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1. Introduction 

This ffsemiannual report" covers the three reporting periods from 

the initiation of grant NAG5-536 in May 1985 to November 15, 1986. . 
The purpose of the grant is to analyze the magnetic field data from 

the UKS spacecraft and hence learn more about the solar wind 

interaction with the earth's magnetosphere and about the magnetosphere 

itself. In order to undertake this task, we have to first reduce the 

data from essentially raw experimenter data records to engineering 

units. 

date has been minimal and the effort has proceeded much more slowly 

Then the data can be analyzed. The support for this effort to 

than would be optimum. 

The UKS spacecraft was launched in August 1984 as part of the 

AMPTE mission. It co-orbits the earth with the IRM spacecraft in an 

orbit that reaches an apogee of close to 19 earth radii. The 

magnetometer is of a design identical to that of ISEE-1 and - 2 .  

time resolution of the plasma data is an order of magnitude better 

than on ISEE-1 and - 2 .  

understanding of the bow shock, upstream waves, interplanetary shocks 

and the magnetopause. Furthermore, the existence of four spacecraft 

(the two ISEE's and the UKS-IRM pair) in the region of the solar wind 

interaction with the earth's magnetosphere permits a series of very 

critical correlative studies. We can examine the evolution of waves 

in the foreshock, the varying structure of the bow shock along the 

boundary, simultaneous behavior of the magnetopause in the north and 

south hemisphere and MHD waves in the magnetosphere and magnetosheath 

simultaneously. 

The 

These improvements can lead to a better 
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H,is tory 

UCLA refurbished, tested and calibrated its ISEE spare unit and 

delivered it to D. J.Southwood of Imperial College, London for 

installation on the UKS spacecraft. 

of the instrument on the spacecraft. 

data reduction software to Imperial College as well as advice on 

instrument operations and data reduction. 

initial copies of the telemetry data and requested money from NASA to 

enable us to reduce and analyze these data. 

about one quarter of the requested amount of money. 

requested support for this effort and again were awarded only $30K. 

This support is less than that provided guest investigators to study 

already reduced data. 

in order to use it has impaired the amount of science we have been 

able to accomplish. 

We also aided in the integration 

We provided copies of our ISEE 

In 1985 we were provided 

We received only $30K, 

In 1986 we again 

The fact that we also have to process the data 

Data Reduction 

In 1985 we attempted to process the preliminary experimenter data 

tapes. We were able to be successful on half of these tapes but were 

unsuccessful because of formatting errors and other undetermined 

errors on the data tapes. We could not afford to find the errors in 

these data sets and were unable to process half of the data. 

In 1986 we received a new set of definitive data, this data is 

much improved but again we have run out of money before we could 

process all of it so that only half of the definitive tapes have been 

processed. 
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Team Support 

During 1986 we supported the principal investigator D. J. 

Southwood by attendance at UKS team meetings twice and full AMPTE 

science meetings twice. 

Software Development 

Software was developed to process and display the AMPTE/UKS data 

based on the data reduction algorithms for the ISEE magnetometer. We 

have not been able to afford to write programs to display or list any 

orbit/attitude data. 

Research Efforts 

Upstream Waves. We have examined intervals of the joint occurrence 

of waves at ISEE and UKS in the foreshock region and found that the 

waves vary markedly with position. 

handedness of the waves vary with amplitude. 

presented at COSPAR and published in the COSPAR journal (Russell et 

al., 1986). A copy of this paper is attached. A more detailed 

examination of these waves was prepared and sent to JGR (Russell et 

al., 1987). It is now in press. A copy of this paper is attached. 

We have also found that the 

These results have been 

We have begun a collaboration with Fred Scarf and Bob Strangeway 

on the CCE plasma wave observations of the bow shock on 1 November 

1984. UKS was situated upstream of the bow shock, and can provide 

input parameters to determine the shock characteristics such as 

instantaneous B and Mach number. Larry Zanetti at APL is also 

studying the CCE 

providing UKS upstream data as well as ISEE-1 solar wind and 

Bn 
1 November bow shock observations, and we are 
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magnetosheath data from a somewhat different local time. This event 

promises to be well-supported observationally. 

Magnetopause Studies 

Another AMPTE/ISEE study begun 1986 centered on the nearly- 

simultaneous crossing of the dayside magnetopause at two widely 

separated sites on 1 9  September 1 9 8 4 .  

event is attached. The IMF was southward at this time and the 

spacecraft observed two important, related phenomena. First, between 

1545  and 1600 UT, both UKS and ISEE observe a decrease in field 

strength, together with an inward tilting of the field at UKS (seen in 

the B 

south of the equator. Second, flux transfer events (FTE’s) are 

observed nearly simultaneously at the two widely separated sites. 

A preprint of a paper on this 

component) north of the equator and an outward tilting at ISEE n 

This paper is in preparation for JGR. 

Another collaborative magnetopause study centers on 4 September 

1 9 8 4 ,  when IRM and UKS pass through a highly compressed magnetopause. 

ISEE provided continuous upstream data during the event, and 

fortuitously, the SABRE radar in Britain was able to monitor 

ionospheric flows at the strongly displaced dayside auroral zone. 

During this event FTE’s were observed at UKS and IRM, and ionospheric 

flow disturbances are observed by SABRE correlated with the FTE’s 

Other ISEE/AMPTE Studies 

There are many other joint studies that can be undertaken with the 

ISEE and AMPTE data. 

other groups and we will advise and assist as required. 

Some of these are being actively pursued by the 

One such 



study begun in 1986 centers on an isolated plasma flow and field event 

observed by IRM on 28 March 1985 in the magnetotail. This IRM event 

coincides with disturbances observed in the ionosphere by EISCAT near 

the IRM footprint. 

Baumjohann on the IRM plasma and field data, and has also supplied 

supporting ISEE data for several IRM/CCE magnetotail study intervals. 

The lack of resources prevent us from pursuing this as vigorously as 

we should. 

Rick Elphic has been working with Wolfgang 
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Measurements ob ta ined  by  ISEE-2 and t h e  UKS spacec ra f t  upstream o f  t he  E a r t h ' s  bow shock a r e  
examined. 
f requency range. 
i n  d i f f e r e n t  reg ions  of  space. 
s i m i l a r  a t  h i g h  f requenc ies  and leas t  s i m i l a r  a t  low f requenc ies .  The p o s i t i o n  dependent 
n a t u r e  of t h e  upstream waves ind ica tes  t h a t  comparisons between ground-based measurements 
and i n  s i t u  obse rva t i ons  must be undertaken w i t h  some c a u t i o n .  

Simultaneous observa t ions  show t h a t  upstream waves a re  e x c i t e d  over  a b road 
Even when peaked spectra occur  the  peaks can occur  a t  d i f f e r e n t  f requenc ies  

Genera l l y  t h e  spec t ra  seen a t  t h e  two l o c a t i o n s  a r e  most 

INTRODUCTION 

Energe t i c  p a r t i c l e s  a r e  observed t o  f l o w  back toward the  Sun on f i e l d  l i n e s  t h a t  connect t o  
the  E a r t h ' s  bow shock,. The 
f i r s t  i s  leakage from the  magnetosheath /1,2/. If t h e  thermal speed o f  p a r t i c l e s  i n  t h e  
magnetosheath exceeds t h e i r  d r i f t  speed, some of them can propagate  back upstream. 
second mechanism i s  r e f l e c t i o n  by  the bow shock /3,4,5/. 
mo t ion  reversed by  the  combined ac t i on  o f  t h e  magnet ic  g r a d i e n t  and t h e  e l e c t r i c  p o t e n t i a l  
jump across  the  shock. 
approaches t h e  bow shock. 
t he  i n t e r p l a n e t a r y  e l e c t r i c  f i e l d .  Thus, t h e  i o n  fo reshock  boundary l ags  beh ind  t h e  
e l e c t r o n  fo reshock  boundary. 

These e n e r g e t i c  beams a r e  accompanied b y  waves which grow on the  f r e e  energy a v a i l a b l e  i n  
the  beam-l ike p a r t i c l e  d i s t r i b u t i o n s .  S ince  t h e  p r o p e r t i e s  of t h e  beams v a r y  w i t h  p o s i t i o n  
i n  t h e  fo reshock  because o f  bo th  source v a r i a t i o n s  and p ropaga t ion  e f f e c t s ,  and s ince  waves 
have f i n i t e  growth t imes we expect t h a t  t h e  p r o p e r t i e s  o f  t he  upstream waves should v a r y  
a l s o .  In f a c t ,  i t  has been known f o r  some t ime  t h a t  t h e  p r o p e r t i e s  of upstream MHO waves 
a re  q u i t e  p o s i t i o n  dependent /6/. However, ou r  unders tand ing  o f  how t h e  wave p r o p e r t i e s  
v a r y  has been b u i l t  up from many ind i v idua l  events  under v a r i e d  s o l a r  w ind  c o n d i t i o n s .  It i s  
n o t  always p o s s i b l e  t o  a s c e r t a i n  what changes a r e  due t o  t h e  l o c a t i o n  o f  the  observer  and 
what a r e  acts t o  t h e  d i f f e r e n t  s o l a r  wind c o n d i t i o n s .  
The launch of t he  AMPTE m iss ion  i n  August 1984 w i t h  i t s  two spacec ra f t  t h a t  went i n t o  t h e  
s o l a r  wind,.UKS and IRM,combined w i th  t h e  I S E E - 1  and -2 spacec ra f t  which had been launched 
i n  1977, has a l l owed  us t o  beg in  t o  probe s p a t i a l  v a r i a t i o n s  i n  t h e  upstream waves under 
cons tan t  s o l a r  wind c o n d i t i o n s .  for t h i s  purpose we need s tudy  t h e  da ta  f r o m  o n l y  one 
spacec ra f t  o f  each p a i r .  We w i l l  choose t o  use the  ISEE-2 / 7 / ,  and the  UKS magnetometer 
da ta  /8 /  and s o l a r  wind da ta  f rom the UKS th ree-d imens iona l  i on  ins t rument  / 9 / .  

