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Figure 1.—Regional stratigraphy and petroleum systems of the Illinois basin, U.S.A. Stratigraphic data are modified from Hass (1956), Conant and Swanson (1961), Willman and others (1975), American Association of Petroleum Geologists (AAPG)
(1984, 1986), Olive and McDowell (1986), Shaver and others (1986), Thompson (1986), Mancini and others (1996), and Harrison and Litwin (1997). Stratigraphy of the adjacent Michigan basin is from Swezey (2008), and stratigraphy of the adjacent
Appalachian basin is from Swezey (2002). The time scale is taken from Gradstein and others (2004). Additional stratigraphic nomenclature is from Harland and others (1990), Babcock and others (2007), and Bergstrom and others (2008). Stratigraphic se-
quences and sequence boundary locations are from Sloss (1963, 1988) and Wheeler (1963). Abbreviations used: Dol., Dolomite; Fm., Formation; Gp., Group; Ls., Limestone; Mbr., Member; Sh., Shale; Ss., Sandstone.
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Figure 2.—Extent of the Illinois basin is shown in red. Extents of the Michigan, Appalachian, and Black Warrior basins are shown in gray.
The Illinois basin is subdivided into eight regions, and the generalized stratigraphy of these eight regions is shown in figure 1. Column
numbers in figure 1 correspond to region numbers in figure 2. Figure 2 is modified from American Association of Petroleum Geologists

(1984, 1986) and Swezey (2008).

EXPLANATION OF LITHOLOGY

Conglomerate

Sandstone

Section not present

Carbonate rock or chert

Siliciclastic mudstone

Interbedded sandstone and mudstone

Interbedded sandstone, mudstone, carbonate rock, and coal

Table 1.—Petroleum source rocks and associated major petroleum plays of the lllinois basin (modified from Swezey and others, 2007b).

Petroleum source rocks of the Illinois basin

Major petroleum plays of the Illinois basin

Group 5: Pennsylvanian coal and shale

Group 4: Devonian to Mississippian New Albany Shale

Group 3: Ordovician Maquoketa Group, Galena Group, and Ancell Group
(Dutchtown Limestone and Joachim Dolomite)

Group 2: Cambrian Eau Claire Formation

Group 1: Precambrian to Cambrian shale (hypothetical)
older than the Cambrian Eau Claire Formation

Pennsylvanian coal beds

Pennsylvanian sandstone

Upper Mississippian sandstone

Lower Mississippian carbonate

Lower Mississippian Borden Formation (Group)
Devonian to Mississippian New Albany Shale (Group)
Middle Devonian carbonate

Middle Devonian Dutch Creek Sandstone

Lower Devonian carbonate

Upper Silurian carbonate (reefs)

Lower Silurian calcareous siltstone (hypothetical)
Lower Silurian carbonate

Cambrian to Ordovician carbonate, along southeastern margin of basin

Ordovician Maquoketa Group (hypothetical)
Ordovician Dutchtown Limestone to Galena Group
Ordovician St. Peter Sandstone and Everton Dolomite (hypothetical)

Cambrian to Ordovician Knox Group (hypothetical)
Cambrian Mount Simon Sandstone and Eau Claire Formation (hypothetical)

Precambrian to Cambrian rift-fill strata (hypothetical)
older than the Cambrian Eau Claire Formation

