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INTRODUCTION

This report covers progress during two periods: March 1986 -
August 1986 and September 1986 - February 1987. During this time
substantial progress has been made in two areas. The first is
Wan Yoon’s Ph.D. thesis, "Aiding the Operator during Novel Fault
Diagnosis.™ The second is a newer initiative, "A Model-based and

Constraint-based Warning System.”

The following were published during this period:

Journal articles

Yoon, W.C. and Hammer, J.M., "Aiding the operator during

novel fault diagnosis," to appear in IEEE Transactions on

-

Systems, Man and Cybernetics, 1987 (Appendix A).

Yoon, W.C. and Hammer, J.M., "A deep reasoning aid for
aiding deep reasoning fault diagnosis,"” to appear in Human-

Computer Interaction II, (G. Salvendy, ed.), Elsevier: Amsterdam

(Appendix F).

Technical reports

Lewis, C.M., Identification of Rule-Based Models. Technical
Report 86-5, Center for Man-Machine Systems Research, Georgia

Institute of Technology, Atlanta, Georgia.
Conference papers

Yoon, W.C. and Hammer, J.M., "Aiding the operator during

novel fault diagnosis," Proceedings of the IEEE 1986



International Conference on Systems, Man and Cybernetics,

Atlanta, Georgia, 1986.

Technical Effort

During the first six months of this period, only Wan Yoon
was supported. During the last six months, all three personnel
were supported. During the summer of 1986, Dr. Hammer worked on
the DARPA/AF Pilot’s Associate program. Many of the interface
concepts in the PA program were developed under NASA-Ames
sponsorship. It was clear by the end of the summer that direct
competition with this program was not possible. The PA program
has more funding. The PA program can implement any aiding
process that depends on knowledge acquisition from pilots. It
cannot stop to answer basié'research questions, although many
have arisen during implementation. These unresolved questions
are excellent topics for this grant because they are both

relevant and realistic.
Relation to Earlier Work

The current research is focused on detection of human error
and protection from its consequences. The first work in this
area under this grant was [Hammer, J.M. "An intelligent flight-
management aid for procedure execution," IEEE SMC 14(6), 1984],
which described a program for monitoring pilot errors by
comparing pilot actions to a script. There were two dimensions
to this work. First, it dealt primarily with routine errors

(slips) that occurred during checklist activity. Second, the




model to which operator actions were compared was a script.

There was no model of the aircraft or any part thereof.

Current research is an extension along these two dimensions.
The ORS novel fault detection aid uses a sophisticated device.
model rather than a script. Since this aid has been used to
study novel fault diagnosis, the errors committed are bad
decisions, not slips. Although error detection is not currently
implemented, the plans for it are discussed in [Yoon and Hammer,

1987] and later in this report.

The newer initiative, the model-based and constraint-based
warning system, uses an even more sophisticated device model and

is to prevent all types of error, not Jjust slips or bad

decisions.
PROJECT ORGANIZED BY MODELS OF DEVICES AND HUMANS

The principle that organizes this project is that model-
based reasoning be the basis for aiding the human operator of an
aerospace system. There are two models. First, the aid will
contain a model of the device. The aid uses the device model to
produce information for the operator. Second, the information
produced for the operator is based on a model of human
information processing. More specifically, the aid produces
information that the operator needs anduthat is difficult to
produce. What is difficult to produce is determined from the

human information processing model.



The principle can be seen quite clearly in the novel fault
diagnosis research. First, the aid has available to it a
qualitative model of the orbital refueling system. Second, the
aid uses this model to display information about what the ORS
does normally (N aiding), what it is estimated to be doing (O
aiding), and the difference between normal and observed behavior
(O-N aiding). It can easily be argued that the unaided human
operator must use at least some of this information in order to
diagnose effectively a novel failure. This means the unaided
operator must produce the information internally. It is

difficult for the unaided operator to produce this information.

Model-based aiding can also be seen to organize the model-
based and constraint-based- warning system. The function of this
aid is to keep track of the present and future constraints on the

system and to detect present and future violations.

Central to this warning aid is a model of the physical
system. Constraints arise from both physical and operational
considerations. The model of the human is used to provide
operational constraints and potential future inputs to the
device. This model is actually part of the aid. The model also
tells us that the operator does not or cannot consider all of the
constraints when choosing an action. This model is not part of

the aid. It is the reason that aiding was implemented.



Motivation for a Model-based Approach

The motivation for a model-based aéproach is two-fold.
First, model-based aiding is aimed at a technological breakout
through the use of artificial intelligence in device modeling
and, to a lesser extent, in the operator intent inferencing. We
believe this approach will yield larger system performance

improvement than a more empirical approach.

The second motivation is to use what is known about human
information processing and cognitive psychology to do cognitive
engineering. Fortunately, exact predictions about human
information processing are not always required. If some require
processing is known to be difficult or error prone, then aiding

-

(using artificial intelligence) should be investigated.

Artificial intelligence and cognitive psychology (or at
least that part that is model-oriented) are close enough to use
the same technical language. A consequence of this is a
synthesis between the human and device models. Another
consequence is an increased emphasis on the artificial

intelligence technology of the aid.
AIDING THE OPERATOR DURING NOVEL FAULT DIAGNOSIS

The technical status of this effort is described in
Appendices A and F. The remainder of this section describes the

technical progress during the reporting period and future plans.



Technical progress

In February 1986, the ORS simulation was just a simulation
connected to a display. There were plans for aiding, but no
implementation. Since then, the following have been completed.

1. The code for 0O, N, 0-N, and 0-H aiding was written and
debugged.

2. A preliminary, observation evaluation of unaided problem
solving was conducted. The results are described in
Appendix A.

3. Three experiments to evaluate N, O and O-N, and O-H have
been planned. The first two have been completed and the
results are described in Appendix F.

4., The training materials for the experiment were produced.
The materials had to B; carefully prepared and refined for
two reasons. If they allowed too much practice or were
otherwise too successful, the subjects might no longer use
knowledge-based reasoning. On the other hand, too little
training would not allow the subject to understand or
interpret the basics of fluid flow.

Future plans for the ORS simulator

Considerable effort went into the construction of the ORS
simulation. Relatively less effort was required to produce the
existing aids. We would like to capitalize on this by studying a
variety of research questions using the ORS simulator. The
following are a list of potential problems to investigate.

1. Add and improve existing aids. We have observations from

our more recent experiments that suggest more about aiding

the operator. The O-N aid, which points out pressures which



differ between the observed and normal system, is useful
primarily at the beginning of diagnosis. This is because it
guides the diagnosis to the proper locale but is of less
assistance thereafter. (In contrast, the 0 aid, which shows

equal pressure paths and mass flow paths, appears useful
throughout diagnosis.)

These observations suggest that operators need an aid during
local testing. During local testing we have observed two
operator deficiencies. First, the operator may incompletely
test a local region (which does contain the fault), and then
moves to another part of the ORS for testing. This greatly
lengthens the time to diagnose. The operator needs to know
when a locale has been completely tested. Second, the
operator could probably benefit from seeing a list of
suggested hypotheses. While suggesting hypotheses is
computationally intractable for the entire ORS, it may be
reasonable for small locales. In fact, if the aid were able
to eliminate infeasible hypotheses as data were collected,
the display of remaining hypotheses may keep the operator
from leaving the locale prematurely.

Another observed problem is that the operator can choose
good hypotheses but cannot effectively test them. This
suggests a hypothesis testing aid which converts a specific
hypothesis into a series of actions that test it.
Interpretation of the results could optionally be included
in the aid as well.

Another aid would prevent fault masking. It is possible to
configure a malfunctioning system so that its fault is not
apparent. For example, if there is a leaking valve, this
failure can be masked by closing another valve in series
with it. The operator can mask a fault through a series of
changes and then be unable to unmask it. Unmasking requires
only undoing all the changes, but the operator may not be
able to remember them. It would be relatively simple to



make available a command to return to the most recent state
where abnormal behavior was observed.

2. Inference of operator intent, especially of hypotheses.
For the aid to know the operator’s intent would be useful in
several advanced aiding methods described below. (Intent
inference is not directly useful in and of itself.) The
first step in understanding operator intent is to understand
the process of hypothesis formation in the diagnosis task.
While a preliminary description of this is in the paper in
Appendix A, it is too subjective to be implemented on a
computer. A more detailed examination of the verbal

protocols currently being collected should yield a process
description of diagnosis.

Given an objective process description, it would then be:
possible to detect the occurrence of decision-making biases
during fault diagnosis. 1In fact, virtually all of the
effort to do so is front-loaded into the intent inference
work. Once an operator hypothesis is known, it would be
relatively easy to test it for plausibility or keep track of
how long the operator maintained it.

To build a training system for the ORS requires an intent
inferencer. It may have to be modified to reflect a
student’s reasoning process. A more systematic approach,
however, would be to let the intent inference be a
prescriptive model or descriptive model of an expert. To
accommodate the novice, a buggy model of dynamic process
understanding could be used. This buggy model would be
analogous to the buggy models of subtraction and programming
that have already been developed.

3. A failure novel to the aid. Currently, the aid’s
model has a representation for every possible failure
mode of every component. It would be interesting to
give operators a failure that the aid’s model does not
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represent. This truly novel failure would occur after
the operators had been aided on a series of more
routine problems. It is important to know if the
operators could determine when the aid was wrong.

MODEL-BASED AND CONSTRAINT-BASED WARNING SYSTEM (MCBWS)

MCBWS is a warning system for detecting present and future
constraint violations in aerospace systems. For demonstration
purposes, the fuel system of the F15 was chosen (Appendix E).

The warning system contains a model of the fuel system and the
physical and operatiohal constraints on it. The purpose of this
research is to demonstrate an electronic cocoon to surround the
operator. The boundary of the cocoon is determined by present
and future constraints. The system will be allowed to operate
anywhere within the cocoon. Drawing near the boundary will cause
an error message. Once demonstrated, the principles should be

applicable to a wide variety of aerospace systems.
Motivation for the Warning System

Flying an aircraft requires thinking about the future.
Avoiding error means avoiding constraint violations. Thus, it
would seem that avoiding future constraint violations is central
to avoiding error. Our view of flight is that it is a problem of
remaining within the constraint envelope. The remainder of this
section describes the implementation and current status of the

project.
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System Engineering

The two primary components of the warning system are the
fuel system model and the constraint identifier. The fuel system
model is capable of answering questions such as whether a
particular constraint is currently violated or will be violated
either now or in the near future. Predictions about a future
constraint violation require both the constraint itself and
likely fuel system inputs from now until the future point. Both
of these come from the constraint identifier. Most constraints
are the result of operator plans. The constraint identifier uses
both the aircraft state and operator actions to select pilot

plans. Associated with these plans are

- predictions of the future input actions to the fuel system

- constraints that must hold during the plan

future plans that may occur, along with a description of

the situation in which they will occur

As can be seen, once a plan is identified, its actions,
constraints, and future plans are known. From future plans,
future actions and constraints can be determined. Obviously,
this forward chaining process can be continued as long as

necessary or feasible.

Current Status

All of the technical effort has been devoted to building the

fuel system model, which is more fully described below. The



12

constraint identification code has received no attention because
1) I know how to do it from working on the Pilot’s Associate
program; 2) it is not hard to construct a plan recognizer for
those plans relevant to the fuel system; and 3) the constraint

recognizer cannot be tested without the fuel system model.
Fuel system model

The fuel system model is organized as a set of components.
Each component is connected to other components or to inputs or
outputs at the boundary of the system. Components have one or
more behaviors, each of which is described by a set of equations
or inequalities (termed algebraic relationships)l. These
algebraic relationships describe the relationships between
component inputs, outputs,‘;nd state wvariables. The
relationships are symbolic and could be interpreted either
quantitatively or qualitatively. If symbolic processing cannot
answer a question about constraint violation, a numerical answer

could be determined.

