
NASA SBIR Phase'I Report

p Y 2
Title: Parallel Image Compression

Technical Topic Category: 07.04 - Signal and Information Processing

Amount of Funding: $49,932.

Name and Address of Proposing Firm:
RSIC Associates
350 Lake St.
Belmont, MA 02178

Principal Investigator: John H. Reif.

Keywords: Data compression, image compression, vector quantization,
adaptive algorithm, parallel algorithm, massively parallel processor (MPP).

Table of Contents

Section 1: Summary

Section 2: Technical Foundations

Section 3: Results

Section 4: Simulation Code

Section 5: MPP Code

(BASA-CE-160758) PARALLEL I F A G E CCEPBESSION N8 8-2C 8 37
(6SIC A S E G C i a t e E) 42 CSCL C9B

Unclas
G3/6 1 0093249

- 2 -

1. Summary

This document reports on the research performed for SBIR Phase I funding
of RSIC associates. This research has now been completed. We have developed a
parallel compression algorithm for the 16,384 processor MPP machine developed
by NASA. This algorithm has the following properties:

0 It is on-line; that is only a single pass over the data is made.

0 It is dynamic; no prior knowledge of the data is needed. A dictionary of
“patterns” on which compression is based is dynamically constructed.

0 The tradeoff between fidelity and the amount of compression achieved can
be adjusted via a single integer parameter. As a special case, pure lossless
compression may be specified.

0 Because our algorithm is on-line, dynamic, and the degree of lossiness can
be adjusted, it provides the basis for a single universal device that can be
used for a variety of data types, including:

0 digital images

0 video

0 speech

0 text

0 database information

The above data types are common to many NASA missions that involve
data acquisition and storage.

0 It can be implemented with currrent technology to operate in real-time,
even for extremely high-bandwidth applications; e.g., 30 frames per second
of 512 by 512 pixels per frame video.

0 The cost of the hardware goes down as the bandwidth of the application
goes down.

0 The amount of compression that is achieved for a given degree of fidelity
on a given type of data compares favorably with existing, more specialized
algorithms.

- 3 -

2. Technical Foundations

The serial version of our algorithm can be viewed as a combination of on-
line dynamic lossless text compression techniques (which employ simple learning
strategies) and vector quantization. We start by describing these concepts. Later
we will discuss how we combine them to form a new strategy for performing
dynamic on-line lossy compression. Finally we will discuss our this algorithm has
been implemented in a massively parallel fashion on the MPP.

Lorrlesr Text Compression

Algorithms for lossless text compression have been known since the 1950’s. During the
pas t decade, algorithms t h a t dynamically “learn” about the d a t a and replace frequently occurring
fragments of d a t a by tokens have been widely studied. We shall now briefly discuss a general
framework for dynamic lossless compression t h a t is developed in the book by J. Storer. T h e basic
idea is t o maintain a dictionary of commonly occurring d a t a fragments; this dictionary is con-
s tant ly being modified by some learning heuristic.

We use C to denote the underlying alphabet from which “characters” of d a t a are drawn.
For example, with text, the characters might be 7-bit ASCII codes stored one per byte whereas
with digitally stored speech the characters might be 12-bit samples stored in two’s complement
form. Algorithm 1 is an encoding algorithm, which reads a s t ream of characters over C and
writes a stream of bits, and Algorithm 2 is a decoding algorithm, which receives a s t ream of bits
and outputs a stream of characters over E. Note that for both the presentation of these algo-
ri thms and for the discussion to follow we shall use the notation ID I to denote the current
number of entries in the local dictionary D and <D> to denote the maximum number of entries
t h a t D can hold. We shall refer to indices into a dictionary of strings as pointera.

Like many dynamic compression algorithms, a key idea behind the methods we shall dis-
cuss is to have the encoder and decoder to work in lock-step to maintain identical local dic-
tionaries (which may be dynamically changing). T h e encoder repeatedly finds a match between
the incoming characters of the input s t ream and the dictionary, deletes these characters from the
input s t ream, transmits the index of the corresponding dictionary entry, and updates the diction-
ary with some method t h a t depends on the current contents of the dictionary and the match that
was just found; if there is not enough room left in the dictionary, some deletion heuristic must be
performed. Similarly, the decoder repeatedly receives an index, retrieves the corresponding dic-
tionary entry as the “current match”, and then performs the same algorithm as the encoder to
update its dictionary.

I t can be seen that left o u t of Algorithms 1 and 2 is the specification of the following:

The initialication ret, INIT: A set of strings that are to be used to initialize
the local dictionary; it must be t h a t C is a subset of INZT and I INIT I 5 <D>.

The match heurirtic, MH: A function that removes from the input s t ream a
string t t h a t is in D.

- 4 -

Algorithm I, Encoding Algorithm:

(1) Initialize the local dictionary D with the set ZNlT.

(2) repeat forever

(a) G e t the current match:
t := MH(inputstream)
Advance the input s t ream forward by I t I characters.
Transmi t pog, I D 11 bits corresponding to t .

(b) Update the local dictionary D :
X := U H (D)
while X#{} and (D is not full or DH(D)#c) do begin

Delete an element z from X.
If z is not in D then begin

if D is full then Delete D H (D) from D .
Add z to D .
end

end

Algorithm 2, Decoding Algorithm:

(1) Initialize the local dictionary D by performing Step 1 of the encoding algorithm.

(2) repeat forever

(a) G e t the current match:
Receive pog, I D 11 bits.
Obtain the current match t by a dictionary lookup.
O u t p u t t h e characters oft.

(b) Update the local dictionary D by performing Step 2b of the encoding algorithm.

- 5 -

The update heuristic, U H A function t h a t takes the local dictionary D and
returns a s e t of strings t h a t should be added to the dictionary if space can be found for
them.

The deletion heuristic, DH: A function t h a t takes the local dictionary D and
either returns c (in which case there is no string t h a t can be deleted from D) or a string of
D t h a t is not a member of INIT (which may legally be deleted from D) .

T h e choice of the above heuristics will be discussed shortly. However, for the moment let
us consider the basic structure of Algorithms 1 and 2 t h a t is independent of these heuristics. T h e
reader should convince himself or herself t h a t these algorithms are inverses of each other; t h a t is,
the input to the encoding algorithm is always the same as the output from the decoding algo-
ri thm. T h e key observations are:

0 D is initialized to contain at least the characters of C (since C must be a subset of INIT)
and these characters can never be deleted.

0 Since D always contains C, h4H is always well defined. Hence, any input string to the
encoding algorithm can always be encoded (at worst at a character at a time).

0 Encoding is unique (since MH must return a unique value).

0 T h e local dictionaries of the encoder and decoder must always remain identical (since Step
2b of the decoding algorithm is identical to Step 2b of the encoding algorithm).

T h e condition t h a t INIT must include C implies t h a t Step 1 of the encoding and decod-
ing algorithms guarantees t h a t each character of E is initially present in D . Furthermore, since
DH is never allowed to return a character of E, the characters of C must always be present in D .
This condition guarantees t h a t Step 2a must always find a match t h a t is at least one character
long. Because the existence of the current match has been guaranteed by the existence of C in
the dictionary, we say t h a t Algorithms 1 and 2 have dictionary guaranteed progreaa. Another
way to guarantee progress is to relax the conditions t h a t C be a subset of INlT and DH cannot
return a character of E, and modify Step 2a of t h e encoding algorithm to transmit
Dog, I D I l+pogz I C 11 bits t h a t represent the pointer to t and the character of C t h a t appears
immediately after t in the input s t ream (and then advance the input s t ream forward by I t I +I
characters). Step 2 a of the decoding algorithm is similarly modified to receive a pointer and a
character of E. Methods t h a t guarantee progress in this fashion have pointer guaranteed pro-
gress. A compromise betw'een dictionary guaranteed progress and pointer guaranteed progress is
on-the-fly dictionary guaranteed progreaa. Here, we again relax the conditions t h a t C be a subset
of INIT and DH cannot return a character of C. Instead, we reserve one pointer value as the
nil-pointer. Any rule for what value value is assigned to the nil-pointer suffices so long as i t is
consistent between the encoder and decoder; for convenience, we always assume t h a t the nil-
pointer is I D I + 1 (one more than the largest current legal pointer value); t h a t is the nil-pointer
s t a r t s off as 0 and increases by one each t ime ID I increases by one until the nil-pointer value
reaches <D>. Hence, one entry of D is in some sense "wasted" since D can never have more
than <D>-l entries; in practice, assuming t h a t D is reasonably large (e.g., more t h a n 100 en-
tries), this waste is insignificant. Given t h a t a null pointer is available, each t ime no match can
be found, progress can be guaranteed by transmitt ing the null pointer (to signal to the decoder
t h a t a new character of C is to follow) followed by the next character of the input s t ream. In ad-
dition, the next character of the input s t ream can be added to the dictionary. On-the-fly diction-
ary guaranteed progress derives its name from the fact t h a t characters of C are added to D (to