INTRODUCTION

This publication combines data on Paleozoic and Mesozoic stratigraphy and
petroleum geology of the lllinois basin, U.S.A., in order to facilitate visualizing the
stratigraphy on a regional scale and visualizing stratigraphic relations within the basin.
Figure 1 presents these data in eight schematic chronostratigraphic sections arranged
approximately from north to south, with time denoted in equal increments along the
sections, and figure 2 shows the areal extent of this structural basin. The stratigraphic
data are modified from Hass (1956), Conant and Swanson (1961), Willman and others
(1975), American Association of Petroleum Geologists (AAPG) (1984, 1986), Olive
and McDowell (1986), Shaver and others (1986), Thompson (1986), Mancini and
others (1996), and Harrison and Litwin (1997). The time scale is taken from Gradstein
and others (2004). Additional stratigraphic nomenclature is from Harland and others
(1990), Babcock and others (2007), and Bergstrém and others (2008). Stratigraphic
sequences as defined by Sloss (1963, 1988) and Wheeler (1963) also are included, as
well as the locations of major petroleum source rocks and major petroleum plays. The
stratigraphic units shown in figure 1 are colored according to predominant lithology, in
order to emphasize general lithologic patterns and to provide a broad overview of the
Illinois basin. For the purpose of comparison, three columns on the right side of figure
1 show schematic depictions of stratigraphy and interpreted events in the Illinois basin
and in the adjacent Michigan and Appalachian basins (locations shown in figure 2). Data
for the Michigan basin column are modified from Swezey (2008), whereas data for the
Appalachian basin column are modified from Swezey (2002).

GENERAL STRATIGRAPHY

Figure 1 shows the predominant lithologies for given areas within the Illinois basin.
The oldest of these rocks is 1,500- to 1,420-Ma (Mesoproterozoic) granite and rhyolite
(Kolata and Nelson, 1990; Van Schmus and others, 1996), which are designated as
Precambrian on figure 1. The Precambrian granite and rhyolite are capped by an
unconformity, which is overlain by Cambrian siliciclastic strata. The Cambrian
siliciclastic strata, in turn, are overlain by uppermost Cambrian and Ordovician
carbonate strata with some beds of siliciclastic strata (~497-452 Ma). There is a distinct
interval of siliciclastic strata (St. Peter Sandstone) that represents a relatively short
duration (~467-460 Ma) within the overall package of Ordovician carbonate rocks. The
St. Peter Sandstone is overlain by Middle and Upper Ordovician carbonate strata
(~460-452 Ma), with minor beds of evaporites within the Everton Dolomite and
Joachim Dolomite. These carbonate strata are overlain by Upper Ordovician siliciclastic
strata (~452-444 Ma), which exhibit a general basinwide pattern of finer grained rocks
overlain by coarser grained rocks. The Upper Ordovician siliciclastic strata are overlain
by Lower Silurian through Middle Devonian strata (~444-385 Ma) of predominantly
carbonate composition. There is a distinct interval of siliciclastic rocks (Dutch Creek
Sandstone and stratigraphically equivalent Hoing Sandstone Member of the Cedar
Valley Limestone) that represents a relatively short duration (~399-398 Ma) within the
Lower Silurian through Middle Devonian carbonate package. The Lower Silurian
through Middle Devonian carbonate strata are overlain by Upper Devonian through
Lower Mississippian siliciclastic strata (~385-353 Ma), which are, in turn, overlain by
Middle Mississippian carbonate strata (~353-326 Ma). Within these Middle Miss-
issippian carbonate strata, a distinct interval of siliciclastic strata is mapped as the
Borden Siltstone, Borden Formation, or Borden Group, and minor beds of evaporites
are present within the St. Louis Limestone. In turn, the Middle Mississippian carbonate
strata are overlain by Upper Mississippian mudstone, sandstone, and limestone
(~326-318 Ma). The Upper Mississippian strata are overlain by Pennsylvanian through
Permian strata (~318-276 Ma) that are predominantly siliciclastic but also contain
some beds of coal and limestone. The Pennsylvanian through Permian strata are
overlain by Cretaceous siliciclastic strata (~115-66 Ma).

As for correlations with the sequences of Sloss (1963, 1988) and Wheeler (1963), the
Illinois basin contains the following five major sequences: Sauk, Tippecanoe, Kaskaskia,
Absaroka, and Zuni. These five sequences are bounded by unconformities that have
been identified across most of North America. The identification of these sequences
provides a framework for stratigraphic correlations with other geologic basins and also
provides a framework for discussing the respective influences of tectonic activity,
climate, and sea level on the generation and preservation of strata. Additional
unconformities of more local extent are present within the Illinois basin, but figure 1
shows only the major unconformities identified by Sloss (1963, 1988) and Wheeler
(1963).

