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PART I 

MODELING AND CHARACTERIZATION OF THE 

EARTH RADIATION BUDGET EXPERIMENT (ERBE) 

NONSCANNER SENSORS 

1. INTRODUCTION 

Three Earth Radiation Budget Experiment (ERBE) satellites, namely ERBS, NOAA- 

9 and NOAA-10 were launched on October 5, 1984, December 5, 1984, September 17,1986 

respectively to measure the radiances from the sun and reflected and emitted radiances 

from the earth-atmosphere system. The first spacecraft, ERBS, which has a non-sun- 

synchronous trajectory, is favorable for mid and low latitudes. The other two satellites, 

NOAA-9 and NOAA-10, which have sun-synchronous trajectories, are favorable for high 

altitudes. A general overview of the concept behind the three-satellite ERBE radiometric 

system and its instrume:nts has been described in many internal NASA documents, such 

as the Science Team Meeting Minutes and Contractor Status Reports, as well as in journal 

publications [l]. 

Each ERBE satellite has five nonscanner sensors with active cavity radiometer de- 

tectors. Four of them are aimed to measure the radiances leaving the earth-atmosphere 

system, while the fifth sexor ,  known as the Solar Monitor, measures the solar incident ra- 

diance. One wide and one medium field-of-view sensor make measurements across the total 

spectral band, while the the other two measure the Earth’s reflected radiation, which is 

then subtracted from the total measurements to determine the Earth’s emitted radiation. 

The fifth instrument, the Solar Monitor, uses the same type of Active Cavity Radiometer 

(ACR) that is used by the nonscanners. Details of these sensors can be found elsewhere 

PI - 141. 



This report describes the development of governing equations, calibration procedure 

and interpretation of calibration data to determine the Ground and In-Flight Count Con- 

version Coefficients for the nonscanner active cavity radiometers. Chapter 2 details the 

nonscanner instruments and mathematical developments, while Chapters 3 and 4 describe 

the Ground and In-Flight Count Conversion Coefficients, respectively. 
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2. NONSCANNER SENSORS 

2.1 Description 

The ERBE Non-Scanning sensors are state-of-the-art active cavity radiometers (ACR) 

designed for high accuracy and stability. Each of the three Non-Scanner instruments con- 

sists of four sensors. Two of the sensors have a wide field-of-view (WFOV) which provides 

limb-t-limb coverage of the top of the atmosphere (TOA) plus a "space ring" to accommo- 

date small deviations in spacecraft roll angle and possible installation misalignments. The 

other two Non-Scanners have a medium field-of-view (MFOV) covering a circular area with 

a diameter corresponding to about 10" Earth Central Angle at  the top of the atmosphere, 

The WFOV and MVOV sensors each consist of a Shortwave (SW) and a Total (T) 

sensor, measuring the spcctral bands from 0.2pm to 5pm and from 0.2pm to 50 + pm, re- 

spectively. In comparison to the Total channels, the Shortwave channels contain a suprasil 

dome filter to filter out the incoming longwave radiation. A schematic diagram showing 

the major elements of the MFOV-T and the WFOV-SW sensors is shown in Figs. 2.1 and 

2.2, respectively. A more detailed description of the ERBE Non-Scanner Instruments can 

be found in [I] - [3]. 

2.1.1 Basic Operation. 

As shown in Figs. 2.1 and 2.2, the active and reference cavities are cylindrical near 

the primary aperture and conical near the bottom. The active and reference cavity heater 

wires are wound around the bottom or conical part of the cavities. Temperature sensing 

wires are wound around the cylinders which hold the cavities, and thermally connect the 

cavities to the copper hea.: sink, shown as node 2 in the schematic diagrams. 

The copper heatsink is maintained at a constant temperature by resistance heater 

windings, as shown in Figs. 2.1 and 2.2. The resistance heater windings extend somewhat 
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beyond the copper heatsink, also adding heat to  the two aluminum heatsinks corresponding 

to nodes 4 and 7. The heatsink has three set temperatures of operation, although normal 

operation is around 34 "C. 

In the normal operation modes, the reference cavity maintains a constant temperature 

nearly equal to  the heatsink temperature. The reference cavity has a conductive path to 

the copper heatsink; its radiative exchange is mainly with the aluminum heatsink and to  a 

lesser degree with the copper heatsink and the active cavity. In the Earth-looking modes, 

the reference cavity heater is off, so that the only source of heat to the cavity comes from 

the current flowing in the temperature sensor wire around the cavity. Since all these effects 

remain essentially constant, the reference cavity remains at a constant temperature. 

On the other hand, the activity cavity has two extra major sources of energy: the 

radiation arriving through the primary aperture (node 8), and the Joule heating produced 

by the active cavity heater windings. The radiation arriving through Joule heating pro- 

duced by the active cavity heater windings. The radiation arriving through the primary 

aperture consists of radiation arriving through the sensor field-of-view (FOV), or the sec- 

ondary aperture, which is the signal to be measured, radiation emitted by or reflected from 

the field-of-view limiter (FOVL) and the baseplate (node 5 ) .  The radiative exchange with 

the primary aperture itself must also be considered. 

On the other hand, the active cavity heater, through a feedback control circuit shown 

in Fig. 2.3, maintains the active cavity temperature approximately "C above the reference 

cavity temperature. Since the reference cavity temperature remains constant, so does 

the active cavity temperature. When the radiation arriving from the primary aperture 

increases, the active cavity heater reduces its heat input by the same amount to  maintain 

the active cavity at  a constant temperature. The active cavity heater voltage, in digital 

format, constitutes the sensor output from which the desired signal is to be estimated. 

Thus, the active cavity heater input varies with the energy variations from all other 

sources. To obtain an estimate of the desired signal (i.e., the radiation arriving through 
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the secondary aperture), it is necessary to carefully eliminate the effects from the other 

energy sources such as variations due to the field-of-view limiter baseplate, the dome filter 

and other component temperatures, the energy loss through the conductive path to the 

Cu heatsink, etc. When all of these effects, most of which are second order, are carefully 

accounted for and subtracted from the active cavity heater input, the remaining energy is 

due to absorbed radiation arriving through the sensor field-of-view, which is the desired 

signal. In the following sections, the radiative, conductive and electrical interactions of the 

various elements of the radiometers are modeled and investigated in detail to obtain the 

best estimate of the desired incoming flux. 

All the nonscanner sensors have field-of-view limiters and baseplates with specular, 

characteristics to the extent possible. As the FOVL’s are hemispherical with their origin 

at the center of the primary aperture, this specular characteristic tends to minimize the 

amount of reflected radiation which enters the active cavity through the primary aperture. 

This effect may be somewhat reduced in the shortwave channels due to the presence of the 

dome filter between the FOVL and the active cavity. 

As mentioned earlier, in Earth-looking modes, the reference cavity heater is turned 

off, so that the cavity temperature is nearly equal to the heatsink temperature. However, 

the sensors can also be operated at  three other levels of reference cavity heater voltage. At 

each of these modes, a higher amount of constant heat is provided to the reference cavity. 

While some of this energy is emitted, and some conducted to the copper heatsink, the 

cavity temperature settles at a level higher than the one reached during the normal Earth- 

looking mode. Thus, the reference cavity temperature reaches a temperature higher than 

the heatsink temperature. The feedback control electronics drives the active cavity heater 

input to the level necessary to maintain the active cavity temperature slightly higher than 

that of the reference cavity. 

In these modes, although the active and reference cavities are both at  higher tem- 

peratures, the principle of operation remains the same at the new operating point. The 

10 
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active cavity temperature is maintained at a constant, albeit higher, temperature by the 

feedback control law which compensates exactly for the variations in absorbed energy ar- 

riving through the precision aperture. These modes of operation where the active cavity 

temperature differential over the heatsink temperature is higher, substantially increase the 

dynamic range of the scmors with no change in the sensitivity of the sensor. In particular, 

solar calibration, where the signal measured is significantly higher than the one experienced 

during Earth-looking modes, is performed at  a non-zero reference cavity heater voltage. 

The field-of-view limiter and the baseplate are thermally isolated from the detector 

which consists of nodes 1,2, 3 ,4,  7,8 and 9 shown in the sensor schematic in Figs. 2.1 and 

2.2. The baseplate is connected to  the detector by a bolt using thermal insulation, but it 

is connected to the elev'ation beam through a conductive link to minimize signal induced 

variations in the FOVL and baseplate. 

While the discussion above provides the basic operation of the non-scanning ERBE 

sensors and describes the major elements of the ACR's, many of the significant details 

involved in the design and assembly of the sensors are too numerous to be mentioned here. 

A more detailed description of the sensors is given in [l] - (31. 

2.1.2 Sensor Modeling. 

The main objective in modeling the ERBE sensors has been to obtain a thorough 

understanding of the various interrelationships and interactions among the components 

of the sensors. This involves modeling the radiative exchange, thermal conduction and 

electronic interactions to form the overall model describing the significant behavior of the 

sensors. Since the sensors cannot be characterized and calibrated in the actual conditions 

of orbital operations, it is necessary to infer the sensor response in normal operation from 

calibration data rneasure,d under somewhat different conditions, namely the calibration 

chamber. A thorough unc:erstanding of the sensor under as wide a variety of conditions as 

possible provides a most .reliable approach to achieve this inference with the aid of flight 

calibration data. Furthermore, ascertaining the stability of the sensors, and interpreting 
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actual changes in the sensors themselves during the life of the sensors also necessitate a 

good understanding of the sensors. 

While a thorough understanding of the significant sensor response is indispensable, 

practical considerations limit the level of detail that can be included in a model before 

extraneous effects, possibly caused by numerical difficulties, limit the usefulness of the 

model. Therefore, for a given application, a trade-off of the level of detail needed to model 

what is considered significant in the sensor response is necessary. 

As mentioned in the Introduction, the quantity desired is the irradiance, or flux, 

reaching a point at satellite altitude through the sensor’s designated field-of-view and 

spectral waveband. Using the angle conventions shown in Fig. 2.4, let L E X ( Z , Y ; $ , ~ )  be 

the spectral radiance leaving the top of the atmosphere and arriving at the point (z,y) 

on the primary aperture from the direction ($J,x) .  Let n i T  be the solid angle formed by 

the secondary aperture at the center of the primary aperture, i.e., at the origin (O,O), for 

the i th Total waveband sensor. For example, ~ W T  corresponds to the FOV of the Wide 

Field-of-View Total channel. Similarly, O M S  corresponds to the FOV of the Medium 

Field-of-View Shortwave channel. 

The desired radiant incidence, or flux, at the point (0,O) arriving from the top of the 

atmosphere within the sensor’s spectral band and FOV is given by 

RiT niT 

Qis 

where Lb;(z ,y;$,x)  is the radiance at (z,y), and 

Ideally, we would like to measure the radiant incidence, E ; T ,  at an infinitesimally small 
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area or a point. From satellite orbit, it is possible to closely approximate this condition, 

by spatial averaging over the small primary aperture. Thus, in the Earth-looking modes, 

the desired irradiance can be expressed as 

~- 

AiT nil' 

1 
Eis 1 Ais J/ JJL' LEX(Z,y ;$ ,X)dXdfIdA= - Ais Pis 9 (2.5) 

Ais nis 

where Air ,  Ais are the areas of the primary aperture opening for the appropriate sensors, 

and PiT,  p i s  represent the power absorbed by an ideal flat plate collector with spectral 

absorptivity and transmissivity of 1 and perfect cosine angular response over the appro- 

priate field-of-view and spectral band, and over the collector area of AiT or Ais according 

to the sensor. 

Having defined the desired signals, mathematical models which describe the significant 

sensor behavior and which lead to simple algorithms for estimating the desired fluxes will 

be developed. 

The basic approach taken in modeling the sensors is to develop a lumped-parameter 

thermal-electronic model by partitioning the sensor into a set of appropriately selected 

nodes [SI. The selection of nodes used in the model is shown in Figs. 2.1 and 2.2 for the 

Total and Shortwave channels, respectively. 

The energy balance for the j t h  node can then be expressed as 

where 5, y j  and c j  are the volume, density and specific heat capacity of the it'' node, 

Rjk is the thermal resistance between the j t h  node, and k th  nodes, Ai is the area of 

radiant interaction for the j t h  nodre, 4,  is the net flux absorbed by the it" node, Ti the 

temperature of the jth node and Q j  the total power of all heat sources acting on the 
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j t h  node. Writing a power balance equation for each node of the sensor, it is possible to 

obtain a thermal model for the radiative and conductive exchange among the sensor nodes. 

When a model of the tdectrical processing and control circuits is adjoined to the thermal 

exchange, a complete dynamic model of the sensor is obtained. 

2.2 Total Wavelength Channels 

2.2.1 Active Cavity Power Balance. 

The active cavity is the most important node of the sensors 

the thermal and 

be expressed as 

electrical systems. The power balance equation 

as it is the focus of both 

for the active cavity can 

+ P  9 

where Q a  is the power provided by the active cavity heater windings, Q J ~  the Joule heat 

power produced by thc current flowing in temperature sensor wires, and p the power 

absorbed by the cavity due to  radiation arriving through the primary and secondary aper- 

tures. The effects of the radiative interchange between the active cavity and the remaining 

nodes is modeled here through the distribution factors D j k .  The distribution factors can 

be obtained by Monte C'arlo simulation using ray-tracing techniques by standard radiative 

exchange equations in a cavity using diffuse-grey assumptions or by the coupled-enclosure 

radiative exchange method developed for approximating complicated cavity geometries. 

The active cavity heater power Ga and the sensor wire Joule heating term Q J ~  will 

be discussed in more detail subsequently. First consider the absorbed power, PiT,  by the 

i fh  Total sensor, which contains information about the desired irradiance EiT given by Eq. 

(2.1). Let A i T  denote the area of the primary aperture opening of the ith Total sensor and 

Lx(z, y; +, x )  the spectral radiance arriving through the secondary aperture and entering 
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the active cavity at the point (z ,y)  from the direction ( $ J , x ) .  Then p~ can be expressed 

as 

where f l i ~ ( z , y )  is the solid angle formed by the secondary aperture at  the point (z,y) 

for the ith Total sensor. Except for machining tolerances, the primary aperture for all 

channels have the same dimensions and edge characteristics, so that 

Q;T(X) is the effective spectral absorptivity of the inside of the active cavity of the it" 

sensor, and g i T ( $ , x )  represents the angular response characteristics of the it" sensor to 

radiation arriving from the direction ( $ , x ) .  It has been assumed that the spectral and 

angular characteristics of the sensor are separable; i.e., that the product of a function 

of X and a function of ($,x) can describe the sensor's combined spectral and directional 

characteristics. 

It should be noted that the effective spectral absorptivity of the active cavity includes 

the effect of multiple bounces of entering radiation at  several points inside the cavity. 

The selection of the dimensions of the cylindrical and conical portions of the cavities was 

based on the results of where it is shown that incoming radiation must have at least three 

bounces before leaving the cavity. Thus, if the cavity paint has an absorptivity of .9, then 

the effective cavity absorptivity would be .999, or, for all practical purposes, unity. 

The geometry and radiative properties of the surfaces of the FOV limiter and baseplate 

are designed to minimize the amount of reflected radiation that enters the cavity. However, 

due to imperfections and the finite (non-zero) opening of the primary aperture, some 

angular nonuniformity in response may occur. The term si($, x )  accounts for deviations 

. 
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from the ideal “cosine response”; so that for an ideal sensor with a cosine response gi($J, x) 
would be unity for all angles ($, x). 

Comparing Eqs. (2!.4) and (2.9), it is seen that the actual absorbed power PIT depends 

on the actual spectral absorptivity and angular response, as opposed to the ideal absorbed 

power in Eq. (2.4). 

2.2.2 Active Heater Electronics. 

As mentioned earl’ier, the active cavity temperature is maintained at  a constant level 

above the reverence ca.vity temperature. This is achieved by the control circuit shown 

in Fig. 2.3b. The functional block diagram in Fig. 2.3a shows that the bridge configu- 

ration produces a signal proportional to the difference between the active and reference 

cavity temperatures with an additional offset. This signal is then amplified and fed into 

a proportional-integra1 (PI) controller which provides the voltage that drives the current 

through the active cavity heater windings, thus closing the feedback loop. The voltage is 

sampled every 0.8 seconds and translqlitted to Earth through a down-link, providing the 

main radiometer sensor output. 

To model the electronics, first consider the bridge. The active and reference sensor 

wires provide two legs of the bridge, while the other two legs are set to constant resistance 

values. If the active 01’ reference cavities change in temperature the bridge goes out of 

balance thus forcing the controller to add more or less heat to the active cavity and 

maintain its temperature. 

Now note that the bridge output voltage AV is given by 

(2.11) 

(2.12) 

where Rl(T1) and R3(T3) are the sensor wire electrical resistances for the active and 
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I 

l 

reference cavities, respectively, and Rz and R4 are the electrical resistances of the copper 

and aluminum heatsinks, respectively. Linearizing the sensor wire resistance in terms of 

its temperature, assume that within a small temperature range, 

Rl(T1) = a1 + b l G  Y R3(T3) = a3 + 63 T3 . 
It may further be noted that, when the sensor wires are exactly matched, 

AV K B ( T ~  - T3 - b E )  , 

I where T2 is the copper heatsink temperature and K B ,  bE are given by 

VB b KB = - 4R 

(2.13) 

(2.14a) 

(2.14b) 

(2.14~) 

I where second order terms have been neglected. So that the bridge will come to balance 

when the active cavity temperature is slightly higher than that of the reference cavity. 

Although the sensor wires are selected to have as close characteristics as possible, perfect 

matching is not essential to the basic operation. After some manipulation, it can be shown 

that the bridge balance will occur when 

(2.15) 

It is seen that appropriate selection of the electronic bias term BE by tuning the 

resistances RZ and Rq, can produce any desired offset between the active and reference 

cavity temperatures. 

It should also be noted that any drift in the sensor wire resistance versus temperature 

I parameters or other bridge impedances will alter the bridge balance and result in slightly 
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different temperature 1,elationship between TI and T3. 

