Polytechnic UNIVERSITY

Final Report

TO

Goddard Space Flight Center

ON

Frequency Selective Reflection and Transmission

AT A

Layer Composed of a Periodic Dielectric

Prepared under

Grant NAG 5-714

Polytechnic University
 Department of Electrical Engineering and Computer Science Brooklyn, NY 11201

Final Report
to
Goddard Space Flight Center

on

Frequency Selective Reflection and Transmission
at a

Layer Composed of a Periodic Dielectric

Prepared Under

Grant NAG 5-714
by

Henry L. Bertoni
Li-hsiang S. Cheo
Theodor Tamir

Oct. 1, 1985 - Oct. 1, 1986

Abstract

This report examines the feasibility of using a periodic dielectric layer, composed of alternating bars having dielectric constants ε_{1} and ε_{2}, as a frequency selective sub-reflector in order to permit feed separation in large aperture reflecting antenna systems. For oblique incidence, it is found that total transmission and total reflection can be obtained at different frequencies for proper choice of $\varepsilon_{1}, \varepsilon_{2}$ and the geometric parameters. The frequencies of total reflection and transmission can be estimated form wave phenomena occurring in a layer of uniform dielectric constant equal to the average for the periodic layers. About some of the frequencies of total transmission, the bandwidth for 90\% transmission is found to be 40\%. However, the bandwidth for 90\% reflection is always found to be much narrower; the greatest value found being 2.5\%.

Separation of the feed structures for different frequency bands in large reflecting antennas has been achieved using sub-reflectors whose transmission and reflection coefficients are frequency dependent. For frequencies in one band, the sub-reflector acts as a perfect reflector, while for frequencies in another distinct band the sub-reflector is transparent to the radiation, thus permitting direct illumination of the main reflector by the feed. To date, periodic arrays of conducting plates, or apertures in a conductive screen, have been used as the frequency selective surface [1-4]. Typically, the conductors are placed on a dielectric layer that provides mechanical support.

Use of a dielectric layer with periodically varying dielectric constant has been suggested as an alternative way to obtain a frequency selective surface. As considered here, the layer is composed of alternating strips of two materials having different dielectric constants, as shown in Figure 1. At mm frequencies, such dielectric layers offer the advantage of low absorption loss as compared to metallic screens. Since the layer thickness is on the order of a wavelength, the amount of material required would not be excessive at these high frequencies.

This report describes a theoretical study of frequency selective reflection and transmission at dielectric layers of the type shown in Figure 1. Because this effort was intended as a limited feasibility study, we consider the case when the plane is incident perpendicular to the strips, and assume the electric field to be polarized along the strips, as in Figure 1. The layer is found to exhibit the desired frequency selective properties. It is also found that the approximate

Figure 1. Frequency selective surface composed of a periodic array of dielectric strips.
locations of reflection and transmission bands can be predicted from wave properties of a layer having uniform dielectric constant equal to the average of that in the periodic layer.

The significant wave properties are discussed qualitatively in Section II. In Section III, the necessary mathematical analysis is carried out to permit numerical evaluation of the reflection and transmission coefficients. Numerical results are presented in Section IV.
II.

Wave Mechanisms for Erequency Selective Behavior

In this section, we describe the wave phenomena that can provide frequency selective reflection and transmission at a periodic dielectric layer. The description given here is intended to clarify the nature of the subsequent analysis, and to provide a context for discussing the numerical results that have been obtained.

Consider first a dielectric that is periodic along x but infinite
 (x, z) plane, the dielectric will support an infinite set of modes with different wavenumbers, κ_{n} along z, but each having the same Bloch wavenumber k_{x} along $x[5,6]$. At low frequencies, only the lowest $n=0$ mode will have a real wavenumber κ_{0}, while all other modes will be cut off $\left(\kappa_{n}\right.$ imaginary or complex). At somewhat higher frequencies, the $n=-1$ mode will also propagate $\left(x_{-1}\right.$ real), while higher modes remain cut off. Further increase in frequency will result in more propagating modes.

Consider now a semi-infinite, periodic dielectric illuminated by a plan wave incident from vacuum, as shown in Figure 3 . The incident wave will excite all of the modes of the periodic structure. At a low enough frequency f_{1}, only the $n=0$ mode will propagate along z, as suggested in Figure 3a. Higher modes will decay exponentially away from the surface z $=0$. However, at a higher frequency f_{2}, the $n=0$ and $n=-1$ modes can propagate. If ε_{1} and ε_{2} are not close to the dielectric constant of free space, two modes can propagate in the dielectric even for the periodicity d small enough compared to the free space wavelength λ_{0} so that no grating lobes are present in the field reflected into the region $z<0$. In this case, the reflected field propagates only at the specular angle, as

Excitation of Bloch waves at an air-dielectric interface by an incident plane wave for the cases of: a) low frequency f_{1} at which only the $n=0$ Bloch wave propagates along z; and b) higher frequency f_{2} at which the $\mathrm{n}=0$ and $\mathrm{n}=-1$ Bloch waves propagate along z .
Figure 3.
indicated in Figure $3 b$. If the periodic dielectric is of finite thickness h, as in Figure 4, the propagating modes will excite a plane wave in the vacuum region $z>h$ below the dielectric.

At low frequencies f_{1}, only one mode propagates along z with real wavenumber κ_{0}, so that the layer acts approximately as if it had a uniform dielectric constant equal to the average of that for the periodic layer. Thus the transmission properties will be similar to those of a uniform layer. In particular, the reflection coefficient will vanish at about the frequency for which $\kappa_{0} h=\pi$. In this case, the dielectric acts as a half-wave window, and there will be total transmission of the incident plane wave, as suggested in Figure 4 a.

At a higher frequency f_{2}, both the $n=0$ and $n=-1$ modes will propagate along 2 . These modes are excited at the top surface of the layer by the incident wave. When each mode reaches the bottom surface, it excites both modes traveling back to the top, as well as a transmitted plane wave in the air. Because of the phase-matching conditions at the top and bottom surfaces, the transmitted plane wave in the air propagates in the same direction as the incident plane wave.

The modes in the layer that are traveling back towards the top surface excite a reflected plane wave in the air above the layer, as well as being scattered back into the layer, as suggested in Figure 4 b . Repetition of this scattering process establishes the total field in the layer, and the total reflected and transmitted plane waves in the air. For some frequency f_{2}, the phases of the two modes in the layer will be such as to add destructively in producing the transmitted plane wave, while constructively adding for the reflected plane wave, thereby produc-

ing the desired frequency selective property. However, at other frequencies in the range where the $n=0$ and $n=-1$ modes propagate along z, the phases of these two modes may be such as to add for the transmitted plane wave and cancel for the reflected wave. Thus it is possible to have multiple frequencies for which total reflection and total transmission take place.

The foregoing behavior is known in other related geometries to be associated with the excitation of waves guided along the layer [7,8]. To understand the connection with the guided waves, consider a layer of uniform dielectric constant equal to an average permittivity of the periodic layer defined by

$$
\begin{equation*}
\varepsilon_{a}=\left(\varepsilon_{1} d_{1}+\varepsilon_{2} d_{2}\right) / d \tag{1}
\end{equation*}
$$

This layer will support guided waves whose fields vary sinusoidally in the layer, and decay away from the layer in the air [9]. For TE guided wave modes, the normalized wavenumber $\beta_{g} h$ with $g=0,1,2$ is plotted along the horizontal axis in Figure 5 versus the normalized free space wavenumber $k_{o} h=\omega h / c$, which is plotted along the vertical axis for $\varepsilon_{a}=2$.

Because β_{g} is greater than κ_{0}, there are no angles of incidence θ at which a plane wave can satisfy the phase-match condition $k_{o} \sin \theta=\beta_{g}$ for direct excitation of the waveguide modes. However, excitation is possible if the dielectric constant of the layer is a periodic function of x. In this case, the fields of each waveguide mode will consist of a series of space harmonics, one of which has fields that are very similar to those of a mode in a uniform layer having the same average dielectric constant e_{a}. This space harmonic is designated $m=0$, and has wavenumber

$\beta_{g o}$ along x that is close to β_{g} for the uniform layer. Other space harmonics have wavenumbers along x given by

$$
\begin{equation*}
\beta_{\mathrm{gq}}=\beta_{\mathrm{g} 0}+q 2 \pi / \mathrm{d}, \quad(q= \pm 1, \pm 2, \ldots) \tag{2}
\end{equation*}
$$

While $\beta_{g 0} \simeq \beta_{g}>k_{0}$, it is possible to choose the periodicity d such that $\left|\beta_{g,-1}\right|<k_{o}$ for $m=-1$. In this case, a plane wave incident at an angle $\theta=\sin ^{-1}\left(\left|\beta_{g,-1}\right| / k_{0}\right)$ will couple to the space harmonic, and through it excite the waveguide mode. Once excited, this mode will reradiate plane waves into the air regions above and below the layer through the same space harmonic. The process of excitation and re-radiation is depicted in Figure 6 a for the case when $k_{o}+\beta_{g}>2 \pi / d>\beta_{g}$. This condition is sufficient to guarantee that only one space harmonic will give rise to a plane wave propagating away from the layer, and also implies that the plane wave propagates backward with respect to the direction of the waveguide mode. Guided waves that radiate some of their energy as they propagate are known as leaky waves[10].

The same physical processes hold if the incident wave is from the left, as shown in Figure 6b, except that the direction of propagation along x is reversed for the waveguide mode. The re-radiated plane wave above the layer adds to the reflected plane wave generated directly at the top surface of the layer to give the total reflected field. When the two components are in phase, strong reflections take place. However, when they are out of phase the reflected field is small and strong transmission occurs. Because the phases are frequency dependent, the overall reflection can have the desired frequency selective behavior. In

(a)

(b)

Figure 6. Plane wave excitation and re-radiation of the wave guided by a dielectric layer with periodically modulated dielectric constant for the case: a) plane wave incident from the right; and b) plane wave incident from the left.

Section IV, it is shown that total reflection can be achieved, and that the frequencies of total reflection can be predicted from the properties of the leaky wave modes.

III. Formulation of the Reflection Problem

In this section we develop the mathematical formalism for the reflection and transmission coefficients at a layer of a periodic dielectric in a way that can be implemented on a computer for numerical evaluation. The analysis is restricted to the case of $T E$ polarization $\left(E_{X}=E_{z}\right.$ $=0$) but it can be readily extended to the $T M$ polarization. Expressions for the fields in the infinite periodic medium of Figure 2 are first derived. Subsequently the scattering matrix for a single surface normal to z, as shown in Figure 3, is found. Finally, network concepts are used to join the scattering matrices for the two surfaces normal to z that are shown in Figure 4, so as to obtain the reflection and transmission coefficients for the layer.

A. Fields in an Infinite Periodic Medium

In studying the fields in the infinite periodic medium we use the approach of Collin [11] and Lewis and Hessel [12] which expresses the fields as a superposition of modes having different wavenumbers along z. Assuming a time dependence $\exp (-i \omega t)$, the fields of the n-th mode have dependence along z given by $\exp \left(\pm i \kappa_{n} z\right)$. Thus the only non-zero component of electric field E_{Y} and the z-component of magnetic field H_{z} can be written as the sum of modal fields in the form

$$
\begin{align*}
& \varepsilon_{Y}(x, z)=\sum_{n=-\infty}^{\infty}\left[A_{n} \exp \left(i \kappa_{n} z\right)+B_{n} \exp \left(-i \kappa_{n} z\right)\right] e_{n}(x), \tag{3}\\
& H_{z}(x, z)=\sum_{n=-\infty}^{\infty}\left[A_{n} \exp \left(i \kappa_{n} z\right)-B_{n} \exp \left(-i \kappa_{n} z\right)\right] h_{n}(x) .
\end{align*}
$$

Here $e_{n}(x)$ and $h_{n}(x)$ are the x-dependent mode functions while A_{n} and B_{n} are the modal amplitudes for waves propagating in the +2 and -2 direc-
tions, respectively.
Because each slab of dielectric has a homogeneous ε, the mode functions can be expressed in trigonometric form. We first define the wavenumbers along z in the two dielectrics as

$$
\begin{align*}
& u_{n}=\left(k_{1}^{2}-\kappa_{n}^{2}\right)^{3 / 2} \\
& v_{n}=\left(k_{2}^{2}-\kappa_{n}^{2}\right)^{1 / 2},
\end{align*}
$$

where $k_{1}{ }^{2}=k_{o}{ }^{2} \varepsilon_{1}$ and $k_{2}{ }^{2}=k_{o}{ }^{2} \varepsilon_{2}$. We further define the impedances and admittances for the dielectrics by

$$
\begin{align*}
& z_{1 n}=1 / Y_{1 n}=\omega \mu_{o} / u_{n} . \tag{5}\\
& z_{2 n}=1 / Y_{2 n}=\omega \mu_{o} / v_{n} .
\end{align*}
$$

Referring to the coordinate system in Figure 2, the mode functions for $-d_{1},<z<0$ are given by

$$
\begin{align*}
& e_{n}(x)=v_{n} \cos \left(u_{n} x\right)+i z_{1 n} I_{n} \sin \left(u_{n} x\right), \tag{6}\\
& h_{n}(x)=I_{n} \cos \left(u_{n} x\right)+i y_{1 n} v_{n} \sin \left(u_{n} x\right) .
\end{align*}
$$

In the range $0<z<d_{2}$, the mode functions are

$$
\begin{align*}
& e_{n}(x)=v_{n} \cos \left(v_{n} x\right)+i z_{2 n} I_{n} \sin \left(v_{n} x\right), \tag{7}\\
& h_{n}(x)=I_{n} \cos \left(v_{n} x\right)+i Y_{2 n} v_{n} \sin \left(v_{n} x\right) .
\end{align*}
$$

The constants V_{n} and I_{n} in (6) and (7) are defined using the Floquet condition discussed below.