- 6 -

guarantee progress) only when they a re encountered. Hence, i t represents a compromise between
dictionary and pointer guaranteed progress because unlike dictionary guaranteed progress i t does
not use space in D for characters of C t h a t a re not being used but unlike pointer guaranteed pro-
gress it does not add overhead to every pointer; overhead is only incurred the first t ime a charac-
t e r is used (or the first t ime the character has been used since i t has last been deleted from D).

In the limit as D becomes large, i t makes little difference which of t he above three
methods a re used to guarantee progress. However, for practical implementations, where D is
bounded in size, t he overhead of including I C I bits with each pointer used by pointer guaranteed
progress can be substantial. Since for most typical applications, <D> is relatively large com-
pared to I C I (e.g., <D > is larger t h a t 4096 and I C I is smaller t h a t 256), we restrict ou r at-
tention for the moment to dictionary guaranteed progress, as is used by Algorithms 1 and 2.
However, in practice, on-the-fly dictionary progress typically performs equally well; t h a t is, t he
overhead incurred is typically insignificant so long as the size of the tex t being compressed is rea-
sonably large (e.g., larger t han <D>) . W e have not chosen to use i t here because the s tandard
form of dictionary guaranteed progress is “cleaner” for presentation purposes. However, and we
will employ on-the-fly dictionary guaranteed progress when we generalize Algorithms 1 and 2 to
lossy compression.

If MH is taken to be the function t h a t returns the longest prefix of t he input s t ream t h a t
is in the dictionary, then Step 2a of t he encoding algorithm amounts to a greedy algorithm for ob-
taining the current match. W e shall henceforth refer to this heuristic as t he greedy match heuris-
tic. In terms of worst-case performance, significantly better compression can be achieved by in-
corporating some amoun t of look-ahead. However, little advantage is gained in practice a n d we
d o not address this issue further. W e shall assume the greedy heuristic from this point on.

T h e key idea behind dynamic dictionary methods, is to use an update heuristic t h a t adds
the previous ma tch concatenated with some se t of strings based on the current matcht. T h a t is, if
pm denotes the previous match, cm t he current match, and INC is a n “incrementing” function
t h a t maps a single string to a se t of strings, then for some choice of INC:

LIH(D) = {pm concatenated with all strings of INC(cm)}

T h e following a re three effective choices for INC.

FC: T h e f irs t character heuristic: INC(cm) is t he first character of cm.

ID: T h e identity heuristic: INC(cm) is cm.

Ap: T h e all-prefizes heuristic: INC(cm) is the se t of all (non-empty) prefixes of cm
(including cm).

Example I: Suppose t h a t t he previous match was “THE,” and the current match is
“CAT”, where we use the underscore to denote a space. Then VD(D) has the following values for
t he update heuristics discussed above:

FC: {“THE-C”}

..............................
t Since we have defined the update function UD of Algorithms 1 and 2 as a function of D , to simplify nota-
tion, we shall always asaume that it is possible to determine from D both the previous and current match.

- 7 -

ID: {”THE-CAT”}

AP: {”THE-C”, ”THE-CA”, ”THE-CAT”}

In general, the FC and ID heuristics always produce exactly one string whereas the A P heuristic
always produces a number of strings equal to the length of the current match. In fact, included in
the se t produced by the AP heuristic a re the strings produced by the FC and ID heuristics.
Hence, i t is illustrative to consider a longer example with respect to the AP heuristic. Consider
t h e phrase

” THE,CAT,AT,THE,CAR,ATE,THE,RAT”

where the underscore character is used to denote a space. Assuming t h a t we s t a r t with the dic-
tionary containing only the single characters, t he following table shows wha t strings a re added to
the dictionary as this phrase is processed:

MATCH
T
H
E

C
A
T

AT

,

-

?H
E,
CA
R
A T
E,

R
AT

STRINGS ADDED

0

T h e following are t w o common deletion heuristics.

FREEZE: T h e Jreeze heuristic: D H (D) is t he empty string, t h a t is, once the dictionary is
full, i t remains the same from t h a t point on.

LRU: T h e least recently used heuristic: D H (D) is t h a t string in D t h a t has been
matched least recently.

A third deletion heuristic t h a t can be viewed as a variation of the LRU heuristic is the following:

LFU: T h e leaat j requat ly used heuristic: D H (D) is t h a t string in D which has been
matched leaat frequently. In order to prevent this heuristic from degenerating
in to the F R E E Z E heuristic, some so r t of weighting has to be performed when

- 8 -

entering a new match into the dictionary. For example, the new match can be
assigned a frequency equal to the average frequency of the entries currently in the
dictionary. When a match is found t h a t is already in the dictionary, it may be
necessary to scale down all frequency counts of dictionary entries (making frac-
tional counts 0) if any given count reaches the maximum allowable value for a n
integer.

In practice, the L F U deletion heuristic performs comparably to the LRU heuristic bu t is less con-
venient to implement. We shall not consider this deletion heuristic any further.

A fourth deletion heuristic t h a t can be viewed as as lying somewhere between the FREEZE and
LRU deletion heuristics is the following.

SWAP: T h e awap heuristic: When the primary dictionary first becomes full, a n autiliary
dictionary i s star ted, bu t compression is continued based on the primary diction-
ary. From this point on, each time the auxiliary dictionary becomes full, the
roles of the primary and auxiliary dictionaries are reversed, and the auxiliary dic-
t ionary is reset to be empty. Although this heuristic does not fit directly into AI-
gorithms 1 and 2, they can be modified to accommodate it.

With the exception of rapidly changing data , the SWAP deletion heuristic performs comparably to
the LRU heuristic. However, this deletion heuristic will provide a useful alternative to the LRU
deletion heuristic for our parallel implementation on the MPP to be discussed later.

A host of data compression methods can be derived from different combinations of the
heuristics above. We now list four widely used combinations. Except as noted, the computational
resources required by these four heuristics are are equivalent in the asymptotic sense, but in prac-
tical implementations can differ by significant constant factors for both t ime and space require-
ments. T h e trade-offs between compression performance and these constant factors will be a n im-
portant concern.

FC-FREEZE: This heuristic is the most simple to implement and, except far the s t a r t up phase
when the dictionary is n o t full, runs faster because no time is spent o n updating.

FC-LRU: This heuristic requires more computational resources than FC-FREEZE, but typi-
cally yields significantly better compression. I t is also more stable than FC-
FREEZE, in a sense to be discussed later.

AP-LRU: As we shall see, this heuristic requires approximately the same computational
resources as FC-LRU but typically yields better compression on text files.

ID-LRU: This heuristic typically yields better compression than the FC-LRU heuristic and
sometimes yields better compression than the AP-LRU heuristic. Although the
ID-LRU heuristic may appear at first glance to be simplier o r more basic than
the AP-LRU heuristic, the ID-LRU heuristic requires significantly greater com-
putational resources than the AP-LRU heuristic for a n efficient serial implemen-
tation. However, the si tuation for parallel implementations is much different; we
shall employ t h e ID heuristic for our MPP implementation.