Two mechanisms have been proposed f o r  these re tu rned  beams. 

The 
Energe t i c  ions  can have t h e i r  

E lec t rons  have t h e  g r e a t e s t  speeds and a r e  observed f i r s t  as one 
Ions, moving more s l o w l y  upstream, a r e  swept back somewhat by 

OBSERVATIONS 

We have reviewed a l l  da ta  ob ta ined  by ISEE-2 and t h e  UKS w h i l e  t h e y  were bo th  r e t u r n i n g  da ta  
i n  t h e  s o l a r  wind d u r i n g  October and November 1984. From these obse rva t i ons  we se lec ted  
f o r  f u r t h e r  s tudy  i n t e r v a l s  d u r i n g  which one o r  bo th  spacec ra f t  were observ ing  upstream 
waves and t h e  i n t e r p l a n e t a r y  magnetic f i e l d  was modera te ly  steady. 
na tu re  o f  the  obse rva t i ons  w i t h  four  examples. 

October 19, 1984. F igu re  1 shows the simultaneous measurements ob ta ined  by ISEE-2 ana UKS 
on day 293, 1984 f rom 0840 t o  0848 UT. The r i g h t - h a n d  two pane ls  show t h e  t ime s e r i e s  a t  
one-second r e s o l u t i o n .  The top  panel on t h e  l e f t  shows t h e  power spectrum summed over  a l l  
t h r e e  sensors.  The bo t tom panel shows t h e  l o c a t i o n  o f  t he  spacec ra f t  r e l a t i v e  t o  the  f o r e -  
shock boundary i n  the  8-V plane. 
d i s p l a c e d  from each o t h e r .  
A .  Johnstone (persona l  communication, 1986) t o  s c a l e  the  shock l o c a t i o n .  

Below we i l l u s t r a t e  the  

The B - V  p lanes  f o r  t he  two spacec ra f t  a r e  p a r a l l e l  b u t  
We have used t h e  s o l a r  wind da ta  s u p p l i e d  b y  M. Smith and 

85 



86 C. T. Russell et al. 

oc1 'OBER 19. 1984 

t 

% + - 7 Y d o ,  
Frequency (Hertz) o I 

BX 

BY 

82 

b 842 844 846 848 
Universal Time 

F ig .  1. The magnet ic f i e l d  power spec t ra ,  
t ime s e r i e s  and foreshock geometry on 
October 19, 1984 a t  bo th  ISEE-2 and UKS. 

I n  t h i s ' e x a m p l e  ISEE-2 i s  o u t s i d e  the  foreshock r e g i o n  and UKS i s  beh ind  the  foreshock 
boundary. 
band from ZOO-seconds t o  2-second pe r iods .  
are l e f t - h a n d  e l l i p t i c a l l y  p o l a r i z e d ,  w i t h  an e l l i p t i c i t y  o f  0 .73 .  

The power spectrum a t  UKS i s  enhanced over  t h a t '  a t  ISEE over  the  e n t i r e  s p e c t r a l  
The waves a t  t h e  peak o f  t he  spectrum a t  UKS 

F ig .  2. 
t ime s e r i e s  and foreshock geometry on 
October 30, 1984. 

The magnet ic  f i e l d  power spectrum, 
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F ig .  3. 
t ime  Ser ies and foreshock geometry on 
November 5, 1984 from 1225 t o  1233 UT. 

The magnet ic f i e l d  power spectrum, 

NOVEMBER 5. 1984 
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F i g .  4. 
t i m e  ser ies  and fo reshock  geometry on 
November 5, 1984 from 0925 t o  0941 UT. 

The magnet ic f i e l d  power spectrum, 

October 30, 1984. 

fo reshock  w i t h  the  bow shock. 
i d e n t i c a l ,  b u t  a t  low f requenc ies  the re  i s  an a lmost  complete absence of  upstream waves a t  
ISEE. It i s  p o s s i b l e  t h a t  t h i s  d i f f e rence  i s  due t o  t h e  presence of upstream e l e c t r o n s  a t  
I S E E  b u t  no upstream ions  w h i l e  a t  UKS bo th  a re  p resen t .  
0.08 Hz a r e  r igh t -handed a lmost  c i r c u l a r l y  p o l a r i z e d  waves propagat ing  a t  a smal l  ang le  t o  
t h e  magnet ic f i e l d .  The low frequency waves peaking a t  about 0.025 Hz a t  UKS a r e  a l s o  
r igh t -handed w i t h  an e l l i p t i c i t y  o f  0.34. 

F i g u r e  2 shows the  obse rva t i ons  on day 304, 1984 from 1352 t o  1400 UT. 
TStE and UKS 1 i e  c l o s e  t o  the  bow shock w i t h  I S E E  c l o s e  t o  t he  p o i n t  o f  tangency o f  t he  

Here t h e  power spec t ra  a t  f requenc ies  above 0 .1  Hz a r e  

The h i g h  frequency waves above 
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310 from 1225 t o  1233 UT November 5, 1984(A).  
t h i s  t ime I S E t  and UKS a r e  n e a r l y  c o i n c i d e n t  i n  the  B-V  p lane  d i s p l a y  b u t  i n  f a c t  a re  c l o s e  
t o  10 Ear th  r a d i i  apa r t .  The t ime  s e r i e s  i n  t h e  r i gh t -hand  two pane ls  and t h e  power 
spectra show t h a t  t h e  s i g n a l s  observed by  the  two spacec ra f t  are. q u i t e  s i m i l a r .  
l o c a t i o n s  the  s i g n a l s  a r e  r i gh t -hand  p o l a r i z e d  w i t h  an e l l i p t i c i t y  o f  about  0.6. 

F igu re  3 shows t h e  obse rva t i ons  on day 

A t  bo th  

I 

A t  

November 5, 1984(8) .  
0925 t o  0941 UT. Now t h e  two spacec ra f t  a r e  w e l l  separated i n  the  B - V  p lane.  The spec t ra  
are q u a l i t a t i v e l y  s i m i l a r  b u t  t hey  do d i f f e r  a t  t he  l owes t  f requenc ies .  
they have d i f f e r e n t  peak f requenc ies .  
p o l a r i z e d  w h i l e  the  waves a t  UKS a r e  r i gh t -hand  p o l a r i z e d .  

D I S C U S S I O N  AND CONCLUSIONS 

F igu re  4 shows t h e  obse rva t i ons  t h r e e  hours e a r l i e r  on day 310 f rom 

In p a r t i c u l a r ,  
Furthermore, t h e  waves a t  I S E E  a r e  l e f t - h a n d  

From ou r  examinat ion  o f  those cases i n  which one spacec ra f t  i s  i n  f r o n t  o f  and the  o t h e r  
spacecra f t  beh ind  t h e  fo reshock  as i l l u s t r a t e d  i n  F i g u r e  1, i t  i s  c l e a r  t h a t  t he  enhancement 
i n  the  power spectrum o f  upstream waves occurs across t h e  e n t i r e  f requency spectrum 
measured n o t  j u s t  a t  around 0.03 Hz. Th is  obse rva t i on  i s  impor tan t  t o  those s tudy ing  t h e  
source o f  Pc 3, 4 waves i n  t h e  dayside magnetosphere. The upstream wave source has a 
broad spectrum. The narrow bandedness o f  t he  t e r r e s t r i a l  emissions must have i t s  source i n  
the resonance o f  magnetospher ic f i e l d  l i n e s .  