The Floquet condition requires that the fields at one end of a period $\left(z=-d_{1}\right)$ differ from those at the other end ($z=d_{2}$) by at most a phase factor. Writing the phase factor as $\exp \left(i S_{0} d\right)$, the Floquet condi-
tion is

$$
\begin{align*}
& e_{n}\left(d_{2}\right)=e_{n}\left(-d_{1}\right) \exp \left(i S_{0} d\right), \tag{8}\\
& h_{n}\left(d_{2}\right)=h_{n}\left(-d_{1}\right) \exp \left(i s_{0} d\right) .
\end{align*}
$$

Substituting from (5), (6) and (7) into (8) gives two homogeneous equations in the two unknowns V_{n} and I_{n}. . In order to have a non-trivial solution of these equations, it is necessary for u_{n} and v_{n} to satisfy the secular equation

$$
\begin{align*}
\cos s_{0} d= & \cos \left(u_{n} d_{1}\right) \cos \left(v_{n} d_{2}\right) \\
& +\left[\left(u_{n} / v_{n}\right)+\left(v_{n} / u_{n}\right)\right] \sin \left(u_{n} d_{1}\right) \sin \left(v_{n} d_{2}\right) \tag{9}
\end{align*}
$$

Since u_{n} and v_{n} are functions of κ_{n}, (9) can be viewed as a relation between κ_{n} and S_{0}. As will be seen later, $S_{0}=k_{0} \sin \theta$ where θ is the angle of incidence in Figure 1. Thus (9) serves as an equation whose roots are the allowed values of κ_{n}, and represents the dispersion equation of the periodic medium. For large $|n|$, the roots are well approximated by

$$
\begin{equation*}
\kappa_{n}=\left[k_{0}{ }^{2} \varepsilon_{a}-\left(S_{0}+n 2 \pi / d\right)^{2}\right]^{3 / 2}, \tag{10}
\end{equation*}
$$

which holds even for relatively small values of $|\mathrm{n}|$. From expression (10), it is seen that only for small values of $|n|$ will κ_{n} be real, whereas higher-order solutions will be below cutoff along z.

When the dispersion equation (9) is satisfied, the ratio I_{n} / V_{n} can be determined form (8). After some manipulation, it is found that

$$
\begin{equation*}
\frac{I_{n}}{\bar{v}_{n}}=i \frac{\cos \left(v_{n} d_{2}\right)-\exp \left(i S_{0} d\right) \cos \left(u_{n} d_{1}\right)}{z_{2 n} \sin \left(v_{n} d_{2}\right)+z_{1 n} \exp \left(i S_{0} d\right) \sin \left(u_{n} d_{1}\right)} \tag{11}
\end{equation*}
$$

whereas I_{n} can be found from (11) if V_{n} is known. The value of V_{n} is
itself arbitrary and is usually obtained by normalizing the mode functions. In this analysis, we use the normalization

$$
\begin{equation*}
\int_{-d_{1}}^{d_{2}}|e(x)|^{2} d x=d \tag{12}
\end{equation*}
$$

This normalization is carried out numerically during the computations, as described subsequently.

Because of the Floquet condition, the mode functions $e_{n}(x)$ and $h_{n}(x)$ are periodic functions of x multiplied by the phase factor $\exp \left(i S_{0} x\right)$. Thus we may write $e_{n}(x)$ as the Fourier sum

$$
\begin{equation*}
e_{n}(x)=\sum_{q=-\infty}^{\infty} a_{n q} \exp \left(i s_{q} x\right) \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{q}=s_{0}+q 2 \pi / d \tag{14}
\end{equation*}
$$

Alternatively, the expansion coefficients $a_{n q}$ can be found from the integral

$$
\begin{equation*}
a_{n q}=\frac{1}{d} \int_{-d_{1}}^{d_{2}} e_{n}(x) \exp \left(-i S_{q} x\right) d x \tag{15}
\end{equation*}
$$

Substituting (6) and (7) into (15), we obtain after much manipulation that

$$
a_{n q}=v_{n}\left[J_{n q}^{(1)}-J_{n q}^{(2)}\right],
$$

where
(1)

$$
\begin{align*}
J_{n q}= & i\left\{\left(S_{q}+Y_{n}\right)\left[\exp \left(i S_{q} d_{1}\right) \cos \left(u_{n} d_{1}\right)-1\right]\right. \tag{17}\\
& \left.+\left[u_{n}+\left(Y_{n} S_{q} / u_{n}\right)\right] \exp \left(i S_{q} d_{1}\right) \sin \left(u_{n} d_{1}\right)\right\} /\left(u_{n}^{2}-s_{q}^{2}\right)
\end{align*}
$$

with

$$
\begin{equation*}
Y_{n}=\frac{i u_{n} v_{n}\left[\cos \left(v_{n} d_{2}\right)-\exp \left(i S_{0} d\right) \cos \left(u_{n} d_{1}\right)\right]}{u_{n} \sin \left(v_{n} d_{2}\right)+v_{n} \exp \left(i s_{0} d\right) \sin \left(u_{n} d_{1}\right)} \tag{18}
\end{equation*}
$$

(2)
(1)

The quantity $J_{n q}$ in (16) is of the same form as that of $J_{n q}$ with u_{n} replaced by v_{n}, and d_{1} replaced by $-d_{2}$ in (17).

The normalization (12) is equivalent to requiring

$$
\begin{equation*}
\sum_{q=-\infty}^{\infty}\left|a_{n q}\right|^{2}=1 \tag{19}
\end{equation*}
$$

From (16) it is seen that the normalization condition (19) implies

$$
\begin{equation*}
v_{n}=\left\{\sum_{q=-\infty}^{\infty}\left|J_{n q}^{(1)}-J_{n q}^{(2)}\right|^{2}\right\}^{-3 / 2} . \tag{20}
\end{equation*}
$$

Substituting expression (13) into (3) for $E_{Y}(x, z)$ and changing the order of summation gives

$$
\begin{equation*}
E_{Y}(x, z)=\sum_{q=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}\left[A_{n} \exp \left(i \kappa_{n} z\right)+B_{n} \exp \left(-i \kappa_{n} z\right)\right] a_{q n} \exp \left(i S_{q} x\right) \tag{21}
\end{equation*}
$$

When applying boundary conditions at the surface $z=0$ in Figure 2 , it is necessary to consider the x component of magnetic intensity $H_{X}(x, z)$. For the TE polarization, and using the Maxwell curl equations, it is readily seen that H_{x} can be found from the derivative with respect to z of E_{Y}. The resulting expression is

$$
\begin{align*}
& -i \omega \mu_{0} H_{x}(x \cdot z) \\
& \quad=\sum_{q=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \kappa_{n}\left[A_{n} \exp \left(i \kappa_{n} z\right)-B_{n} \exp \left(-i \kappa_{n} z\right)\right] a_{q n} \exp \left(i S_{q} x\right) \tag{22}
\end{align*}
$$

Expressions (21) and (22) are used in the next section to find the scattering matrix for a single interface $z=0$.

B. Scattering at a Single Interface

A single interface at $z=0$ is depicted in Figure 3. The field in the air region $z<0$ consists of an incident plane wave propagating at an angle θ with respect to the z axis, and reflected plane waves corresponding to the specular and higher space harmonics. We define

$$
\begin{align*}
& s_{0}=k_{0} \sin \theta, \\
& c_{0}=k_{0} \cos \theta, \tag{23}
\end{align*}
$$

and assume the incident electric field to be polarized along y with amplitude E_{0}. The electric field of the incident wave is then given by

$$
\begin{equation*}
E_{0} \exp \left(i S_{0} x\right) \exp \left(i C_{0} z\right) \tag{24}
\end{equation*}
$$

The electric field due to the reflected wave is the sum of the space harmonics and takes the form

$$
\begin{equation*}
\sum_{q=-\infty}^{\infty} R_{q} \exp \left(i S_{q} x\right) \exp \left(-i C_{q} z\right) \tag{25}
\end{equation*}
$$

where Sq is given by (14) and

$$
\begin{equation*}
c_{q}=\left(k_{o}^{2}-s_{q}^{2}\right)^{1 / 2} \tag{26}
\end{equation*}
$$

For the conditions of interest here $S_{q}{ }^{2} \geq k_{o}{ }^{2}$ for all $q \neq 0$ so that only the fields of the specular ($q=0$) space harmonic propagate away from the interface, while the fields of all other space harmonics decay. The amplitude coefficients R_{q} have yet to be determined.

From (24) and (25) the total electric field in the air region is
seen to be

$$
\begin{equation*}
E_{Y}(x, z)=\sum_{q=-\infty}^{\infty}\left[\delta_{q 0} E_{0} \exp \left(i C_{o} z\right)+R_{q} \exp \left(-i C_{q} z\right)\right] \exp \left(i S_{q} x\right) \tag{27}
\end{equation*}
$$

where $\delta_{q 0}$ is the Kronecker delta. The x component of magnetic intensity in the air can be found from the derivative with respect to z of (27), which yields

$$
\begin{align*}
& -i \omega \mu_{O} H_{x}(x, y) \\
& =\sum_{q=-\infty} C_{q}\left[\delta_{q O} E_{O} \exp \left(i C_{o} z\right)-R_{q} \exp \left(-i C_{q} z\right)\right] \exp \left(i S_{q} x\right) \tag{28}
\end{align*}
$$

The boundary conditions at $z=0$ require that E_{y} and H_{x} be continuous there. Equating the pair (21), (27) and the pair (22), (28), and making use of the orthogonality of the functions exp (is q_{q}) over a period, one obtains

$$
\begin{gather*}
\delta_{q 0} E_{o}+R_{q}=\sum_{n=-\infty}^{\infty}\left[A_{n}+B_{n}\right] a_{q n}, \tag{29}\\
C_{q}\left(\delta_{q 0} E_{o}-R_{q}\right)=\sum_{n=-\infty}^{\infty} \kappa_{n}\left[A_{n}-B_{n}\right] a_{q n} . \tag{30}
\end{gather*}
$$

In (29) and (30), n ranges over all positive and negative integers, so that these equations represent two infinite sets of equations.

We wish to solve (29), (30) for the amplitudes R_{q} and A_{n} of the waves traveling away from the surface in terms of the amplitudes E_{0} and B_{n} of the incident waves. In this way, we obtain the scattering matrix of the surface. The waves incident from the periodic medium arise from reflection at the second surface, as suggested in Figure 4 . For the
conditions of interest, only one or two waves are propagating in the periodic medium, while all other waves are cutoff along z. It can be shown that the two propagating waves correspond to the indices $n=-1,0$. Since the two surfaces are separated by at least one half-wavelength, the fields of the cutoff waves excited at one surface are exponentially small at the other surface. Hence, to a good approximation we may assume $B_{n}=$ 0 for $n \neq-1,0$.

While all the higher modes are excited in the air and in the periodic medium, the interaction at the two surfaces and radiation into the air are described by the amplitudes R_{0}, A_{0}, A_{-1} of the propagating waves. Thus we ultimately need only the 3×3 portion of the full scattering matrix relating R_{0}, A_{0}, A_{-1} to E_{0}, B_{0}, B_{-1}. This scattering relation takes the form

$$
\left[\begin{array}{l}
R_{0} \tag{31}\\
A_{0} \\
A_{-1}
\end{array}\right]=\left[\begin{array}{lll}
s_{1,1} & s_{1,0} & s_{1,-1} \\
s_{0,1} & s_{0,0} & s_{0,-1} \\
s_{-1,1} & s_{-1,0} & s_{-1,-1}
\end{array}\right] \quad\left[\begin{array}{l}
E_{0} \\
B_{0} \\
B_{-1}
\end{array}\right]
$$

To solve for the elements $S \alpha, \beta$ in the scattering relation (31), we first multiply (29) by C_{q} and then add (29) and (30). since $B_{n}=0$ for $n \neq-1,0$, the resulting equation may be written in the form

$$
\begin{align*}
2 C_{0} \delta_{q 0} E_{0} & +\left(\kappa_{0}-C_{q}\right) a_{0 q} B_{0}+\left(\kappa_{-1}-C_{q}\right) a_{-1 q} B_{-1} \\
& =\sum_{n=-\infty}^{\infty}\left(\kappa_{n}+C_{q}\right) a_{q n} A_{n} . \tag{32}
\end{align*}
$$

Expression (32) represents an infinite set of equations with index q in an infinite number of unknowns A_{n}.

The terms $\left(\kappa_{n}+C_{q}\right) a_{q n}$ can be viewed as elements of a matrix. With
this view, it can be shown that the elements decrease as one moves away from the main diagonal. Thus it is reasonable to solve (32) by using a finite truncation of the summation and a corresponding limitation on the number of values of q considered. For the parameters chosen in this study, it was found to be sufficient to allow q, n to range over the integers $-3,-2,-1,0,+1,+2$. With this truncation, (32) is solved for A_{n} with $n=-3 \ldots+2$. Returning to (29), we then compute R_{0} from

$$
\begin{equation*}
R_{0}=-E_{0}+\sum_{n=-3}^{2} A_{n} a_{0 n}+a_{00} B_{0}+a_{0,-1} B_{-1} . \tag{33}
\end{equation*}
$$

Collecting the resulting values of A_{0}, A_{-1} and R_{0} due separately to E_{0}. B_{0} and B_{-1} gives the values of the scattering matrix in (31).

C. Scattering From A Periodic Layer

Having found the scattering matrix for a single surface $(z=0)$, network concepts can be used to treat the interation with a second surface at $z=h$. As discussed previously, the interations between the two surfaces are essentially due to the propagating modes in the periodic medium. For our case, these are the $n=-1$, 0 modes, which are shown in the transmission line model for the interation shown in Figure 7 . At the surface $z=0$ the incident waves E_{0}, B_{0} and B_{-1} couple to the scattered waves R_{0}, A_{0} and A_{-1}.

At the surface $z=h$, the incident waves in the layer are $A_{0} \exp \left(i \kappa_{0} h\right)$ and $A_{-1} \exp \left(i \kappa_{-1} h\right)$, while no wave is incident from the air side. In this case, the scattered waves are $T_{0}, B_{0} \exp \left(-i k_{0} h\right)$ and $B_{-1} \exp \left(-i \kappa_{-1} h\right)$. The relation between scattered and incident waves is again given by (31), which for the foregoing conditions takes the form

Figure 7. Microwave equivalent network for determining reflection and transmission at a periodically varying dielectric layer.

$$
\left[\begin{array}{l}
T_{0} \tag{34}\\
B_{0} \exp \left(-i \kappa_{0} h\right) \\
B_{-1} \exp \left(-i \kappa_{-1} h\right)
\end{array}\right]=\left[\begin{array}{lll}
S_{1,1} & s_{1,0} & S_{1,-1} \\
S_{0,1} & S_{0,0} & S_{0,-1} \\
S_{-1,1} & S_{-1,0} & S_{-1,-1}
\end{array}\right]\left[\begin{array}{c}
0 \\
A_{0} \exp \left(i \kappa_{0} h\right) \\
A_{-1} \exp \left(i \kappa_{-1} h\right)
\end{array}\right]
$$

For the problem of scattering by a layer, the field E_{0} is known and one wishes to solve for the reflected and transmitted wave amplitudes R_{0} and T_{0}, respectively. To this end, (31) and (34) can be viewed as six inhomogeneous equations in six unknowns $R_{0}, A_{0}, A_{-1}, B_{0}, B_{-1}, T_{0}$. Assuming $E_{0}=1$, the solution of these equations for R_{0} and T_{0} give the reflection and transmission coefficients of the layer. This approach has been used as the final stage in our computer program, as discussed below.
D. Computer Program for R_{0} and T_{0}

A program has been written in the $P L-1$ language to compute R_{0} and T_{0} by the methods derived above. The listing of the program is given in Appendix A. An outline of the program is given below.