Further note that since the resistance versus temperature characteristics depend on 

the operating heat sink temperature, T2. The Cu heat sink temperature is, therefore, 

very tightly controlled. To date, the data show that noticeable variations of the heat sink 

temperature are rare and do not exceed 0.01 "C. 

To obtain a dynamic model of the amplifier and proportional-integral (PI) controller 

feedback the following equations can be added to the energy (power) balance equations. 

1 
73 

710 = -[Tg - Ti0 + r i ( K ~  KE AV + KE n ~ ) ]  (2.17) 

(2.18) 

v = T11 + n, (2.19) 

where Ts, T10,T11 are variables representing electrical quantities rather than temperatures, 

nE and nu represent random noise introduced by the electronics, and u is the sensor output 

voltage which is applied to the active cavity heater windings. 

Thus, the active cavity heater closes the loop according to 

Q o = u 2 / R o  , (2.20) 

where R, is the electrical resistance of the active heater windings, and Q, the power added 

to the active cavity in Eq. (2.7). 
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2.2.3 Reference Cavity. 

The reference cavity power balance can be written according to the general Eq. (2.6). 

m m  n 

(2.21) 

In the case of the reference cavity, the heater, is not in the feedback loop, but is 

driven by a constant voltage, U r ,  when the appropriate operation mode is selected. Thus, 

(2.22) 

Using the general energy balance equation in Eq. (2.6), each note temperature can be 

modeled by a differential equation. The combined set of these coupled ordinary differential 

equations forms a dynamic model of the sensor. The results of a sensitivity analysis based 

on a computer simulation of this thermal-electronic model is shown in 181. 

2.3 Shortwave Channels 

The model of the Shortwave sensors differs from that of the Total wavelength sensors 

only for the active cavity, the dome filter and the primary aperture to which the dome 

filter is attached. The form of the energy balance equation for the other nodes remains 

unchanged, except that radiative interaction among the field-of-view limiter, baseplate, 

primary aperture and the active cavity is now included. 

The major effect of the quartz dome is to  filter out longwave radiation before it 

is absorbed by the active cavity. Thus, longwave radiation is partially absorbed and 

partially reflected by the dome filter with no transmission occurring. This produces a 

secondary but non-negligible effect in the radiative exchange. When the longwave radiation 

in the observed scene increases, more heat is absorbed by the dome. So that the dome 

temperature, hence the radiation emitted by the dome increases. Accordingly, when the 

observed longwave radiation increases, the active cavity receives more (longwave) energy 
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with a lag, even if the scene shortwave radiation is unchanged. Therefore, the model of the 

Shortwave sensors must account for this secondary effect so that a variation in longwave 

radiation is not interpreted as a variation in shortwave radiation. 

The power balance for the active cavity can be expressed as 

(2.23) 

where the number of nodes m for the Shortwave channels include the dome filter and 

exceeds the number of nodes for the total wavelength channels by one. 

For the active cavity, the absorbed power, p ,  with appropriate subscripts for the 

channel, is highly depmdent on the spectral transmissivity of the dome filter, as can be 

seen in Fig. 2.2. Thus, the expression for the absorbed power becomes 

P i a  = // // 1- (z, 9; $ 9  x) 7 i a ( ~ )  a i a ( A )  gis(+, x> d~ d~ (2.24) 

where Ria(Z ,  y) is the solid angle formed by the secondary aperture when viewed from the 

point ( 5 , ~ )  on the prirnary aperture opening and is the spectral transmissivity of the 

dome filter for ith shor,;wave sensor. 

Ai, Ri,(z,y) 

The spectral transmissivity of the fused quartz dome filter used in the ERBE shortwave 

sensor is shown in Fig. 2.5. As can be seen from the plot, the transmission of the filter 

after 5pm is negligible, as these measurements do not show a noticeable “longwave leak” 

after 50pm.  It should be noted, howcvcr, that the approach takcn here in determining 

the shortwave channel coefficients would automatically include the effects of any longwave 

transmission. 

To model the dome filter heating effects, the power balance for the dome, or node 9, 

can be expressed as 

(2.25) 
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where p f  is the power arriving through the secondary aperture which is absorbed by the 

dome filter. This power can be expressed in a form similar to the power absorbed by the 

active cavity. 

where aif(X) is the spectral absorptivity of the dome filter and g i r ( x , $ )  the angular 

response of the filter relative to a cosine response for the i th sensor. Similarly Aif  is the 

outer surface area of the dome which sees the secondary aperture, and R i f ( z , Y )  is the 

solid angle formed by the secondary aperture when viewed from the point (2, y) on A ; f .  

The power balance equation for the dome shows the effect of absorbed longwave 

radiation on the dome temperature. It should be noted that the FOV limiter and baseplate 

temperatures are influenced by the variations in absorbed energy from the scene and 

participate in the radiative exchange with the dome filter. However, the FOV limiter 

and baseplate are conductively linked to the box beam, whereas the dome filter is a poor 

conductor and is thermally insulated from the primary aperture to which it is glued. 

Thus, the temperature of the dome filter varies with the longwave content of the scene and 

the temperature of the FOVL, baseplate and the primary aperture which is conductively 

coupled to the heat sink. However, the dome temperature lags the incoming longwave flux 

as can be seen by Eq. 1:2.25). Linearizing the power balance equation, the time constant 

for this differential equation can be found to be 

(2.27) 

where 2'90 is the nomin.31 dome temperature. 

For the shortwave, or filtered, channels it is seen that when the longwave radiation is 

a ramp of 1 W/m2 sec, the shortwave channel output has a lag of about 40 sec. 
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2.4 Sensor Data In te rpre ta t ion  Algor i thm Development 

The dynamic sensor models discussed in the preceding section are coupled nonlin- 

ear differential equations which describe the dynamic response of the sensors to incoming 

radiation under given conditions. On the other hand, to interpret the sensor output (ra- 

diometric and housekeeping data) in normal operation, what is required is a (sensor) data 

interpretation algorithm (SDIA) which estimates the magnitude of the incoming radiation 

from the sensor’s radiometric and housekeeping data input. Viewing the sensor as a trans- 

formation from the set of incoming radiation signals into the set of sensor outputs, it is 

necessary to determine the inverse transformation which maps the sensor output back into 

the corresponding input irradiance. 

The determination of this inverse transformation for the dynamic (Le., time depen- 

dent) models is a complex process which results in a rather complex algorithm to imple- 

ment. Therefore, the approach taken here is to determine the steady-state model of the 

sensor, then invert this model to obtain an algorithm for interpreting the sensor output. 

In most cases, as the non-scanner footprint, hence the incoming radiation signal, changes 

slowly in comparison to the sensor settling time, neglecting the transient behavior in the 

normal Earth-looking modes introduces little error. In modes of operation where the sensor 

transient response has not died down, the steady-state assumption should not be used. 

2.4.1 Steady-Sta te  Sensor Models. 

The steady-state sensor response is obtained by allowing sufficient time for the sen- 

sor’s transient response to decay to negligible levels while the incoming radiation remains 

constant. In this condition, the temperature of each node reaches a constant value; how- 

ever, thermal gradients are still present in the steady-state response. Thus, the energy or 

power balance equation for the steady-state condition is obtained by simply setting the 

time derivative of the node temperatures, Y’j, to zero in Eq. (2.6); i.e., 
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(2.28) 

2.4.2 Total Wavelength Channels. 

The active cavity power balance in steady-state can be written as follows using Eq. 

(2.7) and Eq. (2.20): 

(2.29) 

where p with appropr',ate subscripts is given by Eq. (2.9) and represent the steady-state 

signal power absorbed by the active cavity, and u is the steady-state voltage output of the 

sensor. 

Now, for a given amount of absorbed power, the active heater control electronics 

reacts, as described in the previous section, in a way to maintain the active cavity tem- 

perature, T I ,  at a fixed level above the reference cavity temperature, T3. This is achieved 

by balancing the bridge output voltage AV in Eq. (2.11). As shown in Eq. (2.15), in 

steady-state, the bridge is balanced, so that TI  and T3 satisfy 

T l = a + b T 3  , (2.30) 

(2.31) 

where a and b are constants which depend on the resistance versus temperature charac- 

teristics of the temperature sensing wires wound around the active and reference cavities. 

On the other hand, the reference cavity temperature is given by 

(2.32) 

Substituting Eq. (2.32) and Eq. (2.30) into Eq. (2.29), we obtain 
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(2.33) 

Thus, Eq. (2.33) and Eq. (2.9) provide a nonlinear steady-state description of the 

Total channels. In this model, the independent variables other than the incoming radiance 

are the Cu heatsink temperature, T2,  the reference cavity heater voltage, u,, and the box 

beam temperature, TB, which is conductively coupled to the baseplate. It should be noted 

that the thermal resistances R12 and R32 are nearly equal, and that b is close to unity. 

This thermal and electrical balancing has a tendency to reduce the effect of many terms in 

Eq. (2.33) by reducing many of the coefficients. However, exact cancellations do not occur 

since the balance is not perfect. The cancellation tendency is nevertheless beneficial, as 

the sensitivity to some parameters is reduced. 

The temperatures of the copper heatsink, 2'2, the field-of-view limiter, T6, the primary 

aperture, Ts, and the reference cavity heater voltage, ur,  are measured and telemetered I 

I to Earth along with housekeeping data and the main radiometric output voltage, u.  The 

remaining temperatures are not measured, but can be estimated. Due to the close conduc- 

tive and radiative coupling of these nodes to the Cu heatsink whose temperature is tightly 

controlled, the temperatures of the aluminum heatsinks, and the reference and active cav- 

ities are assumed to be constant when the Cu heatsink temperature is constant. Note that 

the temperatures need not be, and in fact are not, equal; they simply are assumed to re- 

main constant at  their respective values. On the other hand, the baseplate temperature is 

only assumed to maintain a constant temperature of the field-of-view limiter. It should be 

noted that, due to the geometry and surface finish, the amount of radiation emitted from 

the baseplate which enters the cavity through the primary aperture is extremely small, as 

explained in the previous section. 
I 

I In order to simplify the expression in Eq. (2.33) and to obtain a simpler algorithm 
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with which to interpret, the sensor output using only the available, or meaured, data, some 

terms can be grouped together. First, recall the identity 

where Tko is the nominal node temperature and AT& is the change in the temperature, 

Tk. For a peak-to-peak temperature variation of 4 OK, and a nominal node temperature of 

300"K, if the linear term in AT& is about 2 W/m2, the error that may be introduced by 

32 = Tio + 4T,",(Tk - Tko) + 6Ti0(Tk - Tko)2 

+ 4Tk0(Tk - Tk0)3 + (Tk - TkO)l (2.34) 

I 

R32 v," v 2  

Ra 
2 dkATk + 6-  - 

R12 Rr 
p = = - - -  

k= 1 

R12 
-t - 

k= 1 

-. ( QJ1 - b*QJ3)] R12 (2.36. a) 

(2.36.b) 

If all the node teinperatures, hence ATk, were known precisely, then these values 

could be used in Eq. (2,36.a) or Eq. (2.33) to compute the absorbed power. However, since 

only some of these terr.peratures are measured, it is necessary to estimate the remaining 

node temperatures. Since the heatsink temperature, 2'2, is tightly controlled about its 

set temperature, and clue to the high conductive coupling of the detector nodes, it will 

be assumed that the only temperatures directly influenced by the incoming radiation are 
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the FOVL and the baseplate. The FOVL and baseplate are structurally attached to, but 

thermally insulated from the detector, and are conductively coupled to the instrument 

boxbeam which tempers any variations caused by the absorption of incoming radiation. 

Although thermally insulated, some minimal conductive coupling between the detector 

and the baseplate may be present and will be accommodated. 

First consider the change in the node temperatures, ATk, due to a change in the 

reference heater voltage from zero to vo volts. From Eq. (2.32), it can be seen that 

(2.37) 

In this mode, the active cavity heater will increase the active cavity temperature until the 

bridge is balanced; from Eq. (2.31), it follows that 

A T i z b A T 3  , (2.38) 

where b is given by Eq. (2.31). Neglecting any temperature changes in the other detector 

nodes, and solving for AT3, 

(2.39) 

Now let TF and ATF be the FOVL temperature and the change from the nominal 

FOVL temperature, respectively; let ATk represent the total change in the k f h  node tem- 

perature from the nominal, and 

where fk accounts for any correlation between ATk and ATF due to conductive or radiation 

interactions, gk accounts for changes in Tk due to u, when T2 is constant, and I?k represents 

the sensor noise and effects not explicitly modeled here, such as A Q J ~ .  Since most of the 

I 

I 
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node temperatures are constant, f k  and e k  are negligible for most nodes. Substituting Eq. 

(2.37) into Eq. (2.36), 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

Eq. (2.41), coupled with Eq. (2.9), provide a simple steady-state model, where the 

coefficients CF, cr and c ,  are given by Eqs. (2.42), (2.43) and (2.44). With some exceptions, 

this model still maintains most of the significant relationships among the various system 

parameters . 
From the expression for co in Eq. (2.44), it can be shown that, when the Cu heatsink 

temperature, T,, is conestant, c, will remain constant. Since the nominal temperatures 

are constant by definition, it remains to show that the Joule heating term arising from 

the current flowing in the temperature sensitive sensor wires wound around the active and 

reference cavities is also constant. From the bridge model obtained in the preceding section 

in Eq. ( Z . l l ) ,  it is seen that in stead-state the bridge will be balanced at  

(2.45) 

After some manipulation, it can be shown that the Joule heating produced by the 

bridge can be expressed as 
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(2.46) 

(2.47) 

where the arguments of R1 and R3 have been dropped for convenience. 

The beneficial effects of thermal and electrical balancing can clearly be seen in Eq. 

(2.48). Perfect balance would imply 61 = b3 ,  and R32 = R12, which would result in the 

complete cancellation of this term. Although perfect balancing is not likely, the term in 

brackets on the RHS of Eq. (2.48) becomes quite small, so that the effect of the term is 

considerably smaller than otherwise. Furthermore, the sensitivity of the term to variations 

I in R3 is also of second order, as this term would be of order 0 ( ( l / R 3 ) ~ ) .  As R3 is near 

2200 R ,  the change in the Joule heating term due to a 1 fl change in R3 would be less 

than an easily negligible 0.05 %. The sensitivity of the term to expected variations in B E ,  

bl and b3 are also small, although not always negligible. 

The major sensitivity of c, is to  variations in the bridge resistances and to variations 

in the boxbeam and satellite temperatures. The former effect is clearly seen from Eq. 

(2.48) and Eq. (2.31) where an extremely small variation in B E ,  u1, a3, bl or b3 can 

produce a noticeable change in c,. The latter effect is due to the fact that ambient satellite 

temperature may, in steady-state, produce thermal gradients in the aluminum heatsink, 

node 7,  near the reference cavity. This may then change the reference cavity temperature 

by an extremely small amount, which then results in a similar change in the active cavity 

temperature. Even though the temperature variation in either cavity temperature may 

be small, the high sensitivity of the sensor to such changes requires careful consideration. 

For example, a change of 0.001" C in the active cavity may be interpreted as a change 

I 

I 

I 30 



of about 3 W/mZ in the incoming flux. Similarly, a change of 0.01 f l  in the resistance of 

any of the bridge components may be interpreted as a change of 8 W/mZ in the incoming 

flux. To minimize such changes, the temperature sensing wires of the ERBE sensor were 

painstakingly processed using a heating treatment, and the heatsink temperature was 

tightly controlled about its set value. 

Equation (2.9) and Eqs. (2.41) - (2.44) provide a steady-state model which describes 

the sensor behavior under the assumptions stated. It should be noted that a variety of 

measurement conditioils can be obtained by appropriate treatment of Eq. (2.9) to obtain 

the incoming flux. This will be done in the following sections for the Earth-looking modes, 

as well as for the measurement conditions encountered in ground and flight calibrations. 

2.4.3 Shortwave Channels. 

The only significant difference between the Shortwave and Total sensors is the presence 

of the dome filter in the former sensors which filters out longwave radiation. Otherwise 

the sensors are designed to operate in the same way. Thus, most of the steady-state model 

development for the Tctal sensors is also valid for the Shortwave sensors, when the number 

of nodes, n, is replaced by the number of Shortwave sensor nodes, m, which simply includes 

the filter dome as an additional node. Since the interactions among the detector nodes 

and the electronics are the same, Eqs. (2.29) - (2.39) continue to hold. 

Now, if all the node temperatures, including the dome filter temperature, were pre- 

cisely known, the power absorbed by the cavity could be computed using Eq. (2.33) or Eq. 

(2.36.a). Whereas measuring the dome temperature for use in the interpretation of the 

sensor response would be desirable, the placement of a temperature sensor in the dome fil- 

ter would modify the uniformity of the filter as well as add to the manufacturing challenge. 

Thus, it is necessary to estimate the dome temperature. 

From Fig. 2.2, it can be seen that the only nodes directly influenced by incoming 

radiation are the FOVL, the baseplate, the dome filter and the primary aperture, excluding 

the active cavity whose temperature is controlled. The steady-state change in the dome 
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temperature due to incoming radiation can be obtained by manipulating Eq. (2.25). 

(2.49.a) 

(2.49.b) 

where it has been assumed that only the change in the FOVL and the baseplate are the 

same in steady-state, and that the nodes which do not directly see the incoming radiation 

remain unchanged. 

The effect of the reference cavity heater voltage, vr,  on the dome filter temperature 

is only seen through the change in the emitted radiation from the active cavity. As for 

the Total channels, the change in the cavity temperatures due to the reference cavity 

heater voltage can be seen to be directly proportional to the added heat, hence to v: ,  by 

combining Eq. (2.38) and Eq. (2.39). 

The total change in the node temperatures can be expressed in the form 

where e k  represents sensor noise and effects which are not explicitly modeled shown in Eq. 

(2.50). It should be noted that while this expression allows a linear relationship between 

the power absorbed by the filter, p f ,  and all the node temperatures for generality, in fact 

h f k  ought to vanish except for k = 9; Le., the dome filter itself. Similar comments apply 

to the other coefficients. 

