objective s to stucy
camping a2s & function of microstructureal
camage. Therefore, by consiructing carefully

controlled laboratory experiments, the relative
change 1in damping due to a progression of
microstructural damage will be relatively
independent of the system damping which should
remain constant.

Fig. 4. Schematic Drawing o! Testing Apparstus

Analysis of ¢ Lantilevered Beam

This section provides the specielization of
the damage~dependent beam theory for the
centilever beanm. The analytical procedure for
oetermining the materiz]l damping constants from
the experimental gzte is also describec.

For an undamped prismatic cantilever beam
undercoing free vibrations, the splution is of
the form [22)

e ) et . .
"O("Dx) E:l,‘n(h)‘m(X) (4°)
where
fr_..(t) = Clsin u.":t - CZCOS u‘m‘s' (49)
and
cos amL + cosh eRL
(X)) = Al e e T e
m i
(sinh 2 x - sin g x)
+ cosh & x - cos 2 x] (50)
Also
2 L = 1.873 m=1 (51)
" (m-1/2)= 1
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and

- (0.5974/L) 2 (1-ug,)Ey 17 /o) /2

m=]

- 1(sz)-/uzl(1-352)51;,/9““2 w1 (52)

Furthermore, depends on the maximum tip
deflection and and C, depend on the initial
conditions. Equetion E% may be used to
determine the lam1nate bending

coefficient “82 when up Can be obtained from an

experimental test.

In our i{nitial phase of research, the
damage-dependent constants are more easily
determined if we consider only the first mode of
vibration and confine our experiments to the
first mode. (Later research will include other
modes of vibration.) Considering only the first
mode and & beam with the following {nitial
conditions:

wc(O.L) = § (53a)
oW
=2 (0x) = 0 (53b)

Then Cy = 0 and CZ = 1. Furthermore,

¢,(x) = A,1(0.7341)(sinh 1.875 T - sin 1875 D
+ cosh 1.875 { - cos 1.875 x (54)

Substituting the above into (48) gives

wo(t.x) = Ajcos wit [(0.7341)(sinh 1.875 ¢
X X
- sin 1.875% T+ cosh 1.875 T
- cos 1.875 —] (55)

Satisfying initial condition (53) gives
A, = st . (56)

Therefore,
[
WoltiX) = T=53=z cos wyt [0.7341 (sinh 1.875 ¥
- sin 1.875 %) + cos 1,875 2
L
- cos 1.875 %1 (57)

Substituting (57) into (46) thus gives

/ey Loy oy g5 d (2 2
Sa . wy () cos‘w,t
oI 1T ¢ oaad 1

Lani 3
—

[0.7341 (sinh 1.875 % + sin 1.875

+ cosh 1.875 £ + cos 1.875 F1Zexdt ~ (58)

Integrating the above equation and
substituting into equation (47) thus gives

c
U
et (59)
-« u16
20.12 Iyy ——LE—
The energy dissipated per cycle, UE. of &

vibrating beam 1s related to the experimentally
determined logarithmic decrement, &, by the
following relationship

e S (60)

where Us is the maximum strain energy of the
beam. The strain energy of the beam is given by

.2
L ¢V
of [ B =7
A X
and for & cantilever vibrating in the first ™de
with an initia) tip deflection, ¢ ,

)2 2% gadx  (61)

62 n 2 \ -
s 2 —_—— -r. 8
Us 3.2016 L3 .Z 42 (82)

Substituting equations (108), (60}, and {62) into
(59) gives
EIA

= 0.31827 (——) (€3)

g2

The procedure used herein to determine the
damping constants, ngy, is to experimentally

measure the logarithmic decrement for &

[0/90/0] laminate and calculate from
equations” (63) and (29B). Since we %re only
considering matrix crack damage 2t present, we
will assume that all the damping may be
attributed to the 90° plies of the l0/90/0]

laminate. This will provide an experimen.a]
measure of the damping in 2 single 90° ply with
matrix crack demage. Substituting equation (39B)
into equation (63) and rearranging gives the
following expression  for  the logarithmic
decrement

i& Tigg "%
L= 31820 —m——— (64)

~123 |t~

£.4,2
1.;-1 i85

Dnce  ngy is determined as a function of damage,



equation (64) can be used to predict the damping
of a cantilever beam of any cross-ply laminste
stacking seguence. While equation (64) appears
1inear in damping this 1s not the case because
the damping constants, ng, ere also function of

frequency. (See equation 33).

Comparison of Experimente) and Analvtice) Results

Experimenta) results have been obtained from
cross-ply laminstes with various combinations of
0* and 90° plies of AS-4/3502 graphite/epoxy.
The Jaminetes were fabricated using & Standard
prepreg tape layup &nd hot press curing process
following the curing procedure recommended by the
prepreg teape vendor. The approximate per ply
thickness of the cured laminates was 0.005"
(0.127 mm) and the- fiber volume fraction was
approximately 62X, The measured lamine
properties are given 4n Table 1. These
properties are typicel of this materiel system.

The theory presented herein was odeveloped
only for materiz]l damping., Therefore, it was
essentie) to separate the system damoing from the
measured values of logarithmic decrement to
determine meterial damping constents and to
compare theoreticel predictions to experimental
veives. Using test results for @& variety of
materiels, the system derping for the current
configuration of & cantilevered beam vibreting
predominantly in the first mode has been

determined to be approximztely 3.52x107°. This

Material Properties for Hercules
AS&/2502

Table 1.

Larinz Proderties

£, 21.0 x 165 = 2.0 pst (i24.6 cpe)
£y 1.20 x 20% 2 2.1% psi (9.58 ope)
1
5t c.692 x 168 psi (4.79 gre)
v 0.310 = 3.7%
Foy 326000 = 3.5% psi (2.245 MP2)
w 11085 = S.EX psi (76.4 HP2)
ey 0.0144 £ &.6% din/in
. 0.00773 * 6.7% in/in
1

I:45]2s laminate.

velue of system damping wzs considered to be 2
constant for 211 laminates in this study.
Considerable atiention was given to the
experimental test paramete-s that yielded the
most repeateble resulis an¢ held constant those
perameters which influenced damping such as
freguency enZ siress ampiitude. This procedcure
e¢llows for the most direct comparison beiween
theory and experiment for the leminates discussacd

Theoreticelly calculated from test date for e

herein. A1l test results reported herein were
obtained at the freauency of the first mode of
vibration, The tnitial tip oeflection wes
selected so that the outer fiber stress near the
root was within the stress amplitude range where
demping was constant and the free cdeCay wés
Yineer when plotted on & log scale, &s Shown in

Fig. §.
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T
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d
"
“e ) < “ Y oo 12¢

Cyeie Bumper

Ny 8. LegetOowmic Poss Venm Decoy

Since the coniribuzion to material demping
of the metrix materie) is considered to be
substantielly grezter then thzt of the crephite
fibers, 2s & first 2pproximatioen, the assumption
is made thet 211 the materi2)l damping of ths
cross-ply laminaztes mey be zttributec to the oC
layers. Furthermore, we eare confining the
prEsent study to the single damage mode of mzirix
cracks in the ©0° plies. Tnerefore, it s
necessary to specify only one materiel gamping
consiant, ngg in eguation 295, e de:ermjne the
damping of “eny cross~ply laminate. Uswng the
experimental results for the ID/EO/O]g Jeminzte,

T3 for & single §0° ply was celcuizsed from

equations (63) and (3%b) to  be 3.86 lbs-
sec/1n2 for an undamaced laminate. This value

of r.. znd eguztion (64) wzs used to precdict the
undaméged material demping of the [0/90])5..

. IO/QO-;}S and {0/30 )35 leminztes. The comparison
of +the  predicted Velues of damping 1To the
experimentzlly measured velues for the ungamaged
laminates is civen in Table 2. The prgdicted
values e&re within 28% of the experimentel
values. This is consistent with the raznge of
repeatability of the experimental datz &S
mezsured by the standard deviztion of numerous
replicate tests.

A complete characterization of the damage
gepengent material gemping of graphﬁtg/epoxy
jaminates is in progress. The experimenta}
results confirm 2 strong relationship betwesen
meterial cdamping and microstructurel  gamege.