1. Given input frequency ω, angle of incidence θ, geometric parameters of the layer d_{1}, d_{2}, h and the electrical parameters ε_{1} and ε_{2}.
2. For integers n between -3 and 2 , compute κ_{n} from (9) using Newton's method with starting value given by (10).
3. For integers n, q between -3 and 2 compute $A_{n q}$ using (16)-(18) and (20).
4. Using (32) and (33), solve for $A_{n}(-3 \leq n \leq 2)$ and R_{0} for $E_{0}=1, B_{0}$ $=B_{-1}=0$. This gives the elements $S_{1,1}, S_{0,1}, S_{-1,1}$ in (31). Repeat for $B_{0}=1$ with $E_{0}=B_{-1}=0$, and then for $B_{-1}=1$ with $E_{0}=$ $B_{0}=0$ to get the remaining scattering coefficients in (31).
5. Using (31) and (34) with $E_{0}=1$, solve for R_{0} and T_{0}.

Several checks were carried out to ensure that the program was working properly. Choosing ε_{1} and ε_{2} very close to each other, we computed R_{0} and T_{0}. As expected, they were very close to the values for a homogeneous dielectric layer of value ε_{a}. For values of ε_{1} and ε_{2} used subsequently, it was found that the scattering matrix in (31) conserves power. Finally it was observed that $\left|R_{0}\right|^{2}+\left|T_{0}\right|^{2}$ is very close to unity, as required by power conservation.
IV. Numerical Studies of Frequency Selective Reflection

Using the computer program described previously, we have carried out numerical studies for several examples. The purpose of these studies is to gain insight into the frequency selective behavior that can be expected for R_{0} and T_{0}, and to relate this behavior to wave processes in the periodic layer. We have therefore arbitrarily chosen the angle of incidence $\theta=45^{\circ}$ and set $d_{1}=d_{2}=d / 2$.

For the initial studies, we have assumed $\varepsilon_{1}=2.56$ and $\varepsilon_{2}=1.44$, which are realistic values for low-loss plastics. With these choices, the average dielectric constant is $\varepsilon_{a}=2$. The perodicity d must now be chosen such that, at the high frequency of interest, two modes (with $n=$ -1, 0) propagate in the dielectric layers. Furthermore, only the specular ($q=0$) space harmonic must propagate in the air.
A. Choice of d, h and frequency

The restriction on d needed to insure that only the $q=0$ space harmonic propagates in the air can easily be interpreted with the help of Figure 8a. The incident wave has wavenumber $S_{0}=k_{0} \sin \theta<k_{0}$ along x. Wavenumbers S_{q} of other space harmonics lie at a distance $q(2 \pi / d)$ away from S_{0}, as shown for $q=-2,-1$ and +1 in Figure 8a. Provided that d is small enough so that

$$
\begin{equation*}
k_{0} \sin \theta-2 \pi / d<-k_{0} \text {, } \tag{35}
\end{equation*}
$$

the $q=-1$ space harmonic will lie outside the visible circle defined by $s^{2}+c^{2}=k_{o}{ }^{2}$. It is further seen that, if (35) holds, all other space harmonics will also lie outside the circle, so that C_{q} defined by (26) is imaginary for $q \neq 0$, and the space harmonics decay away from the layer. Provided that the modulation $\left(\varepsilon_{1}-\varepsilon_{2}\right) / \varepsilon_{a}$ is not too large, the concept

Figure 8. Vissible circle for determining the propagating space harmonics in: a) air; and b) a medium with dielectric constant ε_{a}.
of the visible circle can also be used to estimate the number of propagating waves in the layer. When the modulation is small, (10) can be used as an estimate for κ_{n}, in which case the visible circle is given by $S_{n}{ }^{2}+\kappa_{n}{ }^{2}=k_{0}{ }^{2} \varepsilon_{a}$, as shown in Figure $8 b$. It is seen from this figure that, for the two modes $n=-1,0$ to propagate in the layer, d must satisfy

$$
\begin{gather*}
k_{0} \sin \theta-4 \pi / d<-k_{0} \sqrt{\varepsilon_{a}}<k_{0} \sin \theta-2 \pi / d, \tag{36}\\
k_{0} \sqrt{\varepsilon_{a}}<k_{0} \sin \theta+2 \pi / d .
\end{gather*}
$$

Conditions (35) and (36) can be rearranged into the following inequalities:

$$
\begin{gather*}
d / \lambda<1 /(1+\sin \theta) \\
1 /\left(\sqrt{\varepsilon_{a}}+\sin \theta\right)<d / \lambda<2 /\left(\sqrt{\varepsilon_{a}}+\sin \theta\right), \tag{37}\\
d / \lambda<1 /\left(\sqrt{\varepsilon_{a}}-\sin \theta\right) .
\end{gather*}
$$

Assuming $\varepsilon_{a}=2$ and $\theta=45^{\circ}$, these inequalities are $d / \lambda<0.586$, $0.471<d / \lambda<0.943$ and $d / \lambda<1.414$, respectively. To satisfy these inequalities, we have chosen $d / \lambda=0.54$.

Initially a value of layer thickness h at which total reflection will occur was obtained by computing R_{0} for various values of h / λ. Subsequently, it was found that values of h and d for total reflection could be related via the conditions for guidance of a wave by a layer of uniform dielectric constant ε_{a}. Whereas our initial approach gave us the value of $h / \lambda=0.925$ for sample calculations, it is the subsequent interpretation that is discussed below.
B. Variation of R_{0} With Frequency

Computations of the frequency dependence of R_{0} have been made assuming that $h=0.925$ and $d=0.54$ for $\varepsilon_{1}=2.56$ and $\varepsilon_{2}=1.44$. This choice produces total reflection for a frequency f such that $\lambda=c / f$ is about unity. Note that, if h and d are scaled by λ, then total reflection can be obtained at any desired frequency. The results of the calculation for $\left|R_{0}\right|$ are depicted in Figure 9 , where we have used the normalized frequen$c y$ variable $k_{0} h=2 \pi f h / c$, and have plotted up to the value $k_{0} h=6.30$ at which the $q=-1$ space harmonic in air switches from cutoff to propagating along z.

For $k_{0} h<5.12$, only the $n=0$ mode in the periodic dielectric is propagating along z. In the frequency range $0<k_{0} h<5.12$ for single mode propagation, R_{0} vanishes at the two frequencies $k_{0} h=2.56$ and 5.03 , at which $k_{0} h=3.145$ and 6.355. Thus, frequencies of total transmission occur when the layer thickness is close to a multiple of one half the effective wavelength along 2 , as predicted in Section II. The difference between the values of $k_{0} h$ for total transmission and $\pi, 2 \pi$ are due to the non-zero phase of the transmission and reflection coefficients at the individual surfaces $z=0$ and h, which result from excitation of higher cutoff space harmonics.

For $k_{0} h<5.12$, where the $n=-1$ mode also propagates along z in the layer, total reflection takes place at two frequencies given by $k_{o} h=$ 5.32 and 5.83. In the vicinity of these frequencies for total reflection, the variation of $\left|R_{0}\right|$ is that associated with resonances wherein a frequency dependent function has a real axis zero and a nearby pole at a complex location.

Figure 9. Variation of $\left|R_{0}\right|$ with normalized frequency $k_{o} h$ for $\varepsilon_{1}=2.56, \varepsilon_{2}=1.44$

To examine the bandwidth of the total reflection resonance, we have plotted $\left|R_{0}\right|^{2}$ on an expanded scale in Figure 10 . Since $\left|R_{0}\right|^{2}+\left|T_{0}\right|^{2}=$ 1, the curve can also be used to determine $\left|T_{0}\right|^{2}$ by using the vertical scale to the right of the plot. The wider of the two peaks of $\left|R_{0}\right|^{2}$ is centered at $k_{o} h=5.83$. For this peak, the fractional bandwidth between the frequencies at which $\left|R_{0}\right|^{2}=0.9$ is 0.86%.

The narrower of the two peaks in Figure 10 is shown further expanded in the insert. For this peak, the fractional bandwidth between the frequencies at which $\left|R_{0}\right|^{2}=0.9$ is less than 0.04%. By comparison, much wider bandwidths are found for total transmission when the $n=-1$ mode in the layer is cut off. For example, in a region about $k_{o} d=2.56$ in Figure 9, a 40% bandwidth is found between the frequencies for which $\left|R_{0}\right|^{2}=0.1$.

C. Prediction by Means of Guided Waves

The location of the frequencies of total reflection can be predicted from the properties of the waves guided by the periodic layer. Consider first the case of a wave guided along a uniform layer having dielectric constant ε_{a}. The normalized propagation constant $\beta_{g} h$ of this guided wave is plotted horizontally in Figure 5 , versus the normalized frequency $k_{0} h$, which is plotted vertically. The lowest $g=0$ guided wave mode starts at the origin and becomes asymptotic to the wavenumber $k_{0} \sqrt{\varepsilon_{a}}$ of the layer. Higher guided-wave modes start at points $k_{o} h=g \pi\left(\varepsilon_{a}-1\right)$ along the 45° line, where $g=1,2,3 \ldots$

In Figure 11, we have repeated the plot of Figure 5, and have added the dispersion curves for waves propagating in the negative x direction ($\beta<0$). We have also plotted as a broken line the transverse wavenumber

Figure 10. Variation of the power reflection coefficient $\left|R_{0}\right|^{2}$ normalized frequency $k_{o} h$ for the parameters of Figure 9.

$S_{0} h=k_{0} h \sin \theta$ of the incident plane wave. Except at $k_{0} h=0$, the broken line is never close to the dispersion curves for the guided waves. As a consequence, an incident plane wave cannot couple to the guided waves on a uniform layer.

If the dielectric layer is made periodic along x, the field of each guided wave mode becomes a sum of space harmonics. For the guided waves traveling in the $-x$ direction, the wavenumber of the $q=-1$ space harmonic is $\left(-\beta_{g}+2 \pi / d\right)$. When normalized by h, the dispersion curve of this. space harmonic has the same form as $-\beta_{g} h$ versus $k_{o} h$, except for a shift $2 \pi h / d$ to the right. While finite modulation affects the value of β_{g} for the guided wave, for small modulation of the dielectric constant β_{g} is close to that for a uniform layer.

Dispersion curves for the $q=-1$ space harmonics of the guided waves in the small modulation limit are shown in Figure 12 for $\mathrm{h} / \mathrm{d}=$ $0.925 / 0.54$. We have also drawn a broken line representing $S_{0} h$ versus $k_{0} h$. Intersection of the $S_{0} h$ line with the dispersion curvers indicates strong coupling between an incident plane wave and guided waves through the $q=-1$ space harmonic. Note that, above the dashed line having an angle of -45°, the $q=-1$ space harmonic in the air propagates along z. Thus for reflection and transmission of a single space harmonic, the operating point along the $S_{o} h$ line must be kept below the dashed line. For the parameters used in drawing Figure 12 , this condition implies that $k_{o} h \leq 6.30$ for one propagating space harmonic in air.

In Figure 12, the line $S_{o} h$ intersects the dispersion curve for the g $=0$ guided wave at $k_{0} h=5.27$, and for the $g=1$ guided wave at $k_{0} h=$ 5.72. These values are close to the values $k_{0} h=5.32$ and 5.83 for total

Figure 12. Transverse wavenumber $S_{0} h$ of the incident plane wave and the dispersion curves of the $q=-1$ space harmonics for the $g=0,1,2$ guided waves in the limit of small modulation for $\varepsilon_{a}=2$ and $h / d=0.925 / 0.54$.
reflection $\left(\left|R_{0}\right|=1\right)$ obtained from Figure 11 . The deviation between the values of $k_{o} h$ obtained from Figures 11 and 12 is thought to result from the fact that the finite modulation of the dielectric constant of the layer alters β_{g} from the value obtained for a uniform slab. Thus, decreasing modulation should bring the values closer together, while increasing modulation should result in greater deviation. This latter condition is shown subsequently.

To further demonstrate the relation between the frequencies of total reflection and the guided waves of the layer, we have considered a layer of increased thickness $h=1.1$, but the same periodicity $d=0.54$. The dispersion curves of the $q=-1$ space harmonics of the first three guid-ed-wave modes are shown in Figure 13 for the limiting case of small modulation. The broken line giving $S_{0} h=k_{o} h \sin \theta$ is seen to intersect the three dispersion curves at $k_{0} h=6.22,6.67$ and 7.30. Our model predicts that total reflection should take place at normalized frequencies close to these values.

A plot of $\left|R_{0}\right|$ versus $k_{0} h$ for $h=1.1$ and $d=0.54$ is shown in Figure 14. From this plot, total reflection is seen to occur at the three frequencies $k_{0} h=6.25,6.78$ and 7.42 , which are close to those predicted by the small modulation theory. The bandwidth over which $\left|R_{0}\right|^{2}$ ≥ 0.9 about each frequency of total reflection is seen to increase as $k_{0} h$ approaches the value 7.50 where the line $S_{0} h$ crosses the dashed line, above which the $n=-1$ space harmonic propagates in air. The bandwidth about the lowest of these frequencies is only 0.01%, while that of the highest is 0.7\%.

Figure 13. Transverse wavenumber $S h$ of the incident plane wave and the dispersion curves of the $q=-1$ space harmonics for the $g=0,1,2$ guided waves in the limit of small modulation for $\varepsilon_{a}=2$ and $h / d=1.1 / 0.54$.

C. Influence of Modulation

To explore the influence of modulation, we have computed the reflection and transmission coefficients for a layer with $\varepsilon_{1}=3$ and $\varepsilon_{2}=1$. This layer has average dielectric constant $\varepsilon_{a}=2$, as before. We further assume that $d=0.54$ and $h=0.925$, as in the case of the results presented in Figures 10-12. A plot of $\left|R_{o}\right|$ versus normalized frequency $k_{o} h$ is shown in Figure 15. The variation of $\left|R_{0}\right|$ is seen to be qualitatively the same as that of Figure 10. The increased modulation is seen to shift the first frequency of total reflection $\left(\left|R_{0}\right|=1\right)$ to $k_{0} h=5.45$ and the second to $k_{0} h=6.12$, which are farther from the respective values 5.27 and 5.72 predicted by small modulation theory.