Substituting Eq. (2.50) into Eq. (2.36.a), 

(2.51) 
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m m 

m 

(2.53) 

(2.54) 

(2.55) 
k=l 

where TF, is the nominal FOVL temperature and the Joule heating terms a J 1  and 053 

are given by Eq. (2.46:) and Eq. (2.47), respectively. 

From Eq. (2.51), it is seen that the form of the steady-state model for the Shortwave 

and Total channels is essentially the same, when the LHS is interpreted as the power 

absorbed by the activc cavity, including the extra power emitted by the dome filter into 

the cavity. It should be noted, however, that the values of the coefficients C F ,  c ,  and c ,  

are different for the two sensors. 

Since the power emitted by the FOVL and baseplate is largely longwave radiation 

which is filtered by the dome, the active cavity does not receive this radiation directly. 

However, the indirect effect of increased dome filter emission will be felt by the active 

cavity. As this is a very small effect, the dominating tendency is not clearly determined. 

The steady-state model for the Shortwave channels can thus be expressed in the form of 

Eqs. (2.51) - (2.55), Eq. (2.24) and Eq. (2.26). At this stage, the model is sufficiently general 

to accommodate the tj'pe of measurement conditions which will be normally encountered 

during the Earth-looking mode as well as the ground and flight calibration conditions. 
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2.5 Sensor Data Output Interpretation Algorithm 

Using the steady-state models developed, simple algorithms which can be used to 

interpret the operational data during the normal Earth-looking modes are obtained in this 

section. The specialization of the models to the ground and flight calibration conditions 

will be performed in the following sections. 

The steady-state models developed can be used to obtain power absorbed by the active 

cavity. However, the desired quantity is the flux originating within the sensor’s field-of- 

view and spectral band, as given in Eq. (2.1) and Eq. (2.2). The desired fluxes can be 

estimated from the absorbed power using standard approximations. 

2.5.1 Total Wavelength Channels. 

For the Total channels, the power absorbed by the active cavity is given by Eq. (2.9). 

Let R i E ( z ,  y) be the solid angle subtended by the portion of the top of the atmosphere 

seen through the secondary aperture at  the point (z,y) on the primary aperture opening. 

Note that 

This is due to the fact that, for the MFOV channels, the Earth (or the TOA) fills the 

sensor’s field-of-view completely; whereas the WFOV channels include a space ring beyond 

the TOA so that all of the TOA can be seen through the secondary aperture at  every point 

of the primary aperture opening. Therefore, in the Earth-looking modes, the WFOV 

sensors’ fields-of-view are not completely filled with the TOA, as no significant signal is 

contributed by the solid angle formed by the space ring, under normal conditions, i. e., 

where the sun or the moon is not in the space ring. 

I The power absorbed by the active cavity can now be approximated as 

(2.57) 

I 34  



where 6 i T  is the effective absorptivity of the active cavity, F;E the standard configuration 

factor from the prim2.r~ aperture opening to the portion of the TOA %een", GiE an 

angular response factor and &iT the estimate of the radiant incidence, or flux, arriving 

from the TOA within the appropriate field-of-view. 

(2.58) 

It should be noted that the angular response factor, Gi,q,tria to account for a sensor 

response which is different than the standard cosine response using a single factor. When 

the sensor has a perfect cosine response, so that giT($, x )  is unity for all directions ($, x) 
of interest, G i E  reduces to the standard geometric configuration factor, and the term in 

parenthesis in Eq. (2.5'7) reduces to unity; i.e., 

when the sensor has small deviations in angular response, the average effect of these 

deviations can be accounted for by this angular response factor. When large deviations 

are present, it is necessary to include the angular response into the process of inverting 

the flux from satellite altitude to the TOA. The flux estimate obtained here is given by 

(2.61) 

Combining the steady-state sensor model in Eq. (2.41) with Eq. (2.57), and solving 

for the estimated flux, we obtain a simple algorithm of the form 
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(2.63) 

(2.64) 

where the subscripts denoting the channel are not explicitly shown, for convenience. 

With this simple algorithm, it is possible to estimate the desired flux when the coeffi- 

cients A, ,  A F ,  A ,  and B are determined. While the expressions given for the coefficients 

provide an understanding of the trends and relationships among the system parameter, 

they are not intended for use in determining the actual values of these coefficients. 

The determination of the actual coefficient values for each sensor is described in the 

following section on ground calibration. In this context, calibration is the process of 

determining the values of the algorithm coefficients needed to interpret the digital sensor 

output by using measurements obtained by each sensor under well-controlled calibration 

conditions and well-established calibration sources traceable to accepted standards. 

2.5.2 Shortwave Channels. 

For the Shortwave channels, the power absorbed by the active cavity due to the 

incoming radiation can be obtained similarly as 

where AEET is due to the longwave dome heating effects. 

(2.65) 
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3. GROUND CALIBRATION 

This chapter describes the ground calibration sources, procedures and analysis for 

determining the count conversation coefficients for total and shortwave nonscanner sensors. 

Further, the results arle tabulated for each sensor. 

3.1 Description of Calibration Sources 

Figure 3.1 shows the ERBE calibration chamber, which is an 8 foot diameter cylinder 

containing a Master Reference Blackbody (MRBB) at  one end and an Integrating Sphere 

(IS) on the other end. The Solar Simulator can project a beam through a quartz window 

onto an instrument mounted on a carousel in the middle of the chamber. The chamber 

walls, chilled with liquid nitrogen ( L N z ) ,  are used as a Space Reference Source for scanner 

calibration. 

3.1.1 Master Reference Blackbody (MRBB). 

The ERBE Master Reference Blackbody (MRBB), shown in Fig. 3.2, is traceable to  the 

IPTS68. The radiating surface is a concentrically grooved piece of aluminum with a black 

anodized face. S i x  calibrated platinum resistance thermometers (PRTs) are mounted on 

the back of the groove LO determine its temperature. The temperature stability is attained 

by placing the aluminiim in a thermally controlled housing. The instrument Fields-Of- 

view are completely filled by the blackbody. To simulate the energy exchange to  space 

that occurs during flight operation of the instruments, the instrument is placed at  the 

narrow end of the cone where a grooved ring is cooled by the liquid nitrogen. 

The absorptivity 0.- the grooved surface, measured at the Naval Ocean Systems Center, 

is found to be 0.991. The grooved surface temperature variations measured by an infrared 

radiometer appear to be less than f 0.01 K over the operating range of the MRBB (-80°C 

to 75°C). The thermal control is accurate to f 0.01 K over this temperature range. 
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ALBEDO PLATE 

Figure 3.1 ERBE Calibration Chamber 
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Figure 3.2 Cross section of Master Reference Blackbody (MRBB) 
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Figure 3.3 Integrating Sphere 



3.1.2 Integrating Sphere (IS). 

The Integrating Sphere, shown in Fig. 3.3, is used to calibrate the nonscanner short- 

wave sensors. The 23 inch diameter sphere is illuminated by four 250 watts tungsten 

lamps through projection optics system that reflects the light off a mirror and then trans- 

mits through a piece of flashed opal glass to the interior of the sphere. 

The inside wall of'the Integrating Sphere is coated first by 3M White Velvet and then 

by barium sulfate. A uniform angular radiance for the Sphere's interior coat is found within 

a few percent. Further, the silicon photodiode (SiPD) is used to measure the shortwave 

radiation. The Integra.ting Sphere is also maintained thermally stable by circulating water 

and alcohol in a pipe wound around its outside. 

3.2 Count Conversion Equations 

Following the development of sensor modeling detailed in Chapter 11, one can rewrite 

the Count Conversion Equation for Total Channel as 

( 3 4  ET = A V I  I 7 2  + A&(TF - T F ~ )  + ALTH + A ~ T A  + AkVi  + Bits 

where ET = CUT~,V,TF,TF,,TH,TA and VR are known variables. Here the emissivity, 

C, is considered to be one. Sigma, u, is the Stefan-Boltzmann constant. T is the source 

temperature. The unlcnown ground coefficients like A t ,  A b ,  AL, A h ,  A:, and Elics are 

determined by performing the multi-regression analysis. Note that the contributions of 

primary aperture and heat sink are found negligible due to a very small temperature 

variations. Therefore, the terms A ~ T H  and AkTA are dropped form the above equation. 

Thus, Eq. (3.1) reduces to 

BT = ALV2 + A>(TF - T F ~ )  + AkVi  + Bits ( 3 4  

Similarly, the Comt Conversion Equation for Shortwave Channel can be rewritten 

from Eq. (2.65) as 
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Es = ALV2 + A ~ ( T F  - Tp0) + ALVi + Bits + ( A L E T )  (3.3) 

This equation is very similar to the above Eq. (3.2), except for a last term, A',&-, 

which is due to the longwave dome heating effects. The unknown coefficients are de- 

termined again by performing multi-regression analysis. Silicon Photodiode (SiPD) is 

calibrated using the procedure outlined in [lo]. 

3.3 Calibration Data Background 

Calibration data for total and shortwave sensors were obtained by looking at  the 

Master Reference Blackbody (MRBB) and Integrating Sphere (IS) sources described in 

the previous section. Internal Blackbody (IBB) sources are used to monitor the changes 

in the nonscanner sensors during In-Flight operation. Therefore IBB ground data is used 

as a transfer standard for total channels from MRBB to IBB. This section describes the 

important features of the data selected for determining the ground Count Conversion 

Coefficients. 

3.3.1 ERBS Calibration Data. 

Details about the calibration data sets are given in [SI. It is important to note that the 

calibration testing was interrupted by power outages and a failure in the elevation drive. 

As a result, there are three types of data sets available: (1) Pre-recovery, (2) Recovery and 

(3) Restart. Each data set is analyzed in this study. 

3.3.2 NOAA-9 Calibration Data. 

There are two types of data sets available. One is available in the preliminary calibra- 

tion report and the other is documented in the final calibration report (61. Note that the 

heat sink temperature reported in the preliminary report is 38.8"C which is different from 

the final calibration report, 33.58"C. The Integrating Sphere (IS) data for Medium Field- 

of-View Total (MFOVT) Channel, which is needed to calibrate the Silicon Photodiode 

(SiPD) is not available. 
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3.3.3 NOAA-10 Calibration Data. 

There are two calibration data sets: one is documented in (71 and the other is available 

in loose form. The important point to be mentioned is that the WFOVT channel calibrated 

in May 1983 was replaced by a new WFOVT channel calibrated in May 1984. After a 

thorough analysis, the following conclusions are drawn: 

(1) Total channels sliould be calibrated using May 1984 data sets because of the avail- 

ability of May 1984 IBB data. Note that May 1983 IBB data is not reported. 

(2) Shortwave channels are calibrated using May 1983 data sets. Silicon Photodiode 

(SiPD) was calibrated by Total channels count conversion coefficients determined from 

May 1983 data sets. Note that the May 1984 Integrating Sphere (IS) data for Total 

channels is not reported. 

3.4 Ground Count Conversion Coefficients Results 

Count Conversioii Coefficients for total and shortwave channels were obtained by 

using multi-regression analysis. Table 3.1 displays the ERBS Nonscanner ground count 

conversion coefficients with the number of data points used in this analysis and standard 

deviation of error in watt/m2. Coefficients for total channels are computed using MRBB 

pre-recovery period data. Silicon Photodiodes (SiPD) are calibrated using IS data of total 

channels. Using SiPD’s gain and AEL given in Table 3.1, count conversion coefficients for 

Shortwave channels are obtained using MRBB and IS data (excluding VR = 6.77 data). 

The Shortwave channcl gains are recalibratcd using solar calibration in orbit. Note that 

the A> term of MFOk’SW is found to be positive which contradicts the theoretical value 

obtained neglecting conductive thermal transfer. 

NOAA-9 Nonscanner ground count conversion coefficients are given in Table 3.2. 

Count conversion coeflicients for MFOVT and WFOVT channels are determined using 

MRBB data from final and preliminary calibration reports respectively. Numerous runs 

were also made with thle available data and the coefficients found are not very different. As 



Table 3.1 ERBS Flight Model One (FM1) 

Ground Count Conversion Coefficients 

SYMBOLS MFOVT WFOVT 

- 58.454 

-0.03641 

2.799 

66.4883 

2984.17 

293.6555 

g = 34.4596 
AEL = 3.9127 

24 

2.95 

MFOVSW I WFOVSW 

-28.2194 

-0.02902 

-0.7097 

29.2817 

1234.19 

293.4491 

g = 21.1822 
AE, = 5.1004 

28 

1.53 

Ak 

B:cs 

PFo 

SiPD (GAIN 
k OFFSET) 

DATA POINTS 

aof  ERROR 
( watt/m2) 

4 4  

59.2633 30.0461 

2487.64 1560.32 

292.4233 292.56 14 

17 14 

1.63 0.14 



T'able 3.2 NOAA-9 Flight Model Two (FMZ) 

Ground Count Conversion Coefficients 

.. 
SYMBOLS MFOVT WFOVT MFOVSW WFOVSW 

A t  -94.4978 -27.5846 - 105.3788 -30.6239 

Ale -0.03561 -0.03384 

AI, -2.2093 -0.4799 -20.2739 -6.1145 

AI, 100.18 14 29.8788 119.9772 35.506 

%s 4559.82 1609.58 4822.18 1543.95 

TFO 292.702 1 293.3871 293.4 132 

7.27 4.47 aof ERROR 0.88 

I I 1 J 

Due to the unavaihbility of MFOVT data for the integrating sphere, the MFOVSW channel 

SiPD gain and offset were not obtained by the established procedure. Details are given in the text. 
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we know that the calibration of Shortwave channels require the behavior of SiPD, which is 

gain (9 )  and offset ( A E L ) .  For MFOVSW channel, the behavior of SiPD is not known due 

to the unavailability of IS data for MFOVT channel. To resolve this problem, the SiPD 

gains of all Shortwave sensors were compared and found that the SiPD’s gain of NOAA-9 

WFOVSW was greater by 5.3% than the SiPD gain of ERBS WFOVSW. With this con- 

clusion, the SiPD gain for MFOVSW channel was computed as g = 24.0911, which is 5.3% 

higher than the ERBS MFOVSW SiPD gain. Thus the count conversion coefficients for 

MFOVSW was computed using MRBB and IS ground data. Further, note that the AF 

term of MFOVSW is negative which is opposite to ERBS MFOVSW channel. 

Table 3.3 describes NOAA-10 Nonscanner ground count conversion coefficient results. 

MFOVT channel is calibrated using May 1984 MRBB data (excluding V, = 6.77 data). 

In addition, the count conversion coefficients for MFOVT channel using May 1983 MRBB 

data (excluding V, = 6.77 data) are not found to be very different from the coefficients 

given in Table 3.3. Similarly, the count conversion coefficients for WFOVT channel is deter- 

mined. Further, the count conversion coefficients for MFOVS W and WFOVS W channels 

are obtained using May 1983 MRBB and IS calibration data. Note that the AP term for 

each channel is found to be negative, which is consistent with the NOAA-9 Nonscanner 

semors. 
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Table 3.3 NOAA-10 Proto-Flight Model (PFM) 

Ground Count Conversion Coefficients 

SYMBOLS MFOVT 

Ab -97.2831 

Aj, 

A:, -8.3056 

Ak 93.8456 

%CS 4544.25 

FFO 293.9253 

SiPD (GAIN 
&OFFSET) 

DATA POINTS 17 

aof  ERROR 1.56 
(watt/m2) 

WFOVT MFOVSW WFOVSW 

-27.1754 -103.2228 - 27.6993 

-0.02232 -0.02859 

-0.5087 -13.9002 - 1.4872 

28.7406 120.1269 32.6115 

1392.75 4307.47 1264.18 

294.1156 293.5307 293.72460 

g = 32.2839' 
AEL = 4.3029 

18 15 41 

g = 34.4596 
AEL = 3.9127 

0.61 4.59 2.67 

g and AEt for WFOVSW channel were computed by using May 1983 IS data for WFOVT 

channel. 
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4. IN-FLIGHT CALIBRATION 

This chapter describes the in-flight calibration sources, count conversion equations, 

calibration procedures and analysis for determining the final in-flight count conversion 

coefficients for total and shortwave sensors. 

4.1 In-Flight Calibration Sources 

Figure 4.1 shows the nonscanner elevation beam positions. The nonscanner sensors 

are mounted in the elevation beam, which can be rotated to observe the Earth, the sun, or 

the internal blackbodies. Thus, the in-flight calibrations for total channels are maintained 

through the use of internal blackbody sources and space-look data during solar calibra- 

tion, while shortwave channels are calibrated using solar calibration data, space-look data, 

SWICS lamps-off, and SWICS lamps-on data. Further, the dark side of the Earth data 

can be used to determine the shortwave channels offsets. 

4.2 In-Flight Count Conversion Equations 

The development of in-flight count conversion equations for total and shortwave chan- 

nels are given in this section. 

4.2.1 Total Channels. 

In-flight count Conversion equations for total channels can be obtained by multiplying 

the ground count conversion equations with a configuration factor, f. Thus, the Eq. (3.1) 

becomes 

where ET = fE!,., Av = fA',, AF = fA',, A R  = f A k ,  and BEDMT = f (Bits - A',TF,,). 

The configuration factor, f, for each sensor is given in Appendix A. Note that Av, A F ,  
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Figure 4.1 Nonscanner Elevation Positions 
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AR and BEDMT are known coefficients determined from the ground MRBB calibration 

data. These coefficients would remain unchanged except the offset term, B E D M T ,  which 

would be determined by utilizing in-flight calibration data. This will be discussed in the 

next sect ion. 

4.2.2 Shortwave Channels. 

Similarly, the count conversion equations for the shortwave channels can be obtained 

by multiplying Eq. (3.3) by a configuration factor, f ,  as follows. 

E s  = A v V 2  + AFTF + A R V ~  + AEET + BEDMT ( 4 4  

where Av = f A b  , AF = fA', , AR = fAk and BEDMT = f ( B ; , ,  - A ~ T F ~ ) .  These 

coefficients are determined from the ground MRBB and IS data. 