- 9 -

Vector Quantization

Vector quantization traditionally refers to any method t h a t partitions the input into
blocks of blockuize characters and maps each block to one of the elements in a table of tableuize
entries, where each entry is a blockuize tuple of characters from E. Compression is achieved by
output t ing only the indices into the table. Decompression is just table lookup. A nice feature of
this simple approach is t h a t we know in advance t h a t the compression ratio achieved (bits out di-
vided by bits in) will be exactly (to simplify notation, assume t h a t I C I and tablesize are powers
of two):

(log, I C I Wockuize) / log,(tableuize)

We d o not, however, have any guarantees about the quality of the “quantized” image. T h e
methods used to ge t the best quality possible are what motivate the term “vector” quantization.

We can view the s e t of all possible blocksize-tuples, blocksize21, of characters from C as
forming a blocksize-dimensional vector space. If V is a vector of blocksize characters from E,
then we let VI through Ifw,,, denote the components of V. A metric for the distance between
two vectors V and W , I(V,W), can be defined. For the purposes of defining such a metric,
depending on the particular application, we henceforth assume one (but not both) of the following:

nn characters: To each of the characters of C is associated a unique non-negative in-
teger in the range 0 to I C I -1.

t c characters: To each of the characters of C is associated a unique integer in the range
- I C I / 2 to (I C I /2)-1. T h a t is, if I C I is a power of 2, then the s e t
of integers corresponding to the characters of C is the se t of integers t h a t
can be represented in two’s complement notation using log, I C I bits.

In most applications, DSAD is stored in one of the above two forms. For example, with digitally
stored black and white images or video, &bit nn characters are typically used whereas with digi-
tally sampled speech, 12 or 16-bit t c characters are typically used. Perhaps-the three most com-
monly used metrics are:

bb&izx

L1: I(V,W) = Ivi-WiI
b = J

Moekdzx

L2: I(V,W) = (Vi--Wif

l a

w&A

LINFINITY: I(V,W) = MAX I V,-Wi I
isl

- 1 0 -

A natural way to visualize the above three metrics is to think of them in the context of 3-
dimensional Euclidean space (blockaize=3). T h e L1 metric corresponds to traveling from V to W
by only moving along the coordinate axes. T h e L 2 metric corresponds to traveling from V to W
in the shortest distance possible (a straight line segment). T h e L-INFINITY metric simply
measures the component on which the two vectors differ the most; it derives its name from the
following observation. If for any integer K>O we define the Lk metric as

d(V,W) =

i=l

then L1 and L 2 correspond to k = l and k=2, and:

L-ZNFINITy(V,W) = lim Lk(V,W)
&-

Although the name L-INFINITY arises naturally as indicated above, we shall henceforth refer to
it simply as the MAX metric; this name is motivated more directly by the way the metric is ac-
tually computed and is also shorter to write.

Example 2: Suppose t h a t the input is a raster scan of a black and white image where
each pixel is stored as a byte. A simple way to achieve 2-to-1 compression is to simply discard
the low-order 4 bits of each pixel (Le., replace them by 0). This is a n example of vector quantiza-
tion where I C I =256, block~ize=l , and tableaize=l6. By performing this quantization using
any of the metrics L1, L2, or MAX (which are equivalent when blockaize=l), we have replaced
256 distinct intensity levels by 16 levels t h a t are spread uniformly. This loss in precision has been
traded for the 2-to-1 compression. 0

Preprocemsing for the Lomalema Algorithm
-

As illustrated by Example 2, a special case of vector quantization is scalar quantization,
where blocksize= 1. Scalar quantization provides a very simple method for on-line dynamic lossy
compression:

Quantize the incoming characters of the input atream before pausing them to an
on-line dynamic loaaleaa compreaaion algorithm.

This approach can be viewed as preprocessing the input for the lossless compressor to make char-
acters t h a t a re “similar” be identical (so t h a t the lossless compressor can more easily find pat-
terns). This preprocessing s tep also has the desirable side-effect t h a t compression ratio of the en-
tire algorithm is the product of the ratio obtained by the scalar quantization and the ratio ob-
tained by the lossless algorithm. In practice, this product has a “snowballing” effect; t h a t is, the
more compression achieved by the scalar quantization, the more t h a t is achieved by the lossless
compression.

Given t h a t we are viewing scalar quantization as a preprocessing s tep to lossless compres-
sion, if Q is the scalar quantization function, then from the point of view of the lossless compres-
sor, the input alphabet is j u s t the se t of distinct values of Q (a) where a is a character of E.
Hence, from this point on, i t will be convenient to view scalar quantization as the INZT heuristic.

- 11 -

T h a t is, a function t h a t places a se t of characters (INIT) in t he dictionary with the understanding
t h a t if a character of C t h a t is no t in INIT arrives on the input stream, then it is mapped to the
closest (in the sense of whatever metric is being used) character in INIT. Some common scalar
quantization methods (dictionary initialization heuristics) are:

ALL: Place all possible characters in the dictionary. No compression is achieved, no in-
formation is lost. If we are compressing d a t a by first scalar quantizing and then
performing lossless compression, then instructing the scalar quantizer to use ALL
quantization forces the system to pure lossless compression.

UNIFORM: Example 2 is an example of UNIFORM scalar quantization. In the literature,
any technique t h a t spreads values approximately evenly is considered to be uni-
form quantization. For our purposes, given a n integer parameter spacing >O, for
nn characters UNIFORM(d) places into the dictionary the values

O,apacing,2 *spacing ,..., I C I -1

and for t c characters t he values:

O,spacing,-spacing,2*spacing,-2*spacing, - * , I C I /%I,- I C I /2.

LOG For a given integer parameter eztrabita, with log scalar quantization the idea is to
save only the position of t he leading non-zero bit of t he character along with the next
eztrabita bits t h a t follow it.

It should be noted t h a t if t he scalar quantization is sufficiently crude, dithering may be a n
effective pre and post-processing s t ep to help smooth artificial discrete boundaries t h a t can arise.

Our Generdication of the Lorrlesr Algorithm -

Scalar quantization followed by lossless compression is a simple approach t h a t has a lossy
component (provided by the scalar quantization) that is completely separate from a pa t te rn
matching component (provided by the lossless compression algorithm). W e now consider a poten-

T h e idea is to use Algo-
r i thms 1 and 2 with ju s t t w o changes.
tially more powerful approach t h a t combines these t w o components . t

T h e first change is t h a t t h e definition of t h e ma tch heuristic is generalized to:

The match heurirtic, MH: A function t h a t removes from the input s t r eam a
string t t h a t is acceptably close (according to a specified metric) to a string in D .

T h e algorithm must be supplied a vector diatance metric VM t h a t takes a single string 8 as a n ar-
gumen t and returns a non-negative integer equal to the “distance” between 8 and the first I s I
incoming characters of t he input s t ream. T h i s function mus t satisfy t w o constraints:

0 VM(s)=O if and only if t he first 18 I incoming characters of t he input s t r eam
-------L----------------------

t In practice this approach may be more powerful. In theory, a result of Ziv shows that this my not be true.

- 12-

are exactly the characters of a .

0 VM(a)=oo if there a re less than I a I characters left in the input stream.

Given t h a t such a metric is supplied to the algorithm, “acceptably close” is defined by a single in-
teger parameter Epsilon t h a t is also supplied to the algorithm. T h a t is, all dictionary entries a
such t h a t VM(a)<Epailon are acceptably close. Because of the conditions placed on VM, t he
value Epailon=O forces pure lossless compression.

T h e second change t h a t we make to Algorithms 1 and 2 is to employ on-the-fly dictionary
guaranteed progress. T h e reason for this change is t h a t we no longer wish to force INIT to con-
tain all of C since in many practical applications (e.g. 16-bit digitally sampled speech), I Cl is
very large (possibly larger than I D I). The reader should note t h a t even if I INIT 1 < I C I , the
on-the-fly mechanism will never be used if INIT contains enough characters so t h a t every charac-
te r of C is acceptable close to some character in INIT.