Another obse rva t i on  o f  importance t o  those s tudy ing  Pc 3, 4 waves i s  t h a t  s p e c t r a l  peaks 
may occur a t  d i f f e r e n t  f requenc ies  a t  d i f f e r e n t  l o c a t i o n s  i n  the  foreshock reg ion .  
i f  one i s  conduct ing  a c o r r e l a t i v e  s tudy  between a ground observ ing  s i t e  and a space 
observa t ion  and one observes a d i f f e r e n t  f requency  wave a t  t h e  two l o c a t i o n s ,  t h i s  does n o t  
imply t h a t  t h e  ground-based s igna l  does n o t  have i t s  o r i g i n  i n  space. The s igna l  observed 
on the  ground m igh t  v e r y  w e l l  have propagated from some o t h e r  r e g i o n  o f  t h e  foreshock where 
t i l e  wave p r o p e r t i e s  were d i f f e r e n t .  
We no te  t h a t  t he  B-V coo rd ina te  system i s  a use fu l  one f o r  o r d e r i n g  the  foreshock data.  
However, i t s  success here  should n o t  be taken t o  imp ly  t h a t  t he  wave p r o p e r t i e s  depend o n l y  
on the  l o c a t i o n  of  t h e  spacecra f t  i n  t h i s  p lane.  I n  f a c t ,  when a l l  obse rva t i ons  o f  t he  
upstream reg ion  a re  examined i t  becomes c l e a r  t h a t  t h e  p r o p e r t i e s  depend on t h e  f u l l  t h r e e -  
dimensional geometry of  t he  i n t e r a c t i o n .  

Thus, 
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Abstract 

Measurements obtained in the solar wind by ISEE-2 and the United 

Kingdom Subsatellite UKS have been examined for observations of 

upstream waves. These data reveal that the waves in the foreshock 

region are enhanced at: a1.l frequencies from at least .003 Hz to 0.5 

Hz. The wave spectra generally have a spectral peak but this peak is 

usually broad and the peak frequency depends on the position of the 

spacecraft. 

similar at high frequencies and least similar at low frequencies. 

Generally the spectra seen at the two spacecraft are most 

The 

geometry of the interaction is displayed in the plane containing the 

magnetic field and the solar wind velocity and the spacecraft 

location. However, this coordinate system does not order all the 

observed wave properties. It does not clearly explain or order the 

handedness of the waves, or their direction of propagation. 

clear that the upstream region is inherently three-dimensional. The 

It is 

position dependent nature of the upstream waves indicates that 

comparisons between ground-based measurements and in-situ observations 

must be undertaken with some caution. 

Introduction 

Our present understanding of the ULF waves obsemed upstream of the 

earth's bow shock is built upon many individual observations under 

varying solar wind conditions. From these individual observations we 

have developed a model of how the properties of the waves depend on 

the location of the observer relative to the magnetic field line 



tangent t o  the bow shock o r  more specif ical ly  a boundary somewhat 

behind the tangent f i e l d  l i n e  known as the foreshock boundary. 

v a r i a b i l i t y  of the s o l a r  wind properties from Observation to 

The 

observation l i m i t s  our a b i l i t y  to  determine precisely the s p a t i a l  

dependence of the properties of the waves. However, the launch of the 

AMPTE mission i n  August 1984 with its two spacecraft ,  IRM and UKS, i n  

a highly e l l i p t i c  o r b i t  extending well into the so la r  wind, allows us 

t o  make observations of the upstream waves simultaneously with those 

obtained by the ISEE-1 and -2  spacecraft whose o rb i t s  a lso extend 

upstream of the shock. 

1 8 . 7  ear th  r a d i i  ( R e ) .  

The apogee o f  the UKS and IRM spacecraft is a t  

The apogee o f  the ISEE-1 and -2 spacecraft  is  

23 Re. 

The two spacecraft  of each of these pairs are  separated from each other 

by only a few hundred kilometers i n  the near apogee region. 

purpose of studying the s p a t i a l  variations o f  the properties of the 

waves we need t o  examine only the data from one spacecraft  of  each 

F o r  the 

p a i r .  We w i l l  choose t o  use the ISEE-2 data and the UKS data ,  using 

the magnetic f i e l d  data from the ISEE-2 fluxgate magnetometer 

(Russell ,  1978)  and from the UKS fluxgate magnetometer (Southwood e t  

a l . ,  1985) and the so la r  wind data from the UKS three-dimensional ion 

experiment (Coates e t  a l . ,  1985).  We note tha t  the UKS fluxgate 

magnetometer w a s  or iginal ly  the spare uni t  fo r  the ISEE-2 spacecraft  

and hence the two magnetometers are  ident ical  instruments. Any 

differences observed i n  the spectral  properties o f  the waves observed 

with these instruments a r i s e  from the waves themselves. 
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Upstream waves have been studied for almost two decades beginning with 

Greenstadt et al. (1968) and Fairfield (1969). They have been found 

in front of the bow shocks of Mercury (Fairfield and Behannon, 

1976), Venus and Jupiter (Hoppe and Russell, 1982) and 

interplanetary shocks (Russell et al., 1983). These upstream waves 

are clearly generated by MHD instabilities in the back-streaming 

particles that accompany these waves. 

arise from either of two mechanisms. First, some fraction of the 

incoming ions may be reflected by the bow shock (Sonnerup, 1969; 

Paschmann et al., 1980; Schwartz et al., 1983). Second, ions heated 

by their passage through the bow shock may escape back upstream if 

their thermal energy is great enough (Tidman and Krall, 1971; 

Edmiston et al., 1982). It is probable that both these mechanisms are 

operative with varying relative strengths upstream of the bow shock, 

probably depending in part on the angle of the interplanetary 

magnetic field to the shock normal at the source of the upstreaming 

particles. Thus the properties of the beams should depend on location 

within the foreshock because of variations in the source of the beams. 

In addition, the beams should evolve with distance from the shock due 

to the presence of the MHD instabilities that generate the waves. As 

we will see below the properties of the waves are also quite 

spatially dependent. 

These energetic particles can 

Finally, we note that there is much evidence that the waves generated 

in the upstream region are convected through the bow shock and 

magnetosheath and couple into the magnetosphere exciting dayside Pc 3 -  

4 magnetic pulsations. For a recent review of this topic the 
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interested reader is referred to the paper by Odera (1986). 

Observations 

We have examined all the available UKS and'ISEE-2 magnetic records in 

October and November 1984 while both spacecraft were returning 

measurements in the solar wind. From these data we have selected 

intemals of from 8 to 16 minutes long during which the interplanetary 

magnetic field was fairly steady i n  direction. 

intervals both ISEE and UKS were in the upstream wave region. 

picked two periods with only one satellite in the upstream wave reigon 

to further illustrate the nature oE the upstream waves. 

During most the these 

We 

October 19, 1984. Figure 1 shows the simultaneous measurements 

obtained by ISEE-2 and UKS on 10/19/84 (day 293)  from 0840 to 0848 UT. 

On the right-hand side are the two time series at one-second . 

resolution in solar ecliptic coordinates. 

On the left-hand side in the top panel is the power spectrum of the 

waves summed over the three sensors. 

the geometry of the obsemations. 

containing the solar wind velocity, the interplanetary magnetic field 

direction and the spacecraft. The B-V planes for the two spacecraft 

differ but have been superimposed here under the assumption that the 

nature of the waves observed depends only on the relative location of 

the spacecraft in the B-V plane. The foreshock location has been 

sketched in under the assumption that the upstream beams have an 

The bottom left-hand panel shows 

The plane shown is  the B-V plane 
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energy of 1 . 2  times that of the incoming solar wind protons 

(Greenstadt and Baum, 1986). In order to scale the size of the bow 

shock we have used the solar wind parameters measured by the UKS three- 

dimensional plasma analyzer. These data, together with the location 

of the spacecraft and magnetic field direction in solar ecliptic 

coordinates are given in Table 1. 

will resemble that of Figure 1. 

The format of the following figures 

In this example ISEE-2 is outside the foreshock region and UKS is 

within it. 

that at ISEE over the entire spectral band from 200 second period to 

2 second period. The waves at the peak of the spectrum seen at UKS 

are left-handed polarized, propagating at 23O to the magnetic field 

according to the spectral analysis.technique of Means (1972) :  The 

waves are elliptically polarized with an ellipticity of 73%. 

percent polarization is moderate, 58%.. These parameters are 

summarized in Table 2.  

We see that the power spectrum at UKS is enhanced over 

The 

October 23,  1984. Figure 2 shows the simultaneous measurements 

obtained by ISEE-2 and UKS on 10/23/83 (day 297) from 0845 to 0853 UT 

in the same format as Figure 1. 

magnetic field has rotated so that it is nearly orthogonal to the 

usual spiral angle. In this situation UKS is outside the foreshock 

and ISEE-2 is inside the foreshock. We note that the solar wind 

density of 7 cme3 used in Table 2 and in constructing Figure 2 was 

assumed so that both spacecraft were in front of the bow shock in 

Figure 2 .  

In this example the interplanetary 

The ion instrument was not in the proper mode to return an 



accurate measure of the solar wind density at this time. 

example ISEE observes the upstream waves and UKS has a much reduced 

In this 

. 
spectrum. Again we see an enhancement in the upstream waves region 

over the entire frequency spectrum. The waves at the peak of the 

spectral enhancement are right-handed here and not left-handed as in 

the previous example. 

the magnetic field, 4 4 * ,  and are only weakly polarized, 36%. There is 

a slight enhancement of the waves at high frequencies above 0.1 Hz. 

The waves are propagating at a large angle to 

We believe this is due tqnatural emissions possibly associated with 

electrons returning along field lines which connect to the shock but 

upstream of the foreshock boundary (Feldman et al., 1983). 

October 30, 1984. 