Due to the use of dome for preventing the longwave radiation from getting into the 

active cavity, the determination of count conversion coefficients for shortwave channels are 

not straight forward like it is for total channels. The dome's transmissivity is decreasing, 

which may be due to ultraviolet energy in the solar spectrum. As a result, both the gain 

and offset are varying with time during in-flight operations. Methods to determine the 

gain and offset are described in the next subsection. 

4.2.3 Dome Degradation Factor. 

Dome degradation factor (DF) is required to upgrade the in-flight count conversion 

coefficients, Eq. (4.2), determined directly from the ground calibration data. This factor, 

which can be computed from the solar measurements data, is defined as 

where X is a day in question and R is a reference day. S(X) and S(R) are computed from 

an equation fitted to solar measurements data. Note that the use of such equation would 

reduce sensor noise and error in the solar measurements. Further, al, (Av/ (1  - A E ) )  
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values for ERBS and NOAA-9 shortwave sensors on the first day of solar calibration are 

found to be 2-3% higher than the a1 values determined from the ground data. 

Figures 4.2 to 4.7 show the solar measurements with curve fit equation of 2nd order. 

Note that January 1, 1.984 is considered as a reference day (X=l).  This equation is used 

to compute the degradation factor. Data used in Figs. 4.2 to  4.7 are given in Appendix C. 

4.2.4 AF Term of NIOAA-9 Shortwave Channels. 

In analyzing the instrument validation (IVT) tapes, a strong correlation between 

MFOVSW (night-time,) energy and FOVL temperature was found. Figure 4.7a shows 

this correlation for April 6, 1985. This procedure has been repeated for many days. In 

conclusion, the A= te1,m is changed from -4.8983 to 0.7092 to  remove the effects of this 

correlation. Similar analysis was performed on the WFOVSW channel where the value of 

the AF term changed liom -5.1897 to -0.354. 

Further, such analyses were performed on the ERBS and NOAA-10 shortwave sensors, 

where no strong correlations were found. 

4.3 Total Channel Offsets 

The offset for tot,al channels can be estimated by using internal blackbody sources 

(IBB) or space-look data. It is found that IBB data is more stable than the space-look 

data. Therefore, the IBB source data is used to determine the offset in this study. The 

offset term, B E D M T ,  can be estimated as 

BEDMT = f (Bits - A B  + B M R B B - I B B )  

where Bits is the grocnd offset given in Tables 3.1 - 3.3. A B  is a change in offset obtained 

by looking at IBB source data. A B  can be expressed as 

A B  = € 0 ~ 1 4 ~ ~  - E ;  
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where E and TZBB are the surface emissivity and temperature of the internal blackbody 

source. The emissivity, E, is considered to be unity. E& is the estimated energy computed 

by using ground count conversion coefficients given in Tables 3.1 - 3.3. B M R B B - I B B  is a 

correction factor detailed in Appendix B. 

Figures 4.8 and 4 . 9  show offset variation, AB,  in MFOVT and WFOVT channels 

of ERBS, respectively. One can note from these figures that there is a distinct jump in 

offset shown by a solid circle. The clear cause of this jump is not known. However, the 

temperature transients caused by a full-sun condition on the satellite may have been a real 

reason. At this point, this condition is not fully investigated and modeled. Therefore, the 

data points belonging to hot orbit conditions are excluded in determining the final A B  

term. 

Figures 4.10 and 4.11 show the changes in offset determined by using IBB data for 

NOAA-9 MFOVT and WFOVT channels, respectively. Note that the MFOVT channel 

is drifting continuously in a quadratic form. An equation to represent the IBB data for 

MFOVT channel is obtained by using the least square method. This equation is displayed 

in Fig. 4.10 and used to compute the offset for every day. On the other hand, NOAA-9 

WFOVT channel, shown in Fig. 4.11, does not depict a similar trend. Therefore, the A B  

is computed by taking an average over a small portion of data to reduce the uncertainty. 

Figures 4.12 and 4.13 represent the offset variations for NOAA-10 MFOVT and 

WFOVT channels respectively. A B  of both channels seems to be fluctuating and drifting. 

Total channels’ offset tcrms for December 1986 and January 1987 are estimated by taking 

the average over small data points. Results are discussed in the next section. 

4.4 Shortwave Channel Offsets 

All nonscanner shclrtwave channels except WFOVSW of NOAA-10, observe the dark- 

side of the Earth. Assuming zero shortwave energy during night time, the offset term, 

B E D M T ,  can be compt.ted by using degraded in-flight count conversion coefficients as 
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i Each term of the right hand side of Eq. (4.3) is known. Darkside data are stripped 

from ID1 (telemetry) tapes. Sun blips data on WFOVSW are excluded in this analysis. 

Note that the data selected here is considered to be free from temperature transients, 

Le., mid-night time data. The solar zenith angle, 6,, is greater than 120 '. Tables 4.1 

and 4.2 show typical examples of April 6, 1985 darkside analysis for ERBS and NOAA-9 

nonscanner shortwave sensors respectively. Figures 4.14 and 4.15 show the variation of m 2 

watt/m2 shortwave energy for ERBS MFOVSW channel obtained from the darkside data 

analysis with degraded count conversion coefficients, for April 1985. Figure 4.16 shows the 

final offset term for ERBS MFOVSW channel obtained after subtracting the estimated 

shortwave energy given in Fig. 4.15 from the degraded in-flight offset. Similar analyses are 

performed with ERBS WFOVSW (Figs. 4.17 - 4.19) channel, which is found to be more 

stable than the ERBS MFOVSW channel. This procedure is employed to  determine the 

NOAA-9 nonscanner shortwave offsets for April 1985, which are shown in Figs. 4.20 - 4.25. 

Note that NOAA-9 shortwave channels are more stable than ERBS shortwave channels. 

Further, the procedure detailed above is used to determine final in-flight shortwave offsets 

of ERBS and NOAA-9 nonscanner channels for other months discussed later. 

I 

4.4.1 NOAA-10 Shortwave Offsets Determination. 

NOAA-10 is a terminator orbital satellite which leads WFOVSW channel to only a 

few days of darkside data in a whole year. To overcome this problem, the WFOVSW offsets 

are determined using SWICS lamps-off and space-look data. However, it is appropriate 

to perform similar analyses first on ERBS and NOAA-9 shortwave channels to find a 

, 
1 

I correlation, if any exists, between darkside and SWICS lamps-off data. Figures 4.26 and 

4.27 show the differences in offset levels obtained by analyzing the SWICS lamps-off, space- 

look and darkside data with the same in-flight count conversion coefficients. One can note 
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Table 4.1 XIWS Snortwave Offset Determination 

For April 6, 1985 Ueing Darkside Data Analyst 

D n m S l I  @MY515 OF ID1 T M €  WIDS 
ERBE. ERBS(R11) " E R  
SHMlltYWE C M E L  NIGHT LHLY ESTINYITES ( u l t W 2 ) )  
TAPE BEGItNING WTE : U 6/85 TIM : 0: I: I J U . M  : 2446161,51113l9672SS 
TAPE ENDING DATE : U 6/8S TINE : 23:59:28 JULlrW : 2446162.49964l598893 
COW CWJERSIN COEFFlClENlS : I2'19/8S 
NWBER OF RECS M WK2115 : 2711 

WTA W G W D C I  8 CNSTM = 1273.576736 

CMSTMS FOR WW-N aywDL 

BMSn 1295,41311 #&U = -1.39681 MRT = .1111 
M T G  = -22.78731 AHIW .IO111 ACALHT = 26.11611 
A E M n  = .IO101 TNHL(6)  : 292.561429 lNWQ(8) = 316.841429 

BMSn = 1127.32100 AFWf = -.64821 MPERT = .10111 
KJOLTG = -25.77581 AHTW = ,81181 ACALHT = 26.74611 
AEMll = -.13174 lNMIL(6) a 293.449091 TN(rm(8) 8 

WTA W6ENENl 8 C[NSTW = 1317.533711 

HEDIUi FIELD-W-'JIEU SHORNlWE 
ORBIT RECORD RECORD WPLE MPLE NO OF NO OF 

HW STWOAEt NlNlHW W l H W  WPLES RECORDS 
ONIATIM 

1 
2 
3 
0 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

-8431 
-.5286 -. 7483 

.3622 

.3338 
-.E828 

-1,1843 
.I343 
,8403 

-.2153 
-2.2563 
-2,2350 

-,E247 
-1.8324 

.486l 

.&I 

.996 
-811 
.525 
,636 
.789 
.59s 
.952 
.87l 
,586 

I .459 
,961 
.742 
.75l 

1 ,135 

-3.4440 
-5.1741 
-I. 2237 
-6.1613 
-5.4936 
-6.1519 
-8.1456 
-5.2121 
-4.5198 
-4 * 7979 
-8.1812 
-7.4982 
-5.W14 
-6.4591 
-9.1619 

4.1347 
4.6872 
3.5751 
7.6393 
4.7131 
4.3317 
4.1823 
4.9165 
7.5193 
4.5653 
2.6958 
2.9421 
3,1537 
2.2236 
5.1782 

721 36 
92) 44 
921 46 
920 46 
920 46 
921 46 
911 45 
921 46 
921 44 
921 46 
921 44 
911 45 
921 44 
921 44 
901 45 

TMALS -.5320 1.306 -9.1619 7.6393 13541 677 

316.872273 

UI# FIELD-OFYIEU S H D M  
RECORD RECORD W l E  W l E  NO OF NO OF ORBIT 
t(E#( S T M D  HlNlHW WININ WPLES RECORDS w) 

DEUlATlM TINE 

8.2766 
7.3912 
7.6714 
7.9141 
7,8186 
7.5361 
7.6746 
7.4361 
7.3998 
7,3388 
7.2512 
7.1039 
7.4572 
7.5229 
7 I 8552 

I . I95 
,613 
1748 

1.187 
1.168 

,817 
.755 
,813 
,862 
.856 
,735 
0 6 1 1  

.721 
,981 

.83a 

6.3784 
5.3256 
5.1951 
5.1221 
5.4165 
5.4159 
5.5293 
5.1116 
5.1389 
4.9754 
5.0193 
%1122 
5.4156 
5.4428 
5.4884 

18.61S3 
9.1423 
9,5348 
9.9247 
9.9871 
9.5361 
9.3235 
9.5119 
9.3411 
9.1734 
9.3774 
8.8126 
9.5494 
9.1958 

I 1 * I 381 

?21 36 
921 44 
921 46 
921 46 
921 46 
921 46 
901 45 
921 46 
9 2 l  46 
921 44 
921 44 
911 45 
921 44 
921 46 
911 45 

61 .SO48 
61.5719 
61.6309 
61.7l63 
61.7733 
41 .8418 
41.9078 
61 .P748 
62.1422 
42. I I 9 3  
42.1767 
62.2437 
42.3118 
62.3782 
62.4452 

7,5711 ,898 4.1754 ' 18.6153 13541 677 (RECORDS) 
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8EOM HFOV SU WLUE = 1118.5383 
BlMl UFUJ SU WlUE = 1309.9627 



Table 4.2 NOAA-9 Shortwave Offset Determination 

For April 6, 1985 Uehg Darkside Data Analysis 

KN511 * 10:6.280@J MOVE = -.52740 WfRT * .OW00 
AVOLIb 8 -22.SYbO AHTSNK .!IO000 ACALHT a 23.913JO 
lyHAll I IyOIvU(6l * ?92.702105 lWlb(L(81 a .000000 

MAT1 IIAYAGEIKNT B CollsTAltl * 

COMSTAIITS FUR ffW-SY C H M L  

1415.430042 

SCwSTl = 1049.uouoO AfOWf * ,70920 AAPERT ,00000 
AWL16 i -25.45990 AHlSNK * .OOOUU ACALHT a 28,98700 
ClCHAll : -.Ob04 T W L 1 6 l  = 293.413230 Ty)Io1LI81 a I oooooo 

R D I U H  FIELD-OF-JIEY SHORTMAVE 
WIT AfCORO RECORD SARPLE SARPLE M GF it0 OT 

NAN STMDAiD MlNlHM MAllHUH SAHPLES RECDRDS 
DEVlll IO1 

I 
2 
3 
k 
5 
b 
1 
8 
9 
10 
1 1  
12 
13 
I 4  

.690 

.440 

.36B 
I388 
* 427  
.37: 
.510 
, 4 4 ?  
.:2: 
.:52 
. b i l  
.44; 
. 4 C O  
.:17 

-6.4505 
-6. 1489 
-6.4b27 
-S.8840 
-4.3702 
-4.fiiP2 
-b.  1262 
-b.25bb 
-l.I?35 
-b.b301 
-5.7049 
-5.9619 
-5,5093 
-:.02?b 

5.5705 
2 . 6 3 8  
5.7007 
3.94bb 
4.3330 
1.9071 
4 . 5 l b l  
S.bl44 
b. 3852 
4.5181 
5.BbB8 
S.1994 
4. IS12 
2.91G5 

IO60 53 
IO60 5s 
1040 52 
1040 52 
1040 S2 
10Lb s3 
1043 S2 
IO60 $3 
1060 53 
1U40 S2 
1020 51 
1040 52 
lobo s3 
l0bU 53 

306.872213 

4,2398 
4.3131 
4.4pJ9 
k.4903 
4.5660 
4.4331 
4.5711 
4.6101 
4.5428 
4.S914 
4.2800 
4.3743 
4.2077 
1.2167 

.LOO 
,109 
.ssb 
,534 
,195 
.624 
,117 
.765 
1939 
.E21 
.E39 . BJB 
.8W 
1.071 

-1.2884 
-.3204 
-.e849 
-0  9158 

-1. 63bO 

-I.P18? 
-2.BO6S 
-3. 1489 
-1.JZIS 
-2.6377 
-2.6509 
-4.3158 
-4.1929 

-3. lacs 

9.0121 
8.3601 
8.5047 
9.9484 
8.630 
9.0766 
8.6654 
9.1659 
9.1966 
9.2662 
9.0152 
8.4023 
8.22oB 
e. 4291 

1060 55 
Iobo 53 
1040 52 
1040 52 
1040 52 
I060 SS 
1040 52 
lob0 53 
I060 53 
1040 52 
IUZO SI 
1040 $2 
Iobo 53 
lot4 SJ 

61.5223 
61. S9SO 
61.6631 
bI.IS4P 
6 l . l S i  

bl.P41l 
bZ.0160 

b2. 1595 
b2.2332 
61.3013 
42. ! 121 
L2.4428 

bi. 0 1 0 ~  

 we 

4.4242 .I# -4.7929 9.9464 14680 734 IRtCORDSl 
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from these figures that the magnitude of differences are found within f 6 watt/m2 with 

mixed signs. However, the important point to be mentioned here is that the standard error 

with SWICS lamps-off - darkside is smaller than the other cases. 

A similar analysis procedure is also performed on NOAA-10 WFOVSW channel. Table 

4.3 details the offset terms for the NOAA-10 WFOVSW channel using SWICS lamps-off 

and darkside data. It is very clear from this table that the WFOVSW offset can be 

determined using SWICS lamps-off data within 2 watt/m2. Also, note that the offset 

difference between SWICS lamps-off and space-look data is approximately 7 watt/m2. 

At this juncture, it may be appropriate to use SWICS lamps-off data to determine the 

NOAA-10 WFOVSW offset term. 

Further, the offset term for MFOVSW channel can also be determined using SWICS 

lamps-off data. Figs. 41.28 and 4.29 show the differences in offset terms for ERBS and 

NOAA-9 MFOVSW channels, respectively. Similar conclusions may be drawn as we have 

for WFOVSW channel. NOAA-10 MFOVSW channel sees the darkside of the Earth. 

Therefore one can always estimate the offset term for the MFOVSW channel from the 

Merge reports. However, the NOAA-10 MFOVSW channel offset can be determined by 

using the equation given below: 

BEDMT = B (SWICS LAMPS-OFF) - (e 12watt/m2) 

Final in-flight count conversion coefficients are given in the next section. 

4.5 Final  In-Flight Count Conversion Coefficients 

This section describes the final in-flight count conversion coefficients for ERBS, NOAA- 

9 and NOAA-10 nonscanner channels produced using the procedures detailed earlier. 