Given the two changes discussed above, Algorithms 1 and 2 are a general purpose frame-
work for performing on-line dynamic lossy compression, where the tradeoff between the degree of
lossiness and the amoun t of compression can be adjusted via a single integer parameter Epaifon.

Parallel Implementation on the MPP

T h e basic ideas behind our translation of the techniques described above to the massively
parallel environment of the MPP, which were developed during SBlR Phase 1, are the following:

0 T h e MPP is a 128 by 128 two-dimensional array of 16,384 processors. However, we view
i t as 128 independent parallel compressors t h a t operate in a pipeline fashion, one compres-
sor operating on each row of the MPP. One of these compressors can be used for serial
sources such as speech or text. T h e entire machine is needed for real-time compression of
successive digital images. Each 512 by 512 digital black and white ‘mage is divided in to
128 horizontal -bands”, each 4 pixels high. Each band is fed i n t o a row of the MPP in a
pipelined fashion. In this situation, the i/o rate is extremely high; t h a t is, 128 t ime the
i/o ra te of a n individual processor.

0 T h e new MPP chip designed by J. Reif at MCNC and the modified version of i t t h a t we
propose to design contains a 8 by 16 sub-array of MPP processors. However, for the pur-
poses of d a t a compression, we will use i t as a l by 128 array of processors t h a t forms the
parallel systolic pipeline t h a t forms one of our dynamic on-line d a t a compressors.

0 T h e ID growing heuristic is used. This minimizes on-chip memory t h a t is needed (which
is critical with the MPP design) because dictionary entries can be represented by simple
pointer pairs.

0 Since our compressor will use a MPP chip to form a systolic pipelined associative
memory, matches will be constructed in a bottom-up fashion instead of the top-down
fashion that is used in the serial case. That is, instead of discovering a longest possible
match all at one t ime (as is the case with the greedy match heuristic employed in the seri-
al algorithm), pairs of pointers are successively combined as they flow down the pipe.
Simulations performed during SBIR Phase I show t h a t the bottom-up construction of

- 13-

matches that results from the parallel parsing does not compromise compression perfor-
mance in practice, and in some cases, even improves it. Note t h a t this is not true if a dic-
tionary computed elsewhere is simply loaded into the processor array. I t is key that the
dictionary is dynamically learned in the array.

0 The SWAP deletion strategy is used. Simulations show that this is equivalent in perfor-
mance to the LRU strategy. However, from a hardware point of view, it is much simplier
to implement, requiring only some simple re-routing of the i /o paths.

0 To improve the running time, a “recycling strategy” is used where partially compressed
d a t a is fed through the array at a faster rate.

- 1 4 -

3. Results

For the six month duration of the SBIR Phase I funding (March 1987
through August 1987), the work to develop our algorithm proceeded as follows:

0 Basic research was performed on combining the techniques of vector quant-
ization with lossless learning strategies. The result is a novel on-line
dynamic compression algorithm where the tradeoff between the degree of
lossiness and the amount of compression can be tuned with a single integer
parameter.

0 Studies were performed to show the ID learning heuristic in conjunction
with the SWAP deletion heuristic to be most appropriate for our imple-
mentation.

0 Studies on the effect of parallel parsing on the pure version of our algo-
rithm were performed (see the notes preceeding the simulation code). A
buffering / parsing strategy for an individual processor was developed.

0 Modifications and simplifications of our algorithm were made to allow
more direct implementation on the MPP architecture.

0 The recycling strategy was developed to enhance through-put.

0 Code for the VAX 11/780 was written to perform simulations to determine
the amount of compression that could be expected with the modified ver-
sion of our algorithm.

-
0 Code for the MPP was written and runs were made on the MPP at God-

dard Space Flight center.

RSIC, Inc. would like to take this opportunity to thank members of the
NASA Goddard Space Flight center for their help and support during this project.
In particular, J. Devany and D. Wildenhain for the considerable time they spent
helping us program and use the W P , and J. Fischer, M. Halen, H. K. Ramapri-
yan, and J. Tilton for numerous technical consulations.

As indicated in the project summary,. the algorithm has the following pro-
perties:

0 It is on-line; that is only a single pass over the data is made.

0 It is dynamic; no prior knowledge of the data is needed. A dictionary of
“patterns” on which compression is based is dynamically constructed.

- 15-

0 The tradeoff between fidelity and the amount of compression achieved can
be adjusted via a single integer parameter. As a special case, pure lossless
compression may be specified.

0 Because our algorithm is on-line, dynamic, and the degree of lossiness can
be adjusted, it provides the basis for a single universal device that can be
used for a variety of data types, including:

0 digital images

0 video

0 speech

0 text

0 database information

0 It can be implemented with currrent technology to operate in real-time,
even for extremely high-bandwidth applications; e.g., 30 frames per second
of 512 by 512 pixels per frame video.

0 The cost of the hardware goes down as the bandwidth of the application
goes down.

In addition to having the desirable performance properties listed above, the
amount of compression that is achieved for a given degree of fidelity on a given
type of data compares favorably with existing, more specialized dgorithms. Typi-
cal amounts of compression achieved can be summarized as follows:

text: With pure lossless compression, state-of-the-art performance
was obtained; e.g., 3-to-1 for English text, 5-to-1 for program-
ming language source code, and as much as 10-to-1 for very
compressible text such as spread-sheet data. Our test data
consisted primarily of technical papers that were stored elec-
tronically on the VAX 11/780 system we were using.

speech: Speech sampled 8,000 times per second, 12 bits per sample
(96 kilo-bit speech is an industry standard), could be
compressed by more than 12-to-1 while retaining good quali-
ty, and by more than 30-to-1 and still be understandable.
Our test data was obtained by having students read passages
from books into a microphone connected to a digital-to-
analog converter. Quality was accessed by playing back the

- 16-

decompressed data to independent listeners.

video: Black and white video stored 512 by 512 pixels per frame, 8
bits per pixel could be compressed by factors of 30-to-1 to
50-to-1 while retaining good quality. Our test data was some
black and white video of a person speaking against a relative-
ly static background.

Section 4 is the VAX simulation Pascal code. Note that Section 4 begins
with some documation and a brief discussion of some technical details pertaining
to the processor buffering strategy. Section 5 is the corresponding parallel Pascal
code for the MPP.

The result of this work is a very flexible algorithm that is well-suited for
real-time compression for a variety of on-line data. We have applied for SBIR
Phase II funding to build a chip set (based on the new MPP chip being developed
at MCNC) for our algorithm.

,

- 17-

4. Simulation Code

Basic Algorithm

rotusirn implements a data compression algorithm designed to work on a
single row of the MPP, which can be viewed as an independent SIMD machine
consisting of a linear arrangement of processors in which each processor can com-
municate to its neighbors on either side. The algorithm itself is an adaption of
the ID strategy (discussed in the technical background section); each processor
manages its own input buffer and its own dictionary of previously encountered to-
ken pairs.

The main loop of the algorithm makes each processor read from its left
neighbor enough tokens to fill its cwn input buffer. Each processor then looks up
the contents of that buffer in its dictionary; should a match be found between the
buffer and one of the entries in the dictionary, the output code associated with
that entry replaces the two input tokens in the input buffer. Otherwise, the “old-
est” entry in the input buffer is output to the next processor in the line, and the
other entries in the buffer are shifted in.

Each processor updates its local dictionary by adding to it the concatena-
tion of the current oldest token to the last token output (the ID heuristic). Only
in those iterations where no match was found between the processor’s input buffer
and its dictionary does each processor add a new entry to its dictionary as
described. We further limited the learning process so that only the leftmost pro-
cessor with a non-full dictionary would learn new token pairs a t agy one time.

Implementation Details

The preceding description, although brief, suggests at least two directions
in which an implementation of the algorithm described could affect its perfor-
mance: in our implementation we chose to examine the effects of both the size of
the input buffer each processor uses and the method used to find what matches

- 18-

may exist between the buffer and entries in the dictionary.