In the Illinois basin, the Sauk Sequence is bounded at the base by the unconformity
between the Precambrian basement and the overlying Cambrian siliciclastic strata and
at the top by the Owl Creek unconformity, which lies at the base of the St. Peter
Sandstone and equivalent units. Sloss (1963, 1988) divided the Sauk Sequence into
three units (Sauk I, Sauk II, and Sauk III), but only the Sauk Il and Sauk III units are
present in the Illinois basin. The Mount Simon Sandstone is part of the Sauk II unit,
whereas the Franconia Formation is part of the Sauk Il unit. However, the Sauk II-Sauk
Il boundary is not well documented in this region and therefore is not shown in figure 1.

The Tippecanoe Sequence is bounded at the base by the Owl Creek unconformity
and at the top by the Wallbridge unconformity, which lies at the base of the Dutch Creek
Sandstone and equivalent units. The Tippecanoe Sequence was divided by Sloss (1988)
into a lower unit (Tippecanoe 1) and an upper unit (Tippecanoe II). Wheeler (1963)
referred to the strata of this lower unit as the Creek Holostrome, and he referred to the
upper interval as the Tutelo Holostrome. In the Illinois basin, the boundary between
these two Tippecanoe units is an unconformity between the Upper Ordovician
Maquoketa Group (and stratigraphically equivalent Cincinnatian rocks) and the
overlying Lower Silurian carbonate strata (for example, the Edgewood Formation, the
Brassfield Limestone, and the Sexton Creek Limestone). Although Wheeler (1963)
named this unconformity the “Taconic discontinuity,” Dennison and Head (1975) later
proposed that the name be replaced by “Cherokee unconformity,” which is a Native
American name (as are the names proposed by Sloss and Wheeler for the stratigraphic
sequences) and does not imply an association with the Taconic orogeny.

The Kaskaskia Sequence, which lies above the Tippecanoe Sequence, is bounded at
the base by the Wallbridge unconformity and at the top by the sub-Absaroka
unconformity, which is associated with the Mississippian-Pennsylvanian boundary.
More recent work, however, suggests that the sub-Absaroka unconformity is actually of
early Pennsylvanian age (Ettensohn, 1994). The Kaskaskia Sequence was divided by
Sloss (1988) into a lower unit (Kaskaskia I) and an upper unit (Kaskaskia II), with the
boundary between the two units being “near the close of Devonian time” (Sloss, 1988,
p. 35). In figure 1, this Kaskaskia [-Kaskaskia II boundary is shown at the
Devonian-Mississippian boundary. Wheeler (1963) also divided the strata between the
Wiallbridge unconformity and the sub-Absaroka unconformity into two units, referring to
the lower unit as the Piankasha Holostrome and the upper unit as the Tamaroa
Holostrome. However, the boundary between these two units designated by Wheeler
is not the same as the Kaskaskia I-Kaskaskia II boundary of Sloss. Wheeler (1963)
indicated that the boundary between the Piankasha Holostrome and the Tamaroa
Holostrome is the Acadian unconformity, which is located at the base of the Upper
Devonian Sylamore Sandstone (and stratigraphically equivalent units).

The Absaroka Sequence, which lies above the Kaskaskia Sequence, is bounded at the
base by the sub-Absaroka unconformity and at the top by the sub-Zuni unconformity.
The Absaroka Sequence was divided by Sloss (1988) into a lower unit (Absaroka 1), a
middle unit (Absaroka II), and an upper unit (Absaroka Ill). In the Illinois basin, however,
only Absaroka [ strata have been preserved.

The Zuni Sequence, which lies above the Absaroka Sequence, is bounded at the base
by the sub-Zuni unconformity and at the top by the sub-Tejas unconformity, which is of
Paleocene age (not shown in figure 1). The Zuni Sequence was divided by Sloss (1988)
into a lower unit (Zuni I), a middle unit (Zuni II), and an upper unit (Zuni IIl). In the Illinois
basin, however, only Zuni Il and Zuni IIl strata have been preserved.