4.5.1 ERBS Nonscanner  Results. 

In-flight count conversion coefficients for total channel with their corresponding offset 

numbers are given in Tables 4.4 and 4.5. Tables 4.6 and 4.7 show the in-flight count 
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Table 4.3 NOAA-10 WFOVSW Offsets 

CALIBRATION DAY 

December 10, 1986 

January 21, 1987 

February 4, 1987 

April 15, 1987 

June 10, 1987 

June 24, 1987 

July 22, 1987 

August 19, 1987 

September 2, 1987 

December 23, 1987 

January 20, 1988 

BEDMT 
DARKSIDE 

DATA 

- 
- 
- 
- 

1453.30 

1453.30 

1457.60 

1461.20 

- 

- 

BEDMT 
SWICS LAMPS-OFF 

DATA 

1420.02 

1427.11 

1430.81 

1441.65 

145 1.80 

1451.80 

1456.30 

1460.60 

1463.96 

1469.77 

1472.28 

BEDMT 
SPACELOOK 

DATA 

1414.24 

1418.54 

1423.63 

1433.82 

- 

- 

- 

1452.65 

1456.14 

1462.77 

1465.40 
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Table 4.4 ERBS MFOV Total In-Flight 

Count Conversion Coefficients 

: -22.7093 -0.923 25.1276 

APPLICABLE PERIOD 

11/01/84 - 11/30/84 

01/01/85 - 01/31/85 

04/01/85 - 04/30/85 

07/01/85 - 07/31/85 

08/01/85 - 08/31/85 

10/01/85 - 10/31/85 

01/01/86 - 01/31/86 

12/01/86 - 12/31/86 

01/01/87 - 01/31/87 

BEDMT 

1273.547 

1273.577 

1273.577 

1274.130 

1274.130 

1274.130 

1275.450 

1275.450 

1275.450 
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Table 4.5 ERBS WFOV Total In-Flight 

Count Conversion Coefflcients 

I -22.7873 1 -1.3968 1 26.1161 1 

1 APPLICABLE PERIOD 

11/01/84 - 11/30/84 

01/01/85 - 01/31/85 

04/01/85 - 04/30/85 

07/01/85 - 07/31/85 

08/01/85 - 08/31/85 

10/01/85 - 10/31/85 

01/01/86 - 01/31/86 

12/01/86 - 12/31/86 

01/01/87 - 01/31/87 

BEDMT 

1703.070 

1704.063 

1704.063 

1704.020 

1704.020 

1704.020 

1705.050 

1705.050 

1705.050 
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Table 4.6 ERBS MFOV SHORTWAVE In-Flight 

Count Conversion Coefficients 

APPLICABLE :PERIOD 

11/01/84 - 11/30/84 

01/01/85 - 01/31/85 

04/01/85 - 04/30/85 

07/01/85 - 07/31/85 

08/01/85 - 08/31/85 

10/01/85 - 10/31/85 

01/01/86 - 01/31/86 

12/01/86 - 12/31/86 

01/01/87 - 01/31/87 

A V  

-25.5337 

-25.5458 

-25.5630 

-25.5791 

-25.5843 

-25.5942 

- 25.6082 

-25.6490 

- 25.6520 

A E  

-0.0375 1 

-0.03753 

-0.03755 

-0.03758 

- 0.03 758 

-0.03760 

-0.03762 

-0.03 768 

-0.03768 

A F  

1.2227 

1.2233 

1.2241 

1.2248 

1.2251 

1.2256 

1.2262 

1.2282 

1.2283 

A R  

29.0431 

29.0570 

29.0765 

29.0948 

29.1007 

29.1120 

29.1279 

29.1744 

29.1778 

1 
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DATE NOV84 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

1012.954 
m . o 0 o  
oooo.o0o 
oooo.o0o 
1015.710 
1010.248 
10 14.967 
1013.115 
1014.760 
10 13.666 
1013.572 
101 1.629 
1010.580 
1010.010 
1007.262 
1008.794 
1010.408 
1014.129 
1015.225 
1015.357 
1012.055 
1 006.4 84 
1007.126 
1005.381 
1006.273 
1008.439 
1008.118 
1007.739 
1007.395 
1008.575 

-- 

Table 4.6 (Continued) 
ERBS MFOV Shortwave In-Flight Offsets, BEDMT 

JAN 85 

1010.674 
1012.960 
1014.819 
1014.003 
1012.919 
1011.541 
101 1.072 
1011.067 
1010.279 
101 1.750 
1012.113 
1011.877 
101 1.877 
1011.887 
1012.132 
1012.102 
1012.217 
10 12.964 
1012.597 
1011.969 
1011.810 
10 12.065 
1012.373 
1012.174 
1011.539 
1011.239 
1011.529 
101 1.443 
1010.649 
1010.795 
1010.933 

-- APRIL 85 

1014.669 
1016.341 
1015.056 
10 16.909 
1017.394 
1018.602 
1020.088 
1018.463 
1018.026 
1018.389 
1018.275 
1018.490 
1019.857 
1019.065 
1018.721 
1017.232 
101 7.3 70 
1018.667 
1019.814 
1020.130 
1019.083 
1016.483 
1016.146 
1016.527 
101 7.047 
1016.946 
1017.429 
1017.124 
1017.277 
1016.729 

---_- 

JULY 85 

1018.715 
1019.416 
1019.621 
1019.562 
1019.724 
1017.932 
1017.316 
1016.120 
1015.958 
1015.770 
1016.442 
1016.644 
1016.577 
1016.307 
1016.558 
1017.584 
1016.527 
1016.365 
1016.899 
1016.988 
1016.202 
1016.524 
1015.872 
10 15.150 
1015.459 
1015.810 
10 15.964 
1015.289 
10 15.800 
1016.135 
1017.722 

AUG 85 

1019.746 
1021.483 
1021.902 
102 1.779 
1020.792 
1018.769 
101 6.905 
1016.131 
1016.090 
1016.006 
1016.342 
1016.981 
1017.167 
1016.906 
1017.488 
1017.689 
1017.405 
1014.810 
1014.432 
101 1.831 
1008.237 
1001.268 
1003.013 
1005.929 
1009.120 
1012.149 
1016.676 
1018.798 
1019.052 
1018.619 
1019.084 

OCT 85 

10 19.06 1 
1018.814 
1019.177 
1019.238 
1019.875 
1019.256 
1018.490 
1018.205 
1017.859 
1017.536 
101 7.986 
1018.222 
1018.088 
1017.430 
1017.180 
1017.932 
1019.620 
1019.578 
1020.139 
1019.905 
1019.336 
1020.540 
1018.795 
1017.471 
1016.403 
1016.069 
1015.970 
1016.525 
1016.468 
1016.845 
101 7.036 

JAN 86 DEC 86 

1030.008 
1030.288 
1030.197 
1028.391 
1028.023 
1026.633 
1026.716 
1026.241 
1026.791 
1027.021 
1027.172 
1027.167 
1027.533 
1026.397 
1026.265 
1025.840 
1026.265 
1026.673 
1026.818 
1025.998 
1025.890 
1025.601 
1026.015 
1026.694 
1028.265 
1028.593 
1028.936 
1030.129 
1030.623 
1030.082 
1029.654 

1029.495 
1029.622 
1029.003 
1027.463 
1025.923 
1021.665 
102 1.427 
1023.207 
1024.885 
1025.483 
1025.279 
1025.321 
1024.391 
1022.702 
1020.854 
1023.104 
1027.556 
1030.739 
1032.437 
1032.501 
103 1.792 
1032.094 
1031.806 
1031.374 
1033.027 
1033.444 
1034.936 
1035.641 
1035.873 
1035.456 
1035.769 

JAN 87 

1036.5 18 
1036.544 
1036.880 
1036.799 
1036.397 
1036.022 
1036.146 
1035.343 
1034.831 
1034.173 
1034.127 
1034.197 
1033.206 
1033.32 1 
1034.098 
1034.223 
1033.891 
1033.814 
1034.207 
1035.025 
1034.714 
1034.975 
1035.906 
1036.457 
1036.745 
1037.520 
1037.076 
103 7.049 
1036.726 
1036.706 
1036.706 
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Taible 4.7 ERBS WFOV Shortwave In-Flight 

Count Conversion Coefficients 

11/01/84 - 11/30/84 

01/01/85 - 01/31/85 

04/01/85 - 04/30/85 

07/01/85 - 07/31/85 

08/01/85 - 08/31/85 

10/01/85 - 10/31/85 

01/01/86 - 01/31/86 

12/01/86 - 12/31/86 

01/01/87 - 01/31/87 

A V  

-25.5824 

-25.6867 

-25.7758 

- 25.9090 

-25.9663 

-26.0224 

-26.1480 

-26.4821 

-26.5086 

AE 

-0.03051 

-0.03064 

-0.03074 

-0.03090 

-0.03097 

-0.03104 

-0.03119 

-0.03159 

-0.03 162 

A F  

-0.6434 

-0.6460 

-0.6482 

-0.6516 

-0.6530 

-0.6544 

- 0.65 76 

-0.6660 

-0.6666 

A R  

26.5454 

26.6537 

26.7461 

26.8844 

26.9438 

27.0020 

27.1323 

27.4790 

27.5065 
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Table 4.7 (Continued) 
ERBS WFOV Shortwave In-Flight Offsets, BEDMT 

DATE NOV84 JAN85 APRIL85 JULY85 AUG85 OCT85 JAN86 DEC86 JAN87 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

1304.592 
oooo.o0o 
oooo.o0o 
oooo.oO0 
1303.967 
1304.012 
1303.830 
1303.737 
1303.592 
1303.336 
1303.085 
1302.592 
1302.952 
1302.715 
1302.503 
1302.182 
1302.025 
1302.031 
1302.266 
1302.5 18 
1302.393 
1301.998 
1301.595 
1301.380 
1301.326 
130 1.830 
130 1.94 1 
1302.078 
1302.208 
1302.196 

1305.4 10 
1306.28 1 
1306.863 
1306.778 
1306.558 
1305.943 
1305.729 
1305.765 
1305.815 
1305.931 
1306.079 
1306.184 
1306.345 
1306.486 
1306.604 
1306.476 
1306.378 
1306.277 
1306.332 
1306.157 
1305.978 
1305.638 
1305.720 
1305.559 
1305.446 
1305.071 
1305.006 
1304.838 
1304.969 
1305.019 
1305.244 

13 11.386 
1311.064 
1310.654 
1310.489 
13 10.196 
1 309.94 3 
1309.733 
1309.599 
1 309.4 8 6 
1309.319 
1309.129 
1308.900 
1308.745 
1308.405 
1308.297 
1308.46 1 
1308.8 12 
1309.39 1 
1309.924 
1310.079 
1309.968 
1309.165 
1308.830 
1309.006 
1309.252 
1309.4 56 
1309.601 
1309.832 
1309.880 
1309.920 

1316.677 
13 17.OOO 
13 17.136 
1317.259 
1316.939 
1316.818 
1316.047 
1315.959 
13 15.932 
1315.964 
1316.333 
13 16.409 
13 16.440 
13 16.48 1 
1316.539 
1316.681 
1316.740 
13 16.748 
1316.735 
13 16.624 
1316.475 
1316.254 
13 16.060 
1315.835 
1315.883 
13 15.648 
1315.411 
1315.276 
1315.276 
1315.731 
1316.258 

13 19.660 
1320.111 
1320.300 
1320.150 
1320.029 
1319.733 
1318.684 
1318.131 
1317.955 
1318.023 
1318.184 
1318.431 
1318.617 
1318.833 
1318.953 
1319.068 
1319.332 
1319.412 
1319.450 
1319.430 
1319.439 
1319.439 
1319.439 
1319.439 
1319.439 
1319.439 
1319.439 
1318.879 
1318.755 
1318.783 
1318.568 

1323.42 1 
1323.458 
1322.920 
1322.595 
1322.168 
1322.028 
132 1.948 
132 1.68 1 
1321.371 
132 1.28 7 

1320.978 
1320.776 
1320.59 1 
1320.815 
132 1.170 
1322.047 
1322.435 
1323.161 
1322.890 
1322.968 
1323.116 
1322.593 
1322.022 
1321.904 
1321.475 
1321.249 
1321.641 
1321.832 
1321.932 
1322.240 

m i . 2 2 a  

1330.460 
1330.417 
1330.477 
1330.554 
1330.428 
1329.713 
1329.405 
1329.171 
1329.066 
1329.055 
1329.153 
1329.186 
1329.446 
1329.42 1 
1329.645 
1329.698 
1329.594 
1329.576 
1329.249 
1329.072 
1328.941 
1328.710 
1328.702 
1328.881 
1329.149 
1329.251 
1329.559 
1330.097 
1330.168 
1330.069 
1330.163 

1347.622 
1347.903 
1348.473 
1348.516 
1348.516 
1348.516 
1348.516 
1348.516 
1348.516 
1348.516 
1348.516 
1348.5 16 
1348.516 
1348.516 
1348.516 
1348.516 
1348.516 
1348.279 
1348.318 
1348.051 
1347.929 
1347.616 
1347.611 
1347.636 
1348.316 
1348.695 
1349.031 
1349.1 64 
1349.226 
1349.130 
1349.352 

1351.197 
135 1.076 
1351.131 
1351.272 
1351.094 
1351.152 
1351.214 
1350.727 
1350.725 
1350.659 
1350.474 
1350.312 
1350.3 13 
1350.397 
1350.399 
1350.365 
1350.286 
1350.083 
1350.123 
1350.300 
1350.25 1 
1350.568 
1350.454 
1350.803 
1350.885 
1350.74 7 
1350.692 
1350.718 
1350.715 
1350.922 
1 3 50.7 2 7 



conversion coefficients respectively. Offsets for shortwave channels are determined using 

the darkside data. 

4.5.2 NOAA-9 Nomicanner Results. 

In-flight count conversion coefficients for MFOVT channel are given in Table 4.8. This 

channel is found to be drifting in quadratic equation form. Therefore, the offset, BEDMT,  

is determined for every day. However, WFOVT channel, displayed in Table 4.9, s e e m  

very constant over the month period. 

Further, in-flight count conversion coefficients for MFOV and WFOV shortwave chan- 

nels are tabulated in Tables 4.10 and 4.11, respectively. The dome’s transmissivity of the 

WFOVS W channel has decreased approximately 2% in one year while, the MFOVS W chan- 

nel has not degraded significantly. Offset terms of the shortwave channel are determined 

for everyday using the darkside data. 

4.5.3 NOAA-10 Noriscanner Results. 

Tables 4.12 and 4.1.3 display the in-flight count conversion coefficients for MFOVT and 

WFOVT channels, res.pectively. These coefficients will remain unchanged except for the 

offset term BEDMT.  T:ie offset terms are determined using the in-flight internal calibration 

blackbody (IBB) data. 

Further, Tables 4.14 and 4.15 detail the in-flight count conversion coefficients for 

the shortwave channels. These coefficients vary depending on the dome’s transmissivity 

determined from the scllar measurements data. Note that the change in the dome’s trans- 

missivity for the MFOVSW channel is negligible in comparison to the WFOVSW channel, 

which has degraded almost 4.5% in one year. 

The MFOVSW offset term is determined by analyzing darkside data, while the WFOVSW’s 

offset term is computed using SWICS lamps-off data. The offset term for MFOVSW for 

December 1986 is the average of two darkside data points, i.e., December 10, 1986 and 

December 24, 1986. 1%; is important to note that there is no darkside observed by the 
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Table 4.8 NOAA-9 MFOV Total In-Flight 

Count Conversion Coefficients 

NOAA-9 MFOV Total Channel In-Flight Offsets, BEDMT 

DATE APRIL 85 JULY 85 OCT 85 JAN 86 DEC 86 JAN 87 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

1211.54 
1211.36 
1211.18 
1211.01 
1210.83 
1210.65 
1210.48 
1210.30 
1210.13 
1209.95 
1209.77 
1209.60 
1209.42 
1209.25 
1209.07 
1208.90 
1208.72 
1208.55 
1208.3 7 
1208.20 
1208.02 
1207.85 
1207.67 
1207.50 
1207.32 
1207.15 
1206.97 
1206.80 
1206.63 
1206.45 

1195.89 
1195.72 
1195.55 
1195.38 
1195.22 
1195.05 
1194.89 
1194.72 
1194.55 
1194.43 
1194.22 
1194.05 
1193.89 
1193.72 
1193.56 
1193.39 
1193.23 
1193.06 
1192.90 
1192.73 
1192.57 
1192.40 
1192.24 
1192.07 
1191.91 
1191.74 
1191.58 
1191.4 1 
1191.25 
1191.09 
1190.92 

1180.98 
1180.82 
1180.66 
1180.5 1 
1180.35 
1180.19 
1180.04 
11 79.88 
1179.72 
1179.57 
1179.41 
1179.25 
1179.10 
1178.94 
1178.79 
1178.63 
1178.48 
1178.32 
1178.17 
1178.01 
1177.86 
1177.70 
1177.55 
1177.39 
1177.24 
117i.08 
1176.93 
1176.77 
1176.62 
1176.47 
1176.31 

1166.99 
1166.84 
1166.69 
1166.55 
1166.40 
1166.25 
1166.11 
1165.96 
1165.81 
1165.67 
1165.52 
1165.37 
1165.23 
1165.08 
1164.94 
1164.79 
1164.65 
1164.50 
1164.36 
1164.21 
1164.07 
1163.92 
1163.78 
1163.63 
1163.49 
1163.34 
1163.20 
1163.05 
1162.91 
1162.77 
1162.62 

1123.93 
1123.82 
1123.71 
1123.60 
1123.48 
1123.37 
1123.26 
1123.15 
1123.04 
1122.93 
1122.82 
1122.71 
1122.61 
1122.50 
1122.39 
1122.28 
1122.17 
1122.06 
1121.95 
1121.84 
1121.73 
1 12 1.62 
1121.52 
1121.41 
1121.30 
1121.19 
1121.08 
1120.98 
1120.87 
1120.76 
1120.65 

1120.55 
1120.44 
1120.33 
1120.22 
1120.12 
1120.01 
11 19.90 
11 19.80 
1119.69 
1119.58 
1119.48 
1119.37 
1119.26 
1119.16 
1119.05 
1118.95 
11 18.84 
11 18.73 
1118.63 
1118.52 
1118.42 
1118.31 
1118.21 
11 18.10 
11 18.00 
1117.89 
1117.79 
1117.68 
1117.58 
1117.48 
11 17.37 



Table 4.9 NOAA-9 WFOV Total In-Flight 

Count Conversion Coefficients 

04/01/85 - 04/30/85 

07/01/85 - 07/31/85 

10/01/85 - 10/31/85 

01/01/86 - 01/31/86 

12/01/86 - 12/31/86 

01/01/87 - 01/31/87 

t-i-+"i -22.8621 -0.3977 24.7635 

1475.43 

14 75.97 

1477.63 

1479.35 

1482.41 

1482.41 

APPLICABLE PERIOD I BEDMT 
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Table 4.10 NOAA-9 MFOV Shortwave In-Flight 

Count Conversion Coefficients 

AF 

0.7092 

0.7096 

0.7100 

0.7104 

0.7118 

0.7119 

A R  

28.9870 

29.0027 

29.0186 

29.0344 

29.0911 

29.0963 

APPLICABLE PERIOD A V  

04/01/85 - 04/30/85 -25.4599 

07/01/85 - 07/31/85 -25.4737 

10/01/85 - 10/31/85 -25.4877 

01/01/86 - 01/31/86 -25.5015 

12/01/86 - 12/31/86 -25.5513 

01/01/87 - 01/31/87 -25.5559 i 

. 