1984, ISEE and UKS both lie close to the bow shock but ISEE lies 

In this example, from 1352 to 1400 UT on day 304, 

close to the point of tangency of the foreshock boundary with the 

bow shock. Figure 3 shows that at frequencies above 0.1 Hz both 

spectra are identical. Yet at low freqencies there is an almost 

complete absence of waves at ISEE. 

as discussed in the previous example. 

This phenomenon may be the same 

Upstream electrons might be 

generating waves at both ISEE and UKS but either the ions present at 

ISEE, and upstream of ISEE, had no t  had enough time to generate 

measureable waves or the bow shock was somewhat smaller than 

. 

sketched and only electrons and not ions were present at ISEE. The 

waves at high frequencies, above .08 Hz are almost identical in all 

their properties. They are right-handed, almost circularly 

polarized waves, c - .9l,.propagating at a small’ angle to the 
magnetic field, 18-20°, and highly polarized, 80-98%, as shown in 
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Table 2 .  The low frequency waves tha t  peak a t  about .025 Hz a t  UKS 

are  a lso right-hand polarized with an e l l i p t i c i t y  of 0.34, are  

propagating a t  large angle t o  the magnetic f i e l d ,  65O, and are  

moderately well polarized, 74%. 

November 5A, 1984. As indicated i n  Table 1, from 1225 t o  1233 on day 

310 ISEE-1 and UKS lay about 12  Re apart .  

Figure 4 ,  the two spacecraft lay very close as projected i n  the B-V 

plane. Examination of the wave forms on the right-hand s ide of Figure 

4 show the time se r i e s  t o  be quite d i f fe ren t .  

spectral  densit ies a re  s imilar .  Their spectra almost l i e  on top of 

one another with UKS, which is  s l igh t ly  c loser  to  the foreshock-bow 

shock tangency, being s l igh t ly  below ISEE a t  the lowest frequencies. 

Nevertheless, as shown i n  

However, t he i r  power 

As shown i n  Table 2 the waves a t  the peak of the spectrum are  r i g h t -  

handed e l l i p i c a l l y  polarized with e l l i p t i c i t i e s  of about 0 . 6 ,  

propagating a t  moderate angles to  the f i e l d ,  14O and 37O and have 

weak percent polarizations,  2 1  and 5 7 % .  A t  frequencies near 0 . 1  Hz the 

waves have very s imilar  amplitudes a t  the two spacecraft but are  

decidedly different  i n  polarization. A t  AMPTE the waves are  l e f t  

handed polarized with an e l l i p t i c i t y  of  -0 .35  but a t  ISEE they are  

right-hand polarized with a polarization of 0.89. A t  both locations 

the waves are  propagating nearly along the f i e l d .  

November 5B, 1984. Three hours e a r l i e r  than the above event, the 

magnetic f i e l d  or ientat ion w a s  suf f ic ien t ly  d i f fe ren t  t ha t  ISEE and UKS 

became well separated i n  the foreshock as shown i n  Figure 5 .  

spectra a t  the two locations are  d i f fe ren t  but only a t  the lowest 

Now the 
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frequencies. Above .03 Hz the spectra are identical. The lower 

spectral densities are observed at ISEE which is further from the 

shock. 

given in Table 2 . '  The waves have a large angle of propagation to the 

field 36O and 5 9 O ,  and are weakly polarized. The waves differ 

markedly in their polarizations. 

while at UKS they are right-hand polarized. This is true whether the 

entire bandwidths of the two peaks are analyzed or the exact same bands 

of frequencies are analyzed at the two spacecraft. 

near 0.1 Hz, the waves become more circularly polarized, propagate 

more nearly along the field, are more highly polarized and are more 

The properties of the waves at the peaks of the two spectra are 

At ISEE they are left-hand polarized 

At higher frequencies 

similar in their properties than near the peak of the wave spectrum 

October 6, 1984. 

from 1228 to 1244 as shown in Figure 6. 

closer to the bow shock. 

A similar geometrical situation is found on day 280 

However, here ISEE-2 is 

Again the spectra are nearly identical at 

high frequencies. The waves at the spectral peaks near .06 Hz are 

propagating at a small angle to the magnetic field, 9O at UKS and 19O 

at ISEE and are only weakly polarized at UKS, 32%, but more strongly 

polarized at ISEE, 76%.  The waves are left-hand polarized at both 

locations with the ISEE waves being the more circularly polarized. 

October 14, 1984. The major difference between this event from 0829- 

0840 on day 288 and the previous one is that ISEE-2 is further from 

the bow shock. 

frequencies. 

The spectra now coincide only at the very highest 

The waves at both locations are propagating at a large 

angle to the magnetic field, 5 3 O  at UKS and 80° at ISEE. The waves 
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are right-handed at UKS with an ellipticity of 0 . 4 5  and are nearly 

linearly polarized at ISEE with an ellipticity of -0.16. 

locations the waves have moderate percent populations, 40% at UKS and 

At both 

68% at ISEE. 

locations of the two spacecraft are very close, only 0 . 8  Re apart. 

We note that in this example the B-V planes through the 

October 2 9 ,  1984. This example from 1213 to 1 2 2 9  UT on day 303, as 

shown in Figure 8 ,  is not unlike the previous example. The principal 

difference is that the B-V planes through the two spacecraft here are 

8 . 4  Re apart. 

the field direction than at ISEE, 1S0 at UKS but 72O at ISEE. The 

waves at UKS are almost right-hand circularly polarized with an 

eccentricity of 0 . 7 7  and at ISEE are almost linearly polarized with 

an eccentricity of -.12. The UKS waves.have a low, 20% percent 

polarization while the waves at ISEE have a moderate percent 

polarization of 5 8 % .  

The waves at UKS are propagating much more closely to 

October 2 7 ,  1984. On day 301 from 0722 to 0738 UT ISEE and l k S  were 

again similarly situated but spread somewhat farther apart in the B -  

V plane as illustrated in Figure 9 .  

planes, however, was half that of Figure 8 .  Here the spectra are more 

The separation of the two B-V 

closely aligned especially at the higher frequencies. At both 

locations we observe waves propagating nearly along the magnetic 

field with right-hand polarization. 

November 2 6 ,  1 9 8 4 .  In our last example from 0 7 0 4  to 0712 on day 331 

shown in Figure 10, ISEE was nearly radially upstream of UKS. Here the B- 
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V planes are almost coincident. The waves seen at UKS downstream from 

ISEE are much larger than those seen at ISEE. One possible 

explanation of this is that UKS is right at the bow shock and that the 

oscillations seen at UKS are in fact the pulsations associated with 

the quasi-parallel shock. The waves seen at ISEE are highly polarized 

with an 88% polarfzation, are left-handed with an ellipticity of - 
0.67 and are propagating at an angle of 3 1 O  to the magnetic field. 

The waves seen at UKS are also moderately polarized with a 68% 

polarization but are right-hand polarized with an ellipticity of 

0.64. 

magnetic field. 

The UKS waves are propagating at an angle of only 1 2 O  to the 

Discuss ion 

The availability of simultaneous observations in two quite separate 

regions of the foreshock gives us very useful insight into the nature 

of the waves upstream of the bow shock. 

our examination of those cases in which one spacecraft is beyond the 

foreshock boundary such as on October 19 and 23, that the enhancement 

in the power spectrum takes place at all frequencies, not just in the 

spectral band centered at around 0.03 Hz. This fact is important for 

those studying Pc3, 4 waves in the dayside magnetosphere. 

not to be appreciated that the upstream wave spectrum is broad. 

these waves are convected to the magnetopause and couple to the 

magnetosphere they can excite a wide range of frequencies in the 

magnetosphere. The narrow band emissions seen there must be a 

magnetospheric effect and not a reflection of a narrow band source. 

First, it is evident from 

It seems 

If 
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There are certainly spectral peaks in the upstream waves. Almost 

every spectrum had a distinguishable spectral enhancement or peak. 

However, the peaks seen simultaneously at different spacecraft were not 

necessarily at the same frequency. 

5 )  and October 6 (Figure 6 )  clearly illustrate this difference. This 

position-dependent spectrum may explain why different ground observing 

sites have different responses to the interplanetary magnetic field. 

The variability of the dependence of the period of waves seen at 

various ground stations on the strength of the interplanetary 

magnetic field and the apparent differences between the dependence 

seen on the ground and at arbitrary locations in the foreshock led 

Green et al. (1983) to call into question whether upstream waves are a 

major source of magnetospheric Pc 3 - 4  pulsations. However, before 

these conclusions can be drawn one must compare ground data with the 

waves in space that will be convected to the magnetopause. 

The events of November 5 (Figure 

The B - V  coordinate system used herein is a convenient system in which 

to visualize the spacecraft positions and it provides much order to 

the data. However, it does not order all the wave properties. We 

have examined the handedness of the waves, their angle of propagation 

to the magnetic field and their percent polarization as a function of 

position in the B - V  plane and have found no ordering. 

that waves properties are determined by the three-dimensional nature of 

the interaction. 

properly exhibit the angle between the IMF and the shock normal 

because the shock normal is not necessarily a vector in the B-V 

Thus, we feel 

For example the B-V plane diagrams do not 
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plane. 