Figure 6 shows tne relationship betwsen material
demping and micrestructurel damege. Figure 6
shows the relationship between material camping
and matrix crack camece in the 90° leyer of &

ORIGINAL PAGE IS
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Table 2. Predicted and Experimental Values of
Damping Determined by the
Logarithmic Decrement Method

LAMINATE FIRST EXPERIMENTAL  PREDICTED

. STACKING MODE DAMP IKG DAMPING

SEQUENCE FREQUENCY

[0/90},,  18.5 a.52x10  4.20x1073

[0/903],  18.7 51121073 5.56x10"3

[0/905)5  25.3 10.64x10°3  10.42x1073

ltJ/9031s laminate. (The damage states were
developed in uniaxial tension-tension fatigue.)
As can be seen in fig. §, damping, normalized by
the initial value of damping for the undamaged
laminate, increases by about & factor of 2 a5 the
matrix crack damage state progresses to the crack
saturation state.

Summary and Conzlysions

Equations of motion for & vibrating beam
have been developed for composite materiais which
account for the influence of microstructural
damage on beam stiffness and material damping.
This new theoretical approach iniroduces damage-
dependence into the constitutive relationships
viza internal state variables which characterize
the current microstructural damage state. Since
the constitutive relationship is time depengent,
the eguations of motion contain explicit terms
representing the damage-dependent aterial
damping. The equations of motion are developed
for a2 laminated composite beam by employing
standard lamination theory &nd assuming that
incdividual ply contributions to material damping
can be represented by a rule-of-mixtures
formulation. The equations of motion may be
solved to determine the damage-dependent natural
frequencies and mode shapes of thc beam. The
beam theory i{s also wused to construct 2
mathematical model of damage-dependent material
damping at the laminate level which is the
primary subject of this paper.

Damage-dependent material damping constants
are obtained from baseline experimental data.
Once the material constants are determined for &
particular material system, the mathematical
model of the laminate material damping is used to
predict the damping of any other laminate
stacking sequence.

In order to verify the validity of the
theoretical formulation, experimental results
were obtained from cross-ply graphite/epoxy
laminates with a variety of stacking sequences.
A cantilevered beam was selected for experimental
study and the test results to date ere confined
to the first mode of vibration and at initial tip
deflections  that produced damping  values
relatively 1independeant of stress amplitude.
Because our stusy 1s currently only addressing
the behavior of cross-ply laminates with the
single damege mode of matrix cracks in the 90°
layers, we have assumed that all the materia)
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damping can be attributed to the 50° layers. The

Narmelized Demping
N

—_—

s =

[ " » »
Crecks por Insh

M & T T

L.

undamaged damping constants for & 80 ply were
determined from the experimental data of the
l0/90/01s laminate. The undamaged damping of the
{0790, 10/903]s and [0/90,]5, laminates was
predicieéd by the “theoretical mogel of damping.
The predicted values for these laminates were
within 8% of the measured vzlues. While damage-
dependent data are not fully developed &t this
time, the excellent agreement between the theory
and experiment for the undamaged damping provides
verification of the theoretical formulation.

ACKNOWLEDGEMENTS

The writers wish to acknowledge the
financial support provided by a grant from KASA
Johnson Space Center.

REFERENCES

1. Highsmith, A.L., Stinchcomb, HW.K., 2and
Reifsnider, K.L., *Stiffness Reduction
Resulting from Transverse (Cracking in
Fiber-Reinforced Composite Laminates,“
Virginiz Polytechnic Institute and State
University, VP1-£-81.33, November, 1981.

2. 0‘Brien, T.X., *An  Evaluation of
Stiffness Reduction as 2 Damage Parameter
and Criterion for Fatigue Failure in
Composite Materials,“ Ph.0. Dissertztion,
Virginia Polytechnic Institute and State
University, October, 167E.

3. Norvell, R.G., *An Investigation of
Damage Accumulation in Graphite/Epoxy
Laminates,” Texas A4 University Thesis,
August, 19ES.

4, Plunkett, R., “Damping in Fiber
Reinforced Laminated Composites at High
Strain,* J. Comoosite Materizls
Supplement, Vol. i4, pp. 105-117, 15980.




5.

6.

10.

11.

12.

13.

14,

15,

Edberg, D.L., "Materia) Damping of Sample
Structures in I Stmulated  Space

Envirorment,® Journal of Spacecraft and
Rockets, Vol. Z3, pp. 755»79%. 198,

Xalyanasundaras, S., Lutz, J.0., Haisler,
W.E., and Allen, D.H,, “Effect of
Degradetion of Masteria) Properties on the
Dynamic Response of Lerge  Space
Structures,® Journel of Spacecraft and
Rockets, Vol. 23, pp. 29/-30¢, .

Chang, H.T., and Allen, D.H., "Predicted
Dynamic Response of & Composite Beam with
History Dependent Damage,” Texss AlM
University  Mechanics and  Materials
Center, MY 4875-86-17, July, 1986,

Gibson, R.R., and Plunkett, R., "Dynamic
Mechanical Behevior of Fiber-Reinforced
Composites: Measurement and Analysis,” J.
Composite Materials, Vol. 10, pp. 325°
341, 1976,

Ki, R.G. and Adems, R.D,, “The Damping
and Dynamic Moduli of Symmetric Laminated
Composite Beams - Theoretical and
Experimental  Kesults,” J. Composite
Materiels, Vol. 1B, pp. 10421271, 1984,

Allen, D.H., Herris, C.E., end Groves,
S.E., "A Thermomechanical Constitutive
Theory for [Elastic Comoosites with
Distributed Damage - Pert 1. Theoreticel
Development,” to appear in Internztionz)
Journal of Solids and Structures, 1967.

Allen, D0.H., Herris, C.E., and Groves,
S.E., "A Thermomechanica) Constitutive
Theory for Elastic Composites with
Distributed Damege - Part 1l: Applicetion
to Matrix Cracking in Laminated
Composites,” to appeer in Internztion2)
Journz) of Solids and Structures, 1967.

Allen, D.H., Herris, C.E., Groves, S.t.,
end Norvell, R.G., “"Characterization of
tiffness Loss in Crossply Leminztes with
Curved Matrix Cracks,” to appear in
Journa) of Composite Mezterials, 1887.

Allen, D.H., end KRaisier, W.E.,
Introduction to Aerospace Structural
Anaivsis, Wiley, Kew York, 1985.

Timoshenko, S.P., Vibration Probiems in
Enoinserinc, 2nd edition, Van Kostrand,
New York, 1837.

Allen, D.H., Groves S.E., and HKarris,
C.E., "A Cumulative Damage Model for
Continuous Fiber Composite Laminztes with
Matrix Cracking and Interply
Delaminztions,” to appear in ASTH Specizl
Technicel Publicetion, B8th Symposium on
Composite Materizis: Testing and Design,
American Society for Testing and
Mzterials, 1987.

2E3

16,

17.

18,

18,

20.

21.

22.

Allen, D.H., °*A Prediction of Heat
Generation in s Thermoviscoplastic
Unfaxial Bar,® Internationel Journsl of

Space Structures, VYol. <Zi, No. 4, pp.
5552522, 1385,

Allen, D.H., "Predicted Axial Temperature
Gradient $n a Viscoplastic Untaxial Bar
Due to  Thermomechaniceal Coupling,*
Internat ionel Journe ) for Numerica)
Melhoos in Lnaineering, Vvol. <3, ho. §,
pp. 903-817, 19b¢.

Schapery, R.A., °Viscoelastic Behavior
and Analysis of Composite Materials,*
Mechenics of Composite Materials, Vol. 2,
G.P. Senceckyj, Ld., Acacemic Press,
N.Y., pp. B5-167, 1974.

Schultz, A.B., and Marwick, D.K,,
*yibration Response: A NKon-Destructive
Jest for Fatigue Crack Damage in
Filament-Reinforced Composites,® Journsl
of Composite Materiels, Vol. 5, pp. 394~
404, 1971,

Chou, P.C., Wang, A.S.D., and Miller, H.,
*Cumuletive Oamage Model for Advenced
Composite Materials,* AFHAL-TR-BZ-4-E3,
September, 1962.