A E  

-0.03604 

-0.03606 

-0.03608 

-0.03610 

-0.03617 

-0.03618 

I 96 



Table 4.10 (Continued) NOAA-9 MFOV Shortwave In-Flight Offsets, BEDMT 

DATE APRIL 85 JULY 85 OCT 85 JAN 86 DEC 86 J A N  87 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

841 .i'03 
841.578 
841.985 
84O.i'02 
840.i.63 
840. i'4 2 
840.845 
840.972 
840.907 
840.2128 
840.951 
84O.f;88 
841.1 47 
841.1 73 
84 1 SI92 
84 1.01 3 
840.063 
841 .(I63 
841.078 
841.1 43 
841.195 
841.1 79 
841.1 60 
841.338 
841.1 55 
841.1 46 
841.1 79 
841.2106 
84 1.2170 
841.2056 

842.784 
842.788 
842.598 
842.740 
842.768 
842.729 
842.805 
842.739 
842.857 
842.333 
840.883 
840.94 1 
840.970 
841.135 
841.038 
841.055 
84 1.104 
84 1.14 1 
841.177 
841.260 
841.338 
841.337 
841.405 
843.234 
845.545 
845.501 
845.540 
845.507 
84 5.590 
845.456 
845.366 

846.971 
847.855 
846.868 
846.797 
846.728 
846.812 
846.880 
846.698 
846.857 
847.356 
846.964 
846.914 
847.124 
847.089 
847.076 
847.309 
845.880 
846.040 
845.963 
846.066 
846.179 
846.168 
846.228 
846.276 
846.209 
846.353 
846.330 
846.307 
846.803 
847.298 
846.279 

847.169 
847.273 
847.408 
847.371 
847.440 
847.407 
847.432 
847.430 
847.433 
847.611 
847.690 
847.684 
847.696 
847.738 
847.797 
847.852 
847.878 
847.888 
847.848 
847.901 
847.921 
848.402 
847.873 
847.913 
847.845 
847.911 
847.682 
847.609 
847.616 
847.575 
847.555 

852.443 
852.482 
852.529 
852.505 
852.564 
852.574 
852.578 
852.623 
852.468 
853.021 
852.929 
852.909 
852.902 
853.000 
853.028 
852.995 
852.996 
853.082 
853.069 
853.024 
853.104 
853.107 
853.097 
853.276 
852.787 
852.792 
852.850 
852.862 
852.837 
852.916 
852.883 

853.044 
853.051 
853.223 
853.114 
853.109 
853.116 
853.116 
853.116 
853.116 
853.1 16 
853.116 
853.116 
853.116 
853.116 
853.116 
853.116 
853.116 
853.116 
853.116 
852.925 
853.347 
853.116 
853.116 
853.116 
853.116 
853.116 
853.116 
853.116 
853.116 
853.116 
853.116 



Table 4.11 NOAA-9 WFOV Shortwave In-Flight 

Count Conversion Coefficients 

APPLICABLE PERIOD A V  A E  

04/01/85 - 04/30/85 

07/01/85 - 07/31/85 

10/01/85 - 10/31/85 

01/01/86 - 01/31/86 

12/01/86 - 12/31/86 

01/01/87 - 01/31/87 

AF 

-0.3540 

-0.3562 

-0.3583 

-0.3603 

-0.3664 

-0.3668 

A R  

30.1311 

30.3192 

30.4989 

30.6680 

31.1862 

31.2263 

-25.9880 

-26.1503 

-26.3053 

-26.4511 

-26.8980 

-26.9326 

98 

-0.03465 

-0.03487 

-0.03507 

-0.03527 

-0.03586 

-0.03591 



Table 4.11 NOAA-9 (Continued) WFOV Shortwave In-Flight Offsets, BEDMT 

DATE APRIL 85 JULY 85 OCT 85 JAN 86 DEC 86 JAN 87 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

1359.474 
1359.412 
1359.929 
1359.8 66 
1359.729 
1359.764 
1359.952 
1359.754 
1359.744 
1359.6 78 
1359.561 
1359.445 
1359.656 
1359.555 
1359.589 
1359.577 
1359.644 
1359.411 
1359.446 
1359.563 
1359.642 
1359.4 18 
1359.565 
1359.500 
1359.571 
1359.906 
1360.047 
1360.003 
1359.971 
1359.853 

1367.569 
1367.608 
1367.732 
1367.705 
1367.684 
1367.674 
1367.619 
1367.678 
1367.559 
1366.908 
1366.032 
1366.063 
1366.182 
1366.337 
1366.178 
1366.129 
1366.102 
1366.091 
1366.080 
1366.208 
1365.966 
1366.132 
1366.245 
1367.928 
1370.306 
1370.318 
1370.283 
1370.278 
1370.490 
1370.48 1 
1370.577 

1377.714 
1378.496 
1378.206 
1378.113 
1378.366 
1378.440 
13 78.380 
1378.797 
1378.278 
1378.513 
1378.397 
1378.503 
1378.467 
13 78.383 
13 78.543 
1377.78 1 
1375.950 
1375.896 
1375.849 
1375.897 
1375.726 
13 76.032 
1375.848 
13 75.926 
1375.951 
1376.059 
1376.133 
1376.207 
1376.519 
1376.830 
1376.145 

1384.154 
1383.89 1 
1384.099 
1384.285 
1384.401 
1384.290 
1384.293 
1384.203 
1384.347 
1384.555 
1384.380 
1384.26 1 
1384.332 
1384.426 
1384.550 
1384.658 
1384.565 
1384.537 
1384.395 
1384.415 
1384.555 
1384.866 
1384.443 
1384.338 
1384.342 
1384.407 
1384.411 
1384.347 
1384.337 
1384.470 
1384.494 

1411.863 
141 1.955 
14 1 1 -962 
1412.124 
14 12.117 
1412.049 
1412.140 
1412.212 
1412.558 
14 12.992 
1412.910 
1412.938 
1412.999 
1413.079 
1413.133 
14 13.284 
14 13.169 
14 13.603 
1413.362 
14 13.250 
1413.212 
14 13.336 
14 13.429 
14 13.526 
14 12.976 
14 12.875 
14 12.89 1 
14 12.967 
14 12.842 
14 12.842 
14 12.850 

1414.768 
14 14.838 
14 14.842 
1414.845 
14 14.856 
14 14.946 
1414.946 
14 14.946 
14 14.946 
14 14.946 
14 14.946 
1414.946 
1414.946 
14 14.946 
1414.946 
1414.946 
14 14.946 
1414.946 
1414.946 
1415.093 
14 15.378 
14 14.946 
1 4 1 4.946 
1414.946 
1414.946 
1414.946 
14 14.946 
14 14.946 
1414.946 
14 14.946 
1414.946 
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Table 4.12 NOAA-10 MFOV Total In-Flight 

Count Conversion Coemcients 

12/01/86 - 12/31/86 

01/01/87 - 01/31/87 

I 1 I 1 

1668.74 

1669.70 

* -23.22 15 - 1.9825 22.4009 

12/01/86 - 12/31/86 

01/01/87 - 01/31/87 

I APPLICABLEPERIOD I BEDMT I 

1432.85 

1432.85 

Table 4.13 NOAA-10 WFOV Total In-Flight 

Count Conversion Coefficients 

1-22.5230 1 -0.4216 1 23.8202 1 

1 APPLICABLEPERIOD 1 BEDMT 1 
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Table 4.14 NOAA-10 MFOV Shortwave In-Flight 

Count Conversion Coefficients 

-24.3501 

-24.4643 

1 APPLICABLE PERIOD 

-0.03032 -1.3074 28.6683 1417.18 

-0.03047 -1.3135 28.8028 1422.56 

12/01/86 - 12/31/86 

01/01/87 - 01/31/87 

Table 4.15 NOAA-10 WFOV Shortwave In-Flight 

Count Conversion Coefficients 

12/01/86 - 12/.31/86 

01/01/87 - 01/431/87 



WFOVS W channel during December 1986 and January 1987. 

. 
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APPENDIX A 

Configuration Fact or 

The configuration factor, f ,  is required by Eq. (4.1) to obtain the in-flight count 

conversion coefficients. This factor depends on the geometry of the field-of-view limiter 

(FOVL) and the primary aperture. With known radius of FOVL and primary aperture, 

one can compute f using the well known equation given below. 

where 

1+RT z = 1 +  
R22 

r1 and r2 are radius and h is the gap between two discs as shown in Fig. A.l.  

i 

Primary Aperture F T  
0 h 

FOVL pJl 
0 . 

Figure A.l Representation of Configuration 
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Table A.1 displays the configuration factor, f for each nonscanner sensor used in 

this work. ERBS nomcanner configuration factors are found in agreement with TRW’s 

results reported in [5 ] ,  except for the WFOVT channel. The configuration factor for ERBS 

WFOVT channel is computed by taking non-cosine response function into account. The 

configuration factors for NOAA-9 and NOAA-10 for nonscanner sensors, given in Table A.l  

are computed using the design data given in [3]. Note that the present results are not in 

agreement with TRW’s configuration factors reported in [6] - [7). The author has not been 

able to locate the data, points used by TRW for NOAA-9 and NOAA-10. Furthermore, 

the configuration factors for NOAA-9 and NOAA-10 given in Table A. l ,  were reproduced 

by several independent investigators. 

- 
SE:NSORS ERBS NOAA-9 

Table A.l Configuration Factors 

NOAA-10 

MFOVT 

WFOVT 

MF OVS W 

WF‘OVS W 

- 1 
I I I I 

0.4240 0.2387 0.2387 

0.8692 0.8288 0.8288 

0.4240 0.2387 0.2387 

0.8797 0.8288 0.8288 
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APPENDIX B 

BMRBB- I B B  Correction Factor 

SENSORS 

MFOVT 

WFOVT 

This factor is required to  determine the final in-flight offset term, BEDMT,  for total 

channels. This factor is based on the assumption that the count conversion coefficients 

may have drifted. To determine a correct offset term for the in-flight IBB source, a 

BMRBB-IBB factor was determined using the ground IBB data with ground count con- 

version coefficients based on MRBB data. Table B.l displays the BMRBB-IBB correction 

factor for each nonscanner sensor. Note that the correction factor for NOAA-9 MFOVT 

channel is determined after performing error budget analysis and scanner-nonscanner in- 

tercomparisons (a technique developed by the inversion group) at satellite altitude. Also 

note that the correction factor for NOAA-10 WFOVT is negative. At  this point the actual 

cause of this negative value is unknown, but it is worth mentioning that the NOAA-10 

WFOVT channel was replaced by another WFOVT channel prior to launch. In the future 

more scanner-nonscanner intercomparisons at  satellite altitude may answer such questions. 

ERBS NOAA-9 NOAA-10 

5.010 20.444 11.664 

5.187 4.796 -4.349 

Table B.l BMRBB-IBB Correction Factors 



APPENDIX C 

Solar Calibration Data 

Solar calibration data are used to determine the degradation factor, DF which is 

required to upgrade the in-flight count conversion coefficients for shortwave channels. Data 

for ERBS, NOAA-9 and NOAA-10 Shortwave sensors are given below. 
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Table C.1 ERBS MFOVSW Solar Calibration Data 

CALIBRATION SOLAR 
SAMPLE DATE X(DAY) MEASUREMENTS 

1 
2 
3 
4 
5 
6 
7 

9 
10 
11 
12 
13 
14 
15 
10 
17 

19 
20 
21 
22 
23 
24 
25 
26 
27 

29 
30 
31 
32 
33 
34 
35 
30 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
80 
61 

a 

i a  

2a 

io/25/a4 
iop6fa4 

1 i/oi/a4 
1 i/os/ar 
i I/ 12/61 
1 i/mfa4 
ii/zs/ar 
iz/os/ar 
121 lo/ar 
i2/17/a4 
iz/za/ar 
oi/23/a5 
oyoefas 
02/m/a5 

cu/os/as 
04/17/85 
05/01/85 

05/29/85 
oe/a~/as 

oa/o7/a5 
os/2i/as 
os/or/as 
091iaia5 

10/29/84 

03/06 f 85 
03/20/85 

05/08/85 

071 10 f 85 
07/21 f 85 

10/02/85 
101 16/85 
10/31/85 
11/13/85 
ii/27/a5 
n / ia /a5  
iz/zs/as 

o i /n /a6  
02/05/a6 

01/07/86 

03/05/86 
031 19/86 
04/02/86 
04/16/80 
04/30/86 
05/14/86 
0 5 12 8 18 6 
06/04/86 
061 19/86 
06/25/86 
07/09/86 
07/23/86 

09/03/80 
09/17/86 

10/15/86 
10/29/86 
11/12/80 
11/26/86 
12/24/86 
01/07/87 

oelnlas 

io/oi/as 

299. 
300. 
303. 
306. 
310. 
317. 
325. 
331. 

345. 
352. 
363. 
389. 
403. 
417. 
431. 
445. 
459. 
473. 
487. 
494. 
515. 
543. 
557. 
571. 

599. 
013. 
627. 
641. 
655. 
070. 
683. 
097. 

725. 
738. 
753. 
767. 
795. 
809. 
823. 
837. 
851. 
865. 
879. 
880. 
901. 
907. 
921. 
935. 
980. 
977. 
991. 
1005. 
1019. 
1033. 
1047. 
1061. 
1089. 
1103. 

338. 

585. 

718. 

1363.8oooO 
1362.5oooO 
1304.80000 
1363.50000 
1364.I)0000 
1365.00000 
1304.7oooO 
1363.2oooO 
1365.80000 
1304.00000 
1364.4oooO 
1304.30000 
1361.7oooO 
1304.30000 
1363.20000 
1304.60000 
1361.60000 
1363.2oooO 
1362.60000 
1363.1oooO 
1360.4oooO 
1361.80000 
1362.1oooO 
1361.80000 
1362.1oooO 
1302.80000 
1302.90000 
1359.50000 
1380.80000 
1360.50000 
1361.00000 
1360.4ooOO 
1360.40000 
1359.00000 
1359.90000 
1361.4oooO 
1360.7oooO 
1359.4oooO 
1359.50000 
1362.3oooO 
136 1.2ooOO 
1360.80000 
1380.7oooO 
1359.30000 
1358.7oooO 
1359.50000 
1358.50000 
1359.30000 
1359.90000 
1358.80000 

1359.7oooO 
1358.90000 
1357.30000 
1358.90000 
1358.50000 
1359.80000 
1359.50000 
1358.00000 
1355.7oooO 
1358.90000 

i 3 5 a . m  
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'Ihblet C.2 ERBS WFOVSW Solar Calibration Data 

- 
CALIBRATION SOLAR 

SAMPLE DATE X(DAY) MEASUREMENTS 
I_ 

1 
2 
3 
4 
5 
0 
7 
8 
9 
10 
11 
12 
13 
14 
15 
10 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
80 
61 

10/25/84 
10/26/84 
10/29/84 
11/01/84 
11/05/84 
11/12/84 
11/20/84 
11/28/84 
12/03/84 
12/10/84 
12/17/84 
12/28/84 
01/23/85 
02/06/85 
02/20/85 
03/06/85 
03/20/85 
04/03/85 
041 17/85 
05/01/85 
05/08/85 
05/29/85 
06/26 f 85 
071 10185 

08/07/05 
0812 1/85 
09/04/85 
09/18/85 
lO/O2/85 
lOll6f85 
10/31/85 
11/13/85 
11/27/85 
12/18 f85 
12/25/85 
01/07/80 
01/22/88 
02/05/86 
03/05/86 
03/19/80 
04/02/80 
041 16/86 
04/30/86 
05/14/80 
05/28/80 
06/04/86 
061 19 f 86 
06/25/86 
07/09/86 
07/23/88 
08/17/86 
09/03/88 
09/17/80 
1010 1/86 
10/15/80 
10/29/86 
11/12/86 
11/28/86 
12/24/86 
01/01/81 

07/24/85 

299. 
300. 
303. 
308. 
310. 
317. 
325. 
331. 
338. 
345. 
352. 
363. 
389. 
403. 
417. 
431. 
445. 
459. 
473. 
487. 
494. 
515. 
543. 
557. 
571. 
585. 
599. 
613. 
627. 
641. 
855. 
670. 
683. 
697. 
718. 
725. 
738. 
753. 
767. 
795. 
809. 
823. 
837. 
851. 
865. 
879. 
886. 
901. 
907 * 
921. 
935. 
980. 
977. 
991. 
1005. 
1019. 
1033. 
1047. 
1061. 

1103. 
1089. 

1364.30000 
1363.2oooO 
1363.20000 
1362.80000 
1362.20000 
1362.30000 
1361.7oooO 
1359.30000 
1358.90000 
1357.50000 
1356.2oooO 
1356.80000 
1355.20000 
1354.20000 
1351.40000 
1351.80000 
1352.1oooO 
1349.4oooO 
1350.40000 
1349.00000 
1347.90000 
1348.20000 
1345.7oooO 
1344.7oooO 
1344.50000 
1344.80000 
1343.60000 
1339.10000 
1340.2oooO 
1338.00000 
1338.4oooO 
1337.00000 
1338.30000 
1335.20000 
1333.20000 
1334.00000 
1332.80000 
1332.10000 
1331.90000 
1330.2oooO 
1331.3oooO 
1327.3oooO 
1329.8oooO 
1327.7oooO 
1326.7oooO 
1327.90000 
1326.80000 
1325.90000 
1320.2oooO 
1323.00000 
1323.4oooO 
1323.30000 
1321.40000 
1320.2oooO 
1320.00000 
1318.1oooO 
1319.7oooO 
1318.90000 
13 16.90000 
1314.4oooO 
1316.00000 
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Table C.3 NOAA-9 MFOVSW Solar Calibration Data 

CALIBRATION SOLAR 
SAMPLE DATE X(DAY) MEASUREMENTS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

01/23/85 
01/25/85 
01/27/85 
01/30/85 
02/06/85 
02/13/85 
02/20/85 
03/06/85 
03/20/85 
04/03/85 
04/17/85 
05/08/85 
05/29/85 
06/12/85 
06/26/85 
07/10/85 
07/24/85 
08/07/85 
0812 1/85 

09/18/85 
10/02/85 
10/ 16/65 
10/30/85 
111 13/85 
11/27/85 
121 11/85 
01/22/86 
02/05/86 
021 19/86 
03/05/86 
031 19/86 
04/02/86 
04/30/86 
051 14/86 
05/28/86 
061 11/86 
07/09/86 
07/23/86 
08/06/86 
08/20/86 
09/03/86 
091 17/86 
101 15/86 
10/29/86 
111 12/86 
11/26/86 
01/21/87 

09/04/85 

389. 
391. 
393. 
396. 
403. 
410. 
417. 
431. 
445. 
459. 
473. 
494. 
515. 
529. 
543. 
557. 
571. 
585. 
599. 
613. 
627. 
641. 
655. 
669. 
683. 
697. 
711. 
753. 
767. 
781. 
795. 
809. 
823. 
851. 
865. 
879. 
893. 
921. 
935. 
949. 
963. 
977. 
991. 
1019. 
1033. 
1047. 
1061. 
1117. 