Petroleum Source Rocks

The names of the major petroleum source rocks (rocks from which petroleum is
derived) in the lllinois basin are taken from Swezey and others (2007a,b). These source
rocks, which are presented in figure 1 and in table 1, fall into five distinct groups
according to stratigraphic age. Group 1 consists of hypothetical source rocks of
Precambrian and Cambrian shale older than the Cambrian Eau Claire Formation.
Group 2 consists of shale within the Cambrian Eau Claire Formation. Group 3 consists
of Ordovician source rocks, including shale in the Ordovician Ancell Group (Dutchtown
Limestone and Joachim Dolomite), shale within the Ordovician Galena Group (and
equivalent strata), and shale within the Ordovician Maquoketa Group. Group 4 consists
of shale within the Upper Devonian to lower Mississipppian New Albany Shale (and
equivalent strata). Group 5 consists of Pennsylvanian coal and shale. Although some
beds of organic-rich shale are present within Mississippian carbonate strata (Ridgley and
Nuccio, 1995), these shale beds are not considered to be major source rocks because
they are thin and have very limited lateral extent. Likewise, some beds of lignite have
been identified in the Cretaceous McNairy Formation in Calloway County, Ky. (Olive,
1965; Hower and others, 1990), and it is conceivable that this lignite might be a source
of biogenic gas. However, these lignite beds are not considered to be a major source
rock because they, too, are thin and have very limited lateral extent.

Most of the petroleum source rocks in the Illinois basin are thought to have generated
thermogenic oil and gas. Much of the gas in the Devonian-Mississippian New Albany
Shale, however, is of biogenic origin (McIntosh and others, 2002). Likewise, much of
the gas in the Pennsylvanian coal is of biogenic origin (Tedesco, 2003; Drobniak and
others, 2004 ; Morse and others, 2005).

Petroleum Plays

A petroleum play is defined as a group of drilling prospects having similar geologic
characteristics that control production (Magoon and Dow, 1994; Patchen, 1996). Plays
are commonly designated in terms of stratigraphy, although play names can also be
modified by reference to type of petroleum trap. In U.S. Geological Survey oil and gas
assessments, petroleum plays are referred to as “assessment units.” The major
petroleum plays or assessment units in the lllinois basin include sandstone, carbonate,
and shale (table 1). The assessment units are distributed more widely throughout the
stratigraphic sections than the source rocks, but most of the assessment units do show
some stratigraphic proximity to the source rocks. As outlined in Swezey and others
(2007a,b), the Precambrian to Cambrian source rocks have supplied petroleum to
Precambrian through Ordovician strata. The Ordovician source rocks have supplied
petroleum only to Ordovician strata. The Devonian to Mississippian New Albany Shale
(Group) has supplied petroleum to Cambrian to Ordovician strata along the
southeastern margin of the basin and to Silurian through Pennsylvanian strata
throughout most of the rest of the basin. The Pennsylvanian coal and shale source rocks
have supplied petroleum only to Pennsylvanian strata.

DISCUSSION

The Paleozoic lithostratigraphy of the Illinois basin is strikingly similar to that of the
Michigan basin and the Appalachian basin, and thus it appears that the three basins
have had a similar history and have responded in a similar manner to changes in
tectonics, sea level, and climate. Much of the Paleozoic record within the Illinois basin,
the Michigan basin, and the Appalachian basin is composed of carbonate strata.
Accordingly, the three basins were essentially carbonate basins during the Paleozoic,
with the appearance of non-carbonate strata denoting unusual events. A few notable
exceptions to the similarities of Paleozoic stratigraphy are (1) the Cambrian strata,
which are primarily sandstone in the Illinois and Michigan basins and are primarily
carbonate in the Appalachian basin and (2) the Upper Silurian strata, which are
primarily carbonate in the Illinois basin and the southern Appalachian basin and are
primarily evaporitic strata in the Michigan basin and the northern Appalachian basin.