We have also looked for correlations between parameters. 

Specifically we examined the correlation between eccentricity and 

percent polarization and between angle of propagation and percent 

polarization and found no correlation. We did, however, find one 

correlation between eccentricity and the fractional amplitude of 

the waves, the square root of the power in the peak of the spectrum 

normalized by the background magnetic field strength. 

correlation is shown in Figure 11. 

This 

When the fractional amplitude is 

0.3 or below the waves are left-handed in the spacecraft frame and 

when they are above 0.3 in amplitude the waves are right-handed in the 

spacecraft frame. 

We emphasize that these left and right handed waves are not two 

separate populations occuring under different solar wind conditions 

but that both polarizations occur simultaneously in different regions 

of the foreshock. 

polarizations are the waves illustrated in Figures 5 ,  7, 8 ,  and 10. 

This obsentation is consistent with the analysis of Hoppe and Russell 

(1983) who showed that the narrow band waves were generally right- 

handed. We understand these differences in terrns of both resonant 

and non-resonant instabilities as discussed by Sentman et al. (1981). 

Examples of this simultaneous occurrences of the two 

Conclusions 

We have examined a number of examples of simultaneous magnetic field 
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measurements in the upstream region ahead of the bow shock using the 

identical magnetometers flown on ISEE-2 and UKS. On field lines 

behind the ion foreshock boundary, waves appear over the entire 

frequency range from .003 to .5 hz. Their power spectra are generally 

peaked. However, the peak frequency is position dependent. Generally 

spectra are most similar at the two spacecraft at the higher 

frequencies. The B - V  plane is useful for ordering the observations to 

first order but this coordinate system does not order all the wave 

properties such as percent polarization, handedness, or direction of 

propagation. Thus the upstream wave region is inherently three- 

dimensional. 

upstream waves indicates that caution must be exercised when comparing 

simultaneous measurements on the ground and in space, or even 

comparing statistical properties, for only a. fraction of the waves in. 

the upstream region convect against the magnetopause. 

The positional dependence of the spectral peak of the 
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Figure Captions 

Figure 1. The magnetic power spectra, time series and foreshock 

geometry.on October 19, 1984 (day 293). The upper right-handed panel 

shows the magnetic field at one second resolution in solar ecliptic 

coordinates obtained by the UKS satellite. 

shows the corresponding measurements obtained by the ISEE-2 spacecraft. 

The upper left panel shows the power spectrum obtained through a Fast 

The lower right-hand panel 

Fourier Transform of the displayed time series. 

three sensors has been summed. 

from ISEE-2. The lower right-hand panel shows the location of the 

spacecraft in the B-V plane, the plane containing the magnetic field, 

the solar wind velocity vector and the spacecraft. 

The power from all 

The heavy line corresponds to the data 

The B - V  

- planes of the two spacecraft are in fact different but have been 

superimposed for easy comparison'of the relative position of the 

spacecraft. The information on spacecraft position, the vector 

magnetic field, and the solar wind density and velocity used to 

construct this panel is given in Table 1. 

Figure 2 .  The magnetic power spectra, time series and foreshock 

geometry on October 23, 1984 (day 297). 

Figure 3. The magnetic power spectra, time series and foreshock 

geometry on October 3 0 ,  1984 (day 304). 



Figure 4 .  The magnetic power spectra,  t i m e  ser ies  and foreshock 

geometry on November 5 ,  1984 (day 310) from 1225 t o  1233 UT. The B-V 

planes through ISEE and UKS are separated by 8.3 RE a t  th i s  t i m e .  

Figure 5 .  The magnetic power spectra, t i m e  series and foreshock 

geometry on November 5 ,  1984 (day 310) from 0925 t o  0941 UT. The B-V 

planes through ISEE and UKS are separated by 5 . 1  RE a t  th i s  t i m e .  

Figure 6 .  The magnetic power spectra, time ser ies  and foreshock 

geometry on October 6 ,  1984 (day 280). 

and UKS are separated by 5 . 8  RE a t  t h i s  t i m e .  

The B - V  planes through ISEE 

Figure 7 .  The magnetic power spectra,  t i m e  series and foreshock 

geometry on October 14, 1984 (day 288). 

and UKS are separated by 0 . 8  RE a t  th i s  t i m e .  

The B-V planes through ISEE 

Figure 8 .  The magnetic power spectra, t i m e  series and foreshock 

geometry on October 29, 1984 (day 301).  

and UKS are separated by 8 .4  RE a t  t h i s  t i m e .  

The B-V planes through ISEE 

Figure 9 .  The magnetic power spectra,  t i m e  series and foreshock 

geometry on October 27, 1984 (day 301). 

and UKS are separated by 4.3 RE a t  t h i s  t i m e .  

The B-V planes through ISEE 

Figure 1 0 .  The magnetic power spectra,  t i m e  series and foreshock 

geometry on November 26, 1984 (day 331). 

and UKS are separated by 0.8 RE a t  t h i s  t i m e .  

The B-V planes through ISEE 



Figure 11. The ellipticity of the waves near the peak of the power 

spectrum as a function of the fractional amplitude of the waves. 

ellipticity is determined using the Means (1972) technique and is 

defined as being the ratio of the minor to major axis of the 

perturbation ellipse. The orientation of the normal to the 

perturbation ellipse is determined from the quadrature power in the 

Means technique. 

total power under the spectral peak divided by the background field 

strength. 

in Table 2 .  

The 

The fractional amplitude is the square root of the 

The bandwidth used in this analysis is given for each event 
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Table 1 

Parameters used i n  Calculating Foreshock Geometry 

GSE Location (RE) 

ISEE Event 

October 19 (21.3, 4.6, -1.8) 

October 23 (13.7,-2.2,-5.4) 

October 30 (14.2,-3.8,-5.2) 

November 5A (20.0, 1 . 0 ,  1.3) 

November 5B (21.0, 0.2, 0.5) 

- 

October 6 (11.1, 0.2,-5.3) 

October 14 (20.5, 4.8,-3.2) 

October 29 (17.7, 4.2, 2.2) 

October 27 (14.0, 5.3, 3.3) 

UKS - 
(11.1, -7.4, 0.4) 

(15.9,-8..0, 0.2) 

(12.5,-9.9, 0.2) 

(15.8,-10.2,-0.2) 

(15.0,-10.8,-0.1) 

(14.0,-4.7, 0.5) 

(18.3, -4,2, 0.1) 

(16.4,-4.8,-0.3) 

(17.2,-7.6,-0.1) 

B(nT) N ( ~ r n ' ~ )  V(kms") 

(-10.4,9.3,-1.0) 7.1 540 

(-4.9,-0.9, 2.4) 7.0* 650 

(3.9,-2.5, 1.8) 6.0 360 

(4.3, 0.1, 1.7) 4.0 550 

(4.1,-0.2,-0.1) 3.9 565 

(8.5,-5.7, 0.0) 3.8 565 

(4.2,-1.3, 0.6) 1.5 550 

(6.0,-0.8, 0.9) 6.2 4 3 5  

(4.9,-1.5,-0.1) 4.0 440 

November 26 (17.5,-10.4,-3.2) (12.2,-10.0,-0.6) (2.4, 0.1, 0.2) 4.2 3 70 

"Assumed value 
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Table 2 

Wave Properties a t  Spectral Peaks 

Event Spacecraft 

October 19 

October 23 

October 30 

November 5A 

November 5 B  

October 6 

October 14 

October 29 

October 27 

November 26 

UKS 

ISEE 

U K S  

UKS+ 

ISEE+ 

UKS 

ISEE 

UKS 

UKS+ 

ISEE 

UKS 

ISEE 

UKS 

ISEE 

UKS 

ISEE 

UKS 

ISEE 

UKS 

ISEE 

+ Not used in  Figure 11 

Frequency Weighted Propagation Eccen- 
Band (Hz) Frequency (Hz) Angle 

.018- .082 

.019 - .039 

.015-. 034 

.08 - .27 

.OS- .27 

.01- .05 

. 0 2 - .  05 

.02-..03 

.03 - .05 

.03 - -05 

. 04 - .  07 

.OS - .07 

.Ol- .05 

.01- .05 

.01- .04 

.01- .04 

.02-  .04 

.02 - .05 

.02 - -05 

.01- .03 

.051 

.030 

.025 

.12 

.16 

.033 

.038 

.025 

.035 

.036 

.054 

.062 

.02a 

.029 

.028 

.02a 

.032 

.036 

.030 

. o i a  

2 3 O  

440 

6 5 O  

200 

17O 

370 

14O 

3 6 O  

41O 

590 

90 

190 

530 

80° 

15 O 

72O 

13O 

100 

120 

31O 

tr i c  i t y  

- .73 
.59 

.34 

.91 

.94 

.67 

.61 

.57 

. 6 a  

- .34 
- -47 
- .75 
.45 

- ,16 

.77 

- .12 
.58 

.63 

.64 

- .67 

Percent 
Polarization 

58 

36 

74 

a0 

98 

21 

57 

45 

36 

50 

32  

76 

40 

68 

20 

58 

6 1  

31 

88 
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Abstract.  