Besides shifting the frequency of total reflection, the modulation influences the bandwidth. At the first total-reflection frequency, the bandwidth for $\left|R_{0}\right|^{2} \geq 0.9$ is 0.001%. However, at the higher total reflection frequency, the bandwidth is 2.5%. The modulation is also seen to have a small effect on the frequencies of total transmission $\left(\left|R_{0}\right|=0\right)$.
v. Conclusion

It has been shown that frequency selective reflection and transmission takes place at a periodically modulated dielectric layer. Frequencies of total transmission and total reflection were found, and they can be related to various wave phenomena. In the limit of small modulation, these frequencies can be estimated from the appropriate wave phenomenon in a uniform layer having dielectric constant equal to the average of that in the periodic layer.

In the range of low frequencies where a single space harmonic propagates along z in the periodic dielectric, total transmission occurs when the layer thickness h is one half the effective wavelength along $z, i . e .$, when $h=\pi / \kappa_{0}$. For small modulation, $\kappa_{0} \simeq\left(\varepsilon_{a} k_{0}{ }^{2}-s_{0}{ }^{2}\right)^{1 / 2}$, where ε_{a} is the average dielectric constant. Total reflection can be achieved at those higher frequencies for which two space harmonics propagate along z in the periodic dielectric. These frequencies of total transmission are associated with the excitation of leaky waves guided by the dielectric layer. In the limit of small modulation, the frequency of total reflection can be approximated from the dispersion characteristics of waves guided by a uniform dielectric layer.

In the examples treated, the bandwidth over which $\left|R_{0}\right|^{2} \geq 0.9$ about the frequency of total reflection was found to be small. The largest bandwidth obtained was 2.5%. While angle sensitivity was not computed, the narrow frequency bandwidth suggests that, at the frequency of total reflection, $\left|R_{0}\right|^{2}$ will be sensitive to the angle of incidence θ.

Whereas the study was carried out only for the TE polarization, the form of the results have implications for the $T M$ polarization. We expect
that the frequencies of total reflection for the $T M$ polarization are also associated with the excitation of the leaky waves guided by the periodic layer. However, the dispersion characteristics of the leaky TM waves will differ from those of the $T E$ polarization. As a result, it is expected that incident plane waves of the $T E$ and $T M$ polarizations will, in general, experience total reflection at different frequencies. Hence, the periodic dielectric layer is expected to be polarization sensitive.

References

1. V.D. Agrawal and W.A. Imbriale, "Design of a Dichroic Cassegrain Subreflector," IEEE Trans., AP-27 (1979), pp. 466-473.
2. B.A. Munk, R.G. Kouyoumjian and L. Petris, "Reflection Properties of Periodic Surfaces of Loaded Dipoles," IEEE Trans., AP-19 (1971), pp. 612-616.
3. E.L. Pelton and B.A. Munk, "Scattering from Periodic Arrays of Crossed Dipoles," IEEE Trans., AP-27 (1979), pp. 323-330.
4. W.V.T. Rusch, "The Current State of the Reflector Antenna Art," IEEE Trans., AP-32 (1984), pp. 313-329.
5. R.S. Chu and T. Tamir, "Guided-Wave Theory of Light Diffraction by Acoustic Microwaves," IEEE Trans., MTT-18 (1970), pp. 486-504.
6. S.T. Peng, T. Tamir and H.L. Bertoni, "Theory of Periodic Dielectric Waveguides," IEEE Trans., MTT-23 (1975), pp. 123-133.
7. A. Hessel and A.A. Oliner, "A new theory of Wood's Anomalies on Optical Gratings," Appl. Optics, 4 (1965), pp. 1275-1297.
8. T. Tamir, "Nonspecular Phenomena in Beam Fields Reflected by Multilayered Media," J. Opt. Soc. Amer. A, 3 (1986), pp. 558-565.
9. R.E. Collin, Field Theory of Guided Wave (McGraw-Hill, 1960), Ch. 11, p. 453.
10. T. Tamir and F.Y. Kou, "Varieties of Leaky Waves and Their Excitation," IEEE J. Quant. Electron, QE-22 (1986), pp. 544-551.
11. R.E. Collin, "Reflection and Transmission at a Slotted Dielectric Interface," Can. J. Phys., 34 (1956), pp. 398-411.
12. L.R. Lewis and A. Hessel, "Propagation Characteristics of Periodic Arrays of Dielectric Slabs," IEEE Trans., MTT-19 (1971), pp. 276286.

Appendix A: Listing of Computer Program

35.1
35.11
36.
36.1
36.2
37.
37.1
37.2
37. 3
37.31
37.32
37.4
37.5
57.6
37.7
37.8
37.9
88.
39.
39.1
40.
41.
42.
45.
44.
45.
46.
47.
47.1
48.
49.
50.

51 .
52.
53.
54.
55.
56.
57.
58.
59.
59.1
60.
61.
62.
65.
64.
65.
66.
67.
68.
69.
70.
71.
72.
75.
74.
75.
76.
77.
78.
79.
80.
81.
82.
as.
dCL gamaóh float ; ; * gama (o)*H */
DCL GAMA_1H FLOAT; /* GAMA (-1)*H */
DCL (LL) FIXED (5,0$)$;
DCL FLAG2 FIXED $(2,0)$;
DCL (FFEAL, FIMAG, FFFIMEF, RFFIMEI) FLDAT;
DCL (CDISC,GAMAD) (-6:5) FLOAT;
DCL (E2R, $22 I, B S R, E S I)(-6: 5)$ FLDAT:
DCL H FLDAT ;
DCL (MM,NN,FIVOT,FS) FIXED (S,O) ;
DCL (TOF, TOI, TMINUS1F,TMINUSII) FLDAT;
DCL (FAES, FFHASE, FFFFABS, FFRFHASE) FLDAT;
/* MM=NO. OF CDLUMNS \& NN=ND. OF ROWS IN MN(N,M) */
/* MATRIX IN FROGRAM TEMNNFO */
/* IF FIVOT=1 THEN THE FIVOT IS SUESCRIBED, */
/* $\mathrm{FS}=\mathrm{NO}$. OF RHS OF THE AUGMENTED COEFFICIENT MATRIX*/
1* IN THE FFROCEDURE GAUSS (ELIMINATION METHOD */
/* */

```
/* DEFINE THE FUNCTION F(X)
\(F\) : PROCEDURE (U,M): DCL 4 FLOAT ;

DCL M FIXED \((4,0)\);
CALL CHECKR \((U, M)\);
\(S=\operatorname{COS}(U D 1(M)) * A-0.5 * S U M 1 * S I N(U D 1(M)) * E-\operatorname{COS}(S O D) ;\) RETURN (S):
END F:
/* */
/* DEFINE THE 1ST DERIVATIVE OF \(F(X)\) */
FFRIME: FROCEDURE (U,M):
DCL U FLDAT :
DCL M FIXED (4,0):
DCL (TERM1,TEFM2,TERMS) FLDAT:
CALL CHECKF (U,M) :
TERM1 \(=-D 1 * S\) IN(UD1 (M)) *A-D2*COS (UD1 (M)) *E*UR :
TERM2 \(=-0.5 * S U M 2 * \operatorname{SIN}(U D 1(M)) * B\);
TERM \(3=-0.5 * S U M 1 *(D 1 * \operatorname{COS}\) (UD \(1(M)) * E+T E R M)\);
SS=TERM1 + TERM2 + TERMS ; RETURN(SS):
END FFRIME:
/* PROCEDURE TD CHECK THE SIGN OF R=U**2-KO**2*(E1-E2) */
/*
CHECKR : PROC (U,M):
DCL 4 FLOAT ;
DCL M FIXED \((4,0)\);
UDI \((M)=U * D 1\);
\(R(M)=U * * 2-K O * * 2 *(E 1-E 2):\)
SQRTR \(=\) SQRT (ABS (R (M))) ;
RTRD2 \(=\) SQRTR*D2 ;
RU = SQRTR/U ;
UR = U/SGRTR ;
SOD \(=\) SO * D ;
IF \(\mathrm{F}(\mathrm{M})>0\) THEN
DO:
\(A=\operatorname{COS}(\) RTRD2 \(): \quad / *\) WHEN F \(\geqslant 0\) */ \(B=\operatorname{SIN}(\) RTRD2 \():\)
SLM1 = RU + UR ;
SUM2 \(=\) 2/SQRTR-FU/U-UR**2/SQRTR ;
TEFM \(=\) D2*SIN(UD \(1(M)) * A\);
END ; \(/ *\) END OF F \(\mathrm{O} O\) CASE */
ELSE
DO : \(/ *\) WHEN fico */
\(A=\operatorname{COSH}(\) RTRD2 ):
\(\mathrm{E}=\mathrm{SINH}(\mathrm{RTRD} 2)\);
SUM1 \(=\) UR - RU ;
SUM2 \(=2 /\) SQRTR+RU/U + UR**2/SQRTR ;
TERM \(=-\) D2*SIN(UD1 (M)) *A;
END : \(/ *\) END OF F<CO CASE */
```

 84.
 END CHECKF; ;** END OF CHECER FFOCEDUFE **/
 85.
 /**
 ON ENDFILE(SYSIN) FLAG=O;
 /* MAIN FROCEDURE
 FI = S.14156; EFSILON=1.0E-06; KMAX=50;
 GET LIST(D,D1,D2,E1,E2,LAMTA,DEGREE,H);
 KO = 2*FI/LAMTA ;
 FUT SKIF;
 IF LAMTA =1.0 THEN
 FUT SKIF' EDIT('TE MODE WITH TWO FFOFAGATION MODES')
 (X(5),A);
 ELSE
 DO ;
 FUT SKIF ;
 PUT SKIF EDIT('TE MODE WITH ONE PFOFAGATION MODE')
 (X(5),A):
 END :
 FUT SKIF EDIT (FEFEAT('*',4O))(X(E),A);
 FUT SKIF EDIT('D=',D,'D1=',D1,'D2=',D2,'THETA=',DEGREE)
 (X(5),4 (A,F(9,3),X(4)));
 FUT SKIF EDIT('E1=',E1,'E2=',E2,'LAMTA=',LAMTA,'KO=',KO)
 (X(5),4 (A,F(8,5),X(3)));
 FUT SKIF;
 FUT SKIF EDIT('H=',H)(X(5),A,F(8,4));
 FUT SKIF' EDIT (REFEAT ('*',SO)) (X(5),A);
 FUT SKIF ;
 CALL INFUT(M);
 LOOP: DO WHILE(FLAG=1);
 CALL CALCULATE(M);
 CALL FFINT (M);
 FLAG2=1;
 CHECK1: DO WHILE(AES((U2(M)-U1(M))/U1(M))\geqslant=EFSILON &
 FLAG2=1) ;
 IF K<=KMAX THEN DO;
 U1 (M) =U2(M);
 CALL CALCULATE(M);
 CALL PRINT (M);
 END;
 ELSE DO;
 FUT SKIF(2) EDIT('FAILS TO CONVEFGE') (A);
 FLAG2=0;
 END;
 END CHECK1;
 FUT SKIP(2);
 FUT SKIF(2) EDIT('R=',F(M))(X(5),A,E(14,6));
 IF R(M) < O THEN
 PUT SKIF'(2) EDIT('V IS IMAGINARY')(X(5),A);
 V(M) = SQRTR ;
 PUT SKIP(2) EDIT('V(M)=',V(M))(X(5),A,E(14,6));
 GAMAIN = KO**2*E1-U2(M)**2 ;
 FUT SKIP(2) EDIT('KO**2*E1-U2**2=',GAMAIN)(X(5),A,E(14,6
 IF GAMAIN < O THEN
 FUT SKIF'(2) EDIT('GAMA IS IMAGINARY')(X(5),A):
 GAMA (M) = SQRT (AES (GAMAIN)):
 FUT SKIF'(2) EDIT('GAMA=',GAMA (M))(X(5),A,E(14,6));
 IF FLAG2=1 THEN CALL OUTFUT (M);
 CALL INFUIT (M);
 END LOOF:
 /*
 /* TO COMFUTE UM*D1,VM*D2,SN*D1,SN*D2,SN*D **/
 /* TO COMFUTE COS(UMD2), COSH(VMD2),SIN(VMD2),SINH(UMD2) **/
 /**/
 LODPM : DO M=-6 TO 5 :
 UMD1(M) = U2 (M) * D1:
    ```
128.
129. 130. \(1 \leq 1\). 132 . 133. 134. 135. 136. 137. 138. 139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.