Most of the siliciclastic strata in the llinois basin are traditionally interpreted as being
associated with tectonic events (for example, see Quinlan and Beaumont, 1984; Kolata
and Nelson, 1990). The Upper Ordovician to Lower Silurian siliciclastic strata are
associated with the Taconic orogeny in the Appalachian basin, the Middle Devonian to
Middle Mississippian siliciclastic strata are associated with the Acadian orogeny in the
Appalachian basin, and the Upper Mississippian to Permian siliciclastic strata are
associated with the Alleghanian orogeny in the Appalachian basin. Upper
Pennsylvanian (upper Missourian) to Permian siliciclastic strata are also associated with
the Ouachita orogeny, which occurred south of the Illinois basin (Nelson and others,
1990). Cretaceous siliciclastic strata are coincident with both the Laramide orogeny,
which occurred west of the Illinois basin (for example, Maxon and Tikoff, 1996; English
and Johnston, 2004), and with a time of relatively high eustatic sea level (Miller and
others, 2005). Cecil and others (2003, 2004), however, have suggested that climate
also exerts an important control on lithostratigraphy. Additional support for the role of
climate is suggested by the observation that the three Appalachian orogenies (Taconic,
Acadian, and Alleghanian) are approximately coincident with the three major
glaciations that occurred during the Paleozoic (as described by Crowell, 1999). In the
Illinois basin, a major unconformity (sequence boundary) is present with each package
of Paleozoic siliciclastic strata associated with an orogeny. The Cherokee unconformity
is located at the top of the siliciclastic package associated with the Taconic orogeny.
The Acadian unconformity is located at the base of sandstone (Sylamore Sandstone,
Holts Summit Formation, and Turpin Sandstone) overlain by finer grained rocks in the
lower part of the siliciclastic package associated with the Acadian orogeny. The
sub-Absaroka unconformity is located at the base of sandstone (Caseyville Formation)
overlain by finer grained rocks in the lower part of the siliciclastic package associated
with the Alleghanian orogeny.

By comparing the Paleozoic stratigraphic records of the Illinois and Appalachian
basins, it appears that most of the Upper Ordovician and Upper Devonian siliciclastic
strata began to accumulate in the Appalachian basin before they began to accumulate
in the Illinois basin. In both instances, subsidence in the Appalachian basin may have
initially trapped siliciclastic sediments in that basin, allowing carbonate sediments to
continue accumulating in the Illinois basin. Eventually, however, siliciclastic sediments
extended beyond the Appalachian basin and into the lllinois basin, shutting down
carbonate production and leading to an overall change from carbonate accumulation to
siliciclastic accumulation in the Illinois basin. A similar sequence of events also occurred
during the Mississippian. During the Early Mississippian (late Kinderhookian), carbonate
strata (Chouteau Limestone and Rockford Limestone) were re-established in the Illinois
basin, while siliciclastic strata continued to accumulate in the Appalachian basin.
However, during the Early to Middle Mississippian (Osagean), siliciclastic strata in the
Appalachian basin extended into the Illinois basin, shutting down carbonate production
and leading to an overall change from carbonate accumulation to siliciclastic
accumulation as the Borden Siltstone (and equivalent strata).
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In addition to the major packages of siliciclastic strata, there are two minor
packages of Paleozoic siliciclastic strata that accumulated in the Illinois basin: the
St. Peter Sandstone at approximately 467 to 460 Ma, and the Dutch Creek
Sandstone (and stratigraphically equivalent Hoing Sandstone Member of the
Cedar Valley Limestone) at approximately 399 to 398 Ma. These sandstones are
present within predominantly carbonate strata and are not associated with
significant fining-upward or coarsening-upward trends. Furthermore, they
represent relatively short durations and are not associated with major orogenies.
These sandstones may owe their origin primarily to changes in climate and (or) sea
level. A possible scenario is that the two sandstones are of eolian origin, or that
they originally were eolian sediments that were subsequently redeposited in a
subaqueous environment (Berkey, 1906; Grabau, 1940; Summerson and Swann,
1970; Tissue and Langenheim, 1979; Dott and others, 1986).