1363.2oooO 
1365.60000 
1362.8oooO 
1362.40000 
1365.60000 
1365.80000 
1365.40000 
1365.40000 
1364.50000 
1364 .90000 
1364.70000 
1362.50000 
1365.20000 
136 1.10000 
1363 .WOO 
1362.20000 
1364.50000 
1362.40000 
1362.80000 
1362.10000 
1364 .00000 
1364.00000 
1362.50000 
1360.70000 
1362 .00000 
1361.50OOO 
1362.00000 
1362.10000 
1360.70000 
1360.5oooO 
136 1.90000 
136 1.20000 
1361.70000 
1362.70000 
1360.30000 
1361.90000 
136 1.60000 
1360.10000 
1361.10000 
1359.00000 
1360.40000 
1360.50000 
1359.50000 
1359.50000 
1358.90000 
1358.7oooO 
1359.80000 
1359.40000 
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Table C.4 NOAA-9 WFOVSW Solar Calibration Data 

CALIBRATION SOLAR 
SAMPLE DATE X(DAY) MEASUREMENTS ____ -- 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
le1 
17' 
It1 
11, 
20 
2 I. 
2;1 
2<6 
24 
25 
21i 
2:' 
2t1 
2!) 
30 
3 :l 
32 
33 
34 
35 
3I3 
3'7 
323 
3'3 
41) 
41 
42 
43 
44 
45 
46 
47 
48 

.I 

01/23/85 
01/25/85 
01/27/85 
01/30/85 
02/06/85 
02/13/85 
02/20/85 
03/06/85 
03/20/85 
04/03/85 
04/17/85 
05/08/85 
05/29/85 
06/12/85 
06/26/85 
07/10/85 
07/24/85 
08/07/85 
08/21/85 
09/04/85 
091 1818 5 
10/02/85 
10/16/65 
10/30/85 
11/13/85 
11/27/85 
12/11/85 
01/22/86 
02/05/86 
021 19/86 
03/05/86 
03/19/86 
04/02/86 
04/30/86 
05/14/86 
05/28/86 
0611 1/86 
07/09/86 
07/23/86 
08/06/86 
08/20/86 
09/03/86 
09/17/86 
10/15/86 
10/29/86 
11/12/86 
11/26/86 
01/21/87 

389. 
391. 
393. 
396. 
403. 
410. 
417. 
431. 
445. 
459. 
473. 
494. 
515. 
529. 
543. 
557. 
571. 
585. 
599. 
613. 
627. 
641. 
655. 
669. 
683. 
697. 
711. 
753. 
767. 
781. 
795. 
809. 
823. 
851. 
865. 
879. 
893. 
921. 
935. 
949. 
963. 
977. 
991. 
1019. 
1033. 
1047. 
1061. 
1117. 

1364.20000 
1366.10000 
1363.80000 
1362.60000 
1363.20000 
1363.10000 
1362.10000 
1361.80000 
1359.50000 
13 57.60000 
1357.90000 
1350.90000 
1355.50000 
1345.90000 
1349.60000 
1344.20000 
1349.50000 
1343.30000 
1345.20000 
1343.30000 
1345.40000 
1344.80000 
13 39.10000 
1335.60000 
1336.30000 
1333 .WOO0 
1335.70000 
1333.40000 
133 1.30000 
1328.30000 
1332.30000 
1329.80000 
1329.OOOOO 
1330.40000 
1325.30000 
1325.30000 
13 25.50000 
1322.70000 
132 1.30000 
1319.70000 
13 18.80000 
1317.90000 
13 16.50000 
13 15.50000 
1315.40000 
13 11.00000 
13 12.10000 
1307.90000 
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Table C.5 NOAA-10 MFOVSW Solar Calibration Data 

- 

CALIBRATION SOLAR 
SAMPLE DATE X(DAY) MEASUREMENTS 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

10122186 
10/25/86 
lO/29/86 
11/01/86 
11/05/86 
11/12/86 
11/26/86 
121 10186 
12/24/86 
01/21/87 

02/18/87 
03/04/87 
031 18/87 
04/01/87 
041 15/87 
04/29/87 
08/19/87 
09/02/87 
091 16/87 
09/30/87 
10/14/87 
10128167 
11/11/87 
11/25/87 
12/09/87 
12/23/87 
01/06/88 
01/23/88 
02/03/88 

02/04/87 

1026. 
1029. 
1033. 
1036. 
1040. 
1047. 
1061. 
1075. 
1089. 
1117. 
1131. 
1145. 
1159. 
1173. 
1187. 
1201. 
1215. 
1327. 
1341. 
1355. 
1369. 
1383. 
1397. 
1411. 
1425. 
1439. 
1453. 
1467. 
1484. 
1495. 

1371 .OOOOO 
1373.20000 
13 73.60000 
1373.80000 
1370.oooOO 
1371.10000 
1370.10000 
1371 .WOO0 
1369.10000 
1371.40000 
137 1 .OOOOO 
1369.10000 
1369.OOOOO 
1370.10000 
1372.10000 
1367.70000 
1368.70000 
1375.20000 
1375.10000 
1374.80000 
1368 .OOOOO 
1368.10000 
1373.10000 
1373.20000 
1374.20000 
1370.80000 
1366.60000 
1368.80000 
1365.60000 
1366.80000 
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Table C.13 NOAA-10 WFOVSW Solar Calibration Data 

C A L IBR A T 1 0  N SOLAR 
S A M P L E  D A T E  X (DAY) M E A S U R E M E N T S  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

10122186 
10/25/86 
10/29/86 
11/01/86 
11/05/80 
11/12/86 
11/26/86 
121 10/86 
12/24/86 
01/21/87 
02/04/87 
021 18/87 
03/04/87 
03/18/87 
04/01/87 
04/15/87 
04/29/87 
08/19/87 
09/02/87 
091 16/87 
09/30/87 
10/14/87 
10128167 
11/11/87 
11/25/87 
12/09/87 
12/23/87 
0 110618 8 
01/23/88 
02/03/88 

1026. 
1029. 
1033. 
1036. 
1040. 
1047. 
1061. 
1075. 
1089. 
1117. 
1131. 
1145. 
1159. 
1173. 
1187. 
1201. 
1215. 
1327. 
1341. 
1355. 
1369. 
1383. 
1397. 
1411. 
1425. 
1439. 
1453. 
1467. 
1484. 
1495. 

1361.90000 
1359.00000 
1357.20000 
1354.50000 
1356.50000 
1354.60000 
1352.10000 
1346.90000 
1345.30000 
1338.50000 
1335.90000 
1335.10000 
1334.00000 
1328.90000 
1324.80000 
1327.90000 
1325.40000 
1308.90000 
1305.90000 
1302.40000 
1306.10000 
1303.90000 
13OO.20000 
1296.90000 
1295 .00000 
1297.20000 
1296.60000 
1293.50000 
1292.60000 
1292.90000 



PART I1 

MODELING AND CHARACTERIZATION OF THE 

EARTH RADIATION BUDGET EXPERIMENT (ERBE) 

SCANNER SENSORS 

I. INTRODUCTION 

The accurate measurement of the total radiative energy flux (radiant exitance) at 

the top of the atmosphere provides one the most important elements in understanding 

the various climatic relationships of the earth-atmosphere system. For example, top of the 

atmosphere measurements of the reflected solar and the emitted radiative energy with high 

I 
I 

I absolute accuracy can validate the actual occurrence of the Greenhouse effect and provide 

quantitative relationships among increasing levels of atmospheric constituents and the 
I 

I 
earth’s climate. In establishing long-term trends and relationships, the absolute accuracy 

and stability of the sensors and the interpretation of the sensor output are of critical 

importance. 

This paper describes the calibration and interpretation of the Earth Radiation Budget 

Experiment (ERBE) scanner sensors. The Earth Radiation Budget Experiment provides 

measurements of the earth’s outgoing radiative flux as seen from the three satellites: ERBS, 

NOAA-9 and NOAA-10. Each satellite contains two instruments: a narrow field-of-view 

scanning instrument and a wide field-of-view nonscanning instrument. Each of the NFOV 

, 

I 

scanning instruments contains three scanner sensors which measure the radiation in three 

wavelength bands. The shortwave scanner measures the spectral radiance within the band 

from 0.2 pm to 5.0 pm, the longwave scanner the band from 5.0 pm to 50 p m  and the total I 
114 



scanner the band from 0.2 pm to 50 pm. Figure 1 shows the ERBE scanner instrument 

with the contamination covers open. 

The ERBS satellite was launched in near-earth-orbit during mission 41-G by the space 

shuttle Challenger on October 5 ,  1984. After the required orbital transfer maneuver, ERBS 

attained its orbit at an altitude near 610 km with an inclination angle 57". The NOAA-9 

and NOAA-10 satellites are both sun-synchronous satellites and have been placed in orbits 

with an inclination anglc of 99" and an altitude near 860 km. NOAA-9 has an equatorial 

crossing time of 1430 LT for the ascending (northward) node, while NOAA-10 has an 

equatorial crossing time of 0730 LT producing a three-satellite system with high local time 

sampling. 

The basic objectiveas of the ERBE are to determine: 1) the monthly average radia- 

tion budget on a global, zonal and regional scale, 2) the average diurnal variation of the 

radiation budget on a regional and monthly scale, and 3) the equator-to-pole transport 

gradient. A zone is defined to be an area covering 10" ECA, and a region is defined as 

an area of 250 km x 250 km. A more detailed description of the ERBE objectives can be 

found in [l], [2]. 

c 
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11. SCANNER DESCRIPTION AND MODELING 

The ERBE scanner instrument is shown in Fig. 1 with open contamination covers. 

Figure 2 is a schematic diagram showing the principal components of the scanner. The 

scanner detectors are thermistor bolometers with an active and reference flake placed in a 

balanced bridge configuration for accurate detection of small signals. 

The normal scanning direction is perpendicular to the satellite ground track. In this 

cross-track scan mode, the duration of a complete scan is 4 seconds. The scan starts with 

a space-look beyond the horizon and gradually scans the topof-the-atmosphere viewing 

the satellite nadir point ,md scans past the horizon on the other side of the track, before 

scanning to a position where the detector sees its corresponding internal calibration source. 

Then a fast retrace bring!; the scanner back to its original position beyond the horizon, thus 

completing a full normal scan, as shown in Fig. 3. Throughout the scan, the A/D converter 

samples the scanner output voltage every 33 msec. The sampled digital voltage during the 

space look, when viewing the earth and the internal calibration source is telemetered down 

to earth and constitutes the scanner's radiometric output; for example, the retrace samples 

are not transmitted. 

The ERBE scanner can also perform a normal scan sequence at any azimuth angle so 

that the scan direction is no longer in a cross-track direction. In fact, when the azimuth 

angle is commanded to be go", the scan direction is along the satellite ground track. Other 

scan modes are also available for specific purposes such as solar calibration through the 

mirror-attenuated-mosiac (MAM). 

The ERBE scanner: contain significant optical, thermal/radiative and electronic com- 

ponents. The incoming :;pectral radiance, LA, enters the scanner as shown in Fig. 2. The 

staircase shape of the field-of-view limiter (element 10) is designed to reflect back any radi- 

ation arriving from locations outside the desired footprint. The surface of the field-of-view 
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limiter is reflective black so that any outsf-field radiation will largely be reflected out of 

the scanner and some will be absorbed, thus not reach the detector. Since some of the 

radiation is absorbed, the temperature of the field-of-view limiter itself will vary slightly 

with the amount of incoming radiation. 

For the shortwave sensor, the incoming radiation passes through the shortwave suprasil- 

W1 filter shown as element 14. A second shortwave filter (element 13) will cut-off any 

longwave radiation from reaching the detector. However, the first filter (element 14) cuts 

off longwave radiation before it reaches and heats other surfaces closer to the detector 

itself. Thus, the purpose of the first shortwave filter is to reduce thermal transients from 

unduly influencing the detector. The suprasil filter itself absorbs some of the incoming 

longwave and will vary in temperature. However, the impact will be smaller and will be 

further reduced by the shortwave filter. The longwave and total channels do not have a 

filter in element 14. 

The remaining radiation falls on the primary mirror, shown as element 6, and is re- 

flected to the secondary mirror, shown as element 9, which reflects the radiation through 

the primary insert (element 5 ) ,  the precision aperture (element 4) and through corre- 

sponding filters (element 13) according to the sensor onto the active flake (element 1). 

The primary and secondary mirrors form a Cassegrainian optical system with its focal 

distance corresponding to the precision aperture. Both primary and secondary mirrors are 

aluminized optical glass with a protective overcoat. 

I 

, The precision aperture has a hexagonal configuration as shown in Fig. 4. In the scan 

direction, the instantaneous field-of-view is 3", while along the track direction it reaches 

4.5'. The hexagonal shape of the aperture was selected to reduce aliasing errors and 

approximates a diamond aperture shape. A diamond aperture, when coupled with a low- 

pass electrical filter with a cut-off near the Nyquist frequency, can be shown to reduce 

aliasing errors in comparison to a circular aperture [3], [4]. 

The radiation which passes through the precision aperture falls on the active thermis- 



scan direction 

3" ---- 
I 

Figure 4. Precision Aperture Shape 
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tor flake (element 1) after passing through a filter (element 13). For the shortwave channel, 

the filter is suprasil-W1; the longwave channel has a diamond filter; the total channel has 

no filters. 

When the incoming radiation is absorbed by the active flake, its temperature rises. 

The change in temperature produces a corresponding change in the electrical resistivity of 

the flake. The active and reference flakes (elements 1 and 3) form two of the four legs of a 

balanced bridge, as shown in Fig. 5. When the temperature, hence resistivity, of the active 

flake varies, the resistance of the corresponding leg goes out of balance producing a signal 

proportional to the difference in the active and reference flake resistances. This signal is 

amplified in preamp and power amplification sections and is processed through a low-pass 

filter. The filter output is sampled, digitized and is telemetered to earth as the radiometric 

output of the sensor. Housekeeping data such as the reference flake temperature, T3, the 

detector bridge voltage, VB, etc. are also telemetered to earth every 4 seconds. 

To accommodate drifts in various thermal and electronic parameters, a drift balance 

mechanism is present, as shown in Fig. 6. When the average space look output voltage 

exceeds a specified value, the drift balance is activated in a direction to bring the space 

look readings within the specified margins. Otherwise, the drift balance is inactive. This 

mechanism maintains the dynamic range of the radiometric output in the presence of drifts. 

The detector is in a housing, element 8, which is kept at  a constant temperature near 

38" C with the help of a heater driven by a PI controller. The heater tries to maintain 

all the detector components at a constant operating temperature so that the temperature 

variations in the active flake caused by the incoming radiation are reproduced by the 

sensor's radiometric output without distortion or error. 

A. Spectral  Considerations. 

Each of the three ERBE scanners are ideally intended to measure the exact shortwave 

(0.2 pm - 5.0 pm), longwave (5.0 pm - 50.0 pm) or the total (0.2 pm - SO.+ pm) radiance 

in the incoming radiation, LA. However, the spectral properties of the materials used in 
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actual sensors produce a spectral response which differs from the ideal spectral response 

to varying degrees. In the ERBE scanners, non-ideal spectral behavior is largely due to 

the spectral characteristics of the following elements. 

1. Primary and secondary mirror spectral reflectivity, 

2. Shortwave and longwave filter transmissivity, and 

3. Active thermistor flake spectral absorptivity. 

The total channel is influenced only by the first and third factors above. The shortwave 

channel has two additic'nal suprasil-W1 filters, while the longwave channel has an additional 

diamond filter. Figurea 7, 8 and 9 show plots of the spectral response of the three ERBE 

scanners. While the essential tendency of each sensor is to  measure the spectral radiance 

in its corresponding spectral band, the actual spectral responses fall somewhat short of 

the ideal and must be accommodated. 

Once absorbed by the active flake, the spectral characteristics of the incoming radiance 

no longer have any impact on the response of the sensor. Thus, it is useful to think of 

the sensor, as shown in Fig. 10, of a system with non-ideal spectral characteristics, .(A), 

followed by a system urhich is independent of spectral characteristics but depends only on 

thermal and electronic parameters. The input to this spectrally flat system is the portion 

of the incoming radiat',on, LA,  which is absorbed by the active flake, say Ld. 
I 

Whether in viewkg calibration sources or in measuring top-of-the-atmosphere (TOA) 

radiances, the incomirg spectral radiance LA,  is first transformed into absorbed heat at 

the active flake, Ld, and then transformed into an electrical voltage output as a digital 

signal. On the other hand, the ideal desired measurements would have been: 
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for the shortwave, longwave and total channels, respectively. 

It is clear that, in general, the shortwave radiance Lsw, cannot be determined from 

just L i w  for arbitrary incoming radiation, LA.  However, if L i w ,  L i w  and L z  are known 

and these values are used to identify the observed scene type, then the incoming spectral 

radiance can be parametrized and a more accurate estimate of Lsw and LLw in terms of 

L z w ,  L i w  and L z  may be obtained using say a least-squares method. This approach is 

used in processing the ERBE data. 

Thus, the sensor interpretation algorithms produce an estimate of Lzw,  L iw  and 

L z  from the corresponding sensor radiometric outputs. Then, the “unfiltered” radiances 

Lsw, LLw are estimated by jointly processing these three measurements. In this paper, 

we will consider the algorithm which produce the estimates of Lzw,  L i w  and Lz. The 

algorithms used to estimate Lsw and LLw will be given in a future paper on the inversion 

algorithm. 