154 .
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
164.1
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
178. 1
179.
180.
181.
182.
182.1
18.
184.
185.
186.
187.
188.
189.
190.
```

 UMD2(M) = V(M) * D2 ;
 SND1(M) = SM(M) * D1 ;
 SND2(M) = SM(M) * D2 ;
 SND(M) = SM(M) * D ;
 GINVD2(M) = SIN(UMD2(M));
SINHVD2(M) = SINH(UMD2(M));
COSVDE(M) = COS(UMD2(M));
COSHVD2(M) = COSH(VMD2(M));
END LOOPM ;

```

```

/* TD COMPUTE Y(M,N) ***
/* */
LOOFYM : DO M = -6 TO 5 ;
LOOFYN : DO N=-6 TO 5:
Y1(M,N)= COS(UMD1(M))*SIN(SND (N));
Y4(M,N) = SIN(UMD1(M)) * SIN(SND (N))/UZ (M):
IFR(M) > O THEN
DO :
Y (M,N)=SINVD2 (M)/V(M)+SIN(UMDI (M))*COS (SND (N))/U2 (M):
YZ(M,N)=COSVD2 (M)-COS (UMD 1 (M))*\operatorname{COS (SND (N));}
END:
ELSE
DO;
YS (M,N)=SINHVD2 (M)/V(M)+SIN(UMD1 (M))*COS (SND (N))/U2 (M);
Y2(M,N)=COSHVD2(M)-COS(UMD1(M))*COS (SND (N));
END :
/**/
/* TO COMFUTE AES(Y (M,N)**2)
**/
/* TO COMFUTE REAL AND IMAGINARY FART OF Y: YF, YI **/
YMAG (M,N)=YS (M,N)**2+Y4(M,N)**2 ;
YR (M,N)=(Y1(M,N)*YE(M,N)+Y4(M,N)*YZ (M,N))/YMAG(M,N):
YI (M,N)=(Y2 (M,N)*YS(M,N)-Y1(M,N)*Y4(M,N))/YMAG(M,N);
END LODPYN :
END LOOPYM :
/***/
/* TO COMFUTE J1(M,N) */
/* REAL AND IMAGINAFY FART DF JI : JIFi, J1II */
FUT SKIF ;
LOOPJIM : DO M = -6 TO 5 ;
DO N=-6 TO S ;
J1R1(M,N)=YI (M,N)*(1-COS (UMD1 (M))*COS (SND1(N)));
J1R2(M,N)=(SM (N) +YR (M,N))*COS (UMD1 (M))*SIN(SND1 (N));
J1RS(M,N)=(U2 (M)+SM(N)*YR(M,N)/UZ (M))*COS (SND1(N));
J1R4(M,N)=SIN(SND1(N))*SM(N)*YI (M,N)/U2(M);
J1R(M,N)=(J1R1(M,N)-J1R2(M,N)+SIN(UMD1 (M))*
(J1RS(M,N)-J1R4(M,N)))/(U2(M)**2-SM(N)**2);
J1II(M,N)=(SM(N)+YF(M,N))*(COS(UMD1(M))*COS(SND1(N))-1);
J112(M,N)=YI(M,N)*COS(UMD1(M))*SIN(SND1(N));
J1I3(M,N)=SM(N)*YI(M,N)*COS (SND1(N))/U2(M):
J1I4(M,N)=SIN(SND1(N))*(U2(M)+SM(N)*YR(M,N)/L2 (M));
J1I(M,N)={J1I1(M,N)-J1I2(M,N)+SIN(UMD1(M))*
(J1IS(M,N)+J1I4(M,N)))/(U2(M)**2-SM(N)**2);
END :
END LOOPJiM;

```

```

 /* TO COMPUTE J2(M,N) */
 /* REAL AND IMAGINAFY FART OF J2 : J2F, J2I */
 FUT SKIF;
 LODFJ2M : DO M = -5 TO 5 ;
 DO N=-5 TO 5;
 J2F4(M,N):=SM(N)*YI (M,N)*SIN(SND2 (N))/V(M);
 J2IZ(M,N)=SM(N)*YI (M,N)*COS(SND2 (N))/V(M);
 IF Fi(M)>O THEN
 DO;
 J2R1 (M,N)=YI (M,N)*(COSUD2 (M)*COS (SND2 (N))-1);
 J2R2(M.N)=(SM(N)+YR(M.N))*COSVD2(M)*SIN(SND2(N)):
    ```
181.
192.
19.3.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
212.1
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
235.1
);
236.
261.
262.
262.1
262.2
262. 3
263.
264.
265.
265.2
265. 3
266.
267.
268.
268.1
268.2
M)
268.3
\(J 2 F I(M, N)=(V(M)+S M(N) * Y F(M, N) / V(M)) * \operatorname{COS}(S N D 2(N)) ;\) J2F \((M, N)=\{J 2 F 1(M, N)-J 2 R 2(M, N)+S I N V D 2(M) *\)
(J2FS(M,N)+J2F4 (M,N)))/(V(M)**2-5M(N)*2);
\(\operatorname{J2I} 1(M, N)=(\operatorname{SM}(N)+Y F(M, N)) *(\operatorname{COSUD} 2(M) * \operatorname{COS}(\operatorname{SND} 2(N))-1) ;\)
\(J 212(M, N)=\operatorname{COSVD} 2(M) * S I N(S N D 2(N)) * Y I(M, N):\)
\(\operatorname{J} 214(M, N)=\operatorname{SIN}(\operatorname{SND} 2(N)) *(V(M)+S M(N) * Y F(M, N) / V(M)) ;\)
\(\mathrm{J} 2 \mathrm{I}(\mathrm{M}, \mathrm{N})=(-\mathrm{J} 2 \mathrm{I} 1(\mathrm{M}, \mathrm{N})-\mathrm{J} 2 \mathrm{I} 2(\mathrm{M}, \mathrm{N})+\mathrm{SINUD} 2(\mathrm{M}) *\)
(J2IE(M,N)-J2I4(M,N)))/(V(M)**2-SM(N)**2);
END : /*END OF \(\mathrm{F}(\mathrm{M}) \geqslant-\mathrm{FOF} \mathrm{J} 2\) COMFUTATIONS ***/ ELSE
DO :
\(J 2 R 1(M, N)=Y I(M, N) *(\operatorname{COSHVD2}(M) * \operatorname{COS}(S N D 2(N))-1) ;\)
J2R2 \((M, N)=(S M(N)+Y R(M, N)) * C O S H V D 2(M) * S I N(S N D 2(N)):\) \(\operatorname{J} 2 R S(M, N)=(-V(M)+S M(N) * Y R(M, N) / V(M)) * \operatorname{COS}(S N D 2(N)) ;\) \(J 2 F(M, N)=-(J 2 R 1(M, N)-J 2 F 2(M, N)+S I N H V D 2(M) *\) (J2RS (M,N)+J2R4 (M,N)) )/(V(M)**2+SM(N)**2); \(\operatorname{J} 2 I 1(M, N)=(S M(N)+Y R(M, N)) *(\operatorname{COSHVD} 2(M) * \operatorname{COS}(S N D 2(N))-1) ;\)
J2I2(M,N)=COSHVD2(M)*SIN(SND2(N))*YI (M,N):
J2I4(M,N)=SIN(SND2(N))*(-V(M)+SM(N)*YR(M,N)/V(M)); ; ;
J2I \((M, N)=-(-J 2 I I(M, N)-J 2 I 2(M, N)+S I N H V D 2(M) *(J 2 I \Xi(M, N)\)
\(-J 2 I 4(M, N)) /(V(M) * * 2+S M(N) * * 2) ;\)
END : /* END OF \(R(M)<=0\) FOR J2 COMFUTATION ***/
END :
END LODFJ2M:

/* \(\quad\) //
/* TO COMFUTE SUMJIJ2 */
/* REAL AND IMAGINARY FART OF SUMJ1J2 : SUMJF , SUMJI */
SUMJM : DO \(M=-5\) TO 5 ;
SUMJN : DO \(N=-5\) TO 5:
\(\operatorname{SUMJR}(M, N)=J 1 R(M, N)+J 2 R(M, N):\)
SUMJI \((M, N)=J 1 I(M, N)+J 2 I(M, N) ;\)
SUMJ \(1 J 2(M, N)=S U M J R(M, N) * * 2+S U M J I(M, N) * * 2\);
END SUMJN;
END SUMJM :
/****** TO COMPUTE ALPHA(M), M=-6 TO S **************/
/* TRUNCATE INFINITE SUM TO SUM SUMJIJ2(M,N) */
\(/ * \quad * /\)
ALFA: DO \(M=-5\) TO 5 :
SUML \((M)=0\) : PUT SKIP ;
SUMLL : \(D O L L=-5\) TO 5 ;
SUML (M) \(=\) SUML (M) + SUMMIJ2 (M,LL):
END SUMLL:
/***** TO COMPUTE ALPHA(M) *******/
/* */
ALFHA (M) \(=\) SQRT (SUML (M)):
PUT SKIP EDIT('ALPHA(', M,') \(=\) ', \(\operatorname{ALFHA}(M))(X(5), A, F(2,0), A, E(12,5)\)
END ALFA;
1** TO
/**
FUT SKIP;
FUT SKIF EDIT (REPEAT ('*', 40)) (X( \(\mathbf{S}), A)\);
FUT SKIP;
LOOFCN: DO \(N=-5\) TO 5;
\(\operatorname{CDISC}(N)=K O * * 2-S M(N) * * 2 ;\)
\(\operatorname{CN}(N)=\operatorname{SQRT}(\operatorname{ABS}(\operatorname{CDISC}(N)))\);
FUT SKIP EDIT ('CN(',N,')=', \(\operatorname{CN}(N), \operatorname{CDISC}(\cdot, N, \cdot)=\prime, \operatorname{CDISC}(N))\)
(X(3),2 (A,F(3,0),A,E(12,5),X(2)));
END LODFCN:
GAMADM: DO \(M=-5\) TO 5 ;
GAMAD (M) \(=\) KO**2*E1-U2 \((M) * * 2\);
GAMA (M) = SQFT (ABS (GAMAD (M))):
PUT SKIF EDIT ('GAMA (', M,') \(=\) ', GAMA (M) , 'GAMAD(', M, ') =', GAMAD (
\((X(3), 2(A, F(3,0), A, E(12,5), X(2))):\)
```

 END GAMADM :
 LOOFAMN: DO M = -5 TO 5;
 LOOFMNA : DO N = -5 TO 5;
 AMNR (M,N)=SLMJF(M,N)/ALFHA(M);
 AMNI (M,N)=SUMJI (M,N)/ALFHA (M);
 IF CDISC(N) >0%GAMAD(M) >0 THEN
 CASE1 : DO :
MNFi}(N,M)=(CN(N)+GAMA (M))*AMNR (M,N)
MNI (N,M)=(CN(N)+GAMA (M))*AMNI (M,N);
END CASE1 :
ELSE
CASE2 : IF CDISC (N)< < \& GAMAD (M) > O THEN
DO;
MNF}(N,M)=\operatorname{GAMA}(M)*AMNFi(M,N)-CN(N)*AMNI (M,N)
MNI (N,M)=CN(N)*AMNR (M,N) +GAMA (M)*AMNI (M,N);
END ; /*** CASE2 ****/
El.SE
CASES : IF CDISC (N) > 0\&GAMAD(M) \& O THEN
DO ;
MNF}(N,M)=CN(N)*AMNR (M,N)-GAMA (M)*AMNI (M,N)
MNI (N,M)=GAMA (M) *AMNR (M,N) +CN (N)*AMNI (M,N);
END ; /*** CASE ङ ***/
ELSE
CASE4 : DO ;
MNF: (N,M)=-(CN(N)+GAMA (M))*AMNI (M,N) ;
MNI (N,M)=(CN (N) +GAMA (M))*AMNR (M,N) ;
END CASE4 ;
END LOOFMNA :
END LOOPAMN :
/** TO FFINT FEAL AND IMAGINARY PAFTT OF MATRIX MN(M,N) **/
/** : MNFi(M,N) AND MNI(M,N) : M , N = -6 TO 5 **/
/***
FUT SKIF;
PUT SKIF;
FUT SKIP EDIT(REFEAT('*',S5))(X(S),A);
FUT SKIIF EDIT('FRINT VALUES OF MNREAL AND MNIMAG ')
(X(6),A) ;
PUT SKIF EDIT (REPEAT('*',S5)) (X(S),A);
MNFRINT: DO N = -S TO 5:
FUT SKIP;
FUT SKIP EDIT('N=',N)(X(7),A,F(3,0)) ;
FUT SKIF EDIT (FEPEAT('*',10)) (X(5),A);
FUT SKIF;
FUT SKIF EDIT('M','MNREAL','MNIMAG')(X(3),A,2 (X(5),A(1O)))
FUT SKIP:
NMFRINT: DO M = -5 TO 5;
PUT SKIP EDIT(M,MNR(N,M),MNI (N,M))(X(2),F(2,0),2 E(15,5));
END NMPRINT:
END MNPRINT ;
/** TO COMPUTE RIGHT HAND SIDES VECTORS FOR T(II) AND *******/
/** T(III) ,B2 AND ES ,FEEAL AND IMAGINARY PARTS
/* E2(N)=(GAMA (O)-CN(N))*AMN(O,N),N=1,O,-1,-2
/*ES (N)=(GAMA (-1)-CN(N))*AMN (-1,N),N=1,0,-1,-2
/******
LODFE2 : DO N = 1 TO -2 EY -1;
IF CDISC(N)}>0\mathrm{ THEN
DO ;
G2R(N)=(GAMA (O)-CN(N))*AMNR (O,N) ;
G2I(N)=(GAMA (O) --CN(N))*AMNI (O,N);
END :
ELSE
DO ;
B2R(N)=GAMA (O) *AMNR (O,N) +CN (N)*AMNI (O,N);
E2I (N)=GAMA (O)*AMNI (O,N)-CN (N)*AMNR (O,N);
END : END LOOFER:
314.107
314.108
314.109
314.11
314.12
314.13
314.14
314.15
314.16
314.18
314.181
314.19
314.191
314.192
314.195
314.194
314.195
314.196
314.197
314.198
314.199
314.2
314.201
314.21
314.22
314.23
⑭. 24
314.25
314.26
314.27
14.28
14.29
314.3
314.31
314.32
314.35
314.54
314.35
514.36
314.361
314.37
314.38
314.39
314.4
314.41
314.42
314.43
314.44
314.45
114.46
314.47
314.48
314.49
314.5
314.51
314.52
314.53
314.54
314.55
514.56
314.57
315.

316 .
ふi7.
318.
319.