Adams, R.D., and Bacon, D.G.C., "The
Dynamic Properties of Unidirectiona)
Fibre Reinforced Composites in Flexure
and Torsion,* J. Composite Meteriels,
vol. 7, pp. 53-67, 1873.

Biges, J.M., Introduction te Structurel
Dvnamics, McGraw-Hill, hew York, 1964.




8.3 An Experimental Investigation of Damage-Dependent

Material Damping in Laminated Composites
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College Station, Texas

Abstract

An experimental program is reported in which the
material damping of laminated graphite/epoxy specimens
was mcasured as 2 function of matrix cracking. The damping
test apparatus is designed 10 measure the first mode free
vibration response of a cantilevere¢ beam. Damping is
calculated by the logarithmic decrement method. Matrix
cracks are introduced into the material, and damping is
measurcd at several Jevels of damage. The results from six
different laminate stacking sequences are recordec and
compared 10 cach other. Damping is found 10 be signifiantly
affected by the laminaste ply stacking sequence, and is also
seen 10 increase dramatically with the presence of matrix
cracks. Finally, mathematical model predictions are
compared to the experimenta) results.

Nomenclatire

- beam cross-sectional area
- cross-sectional are2 of the ith lamine
- 2xia) moduius of elasticity
- reference 2xial modulus of elastdity
- axial modulus of elastdty of ith laminz
- modulus weighted moment of inerda
about y axis
- beamn moment resultant about ¥ axis due to
temperature change
- number of cvdes of applied load
- number of plies in Jaminate
- beam transverse load per unit length
- tem used to obiain laminate damping
coeffigen:
T - ternperature
t - tme
w0 - tota) interna) energy dissipation due to
rarix cacking

.:.‘. _l_"l S! [44] 2- »
M

o
%
2

v

Us - maximurn sTain energy of 2 deflected

bearn

wo - tansverse displacement of neural surface

X - beam 2xial coordinate direction

z - beam transverse coordinate direction

I - = component of distance from cenToid of
ith piv to modulus weighted centroid

t - coefficient of thermal expansion

3} - 2xja] component of matrix cracking
camage internal state variable (ISV)

ey - axizl component of marrix cracking
damage ISV in ith laminz

& - beam tip defliecdon

*  Graduate Research Assisiant, Aerospece Ingineening,

ngineering, Member AZAA

; ming,
e Fead, NASA langiey, Member A1A4

. - Jogarithmic decrement

Lo - axial strain component

n - damping coefficient

ngj - bending damping coeffident in ith lamina

KB; - bending stiffness loss coefficient in 11h
Jamina

w - moda) frequency of the 1si resonant mode

p - mass densiry

o - stress amplitude of cydlic loading

nir on

Microstrucrural damage in Jaminated fibrous composite
materials has been found to alter several material
propenies]’s. + Extensive modeling ang iesting has been
performed to determine stffness Joss in laminated composites
as 2 result of matrix gacking and interply delaminztons. In
addition, severa) investigators have note¢ and measurec the
changes in Gamping caused by damage"s. However, no
atiempt has beern made to guantify o7 model the efiect of
Gamage on matesiai damping. The objective of this study was
10 define a2 direct relationship between microstructural
Gamage in z laminate and the resulting change in the damping
capacity of that laminate.

Thnis pzper presents anc discusses the results of an
experimental program which has investigated the effectss of
mazrix cracking on material damping of laminated
graphite/epoxy spedmens. The effect of ply stacking sequence
on raterial camping is also discussed A mathemasa) mode!
developed by Alien, Hamis, anc E—'.ighsmi:h? h2s been
appiied, ané the resulting precicdons of camage-dependent
camping are comparec to the experimental resulis.

Aathematical e}

Many mezthematical models have been developed which
attemp! to predict the material camping of composite
materials10-25. However, none of these models are abie to
predict the material camping of composites as 2 funcdon of
microstructral damage. The model discussed in this secdon
was developed by Allen, Haris, and Highsmithg at the
Mechanics and’ Materials Center at Texas A&M Universiry.

-Thnis section provides only 2 brief overview of this model, 25

" .. detajled derivations and explanations appear in Reference £.

Tne mode] uses the concept of continuum cdamage
mechanics, using internal state variables 1o account for damage
in the constituve eguations. The internal state va-iables
ey be defined for each pardcular form of camage in the

composite. The consttgve eguaton {07 the material system

used in this study is based on & nonlinear Voigt modei

representation, snown in Figure 1. The general consdmutive
ecuadon for this model is:

Coyoe = Tl T o) ()]




-:

where 7, is 8 consaant material property, € is the coefficient of
therma) expansion, and AT is the change in temperature.
Experimental evidence has shown that polymeric composites
are not accurately represented by this simple model. In the
model development, it is shown that a Voigt model in which 7
is not assumed 1o be constant for all loadings, but is instead a
function of initial stress, 0, frequency, &, and the number of
cycles, N, will closely approximate the actual material
consiitution of polymeric composites for small displacements.

e ———|
——

Figure 1. Voight Model

The general thermomechanical constitutive relationship
for 2 materia), including the internal state variable gy, is:

Cyx = Elt -0 -E4T) . 2)

Eguating (1) and (2), the interna) state variable

1]
o R 3)

for & single ply within the laminate is determined.,
The eguation of motion for transverse displacement

.(bending) is developed using the constitutive equations,

equilibrium, anc strain displacement relatsonships for an
Euler-Bernoulli beam.
n

R Y
STyt - 2 Eimi T A My =
i=1
3, owg
Pz+TPATZY (£)
where
Fyy= f E:—l-dA (4a)
A
. and
M) J I B2 A . o

[N

Replacing €,y in (3) with displacement varisbies, and
introducing » coefficient pp,; for the ith ply, which describes
the loss in stiffncss caused by matrix cracking, ay; for a pure
bending case becormnes:
azwo Ny 33\.'0
015-.%5-‘-5-&—,5--'5—52'335 . %)

The model development also accounts for axial displacement,
but will not be considered in this study since only the bending
case has been investigated experimentally.

Substituting (5) into (4) Yyields:

- -
a2 - . way 3 . "3“'(\
axd [a- Bep) Bty 3 )z [ 2 1yy a.ax2]
a.,T
3, o oM,
-.d—l(pA—bf.') =Pzv .2 (6)
where
n
,S:)'Bi Ej A 3?
i=)
fipy = —————— (6a)
£, l)’)’
and

n .
' D g A E

i=] ) (6b)
1524

fip2 =

The determination of the laminate damping coefficients
is accomplished by calculating the energy dissipated per cycie
of vibration, L‘i. Assuming that Zener and shear damping
effects can be neglected, that the damage distribution is

. uniform over the length of the specimen, and that additional

damage is not introduced during the cycle of interest, the

bending damping constant, fipy, is approximated by

U

fis2=- (7

T S
where
n
U =-S D myi Aj 3P (7a)
j=1
and
n+2=/o
Ewo Fwo g 7o)
S= , o artext )
f )

o

For a cantilevered beam vibrating in the first mode, wp is
derived as

X ey
woltx) = —_s.:!;s; cos ©3t]0.7341(sink 16750 - sin 175
b
cosh 1.875%- cos 18753 (8)

where the constants were determined by the boundary

conditions. Substtuting (8) into (70) anc integratng,

ORIGINAL PAGE IS
OF POOR QUALITY



— ey N N R,

o2
S =2012 “-—t-_-,— . )

where & is the initial beam tip dcflection and L is the length
of the beam. Substituting (9) into (7) yiclds the following

expression:
2
< . @b
.LL-20.1211321”-E§- . a0

The Jogarithmic decrement, §, is defined 1o be one-half of the
energy dissipated per cycle, L’f- , divided by the maximum
strain energy of the deflected beam, Us. For the given
configuration,

n

2
U = 32016 fg ZE; A3 . an
ix]

‘Therefore,

n

-
ZﬂBi Aj 3
-1

e300 — . a2

Zﬁi A 3P

i=]

- which is & first order spproximsation of the logarithmic

decrement for a symmetric, cantilevered laminate, vibraong in
the first mode. Additionally, this form assumes that the
displacements are small, that the beam is not shear

deformable, and that lamina property 1p; is 2 functon of o4,
©, N,and ply orientations.