Buffer Size

Since the algorithm used to add new entries to local dictionaries worked by
concatenating the last two matches found at each processor, our initial implemen-
tation of rowsirn used a two-element input buffer at each node plus a one-token
output buffer. The matching was done then straighforwardly between the buffer
and each one of the entries in the dictionary; when no such match was found, a
new entry was added to the corresponding local dictionary by concatenating the
last token output (in the output buffer) and the “older” of the two entries in the
input buffer.

This first approach seemed to work as expected until we tried to compress
a large file of blanks. We expected a very large rate of compression on this file,
and yet we only obtained a 25 percent reduction in the size of the input file. The
problem was due to the fact that the first processor in the array was only able to
learn 4 different token pairs, and since its own dictionary never filled, no other
processor could learn new token pairs to further compress the input sequence.
This suggested we improve out implementation by increasing the size of each
processor’s input buffer to 3, 4 or even longer buffers. This created a second
question, namely how to search for matches between entries in the dictionary,
each one of which
than 2.

Buffer Matching

would only have two tokens, and input buffers of sizes larger

Strategies

The matching algorithm for the case in which the input buffer is as long as
each entry in the dictionary is straighforward: it is enough to do a one-to-one
matching between the input buffer and each dictionary entry. When the length
of the input buffer is increased, however, two decisions must be made when
designing the matching algorithm: (1) should the algorithm try to find only the
first possible match between the input buffer and the dictionary, or would be it
more efficient to replace each match when found and repeat the matching process
until no more matches are found; and (2) should the algorithm test the input
buffer against the dictionary entries starting with the most recent pair and then
work its way towards the previous entries until a match is found, or should it
start with the earliest pair in the buffer and work its way back.

- 19 -

towsim was implemented so that we could compare the results obtained
from all combinations of both alternatives: the user may specify either left-to-
right (most recent to least) or right-to-left matching, and he may also specify ei-
ther full matching (in which case after a match is found the two tokens are re-
placed by the corresponding code and the matching process is restarted on the
new, shorter buffer) or first matching (in which case the matching process contin-
ues only until the first possible match is found and then replaces both tokens with
the correct code).

We discovered, when running experiments trying all possible combinations,
that in pathological cases (such as a file consisting of lOOk blanks) the best results
were obtained when using the full matching strategy and a buffer length of 4. On
most files however, the performance difference among the different strategies was
not significant enough to justify the extra effort required to implement any of
these strategies instead of our original straight comparison between the input
buffer of size 2 and the entries in the dictionary.

The Simulation Code

{ program: rowsim}
{ RSIC, Inc.}
{ date: July, 1987 }

{ description:}
{ This program provides a serial implementation of a data compression}
{ algorithm suitable for the MPP computer. It satisfies the same per}
{ processor constraints, in terms of processor memory, that processors}
{ on the MF’P have to fulfill. Furthermore, the algorithms used were}
{ chosen to make the transition to an implementation on the MPP machine)
{ as straghtforward as possible.}

{ usage:}
{ 95 rowsim [-r] [-f] [-D dictionary] [-G break] [-R reserved I}
{
{ where:}
{ -ruse right-to-left buffer matching}
{ (default: left-bright)}
{ -fuse fast matching algorithm}
{
{
{
{
{

[-S skip] [-B buffer] [-E entries]}

(default: full buffer matching is used)}
-D dictionaryname of dictionary file (default: ’dictionary’)}
once the whole input file has been compressed,}
the final dictionary is written to this file}
-G breakcodes will be split into two groups: less than}

- 20 -

{
{
{ to the same group.}
{
{ valid match).}
{
{
{
{
{
{
{
{ (default: 32 entries/processor)}

'break' and greater or equal. Matches will}
only be valid between pairs of codes belonging}

(default: only one group, any two codes are a}

-R reservedthe first 'reserved' codes will be considered}
to be raw input codes (default: 256))
-S skipignore first 'skip' characters of file - they}
are copied without processing (default: 0))
-B bufferper processor input buffer will be 'buffer'}
cells long (default: 3 cells)}
-E entrieseach processor will hold at most 'entries'}

{ Dictionary File: Format:}
{ This program creates the dictionary file (default: 'dictionary') as}
{ a series of lines, each one of the form:}
{ <processor> <index> <code> <left> <right> <length>}
{ where <processor> is an id from 0 to 127, <index> is an offset into}
{ a dictionary in the range 0 to 31, <code> is the code corresponding}
{ to this entry, <left> and <right> are the two pointers making up the}
{ entry, and <length> is the length of the entry (in input tokens).}

program rowsim(input, output);

const SmallestProcessorIndex = 0; { Processors}
LargestProcessorIndex = 127;
SmallestDictIndex = O;{ Dictionary }
LargestDictIndex = 31;
MaxNumberOfEntries = 32;
LeftmostBufferIndex = O;{ Buffers}
RightmostBufferIndex = 7;
MaxBufferSize -
SmallestPointer - - O;{ Output Tokens}
Larges tPoin ter = 4095;
MaxStringSize = 80;{ Strings}

8; -

{ Default parameteer values}
DefaultDictionary = 'Dictionary';
DefaultEntries = 32;
DefaultReserved = 256;
DefaultBufferSize = 3;

- 21 -

type ProcessorIndex = SmallestProcessorIndex .. LargestProcessorIndex;
EntryIndex = SmallestDictIndex .. LargestDictIndex;
DictSize = 0 .. MaxNumberOfEntries;
Pointer = SmallestPointer .. LargestPointer;
DictEntry = record
Left, Right: Pointer

LocalDictionary = array [EntryIndex] of DictEntry;
Link
Type: (Empty, Valid);
Value: Pointer

BufferIndex = LeftmostBufferIndex .. RightmostBufferIndex;
Buffersize = 0 .. MaxBufferSize;
Buffer = array [BufferIndex] of Link;
StringIndex = 1 .. MaxStringSize;
String

end;

- - record

end;

= array [StringIndex] of char;

var { Per Processor Global Data Structures}
Dictionary: array [ProcessorIndex] of LocalDictionary;
NumEntries: array [ProcessorIndex] of DictSize;
InputData: array [ProcessorIndex] of Buffer;
OutputData: array [ProcessorIndex] of Link;
{ Global Data Structures}
BreakSupplied: boolean;
Reserved, Breakpoint: Pointer;
PairsToSkip: Buffersize;
Learn: array [ProcessorIndex] of boolean;
{ Implementation Global Data Structures}
EntriesPerProcessor: Dic tSize;
LearningProcessor: Pointer ;
BufSize: Buffersize;
RightmostMatchFirst, UseFullMatchAlg: boolean;
Dictionary Filen ame: String;
MaxTokenValue: Pointer;
Ignore: integer;

{ Global variables needed by low-level 1/0 routines}
rlosize, rleftover, wlosize, wleftover: integer;

#include uti1ities.i” { Useful low level functions}
#include “row.args.i” { Process command line arguments}

- 22 -

#include "io.i"{ Low Level 1/0 Routines}

function Code(Processor: ProcessorIndex; Entry: EntryIndex): Pointer;
begin

end;
Code := Reserved + Processor*EntriesPerProcessor + En try

function Iscode(Value: Pointer; var Proc: ProcessorIndex;
var Entry: EntryIndex): boolean;

begin
if (Value < Reserved) then IsCode := false
else begin
Proc := (Value - Reserved) div EntriesPerProcessor;
Entry := (Value - Reserved) mod EntriesPerProcessor;
IsCode := true

end
end;

function Length(Processor: ProcessorIndex; Entry: EntryIndex): integer;
var

Proc: ProcessorIndex;
Offset: EntryIndex;
Result: integer;

if Iscode(Dictionary[Processor I[Entry].Left, Proc, Offset) -

begin

then Result := Length(Proc, Offset)
else Result := 1;

then Result := Result + Length(Proc, Offset)
else Result := succ(Result);

if Iscode(Dictionary[Processor I[Entry).Right, Proc, Offset)