LOOFES: DO $N=1$ TO -2 EY -1 ; $/ * \operatorname{BE}(N)$ FOF: FEAL \& IMAGINARY GAMA $(-1) * /$ IF CDISC $(N) \geqslant 0 \& \operatorname{GAMAD}(-1)$ > 0
THEN DO ;
$\operatorname{ESR}(N)=(\operatorname{GAMA}(-1)-\operatorname{CN}(N)) * \operatorname{AMNF}(-1, N) ;$
$B S I(N)=(\operatorname{GAMA}(-1)-C N(N)) * \operatorname{AMNI}(-1, N) ;$
END : \% $\mathrm{C}(\mathrm{N}): \operatorname{GAMA}(-1)$ AFE EOTH REAL */ ELSE

IF CDISC $(N)<0 \& \operatorname{GAMAD}(-1) \geqslant 0$
THEN DO :
$\operatorname{ESF}(N)=\operatorname{GAMA}(-1) * \operatorname{AMNF}(-1, N)+\operatorname{CN}(N) * \operatorname{AMNI}(-1, N) ;$
$\operatorname{ESI}(N)=\operatorname{GAMA}(-1) * \operatorname{AMNI}(-1, N)-\operatorname{CN}(N) * \operatorname{AMNF}(-1, N) ;$
END : $/ *$ END OF C(N) IMAGINAFiY \& GAMA (-1) FEAL */
ELSE
IF CDISC $(N) \geqslant 0 \& \operatorname{GAMAD}(-1)<0$ THEN DO :
$\operatorname{ESF}(N)=-(\operatorname{GAMA}(-1) * \operatorname{AMNI}(-1, N)+C N(N) * \operatorname{AMNF}(-1, N)) ;$
$\operatorname{ESI}(N)=\operatorname{GAMA}(-1) * \operatorname{AMNF}(-1, N)-C N(N) * \operatorname{AMNI}(-1, N)$;
END ; $/ * C(N)$ FEAL \& GAMA (-1) IMAGINAFY */
ELSE
DO:
$\operatorname{BSF}(N)=(C N(N)-\operatorname{GAMA}(-1)) * \operatorname{AMNI}(-1, N) ;$
ESI $(N)=(\operatorname{GAMA}(-1)-\operatorname{CN}(N)) * \operatorname{AMNF}(-1, N) ;$
END ; /* $C(N): G A M A(-1)$ AFE BOTH IMAGINAFY */
END LOOFES ; $/ *$ END COMPUTING E2 AND ES */
/** TO FRINT B2R(N), B2I (N), BSFi(N), AND BSI (N), N=1,0,-1,-2**/
FUT SKIF :
FUT SKIP:
FUT SKIF EDIT(REFEAT ('*', S5)) (X (3), A) :
FUT SKIF EDIT('FFINT FEAL AND IMAGINAFY FAFT OF E2 \&ES') ($X(b), A)$;
FUT SKIF EDIT (REPEAT ('*', SS)) $(X(\Xi), A)$;
PUT SKIP ;
FUT SKIF EDIT ('N', 'B2FEAL', 'E2IMAG', 'ESFEAL', 'ESIMAE') $(X(3), A, 4$ ($X(3), A(10)))$;
PUT SKIP :
FRINTB: $D O N=-2$ TO 1 ;
PUT SKIP EDIT(N, B2R (N), E2I (N), BSR(N), B. $3 I(N))$
($\mathrm{X}(2), F(2,0), 4$ E(15,5));
END FRINTB; $1 * *$ END FRINTING E2 AND ES **/
/** PRINT AMNR (M,N), AMNI (M,N): M,N = -6 TO $5 * * * * * * * * * * /$
/**
FUT SKIP:
FUT SKIP ;
FUT SKIF EDIT (REPEAT ('*, 50)) ($\mathrm{X}(\overline{3}), \mathrm{A})$;
FUT SKIF EDIT('FRINT VALUES OF AMNFEAL AND AMNIMAG') ($X(6), A)$:
FUT SKIF EDIT (REPEAT ('*', 55$)$) ($X(3), A)$;
FRINTAM: DO $M=-5$ TO 5 :
FUT SKIF:
PUT SKIF EDIT ('M=', M) (X.(7), $A, F(3,0))$;
FUT SKIP EDIT (REPEAT ('*',10)) $(X(5), A)$;
FUT SKIP;
FUT SKIP EDIT('N','AMNREAL','AMNIMAG')
(X(S),A,2 (X(5),A(10)));
FUT SKIF;
PFINTAN: DO $N=-5$ TO 5 :
FUT SKIF EDIT (N,AMNF (M,N), AMNI (M,N))
($\mathrm{X}(2), F(2,0), 2 E(15,5)) ;$
END FFIINTAN:
END FRINTAM ;
/* SUBFOUTINE TO INFUT DATA \quad /
INFUT: FROC(M);
DCL M FIXED (4,0);
GET LIST (M):
320.
321.
322.
325.

324 ．
325.

S26．
327.
328.
329.
330.
331.

332．
ड35．
③4．
335.
356.
537.

S38．
：
339.

340 ．
उ41．
उ42．
543.

④4．
S45．
346 ．
347.

348 ．
349.

350 ．
351 ．
352.

ㅈ․ 3.
554．
355.
356.

357．
558．
359.

360 ．
361.
362.
363.

⑥4．
365.
366.
367.
368.
369.
369.01
369.02
569.03
369.04
369.041
369.042
369.043
369.044
369.045
369.046
369.05
369.06
369.11
369.12
369.13
$\mathrm{K}=0$ ；
FI $=3.14156$ ；
THETA $=\mathrm{FI} *$ DEGREE／180．：
$S O=K O$＊SIN（THETA）：
$S M(M)=S O+M * 2 * P I / D$
$\mathrm{KO2}=(\mathrm{D} 2 / \mathrm{D}) * \mathrm{KO}^{\circ} \mathrm{O} * 2 *(\mathrm{E} 1-E 2)$ ；
$U 1(M)=50 R T(S M(M) * * 2+K O 2) . ;$
IF FLAG＝1 THEN DO；
FUT SKIF（2）：
FUT SKIF＇（2）；
FUT FAGE EDIT（＇NEWTON＇＇S METHOD＇）（X（10），A）；
PUT SKIF（2）；
FUT SKIF（2）EDIT（＇＊＊＊TE MODE＊＊＊＇）（X（10），A）；
FUT SKIF（2）；
FUT SKIF（Z）EDIT（＇INITIAL VALUES＇）（X（10），A）：
FUT SK゙IF（2）：
FUT SKIF（2）EDIT（＇M＝＇，M）（X（5），$A, F(4,0)) ;$
FUT SK゙IF EDIT（＇U1（M）＝＇，U1（M），＇EFSILON＝，EFSSILON， ＇KMAX $=\cdot, \operatorname{KMAX})(X(5), 2(A, E(12,5), X(5)), A, F(3,0) ;$

FUT SKIF（5）EDIT（＇U1＇，＇U2＇，＇F（U1）＇，＇F＇＇（U1）＇， ＇iU2－U1：＇，COUNT＇）（X（ $\bar{\prime}), A, X(12), A, X(10), A$, $X(7), A, X(B), A, X(2), A)$ ；
END：
FETURN：
END INFUT：

```
* (ONO
```

/* SUBROUTINE TO FERFORM CALCULATION */
CALCLLATE: PROC (M):
DCL M FIXED $(4,0)$;
$U Z(M)=U 1(M)-F(U 1(M), M) / F F F I M E(U 1(M), M)$;
K=ド+1;
RETURN:
END CALCULATE:
/* */
/* SUBROUTINE TO PRINT TAELE */
PRINT: PROC (M) :
DCL M FIXED $(4,0)$;
FUT SKIF EDIT(LI (M), U2 (M), F(UI (M), M), FFRIME (U1 (M), M) :
ABS (U2 (M)-U1 (M)), K)
$(5(E(12,5), X(1)), F(2,0))$;
RETURN:
END PRINT:
/* */
/* SUBFOUTINE TO FRINT FINAL RESULTS */
QUTPUT: PROC(M);
DCL MFIXED $(4,0)$;
FUT SKIF (E) EDIT('AFPROXIMATE ROOT U2= , UZ(M),
' $F(U 2)=\cdot, F(U 2(M), M))(A, E(14,7), X(5), A, E(14,7)) ;$
RETURN:
END OUTPUT:
/* TD COMFUTE SCATTRING MATRIX SCAT */
/* CONSTRUCT COEFFICIENT MATRIX AA FROM MATRIX MN(N,M) */
MM= 8;
$\mathrm{NN}=8$;
AAI1: DO I = 1 TO NN/2 ;
AAJ1: DO $\mathrm{J}=1 \mathrm{TO} \mathrm{MM} / 2 ;$
$A A(I, J)=\operatorname{MNF}(2-I, 2-J)$:
AA $(I, J+M M / 2)=-M N I(2-I, 2-J) ;$
END AAJ 1 :
END AAII ;
FIVOT= 1.0 ;
FS= 3 ;
AAI2: DO I $=\mathrm{NN} / 2+1$ TO NN ;
AAJ2: $D O \mathrm{~J}=1 \mathrm{TO} \mathrm{MM} / 2$:
AA (I.J) $=$ MNI $(N N / 2+2-I .2-J):$

369.14	AA (I; J + MM/2) = MNF (NN/2+2-I; $2-J 3:$
369.15	END AAJT :
867.16	END AAI2 ;
367.21	FHS1: $\mathrm{DO} \mathrm{I}=1, \mathrm{~S}$ TO NN :
369.22	$A A(I, M M+1)=0$;
369.23	END FHS
369.24	$A A(2, M M+1)=2 * C N(0)$
369.25	; END OF FHSi COLUMN * */
369.29	FHS2SR: DO I = 1 TO NN/2 ;
369.31	$A A(I, M M+2)=B 2 R(2-I)$;
369.32	$A A(I, M M+3)=B S F(2-I) ;$
369.35	END FHS23R ;
369. 54	\%* END OF FiHS 2 COLUMN OF AUGMENTED MATFIX IN GAUSS FROC.*/
369.35	FHS2SI: DO I = NN/2+1 TO NN:
369.36	$A A(I, M M+2)=B 2 I(M M / 2+2-I)$;
369.37	$A A(I, M M+3)=E S I(M M / 2+2-I) ;$
369.372	END RHS2SI ;
369. 3 B	/* END OF RHSE COLUMN OF AUGMENTED MATRIX IN GAUSS FFiOC. */
369.39	CALL GAUSS (AA, MM, NN, FIVOT, FiS , X):
S69.4	/* INVOKE GAUSS ELIMINATION TO COMFUTE SCATTERING MATFIX */
400.	GAUSS: FFOC (AA, M, N, PIVOT, RS, X) :
404.	/* */
407.	/* GAUSSIAN ELIMINATION WITH OF WITHOUT FIUOTING. */
408.	/* ANSWERS AfE THEN SUESTITUTED EACK INTO THE */
409.	/* ORIGINAL EQS. WITH MULTIFLE FHS VECTORS. */
410.	/* ${ }^{*}$ (${ }^{\text {*/ }}$
456.	DCL (AA(*,*), $\mathrm{X}(*, *)$) FLDAT ;
457.	$\mathrm{DCL}(\mathrm{M}, \mathrm{N}, \mathrm{F}$ TVOT, RS) FIXED (5,0$)$;
459.	START: EEGIN;
460.	
461.	$X X(F S, N)$ FLOAT (6) INIT ($F: S * N$) O) :
462.	/* INFUT AUGMENTED MATFIX *i
463.	CALL INFUT 1 ;
464.	/* CONVERT TQ UFPER TRIANGULAF MATFix */
465.	CALL UFPTRI:
466.	/* EACK SUBSTITUTE */
467.	CALL BACKSUB:
468.	CALL OUTFUT1;
469.	** PUT ANSWERS EACK IN ORIGINAL EQUATIONS */
470.	CALL TESTi:
477.	/* */
478.	/* SUEROUTINE TO INPUT AUGMENTED MATFIX */
479.	INFUT1: PROC:
480.	PUT PAGE EDIT('GAUSSIAN ELIMINATION') (X (28), A) :
481.	IF FIVOT=1 THEN FUT SKIP EDIT('WITH FIVOTING')
482.	($\mathrm{X}(31), A)$;
483.	ELSE PUT SKIF EDIT ('WITHOUT FiVOTING') (X 30$), \mathrm{A}$);
484.	FUT SKIP EDIT ('FOR ' M, ' EY ', N, MATRIX')
485.	$(X(29), A, F(2,0), A, F(2,0), A):$
486.	FUT SKIP EDIT('WITH',RS,'RIGHT HAND SIDES')
487.	($\mathrm{X}(29), A, F\{3,0\rangle, X(2), A)$;
488.	PUT SKIF(5) ;
489.	DO I=1 TO M;
490.	DO $J=1$ TO N+RS;
491.	$A C(I, J)=A A(I, J) ;$
492.	
493.	EE (I,J) $=A C(I, J)$;
494.	END:
495.	FUT SKIF:
496.	END:
497.	FETUEN:
498.	END INFUT1:
497.	/* */
500.	/* SUEFOUTINE TO PRINT MATRIX */
501.	PRINT: FROC:
502.	FUT SKIP(5):

503.
504.
505.
506.
507.
508.

E09.
510.
511.
512.
513.

514 .
515 .
516.
517.
518.
519.
520.
521.
522.
523.
524.
525.
526.
527.
528.
529.
530.

531 .
532.
53.
534.
5.35.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
548.
549.
550.

551 .
552.
553.
554.
555.
556.
557.
558.
559.
560.
561.
561.1
562.
56.
564.
565.
566.
567.

DO $\mathrm{I}=1$ TO M ; DO $\mathrm{J}=1$ TO N+FG;

FUT EDIT(AC(I,J)) (X(1),F(B,Z));
END:
FUT SKIF;
END:
FETURN:
END FRINT;
/*
/* SUGROUT. CONVEFTS MATFIX TO UFFEF TRIANGULAR *,
UFTRI: FROC:
DO $K=1$ TO $\mathrm{M}-1$;
IF FIVOT=1 THEN CALL PIVOT1:
DO I=K゙+1 TO M:
RATIO $=A C(I, K) / A C(K, K):$
DO $J=K$ TO N+FS:
$A C(I, J)=A C(I, J)-F A T I O * A C(K, J) ;$
END:
END;
END:
FETURN:
END UFTRI:
** SUEFOUTINE TO USE PIVOTING */
PIVOT1: FROC;
$\mathrm{F}=\mathrm{K}$:
DO I=K゙+1 TO M; IF $\operatorname{AES}(A C(F, K)) \& \operatorname{ABS}(A C(I, K))$ THEN $F=I ;$
END:
IF $\mathrm{F}^{-}=\mathrm{K}$ THEN DO; DO $\mathrm{J}=1$ TO N+RS:

HOLD (J) $=A C(K, J)$;
$A C(\mathbb{K}, J)=A C(P, J):$
$A C(P, J)=\operatorname{HOLD}(J) ;$
END:
END;
FETUFN;
END FIVOT1:

```
/* . */
```