The values of ng; for 2 given damage s:ate, initial stress
ievel, and frequency are determined by measuring the
logarithmic decrement! and extracting ng; for each ply. ltis
also assumed in this model that, for crossply laminates, ng;
{for 0 degree plies does not change when matrix cracks are
introduced in the 90 degree plies. Therefore, for this study,
7nBj(0) will be assumed constant for all damage levels.
However, npj(9p) will be defined as a function of matrix
cacking, and will be determined experimentally.

Zxpedmentz! Procrem

Sregmen Prepzretion

in order to meet the objectives of this studv—to isolate
matrix cracking as the only damege mode—cross-ply laminates
weze chosen to be tested. 12 inch square plates were prepared
from Hercules AS54/3502 Graphite/Epoxy preimpregnzted
tape, and 1 inch wide spedmens were subseguently cut from’
these plates using 2 high speed diamond-edge cutting wheel.
Table 1 lists the ply properties of the material which have
been obtained from appropriate testing methods. Table 2 lists

. the laminates seiected for testing in this study.

To minimize undesirable damage caused by the grips of

* the Joading machine, 2 thin coating of epoxy was spread over

the ends of the specimens . The speimen edges were then
polished to insure high quality edge replicas. 10002 single
eiement sorin gages, 2ligned with the beam 2xis, were bonded
to z'ne. specimens to measure the response signal during the
cGamping measurements. The final spegimen configuration is
seen in Figure 2.

Tabie 1. Lamina Properties for AS4 /3502 Graphite/Epoxy

Property Yalue
Ey 210108 psi
En 139 x 106 psi
G 0.654 x 106 psi
w 0310
Fiber Volume Fraction? 2%

1 Calculated from test data for a 245}

Jaminate
2 Manulacturer's Pre-Cure Value

Table 2. AS4/3502 Laminate Types Tested

Laminate Stacking Sequence
A 10/90/0}; '
B 150/0/90},
c 10/903],
D 1903/0},
E 10/90)5¢
F 190/0/903)

1000 ohm Szrain Gage

Epoxy EnZ T2b —/

Polished Edge
Lead Wires

‘ Figure 2. Specimen Configuration

- Damping Measuremments

Because of its simplicity, a cantilevered beam
configuration was chosen for the damping apparatus. A
support was designed which minimized specimen slippage at

" the boundary, and zvoided indudng damage in the specimen.

Figure 3 is a scale drawing of the fixture. To conduct damping
tests, the specimen was placed in the slot with a
predetermined length extending from the support. This length
was chosen to produce a desired beam frequency.

Many experimental techniques have been employed in
the past to study the material damping of composites. One
concern in these studies has been the effect on damping caused
by external factorsoA: 1618, Some of the undesirable damping
contributions encountered in past investigations are
atnospheric pressure, friction caused by contacting instuments

.and/or boundaries, and additonal masses. Regardiess of the

" method used for damping measurement, considerable difficulty

has been encountered by almost 2]l experimentalists in
obtaining repeatable and accurate results. Since this study
focused on the effect of camage on material damping, all

ther damping conzibutions were minimized and held constant
to establish an exact correlation between damping and
damage. 4tmospheric pressure has been found to infivence:
camping. To eliminate this effect rom measured damping, all
tests were conducied inside 2 vacuum chamber. To srudy the
effect of the epoxy end t2bs on material amping, tests were
conducted first without the end tabs, and then with the end
tabs on the specdimen. The measured damping for 2 given
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confligurabon decreased with the addition of the epoxy end
ap». This was attributed 10 the resulung decresse In frequency
caused by the small mass at the free end, and did not afiect the
aciual matenal damping, capaaity of the speaimens.

proal,iiy
-
(¥ 4 <]
z‘ -
g
—
En\-”tw D e g Y
(Y
\r b 1.9 l U J
R C— g g
o p et K PLIZLIY
o=
nry
e, it A . X

Figuie & boundary Suppon

In order to excite the beam at a pre.scribed amplitude, a
mechanical svstem was developed 1o "pluck” the free end of
the beam to 2 given deflection. An electric motor is atiached
to an aluminum mount which slides in 2 groove cut into the
baseplate of the specimen support. Also attached to the mount
is a rotating wheel which is powered by the motor. An arm
extends from the wheel and is used to contact the free end of

the specimen. The excitation source and support are shown in ’

Figure 4. Upon initiation of a damping experimen?, the wheel
is romted untl the arm contacts the specimen. The arm then
continues to rotate, causing the beam o defiect, and evenrually
relezses the specimen into 2 free vibrating mosdon. The tip
defiecson of the beam is adjusted by moving the contact point
of the arm to the specimen.
Moror
1ead Wires .

~

4
BE° -
‘l Baseplate €.07

- &

Figure 4. Damping Zxdtztion Arparatus

The strain response signal was transmitted to 2 half
bridge contzined in z Micro Measurements BAM-1, which was
also used to indicate static sTain values. In order to obtzin an
initial strain Jevel that produces 2 signal of sufficient

% Removeabie Piatre / ’ )
Roating Arm ]
: 5. e \ .
éy‘/l/ S
e I (e
)
o

amplitude for the damping measurements, the arm-to-
speamen contact point is moved bv adsting the posibon of
the wheel mount on the basepiate. Figure 5 is » schematic of
the wst svstem. The entire procuss of speaimen cxcitation and
dats culiection is controlied by a personal compuier. An analog
and digital interface board was insulied into the computer.
The control of the motor and the collection of the data is
provided by software. The data sampling rate was adjusted for
each test 10 collect exactly 50 data points per cycle of beam
vibration.

borutps / wsant L
PO
PV wompum s mder

b et wead

=R =

| Yy qe— -'_,5

[—

jemay

“rrve

=

Figure & Schamstc of Dampung Test Systam

To accurately measure the damping and frequency of the
specimen, & sufficient number of cycies had to be caprured.

" Since data was collected at 50 points per cycle, apturing $000

cata points resulis in recording 180 cvcles. This number of
cvcles was adequate to descripe the decay of the specimen

* response in vacuum With the number of datz points and the

sampling rate presaibed, the computer was prepared to stan
the damping experiment. An initial zero Joad strain reading
was made which was subtracted from the output signal. After
this value was recorded, 2 5 volt analog signal, generated by
the D/A interface board, was suppliec to an external dreuit
board. This dreuit then directed a 12 volt power supply to

- transmit 2 signal to the motor, causing the mechanical arm to

rotate. At this point, the computer began 10 read the daua
signal from the stationery beam. As the rotafing arm
contacted the specimen and defiected downward, the resuliing
tensile sain was read by the computer as 2 positive voltage
When the arm released the specimen free end and the beam
defiected upward, the spain approached the initia) unioaded
value. Once the beam crossed this inital deflection plane, the
stain became compressive, and was read 2s 2 negative value
As soon as the computer recognized the negative value, it
ceased to supply a voltage 10 the external drcuit, causing the

 wheel to stop rotating. Then the computer coliected dat at

the prescribed sampiling rate. By collecting data only afer
the motor had been turned off, the electmical signal and
vipration caused by the motor, would not influence the data.

One measure of the Jogarithmic decrement, §, is given by

S=-In (";—:’) .  am

- where x; is the peak strain emplitude of the itP cyde. For

most matesials, however, the peak deczy of consecutive cycles
is extremnely small, and difficult to resolve from experimental
cata. Another approach is to measure the logarithmic
decrement between & finite number of cvcles. Tne Jogarithmic
dezrement becomes:
1 XN
5:-(}3‘)1::( ) "‘) ) (14)

*

However, if the N* dat2 point is not 2 valid representation
of the response 2% that pardcular cycle, ervor in & can b2 very
sinifient. If the decaving response is not greatiy infivenced
by the presence of shear deformation, fiction, or 2znospheric
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pressure (as discussed earlier), the free decay will be
" exponential, and independent of strain Jevels. By determinung
these efiects to be neghgible, the logarithmic decrement was
mcasured by fiting a straight line through the natural log of
the peak values. This was donc for the positive tiension) and
negative (compression) peak values. Figure 6 is the positve
peak value deaay for a [0/90/0])5 specimen plotied on & semi-
Jog scale. The degree of “linearity”, and the samll amount of
experimental data scatter of the decay can easily be seen in

this graph.
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Figwre 6. Feak Vaue Dacayder [9/90/C Co/Ep

Dermage Inducement .