Length := Result
end;

procedure SaveDictionary;
var

Processor: ProcessorIndex;
Entry: EntryIndex;
Dic tionaryFile: text;

rewrite(DictionaryFile, DictionaryFilename);
begin

- 23 -

for Processor := SmallestProcessorIndex to LargestProcessorIndex do

writeln(DictionaryFile, Processor, ' ', Entry,
Code(Processor, Entry), ',
Dictionary[Processor I[Entry).Left, ' ',
Dictionary[Processor I[Entry].Right, ' I ,

Length(Processor, Entry))

for Entry := 0 to pred(NumEntriesI Processor 1) do
1 1 ,

end;

function FindMatch(Processor: ProcessorIndex;
var LeftPtr, RightPtr: Link;
Size: DictSize;
var LocalDict: LocalDictionary): boolean;

var
Index: DictSize;
En try: Dic tEn try;
Found: boolean;

Found := false;
Index : = SmallestDic tIndex;
while (Index < Size) and not Found do

Entry := LocalDict(Index 1;
Found := (Entry.Left = LeftPtr.Value) and
(Entry.Right = RightPtr.Value);

if not Found then Index := succ(Index)
else if RightmostMatchFirst then

LeftPtr.Value := Code(Processor, Index);
RightPtr.Type := Empty

end
else begin
LeftPtr.Type := Empty;
RightPtr.Value := Code(Processor, Index)

begin

begin

begin

end
end;

FindMatch := Found
end;

function ValidMatch(Processor: Processorhdex;
var LocalDict: LocalDictionary;
Current, Last: Pointer): boolean;

- 24 -

var
Repeat: boolean;
LastIndex: EntryIndex;

if NumEntries[Processor 1 = 0 then Repeat := false
else begin
LastIndex := pred(NumEntries(Processor]);
Repeat := (LocalDict[LastIndex].Left = Current) and

begin

(LocalDict(LastIndex].Right = Last);
end;

if not Breaksupplied then ValidMatch := not Repeat
else ValidMatch := (((Last <Breakpoint) and (Current <Breakpoint)) or

((Last> =Breakpoint) and (Current> =Breakpoint)))
and not Repeat

end;

procedure UpdateDictionary(Processor: ProcessorIndex;
var LocalDic t : LocalDic tionar y ;
Current, Last: Pointer);

v ar

begin
NewEntry: EntryIndex;

if PairsToSkip > 0 then PairsToSkip := pred(PairsToSkip)
else if ValidMatch(Processor, LocalDict, Current, Last) then

NewEntry := NumEntries[Processor 1;
if Code(Processor, NewEntry) <= LargestPointer then -
LocaDict[NewEntry].Left := Current;
LocalDict[NewEntry].Right := Last;
NumEntries[Processor] := succ(NewEntry);

begin

begin

end
end

end;

function BufferIsFull(var LocalBuffer: Buffer): boolean;
var

Index: Buffersize;
Result: boolean;

Result := true;
Index := LeftmostBufferIndex;

begin

- 25 -

while Result and (Index < BufSize) do

Result := Result and (LocalBuffer[Index].Type = Valid);
Index := succ(Index)

BufferIsFull := Result

begin

end;

end;

procedure UpdateProcessor(Processor: ProcessorIndex;
var LocalDict: LocalDictionary;
var Learn: boolean;
var InData: Buffer;
var OutData: Link);

var{ More per processor scratch variables ...}
Match: boolean;
{ Implementation variables ...}
Localsize: DictSize;

var

begin

Match := Match or
FindMatch(Processor, InData[Buffndex 1,

procedure FullLeftmostMatch;

Buff ndex: BufferIndex;

for Buffndex := LeftmostBufferIndex to BufSize - 2 do

InData[succ(BufIndex) 1,
Localsize, LocalDict);

end; -
var

begin

Match := Match or
FindMatch(Processor, InData[BufIndex 1,

procedure FullRightmostMatch;

Buff ndex: BufferIndex;

for BufIndex := BufSize - 2 downto LeftmostBufferIndex do

InData[succ(BufIndex) 1,
Localsize, LocalLlict);

end;

var

begin

procedure FirstLeftmostMatch;

Buff ndex: BufferIndex;

Buff ndex := LeftmostBufferIndex;
while (BufIndex < pred(BufSize)) and not Match do

* 26 -

begin
Match := Match or
FindMatch(Processor, InData[BufIndex 1,

InData[succ(BufI ndex) 1,
LocalSize, LocalDict);

end
end;

var

begin

BufIndex := succ(BufIndex)

procedure FirstRightmostMatch;

Buff ndex: BufferIndex;

BufIndex := pred(BufSize);
repeat

Buflndex := pred(BufIndex);
Match := Match or FindMatch(Processor, InData[BufIndex 1,

InData[succ(BufIndex) 1,
Localsize, LocalDict);

until Match or (BufIndex = LeftmostBufferIndex);
end;

0utData.Type := Empty;
if BufferIsFull(InData) then

Match := false;
Localsize := NumEntries[Processor 1;
if UseFullMatchAlg then

begin

begin

if RightmostMatchFirst then FullRightmostMatch -
else FullLeftmostMatch

else if RightmostMatchFirst then FirstRightmostMatch
else FirstLeftmostMatch;

if not Match then
begin

if Learn then
UpdateDic tionary(Processor, LocalDic t,

InData[pred(BufSize)].Value,
0utData.Value);

OutData := InData[pred(BufSize) 1;
end
end;

end;

function CurrentDictIsFull: boolean;

.

begin
CurrentDictIsFull :=

(NumEntries[LearningProcessor] = EntriesPerProcessor) and
Learn[LearningProcessor]

end;

procedure Sw i t c hToNex tD ic t;
begin

Learn[LearningProcessor] := false;
if LearningProcessor < LargestProcessorIndex then

LearningProcessor := succ(LearningProcessor);
Learn[LearningProcessor] := true;
{ Every new processor must skip first 'BufSize' pairs}
PairsToSkip := BufSize

begin

end
end;

procedure ShiftBuffer(var LocalBuffer: Buffer);
var

begin
Target, Buffndex: BufferIndex;

Target := pred(BufSize);
for Buffndex := BufSize - 2 downto LeftmostBufferIndex do

if LocalBuffer[Buffndex].Type = Empty then Target := Buffndex;
for Buff ndex := Target downto succ(LeftmostBufferIndex) do

LocalBuffer[Buflndex] := LocalBufferI pred(BufIndex) 1;
end;

procedure ProcessToken(InputToken: Link);
var

begin
Processor: ProcessorIndex;

InputDataI 0 I[LeftmostBufferIndex] := InputToken;

{ All processors work on their buffers
for Processor := SmallestProcessorIndex to LargestProcessorIndex do

UpdateProcessor(Processor,Dictionary[Processor],Learn[Processor],
InputData[Processor], OutputData[Processor]);

}

{ Shift processor buffers right }

for Processor := SmallestProcessorIndex to LargestProcessorIndex do
ShiftBuffer(InputData[Processor]);

{ Broadcast data to the next processor in the row
for Processor := SmallestProcessorIndex+l to LargestProcessorIndex do

OutputDataI pred(Processor) 1;

}

InputData[Processor I[LeftmostBufferIndex] :=

if CurrentDictIsFull then SwitchToNextDict;

if (OutputData[LargestProcessorIndex].Type = Valid) then
WriteBits(OutputData(LargestProcessorIndex].Value,

LargestPoin ter)
end;

procedure FlushLeftOver;
var

Leftover: integer;
Index: BufferIndex;

for Leftover := LargestProcessorIndex downto SmallestProcessorIndex do

if InputData[Leftover I [Index].Type = Valid then

begin

for Index := pred(BufSize) downto LeftmostBufferIndex do

WriteBits(InputData[Leftover I[Index].Value,
LargestPointer);

end; -
procedure ProcessInput;

var

begin
InputToken: Link;

PassThru(Ignore);

while not Endomits(MaxTokenValue) do

1nputToken.Type := Valid;
1nputToken.Value := ReadBits(MaxTokenValue);
ProcessToken(InputToken)

begin

end;

FlushLeftOver;
FlushBits

- 29 -

end;

. -

procedure InitializeProcessors;
var

Processor: ProcessorIndex;
Index: BufferIndex;

for Processor := SmallestProcessorIndex to LargestProcessorIndex do

Learn[Processor] := false;
NumEntries[Processor] := 0;
for Index := LeftmostBufferIndex to pred(BufSize) do

InputData[Processor I[Index].Type := Empty;
OutputDataI Processor].Type := Empty

end;
LearningProcessor := SmallestProcessorIndex;
Learn[SmallestProcessorIndex] := true;
{ Initial processor must skip first pair }
PairsToSkip := 1;

begin

begin

end;

begin

rlosize := I;{ 1/0 initialization}
wlosize := 1;

UseFullMatchAlg := true;
RightmostMatchFirst := false;
BufSize := DefaultBufferSize;
Breaksupplied := false;
Breakpoint := 0;
Ignore := 0;
Reserved := DefaultReserved;
EntriesPerProcessor := DefaultEntries;
Processhguments;

InitializeProcessors;

ProcessInpu t;

S av eD ic t ion ar y

.
- 30 -

end.