One of the basic operations is to solve the fuel system,
which means to determine the behavior of each component. This
occurs as follows. Each component has several mutually exclusive
behaviors. First, find the subset of behaviors that is feasible.
Some behaviors can be shown infeasible immediately because at.
least one algebraic relationship in the behavior is violated by

other algebraic relationships known to be true. For each

1. The constraints that arise from operational or physical
considerations will be expressed in a form identical to the
algebraic relationships that describe component behavior.
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feasible behavior, assume that behavior is valid. Then,
recursively attempt to solve the remaining components for their
behaviors. This is a simple depth-first search through a space

that is constrained by the behaviors of the components.

What has been written is the following. A slot-filler
representation has been adopted for component descriptions
(Appendix D). A set of routines that sélves for the component
behaviors has been written. A set of routines for manipulating a
quantity space has been written. We were unable to reuse Wan
Yoon’s quantity space code for the following reason. His code
uses property lists to store information. A change to a
property, even if done within a function, is globally visible.

It is as if properties are stored in global variables.
Properties are not automatically undone during a search backup,

which makes them undesirable.

Future Plans

The following must be done:

1. Build a model of the fuel system. This requires that we
understand the fuel system: the types of pumps, the components
that are not shown on the figure, etc. This understanding must

then be encoded in the representation language and debugged.

2. Build the constraint identifier. This will require
knowledge engineering with pilots to determine operational and
physical constraints. These will be attached to plans, which

will also require identification and duration conditions.
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After this much development, the system can be demonstrated
to detect current constraint violations. As described earlier,
this is not sufficient to meet the need to prevent the
consequences of pilot error. Reasoning about the future is also
required. The second part of the project will develop this

capability and will parallel the the first part.

1. Extensions for reasoning about the future. The model
(the reasoning component, the device representation, and the fuel
system description) must be enhanced to allow prediction of the
future. The inputs to the model then become: the current system
state, the predicted pilot inputs to the system, and the
constraint (s) to be tested for potential future violation. It is
possible for the model to ocutput either yes or no. A no output
means that there is no way that the constraint will be violated.
A yes output will mean that there is no.way to avoid wviolating
the constraint. The most likely expected output from the model
would be another list of constraints. This output list would
have to hold for the input constraint to remain unbroken. The
output constraints in general will have to hold at times not
later than the input constraint. This is because if violating
the output constraints would cause the input constraint to be
violated, then the output constraints must be violated first.
The output constraints hold at times closer to the present than

the input constraints.

2. The constraint identifier knowledge representation will

need to be enhanced. Each plan will also need to have (1)
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potential future plans plus the conditions under which each
future plan would occur; and (2) the predicted pilot input over

the duration of the plan.
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Appendices
Aiding the Operator During Novel Fault Diagnosis
Instructions for Wan Yoon’s experiment, parts 1 and 2

Problems worked after part 2 training (both training
problems and experimental problems)

Component knowledge representation
F-15 fuel system

A Deep-Reasoning Aid for Deep-Reasoning Fault Diagnosis
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AIDING THE OPERATOR DURING NOVEL FAULT DIAGNOSIS
Wan C. Yoon and John M. Hammer

Center for Man-Machine Systems Research
Georgia Institute of Technology

Atlanta, Georgia 30332

ABSTRACT

The design and philosophy are presented for an intelligent aid for a
human operator who must diagnose a novel fault in a physical system. A novel
failure is defined as ome that the operator has not experienced in either real
system operation or training. Because the fault is novel, the human must rea-
son using causal knowledge. The aid contains unique features that support
such reasoning. One of these is a qualitative, component—level model of the
physical system. Both the aid and the human are able to reason causally about
the system in a cooperative search for a diagnosis. The aid has direct access
to the operator”s hypotheses when the qualitative model is used. Because of
this, various decision-making suboptimalities and biases cam be detected and

mitigated by the aid.



INTRODUCTION

In highly automated systems, the human operator is primarily a monitor
and supervisor [Rasmussen 1983, 1984]. An important monitoring function is
diagnosing equipment faults, a difficult task in automated systems. The
current approach to fault diagnosis is to train the operator to deal with
relatively common faults. The training might teach the operator to use symp-
toms to distinguish faults and to follow procedures to correct them. While
this approach should be successful with common faults, it does not support

diagnosis of novel faults.

A common sense but unsuccessful approach to help operators diagnose novel
fault is to teach them the principles of operation of the system. With this
theoretical knowledge, the operators should be able, in principle, to diagnose
any failure. Unfortunately,- there is 1little evidence that theoretical
knowledge helps operators diagnose failures [Morris and Rouse 1985a, 1985bl.
A logical consequence of this observation might be to put theoretical

knowledge into the aid rather than the operator.

Recently, there has been much interest in supporting the human operator
via expert systems for diagnosis. To be sure, this approach will improve the
system performance on relatively common failures. As for novel failures, many
expert systems for diagnosis [Shortliffe 1976, Miller, Pople, and Myers 1984]
are based on shallow reasoning: a set of symptoms suggests a diagnosis. This
mapping is not explicitly based on a system model. Consequently, such systems
are subject to the same limitations as training and procedures. The designer
may have to anticipate the failure for the expert system to solve it

correctly.




Aiding from Deep Reasoning

In contrast to the above, our aid is based on deep, causal reasoning
about the system. There are several advantages to this approach. First,
novel fault diagnosis is normally comsidered to be knowledge-based reasoning
[Rasmussen 1983]. Hence, it seems appropriate for an intelligent aid to rea-
gon causally. Second, this approach should be more reliable and robust. The
system knowledge is represented at the component level. Because components
are small and comprehendable, it should be possible to create representations
that are correct, perhaps even provably so. These points support the belief

that causal reasoning can cover a wider range of faults [Davis 1984].

In spite of the power of the intelligent aid, we believe there are
several reasons to keep the human in command of the problem solving. First,
diagnosing a novel failure may require the human to extend the aid”s model.
Second, when diagnosis involves operating the system (e.g., opening valves,
starting motors), it would be better to leave these operations to the human.
Third, causal reasoning is slow because the diagnosis problem is a combina-
torial search. It may be that the human and the aid may be better able to
find a solution cooperatively than either can alone. This is possible, even
necessary, for two reasons. The human has better pattern recognition capabil-
ities and can make inductive leaps. Second, the human may need to resolve

ambiguities inherent in the aid”s model.



Decision-Making Biases

The aid is designed to mitigate human suboptimalities that occur during
decision-making and troubleshooting [Wickens 1984]. Two categories of subop-
timalities wused here are knowledge-limited and cognition-limited. The
knowledge~limited suboptimality is simply that the operator does not fully
understand the system. Obviously, the aid”s model is a basis for compensating
for this problem. There are many cognition-limited suboptimalities, which are
discussed fully in a later section. The aid is designed, however, to prevent
suboptimalities from occurring as well as detect and announce any that do
occur. It should be noted that detection of suboptimalities requires a system
model. Without a model it is logically impossible for the aid to interpret

what the operator is doing. Thus, the system model is fundamental to aiding.

-

There are several justifications and motivations for the research in this
area. The first is to explore a new basis — qualitative models — for aiding
humans in a domain for which there are few aids. Specifically, we wish to
evaluate the suitability of qualitative models as the internal model of the
aid. Many claims [Gentner and Stevens 1983; Rouse and Morris 1986] have been
made that humans reasom qualitatively about physical systems. The implication,
which will be tested, is that qualitative models are useful as models in aids.
Second, we wish to form a more detailed understanding of human diagnosis of
novel faults. This presumably significant role for humans will be studied

initially with observationmal methods, including verbal protocols.

In the subsequent sections of this article, we will review some relevant

research on novel fault diagnosis, discuss the context of our experimental



task, and discuss the qualitative model in our aid and its expected effects.
In the final section, we will discuss the suboptimalities of interest and the

methods to mitigate them.

REVIEW OF NOVEL FAULT DIAGNOSIS IN COMPLEX SYSTEMS

The literature on novel fault diagnosis in complex systems is limited.
The section will have three parts. The first is empirical research on the
effects of training on diagnosis. The second is Rasmussen”s system engineering
approach to the information needs of operators. The third is Wohl“s perfor-
mance model for predicting diagnostic times for novel failures. The last is
the human information processing view of problem solving, which is similar in

some ways to novel fault diagnosis.

Shepherd et al. [1977] have studied the effects of training on the errors
operators committed while diagnosing familiar and unfamiliar failures. There
were three kinds of training. The first was "no story," which amounted to a
brief introduction to the control panel instruments. The second was "theory,"
in which the operation and flow of materials was explained. The third was
"rules," which included the above theory training plus a set of proceduralized
rules for diagnosing failures. After this training was administered, the
three groups were tested. All three groups were significantly different, with
rules best and the no story group worst on accuracy. The groups were then
trained by examples to diagnose faults, and a second test revealed no differ-
ences between the groups. Later, all groups were tested again with two sets
of faults — familiar and unfamiliar. Familiar faults were diagnosed equally
well by all groups, but unfamiliar faults were diagnosed best by the rules

group.



An experiment on the effects of training on operator control of a simu-
lated process control plant has been conducted by Morris and Rouse [1985al.
One situation examined was the diagnosis of novel failures for which some of

the subjects had sufficient theoretical training to diagnose the failure,

The system controlled was a network of fluid tanks. Fluid was pumped
from these tanks through valves to neighboring tanks. Two novel failures were
studied: a tank rupture that caused a loss in fluid, and a safety system
failure that caused the system to shut down when it was not in danger. The
experimental results did not show any differences due to training. Nearly all
subjects were able to diagnose the tank rupture, and only half were able to

diagnose the safety system failure.

-

Rasmussen [1983] has discussed operator control of complex systems in
terms of three levels of information processing: skills, rules, and knowledge.
Skill-based performance applies primarily to automatic, sensory-motor tasks
that proceed without conscious control. One characteristic of such perfor-
mance is that it is not decomposable or verbally expressible (for example, one

cannot verbalize the skill of riding a bicycle).

The rule-based level is the second level of processing. A rule is a
direct mapping from a set of input symptoms to a diagnosis or action. While
performing at this level, the operator does not make recourse to causal
models. Rule-based reasoning can be verbalized, which distinguishes it from

the previous level.

The knowledge-based level is most relevant to the research reported here.

Knowledge-based reasoning must be applied when novel failures occur. Neither



skill-based or rule-based behavior should be used, and hopefully, the operator
realizes this (but there is no guarantee). The operator”s control occurs by
first forming a goal and then a plan consisting of actions that lead to the
goal. The plan is evaluated and perhaps modified by-a combination of mental
simulation or actual actions taken on the machine. Mental simulation relies,

among other things, on the operator”s mental model of the system.

Rasmussen [1985] has discussed functional and causal reasoning in diag-
nosis and control of complex plants during novel failures. Physical systems
may be represented along a hierarchical, causal-functional continuum. The
causal end of this dimension is a description of components according to their
local behavior and their physical and structural location (much like a quali-
tative model). The functional end of the dimension is a description of aggre-
gates according to their function or purpose. In highly automated systems,
the operator also needs to kmow the intent of the automation, since it can
change both the function and structure by its own action. The implications
for novel fault diagnosis are the claims that an operator needs a multilevel
display for intentiom, function, and causation. The motivation for this is
that diagnosis begins at a functional level and moves toward a causal level as

the diagnosis becomes more precise.