In the Illinois basin, some of the major petroleum source rocks (Precambrian to
Cambrian shale, Cambrian Eau Claire Formation, Ordovician Maquoketa Group,
Devonian to Mississippian New Albany Shale, and Pennsylvanian coal and shale)
are associated with siliciclastic strata, whereas other petroleum source rocks
(Cambrian Eau Claire Formation, Ordovician Dutchtown Limestone, Ordovician
Joachim Dolomite, and Ordovician Galena Group) are associated with carbonate
strata. Nevertheless, the recognition of five discrete groups of petroleum source
rocks provides a context for evaluating hydrocarbon resources of the Illinois basin
in terms of five petroleum systems (in the sense of Magoon and Dow, 1994).

In summary, the Illinois basin of the United States contains Paleozoic and
Mesozoic strata ranging from Cambrian to Cretaceous in age (fig. 1). These strata
represent parts of the Sauk, Tippecanoe, Kaskaskia, Absaroka, and Zuni
Sequences of Sloss (1963, 1988) and Wheeler (1963). Illinois basin strata are
characterized by distinct lithologies that persisted geologically on the order of tens
of millions of years. Most of the Cambrian strata (~542-497 Ma) are
predominantly siliciclastic. The uppermost Cambrian to Upper Ordovician strata
(~497-452 Ma) are predominantly carbonate. The uppermost Ordovician strata
(~452-444 Ma) are predominantly siliciclastic, associated with the Taconic
orogeny. The Lower Silurian to Middle Devonian strata (~444-385 Ma) are
predominantly carbonate. The Upper Devonian through Lower Mississippian
strata (~385-353 Ma) are predominantly siliciclastic, associated with the Acadian
orogeny. The Middle Mississippian strata (~353-326 Ma) are predominantly
carbonate. The Pennsylvanian to Permian strata (~318-276 Ma) are pre-
dominantly siliciclastic, associated with the Alleghanian orogeny and the Ouachita
orogeny. The Cretaceous strata (~115-66 Ma) are siliciclastic, approximately
coincident with the Laramide orogeny. Lithologic variability on the order of tens
of millions of years is correlated with tectonic activity in combination with climatic
changes, whereas lithologic variability of shorter duration (<10 million years) may
have been caused by changes in climate or sea level or both (without necessarily a
major tectonic influence).

The petroleum source rocks fall into five groups according to stratigraphic
occurrence. These five groups are listed as follows: (1) hypothetical source rocks
of Precambrian and Cambrian shale; (2) shale within the Cambrian Eau Claire
Formation; (3) Ordovician source rocks, including shale within the Ordovician
Ancell Group (Dutchtown Limestone and Joachim Dolomite), shale within the
Ordovician Galena Group (and equivalent strata), and shale within the Ordovician
Maquoketa Group; (4) shale within the Devonian to Mississipppian New Albany
Shale (and equivalent strata); and (5) Pennsylvanian coal and shale. The petroleum
plays are more widely distributed throughout the stratigraphic sections than the
source rocks, suggesting that there has been some migration of petroleum.
However, the Precambrian to Cambrian source rocks are thought to have supplied
petroleum only to Precambrian through Ordovician reservoirs, the Ordovician
source rocks are thought to have supplied petroleum only to Ordovician reservoirs,
and the Pennsylvanian source rocks are thought to have supplied petroleum only
to Pennsylvanian reservoirs. In contrast, the Upper Devonian to lower
Mississippian New Albany Shale (Group) is thought to have supplied petroleum to
most reservoirs of Silurian through Pennsylvanian age. The recognition of five
discrete groups of petroleum source rocks suggests that there are at least five
different petroleum systems within the Illinois basin.
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