{ The functions in this file provide a means for low-level I/O.}
{ They were originally written by James Storer.}

function ReadByte(var SomeFile: text): integer;
const

v ar
CarriageReturn = 10;

NextChar: char;
Byte: integer;

if (eof(SomeFile)) then Byte := 0
else if (eoln(SomeFile)) then

{read blank that PASCAL replaced for line end}
read(SomeFile, Nextchar);
Byte := CarriageReturn

end
else begin
read(SomeFile, NextChar);
Byte := ord(NextChar);
{check for two's complement form of a non-ascii character}
if (Byte < 0) then Byte := Byte + 256
ReadByte := Byte -

begin

begin

end;

end;

procedure WriteByte(var SomeFile: text; Byte: 0..255);
begin

end;
write(SomeFile, chr(Byte));

{ The following functions implement a means to read/write integers using }
{ least number of bits that can still represent integers in the relevant }
{ range. All input/output these functions make is from 'input' and to 1
{ 'output'. }

function EndOfBits(MaxValue: integer): boolean;

begin
if (rlosize > MaxValue) then EndOfBits := false
else EndOfBits := eof(input)

end;

{read smallest number of bits capable of holding the argument}
function ReadBits(MaxValue: integer): integer;

Value, Length, MaxLength: integer;

Value := 0;
Length := I;
MaxLength := 2;
while (MaxLength <= MaxValue) do MaxLength := MaxLength * 2;
while (Length < MaxLength) do

if (rlosize = 1) then

rleftover := ReadByte(input);
rlosize := 256;

rlosize := rlosize div 2;
Value := (Value * 2) + (rleftover div rlosize);
rleftover := rleftover mod rlosize;
Length := Length * 2

ReadBits := Value

var

begin

begin

begin

end;

end;

end;

{write on argl arg2 using the smallest number of bits capable of holding arg3)

procedure WriteBits(Value, MaxValue: integer);
var

begin
Length, MaxLength: integer;

MaxLength := 2;
while (MaxLength <= MaxValue) do MaxLength := MaxLength * 2;
Length := MaxLength;
while (Length > I) do

Length := Length div 2;
wleftover := (wleftover * 2) + (Value div Length);

begin

- 32 -

wlosize := wlosize * 2;
Value := Value mod Length;
if (wlosize = 256) then

begin
WriteByte(output, wleftover);
wlosize := 1;
wleftover := 0

end
end

end;

{flush to output any left over fraction of a byte}
procedure FlushBits;

begin
if (wlosize > 1) then

while (wlosize < 256) do

wleftover := wleftover * 2;
wlosize := wlosize * 2;

WriteByte(output, wleftover)

begin

begin

end;

end
end;

{pass through a number of bytes given by argument}
procedure PassThru(num:integer);

var

begin
index: integer;

index := 0;
while ((index < num) and (not eof(input))) do

begin
index := index + 1;
WriteByte(output, ReadByte(input))

end
end;

{ This procedure reads in all command line parameters and modifies the}
{ initial state of the program accordingly. Absolutely NO error }
{ checking is done.}

- 33 -

procedure ProcessArguments;
var

index: integer;
argument: String;
DictionaryGiven: boolean;
Buffer: String;

index := 1;
Dictionary Given := false;
while (index <= argc -1) do

begin

begin
argv(index, argument);

case argument[2] of
' r '. .

'B': begin
index := succ(index);

argv(index, Buffer);
BufSize := AtoI(Buffer)

RightmostMatchFirst := true;
If'. . UseFullMatchAlg := false;

end;
'E': begin
index := succ(index);

argv(index, Buffer);
EntriesPerProcessor := AtoI(Buffer)

end;
'G': begin
index := succ(index);

argv(index, Buffer);
Breaksupplied := true;
Breakpoint := Ator(Buffer)

end;
ID': begin
index := succ(index);

DictionaryGiven := true;
argv(index, DictionaryFilename)

end;
'R': begin
index := succ(index);

argv(index, Buffer);
Reserved := AtoI(Buffer)

end;
'S': begin
index := succ(index);

argv(index, Buffer);

8

- 34 -

Ignore := AtoI(Buffer)

end;
index := succ(index)

if not DictionaryGiven then DictionaryFilename := DefaultDictionary;
MaxTokenValue := pred(Reserved)

end;

end;

end;

function Digit(Somechar: char): integer;
begin

end;
Digit := ord(SomeChar) - ord(’0’);

{ The folowing AtoI function will only work if its string argument is
a valid integer number in string representation. Absolutely NO error
checking is done. }

function AtoI(Somestring: String): integer;
var

Result: integer;
Minus: boolean;
Index: StringIndex;
Thischar: char;

Result := 0;
Minus := false;
for Index := 1 to MaxStringSize do

- begin

begin
ThisChar := Somestring[Index 1;

if (ThisChar = ’-’) and (Result = 0) then

else if (Thischar in [’O’..’O’ I) then
Minus := not Minus

Result := Result * 10 + Digit(ThisChar);
end;

if Minus then Result := - Result;
AtoI := Result

end;

- 35 -

5. MPP Code

{ $h-,d+,m-}

{ program: row}
{ RSIC, Inc.}
{ date: August, 1987)

program row(input, output, rowjndex, col-index, DataIn, DataOut);

const FirstProc = 0; { Processors}
LastProc = 127;
FirstIndex = O;{ Dictionary Entries}
LastIndex = 29;
MaxEntries = 30;
FirstPtr = O;{ Output Tokens}
LastPtr = 4094;
NullPtr
MaxPtr = 4095;
FirstImage = O;{ Images}
LastImage = 1;

= 4095;{ Special Null Token}

NoShiftUp = O;{ Number of cells to shift data N/S}
ShiftRight = -l;{ Number of cells to shift data E/W}
ShiftLeft = 1;

DefEhtries = 32;{ Default Values}
Defaeserve = 256;

ProcIndex = FirstProc .. LastProc;
EntryIndex = FirstIndex .. LastIndex;
DictSize = 0 .. MaxEntries;
Pointer = FirstPtr .. MaxPtr;
ImageIndex = FirstImage .. LastImage;
PtrParArr = parallel array [ProcIndex, ProcIndex] of Pointer;
BoolParArr = parallel array [ProcIndex, ProcIndex] of boolean;
SizeParArr = parallel array [ProcIndex, ProcIndex] of DictSize;
IOBuffer = stager array [ProcIndex, ProcIndex] of Pointer;
StagerBuf = stager array [ImageIndex, ProcIndex, ProcIndex]

of Pointer;

- 36 -

DictArray = array [EntryIndex] of PtrParArr;

var { Parallel (Per Processor) Global Data Structures}
OldBufPtr : PtrParArr;{ Input Buffer }
OldBufVal : BoolParArr;
NewBufPtr : PtrParArr;
NewBufVal : BoolParArr;
OutputPtr : PtrParArr;{ Output Token}
OutputVal : BoolParArr;
LeftDict : DictArray;{ Dictionary}
RightDict : DictArray;
Localsize : SizeParArr;
Learning : BoolParArr; { Miscellaneous}
Mask : BoolParArr;
MustSkip : BoolParArr;