The objectives in the damage inducement phase of this
study were to introduce matrix cracking in the specimens, and
to guantify the resulting cdamage. A 20 kip MTS 810 testing
machine was used to Joad the specimens. All of the specimens
were loaded at 2 rate of 20 pounds per second s recommended
by ASTM Standard 3035-76. A uniaxia) extensometer which
was atmached to the specimen with Tesafix double-stick tape
was used 10 measure strain in the specimens.

Edge replication was used to document matrix cracking.
Since marix cacks generally extend across the width of the
spedimen, 2s indicated by x-ray radiographs, visible crackr
can be detected on both sides of the specimen. Edge replicas
indicate the location of cracks with respect to the thickness

. dimension, information which is not easy to obtain using
radiography. However, edge replicas do not reveal matrix

cracks in the 0 degree plies (axial splits), or areas of

delamination. Previous studies of AS4/3502 cross-ply
laminates show a distinct damage progression for monotonic
loadings, in which matix cracks form only in the 90 degree
plies at relatively low loads. As the load is increased, the

. number of matrix cracks in the 90 degree plies grows

substantially, until a matrix cack saturation level is reached.

" Higher Joad levels will not produce additional cracks in the .

90 degree plies. However, axial splits and interlaminar
delaminations may form, depending upon the cross-ply
stacking sequence. Since this study was focused on matrix
cracking, all tests were conducted below the matrix crack
saturation level, determnined for each laminate, minimizing
the presence of higher damage modes.

Several measurements of the stiffness of the undamaged
specimen were made by loading the spedmen to the 500 pound
level, and recording the resulting stress and strain.
Subseguently, the load was slowly increased, and edge
rcplicas were taken at severza) intervais. When matix cracks
first became detectable, the Joad was reduced ané the stfness

U

was measured sgain.  because matrix cracks are not alwavs
spaced uniformly along the length of the specimen, and since
spacing may be difierent in non-consecutive % degree phes, the
numbcr of cracks per inch an each ply was averaged over a 2
inch gage length. The gage section was the two inches closest
10 the 1001 of the specimen when in the clamped damping
spparatus. The ply dimensions varied slightly from speamen
10 specimen. Therefore, damage was quantified by crack
surface ares per inch of length. A numerical value was
determined by multiplying the cracks per inch of a ply by Iht
cross-sectional area (thickness x width) of the ply contsining
the crack. The surface area is approximately twice this value
since each erack has two faces. A diagram of a matrix crack in
s single ply appears in Figure 7, which indicates the
dimensions of crack surface area.

@  lesding Dimaion £

Apon . Marx Cnck in Crae-Ply

EXPERIMENTAL RESLTS

The first step in conducting the damping ‘and damage
experiments was 10 measure camping fos 10jg anc 190ig

_ laminates, which would be used to develop the undamaged

damping constants for 0 and 90 degree plies. Using the average
damping and frequency values of 5 tests, as well as the
specimen dimensions and properties, the model constants fo; 0
and 90 degree plies were calculated. The constants are in units
of Ib-sec/in?, and are:

To Mustrate the difference in the damping of these laminates,
the peak value decays are plotted togetner in Figure &.

100

PP PP

Lﬂ:l
[m‘

. M‘“‘«N

Sttatn /\Implllmlc (volts)

[ t

-3 1 2 x & L

14

Cycie Number

Figure £. Feak Value Decay for lCJZ‘.> and [99] laminates
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. These values were used in the model 10 predict the
undamaged damping values for each of the specimens tested in
tius studv. Figure ¥ compares thc mcasured anc predicied
damplng' values for cach of the specimens.  The measured
values represcnt the average of 5 damping measurements taken
for each specimen. The next step in the expenimental
procedure was 10 measure the logarithmic decrement for a
10/90/0); specimen as a function of damage in order to develop

» relationship between NBj(90) and the matrix crack surlace
ares, S.

A

't

rgorithonle Dovrrrent, g0 107

Speamen A A ne oc -9 -4
Lamwrate R/, L TeTe N R <, ),

Fipure 3. Undamared Logarithmic Values jor Gz /Ep Laswrun

This particular stacking sequence was chosen to develop
the damage-dependent damping relationship for matrix
cacking in a single %0 degree ply because the 90 degree ply was
not adjacent to any other 90 degree plies, thereby restricting
the size of the matix cracks to one ply thickness. Oneea
relationship was obtained for the damping of the specimen,
the mathematical mode] parameter, ng; was calculated as a
funcdon of marix cracking , and subseguently used o predict
damping for other AS4/3502 Graphite/Epoxy cross-ply
laminates at various levels of matix crack damage. Figure 10
is a plot of the measured logarithmic decrement vs. crack
surface area for this laminate.  The value npjgp) as a
function of crack surface are2 was calculated from the model at
each damage state for this specimen, and is seen to follow a
curve of the form y=AxP. A power law curve fit was a2pplied,
and is shown in Figure 11. This approximation is valid for
cack surface area values greater than 0.005 ir2, which

corresponds to 1 crack per 12 inches of specimen length.

Damage below this ‘level was assumed to indicate an
"undamaged” specimen. Therefore, for the case in which
matrix cracks could not be detected, npj(pp) was assumed to be
the value exiracted from the damping test of the [90]g
laminate. This approximation was then used to predict
damping of all of the cross-ply specimens at any given matix
crack damage state, inciuding the undamaged suate,

The reduction in stifiness was exzemely smzll for this
laminate. Because the data scatter was great in the stifiness
measurements, and the recuction was minimal, no guantitative
relationship between axial stiffness and matrix cracking was
established. Figure 12 is 2 plot of normzlized stfiness as a
function of matrix crack surface arez for this [0/90/0)
spedmen. Matrix cragking in 2 laminate is seen to cause onjy 2

shght decrease the axial modulus (iess than 1% for this
) te at 5o >n), whereas the damping increase is very
significant (37% for the same level of damage). Thercfore,
damping can be considered w be 3 supenior method of non-
destructively evaluating the matnix cracking in 2 laminate.
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The next laminate tested was also a six ply laminate,
with 2 single 0 degree ply berween twe 90 degree plies in each
half-plane. The undamaged bending stiffness was predicied to
be significantly less than that o! the [0/90/0) laminate,
which resulted in 2 smaller fundamental frequency for the
same length beam.  Therefore, the Jength of the [90/0/90}
bearns was shortened to increase the frequency, in an attempt
to match it with that of the [0/90/0}¢ laminate However, the
specimen had to be long enough to minimize the presence of
shear deformationlS. Tne frequency for the undamaged
[0/90/0)g specimen was 20.7 Hz, and the frequency of the

The mathematical formulation for the logarithmic
decement in (14) includes & term which defines the damping
to be 2 linear functon of freguency, for a constant value of ng;.
Gioser inspection of the model development reveals, howevez,
that 11g; is not constant with frequency, and in faci, the

" logarithmic decrement is predicted to follow a Zener like

curve with respect to frequency. The damping test apparatus
does not provide for tesing 2 singie specimen 2t a wide range
of frequencies. Since the differences in frequency for all of the
tests are not dramatic (less than 8§ Kz difference), the
differences in damping for the various freguencies are
approximated by the linear relationship of the model.
Therefore, for this study, np; was assumed to be constant with
respect to freguency. Lf specimens at much higher frequendes,
i.e., greater than 50 Kz had been measured, this 2ssumption
would not necessarily be valid. )

Tne measured ané predicted damping values for the
undarnaged [90/0/90)¢ laminate can be seen in Figure 9. Matrix
crack initiation was found to occur 2t 2pproximately 1200 Ios.
for this stacking sequence. In this laminate the initial damage
sizte was One in which mairix cracks were 2bundant in the
outer 90 degree plies, and minima] 2! the mid-plane 2t 2 load
of 1405 Ibs. At 2 slightly higher load of 1496 Ibs., the cracks in
the inner 90 degTee plies increased by 2 factor of 12, while the
cacks in the outer plies increased by less than 2 factor of 3. At
the saturation ievel, 2l of the 90 degree vplies had

~

spproximately the same crack spacing (about 30 cracks per
inch).