Maintenance Complexity

Wohl [1982] has observed that electronic troubleshooting im complex
equipment operates in two modes. This first mode is for routine failures,
which account for 65-80%4 of all failures. These are repaired relatively
quickly. The second mode is for novel failures, which require substantially
more time to diagnose and lengthen substantially the mean time to repair. A

model for predicting the frequency distribution of novel malfunction repairs



has been developed and tested. The model has three parameters: an equipment
complexity index, which is the average connectivity of a component; second, an
average time to test a componment; and third, a parameter that describes how
diagnostic interpretation becomes geometrically more complex with each diag-
nostic test. The test of the model showed a correlation of r=.98 between
measured and predicted mean time to repair for fourteen different electronic
systems. In a related article, Wohl [1983] observed that the model predicted
an infinitg mean time to repair when the equipment complexity index exceeded
7.5. An infinite mean time to repair simply means that some malfunctions are
never diagnosed. An equipment complexity index of 7.5 means that the average
component is connected to 7.5 other components. This limiting value is close
to the chunk capacity of human working memory. This result is consistent with

the often observed relationship between connectivity and diagnosis complexity.

-

Complex Diagnosis and Human Problem Solving

Much of the research on problem solving would appear to be relevant to
novel fault diagnosis [Newell and Simon 1972]. We briefly review here the
human information processing approach to modeling of problem solving and then
discuss how novel fault diagnosis differs from it. The information processing
approach is centered around the idea of a problem space, which is the human’s
representation of the key characteristics of a problem. The subject is given
an initial and goal state in the problem space and a set of operators that
transform the problem from one state to another in the problem space. Usu-
ally, the states and operators are crisply defined. Often, there is a metric
for the difference between a given state and the goal state. This metric can
be used as a heuristic for selecting the operator that moves the greatest dis-

tance toward the goal.



The behavior of a human is modeled by a production rule system. Each
production rule contains a condition and an action. The condition is a
boolean expression on the features of the problem space, some of which are in
the human”s working memory and some of which are externally perceivable. The

potential actions are working memory changes or operators as described above.

Clearly, novel fault diagnosis is a special case of problem solving. The
speclalizations are as follows. First, the human operator must realize the
presence of a novel rather tham routine failure. Ideally, the displays that
result from a novel fault would be sufficiently different from the displays of
routine faults. If tﬁe novel fault had a display different from routine
faults, detection of a novel fault would seem to be assured. Unfortunately,

no existing system has been designed from this perspective.

Another specialization is-that novel fault diagnosis will occur when the
operator has a problem space designed for routine operations and routine
failures. It is not known if an existing problem space representation will
interfere with novel fault diagnosis. It would seem difficult to believe that

some interference does mot occur.

A final distinction between novel fault diagnosis and most problém solv-
ing research has been how clearly the human can observe the system and the
consequences of changes to it. For example, in cryptarithmetic, the human has
complete information about the system, the legal operations, and their immedi-
ate consequences. Typically, when an operator controls a complex system, the
system state is less clearly perceived, the available operations are larger in
number, and their effects less clearly perceivable. The consequences of this

imprecision are not well understood.



THE SYSTEM AND THE TASK

The Orbital Refueling System (ORS), a NASA-designed payload on the Space
Shuttle, was selected for study [NASA 1985]. The function of the ORS is to
refuel orbiting satellites with hydrazine, with the objective of extending
their useful service life. As shown in Figure 1, the ORS fluid system con-
tains a variety of components such as tanks, valves, pipes, etc. The operator
controls the simulated ORS by opening and closing valves. Transfering fuel
from propellant tank 1 to propellant tank 2 might proceed as follows. First,
tank 2 pressure is reduced by momentarily opening valves 10, 11, 13, and 17.
Second, tank 1 is pressﬁrized by opening valves 1, 3, and 7. Gaseous nitrogen
will flow out of the two small supply tanks, be pressure regulated, and fill
tank 1 on one side of the bladder. To transfer fuel to tank 2, valves 5, l&,
15, 16, and 9 would be opened. Because this version of the ORS was for
demonstration purposes, all tramnsfers take place between the two large tanks
rather than to a satellite fuel tank. There are several assemblies whose pur-
pose was not explained in the above example. The relief valves RVl and RV2
serve as a safety pressure relief. Check valve CVl prevents backflow into the
gas system. The bladders in tank ! and 2 serve to isolate the fuel from the
propellant and also to contain the fuel in the weightlessness of space. Some

components (e.g., valves 10 and 11) may seem redundant; they are so by design

for two failure tolerance.

Ihe Diagnosis Task

The operator”s task is to diagnose the failure in the system. This
requires the operator to manipulate and observe the system, because a diag-
nosis cannot be determined uniquely from an observation of a state vector at a

single point in time. A solution is an assignment of states to components

10



such that the assignment”s behavior is always identical to system behavior.
For a single valve failure, the solution would be a normal state for all com-
ponents save the failed valve, which might be jammed shut. The diagnosis
problem can be viewed as a combinatorial search for a state assignment. The
search is constrained by the laws of component physics. That is, a state
assignment to a component imposes constraints on its neighboring components.
For example, if a valve is opened and permits a flow down a pipe, the com-

ponent receiving the flow must be in a state to accept the flow.

QUALITATIVE MODELS OF CONTINUOUS PHYSICAL PROCESSES

This section describes qualitative models: representations, the computa-
tional problems solved, and the specific needs of our aid of the qualitative

model.

A qualitative model is a symbolic representation of a system. Its most
basic description is of a component. A component is described in terms of its
connections to other components and its behavior. Behavior is described in
terms of the physical variables which are present at its connections. The
differentiation between the structural description (connections) and the
behavioral description is particularly important for insuring the robustness
of a qualitative model. The isolation of each component in the behavioral
description has usually been emphasized by other qualitative modeling [De
Kleer and Brown 1983]. Our qualitative model represents the system at both
the component level and at an aggregated level as paths. The motivation for

this is the belief that a multi-level description is closer to the operator’s

internal model of the process.
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From a given state, the behavior of a component is described in terms of
the physical variables present at its ports. A physical variable (and its
time derivative) may take several values. The time derivative usually has
only one of three possible values: negative, zero, or fositive. The variable
itself may take either nominal or ordinal values. The nominal values usually
correspond to points at which behavior (component or material) changes. For
example, water temperature would have nominal values at freezing and boiling.
Variables may also take on ordinal values (or relatiomships). For example,
water temperature could be taken to be greater than freezing and less than

boiling.

The nominal and ordinal values taken by physical variables are said to
occur in a gquantity space [Forbus 1984, Kuipers 1984]. The quantity space is
a partial ordering on the physjical variable values it contains. The partial
ordering occurs because not all comparisons are relevant to understanding the
physical system qualitatively. For example, consider a valve between two
tanks, A and B. When the valve is opened, the resulting behavior is deter-
mined by the pressures in two tanks. The pressure at other unconnected points

in the system is unrelated to the above behavior.

One question that is often raised is why bother with qualitative models.
They are not, as it turms out, particularly fast or accurate. For engineering
purposes they are inferior to amalytic or numerical models. The answer to
this question is, first, that the aid does not require a qualitative model;
any system model will be accepﬁable if it can provide the required information
to the operator. Our motivation for using a qualitative model is to test the
hypothesis that humans use such models internally. Obviously, it is difficult

to test this hypothesis directly. A weak test would be whether the qualita-
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tive model really aids human performance as described here. A stronger test
would be finding similar reasoning weaknesses. As mentioned earlier, a quali-
tative model cannot answer some questions. If well-trained operators could
not answer such questions, did not ask such questions, or could not use

answers to such questions, there would be evidence for the hypothesis.

AN EXPLORATORY EXPERIMENT

An exploratory experiment was conducted to observe the strategies sub-
jects used to diagnose the ORS., Three Georgia Tech students were used as sub-~
jects. The use of college students is usually considered a compromise in
experimental research. Since some space shuttle astronauts have been

engineers, this compromise is reasonable in this situation.

The training contained both theoretical and practical elements. First,

the basics of gas and fluid transfer were reviewed. Second, there was an
explanation of the normal and malfunction behavior of each component. Third,

subjects were told how to test for a failed component and how to operate the

system.

The subjects then solved five single failure malfunctions. The failures

were as follows:

(1) Valve 13 leaked, allowing an unexpected pressure drop.

(2) Pressure transducer 2 was biased high.

(3) A leak to the environment developed between valve 10 and 1l1.
(4) The relief valve was open during a fuel transfer.

(5) Valve 8 leaked.
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The data collected included a time-stamped record of the ORS commands
issued and a tape recording of the subject”s verbal protocols. The time to

solution is shown in Table 1.

Subject A B c
Problem
1 28.6 14.4 3l.1
2 *]13.8 *21.9 3.6
3 13.4 7.9 6.2
4 12.7 10.0 *21.9
5 7.5 8.3 12.3

Table 1. Time to solution. * denotes giving up.

A Post-hoc Analysis of Performance Data

The data from our preliminary experiment suggest several interesting
characteristics of human diagnosis behavior, and which in turn suggested some
directions for computer aiding. First, the time spent for a successful diag-

nosis is strongly related with the number of information gathering actions

(16A) (r = 0.79) and the average time between actions (r = 0.77). The latter

two variables were not strongly correlated (r 0.21). The implication of
this is reducing the number of information gathering actions (IGA) is an

important goal for improving diagnostic performance.

Second, we classified IGA”s into effective omes (EIGA), which reduced the
size of feasible hypothesis set, and ineffective ones (IIGA), which did not.
We found that the number of EIGA is invariant among subjects and is also not
significantly correlated with the total number of IGA. The total number of
IGA is correlated with IIGA (corr.= 0.98), which outnumbered EIGA by 2.5 : 1.
This suggests that a problem is solved by collecting the right number of EIGA
(largely determined by the complexity of the problem). A better performance is

possible when the effective actions are executed earlier in the diagnosis.
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Third, we investigated how well the subjects detect the abnormal behavior
of the system. We assessed the delay in diagnosis due to failures to collect
information that would have revealed the abnormal system behavior. The delay
showed high correlation (r = .79) with the number of ineffective actionms.
Also, 75% of effective actions were of abnormal behavior, and the remaining
25% were of normal behavior (negative evidence). Observations on abnormal
behavior, if they are correctly interpreted, became effective actions in
almost all cases. Thus, abnormal behavior of the system is probably the most

important source of effective information.

The conclusion is that, to help the diagnosis, the cues for effective
actions need to be given. Abnormal system behavior is worth watching for this
purpose. When desiging an aid, a major advantage of using abnormal behavior is

that inferring or requesting the human”s current hypothesis is not mnecessary.
Observation of Strategies

There appeared to be three strategies that subjects used: hypothesis-
driven evaluation, data-driven evaluation, and topographic search.
Hypothesis—-driven evaluation starts with the planning of a test procedure for
a given hypothesis. The hypothesis needs to be explicit enough to enable the
prediction of its resulting system behavior. A test plan would be diagnostic
if, given that the hypothesis is true, the response of the system to the test
is unique to the hypothesis. When a sufficiently diagnostic test has been

planned, the test is executed and its result evaluated. This evaluation tends

to be short because it has already been determined what the results might be.