ImageBuf : S tagerBuf; { Input/Ou tpu t}
ImageIn : PtrParArr;
ImageOut : PtrParArr;
DataIn : file of IOBuffer;
DataOut : file of IOBuffer;

{ Scalar Global Data Structures}
MaxOutTkn : integer;{ Max Output token}
MaxInTkn : integer;{ Max Input token }
InputImage : ImageIndex;{ # of current input image}
OutImage : ImageIndex;{ # of current output image}
InputCol : ProcIndex;{ # of current input column}
OutputCol : ProcIndex;{ # of current output column}
EndOfInput : boolean;{ true when last image done}

%include 'io.i'{ Low Level 1/0 Routines}

procedure restrc; extern; { PE initialization}

procedure FindMatch;
var

Index : DictSize;
Temp : BoolParArr;
Searching : BoolParArr;

- 37 -

begin
Searching := OldBufVal and NewBufVal;
Temp := (LocalSize > 0);
Searching := Searching and Temp;
Index := FirstIndex;
while (Index < MaxEntries) and any(Searching, 1, 2) do

{ Select processors where a match could be expected}
Mask := (LocalSize > Index) and Searching;
{ Reduce Mask set to those where a match exists}
Temp := (OldBufPtr = RightDict[Index 1) and

(NewBufPtr = LeftDict[Index I);
Mask := Mask and Temp;
{ Update processors where a match was found}
where Mask do OutputPtr := col-index * MaxEntries;
where Mask do OutputPtr := OutputPtr + (Index + DefReserve);
where Mask do OutputVal := true;
where Mask do Searching := false;
where Mask do OldBufVal := false;
where Mask do NewBufVal := false;
Index := Index + 1;

begin

I

end;
end;

procedure UpdateDict;
var

DictIndex : DictSize;
Offset
Lastsize : DictSize;
Candidates : BoolParArr;
Temp : BoolParArr;
Bothunder : BooParArr;
BothOver : BoolParArr;
ValidMatch : BoolParArr;

Candidates := OldBufVal and NewBufVal;
LastSize := max(Localsize, 1, 2);
if LastSize > LastIndex then LastSize := LastIndex;
for DictIndex := 0 to LastSize do

: DictSize;{ to get around compiler bug}

begin

begin
{ decide which processors should update the DictIndex’th}
{ entry in their dictionary -> Temp}
Offset := DictIndex;

- 38 -

Temp := LocalSize = Offset;
Temp := Temp and Candidates;
Temp := Temp and Learning;
{ Reject those processors that do not have a valid match}
Bothunder := (OldBufPtr < DevReserve) and

(OutputPtr < DefReserve);
BothOver := (OldBufPtr >= DevReserve) and

(OutputPtr >= DefReserve);
ValidMatch := Bothunder or Bothover;
Temp := Temp and ValidMatch;.
{ first pair to be learned must be skipped}
where MustSkip do Mask := false otherwise Mask
where Temp do MustSkip := false;
if any(Mask, I, 2) then

begin
where Mask do LeftDict [Offset] := OldBufPtr;

where Mask do RightDict[Offset] := OutputPtr;
where Mask do LocalSize := LocalSize + I;
where Mask do Candidates := false

end
end

end;

procedure UpdateAll;
begin

{ Clear output flag in all processors}
OutputVal := false;
{ Find all matches between buffers and dictionaries}
FindMatch;
{ Update Dictionaries, where necessary}
Up d at eDic t ;
{ Output older buffer entry if no match was found}
Mask := OldBufVal and NewBufVal;
where Mask do OutputPtr := OldBufPtr;
where Mask do OutputVal := true;

end;

= T

procedure SwitchDict;
var

begin
NewMask: BoolParArr;

{ Mask = true if local dictionary is full}

- 39 -

Mask := LocalSize = MaxEntries;
Mask := Mask and Learning;
{ NewMask = true if new dictionary is being enabled}
NewMask := shift(Mask, NoShiftUp, ShiftRight);
where Mask do NewMask := false;
{ new dictionaries must skip their first pair}
MustSkip := MustSkip or NewMask;
{ Update Learning mask}
where Mask do Learning := false

otherwise Learning := Learning or NewMask;
end;

procedure ProcTokens;
begin

{ Load input data on first column of processors}
Next Column;

{ Update Processor status}
UpdateAll;

{ Shift Buffers right, where appropriate}
where NewBufVal do OldBufPtr := NewBufPtr;
where NewBufVal do OldBufVal := NewBufVal;

{ Broadcast data to next processor in row}
NewBufPtr := shift(OutputPtr, NoShiftUp, ShiftRight);
NewBufVal := shift(OutputVal, NoShiftUp, ShiftRight); -
{ Switch to next dictionaries, if necessary}
SwitchDict;

{ Output, if necessary ...}
ColumnOut;

end;

procedure InitProcs;
begin

LocalSize := 0;
OutputVal := false;
OldBufVal := false;
NewBufVal := false;
Learning := false;

a .’
- 40 -

where (col-index = FirstProc) do Learning := true;
where (col-index = FirstProc) do MustSkip := true

end;

begin

restrc;{ Initialize PECU system data structures}

MaxOutTkn := LastPtr;
MaxInTkn := DefReserve - 1;

LoadImages;[Load input images into Stager buffer}
InitProcs;{ Initialize processor data structures}
Initoutput;{ Initialize output routines}

while not EndOfInput do ProcTokens;

FlushBuffers{ Flush remaining tokens}

end.

procedure Loadlmages;
var

Index : ImageIndex;
Offset : ImageIndex;
Temp : PtrParArr;

reset(DataIn);
for Index := FirstImage to LastImage do

Offset := Index;
get(DataIn);

transfer(DataIn, Temp);
waitio;
transfer(Temp, ImageBuf[Offset, ,]);
waitio;

end;
InputCol := 0;
InputImage := 0;
EndOff nput := false;
transfer(ImageBuf[InputImage, , 1, ImageIn);

begin

begin

- 4 1 -

waitio
end;

procedure Nextcolumn;
vat

begin
Value: integer;

Mask := (col-index = FirstProc);
where Mask do NewBufPtr := ImageIn;
where Mask do NewBufVal := (NewBufPtr < > NullPtr);
ImageIn := shift(ImageIn, NoShiftUp, ShiftLeft);
if (InputCol < LastProc) then lnputCo1 := InputCol + 1
else begin

if (InputImage = LastImage) then EndOfInput := true
else begin

InputImage := Inputimage + 1;
transfer(ImageBuf[InputImage, , 1, ImageIn)

InputCol := 0;

end
end

end;

procedure Initoutput;
begin

rewrite(DataOut);
ImageOut := NullPtr;
OutputCol := 0

end;

procedure ColumnOut;
begin

Mask := (col-index = LastProc);
where Mask do

where OutputVal do ImageOut := OutputPtr
otherwise ImageOut := NullPtr;

Mask := Mask and OutputVal;
if any(Mask, 1, 2) then

begin

begin
if (OutputCol < LastProc) then

OutputCol := OutputCol + 1;

I ' '

- 4 2 -

ImageOut := shift(Imageout, NoShiftUp, ShiftLeft)
end

else begin

transfer(Imageout, DataOut);
waitio;
ImageOu t : = NullP tr;
put(DataOut)

end
end

OutputCol := 0;

end;

procedure Flushone(var PtrArray: PtrParArr; var B o o k r a y : BoolParArr);
begin

OutputVal := B o o k r a y ;
OutputPtr := PtrArray;
ColumnOu t;

B o o k r a y := shift(B o o k r a y , NoShiftUp, ShiftRight);
PtrArray := shift(PtrArray, NoShiftUp, ShiftRight)

end;

procedure FlushBuffers;
var

Index: ProcIndex;
Offset: ProcIndex;

for Index := LastProc downto FirstProc do

Flushone(OldBufPtr, OldBufVal);
Flushone(.NewBufPtr, NewBufVal)

close(DataOut)

begin

begin

end;

end;