The mathematical model predicts that the damping will
be afiecied more by matrix cracks far saway from the mid-
plane, than matrix cracks which are near the mid-plane.
Therefore, it would not be an accurate depiction of damage-
dependent damping to relate the damping strictly to the toul
crack surface area in » Jaminate. The location of the oacks
with respect 10 the mid-pilane must be taken into account when
reporting the data. The reporied crack surface area was

therefore weighied by » non-dimensional factor { X;/ 02,
where E; is the distance from the centroid of the erack 10 the

mid-plane, and 1 is the laminate thickness. The equation for
this weighted crack surface area, S, is

N
§ (Z‘, 2

5 = 2w € t; T) (17)
i=1

where ¢; is the number of cracks per inch of length in the ith
ply, and {; is the thickness of the ith ply, and w is the width
of the specimen. The factor of 2 accounts for the number of
rack faces per matrix crack. 1t is stressed that this value was
not used in the mode) to make damping predictions, but is
simply used 1o identify the amount and location of matrix
cracks in a Jaminate. Figure 13 indicates the relationship of
measured and predicted damping to 5* for this specimen.
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 Laminzte C, 10/902]¢ o

This laminate contained 6 consecutive 90 degree plies
sandwiched by single 0 degree plies on each outer surface. The
damage progressed steadily from crack initiztion at 32 ksi, 10
szturation at 62 ksi. The damping vazlues increasec
significantly for this specimen, and the measured and
predicted logasithomic decrement is piotted agzinst 5° in
Figure 14. Although 2t first glance there appears to be 2 grea!
dea) of catz scatter in the damping measurements taken at
the higher camage levels, further inspection of the scaling
revezls that the greztest amount of variation in damping
mmeasurements 2t 2 single damage siate is Jess than 4 percent.
The mode! precdicts the increase in jogerithmic decrement
zccurately for this laminate at 2ll of the damage Jevels.
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Laminate D, 1903/0],

This laminate series had the smallest bending stiffness of
all of the Jaminates considered. The natural frequency for the
undamaged specimens was 12.7 Hz, which was also lower than
that of all of the other Jaminates. The undamaged damping
value was by far the highest of the specimens tested (the [90]g
laminate was higher, but was only tested to-obtain model
constants), and was closely predicted by the mzthematical
model 25 seen in Figure 5. The plot of the logarithmic
decrement vs. S* this laminate 2ppears in Figure 15, with the
corresponding mode] predictions. The initial and final
predictions correspond very well to the measured values. The
measured value at the middle damage state is slightly higher
than the final mezasurement, and is atrributed to experimental
eTor.

@z
E
1 l & sl 'y
o L wwcaned A 4
LI (838, i &
e 4 ¢
x E t
- -
. 4
K]
‘E' L
. L
z p I
-E' J
=
7 4
et
:.s:i‘»
nel
T T e e A e e
(Y] oo o3 es c20
Weghted Crack Sutface Are, S (i2%)
Fipure 25, Lopanithmic Decrement v, Weiznted Mawix Crack Araa

o /o
l...,/;,‘

Laminate T 107000,
Tne [0/9012¢ tequivaienty [8/93/0/80]¢) stacking sequence
is similar to that of the [0/90/0] except for the addition of

two 90 degree plies adjacent to the larunate mid-plane. The
damping for the undamaged 10/90];¢ speamens was found « be
2imost identical 1o that measured sor the 10/90/0}, specimens,
and was closely predicie¢ by the model. The damaye
progressed very rapidly for this particular stacking séquence:
an the 90 degree plies.  This laminate began 10 $how matrix
cracking at 775 ksi and quickly reached a matnx crack
saturation level at a stress Jeve) of 85 ksi, and failed a1 875
ksi. The damping increased drarmatically in these specimens,
and is seen in Fagure 16. This increase is predicted very well by
the model.
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L2minate ¥, 190/0 /06215
The stacking sequence for laminate F was similar to the

" 10/905)¢ series, except for one of the 90 degree plies being

outside the 0 degree ply. This difference has no effect on axial
sdfiness, but it does afiect the bending stiffness. The damping
of the undamaged [90/0/905]s specimen is seen to be
significantly higher than the [0/903)¢ in Figure . For the
190/0/902)s stacking sequence, the mamix Cratks grew very
quickly in the outer 90 degree plies, and more slowly in the
inner 90 degree plies. This laminate showed a very large
increase in damping with increased damage, which was
closely predicted by the model. Tnis resulting funcson is
plotted in Figure 17, . :

l2zminzte Compeari

The results which have been presented indicate & strong
dependence of damping on laminate stacking sequence and
marix acking., 1t was postulated in the model development
that the damping of a laminate would be greatly dependent
-upon the 90 degre= plies, and only slightly dependent upon the

> .0 degree plies. This assumpion is supported by the fact that

the camping of the [90)g Jaminate was found to be 7 times

. greater than the éamping of the [0jg Jaminate. However, the

extensive testing of cross-ply laminates indicated that the
percentage of 90 degree piies in 2 specimen has very little
efiect on the material damping of the Janinate. Figure 1bisa
clot of the measured logarithmic decrement for 2ll of the
uncdamaged spesmens against the corresponding percentage of
90 gegree plies in the specimen. For exampie, the [0/90/0}¢
laminate contzing 3333 percent 50 degree piies. No end can
be seen in this plot which would indicate that the damping
changes with the perceniage of 90 degree plies.
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The major factor contributing to the relative camping
magnitudes for the undamaged specimens was seen 10 be the
placement of the 90 degree plies with respect to the mid-
plane. . A plot similar to Figure 1§ was created which
weighted each 90 degree ply by the distance from the mid-
plane, and related this value to the measured logerithmic
degement. The value used for the domain is 2 weighted
percentage of 90 degree plies given by the following formula:

]

.__I_E 52

=% & as)
i=1

where ] is the number of 50 degree plies and N is the total
number of plies in the laminate. A laminzte with 2 significant
iracdon of the 90 degree plies far away from the mid-plane
will have 2 high vaiue of ¥, while 2 Jaminate with the same
perceniage of 20 degree plies cioser to the mic-pizne, will
have 2 low value of ¥. The graph of this relationship is

id

0

shown in Figure 19, and indicates an interesting function of the
Joparithmic Gecrement wath respect to the number and Jocaton
of 90 degree plies 1n 3 lamunate. The trend appean to be
exponential in form, although since no exact correlation can be
made 10 account for this function, 8 curve fit was not apphed.
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Figure 20 is a plot of the increase in the logarithmic
decrement for each stacking seguence, from the undamaged
state, to the matrix crack saturation damage state. The
corresponding increase predicted by the model is also shown
for each specimen. In all of the specimens except the [903/0)g
specimen, the predicted increase is lowes than the measured
increase. This difference is possibly due to the presence of
addiSonal damage which meay have been inoduced during
the Joading process. The stacking sequences which were
greatly underpredicted, [90/0/90) (23 percentage points
under), and the [80/0/907); (26.7 pescentzge points under), both
had 90 degree plies on the outer layer. As the number of

. matix racks directly under the stain gage increased for both

of these laminates, the movement of the crack faces against
the strain gage resulted in an increased damping measurement.
Tnis did not occur in the [903/0); laminate because the
damping was not measured 2t a damage level which contained
& great number of matrix cracks. From the damage-dependent
cdamping plots of the individual laminates given throughout
the results section, it can be seen that for these specimens with
the 90 degree plies at the outer surface, the model makes
accurate predictions 2t earlier mawix cack damage states.
For speamens with 90 degree plies at the outer surface
containing 2 large number of matrix cacks, the modei does not
seem to correspond well with the experimenta) measurements.
For all of the Jaminztes with 0 degree plies at the outer
surface, the model provides reasonable precdictions of the
increase in damping at all matmix cack levels

Conzlusione

The material camping of several graphite/epoxy cross-
ply laminates was mezsured 2s 2 function of matix cacking.
The testing configuration was & cantilevered beam,
mechanically exsited to viorate in the first mode. The free
response was caprured, and the logaritnmic decrement was
caicuiated from the pezk decay of the smain amplirude.  Six
Cifferent laminates were tested at several levels of mairix

Jeref.
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Cack damage. A mathematcal mode) was used 10 predict the

" damping st all Jevels of damage, ancluding the undamaged

speamens.