With data-driven evaluation, the subject first examines a piece of data

to determine if it is worth closer attention. This examination is done by
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comparing the data to expected system behavior. If the data turns out to be
unexpected (i.e., not explained in terms of previously observed symptoms or
normal behavior), then hypotheses are formulated to explain the data. Whether
the formulation is successful or not, this piece of data is remembered by the

diagnoses as another symptom to be used later during diagnosis.

Topographic search seems to help reduce the mental workload in diagnosis.
Both above evaluation strategies involve deep reasoning with functional
causalities. With deep reasoning, the former deduces necessary data from a
given hypothesis while the latter formulate and evaluate hypotheses from the
given data. Topographic search [Rasmussen 1984], without such a deeply based
hypothesis, is used to find data. For instance, the sensor near the suspected
component are read in hope that the reading may give some diagnostic informa-
tion. An example of topographic search of hypotheses is suspecting nearby
components when a sensor reading is out of the normal range. The differentia-

tion of a single general hypothesis to several more specific hypotheses can be

considered as topographic search.

Although it is not relevant to our diagnostic task, other forms of rules
may be used as alternative ways of causal search. With experience or specific
system knowledge, it is possible to connect a hypothesis with data through

function-based reasoning [Rasmussen 1984].

AIDING WITH A QUALITATIVE MODEL

This section describes how the qualitative model is used as a foundation
for aiding. For simplicity, the interface will be used to organize the
presentation. The interface has four windows: schematic, interaction, sensor

display, and hypotheses (Figure 2). Each window will be described first. The
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types of aiding that occur within the window will then be described. Finally,
the justification for the aid, which is the human decision-making suboptimal-
ity we hope to mitigate, will be presented. It is possible that a form of

aiding and a justification for aiding may apply to more than one window.
Schematic Window

The schematic window displays a schematic diagram of the ORS. The
schematic always shows the commanded state of the valves. One form of aiding
employed here is the set of compoments that should be at equal pressure given

the commanded valve positions. Whenever the operator opens or closes a valve,

the display changes the path to show this property.

The motivation for this is that the operator frequently makes a test
among a set of components that should be at equal pressure. It should be
noted that the qualitative model uses this same information internally in its
simulation of the ORS. A related form of topographic information is flow

paths, which are paths that should cont;in flow if the valves obey their com-

mands.

Both of these forms of aiding support the operator during topographic
search [Rasmussen 1985]. From a cognitive standpoint, both aids should lessen
working memory loads. It is by no means difficult to determine equal pressure

and flow paths without the aid, but it is extra work for the operator to do

80«

The second aid and perhaps the most interesting is the what- if model
with which the operator may test a hypothesis. The what~if model is a model
that is parallel to the system model. The component states of the what~if

model are set by the operator. Recall that the diagnosis task is to determine
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the states of the system components. The operator may use the what-if model
to test a hypothesis. For example, suppose valve 13 is hypothesized to be
leading. Then, the operator may turn on the what—if model, set its valve 13
to leaking and all other componments to normal. When activated, the behavior
of the what-if model and simulation are displayed in parallel. The system can

be put through a series of state changes to determine if the two behaviors are

equal.

The motivation for this aid is to help the operator”s mental model of the
system. There are two ways this might help. First, the operator may have an
incorrect or incompleté mental model. Second, the operator may have diffi-
culty integrating correct component behavior to correct system behavior
because of working memory limitations. In either case, the what-if model
serves as a substitute for the operator”s model. This does not mean that the
operator need not understand the system at all; he or she must still set the
component state. It also does not mean that the operator may not have trouble

using this aid. We will return to this question later.
Interaction Window
The interaction window is where the operator”s commands are echoed by the

interface. The commands available to the operator include the following:

(1) Opening and closing valves.

(2) Comparing two pressures. On a real physical system, the numerical pres-
sure could be displayed on the schematic. When a qualitative model is
used, there is no scale in general to which a pressure can be referred.
Instead, a pressure can be referred to other pressures in the system by

the relations less-than, equal-to, or greater-than.
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(3) Display of the first derivative of pressure (positive, zero, or nega-

tive).
(4) Turning the what-if model on and off.

(5) Making state assumptions in the what-if model.
When the what-if model is on, the open, close, and comparison commands apply

both to the system and the what-if model.

Sensor Display

The sensor display contains the output from the comparison command: the
relationship between two pressures or the first derivative of a pressure. The
what-if model, if activated, has its corresponding output displayed side-by-

side with the system model.

The aiding that occurs through this window is to indicate which observed
behaviors deviate from normal behavior of the system. The aid rums a normal
model (that is, a qualitative model with all component states normal) and com—~
pares its behavior to the system”s behavior. Differences are highlighted.
This display differs from conventional warning systems (for example, annuncia-
tor panels in nuclear power plants) in that reference is made to a system

model, not a fixed point.

The strategy supported by this display is data-driven search, which was
observed in our preliminary experiment. In the initial stages of diagnosis,
the operator did not have a specific hypothesis. Instead, he or she collected
data to develop one. The purpose of this aiding feature is to direct the

operator toward more relevant data.

The human decision-making biases that we hope to mitigate all deal with

suboptimal use of data or cues. Human have a limited ability to integrate
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more than three sources of information. Further, humans sometimes wuse
irrelevant data, especially if it is salient. This display attempts to miti-
gate this by making important differences salient. Another deficiency of
humans is a narrow focus of attention. The aid should work against this by

displaying all differences, not just those on which the operator has focused.

Hypotheses Wipndow

The hypotheses window will display a set of hypotheses that might be the
cause of the observed symptoms. These hypotheses are simply state assignments
to components (e.g., valve 13: leaking). The hypotheses will be listed in

order of plausibility, according to a heuristic of symptom covering.

Many decision-making biases exist with respect to hypotheses. The one
that is directly addressed is the difficulty humans have in generating a com—

plete set of hypotheses [Mehle 1982].

Representativeness, anchoring, and confirmation bias often occur when
humans select and evaluate biases. Representativeness refers to the tendency
to select hypotheses that are easily recalled from memory. This could be due
either to recent use of the hypothesis or to a close match between actual
symptoms and symptoms covered by the hypothesis. Anchoring refers to the ten-
dency to stay with an initial hypothesis even after it has been disconfirmed.
Confirmation bias is the tendency to test data that will only confirm a
hypothesis. It is in effect a failure to seek negative evidence. To mitigate

these biases requires meta—aiding, as described below.
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Meta-aidi

Earlier, we mentioned that the operator may have &ifficulty using the
what-if model. Recall that the operator must make assumptions about the
states of components. Having a what-if model means the evaluation of assump-

tions is easy, but making assumptions is not aided by the what-if model.

Meta-aiding is aiding the use of the what-if model--specifically, helping
the operator choose component state hypotheses. While 1listing these
hypotheses in the hypotheses window is an aid, it may be necessary for the
interface to take a more active role. If anchoring and confirmation bias
occur, it will be necessary for the interface to determine when the operator’s
hypothesis (expressed in the what-if model states) is no longer valid. When
this occurs, the interface will step in to warn the user of his or her mis-

take. -

CONCLUSION

An aid has been described for novel fault diagnosis in complex systems.
To the best of our knowledge, this aid is unique in the following ways.
First, the emphasis is on novel rather than routine faults. Second, it con-
tains a qualitative model that may correspond to the human”s internal model of
the system. This model represents knowledge only of how the system works.
Many of the proposed aiding schemes are proceduralized fault finders: they
tell the operator what action to take. Third, the qualitative model is the
basis for much of the aiding that takes place. Fourth, the interface specifi-

cally attempts to mitigate some human decision-making suboptimalities during

fault diagnosis.
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The current status of this aid is as follows. The aiding software for
topographic path displays, flow paths, and the what-if model have been imple-
mented. Hypothesis gemeration and the corresponding suboptimality detection
have not. We feel it is premature to implement suboptimality detection (i.e.,
meta—aiding) without some experience with aiding by topographic displays and

the what-if model.
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Exercise 1.
Situation: Pl is found too low and still decreasing.
Fault: V13 leak
valves open: V3, V7, V10, V17 / V4, V14, V16, V9

Exercise 2.
Situation: P2 appears to be too high.
Fault: P2 high bias
valves open: V1, V3, Vi0o, V17 / V5, V15, V9

Exercise 3. (confg-1)
Situation: Pl is low and decreasing.
Fault: pipe leak between V10 and V11 (c39)
valves open: V3, V7, V13, V11, / V4, V14, V15, V9

Problem 1.
Situation: During a fuel transfer TK1L -> TK2L,
P2 does not increase.
Fault: V5 fail closed
valves open: V3, V10, V11, V17 / V5, V14, V15, V16, V9

Problem 2.
Situation: P2 is too high. V11 was found leaking, but
there is one more anomaly.
Fault: V7 failed open
valves open: V3, V13, V10 / V4, V1i4, Vli6e, V9
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Problem 3.

Situation: P2 is lower than it shoud be.

Fault: V8 leak (while P2 > P1)
valves open: V3, V7, V10, V17 / V4, V15, V16, V9

Problem 4. (confg-2)
Situation: During a fuel transfer TK1L =-> TK2L,
P2 increases too slow.
Fault: pipe between V3 and V7 (C37) leaks
valves open: V3, V13, V11, V10 / V5, V14, Vl6, V8, V9

Problem 5.
Situation: a gas transfer GIK -> TRK2G proceeds too slow.
Fault: V15 leak
valves open: V3, V17, V1, V11, V10 / V4, V14, Vi6, V9

Problem 6.
Situation: During a gas transfer from GTK to TKIG,
Pl increases too slow.
Fault: RV leak
valves open: V1, V3, V7, VIO, V13 / V4, V14, V9



INSTRUCTIONS ~ Part 1,

TIME ( : )

I. The Orbital Refueling System (ORS)

The purpose of the ORS is to refuel orbiting satellites om their orbits. As
shown in Figure 1 (in the separate sheet), the ORS fluid system contains various
components such as tanks, valves, pipes, etc. Because this version of the ORS
was for demonstration purposes, all transfers take place between the two tankg

rather than to a satellite.

Let”s look at the components in the schematic. First, “XX° and “==" indicate
closed and open valves respectively. The operator controls the ORS omly by open-

ing and closing valves. For example, You can open/close V3 by the commands QP Y3

and CL 21.

There are 4 orifices: namely Ol, 03, 04, and 05. Find them in the Figure.
An orifice is a Aesigned source of resistance. When there is a mass flow through
an orifice, there is a pressure reduction across it. Dropping pressure through
orifices is at times useful to control the flow rate. Also, Ol and 05 reduce

pressure to the regulator.

Now find GTK, which stands for the Gas TanK. This tank contains high pres-
sure nitrogen gas. Find Tankl (TK1G and TKIL) and Tank2 (TK2G and TK2L) too.
They are the fuel tanks. TK1G is the gas part of Tankl, which is separated by a
flexible diaphragm from the liquid part (TKIL) of the tank. The two parts always

share the same pressure.



On the path from GTK to TKIG, you will find “REG” (REGulator) amnd °“CV”
(Check Valve). The regulator produces a constant output gas pressure even though
the input pressure varies. The check valve allows the gas to flow forward omly

(i.e., right to left).

Find “RV°. It stands for a Relief Valve. If the pressure goes up beyond some
dangerous level, the relief valve will automatically open to decrease the pres-
sure. The operator can also manually open/close the "RV’ as any ordinary valves
by OP RV or CL RV. At the top left, you see “VI“, which stands for VenT. You may

release pressurizing gas through the vent by opening V13 and (__).

The lower half of the schematic (from “TKIL” to °TK2L”) is the liquid ( fuel)
part. There, °“TC” is for Terminal Coupling and is assumed always being comnected

during our diagnostic missions.