UKS and IRM s p a c e c r a f t ,  pairs c r o s s e d  t h e  d a y s i d e  

m%netopause a t  n e a r l y  t h e  same u n i v e r s a l  t i m e  and m w n e t i c  

l o c a l  t i m e  b u t  a t  much d i f f e r e n t  l a t i t u d e s .  Th i s  

f o r t u i t o u s  o c c u r r e n c e  a1 lows t h e  magnetopause and f l u x  

t r a n s f e r  e v e n t s  (FTE's j  t o  be  s t u d i e d  a t  two widely 

, + p 4 4 % i t ~ +  sites at the same t i m e .  The magnetopause c r o s s i n g  

locations and i n f e r r e d  normals  i n d i c a t e  t h a t  no s i n g l e  

s imple  symmetric magnetopause s u r f a c e  can d e s c r i b e  t h e  

boundary a t  t h i s  t i m e .  Flux t r a n s f e r  e v e n t s  (FTE's) are 

observed  a t  b o t h  l o c a t i o n s ,  those a t  UKS hav ing  s t a n d a r d  

normal component s i g n a t u r e s ,  w h i l e  t h o s e  a t  ISEE have  

On 19 September 1984 t h e  ISEE-1 and 2 and AMPTE- 

r e v e r s e  s i g n a t u r e s .  The FTE's a t  UKS, c l o s e r  t o  t h e  

e q u a t o r ,  appear t o  have less h e l i c i t y ,  o r  " t w i s t e d n e s s "  than 

those a t  ISEE f a r  t o  %ha sou%h.  FTE d i s t u r b a n c e s  exhibit 

l i t t l e  coherence  between s i tes .  While w i t h i n  t h e  

magnetosphere,  t h e  spacecraft o b s e r v e  a c o h e r e n t  f i e l d  

r a r e f a c t i o n  coupled  w i t h  a' t i l t j  w e  s p e c u l a t e  t h a t  t h e  

s i g n a t u r e  is a s s o c i a t e d  wi th  d a y s i d e  magnetopause 

r e c o n n e c t i  on. 
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Introduction 

Our u n d e r s t a n d i n g  of t h e  magnetopause h a s  i n c r e a s e d  

s u b s t a n t i a l l y  i n  r e c e n t  y e a r s ,  n o t  least because  of t h e  ISEE 

spacecraft m i s s i o n  and associated a c t i v i t i e s .  ISEE 1 and 2 

measurements were impor t an t  i n  open ing  u p  t h e  i n v e s t i g a t i o n  

of t h e  s m a l l  sc5le ( <  1 RE, E a r t h  r a d i u s )  s t r u c t u r e  of 

phenomena i n  t h e  boundary v i c i n i t y  and i n  particular i n  

d i s t i n g u i s h i n g  space from t i m e  v a r i a t i o n .  The ISEE 

s e p a r a t i o n s  rarely exceeded a b o u t  1 RE and t h e r e  have  been 

f e w  o p p o r t u n i t i e s  t o  examine magnetopause phenomena on 

l o n g e r  spatial  s c a l e s .  O p p o r t u n i t i e s  arose f o r  c o r r e l a t i v e  

s t u d i e s  on larger scale l e n g t h s  i n  t h e  f a l l  of 1984 when t h e  

AMPTE IRM and UKS s p a c e c r a f t  j o i n e d  ISEE 1 and 2 i n  o r b i t s  

w i t h  s i m i l a r  apogee d i s t a n c e s  and local t i m e  b u t  d i f f e r e n t  

o r b i t a l  i n c l i n a t i o n .  

On 19 September 1984 t h e  ISEE-1 and 2 and AMPTE--UKS and IRM 

s p a c e c r a f t  pairs crossed t h e  d a y s i d e  magnetopause 3t n e a r l y  

t h e  same u n i v e r s a l  t i m e  (1600 UTIand magnet ic  l o c a l  t i m e  

(1100 LT). Th i s  i n t e r v a l  p r o v i d e s  an o p p o r t u n i t y  t o  compare 

t h e  magnetopause and f l u x  t r a n s f e r  e v e n t s  (FTE’s)  a t  t h e  t w o  

s i t es .  In t h i s  paper w e  sha l l  compare t h e  magnetopause 

l o c a t i o n  and o r i e n t a t i o n ,  t h e  boundary s t r u c t u r e  and FTE 

o c c u r r e n c e  and s t r u c t u r e  a t  t h e  two s i t e s .  



Magnetopause Location and Orientation 

A t  t h e  t i m e  c o n s i d e r e d  h e r e ,  AMPTE and ISEE spacecraft w e r e  

outbound from perigee and i n  t h e  d a y s i d e  magnetosphere.  

F i g u r e  1 shows t h e  t r a j e c t o r i e s  of t h e  spacecraft i n  GSM 

c o o r d i n a t e s .  T ick  marks on t h e  t r a j e c t o r i e s  o c c u r  e v e r y  

f i f t e e n  minu tes .  A t  1600 t h e  spacecraft were separated by 

o n l y  1 R e  i n  Y GSM, b u t  by 6 R e  i n  Z GSM. ISEE and AMPTE 

cou ld  t h u s  sample,  respectively, t h e  o f f - e q u a t o r i a l  and 

n e a r - e q u a t o r i a l  m a n e t o p a u s e  i n  t h e  n o r t h e r n  and s o u t h e r n  

hemispheres  a t  r o u g h l y  t h e  s a m e  magnet ic  l o c a l  t i m e .  A l s o  

shown i n  F i g u r e  1 are f i l l e d  c i rc les  showing t h e  i n i t i a i  

magnetopause l o c a t i o n s  s e e n  by AMPTE and ISEE. 

The dashed l i n e  shows t h e  nominal p o s i t i o n  of t h e  

magnetopause as given by F a i r f i e l d  (1971). The magnetopause 

p o s i t i o n  r e c o r d e d  a t  both l o c a t i o n s  is w e l l  i n s i d e  i ts  

ave rage  p o s i t i o n  

F i g u r e  2 gives an  overview of UKS and ISEE-1 and 2 4-second 

r e s o l u t i o n  magnetic f i e l d  d a t a  between 1545 and 1645 UT.  We 

have  examined t h e  f i v e  second r e s o l u t i o n  IRM d a t a  f o r  t h i s  

p e r i o d ;  TJKS and IRM are so c l o s e  t h a t  t h e  r e c o r d s  are 

e f f e c t i v e l y  i d e n t i c a l  t h r o u g h o u t .  We s h a l l  only u s e  UKS 

data h e r e .  The f i e l d  components are displayed i n  a boundary 

normal c o o r d i n a t e  system i n  which t h e  L component is a l i g n e d  

w i t h  %he mean magnetospher ic  f i e l d  o r i e n t a t i o n  a t  each  s i t e .  

I n  t h e  GSM sys tem,  the L c o o r d i n a t e  u n i t  v e c t o r s  are ( 0 . 5 6 8 ,  

-0 .003 ,  ( 3 . 8 2 3 ) ;  ( - 0 . 4 8 5 ,  0 . 3 0 7 ,  0 . 8 1 9 )  a t  ISEE and AMPTE 
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the mean f i e l d  is  i n  a GSM ( X , Z i  m e r i d i a n  p l a n e  t i l t i n g  a t  

a b o u t  40' t o  t h e  Z axis away from E a r t h ;  at t h e  AMPTE 

s p a c e c r a f t ,  t h e  f i e l d  t i l t s  i n  t h e  ( X , Z j  p l a n e  a t  3 similar 

a n g l e ,  b u t  t owards  t h e  Ea r th  and w i t h  a s m a l l  Y component. 

The normal d i r e c t i o n  w a s  f ixed u s i n g  t h e  t a n g e n t i a l  

d i s c o n t i n u i t y  assumpt ion ,  i .  e., it is along t h e  no rma l i zed  

c ross -product ,  of t h e  mean magne tosphe r i c  and magnetosheath 

f i e l d s .  The u n i t  v e c t o r  magnetopause normal f o r  UKS is 

(0.883.  -0 .015 ,  0.4691 i n  G 5 M  w h i l e  f o r  ISEE-1/2 it is 

( 0 . 8 0 8 ,  -0. 191, - 0 . 5 5 8 ) .  

F i g u r e  2 shows t h a t  p r io r  t o  t h e  f irst  UKS magnetopause 

e n c o u n t e r  a t  1559 IJT, t h e  magne t i c  f i e l d  b e h a v i o r  a t  t h e  

ISEE and AMPTE spacecraft is  similar; a d e p r e s s i o n  i n  the 

t o t a l  f i e l d  is fo l lowed  by a rise i n  s t r e n g t h  b e f o r e  rJKS 

meets t h e  boundary.  The d e p r e s s i o n  is accompanied by s 

n e g a t i v e  p e r t u r b s t i o n  i n  Bn a% IJKS, above %he e q u a t o r ,  and a 

l a r g e r  p o s i t i v e  one a t  ISEE, w e l l  below t h e  e q u a t o r .  There 

are 3 l S O  srnaller e x c u r s i o n s  i n  t h e  Bm component a t  e a c h  

s i t e ,  which are a l s o  i n  a n t i p h a s e .  