/* SUBROUTINE TO BACK SUBSTITUTE */

BACKSUB: FROC:
DO $K=1$ TO RS ;
DO $I=N$ TO 1 EY (-1);
SUM=0;
DO J=I TO M; $S U M=S U M+X X(K, J) * A C(I, J)$; END; $X X(K, I)=(A C(I, N+K)-S U M) / A C(I, I) ;$
END:
END ;
RETURN:
END BACKSUB;
/* */
/* SUBROUTINE TO PRINT ANSWERS */
OUTPUT1: FROC:
PUT SKIF(S) EDIT('ANSWERS') (X (34$), A)$:
DO J = 1 TO.RS :
FUT SKIF EDIT ('SET', J) (X (20), A,F(E,0));
FUT SKIF:
DO $I=1$ TO N:
$X(J, I)=X X(J, I) ;$
FUT SKIF EDIT ('X(',J, ', ', I, ') $=$ ', $X \times(J, I))$
$(X(28), A, F(2,0), A, F(2,0), A, F(9,0)) ;$
END;
END :
FETURN;
END OUTFUT1:

```
568.
5 6 9 .
570.
571.
572.
573.
574.
575.
576.
5 7 7 .
5 7 8 .
579.
580.
581.
582.
583.
544.
585.
586.
587.
588.
589.
589.1
5 9 0 .
5 9 1 .
591.1
591.2
5 9 2 .
5 9 2 . 1
592.2
592.3
592.4
592.5
592.6
593.
5 9 4 .
595.
5 9 6 .
597.
598.
599.
600.
6 0 1 .
6 0 2 .
603.
604.
6 0 5 .
6 0 6 .
6 0 7 .
6 0 8 .
609.
610.
6 1 1 .
612.
613.
6 1 4 .
615.
616.
6 1 7 .
618.
$19.
620.
621.
622.
623.
624.
```
```

                    /* SUBROUTINE TO FUT ANSWEFS EACK IN DRIGINAL */
    ```
 /* SUBROUTINE TO FUT ANSWEFS EACK IN DRIGINAL */
 *i
 *i
 /* EQUATIONS
 /* EQUATIONS
 TEST1: FROC:
 TEST1: FROC:
 FUT SKIF'(5) EDIT
 FUT SKIF'(5) EDIT
 ('ANSWEF'S FUT IN DFIGINAL EQUATIONS')(X(21),A):
 ('ANSWEF'S FUT IN DFIGINAL EQUATIONS')(X(21),A):
 DO K=1 TO RS :
 DO K=1 TO RS :
 FUJT SKIF EDIT ('SET , K) (X(29),A,F(2,O)):
 FUJT SKIF EDIT ('SET , K) (X(29),A,F(2,O)):
 FUT SKKIF:
 FUT SKKIF:
 DO I=1 TO M;
 DO I=1 TO M;
 PUT SKIF;
 PUT SKIF;
 SUM=O;
 SUM=O;
 FUT SKIF EDIT(' ')(X(1),A);
 FUT SKIF EDIT(' ')(X(1),A);
 DO J=1 TO N;
 DO J=1 TO N;
 SUM=SUM+BB(I,J)*XX(K,J):
 SUM=SUM+BB(I,J)*XX(K,J):
 PUT EDIT(EB(I,J),'X(',J,') ')
 PUT EDIT(EB(I,J),'X(',J,') ')
 (F(9,3),A,F(1,O),A);
 (F(9,3),A,F(1,O),A);
 IF J&N THEN FUT EDIT('+ ')(A);
 IF J&N THEN FUT EDIT('+ ')(A);
 ELSE IF }J=N=N\mathrm{ THEN FUT EDIT('= ')(A);
 ELSE IF }J=N=N\mathrm{ THEN FUT EDIT('= ')(A);
 END;
 END;
 FUTT EDIT(SUM) (F(9,3));
 FUTT EDIT(SUM) (F(9,3));
 END;
 END;
 END ;
 END ;
 RETURN;
 RETURN;
 END TEST1:
 END TEST1:
 END STAFT ;
 END STAFT ;
 END GAUSS :
 END GAUSS :
 /* */
 /* */
 CALL LOOPT; /* FROCEDURE TO COMFUTE T VECTOFS */
 CALL LOOPT; /* FROCEDURE TO COMFUTE T VECTOFS */
 /* TO FRINT OUT T VECTORS FROCEDRE CALL */
 /* TO FRINT OUT T VECTORS FROCEDRE CALL */
 CALL PFINTT;
 CALL PFINTT;
 CALL INNEF : /* FROCEDFUE TO COMPUTEF DOT FFIODUCT */
 CALL INNEF : /* FROCEDFUE TO COMPUTEF DOT FFIODUCT */
 CALL SCATTER; /* PROCEDURE TO COMFUTE SCATTEFING MATFIX*/
 CALL SCATTER; /* PROCEDURE TO COMFUTE SCATTEFING MATFIX*/
 CALL RTL ; /* FROCEDURE TO COMPUTE FITL MATFIX */
 CALL RTL ; /* FROCEDURE TO COMPUTE FITL MATFIX */
 /* FFIOCEDURE TO COMPUTE T VECTORS */
 /* FFIOCEDURE TO COMPUTE T VECTORS */
 /* TR AND TI ARE REAL AND IMAGINARY FAFT OF T VECTORS */
 /* TR AND TI ARE REAL AND IMAGINARY FAFT OF T VECTORS */
LOOFT: PFOC;
LOOFT: PFOC;
 DOK=1 TO S :
 DOK=1 TO S :
 DO N=1 TO -2 EY -1;
 DO N=1 TO -2 EY -1;
 TF(k,N)=X(K,2-N):
 TF(k,N)=X(K,2-N):
 TI (K,N)=X(K,G-N):;
 TI (K,N)=X(K,G-N):;
 END:
 END:
 END;
 END;
 RETURN:
 RETURN:
 END LOOF'T ;
 END LOOF'T ;
 /* PRINT T VECTORS, TREAL AND TIMAGINARY */
 /* PRINT T VECTORS, TREAL AND TIMAGINARY */
 /*
 /*
 FFINTT: FFROC:
 FFINTT: FFROC:
 FUT SKIP:
 FUT SKIP:
 FUT SKIP EDIT(REPEAT('*',55)) (X(\Xi),A);
 FUT SKIP EDIT(REPEAT('*',55)) (X(\Xi),A);
 FUT SKIF EDIT('PRINT T VECTORS FOR N = 1,0,-1,-2 ')
 FUT SKIF EDIT('PRINT T VECTORS FOR N = 1,0,-1,-2 ')
 (X(7),A):
 (X(7),A):
 FLUT SKIIF EDIT(REFEAT('*`,S5))(X(3),A);
 FLUT SKIIF EDIT(REFEAT('*`,S5))(X(3),A);
 FUT SKIP ;
 FUT SKIP ;
 DO K=1 TO J;
 DO K=1 TO J;
 FUTT SKIF:
 FUTT SKIF:
 FUT SKIF EDIT('K=',K)(X(10),A,F(3,0));
 FUT SKIF EDIT('K=',K)(X(10),A,F(3,0));
 FUT SKIF EDIT (FEFEAT('*',1O)) (X(5),A);
 FUT SKIF EDIT (FEFEAT('*',1O)) (X(5),A);
 FUT SKIF:
 FUT SKIF:
 FUT SKIF EDIT('N','TREAL','TIMAG')(X(7),A,2 (X(4),A(10)));
 FUT SKIF EDIT('N','TREAL','TIMAG')(X(7),A,2 (X(4),A(10)));
 FUT SKIF:
 FUT SKIF:
 DO N =: -2 TO 1 ;
 DO N =: -2 TO 1 ;
 FUT SKIF EDIT(N,TR(K,N),TI(K,N))(X(S),F(#,0),2 E(15,5));
 FUT SKIF EDIT(N,TR(K,N),TI(K,N))(X(S),F(#,0),2 E(15,5));
 FUT SKIF:
 FUT SKIF:
 END:
```

            END:
    ```
```

625. 

6 2 6 .
627.
628.
629.
630.
631.
632.
635.
6.34.
635.
636.
637.
658.
6.39.
6 4 0 .
6 4 1 .
642.
643.
644.
645.
646.
647.
648.
649.
650.
651.
6 5 2 .
653.
654.
655.
656.
657.
658.
659.
660.
661.
6 6 2 .
603.
6 6 4 .
664.1
665.
6 6 6 .
667.
6 6 8 .
6 6 9 .
6 7 0 .
671.
672.
673.
6 7 4 .
6 7 5 .
6 7 6 .
6 7 7 .
678.
679.
680.
681.
682.
695.
6 8 4 .
095.
686.
687.
688.
689.
END;
END FFIINTT:
/* FROCEDURE TO COMFUTE INNEF FRODUCT OF AMN AND T MATRICES*/
INNEF : FROC;
DOK = 1 TO
FOF $(K)=0 ;$
FOI (K) $=0$ :
DO $N=-2$ TO 1 ;
$\operatorname{ROF}(K)=F O R(K)+A M N R(N, O) * T F(K, N)-A M N I(N, O) * T I(K, N) ;$
ROI (K) $=\mathrm{ROLI}(K)+\operatorname{AMNI}(N, O) * T R(K, N)+\operatorname{AMNR}(N, O) * T I(K, N) ;$
END :
END;
$\operatorname{ROR}(1)=\operatorname{ROR}(1)-1$;
$\operatorname{ROF}(2)=\operatorname{ROR}(2)+\operatorname{AMNF}(0,0)$;
ROI (2) $=$ ROI (2) +AMNI $(0,0)$;
ROR ( 3 ) = ROF ( $(3)+$ AMNF $(-1,0)$;
$\operatorname{ROI}(\Xi)=\mathrm{FOI}(\mathrm{S})+\operatorname{AMNI}(-1,0)$;
/* FRINT INNEF FRODUCT OF AMN (N,O)AND T(K,N) */
/* */
FUT SKIF:
FUT SkIF EDIT (REFEAT ('*', SS)) (X(7), A);
FUT SKIF EDIT ('RO, INNER FFODUCT OF $\left.A \& T^{\prime}\right)(X(5), A)$;
FUT SKIF EDIT (REFEAT ('*', SE)) (X(7),A);
FRINTRO: DO I = 1 TO 3 :
PUT SKIF EDIT('ROREAL(', I, ')=', FOR(I),'ROIMAG(', I,')=',
ROI (I) ) $(X(10), 2$ ( $X(2), A, F(2,0), A, E(12,5))) ;$
END FRINTRO ;
END INNER :
/* END ON INNER FRODUCT FROCEDURE */
/* PFIOCEDURE TO COMFUTE SCATTERING MATFIX */
SCATTER: FROC;
LOOFSC1: DO $J=-1$ TO 1 ;
$\operatorname{SCATR}(1, \mathrm{~J})=\operatorname{ROR}(2-J)$;
SCATI $(1, J)=$ ROI $(2-J)$;
END LOOPSCi;
LOOPSC2: DO I $=0,-1$;
DO $J=-1$ TO 1 ;
$\operatorname{SCATR}(I, J)=T R(2-J, I) ;$
$\operatorname{SCATI}(I, J)=T I(2-J, I)$ :
END :
END LOOPSC2;
/* PRINT SCATTERING MATRX SCATREAL, SCATIMAG FAFTS */
/*
FUT SKIP:
PUT SKIP EDIT (REPEAT ('*', SS)) (X ( 3 ), A) :
FUT SKIP EDIT('PRINT SCATTERING MATRIX SCAT') (X(10), A);
PUT SKIP EDIT (REPEAT ('*', 55$)$ ) ( $X(3), A)$;
FUT SKIP:
DO $K=-1$ TO 1 ;
PUT SKIP;
FUT SKIP EDIT ('K=',K) $(X(10), A, F(2,0))$;
FUT SKIF EDIT (REFEAT ('*', 10) ) $(X(5), A)$;
FUT SKIP:
DO $N=-1$ TO 1 ;
FUT SKIF EDIT ('SREAL (',N,',', $\left.{ }^{\prime},{ }^{\prime}\right)=$ ', SCATF(N,K),
SIMAG(',N,',', $\left.\mathrm{S}^{\prime},{ }^{\prime}\right)=$ ', SCATI (N,K))
$(X(5), 2(X(2), A, F(2,0), A, F(2,0), A, E(12,5))) ;$
END :
END:
FETURN:
END SCATTER:
/* COMPUTE COEFFICEINT MATRIX RTL, AND THE FHS VECTOF**/
/* OF THE SYSTEM OF EQUATIONS TO SOLVE R,R',T(O), AND */
/* $T(-1)$


```
 756.
 757.
 758.
 7 5 9 .
 760.
;
 761.
 762.
 763.
 764.
 765.
 766.
 767.
 768.
 769.
 70.
 771.
 772.
 773.
 74.
 775.
 7 7 6 .
 777.
 7 7 8 .
 7 7 9 .
 780.
 781.
 782.
 7 8 3 .
,
 784.
 785.
 786.
 787.
 788.
 789.
 790.
 7 9 1 .
 7 9 2 .
 79.3.
 794.
 7 9 5 .
 7 9 6 .
 7 9 7 .
798.
7 9 9 .
800.
801.
8 0 2 .
803.
804.
805.
806.
807.
808.
809.
810.
811.
812.
81:.
814.
815.
816.
817.
818.
819.
```