-

To transfer fuel from “TK1L’ to “TK2L”, Tankl needs to be first pressurized
ﬂy opening valves betwen GTK and TK1G. In the above schematic, TK1G is being
pressuri;ed‘by the gas through the open valves (_), (__), and (_). Since
TK1L has'always the same pressure as TK1G, it is being pressurized too. Then,
the gas flow may be stopped by CL ¥2. The fuel may be transferred by opening
valves between the two tanks. In the above, the operator would simply open
(), hence issue a command (____ ) to do this. The tank of higher pressure

will become the source and the other will receive the fuel.

The following is important. There are seven pressure semnsors (Pl to p7) in

the ORS, (_),(_),(_), and (_) in the gas part, and (_),(_), and (_) in the
liquid part. To read theﬁ, you have only two commands:
DRl
: to see the “D7erivative of Pl.

Answer: + for Pl increasing, - decreasing, and = constant.




CP2ERS

: to “C ompare P2 and P4.

Answver: > when P2 > P4, < when P2 < P4, and = when equal.

The command D is valid omly for tank pressures, namely, Pl, (__), and
(). In pipes, unlike the tanks which have considerable capacity, the pressure
change is instantaneous so that you can”t expect to see + or — as the answer to D

P5. D IS MOSTLY USED TO CHECK IF THERE IS A FLOW FROM/INTO A TANK.

As the gas or liquid flows from ome tank to another, its pressure decreases
along the path. A pr;ssure drop can only occur across a resist;nce. When the
fluid passes an orifice, which has significant'resistance, the pressure will
decrease. An abrupt change in the conduit shape, such as from a pipe to a tank or
vice versa, also produces resistance and results in a pressure drop. We will
assume that pipes or valves normally bhave negligible resistance. £ is the com-

mand which is frequently used to check the pressure drop along the path.

Another use of C command is to check if two sensors, which are supposed to
be equal, agree with each other. When two or more sensors are connected by an
open path, and if there is no flow through the path between the sensors, they all
should read the same pressure. Resistance doesn”t mattér when there is no flow.
If the sensors read differently, either there actually is a flow in the path

(e.g., due to a leaky valve or pipe) or at least one of the sensors is wrong.

Keeping this in mind, ¥you are now able to predict how the sensors will

behave when you open or close valves. Three situations are summarized here.

1. When a flow exists.

a. The pressure decreases in the source and increases in the sink.




b. The pressure drops by resistance while the material travels

along the path. This is shown in the following diagram.

TANK 1 01 ==]2 TANK 2
( source) ( sink)

TPressure

In Figure 1, there is a gas flow from GTK to TKI1G.

-

Predict the results:

D P6 -> ()
D Pl -—> ()

C P6 P5 -=> ()

C P5 P1 --> ()

Now, how about
C P1 P3 -—> () ?
Did you consider that an orifice reduces pressure only when

there is a flow through it? If not, check your answer again.

Now, suppose P2 > Pl and V8 is open.

Then the fuel will flow from (____) to (___) and:




C P2 P4 --> ()
C P4 p7 -> ()
C P4 P3 -=> (D

C P3 Pl -—> ()

In case that there is no flow (V8 is closed again).
In Figure 1, there is no flow from or to “TK2G® and “TK2L".
All the pipes around the tank will share the same pressure.
Thus,

CP2(_) —> =

cP2(_) -—> =

If you close V9, the pressures on both sides (will, will not)

change. Therefore,

CP2P7 -—> (_)

On the other hand, when you close v3, you expect

CPs5(_) -—> =

Special case of 2.
In Figure 1, suppose V17 is leaking.
It is open to the environment which has zero pressure.
Even though the operator closes V3, the gas will continue
to flow from (____) to the enviromment. Thus,

D(_) =--> -

CP5P6 —=> ()

cCP50 =-=> ()




If the operator closes V2, Since the pipes do not have
significant capacity, the gas escapes right away.
Therefore, immediately after closing V2, you get

CPS0 —> ()

** We assume the capacity of components (except tanks) to be

always negligible however small the size of a leak may be.

The same will be (true, false) when V17 is closed but the pipe

between V13 and V17 leaks.

.
A4

TIME ( :

BEFORE YOU START NEXT PART, RETURN THIS PART TO THE EXPERIMENTER.




L 1]
S?

TIME (

I1. Malfunctions

We will now discuss possible malfunctions for each component.

1. valve (including check valve and relief valve)
a. leak - in spite of being commanded to be “closed”, it allows some,
though not a full, flow. There is a resistance when commanded closed.
When commanded open, it acts normally.
b. fail open - no“matter what yéﬁ command, it remains fully open.

c. fail closed - no matter what you command, it remains closed.

2. regulator .
a. fail open - always remains fully open without reducing the pressure.
b. fail ¢c¢losed - always remains closed whatever the input pressure is. (No

gas passes through the regulator.)

3. orifice
a. fail open - fails to provide resistance or pressure drop, allowing the
material to flow freely.

b. fail closed - prohibits flow.

4, conduit (including “TC”, the terminal coupling)
a. leak - leaks gas or liquid to environmental space. (remember that a

valve leak is THROUGH the valve, not to the enviromment)

b. fail ¢losed - completely prohibits flow.




5. vent

Since the “VI”° is a simple opening to external space, its working and mal-

functioning is the same as a conduit.

6. sensor
a. bilased high - reports a higher pressure than the actual one.
b. biased low - reports a lower pressure than the actual one.

c. dead - fails to follow the change of pressure, reading 0 or other fixed

pressure.




TIME( : )

I11. Commands

We will summarize the commands you can use. There are only two commands
for operation -- OP and CL. You can open or close only the valves. Examples are
OP V3

CL V17

There are two commands, “C” and “D”, to get information about pressure

through the sensors. Followings are the examples.

C P1 P3
D P2

CP50 . -

The last command compares P5 with 0, the enviromment pressure of outer

space.

** Now, call the experimenter. You may ask him any questions.




TIME ( : )

IV. An example of ORS operation.

** You need to use the terminal for this section. The experimenter will

help you through this section.

Now, you will undertake a very typical operation as an exercise. Also,
through this example, you can become more familiar with the commands. Simply fol-
low the steps one by one with care. Don"t open/close the valves otherwise,
although you can freely read any sensors at any time.

a. type: (EXERO) and hit “return”.

The fgmiliar schematic now appears on the top half of the screen.
Notice that the symbol “XX“ indicates a closed valve, and “==" an open
valve. The symbol shows so-called “commanded” position. The ;ctual posi-
tion can be different from this switch position when a valve malfunctions.

The fuel needs to be transferred from “TKIL” to “TK2L’. To achievevthis
transfer, the pressure in “TKIL” should be higher than that of “TK2L”’. So,

let“s pressurize the source tank by providing high pressure from GTK
Please write in your answers whenever you are asked.
b. type: OP V1

What happens? (When you are asked like this, write down your guess on the

system behavior resulted by the command.)

10




Ce

d.

€e

Try to confirm the above answer by observing sensors. Then, give a set of

commands ( including at least a “C” command) that are useful for this.

type: CL V1

What happens?

How do you confirm it? (answer as in b.)

type: OP V8

What happens?

How do you confirm it? (answer as imn b.)

Check “C P3 P4, “C P4 P7” and “C P1 P57. Can you explain them?

type: CL V8

11



OP V16

Check “C P3 P4°, Can you explain it?

e. type: CL V4

Give all the sets of equal pressure sensors.

TIME ( s )

Congratulations! Your first mission has successfully been completed.

12




INSTRUCTIONS - Part 2.

Before you start, please review Part 1 again. Especially, you need to be

familiar with sections II and III of Part 1.

I. Diagnoses

The followings are examples of typical diagnostic procedures. Following
the reasoning, fill in the parentheses.

a. To check a sensor

See Figure l. Suppose you want to check the sensor P3. You can close V3
and expect (__) to read the same as P3. If not, P3 probably is bad. Of
course, the bad one may be (,_) rather than P3. To check further, you can

close V9, open (_), and compare P3 to P4 or (__).

b. To check a conduit leak (to enviromment)

If there is a leak between V4 and V14, D Pl can either give - or +
depending on whether the input flow rate to TKIG is greater than the output
rate from TRKlL. If you close V/, a leak between V4 and V14 will cause a
decrease in the semsor (__). But, when the valve (___) is closed, TKIL will
stop loosing the pressure. This means that the leak is in the { left, right }
hand side of the valve. Another evidence of a leak between V4 and V14 is that

CP3 Q0 -—>= { before, after } you close V5.

¢. To check a valve leak




Suppose you found D P2 gave +. This is possible if ome of (___) and ( )
is leaking. You may suspect that even two valves ( ) and (__) failed
together. If you close V10 and find the flow stopping, which makes ( )

return =, you have the evidence that the flow was from () and the leaky

valve was {__D.

If closing V10 does not stop the flow, you will first suspect (_) since
one valve failure is more likely than a two valve failure. If closing V5 or
V9 results in D P2 -—> =, the problem is in the { gas, liquid } part. Now,
after you open V5 or V9 again, if closing V16 stops the flow, then the flow

was through { V8, V14 and V15 }.




Now, let us consider several situations to see how you cam test your
hypotheses. You will be given a hypothesis for each problem. Each hypothesis
implies that only one component is suspected. Prove or disprove the

hypothesis.
TIME: (  : )

1. Hypothesis: the pipe between V13 and V17 leaks.
Type (HYPOl) and start when the diagram appears.
2. Hypothesis: V11 leaks.
Type (HYP0O2) and start when the diagram appears.

3. Hypothesis: V2 failed closed.

Type (HYPO3) and start when the diagram appears.

4, Hypothesis: CV failed open.

(Hint: you can open/close RV as well as other Valves.)
Type (HYPO4) and start when the diagram appears.
5. Hypothesis: P2 is biased high.

Type (HYPOS5) and start when the diagram appears.

TIME: ( : )




I11. Exercises

When you are diagnosing the ORS, you will be introduced to a malfunction
situation and given the symptoms so far identified. The previous operation was
being done by another personnel. Your mission is to diagnose the system and
find out the anomaly AS PRECISELY AS POSSIBLE so that another crew could
easily fix it. For example, if you suspect a valve leak, you have to continue
until you can say which valve it is. A conduit malfunction can be traced down

to ‘between valve a and valve b”, where valves include the check valve (CV).

You bave to THINK ALOUD during the diagnosis. That means, you sghould
utter everything that arises in your mind or in action. DON’T try to EXPLAIN
what you HAVE thought; speak out WHILE you are THINKING. Speaking must not be
an extra work. You don“t have to give complete or composed sentences. The
components which have names on the schematic may best be called by the names.
" Others, mostly pipes, may e#?ily be called “right to” or “left to” a named
component. Again, please KEEP TALKING OUT. Speak everything that goes on in
your mind regardless of its importance. Also, whatever you type in on the key-

board needs to be spoken out. If you stop speaking for any length of time, the

experimenter will prompt you with "What are you thinking?"

Your performance is measured by the sum of time you spend for the prob-
lems; solve the problems in as little time as possible. However, give your
answer only when you are completely convinced it is correct. And, don“t give
up, at least easily. The penalty for a wrong answer is great; giving up, even

greater.

Now, proceed with exercises 1 and 2.




RETHINKING EXPERIMENTAL PROCEDURE

Findings from the lst Experiment (Testing N Feature)

l. With enough training, the problem complexity becomes the biggest source
of variation,

2. Subject variation may be reduced as much as to a standard deviationm of
around 0.3 mean.

3. The training effect was examined using Time/IGA. It was quite stable
and showed similar-pattern from problem to problem among subjects.