Ev iden t  c o h e r e n t  behav io r  between t h e  s p a c e c r a f t  ceases orice 

UKS crosses t h e  magnetopause a t  1559. T w o  more magnetopause 

e n c o u n t e r s  f o l l o w  3% 1602 and 1611. FTE s i g n a t u r e s  are 

observed  a t  -1600, 1604, 1607, and p o s s i b l y  a t  1614 and 1630; 

t h e  CrKS t r a c k i n g  p e r i o d  ended s h o r t l y  a f t e r w a r d s .  ISEE-2 

c r o s s e s  t h e  magnetopause a t  1625, 1626, and 1632,  and very 



clear FTE si&!riatures i n  Bn can  b e  s e e n  a t  1616, 1622, 1627,  

1636, 1638 and 1641. There may a l s o  be FTE’s a t  1620, 1625 

and 1630. Some 1200 km behind  ISEE-2 a l o n g  t h e  o r b i t ,  ISEE- 

1 does  n o t  c r o s s  t h e  magnetopause u n t i l  a f t e r  1634, a l t h o u g h  

all t h e  ISEE-2 FTE’s show up i n  t h e  ISEE-1 d a t a  as w e l l .  

MaeneIzapause ShaEsle 

Commonly t h e  magnetopause is d e s c r i b e d  as a c o n i c  of  

r o t a t i o n  abou t  t h e  Sun-Earth l i n e .  F i g u r e  3 shows t h e  rJKS 

and ISEE t r a j e c t o r i e s  r o t a t e d  i n t o  t h e  p l a n e  c o n t a i n i n g  t h e  

s p a c e c r a f t  p o s i t i o n  and t h e  Sun-Earth l i n e .  A l so  shown are 

the p r o j e c t i o n s  of  t h e  two magnetopause normals  i n t o  t h i s  

p l a n e .  From t h e  p o s i t i o n  of  t h e  magnetopause and i ts  normal 

a t  t h a t  p o i n t  it is p o s s i b l e  t o  d e t e r m i n e  t h e  c o n i c  s e c t i o n  

( w i t h  E a r t h  a t  one f o c u s )  t h a t  f i t s  t h a t  p o s i t i o n  and 

normal.  These are shown f o r  UKS and ISEE as t h e  d o t t e d  and 

s o l i d  curves ,  r e s p e c t i v e l y .  

I t  can c l ea r ly  be s e e n  t h a t  t h e  magnetopause is d i s t o r t e d  i n  

shape .  A t  1600, when [JKS f i r s t  e n c o u n t e r s  t h e  magnetopause,  

ISEE-1 and 2 are s t i l l  w e l l  i n s i d e  t h e  boundary,  whereas t h e  

UKS-derived magnetopause places ISEE o u t s i d e  t h e  

magnetopause a t  t h i s  t i m e .  L ikewise  when ISEE cro:;ses the 

miNnctopause n e a r  1630, rJKS i s  o u t s i d e  t h e  boundary, w h i l e  

t h e  ISEE-derived magnetopause places lTKS i n s i d e  the 

boundary. Moreover, up t o  1630, l i t t l e  FTE a c % i v i t y  is s e e n  

a t  UKS s u g g e s t i n g  t h a t  t h e  spacecraft remains  w e l l  o u t s i d e  

t h e  boundary. No symmetr ic  c o n i c  of a s i n g l e  e c c e n t r i c i t y  

6 
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can accoun t  for t h e  magnetopause p o s i t i o n  and s h a p e  a t  t h i s  

t i m e .  

T h e  f i e l d  p e r t u r b a t i o n s  i n  t h e  normal d i r e c t i o n  p r i o r  t o  

1559 s e e n  a t  bo th  s p a c e c r a f t  s i tes cou ld  r e f l e c t  a change i n  

magnetopause shape .  The d i r e c t i o n  change a t  UKS is  n o t  

g r e a t  b u t  a t  ISEE, f a r t h e r  from t h e  e q u a t o r ,  t h e  d i r e c t i o n  

changes by a b o u t  15' i n  t h e  m e r i d i a n  t i l t i n g  away from t h e  

E a r t h .  The f i e l d  a t  UKS, above t h e  e q u a t o r ,  t i l t s  more 

towards  t h e  E a r t h .  

One p o t e n t i a l  e x p l a n a t i o n  is  t h a t  r e c o n n e c t i o n  is i n i t i a t e d  

on t h e  dayside magnetopause somewhere n e a r  noon a t  abou t  

1545 when t h e  p e r t u r b a t i o n  starts. The g r a d u a l  t i l t i n g  i n  

t h e  f i e l d  a t  bo th  ISEE and AMPTE s p a c e c r a f t  r e s u l t s  from t h e  

e q u a t o r i a l  part of t h e  local f i e l d  l i n e s  b e i n g  sucked 

towards  t h e  r e c o n n e c t i o n  s i t e .  The r a r e f a c t i o n  i n  f i e l d  

s t r e n g t h  cou ld  r e s u l t  from t h e  same effect .  As t h e  

r e c o n n e c t i o n  rate d r o p s ,  f i e l d  t ilt  d e c r e a s e s  and 

compression i n c r e a s e s .  T h e  n e t  e r o s i o n  of t h e  magnetopause 

h a s  moved t h e  boundary very  c l o s e  t o  IJMS which e x i t s  very 

soon af ter .  F i e l d  compression is o f t e n  s e e n  immedia te ly  

sd j a c e n t  t o  t h e  magnetopause; t h i s  is the f i r s t  e v i d e n c e  

t h a t  it is a t empora l  rather than spa t ia l  e f f e c t .  

FTE Occurrence and Structure 

I t  is clear from F i g u r e  2 that FTE a c t i v i t y  is presen t ,  

s i m u l t a n e o u s l y  at, ISEE-1/2 i n  t h e  s o u t h e r n  hemisphere  ant3 
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AMPTE-IJKS i n  t h e  n o r t h e r n  hemisphere .  There is no one-to-  

one cor respondence  e v i d e n t  between i n d i v i d u a l  e v e n t s  

d e t e c t e d  a t  t h e  two sites. The R u s s e l l  and E l p h i c  (1978)  

connected t u b e  h y p o t h e s i s  s u g g e s t s  t h a t  one might  expect a 

s i m p l e  r e l a t i o n .  I f ,  as has  been proposed  ( R u s s e l l  e t  a l . ,  

1985; Southwood e t  a l . ,  1986), F T E ' s  o r i g i n a t e  i n  t h e  

e q u a t o r i a l  r e g i o n ,  lJKS s h o u l d  o b s e r v e  t h e  s i g n a t u r e s  of 

northward moving t u b e s  f i r s t .  There  c o u l d  b e  a t i m e  d e l a y  

( o f  up t o  a minu%e o r  so> b e f o r e  ISEE-1/2, rough ly  2 R e  

f a r t h e r  from t h e  s u b s o l a r  p o i n t ,  o b s e r v e s  t h e  s o u t h e r n  

c o u n t e r p a r t .  In  t h e  4-second t i m e  series data in F i g u r e  2 ,  

none of t h e  UKS FTE's has an  unambiguous ISEE c o u n t e r p a r t  a t  

t h e  expected t i m e .  However, t h e  p i c t u r e  is n o t  simple.  

C lose  examinat ion  of t h e  r e c o r d s  reveals a var ie ty  of  

smaller a m p l i t u d e  d i s t u r b a n c e s  on v a r i o u s  t i m e  scales; more 

s o p h i s t i c a t e d  a n a l y s i s  is needed.  

Complicat ing t h e  comparison of  FTE o c c u r r e n c e  are t h e  

differences i n  ampl i tude  a t  each  s i t e .  The r a n g e  of peak- 

to-peak Bn a m p l i t u d e s  f o r  t h e  f i v e  FTE's s e e n  on [JKS e x t e n d s  

from 15 t o  38 nT, w i t h  a mean of 26 nT: t h e  f i v e  largest  

ISEE-2 ampl i tudes  range  from 2 0  t o  53 nT, w i t h  a mean of 39 

nT. In  t h e  Russell and E l p h i c  i n t e r p r e t a t i o n  ( and  many 

developments of i t > ,  when a s p a c e c r a f t  g r a z e s  a FTE, t h e  

observed Bn s i g n a t u r e s  is due  t o  the d i s t u r b a n c e  or 

"d rap ing"  f i e l d  around t h e  FTE f l u x  t u b e  ( F a r r u g i a  e t  al., 

1986) .  However, t h e  Bn s i g n a t u r e  is a l s o  d e t e c t e d  w i t h i n  

t h e  open par t  of  t h e  t u b e  where,  as p o i n t e d  o u t  by Cowley 



(1982)  and Paschmann e t  a l .  (19823,  it i n d i c a t e s  t h e  

presence of f i e l d - a l i g n e d  c u r r e n t s  w i t h i n  t h e  FTE t w i s t i n g  

t h e  f i e l d .  The e v e n t s  seem of  similar d u r a t i o n  a t  t h e  two 

si tes ( t h u s  t h e  smaller Bn does n o t  r e f l ec t  smaller cross- 

s e c t i o n ) .  The FTE’s observed  a t  t h e  ISEE l o c a t i o n  seem t o  

be more twis ted  up t h a n  t h o s e  a t  t h e  UKS l o c a t i o n .  