```
 IF GAMAD (-1) > 0 THEN
```

    IF GAMAD (-1) > 0 THEN
    DO ; /* FTL (2,4) WHEN GAMA (-1) IS FEEAL */
    DO ; /* FTL (2,4) WHEN GAMA (-1) IS FEEAL */
    FTLFR(2,4)=-(SCATF (1,-1)*COS(GAMA_1H)-SCATI (1,-1)*
    FTLFR(2,4)=-(SCATF (1,-1)*COS(GAMA_1H)-SCATI (1,-1)*
                SIN(GAMA 1H)):
                SIN(GAMA 1H)):
    FTLI (2,4)=-(SCATF( (1,-1)*SIN(GAMA_1H)+SCATI(1,-1)*COS(GAMA_1H))
    FTLI (2,4)=-(SCATF( (1,-1)*SIN(GAMA_1H)+SCATI(1,-1)*COS(GAMA_1H))
    END :
    END :
    ELSE
    ELSE
    DO ; /* RTL(2,4) WHEN EAMA(-1) IS IMAGINAFiY */
    DO ; /* RTL(2,4) WHEN EAMA(-1) IS IMAGINAFiY */
    RTLF(2,4)=-EXF {-GAMA_1H)*SCATF (1,-1);
    RTLF(2,4)=-EXF {-GAMA_1H)*SCATF (1,-1);
    RTLI (2,4)=-EXF (-GAMA_1H)*SCATI (1,-1);
    RTLI (2,4)=-EXF (-GAMA_1H)*SCATI (1,-1);
    END :
    END :
    /* TO COMFUTE RTL (ङ,З) */
/* TO COMFUTE RTL (ङ,З) */
/* FEAL \& IMAGINARY FARTS OF S(0,0)**2 \& S(0,-1)*S(-1,0) */
/* FEAL \& IMAGINARY FARTS OF S(0,0)**2 \& S(0,-1)*S(-1,0) */
DO I = 0 TO -1 EY -1 ;
DO I = 0 TO -1 EY -1 ;
AB(S-I)=SCATR (O,I)*SCATR (I,O)-SCATI (O,I)*SCATI (I,O) ;
AB(S-I)=SCATR (O,I)*SCATR (I,O)-SCATI (O,I)*SCATI (I,O) ;
CD(S-I)=SCATR (O,I)*SCATI (I,O) +SCATI (O,I)*SCATR (I,O);
CD(S-I)=SCATR (O,I)*SCATI (I,O) +SCATI (O,I)*SCATR (I,O);
END ; /* END OF COMFUTING FEAL \& IMAGINAFY FARTS OF SCAT */
END ; /* END OF COMFUTING FEAL \& IMAGINAFY FARTS OF SCAT */
/* FTL (ङ,\Xi) */
/* FTL (ङ,\Xi) */
IF GAMAD (-1) > 0 THEN
IF GAMAD (-1) > 0 THEN
DO ; /* FTTL(3,3) WHEN GAMA(-1) IS REAL */
DO ; /* FTTL(3,3) WHEN GAMA(-1) IS REAL */
FTLF (J, З) =-AB (5) *COS (GAMAO2H) +CD(5) *SIN (GAMAO2H)
FTLF (J, З) =-AB (5) *COS (GAMAO2H) +CD(5) *SIN (GAMAO2H)
-AE (6)*COS(GAMAO_1H) +CD (6)*SIN(GAMAO_1H) +1;
-AE (6)*COS(GAMAO_1H) +CD (6)*SIN(GAMAO_1H) +1;
FTLII (3,3) =- (AB (5)*SIN (GAMAO2H) +CD (5)*COS (GAMAO2H)
FTLII (3,3) =- (AB (5)*SIN (GAMAO2H) +CD (5)*COS (GAMAO2H)
+AB(6)*SIN(GAMAO_1H)+CD(6)*COS(GAMAO_1H));
+AB(6)*SIN(GAMAO_1H)+CD(6)*COS(GAMAO_1H));
END ;
END ;
ELSE
ELSE
DO : /* RTL(3, З) WHEN GAMA(-1) IS IMAGINAFY */
DO : /* RTL(3, З) WHEN GAMA(-1) IS IMAGINAFY */
RTLF(3,3)=1-AB (5)*COS (GAMAO2H) +CD (5)*SIN (GAMAO2H)-EXF(-GAMA_IH
RTLF(3,3)=1-AB (5)*COS (GAMAO2H) +CD (5)*SIN (GAMAO2H)-EXF(-GAMA_IH
* (AB (6)*COS (GAMAOH)-CD (6)*SIN (GAMAOH));
* (AB (6)*COS (GAMAOH)-CD (6)*SIN (GAMAOH));
RTLI (S,\Xi) =-AE (5) *SIN(GAMAO2H)-CD (5) *COS (GAMAO2H)
RTLI (S,\Xi) =-AE (5) *SIN(GAMAO2H)-CD (5) *COS (GAMAO2H)
-EXF(-GAMA_1H)*(AB (6)*SIN (GAMAOH) +CD (6)*COS (GAMAOH));
-EXF(-GAMA_1H)*(AB (6)*SIN (GAMAOH) +CD (6)*COS (GAMAOH));
END :
END :
/* TO COMPUTE RTL (3,4) */
/* TO COMPUTE RTL (3,4) */
/* REAL \& IMAGINARY OARTS OF S(0,0)*S(0,-1)\& S(0,-1)*S(-1,-1) */
/* REAL \& IMAGINARY OARTS OF S(0,0)*S(0,-1)\& S(0,-1)*S(-1,-1) */
DO I = 0 TO -1 EY -1 ;
DO I = 0 TO -1 EY -1 ;
AB(7-I)=SCATR (O,I)*SCATR (I,-1)-SCATI (O,I)*SCATI (I, -1);
AB(7-I)=SCATR (O,I)*SCATR (I,-1)-SCATI (O,I)*SCATI (I, -1);
CD(7-I)=SCATR (O,I)*SCATI (I,-1)+SCATI (O,I)*SCATR (I, -1);
CD(7-I)=SCATR (O,I)*SCATI (I,-1)+SCATI (O,I)*SCATR (I, -1);
END ;
END ;
/* RTL(3,4) */
/* RTL(3,4) */
IF GAMAD (-1) > O THEN
IF GAMAD (-1) > O THEN
DO /* RTL(3,4) WHEN GAMA (-1) IS REAL */
DO /* RTL(3,4) WHEN GAMA (-1) IS REAL */
RTLR (3,4)=-(AB (7)*COS (GAMAO_1H)-CD (7)*SIN(GAMAO_1H)
RTLR (3,4)=-(AB (7)*COS (GAMAO_1H)-CD (7)*SIN(GAMAO_1H)
+AB (8)*COS (GAMA_\overline{12H) -CD (8)*SIN (GAMA_12H));}
+AB (8)*COS (GAMA_\overline{12H) -CD (8)*SIN (GAMA_12H));}
FTLI (3,4)=-(AB (7)*SIN(GAMAO_1H) +CD (7)*COS(GAMAO_1H)
FTLI (3,4)=-(AB (7)*SIN(GAMAO_1H) +CD (7)*COS(GAMAO_1H)
+AB(8)*SIN(GAMA_12H)+CD(8)*COS(GAMA_12H));
+AB(8)*SIN(GAMA_12H)+CD(8)*COS(GAMA_12H));
END :
END :
ELSE
ELSE
DO ; /* RTL (3,4) WHEN GAMA(-1) IS IMAGINAFY */
DO ; /* RTL (3,4) WHEN GAMA(-1) IS IMAGINAFY */
RTLR (3,4)=EXP(-GAMA_1H)*(CD (7) *SIN(GAMAOH)-AB(7)*COS (GAMAOH))
RTLR (3,4)=EXP(-GAMA_1H)*(CD (7) *SIN(GAMAOH)-AB(7)*COS (GAMAOH))
-EXP(-GAMA_12H)*AB(8);
-EXP(-GAMA_12H)*AB(8);
RTLI (3,4) =-EXP(-GAMA_1H)*(AB (7)*SIN (GAMAOH) +CD (7)*
RTLI (3,4) =-EXP(-GAMA_1H)*(AB (7)*SIN (GAMAOH) +CD (7)*
COS (GAMAOH)) -CD (8)*EXP(-GAMA_12H) ;
COS (GAMAOH)) -CD (8)*EXP(-GAMA_12H) ;
END ;
END ;
/* TO COMPUTE RTL (4,3) */
/* TO COMPUTE RTL (4,3) */
/* FEAL \& IMAGINARY FARTS OF S(-1,0)*S(0,0) \& S(-1,-1)*S(-1,0) */
/* FEAL \& IMAGINARY FARTS OF S(-1,0)*S(0,0) \& S(-1,-1)*S(-1,0) */
DO I = % TO -1 EY -1 ;
DO I = % TO -1 EY -1 ;
AB(9-I)=SCATR (-1,I)*SCATF (I,O)-SCATI (-1,I)*SCATT (I,0);
AB(9-I)=SCATR (-1,I)*SCATF (I,O)-SCATI (-1,I)*SCATT (I,0);
CD(9-I)=SCATF(-1,I)*SCATI (I,O)+SCATI (-1,I)*SCATF(I,O);
CD(9-I)=SCATF(-1,I)*SCATI (I,O)+SCATI (-1,I)*SCATF(I,O);
END ;
END ;
/* FTL(4, `) */ /* FTL(4, `) */
IF GAMAD (-1) > O THEN
IF GAMAD (-1) > O THEN
DO : /* RTL (4,3) WHEN GAMA(-1) IS REAL */
DO : /* RTL (4,3) WHEN GAMA(-1) IS REAL */
RTLR (4,3)=-(AB (9)*COS (GAMAO2H)-CD (9)*SIN (GAMAO2H)
RTLR (4,3)=-(AB (9)*COS (GAMAO2H)-CD (9)*SIN (GAMAO2H)
+AE(10)*COS(GAMAO 1H)-CD(1O)*SIN(GAMAO 1H)):

```
 +AE(10)*COS(GAMAO 1H)-CD(1O)*SIN(GAMAO 1H)):
```

820. 
821. 
822. 
823. 
824. 
825. 
826. 
827. 
828. 
829. 
830. 

8.1 .
8.2 .
8.53.
$8 \mathbf{8 .}$
835.
836.
8.7.
8.88.
839.
840.
841.
842.
84.3.
844.
845.
846.
847.
848.
849.
850.

851 .
852.
85.
854.
855.
856.
857.
858.
859.
860.
861.
862.

86ミ.
864.
865.
866.
867.
868.
868.1
869.
898.
904.
905.
906.
907.
908.
909.
910.
911.
711.1
712.
914.
915.
916.
917.

RTLI $(4,3)=-(A E(9) * \operatorname{SIN}($ GAMAO2 $H)+C D(9) * \operatorname{COS}($ GAMAO2H $)$ $\left.+A B(10) * S I N\left(G A M A O \_1 H\right)+C D(10) * C O S(G A M A O \quad 1 H)\right)$ :
END :
ELSE
DO : $/ *$ FTL $(4,3)$ WHEN GAMA ( -1 ) IS IMAGINAFY */
$\operatorname{RTLF}(4,3)=-\operatorname{AB}(9) * \operatorname{COS}(\operatorname{GAMAO} 2 H)+\operatorname{CD}(9) * S I N($ GAMAO2H $)$
-EXF (-GAMA_1H)*(AB(10)*COS (GAMAOH)-CD (10)*SIN(GAMAOH));
RTLI $(4,3)=-A B(9) * S I N(G A M A O 2 H)-C D(9) * C O S(G A M A O 2 H)$.
-EXF (-GAMA_1H)*(AB (1O)*SIN(GAMAOH) +CD (10)*COS (GAMAOH));
END :
/* TO COMFUTE FITL $(4,4)$ */
/* REAL \& IMAGINAFY FAFTS OF $S(-1,0) * S(0,-1) \& S(-1,-1) * * 2 * /$
DO I $=0$ TO -1 BY -1 ;
$\operatorname{AE}(11-\mathrm{I})=\operatorname{SCATR}(-1, \mathrm{I}) * \operatorname{SCATR}(\mathrm{I},-1)-\operatorname{SCATI}(-1, I) * \operatorname{SCATI}(I,-1) ;$
$\operatorname{CD}(11-I)=\operatorname{SCATR}(-1, I) * \operatorname{SCATI}(I,-1)+\operatorname{SCATI}(-1, I) * \operatorname{SCATF}(I,-1) ;$
END :
/* RTL (4,4) */
IF GAMAD $(-1)>0$ THEN
DO ; $1^{*} \operatorname{FTL}(4,4)$ WHEN GAMA $(-1)$ IS REAL */
$\operatorname{RTLF}(4,4)=-\left(\operatorname{AB}(11) * \operatorname{COS}(\right.$ GAMAO 1 H$)-\operatorname{CD}(11) * S I N\left(G A M A O \_1 H\right)$ $+A B(12) * \operatorname{COS}($ GAMA_1 $\left.\overline{2} H)-C D(12) * S I N\left(G A M A \_1 \overline{2} H\right)\right)+1 ;$
$\operatorname{FTLI}(4,4)=-($ AB $(11) * \operatorname{SIN}($ GAMAO_1H) $+\operatorname{CD}(11) * \operatorname{COS}($ GAMAO_1H) $\left.+A B(12) * S I N\left(G A M A \_12 H\right)+C D(12) * C O S\left(G A M A \_12 H\right)\right) ;$
END :
ELSE
DO : /* RTL(4,4) WHEN GAMA(-1) IS IMAGINARY */
$\operatorname{FTLR}(4,4)=1-\operatorname{EXF}(-\operatorname{GAMA} 1 H) *(A E(11) * \operatorname{COS}(\operatorname{GAMAOH})-\operatorname{CD}(11) *$ SIN (GAMAOH) )-EXF (-GAMA_12H)*AB (12);
$\operatorname{RTLI}(4,4)=-\operatorname{EXP}\left(-G A M A \_1 H\right) *(A B(11) * S I N(G A M A O H)+C D(11) *$ $\operatorname{COS}($ GAMAOH $)$ ) $\operatorname{EXF}^{-}\left(-\right.$GAMA_12H $^{2} * C D(12) ;$
END :
/* END DF COMFUTING COEFFICIENT MATFIX RTL FOR SOLVING */
/* R AND RPRIME, $T(0)$ AND $T(-1)$ IN A SYSTEM OF EQUATIONS */
/* TO FRINT ELEMENTS OF FTLL MATRIX */
FUT SKIP :
PUT SKIP EDIT (REPEAT ('**, 55$)$ ) (X(3), A) ;
FUT SKIF EDIT('FRINT COEFFICIENT MATRIX FTL') (X(10), A);
PUT SKIP EDIT (REFEAT ('*', SS) ) (X ( 3 ), A) ;
PUT SKIP ;
DO I = 1 TO 4 ;
PUT SKIP:
PUT SKIP EDIT ('I=', I) (X(10), A,F(2,0)):
PUT SKIP EDIT (REPEAT ( $\left.{ }^{*}, 10\right)$ ) $(X(5), A)$;
PUT SKIP :
DO $J=1$ TO 4 ;
PUT SKIP EDIT('RTLR(',I,', ', J,')=', RTLR(I,J), 'RTLI(', I, ', ', $\left.\left.\mathrm{J},{ }^{\prime}\right)={ }^{\prime}, \operatorname{RTLI}(\mathrm{I}, \mathrm{J})\right)$
( $\mathrm{X}(5), 2(X(2), A, F(2,0), A, F(2,0), A, E(12,5)))$;
END ; /* END OF PRINTING RTL (I,J) FOR I, J = 1 TO 4 */
END ; 1* END OF PRINTING RTL(I,J) FOR I,J = 1 TO 4 */
END RTL :
/* TO COMPUTE R,RFRIME,T(O),AND T(-1) */

## $M M=8 ;$

$\mathrm{NN}=8$;
PIVOT= 1;
RSS=1;
AAII1: DO I=1 TO NN/2;
AAJJ1: DO $\mathrm{J}=1 \mathrm{TO} \mathrm{MM} / 2$;
AA(I,J)=RTLR(I,J):
AA (I, J+NN/2) =-FTLLI (I,J):
END AAJJ1:
END AAIII;
AAII2: DO $I=N N / 2+1$ TO NN :
AAJJ2: DO $\mathrm{J}=1 \mathrm{TO} \mathrm{MM} / 2$;
AA (I, J) $=$ RTLI (I-NN/2,J);
$A A(I . J+N N / 2)=F T L F(I-N N / 2 . J):$

```
 918.
 END AAJJ2;
 919.
 END AAII2;
 920
 /* FIHGT HAND VECTOR FOR THE SYSTEM OF EQUATIONS *
921
 922.
 923.
 924.
 925.
 926.
 927.
 928.
 927.
 930.
1042.
1044.
1045.
1046.
1047.
1048.
1049.
1050.
1051.
1052.
1053.
1054.
1055.
1056.
1057.
1058.
1059.
1060.
1061.
1062.
1063.
1064.
1065.
1066.
1067.
1068.
1069.
1070.
1071.
1072.
1073.
1074.
1075.
1076.
1077.
1078.
1079.
1080.
1110.
1111.
1112. //GO.SYSIN DD *
1113. .54,.27,.27,2.56,1.44,1.000,45,1.1
1114. -6,-5,-4,-3,-2,-1,0,1,2,3,4,5
1115. /*
1116. //
```