4. No significant interaction between the training effect and the aiding
effect or subject effect were indicated from the data.

5. The "N" feature did not show positive effects.

Refinement of the Training Procedure

1. More exercise (273) problems are needed for "warming-up" before the
actual problems.
2. Clearer statements and no question for the lst session and "solve-it-

together”" for the 2nd session.

Experimental Design

1. The constraint of having to give a problem to a subject only once res-
tricts the possibility of a factorial design. No replication in the S X
P cells leaves the two following designs.

2. Design 1 confounds Problem and Position.

Design 2 is a Graeco-Latin design which separates Problem and Position.




Pl P2 P3 1 2 3

Sl ua 0 0-N sl Pl ,ua P2,0 P3,0-N

s2 0 0-N ua s2 P3,0 Pl,0-N P2 ,ua

s3 0-N ua 0 S3 P2,0-N P3,ua P1,0
Design 1. Design 2.

3. Confounding Problem and Position
- As long as the training effect is not correlated with the aiding
effect, this design will not degrade the efficiency or validity of
the experiment. (We try to minimize the training effect, anyway.)
- Although the training effect is not measured separately, it is not
an important purpose of this experiment.
- This design allows freedom of replication and keeps the analysis
relatively easy.
4. Graeco—-Latin Design
- The main advantage is that we may estimate the training effect.
However, the training effect is closely related to the problems.
There would be more learning from a difficult, hence long, problem.
If such a problem comes first, more improvement will occur after
the first session. This violates the no-interaction assumption in a
Graeco-Latin Design. Not only the training effect will not bé prop—
erly estimated, but also the efficiency of test will be degraded
since the actual interaction will be merged to the error term.
- Design 1 allows more flexibility of replication. 9X6 or 12X6 are

pdssible replications with Design 1, but are not allowed in Design

2.

N



5. Conclusion
- If we are concerned with the Training effect, than we need to con-
found it with Problem since there may be a strong interaction
between the two. If the Training effect is not so high (which is
the likelier case as the data indicates), Design 1 is readily jus=—
tified.
- To estimate the interaction between Problem and Aiding, we need
replication with subjects for each treatment combinations. This
leads to thehfoliowing design (Winer, "Statistical Principles in

Experimental Design", 1962).

Pl P2 P3 P4 P5 P6
Gl el 0 0-N - 0-N 0
G2 o O-N - 0 - 0-N
G3 0-N - 0 O0-N 0 -

In this plan, Gl, G2, and G3 are groups of an equal number of subjects.
If the interactions with the group factor are negligible (this
assumption is reasonable if the groups represent random
subsamples from a common population),

the following model will be appropriate for the analysis (Winer, 1962).

E [Y(ijkm)] = m + G(k) + S(k|m) + P(i) + A(j) + P.A(i,})
where G(k) is the effects associated with groups and S(k|m) effects

associated with subjects within the groups.



EXPERIMENTAL PROCEDURE

I. Purpose of the Experiment

There are diagnostic situations in which causal reasoning about the phy-
sical system plays a central role. Such situations may be created by a system
failure that the operator has not experienced. The irrelevancy of previous
experience prohibits a direct mapping from symptoms to causes. Also, the base
rates for hypotheses are normally not available due to the lack of experience.
As a result, the diagnosis will primarily be based on causal reasoning about

the system.

Aiding based on a qualitative model of the system seems to deserve con-
sideration because the human”s causal reasoning is also claimed to be qualita-
tive. The qualitative model will be able to predict and describe the system
events which are believed to be important to human reasoning. This should
cause the information produced by the model to be highly compatible with the

human information processing.

One purpose of this experiment is to test the validity of this aiding
approach. More detailed interest is in the relative effectiveness of different
aiding information that can be provided by the model. In the next section,
the experiment planned for this purpose is described. The design of experiment

and the analysis of results are discussed in the last section.

II. The Experiment

This section begins with a brief description of the Orbital Refueling
System (ORS), which is the context of problem solving in the experiments, and

the interface. A more detailed discussion may be found in the previous papers



[Proceedings of the 1986 IEEE International Conference on Systems, Man, and
Cybernetics, pp.1222-1227; IEEE Transactions on Systems, Man, and Cybernetics,
to appear] and the thesis proposal. Then, a description of the experiment in
terms of problems, independent and dependent variables, subjects, and training

will follow.

Ihe ORS and the Interface

In the ORS as described in the thesis proposal, as in most plants, it is
not possible to test each component directly. A diagnostic hypothesis can only
be examined indirectly through testing operations. Because of this, the diag-
nosis of a novel failure in this system will more heavily rely on causal rea-

soning. This makes the ORS a good problem solving context for our experiment.

The ORS is qualitatively simulated on the center’s Vax 11/780 computer.
The interface has four windows (Figure 1). The schematic window shows a

schematic diagram of the ORS. The commanded positions of valves are shown on

SCHEMATIC

INTERACTION

|

SENSORS | HYPOTHESES
I
I

Figure 1. The ORS Interface




the schematic. Below the schematic, the operator”s commands are echoed in the
interaction window. The operator can open/close valves, read the time deriva-
tive of a pressure sensor, and compare two pressure sensors. The output from
the above sensor display commands is displayed in the sensor window. Under
certain aiding conditions, suggested sensor readings will also be displayed in
this window. The hypothesis window is used only with an aiding feature. It
displays a set of hypotheses set by the operator. These hypotheses are simply

state assignments to components.

Problems

For each problem, the subject is given a detected symptom and asked to
diagnose the malfunction as precisely as possible. There may be one or two
bad components. When two compoments are bad, the subject is told of one mal-
function and is asked to find the other. The problems include valve leaks,
Pipe leaks, blocked valves, a check valve failure, a relief vent leak, and

sensor failures.

Independent Variables

The effects of different aiding information will be examined. Each type
of information correspondents to a hypothesized, model-based processing that
the operator does during diagnosis. The first processing is called N, which
is to predict the normal system behavior after a given operation. The second
is 0, which is to envision the actual system behavior from limited observa-
tion. The third is O-N, the difference between O and N, which is often cru-
cial in an efficient search for the diagnosis. The last processing is called

0-H, which calculates the discrepancies between the observed system response




and the operator”s hypothesis.

Dependent Varjables

Many different performance measures were tried with our data from the
pilot experiment. The number of information gathering actions (#IGA) appears
to be a clear alternmative to the time to solve (TIME). An information gather-
ing action is judged to be effective when it reduces the size of feasible
hypothesis set. To achieve this, an IGA should be able to remove at least one
hypothesis from the feasible set. In addition, it must not be redundant with

respect to the information so far collected. We have denoted the number of

effective IGA”s by {#EIGA, and that of ineffective ones by #IIGA.

The pilot experiment showed that #IIGA is a good predictor of TIME (r =
0.83; p < 0.01). Although several other measures were examined with the data,
they either turned out to have insufficient resolution or showed high correla-
tions with the above measures. Thus, the aboves will be the most important
measures in the main experiment. However, other measures will be collected for

supplementary analysis. The measures are:

Time : Time to solve the problem

#IGA Total number of Information Gathering Actioms

#EIGA: Number of Effective IGA

#IIGA: Number of Ineffective IGA

#BT : Number of Bad Tests of Good Hypotheses
#BH : Number of Good Tests of Bad Hypotheses

#RT Number of Redundant Tests



Eighteen to twenty four undergraduates in the ISyE 3010 class will serve
as volunteer subjects. The subjects will receive extra credit for participat-
ing this experiment. They are motivated by giving different extra credit
according to their performance: 7% for top one third of the subjects, 6% for

the next one third, 5% for the rest.

Traini

The goal of our training is to facilitate the subjects with correct
causal reasoning about the ORS and reasonably stabilized diagnostic skills.
However, if a subject is exposed to a kind of problem several times in a short
period, the subject may develop diagnostic procedures that do not require

causal reasoning. That means the problems become routine failures rather than

novel ones to the subjects. -

Two training sessions will prepare the subjects for the final experiment.
Training session 1 starts with basic principles derived from fluid dynamics.
Then, possible malfunctions for each component are discussed. Finally, the
subjects will undertake a simulated ORS mission, during which envisioning of
normal system response is practised. Session 2 teaches elementary diagnostic
procedures such as checking a sensor bias or a valve leak. The subject then is
required to plan testing procedures for five typical hypotheses. Each pro-
cedure will be discussed with the experimenter until the subject develops (and
understands) a correct procedure. The subject then solve three real problems
as exercises. Session 1 usually takes 1 to 1.5 hours. Session 2 is normally

takes 2 hours, but varies depending on the subject”s pace.

The performance of subject in the training sessions is closely monitored.

The principles part contains many questions to ascertain proper understanding.




The answers are checked during the same session and, whenever necessary, dis-
cussed again. Problem solving exercises are also attended by the experimenter
and necessary discussion or re—explanation 1s provided. The result is that
initially poorer subjects will spend more time in training rather than end
with poor understanding. Our experience is that by the end of the second ses-
sion, subjects performed satisfactorily and showed little additional improve-

ment in diagnostic skill.

III. Experimental Design

Rationale for Three Experiments

The features will be examined by three experiments. The display of aid-
ing information constrains those features that can be tested together. A sub-
ject should not be exposed to both N and O features since severe interference
is expected. This is because 0 and N information is displayed identically but

has different meaning.

O-H and O-N for the same reason should not be used together. When O-H is
used, it acts as O-N until the subject expresses one or more hypotheses. This
makes a direct comparison between 0-N and O-H difficult. Even if O-H really
improves the performance, its contribution will be depend on the extent to
which a subject uses it. Different performance criteria need to be used to
evaluate the potential benefit of 0~H. (The frequency of bad hypothesis test-
ing (#BT) should be emphasized rather than time to solve (Time). The ratio of
#EIGA and #IIGA with or without a hypothesis selected may also be compared.

These comparisons need to be made against the O-N aiding condition.)




The above considerations led to the following three separate experiments.

l. Test of N against unaided situatiom
2. Test of 0, 0-N, against unaided situation

3. Test of 0-H against O-N

Differences in the complexity of problems and differences between users
are expected to introduce large variation in the performance. To enhance the
efficiency of the experiment, a Latin square design which uses problem and
subject as two blocking variables is desirable. The treatment levels will be
counterbalanced for practice effects. Also, the Latin square design may be
replicated to attain enough data points. This design is used for all three
experiments., The ANOVA table for this design is given in Appendix A. The
first experiment to evaluate the N feature is shown in Figure 2. Figure 3

shows the experiment for testing O and O-N features.

The above design does not estimate interactions because only first order

effects are of interest. There is no hypothesis that corresponds to an

PROBLEMS

Sl N - N - N -
S2 - N - N - N
SUBJECTS S3 N - N - N -
s4 - N - N - N
S5 N - N - N -
Sé - N - N - N

Figure 2. Latin Square Design for N effects in Experiment 1.




PROBLEMS

Pl P2 P3 P4 P5 P6

sl - 0 O-N - O-N 0
52 0 0o-N - 0 - O-N

SUBJECTS S3 O-N - 0 O-N 0 -
54 - O-N 0 - 0 0-N

85 0 - O-N 0 O-N -

S6 0-N 0 - O-N - 0

Figure 3. Latin Square Design for O and O-N in Experiment 2.

interaction between 0 and O-N.