The damping values jor al) of the undamaged specimens
were predicted by the mainematical model. The percent error
for this sel of measurements and prediclions was less than >
15% for all of the specimens tested. The measured increases
were very significant in all of the specimens. 1t was seen that
matrix cracks in 90 degree plies which were far away from the
mid-plane caused » greater increase in laminate damping

values, than matrix cracks near the mid-plane.

Fercent Lrgsrdthmic Dacrement Incresse

20
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Figure 30 Fercent lncrease in Logparithmic Decreovent
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A MODEL FOR PREDICTING DAMAGE DEPENDENT
DAMPING IN LAMINATED COMPOSITES

S. KALYANASUNDARAM and D. H. ALLEN
Acrospace Engineering Department, Texas A&M Universiry, College Station, TX 77843, U.S.A.

Abstract—A constitutive model has been developed for predicting the dynamic properues of
composite beams which accounts for the influence of microstructurai damage. The model assumes the
damage state to be fixed. The mode} can account for both the damping increase and stifiness loss due
1o microstructural damage. Damage dependent matenial constants obtained from a bascline data set
can be used to predict damping changes for several composite layups. The validity of the model has
being verified by comparing the experimental results to model predictions for crossply laminates with

2 variety of stacking sequences.

NOTATION
A cross sectional arez of the beam
E Young's modulus of elasticiry
N towal number of plies in the laminate
s tota! surface are2 of matrix cracks
U maximum strain energy of defiected beam
w defiection of the beam
8 logarithmic decrement
p mass density/unit length
! length cf the beam
p complex curvarure
A, frequency parameter
n loss factor
w, compiex frequency
E3 compiex extensional modulus of the central ply
1. arez moment of ineruz of the cross section
£* complex Young's modulus
z storage modulus
£ loss moduius
M complex bending moment
5 complex extensional modulus of jth ply
oy extensional storage modulus of the jth ply
':_:7 extensional loss modutus of the jth piy
E7 complex modulus of C° plies
Er complex modulus of 90° plies
1an &g fiexural loss tangent

INTRODUCTION

The process of ultimate failure of advanced com-
posite materials is preceded by 2 sequence of
microstructural and macrostructural events termed
as damage. These events may be due to transverse
matrix cracking, delamination, fiber breaking and
fiber matrix debonding{1—4). This damage results
in stifiness loss which in turn may have a significant
efiect on the dynamic response of structural
components[35]. Experimental results indicate that
material damping may be more sensitive to damage
development than stifiness loss. Damping in the
prescnce of damage has been observed as high as
350% greater than the reference undamaged
damping zithough the corresponding reduction in
Tesonant frequencies is only about 5%.

Schuliz 2and Warwick([6] used oscillatory fiexural

—

loads of zero mean value to fatgue cantilever
beam specimens of scotchply laminates. During
this faticuing, the vibration response of the speci-
mens was measured 10 determine if the response
changes were indicative of fatigue. It was found
that the increase in damping correlated fairly well
with damage. For specimens which exhibited
significant erack damage the damping ratio
increased by 100%. In =z closely related in-
vestgation[7] similar results were reported for os-
cillatory tensile loads of non-zero mean value. A
torsional pendulum was used to measure the tor-
sional storage modulus and damping capacity of
carbon fiber reinforced bars before and after
cracks were introduced through siatic torsion
testing (S). The specific damping capacity increzsed
by nearly 80% after the introducton of damage.
Chandrz er al.[9]) measured damping in crossply
giass/epoxy composite beams beicre and after the
introduction of damage due 10 siatic and fatigue
loads. It was found that there was a considerabie
increase in damping with the increase in number of
cvcles of fatigue loading and the level of prestress-
ing. For the fatigue load the reduction in storage
modulus was very small after five cycles, but the
damping showed a monotonic increase with in-
creasing cycles. The damping was found to be in-
dependent of amplitude of oscillation up 1o about
0.04% strain.

Plunkett{10] measured damping factors of can-
tilever beams made of crossply glass/epoxy
laminates as they were vibrated at difierent strain
levels in the first and second bending mode simul-
taneously. It was found that the damping factor
was substantially increased by Jarge strain induced
matrix cracking in laminae with transverse fibers.
The damping factor was independent of current
strain hisiory or mode shape and was z function of
damage. It was concluded tha: this behavior makes
it possible to use a linear superpositon method for

3
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dynamic analysis. Smith ef al.[11] have measured
material damping of laminated graphite/epoxy
specimens as & function of matrix cracking. It was
found that damping increased significantly for
various stacking sequences due to transverse
matrix cracks. Allen er al.[12] have developed 2
theoretical model for predicting the damage
dependent damping based on the theory of internal
state variables to account for damage. Weits-
man[13] has developed a continuum damage
mode) for viscoelastic material. The special cases
of uniaxial damage under uniaxial stress and inter-
action of damage with moisture diffusion have
been considered. ’

In this paper a model is developed for predicting
the structural dynamic response of composite
beams in the presence of transverse matrix cracks.
The wvalidity of the theoretical formulation is
verified by comparing the theoretical resuhts with
the experimental resulis obtained in [11] for
different stacking sequences.

MATHEMATICAL MODEL

The determination of damping properties of
beams usually employs the Euler-Bernoulli
assumption. In this theory it is assumed thal the
beam element is in pure bending and shear efiects
are neglected. For highly anisotropic materials and
in the presence of interply delaminations, the
dynamic properties obtained on the basis of
the Euler-Bernoulli beam theory may exhibit
significant errors. Since the current study will con-
centrate on crossply laminated beams with trans-
verse matrix cracks, the Euler-Bernoulli beam
theory is assumed to be adequate for obtaining the
dynamic propertes. The governing difierential
equaton for the dypamic response of an elastic
Euler-Bernoulli beam is given by

ql)c a:“‘
I+ pa=0. (1
or

EL
7 8x

The solution for free vibrations can be written in
the form

wa(x, 1) = W, (x) expliwr). ©)]
For sufficiently small damping, free vibrations are
also approximately harmonic and from the cor-
respondence principle of viscoelasticity, the elastic
Young's modulus may be replaced by the cor-
responding complex modulus, E*, where

E*=FE<+iE'=E(+in) (3)

and the fiexural damping is given by

1

d

T =7, (4)

|t

tan 6 =

try

The complex frequency equation is given by

pAlw?

E*L, "' )

A‘

where A, is given by the boundary condition. Since
E* is complex, the frequency values are also com-
plex and can be writien as

w, =w,+iwl. (6)

Separating the real and imaginary parts of egn (5)
results in

ﬁ_" '2 __Ei
E w’ (1 ) (7
Il (07 /wl) <1

1‘
E= pAI w'? (8)

< -
anl,

2w,
1an ¢g = ——
w

%)

V| o

1an ¢y =

where & is the logarithmic decrement obtained
from 2 free vibration decay experiment.

The uniaxial constitutive equation for matrix
cracking of elastic-composites under isothermal
conditions is modelied by[14, 15).

O =Ee,,+]a,; (10)

where a, is an internal state variable representing
matrix cracking in each ply. The changes in dam-
ping and stifiness due 1o microstructural damage
are history dependent and spaually variable. For 2
fixed damage state the dynamic propertes are
slowly varying functions of time so that the com-
posite material behaves like 2 linear viscoclastc
body. Under sinusoidal loading, experimental
resulis[10] indicate that the principle of super-
position is valid for a damage state that is fixed and
subjected to small amplitude vibrations. Based on
these observations it is proposed that eqn (10) can
be modified for sinusoidal loading at fixed damage
state 10

G,.=E"é,+Taq,, (1)
where
ET=E+iE
Ir=I=i
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E, =€, ™
@, =a,,e™,
Further insight into the effects of fixed damage
on damping can be gained by studying the energy

dissipated in a cycle of sinusoidal motion. There-
fore,

Aw=j (12)

j s ( o dlw). (13)

In order 1o obtain a meaningful expression for
energy dissipaton the real part of &, and &,
should be used in the evaluation of (13). Thus,

re l[dd(g )

] = —¢, sin w! (14)
Real(#..) = Real[(E' ~ iE0e. ¢
+(I'=ilNa . e™]

=[E sin wt — E" cos wl]ea

+[I'sin wt — I" cos wia, 4.