In  a d d i t i o n  t o  t h e  lower a m p l i t u d e  of t h e  s i g n a l s  a t  TJKS, 

t h e r e  is a n o t h e r  impor t an t  d i s t i n c t i o n  between events  

cle%ected a t  t h e  %wo s i t e s .  The FTE Bn v a r i a t i o n s  shown i n  

t h e  UKS p l o t  are a l l  s t a n d a r d  (Sj b i p o l a r  s i g n a t u r e s ,  i .  e . ,  

a pos i t ive  fo l lowed  by a n e g a t i v e  e x c u r s i o n .  The ISEE Bn 

s i g n a t u r e s  are a l l  reverse ( R )  s i g n a t u r e s ,  n e g a t i v e  f o l l o w e d  

by p o s i t i v e  e x c u r s i o n s .  This  is c o n s i s t e n t  w i t h  t h e  ear l ier  

s t a t i s t i ca l  r e s u l t s  (R i jnbeek  e t  a l . ,  1984;  Berchem and 

Russell, 1984; Southwood e t  al., 1986) which showed t h a t  S 

(R) e v e n t s  w e r e  predominant  above (be low)  t h e  e q u a t o r .  

Summary and Discussion 

T h i s  paper p r e s e n t s  t h e  f ir5t reports of s i m u l t a n e o u s  

measurements a t  t h e  magnetopause from spacecraft separated 

by more t h a n  10,000 km. In t h e  case r e p o r t e d  h e r e ,  t h e  

spacecraft, t h e  ISEE 1 / 2  p a i r  and t h e  UKS/IRM pair of t h e  

AMPTE m i s s i o n ,  are n e a r  t h e  noon mer id i an  b u t  a t  v e r y  

d i f f e r e n t  l a t i t u d e s .  Our p r e l i m i n a r y  s%udy shows t h a t  t h e  

measurements have f u l f i l l e d  some e x p e c t a t i o n s  b u t  t h a t  

i m p o r t a n t  q u e s t i o n s  r e m a i n  f o r  f u r t h e r  s t u d y .  
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Magnetopause l o c a t i o n  and shape ,  as i n f e r r e d  from boundary 

normals ,  s u g g e s t s  t h a t  t h e  boundary canno t  be 

i n s t a n t a n e o u s l y  r e p r e s e n t e d  by a s i m p l e  symmetric c o n i c  

s u r f a c e .  At t h e  t i m e  t h a t  UKS exi t s  t h e  magnetosphere,  t h e  

c o n i c  s e c t i o n  magnetopause predicts ISEE i n  t h e  s h e a t h  when 

it is s t i l l  i n  t h e  magnetosphere.  When ISEE later exi ts ,  

t h e  lJKS p o s i t i o n  predicted by t h e  a p p r o p r i a t e  c o n i c  s e c t i o n  

is i n s i d e  t h e  magnetosphere and t h u s  again i n c o n s i s t e n t .  

The f i r s t  e x i t  of  rJKS from %he magnetosphere is preceded by 

a s igna ture  t h a t  is  similar a t  b o t h  spacecraft. A d i p  in 

f i e l d  s t r e n g t h  accompanied by a bending of t h e  f i e l d  

cor responds  t o  t h e  outward d i s p l a c e m e n t  of t h e  plasma and 

f i e l d  i n  t h e  e q u a t o r i a l  r e g i o n s .  This  i n  t u r n  is fo l lowed 

by an increase i n  f i e l d  a t  bo th  spacecraft b e f o r e  UKS l e a v e s  

t h e  magnetosphere.  We s p e c u l a t e  t h a t  t h i s  is symptomatic  of 

a s u s t a i n e d  magnetopause e r o s i o n .  

Whi l s t  t h e  s p a c e c r a f t  were i n  t h e  magnetopause v i c i n i t y  

FTE’s were observed  a t  b o t h  si tes.  Those i n  t h e  n o r t h  a t  

[JKS show s t a n d a r d  Bn s i g n a t u r e s  i n d i c a t i v e  of a northwar!i 

t r a v e l l i n g  flux t u b e ,  w h i l e  t h o s e  a t  ISEE i n  t h e  s o u t h  have 

r e v e r s e  Bn s i g n a t u r e s  expected for southward t r a v e l  l i n g  

p e r t u r b a t i o n s  . 

The FTE’s a t  UKS have smaller a m p l i t u d e  Bn s i g n a t u r e s  and 

are fewer i n  number t h a n  t h e  FTE’s a t  t h e  ISEE l o c a t i o n .  We 

t h u s  kiave an  i n d i v i d u a l  i n s t a n c e  c o n s i s t e n t  w i t h  t h e  su rvey  

r e s u l t s  of Southwood e t  a l .  ( 1986; which found a much lower 

10 



. 

r a t a  of FTE o c c u r r e n c e  a t  rJKS t h a n  i n  t h e  f i r s t  years of 

ISEE o p e r a t i o n  where ISEE w a s  a g h i n  a t  h i g h e r  mean l a t i t u d e .  

Southwood et al. (19861 and also ‘Saunders e t  a l .  (19861, who 

specifically compared t h e  UKS r e s u l t s  w i t h  t h e  ISEE 

s t a t i s t i c s ,  have  a rgued  t h a t  t h e  s u r v e y  r e s u l t  w a s  due  t o  

the lower  average l a t i t u d e  of  t h e  UKS measurements.  

We have  a rgued  t h a t  t h e  larger Bn s i g n a t u r e  is  l i k e l y  t o  

imply t h a t  t h e  f i e l d  becomes more tw i s t ed  as e v e n t s  move 

away from t h e  e q u a t o r .  More a n a l y s i s  is r e q u i r e d  t o  conf i rm 

t h a t  t h e  a c t u a l  d u r a t i o n  of e v e n t s  is  s imi la r  a t  e a c h  s i t e  

b e f o r e  t h e  c o n c l u s i o n  is s e c u r e .  

There  is no  e v i d e n t  one-to-one c o r r e s p o n d e n c e . o f  FTE’s s e e n  

a t  t h e  two s i tes .  I n  l i g h t  o f  t h e  d i s t u r b e d  n a t u r e  of t h e  

f i e l d  n e a r  t h e  boundary and p o t e n t i a l  systematic a m p l i t u d e  

anti d u r a t i o n  d i f f e r e n c e s  beeween si tes w e  i n t e n d  t o  

i n v e s t i g a t e  t h i s  q u e s t i o n  f u r t h e r .  The q u e s t i o n  h a s  a 

b e a r i n g  on whether  FTE’s are d u e  t o  connec ted  t u b e  fo rma t ion  

( p a t c h y  r e c o n n e c t i o n :  R u s s e l l  and E l p h i c ,  1978)  o r  whether  

t h e y  are a m a n i f e s t a t i o n  of t e a r i n g  mode phenomena (Lee and 

Fu,  1 9 8 5 ) .  In t h e  L e e  and Fu p i c t u r e ,  t e a r i n g  i s l a n d s  

forming  a t  t h e  e q u a t o r i a l  magnetopause cou ld  rleve10p i n  t h e  

nclrth and s o u t h  independen t ly  and convec t  away 

i n d e p e n d e n t l y :  no cor respondence  would necessari ly be seen 

between the [JKS and ISEE FTE’ s ,  
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Figure Captions 

F i g .  1. T r a j e c t o r i e s  of ISEE-1 and 2 and AMPTE-TJKS on 19 

September 1984 i n  GSM c o o r d i n a t e s .  T i m e  t i cks  are shown 

e v e r y  15 minu tes ,  w i t h  hours  i n d i c a t e d  t o  one side. F i l l e d  

circles i n d i c a t e  t h e  first e n c o u n t e r  wi%h t h e  magnetopause.  

T h e  average magnetopause p o s i t i o n  acco rd ing  t o  F a i r f  i e l d  

(1971) is shown by %he dashed c u r v e .  

F i g .  2 .  T i m e  series of U K S  ( t o p )  and ISEE-1 and 2 ( b o l d  and 

t h i n  %races, r e s p e c t i v e l y  i n  %he battorn panel j i n  boundary 

normal c o o r d i n a t e s .  Data p a i n t s  ( d e r i v e d  from a c e n t e r e d  12  

second a v e r a g e )  are plotted every 4 ' s econds .  

Fig.  3 .  U K S  and ISEE t r a j e c t o r i e s  r o t a t e d  i n t o  t h e  p l a n e  

c o n t a i n i n g  t h e  s p a c e c r a f t  p o s i t i o n  and t h e  Ear th-sun  l i n e .  

A l s o  shown are t h e  magnetopause c r o s s i n g  p o s i t i o n s ,  d e r i v e d  

normal d i r e c t i o n s  and i n f e r r e d  magnetopause shapes for ISEE 

( s o l i d  c u r v e )  and UKS ( d o t t e d  c u r v e ) .  
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