Pairwise comparisons will be executed using procedures by Tukey, Bonfer-
roni, and Scheffe [J. Neter and W. Wasserman, "Applied Linear Statistical

Models", 1974, Irwin]. Since the sample size is balanced, the Tukey test can

be used and is expected to be most sensitive.

In the third and final experiment, the O-H option in the O-N feature will
be tested against 0-N feature only. As in the test for N, 6 subjects will be

used for this analysis.




Appendix A.

Source Sum of Square d.o.f
Treatment p-1
Problems n( p-1)
Subjects n( p-1)
Error n*p~p-2n(p-1)
Where,

p : Number of subjects, problems

n : Number of replications

~ ANOVA Table

for Replicated Latin Square Design without Interaction
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} (companent
(name ())
{(type ())
{ports
(sf-list
{port
(type (1))
(name ())
(pressure ())
(flow ()
{connection
(tie-point
(component—-name ())
{port-name ())
)
)
(port
(type )
(name (1)
(pressure ())
(flow ())
(connection -
{tie-point
{component-name ())
(port-name ())
)
)
)3sf-list
(state-variables
(sf-list
(state-variable
(mass ())
)
)
)
(parameters
(sf-list
(parameter
{resistance {())
{value ())
)
(parameter
(volume ())
(value ())
)
{behaviors
(sf-list
(behavior -
(cand (<expr2>))
(egns (sf-list <ar> <ar> <ar>))
)
(behavior
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(cond (<expr>))

(egns (sf-list <ar> <ar> <ar>))
)
)isf-list

<{expr>

an expr is either an ar (defined below) or the and of

a list of ars:
<expr> 1:= <ar>

pand <ar> <ar> ... €ar>

<ar>

an algebraic relationship, which could be an equation or an
inequality (possibly a constraint)

examples:
a=1 {peq a 1)
b<3 (p< b JA)
X+y=2-q (peq (p+ x y) (p—- z q))

in ports and parameters, there are slot names that are physical
dimensions (e.g., resistance, pressure, flow)
an example of a valve
{component
(name (valvel4))
(type (valve))
{ports
(sf-list -
(port
(type (liquid))
(name (in-port))
(pressure (in-pressure))
{flow (flow))
(cannection
(tie-point
{component—-name (pipe-7))
{port-name (left-part))
)
)
(port
(type (liquid))
{name (out-port))
{pressure (out-pressure))
{(flow (flow))
{connection
(tie-point
{component-name (pipe-4))
(part-name (right-port))
)
)
(port
(type (electrical))
{name (control))
(voltage (v-in))
{connection
(tie-point
(component-name (wire-3))
(port-name (left-end))

-..‘._.-._.-..,cu.-n-.uu..ulqn'll----'01-'-1‘-n-l-"-‘lu-'cl"c-.'ﬂ""uu"u-'l-en"ﬂuniivl'l-'lm'luniﬂ
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)
}
)
)isf-list
(parameters
)
{behaviors
{(sf-list
{behavior
{cond ({(peq v-in ’high)))
{egns
{sf-list
(peq in-pressure ocut-pressure)

)
)
(behavior
{cond ({(pneq v-in *high)}))
(eqns .
{sf-list
(peq flow 0)
)
)
)
}isf-list
) ibehaviors -
) scomponent
example of a tank
(component
(name (tankl13d))
(type (tank))
(ports
(sf-list
(port
(type (liquid))
(name {(in-port))
(pressure (in-pressure))
(flow (in-flow))
{connectiaon
(tie-point
(component-name ())
(port-name ())
)
)
{(port
(type (liquid))
(name (out-port))
(pressure (out-pressure))
(flaw (out-flow))
{connection
(tie-paint
(component-name ())
(port-name ())
)
)
)isf-list
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(parameters
(sf-list
{parameter
{mass (maximum-mass))
(value (1700))
)
(state-variables
(sf-list
{(state-variable
{mass (contents))
)
)
)
(behaviars
(sf-list
(behavior
(cond
{pand
(p< contents maximum—mass)
(p< O contents)
)
)
(eqns
{(st-list
(peq (pd/dt contents) (p~ inflow ocut-flow))
(peq in-pressure {(p* contents .31))
(peq out-pressure (p# contents .31))
)
)
)
(behavior
(cond
(peg contents maximum-mass)
)
{egns
(peq in—flow out—flow)
{(peq in-pressure out-pressure)

)
(behavior
(cond
(peg contents 0)
)
(egns
(peq out-flow 0)
)
)
)isf-list
) sbehaviors
) 5component

0 W0 ogg WA up W gy WP gp WE Gy B8 gy WH e EA G BB gp U gp VE g W g WE g WE mg VI wa WE @p VI g WE g5 WE ug W g WE g WE g WE gp WA ogp WS g WS

isyntax of slot-filler objects

3 <sf> ::= ( <header> ( <slot> ( <filler> )) ( <slotd> ( <Ffiller> )) ...
3 <header> ::= {symbol)>

3 <slot> ::= <{symbol)

3 (filler> s:= <atom>
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<{sf>

sf-list <sf> {(sf> ... <sf>

= an expression to be eval-d (this is kludgy)
denotes a lisp symbol

{symbol>




{wuelq 01-04)/6-04
p-04 saniig

-
T S350 D TIAUVIIN “gm
AT
" i .\., Junssiva wv 0100 2222
b . , IATYA 10 1NOI » (&
.Sa o+ m;: L HA) m oy 13A2) HI9SNEL JLFRALEELINN " T INLITIINL ]
YWY 11 L . ™
™~ n Nm.“.ﬁs. o .c— Q.d_.n :v—v«:_s_u ANV INIIINGIY .:_._Mmﬂw ?’l #34NVHL AIAVED mmm
ty x NIAIHQ  MILLIWSNWEL «u n IAIVA 012455080 ‘ Twhel131 (‘L YT I TR LL L EICIRELTECES | ]
", Al MY
“ ™ N "t i} . g L2 PRI IR & o
¥ I8N LYY SSVaAR YR FISA ) - . v =
u—g X 1) rreed 2_.".4%:«‘:_““.“_ - _*GT AN RIS E A e 1 aias 13 s1a kvl uwiny R
1034NNON dnne X A I IS JRLITEICE RN LAy ]
S o~ IWVE 81T m LW ¥01233 1304 x4 b e 0331 $hi0%3 143734 T
” INVA INIW . 6 J.\ 4 E
(Y dind 43010Hs 140101 001 Ty Y G339 3% %) Teerreie ,
1304 INONI NENLIY 0L " go% b O PR e |
LIEL} un . J1I914338 N3 13 S a8
¥311084N0D I len ~-
annd SHIICT
frsiy) $3MIvA Naviaiy 400 v iy 13 o _ !
anna 15008 uvw 121%%028 31N ‘.m_..,,um“.wn Ny RN
AIM108 N3 1431 WNYLCIH S5 0w PSRl .
3 tvd3dWIL LIXI V4 ONY ‘ i T
IWNSSIYA BINMNG NOILISOd J
$10108HL AB 0311041INCT
yoLYIOGYY
SINIWDISHINNGILIY N

104 1NO3 Q314NN

#314V1S
3304 130
oL

“-.............. Siiecesecsiiiitocesssesteviny

- ~o— “o— No-

INIUNT Y¥0ivINWNIIV j_ ¢ i
13 RELERSTY ] ‘
WNVL 0334 g
INONI LT (V[ Nk
1031NNON \ ;
nvyguly  INIM 5 sk _ _
. IAIVA FLEIL] 0L AR ot ﬂ v
3
i
. N
ELTIH N
JLLIL] H01VI0VY 304 Ny
[} INIONT LHD W /
BlIIASNVEL
MOV2 1IN4 — N
INION] LHTIY N
avay  Sas 0 Ry N s e o
01 14
01 o e N —
ANYL G ANV L INIM \
JAYYA - NERLITEIG
P 1YNBILNI
s LH9IY 1N
3
3
i ]
&
NMOKHS WY 4 ¥ ¥
SINCYEIISHYHLALIAYYD
Srvdl [A7F ONY NG 1301 WI1ShVEL 15452 e il
. 13047130434 10334 INION) 0 : i
&' ‘wrore- Sey ﬁv_mim NNYL awo> IMLATND “ALIBY1I HOY apens m :M_..._“
. 4LON $3A1¥A 1081N0) 13ATY
du:‘.!d.{n Svpry \a\w \!qi - MMwL 4O b s VI4SNYYL ONI0 TN ERPLCEREL]
T T T - yio /2%. ANYL IVRE04ND) 01 YN 1Y WY g0
-t -+-4-4- anrm ANV INIM P
IR e I ) RTINS FCL I Tstadiad et
-e-1-t-1-4¢-4 PSLr T
1 A L.

"W3LSAS 12n4 INIIN2 8 INVIdYIY Wt

1-0s14101




A DEEP-REASONING AID FOR DEEP~REASONING FAULT DIAGNOSIS

Wan C. Yoon and John M. Hammer
Center for Man-Machine Systems Research, Georgia Institute of Techmnology,
Atlanta, Georgia 30332

ABSTRACT
Wan C. Yoon and John M. Hammer, 1987. A deep reasoning aid for deep-reasoning
fault diagnosis. Human—-Computer Interactiom, Vol 2 (G. Salvendy, ed.)

The design and an experimental evaluation are presented for an intelligent

aid for a human operator wvho must diagnose a novel fault in a physical system.
. A novel failure is defined as omne that the operator has not experienced in

either real system operation or training. When the operator must diagnose a
novel fault, deep reasoning about the behavior of the system is required. The
aid contains features that support such reasoning. One of these is a qualita-

_tive, component-level model of the physical system. Both the aid and the

human are able to reason causally about the system in a cooperative search for
a diagnosis. The human diagnostic performance improved by almost a factor of
two when the aid presented the information of observed system behavior or the
difference between observed and normal behavior. i

1 INTRODUCTION

In highly automated systems, the human operator is primarily a monitor and

- supervisor [Rasmussen, 1983]. An important monitoring function is diagnosing

equipment faults, a difficult task in automated systems. The current approach

- to fault diagnosis is to train the operator to deal with relatively common

ffaults. The training might teach the operator to use symptoms to distinguish

' faults and to follow procedures to correct them. While this approach should -

be successful with common faults, it does not support diagnosis of novel

. faults. A common sense but unsuccessful approach to help operators diagnose

novel fault is to teach them the principles of operation of the system. With
this theoretical knowledge, the operators should be able, in principle, to
diagnose any failure. Unfortunately, there is little evidence that theoreti-
cal knowledge helps operators diagnose failures [Morris and Rouse, 1985a,b].
A logical consequence of this observation might be to put theoretical
knowledge into the aid rather than the operator.

Our aid is based on deep, causal reasoning about the system.. There are
several advantages to this approach. First, novel fault diagnosis is normally
considered to be knowledge-based reasoning [Rasmussen, 1983]. Hence, it seems

appropriate for an intelligent aid to reason causally. Second, this approach




should be more reliable and robust. The system knowledge is represented at
" the component level. Because components are small and comprehensible, it
should be possible to create representations that are correct, perhaps even
provably so. These points support the belief that causal reasoning can cover
a wider range of faults [Davis, 1984].

In gpite of the power of the intelligent aid, we believe there are several
reasons to keep the human in command of the problem solving. First, diagnosing
a novel failure may require the human to extend the aid“s model. Second, when
diagnosis involves operating the system (e.g., opening valves, starting
motors), it would be better to leave these operations to the human. Third,
causal reasoning is slow because the diagnosis problem is a combinatorial
search. It may be that the human and the aid may be better able to find a
solution cooperatively than either can alone. This is possible, even neces~
sary, for two reasons. - The human has better pattern recognition capabilities
and can make inductive leaps. Second, the human may need to resolve ambigui-
ties inherent in the aid”s model.