(15)

Using (15) and (14) in (13) the energy dissipated
per cycle is given by

Aw=gE"€ + =l a,s€a. (16)

Note that for a,, =0 (no damage) the above
expression reduces to the case of energy dissipation
in a linear viscoelastic body with no damage.

The strain energy stored during the peak dis-
placement is

U=[E'el+Tesa, )2 17
The loss factor is ‘

E"ed +I"a, €4

K E'ei+I'a,e.” (18) _
Furthermore, it will be assumed that
I'a,,=AE"¢, (192)
I'a,, =AF'c,, (19b)

where AE" is the increase in loss modulus and AE"
Is the decrease in storage modulus due 10 damage.
This assumption is made based on the experimental

CAS 30:1/2-1

evidence that damping increases with microstruc-
tural damage and the resonant frequencies
decrease. Equation (18) can therefore be written as

E+AE

""" E+aE" 20)

Application of the model 10 crossply laminaies

The moment~curvature relationship for a visco-
clastic Euler-Bernoulli beam vibrating sinusoidal-
ly with frequency w can be written as

(21)

For plies of uniform thickness the complex fiexural
modulus is given in terms of the complex ply
moduli and stacking geometry by[16]}:

S NI
E-_-_-_[Z E;(3jF=3j+ 1)] for even N
M j=1

8 [ES " mpa_ .
=(,:,)—;[—8-+ ) 57(31'—31+1)] (22

1=1

for odd N.

In lhis.work symmerric laminated beams composed
solely of longitudinal and transverse plies will be
considered. For this case eqn (22) reduces to

S - -
E* = [aEL+bE7), (23)

where a and b are functions of stacking geometry.
The fiexural damping is given by

_aEL+bEY

andg =7 = (24)

aE + bEYL’
In the presence of transverse matrix cracks in the
90° plies, it is assumed here that E7 and ET will be
affected by damage and the values of E; and E}
remain unchanged since no cracking occurs in the
O° plies.

~ Comparing eqns’ (20) and (24), the loss factor in
the presence of transverse matrix cracks is thus
given by

aE7 + CAET+ bET

. 25
0E + CAEy + bEY (25)

n=

where CAET and CAE" are functions of the total
surface area of mamix cracks and the location of

“the cracks. AE% and AE% as functions of crack

damage can be extracted from z single simplified
stacking sequence. This information may then be
utilized in (25) to predict the damping as 2 function
of damage for difierent stacking sequences.
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DISCUSSION OF RESULTS

Experimental results[11] obtained from crossply
laminates with different stacking sequences will be
used 10 verify the validity of the model developed
in the previous section. By testing laminates built
from O or 90° plies, the values of E, and E% can
be abtained from resonant frequency measure-
ments through eqn (8). Using the damping
measurements, the values of Ef and E% can be
obtained from eqn (4). These values can be used 10
predict the damping of any crossply Jaminates with
various combinations of 0 and 90° plies. Figure 1 is
a comparison of experimental and theoretical
damping values for diflerent laminates. For
polymer matrix composites the viscoelasticity of
the matrix is the major source of energy dis-
sipation. Hence, the material damping of a crossply
laminaied beam is dominated by the location and
the number of 90° plies. The predicied and
experimental damping values indicate that the
fiexural damping increases with distance from the
midplane of the beam.

For predicting the damage dependent damping
for difierent stacking sequences, the increase in
loss modulus as a function of matrix crack damage
can be construcied by experimenially measuring
the damping increase in a [0/90/0], iaminate. The
change in loss factor as a function of transverse
matrix crack surface arez is given experimentally
by

An(s)=0.0002(s) —1.7108 X 107*s*.  (26)

For this laminate the damping increased by 35%,
while the reduction in the resonant frequency was
about 0.07%. Using eqn (25) for a [0/90/0),
laminate, the change in the loss modulus as 2 func-

E Theory

i } Ixperiment

w

Loss Tactor, nx Io"‘

=]

[o/¢3/¢3 [53/0/853 0/s0) :
§ [sas0/55%, [e/s83,, i80/0/82.7

arst!

Fig. 1. Damping values for various laminates.

tion of surface area of matrix cracks is given by

AE%(s) = 57.97 x 107*[0.0002(s)
~1.7108x 107%s%). (27)

The experimenial change in the storage modulus is
negligible.

The experimental and theoretical predictions of
damping of a [90/0/90], laminate at two difierent
damape stales are jllustrated in Fig. 2. The de-
scriptions of the damage states are given in Table
1. For this laminate there are more transverse
matrix cracks at the outer 90° plies than the 90°
plies near the midplane. The damping increases by
nearly 100%. The agreement between theorctical
and experimental résults is good. The reduction in
the first mode resonant {requency (an indication of
stifiness loss) is only about 7%. This trend clearly
indicates that damping changes are more sensitive
to the microstructuraliy induced damping changes
than the stfiness Joss. Figure 3 depicts the efiect of
the matrix damage on 2 [0/90/0/90], laminate. The
corresponding damage states are given in Table 2.
The theoretical model predicts the increase in
damping due to transverse matrix cracks 10 be 2
function of both total matrix crack area and the
location of the 90° ply in the laminate. It is interes-
ling 10 note that for approximaiely the same
amount of tota) matrix crack area the damping
change in 2 [90/0/90], laminate is several times
higher than the change ‘in the [0/90/0/90),
Jaminate. This is dve 1o the fact that the matnx
crack damage in 90° plies farther away f{rom the
midplane of the beam will lead 10 a larger increase
in damping than the 90° plies near the idplane.
This trend is captured by both the theoretical and

Loss factor, mxtnd

z
By o
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. Damazge dependent damping values for [90/0/90),
iaminate.
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Fig. 3. Damage dependent damping values for [0/90];,
laminate.
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experimental results. Figure 4 illustrates the effect
of matrix cracks on a {90/0/90.], laminate (see
Table 3). The agreement between the theoretical
and experimental damping values for the damage
states is good. However, the theoretical model
tends 10 overpredict the increase in damping from
undamaged damping values as compared to the
experimential results.

CONCLUSIONS

A constitutive model has been developed for
including the effect of microstructural damage on

the dynamic response of laminated composites. .

Table 1. Description of damage state for
[9070790), aiminate

Stacking Damage state | Damage state 11
geometry (cracks/in.) (cracks/in.)
90 79 21.3
0 - -
90 0 2.9
90 0 2.9
0 - -
90 7.9 30.2

Table 2. Description of damage state for
[0/90),, laminate

Stacking Damage state [ Damage state 11
geometry {cracks/in.) {cracks/in.)
0 - -
90 5.0 10.3
0 - -
90 6.3 13.0
90 6.3 13.0
0 - -
90 3.7 6.7
0 - -

Table 3. Description of damage state for
[90/0/90.], laminate

Stwacking Damage state ] Damage state II
. geometry {cracks/in.) (cracks/in.)

90 10.9 259

0 - -
90 39 27.2
90 39 27.2
90 3.9 272
20 3.9 27.2

0 - -
90 11.9 26.7

This model is valid for a fixed damage state and
small amplitude vibrations. Under these .assump-
tions the composite material behaves like a2 quasi-
linear viscoelastic body. The validity of the
theoretical formulation has been verified for
crossply graphite—epoxy laminates with z variety of
stacking sequences. Damage dependent material
constants obtained from [0/90/0], laminate have
been used to predict the increase in damping in
[90/0/90],, [0/90/0/90], and [90/0/90.], laminates
for different damage states. Damping is found to
be more sensitive to microstructural damage than
the stifiness loss. Thus, damping holds some prom-
ise for further studying the damage development in

‘composite structural components.
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