In the subsequent sections of this article, we will discuss the system and
. the experimental task, the interface, the model of human information process-

: ing, the aids, and the experimental results.

2 THE SYSTEM AND THE TASK
2.1 The Systém

The Orbital Refueling System (ORS), a NASA~designed payload on the Space
Shuttle, was selected for study [NASA, 1985]. The function of the ORS is to
refuel orbiting satellites with hydrazine, with the objective of extending
their useful service life. As shown in Figure 1, the ORS fluid system con-
. tains a variety of components such as tanks, valves, pipes, etc. The operator
controls the simulated ORS by opening and closing valves. Transferring fuel
from propellant tank 1 to propellant tank 2 might proceed as follows. First,
tank 2 pressure is reduced by momentarily opening valves 10, 11, 13, and 17.
Second, tanmk 1 is pressurized by opening valves 1, 3, and 7. Gaseous nitrogen
will flow out of the two small supply tanks, be pressure regulated, and £fill
tank 1 on one side of the bladder. To transfer fuel to tank 2, valves 5, 14,
15, 16, and 9 would be opened. Because this version of the ORS was for
demonstration purposes, all transfers take place between the two large tanks
rather than to a satellite fuel tank. There are several assemblies whose pur-
pose was not explained in the above example. The relief valves RV and RV2
serve as a safety pressure relief. Check valve CV1l prevents backflow into the
gas system. The bladders in tank 1 and 2 serve to isolate the fuel from the
propellant and also to contain the fuel in the weightlessness of space. Some

components (e.g., valves 10 and 1ll) may seem redundant; they are so by design
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for two failure tolerance.

2.2 Ihe Diagnosis Iask

The operator’s task is to diagnose the failure in the system. This
requires the operator to mgnipulate and observe the system, because a diag-
nosis cannot be determined uniquely from an observation of a state vector at a
. single point in time. The diagnosis task is difficult for the following rea-
sons. First, all component testing must be done in the context of the system.
: It is not possible to remove a component for isolated testing. Thus, everi'
diagnostic test requires nontrivial interpretation. Secohd, the data are lim-
- ited and may contain one or more errors. There are seven pressure 8ensor
readings and fourteen commanded valve positions. Both can contain an error. A
pressure sensor may report a false reading or a valve may disobey its command.

The consequences are that an unaided diagnosis can easily require ten minutes.

3 AIDING WITH A QUALITATIVE MODEL
This section describes the interface, our model of operator information

processing, and the aids. The interface has four windows: schematic, interac-
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Figure 1. The Orbital Refueling System (ORS).




tion, sensor display, and hypotheses.

The schematic window displays a schematic disgram of the ORS. The
schematic always shows the commanded states of the valves. Certain forms of
aiding (described below) change the display of paths along which mass may
flow. The appearance of the schematic is similar to Figure l.

The interaction window is where the operator’s commands appear. The com-
mands available to the operator include the following: |

1, Opening and closing valves.

2, Comparing two pressuress On a real physical system, the numerical
pressure could be displayed on the schematic. When a qualitative
model is used, there is no scale in gemeral to which a pressure can be
referred. Instead, the subject may request the relationship (<, =, >)
between two pressures or between a pressure and a nominal reference
pressure such as absolute zero or the regulator”s design set point.

3. Display of the first derivative of pressure (positive, zero, or nega-
tive).

4. Turning the what-if model aid (described below) on and off, and stat-
ing hypotheses to the what-if model aid. When the what-if model is
on, the open, close, and comparison commands apply both to the system
and the what-if model. i .

The sensor display contains the output from the comparison command: the.
relationship between two pressures or the first derivative of a pressure. The
what-if model, if activated, has its corresponding output displayed side-by-
side with the system model.

The hypotheses window will display any hypotheses that the operator

expresses through commands in the interaction window.

4 A MODEL OF OPERATOR INFORMATION PROCESSIKNG
4.1 Observation of Strategies

Our model of operator information processing directly influenced the
design of the aids. From the observation of diagnostic behavior, we had iden-
tified three strategies that subjects used: hypothesis-driven evaluation,
data-driven evaluation, and topographic search [Yoon and Hammer, 1987].
Hypothesis—-driven evaluation starts with the planning of a test procedure for
a given hypothesis. A test plan would be diagnostic if, given that the
hypothesis'is true, the response of the system to the fest is unique to the
hypothesis. When a sufficiently diagnostic test has been planned, the test is
executed and its result evaluated. Because the hypothesis needs to be expli-
cit enough to enable the prediction of its resulting system behavior, this

strategy is mostly used in the later phase of diagnosise.



With data=-driven evaluation, the subjeét first examines a piece of data to
determine if it is worth closer attention. This examination is done by com-
paring the data to the expected system behavior. If the data turns out to be
unexpected (i.e., not explained in terms of previously observed symptoms OT
normal behavior), then hypotheses are formulated to explain the data. Whether
the formulation is successful, this piece of data is remembered as another
symptom to be used later during diagnosis. Since this strategy does not
require a wvell-formed hypothesis, it was heavily employed in the initial phase
of diagnosis.

Topographic search follows the connections between components to track
down the source of the malfunction. In contrast to hypothesis-driven and

data~driven evaluation, it does not appear to require as deep & reasoning
about device behavior. Thus, it is easier. B
4.2 Iypes of information processing

As frequent parts of some of the above strategies, the operator needs
presumably to do the following types of information processing. First, the
operator must envision the normal behavior (i.e. no failures) of  the system.
Second, the operator uses external, observable information (i.e., pressure
information) to determine unobservable, intermal behavior (i.e., presence of a
mass fiow, a leak somewhere in a path). Third, the operator must form the
difference between the observed and normal system behavior. These three forms
of processing could be termed N (normal), O (observed), and O-N (observed
minus normal).

The aids parallel the above three forms of processing. N and O aiding are
intended to help the operator with N and O processing, respectively. Both are
displayed in the same way. The schematic display is modified to show both mass
flow paths (the movement of either gas or liquid) and equal pressure paths.
The determination of these paths is from a system model (N) or pressure obser-
vations (0) available to the aid. The aid has exactly the same information as
does the operator. -

O0-N aiding is the difference between observed and normal behavior. This

information is displayed in the sensor display window in the form of suggested
| data observation commands. This form of aiding was also predicted to be useful
based on earlier observationms [Yoon and Hammer, 1987]). Subjects appeared to
have difficulty selecting effective data to observe.

A fourth form of aiding, O-H, is closely related to the third, O-N. O-H
(observed minus hypothesized) aiding displays the difference (as described
above) between the observed behavior and a system with one or more hypotheti-

" cal failures. This aid allows the operator to set a hypothesis. . If the




hypothesis is correct, there will be no difference between observed and
hypothesized behavior. This aid gives the operator an unambiguous interpreta-
tion of the correctness of a hypothesis. It does not, however, tell the

operator how to modify the hypothesis if it is incorrect.

5 EXPERIMENTS AND RESULTS
5.1 Procedure

Two experiments were conducted to evaluate the aids. A comparison of N
versus unaided performance was first tested since we had earlier observed that
most subjeéts found it confusing or irrelevant. The more prospective aids, O
and 0-N, were evaluated in the second experiment. Six and nine engineering
students participated in the first and the second experiment, respectively.

Two training sesséons preceded the experimental session. The first ses-—
sion was self-paced instruction on basic fluid dynamics andntbe operation of
the ORS. In the second session, the subjects practised testing various
hypotheses and solved five diagnostic problems both with and without the aids.
The purpose of these experiments intentionally limited the useful range of
.diagnostic skill of subjectse An overtrained subject tends to develop some
mechanistic diagnosis procedures. These may replace the deep reasoning about
the system and deal with the problems as routine failures rather than novel
fones. With too little training, the subject”s performance would reflect more
of deficiency in knowledge than the difficulty of the problem solving. For
these reasons, the experimenter interacted with the subjects in both training
sessions to insure proper understanding of the material.

The subjects started the experimental session with several additionmal,
wvarm-up exercises and solved six main problems. Keystrokes and verbal proto-
cols were collected. The performance measures were the time to diagnose (TID)
and the number of information gathering actions (#IGA). Problem and subject
were blocking variables. Each subject solved the problems with an equal
" number of different aiding levéls. A replicated Latin square was used. Order
- effects were counterbalanced. Three subjects formed a gréhp, wvhich received
the same order of aids, to serve as replications for the evaluation of

interaction terms in both experiments [Winer, 1962, pp. 538-543].

5.2 Results

The rééults of significance tests were same with TTD and #IGA. The effect
of N aiding was somewhat negative, though not significant. Most subjects said
after their sessions that the aid N was rather confusing or that it was not
the information they were seeking during the diagnosis. Both O and O-N aidsv

showed a positive improvement in diagnostic performance at the 0.05 signifi-




cance level. The effects of both blocking variables, subject and problem, were
significant. But, there was no significant interaction between any two vari-
ables. Residual analysis revealed that logarithmically transformed data better
satisfied the homogeneous variance assumption. No test results, however, were
changed by the transformation. It was shown that O-N and O shortened TID om
the average by 42X and 34Z, respectively. The aiding effects appeared similar
in #IGA: 442 decrease with 0-N, 40Z with O.

5.3 Additiopnal observations

The following observations, while not the result of hypothesis testing,
were also made during the course of the experiment. The aids more benefited
the problem solving earlier in the diagnosis. This was expected because one of
the effects of O and O-N was to reveal abnormal system responses, and thus to
stimulate the subject to launch a data-driven evaluation. In fact, O-N aiding
" obviously encourages the subject to select meaningful data,. Toward the end
of diagnosis, the subjects developed explicit hypotheses (i.e. hypothesis-
driven evaluation), and tended to be too heavily involved in their own testing
procedure to pay attention to-the aid. In fact, the aiding information is usu-
ally no longer relevant to the subjects” highly detailed hypothesis testing.
To aid the final phase of diagnosis, the .aid needs to know the operator”s
hypothesis. Then, the aid could run a modified qualitative model according to
the hypothesis (H) and calculate its deviation from the observed behavior (0).
The difference O-H may be more relevant than O-N to the later phase of diag-

nosis.

6 CONCLUSION

An aiding approach has been described and evaluated for novel fault diag-
nosis in complex systems. To the best of our knowledge, this approach is
unique in the following ways. First, the emphasis is on novel rather than
routine faults. Second, it contains a qualitative model that may correspond
to the human”s internal model of the system. This model represents knowledge

only of how the system behaves. Therefore, this aiding approach does not rely"
. on proceduralized knowledge. Third, the qualitative model is the basis for
much of the aiding that takes place.

The qualitative model was used to help different tasks of human informa-
tién processing. Presentation of observed system behavior (0) improved the
diagnostic performance of subjects, while that of normal system behavior (N)
does not. One implication is that the prediction of current actual system
. behavior is a task that needs more help. Aiding of envisioning normal system

behavior according to commanded physical configuration is less effective and,




vhen emphasized saliently, seems to interfere with the diagnostic reasoning.
Pointing out the abnormality in the observed system behavior (0-N) was at
least as effective as O.

More generally, the experiment confirmed that a deep reasoning diagnosis
can be aided, without disturbing the human diagnostic procedure, by providing
relevant information. It should be emphasized that this was possible through
an understanding of the operator’s information needs and that a qualitative
model could be used to generate the information that seemed to be well

| accepted for augmenting the human’s mental model.
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