B. Scanner Dynamic Model. 

, As the radiation entering the scanner makes its way to the active flake, it is reflected 

from and absorbed by the various surfaces shown in Fig. 2. The absorbed energy raises 
I 

I 

the temperature of the elements and forms gradients and transients among the various 

I scanner components. For example, as the active thermistor flake absorbs the incoming ra- 

diative energy, L d ,  its temperature rises and the temperature (hence resistance) differential 

between the active and reference flakes is detected by a balanced bridge. The expected 

behavior is that the reference flake temperature remains constant, as it does not see the 

incoming radiation and is placed in a cavity where the temperature is maintained at  a 



c 

set constant temperature. However, the reference flake temperature cannot be directly 

measured. Thus, its actual behavior can only be determined by modeling and simulation. 

In conjunction with the thermal and radiative effects, the electrical signal processing 

also has significant impact on the scanner output. The heater electronics controlling the 

heat sink temperature has a direct thermal input. Figure 11 shows the transfer function 

of the heater controller. The heater controller dynamics can then be modeled as 

T8 9 
K H 1  

T7 + - K H 1  
27 - - z7 = -- 

TH 1 TH 1 TH I 

1 

K H 1  7 H 2  

KAT2 K H 2  TH1 K H 2  ?HI K H 2  7 8 1  
T7+-- T8 9 )x7 - - - K H 1  7 H 2  1. T H 2  k* = (-- - 

where Tb is the set temperature at  which the scanner heat sink is to operate, &(z8) is 

the Joule heating added to the heat sink to maintain the set temperature. 

The signal proces,sing performed by the ERBE scanner electronics is shown in Fig. 

6. The bridge, the preamp and the power amplifiers have rather small dynamic effects on 

the signal, as their cut-off frequencies tend to be much higher than the frequency content 

of the incoming radiation, L d .  However, the low-pass filter, a four-pole Bessel filter, has 

a significant effect on the signal as it has a lower cut-off frequency. In fact, the cut-off 

frequency is much lower than the Nyquist frequency, presumably to reduce noise rather 

than aliasing. However, this practice introduces some blurring effects and will be discussed 

in the following section. 

The electronics model for the detector bridge, preamp, power amp and the Bessel filter 

is detailed in Table 1 which also shows the parameter values for the electronic system. 

Augmenting the electronic model in Table 1 with the heat sink controller in (3), the 

complete electronic model can be expressed as 
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Figure 11. Scanner Heater Controller Model 
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Table 1. Scanner Electronics 

L 

BRIDGE: 

I 

Constants/Parameters sw LW Total 

K 3.4067 6.2067 2.32 
KB 0.0002623 0.0002652 0.0002583 
71 (sec) 1.4388 x 1.52698 x lo-' 1.35745 x 

TO("K) 311.16"K 31 1.16"K 31 1.16"K 
&I(= Rlo = R30 at 38" C 1.5 x lo5 1.5 x 105 1.5 x io5 

, 

Constants/Parameters 

Eo, (volt) 
C B  (Amp) 
Kc 
72 (set) 
73 (set) 

S W 

25 x 
f 2  x 10-9 
- - - - -  
1.7578 x 
1.53743 x 

pi = 4 * (Ti - 293.16) + 3330 (OK) 

PREAMP: 

AMP & FILTER: 

sw 

LW 

25 x 
f 2  x 10-9 
- - - - -  
1.7578 x 
1.63298 x 

20.83 

8.51172 x 
1.05736 x lo2 
1.17485 x lo2 
1 .o 
0.62678 

9.4575 x 10-~  

~ 

LW 

61.62 

8.51172 x 
1.05736 x lo2 
1.17485 x lo2 
1 .o 
0.62678 

9.4575 x 10-~  

Total 

25 x lo-' 
f 2  x 10-9 
- - - - -  
1.7578 x 
1.45612 x loWs 

Tot a1 

13.03 

8.51172 x 
1.05736 x lo2 
1.17485 x lo2 
1 .o 
0.62678 

9.4575 x 10-3 
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Table 1. (Continued) Scanner Electronics 

ELECTRICAL SIGNAL PROCESSING MODEL 

24 = x3 

26 = x5 

where Z6 is going to be signals. 
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i = A z ~  + BZT + B,,(E,, + n) + BUT, + b (4) 

where z is an 8-component state vector of electrical system variables, T is a 14-component 

vector of the thermal node element temperatures, E,, is an operating voltage, n is the 

total noise viewed at  the preamp input and T, is the set temperature for the heat sink 

controller. A,, B,, B,,, and B,  are appropriately dimensioned matrices. 

Using a lumped-;?arameter approach, the thermal conductive and radiative transfer 

among the elements shown in Fig. 2 can be expressed in terms of the node element tem- 

peratures, T;, forming, the vector T .  

where T4 represents i;he vector whose ith component is T:, Q8(z8) is the Joule heating 

power produced by the heat sink controller and L is the incoming radiation. 

Figure 12 shows the simulation results obtained using the dynamic model described 

by (4) and (5 ) .  The input radiance is a square wave with a 4 second period, one full scan 

of the ERBE scanner. During the first 2 seconds, no incoming radiation is present; e.g., a 

space look condition; during the last 2 seconds, the sensor sees a radiance of 175 W/m2-sr, 

before the cycle repeats. 

As seen in the plots in Fig. 12, the analog output (before sampling) produces a good 

replica of the incomin,g radiation. A more careful look shows that the output has a trape- 

zoidal shape which is caused by the temporal processing due to the thermal and electrical 

transients. In other words, the scanner output lags its input largely due to  the low-pass 

filter. 

The active flake temperature, TI, rises sharply in response to the leading edge of the 

square wave and then continues to rise at  a slower rate, thus displaying the presence of 

multiple modes in the system. The response of the active thermistor flake clearly is not a 
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Figure 12. Simulation of ERBE Total Scanner Thermal and Electrical Variables 

136 



x a  

1 I 

- 1 . 4 6 1 ~  I 
8.03 

, , 1 , , 
0 1.34 266 4.01 5.3s 6.69 

c 

c 

Figure 12. (Continued) Simulation of ERBE Total Scanner Thermal 

and Electrical Variables 
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Figure 12. (Concluded) Simulation of ERBE Total Scanner Thermal 

and Electrical Variables 
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replica of the incoming radiation as it continues to  increase while the input is flat. However, 

the active flake conducts its heat to the detector assembly, Tz, which then conducts to the 

reference flake, T3. 

As the simulation shows, the reference flake temperature does remain constant dur- 

ing this period of time; rather it increases at  about the same rate as the active flake 

temperature. As a result, the temperature difference between the active and reference 

flakes produce an excellent replica of the incoming radiation. The plot of this temperature 

difference, TI - 2'3, is seen to respond almost simultaneously to  the leading edge of the 

square wave. On the c'ther hand, z6 which is the analog output voltage is slightly delayed. 

This behavior indicates that the thermal response of the flakes is quite fast, having a time 

constant of about 12 insec. 

Therefore, the lag in the scanner output is largely due to the low-pass filtering. An- 

other conclusion is th2.t the balancing role of the reference is quite important to the proper 

operation of the scanner. Other simulations not presented here show a natural frequency 

of the combined radiative-thermal-electronic system with a period of about 24 sec., or a 4 

scan duration. Further, slower modes are also present although of less significance to  the 

radiometric signal. Further simulation details can be found in (5). 

C .  Effective Poin t  !3pread Function. 

The instantaneous field-of-view (IFOV) of the scanner is largely determined by the 

precision aperture and the optic system. For the ERBE scanners, the precision aperture 

has a hexagonal shape with a 3" aperture in scan direction and up to 4.5O in the satellite 

track direction, as shown in Fig. 4. When the sensor input is not changing and the scanner 

SCCS the same footprint, the IFOV describes the point spread function (PSF). A d' iscrete 

step scanner which can stay a t  a given scan angle long enough for transients to die down 

would fall in this category, although it may have other disadvantages. 

As the simulation described in the last section shows, the scanner output is influenced 

by temporal processing (thermal, electronic) as well as spatial processing (IFOV). For 
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continuous scanners which have a low-pass filter, the sensor output will be a weighted 

average of the radiation arriving from the current and past locations of the footprint. To 

avoid excessive blurring and aliasing errors, it is desirable to use a low-pass filter with a 

cut-off near the Nyquist frequency [3]. 

It is possible to combine both spatial and temporal processing into an effective point- 

spread function which explicitly shows the weighting of each point in the scene in a given 

measurement by means of a convolution. This, however, turns out to correspond to an 

optical transfer function (OTF) which has non-zero phase characteristics, unlike most 

optical systems which have zero phase. In this case, the non-zero phase (or alternately 

complex-valued OTF) is being introduced by the causal nature of temporal processing, as 

can be seen from the following. 

I Effective Spatial Response 

To model the effects of electrical filtering (or processing) on the overall electro-optical 

system, we will consider a scanner where the scanning axis, say y, is perpendicular to the 

x-axis in which the relative motion of the scanner center of mass and the scene occurs. 

Other types of scanning strategies can be analyzed and modeled in a similar fashion, but 

will not be treated here. The electrical filtering is actually performed on the analog signal 

which is obtained by the optical system. Thus, the scanning axis, y, runs along the time 

axis. We will assume that the scanner’s relative motion along the x-axis is much slower in 

comparison to  the scanning motion of the optical axis, or alternately, the scanning speed 

is assumed to be much faster than the relative motion of the device. 

I 
I 

I 

I 

l 

Let h, ( t )  be the impulse response of the electrical filter processing the signal obtained 

by the Optical Transfer Function (OTF), f 0 ( v , w ) .  Thus, the Electrical Transfer Function 

(ETF), he (w’ ) ,  is given by the one-dimensional Fourier transform 

I 

c 

J -ca 
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where w‘ is the temporal frequency variable in units of cycles per sec. In most continuous 

scan systems, the electrical processing used is low-pass filtering with the ETF correspond- 

ing to standard low-pass filters such as the Butterworth, Tchebycheff, Bessel filters. 

The input-output relationship of the electrical filter is given by the one-dimensional 

convolution 

where i ( t )  and o ( t )  arc: the input and output signals, respectively. It is assumed here that 

transient effects due to initial conditions have died down to negligible levels. 

On the other hand, when the optical axis points along (z, y), the optical system input- 

output relationship is given by the two-dimensional convolution 

00 

g(z,y) = /w -00 / -w T 0 ( 5 ’ , y ’ ) L ( z - z ’ , y - y ’ ) d z ’ d y ’  (8) 

where L(z ,y)  is the scene radiance input to the sensor and g(z,y) is the output, and 

~ ~ ( 2 ,  y) is the optical Point Spread Function (PSF) corresponding to the OTF, FO(v,u). 

Now suppose that, at  time t, the optical axis points along ( z ( t ) , y ( t ) )  producing the 

signal g(z(t),y(t)). Then, the analog output of the electrical filter is given by 

where the output of the electronics, s (z ( t ) ,  y ( t ) ) ,  has been associated with the optical axis 

direction ( ~ ( t ) ,  y(t)) rzlther than simply time, t .  

As mentioned earlier, the scanning motion along y is much faster than the motion 

along x. Thus, we assume that y(t - t’) varies along the scan direction, while z(t - t’) 

remains essentially unchanged over the period of a scan; i.e., 

z(t  - t’) = z ( t )  , 



I (11) y(t - t ’ )  = y ( t  - t ’ )  = yt - Yt 
9 

I when t - t‘ is of the order of a scan period, but is much larger than the electrical filter 

time constants, and where y is the linear scan rate. Substituting (10) and (11) into (9) 

and manipulating, 

where 

y’ = yt’ , 

and 6(2) is the Dirac delta function. 

It is seen that the effect of the electrical filter in the spatial domain can be expressed 

by the PSF ~,(z’,y’) and a two dimensional convolution, as shown in (13). 

Taking the 2-D Fourier transform of (13), and using (8), 



where w is the spatial frequency variable corresponding to  the scan direction; i.e., the 

y-axis. It should be noted that since ?e varies only with w and is independent of Y, we will 

treat it as a function of w alone to emphasize this fact. 

From (16) and (l?’), it is seen that the effective OTF for the combined electro-optical 

system is given by 

where f e  is the temporal transfer function of the electrical filter, and y is the scan rate. 

Thus, given f , (w ’ )  anld the scan rate, it is a simple matter to obtain the effective spatial 

OTF. 

Similarly, it can be shown that the effective system PSF, r (z ,y) ,  can be obtained as 

a one-dimensional convolution. 

which is the inverse Fourier transform of the effective system OTF, ? ( Y , w ) .  

It is important to note that any temporal effects which can be expressed in terms of 

a convolution can be malyzed in this manner. For example, thermal dynamics which may 

be present in the sensors can be included in the term i e ( w ’ )  and analyzed in the same way 

as electrical processing. 

The most significant aspect of (18) is the fact that the effective OTF, ?(v ,w) ,  is now 

a complex-valued function. Whereas the optical transfer function, f0 (v ,  w ) ,  is usually a 

real-valued function, the electrical transfer function, f e ( W ‘ ) ,  is rarely, if a t  all, real-valued. 

Thus, in general, ? e ( ~ ~ )  and . i ( v ,w)  now have magnitude as well as phase characteristics 

due to a non-zero imaginary part. 

The existence of non-zero and non-linear phase characteristics in the image-gatherhg 

system essentially produces a ”blurring” effect which adds to the blurring due to  the 

1 4 3  



magnitude characteristics. Any known optical phase aberrations can also be included in 

f O ( 4  W ) .  

The transfer functions involved can be expressed in terms of their magnitude and 

phase in the form: 

(21) 
+,w)  = lL(Yw')I I t 4 V , W ) l e  iIP. (tiw)+cpo (w)1 

From (20), it is seen that, when the optical system has no phase aberrations, the effec- 

tive system OTF phase is precisely the electronic phase, while the magnitude effects are 

multiplicative and depend on both optical and electrical system characteristics. 

It should be noted that for causal, or non-anticipating, electrical filters, the impulse 

response is constrained by 

so that the filter can be implemented in real time. This causality condition simply requires 

that the output at time t depend only on the input till time t so that the current output of 

the filter does not depend on the future input. From (15), this causality condition requires 

that the effective PSF of the electrical filter satisfy the condition 

Now we can use (18) to obtain the effective spatial response of the ERBE scanners. 

The OTF of the ERBE scanner is determined by the combined effects of the Cassegrain 

optics and the aperture shape. Figure 13 shows the spatial frequency response of the 

Cassegrain optics at various wavelengths ranging from shortwave to longwave. For the 
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wavelengths of most interest, the OTF frequency response is quite flat and is not a limiting 

factor in the frequency domain. 

Figure 14 shows the frequency response of the hexagonal aperture used in the ERBE 

scanners. In comparison to the optics, it is clear that the combined optical transfer function 

will be dominated by the precision aperture OTF. 

The various electronic subsystem frequency response are shown in Fig. 15. Note that 

these are shown as spatial frequency responses according to (17). For this purpose, the 

detector bridge frequency response includes the thermal processing which occurs in the 

conductive paths between the active and reference flakes. As noted earlier, (18) is valid for 

any temporal processing whether it is electrical or thermal. The detector bridge effects, 

while not being completely negligible, are dominated by the frequency response of the 

4-pole Bessel filter. Further note that the imaginary parts of these OTF’s are non-zero. 

Combining the optical, thermal and electrical transfer functions into an overall effec- 

tive OTF results in the frequency responses shown in Fig. 16. In the scan direction, the 

response if dominated by the temporal response, rather than the aperture of the scanner. 

This is an indication that the filter cut-off is too low. For the ERBE scanner, the Nyquist 

frequency is 15 Hz or 0.225 cycles/O in the spatial domain. Thus, a desirable level for the 

I temporal frequency response would be e-’ at w = 0.225 cycles/O. Note that at this level, 

the aperture and electrical systems would roughly contribute equally to the effective PSF. 

While the 

response along track is not changed much, the response in the scan direction has been 

significantly altered. The most significant effects are that the effective PSF 1) is shifted 

in the scan axis, 2 )  is not symmetrical and displays a “tail” and 3) has a wider “effective 

footprint” than the aperture in the scan direction. 

Figure 17 shows the effective spatial response of the ERBE scanners. 

While these effects can be reduced significantly by dynamic processing, zero-memory 

type solutions are limited. 
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D. Interpretat ion Algori thms (Count Conversion). 

In the previous sections, we have described the main characteristics of the ERBE 

scanners as combined optical-thermal-electrical systems. However, for calibration and data 

reduction purposes, what is desired is an algorithm which produces the scanner input (Le., 

the incoming radiation) when the system output is known. In other words, the processing 

performed by the optical, thermal and electrical systems must be inverted; i.e., the inverse 

operator of the scanner system is derived. 

On the other hand, from the standpoint of computational time, it is desired to  have 

as simple an algorithm as possible, since the huge amount of data to  be processed places 

a soft limit on the complexity of data reduction algorithms. A gain/offset type equation 

was typical. 

With the basic constraints mentioned above, dynamic processing in the algorithm was 

not considered desirahle, so that a steady-state view was taken. The following algorithm 

was selected to interpret the sensor’s radiometric output voltage, v ( t ) .  

where O ( t k )  is the average value of the eight output samples during the space look at the 

beginning of the scan :stating a t  time t k ,  At is the scan duration of 4 sec., a(t)  is an offset 

dependent on the sample during the scan and will be discussed in more detail later. The 

housckceping data Tlt(tk) and Vo( tk)  are transmitted to earth once every scan and are not 

available during the scan. T H ( t )  is the heatsink temperature (more precisely, T7) which is 

used to drive the heatsink controller, and Vo( t )  is the DAC drift voltage. 

An additive term in the detector bridge voltage V B ( ~ )  was considered then dropped as 

the calibration data showed practically no variation in v ~ ( t )  during the ground calibration. 

From the analysis of the electronic system, however, it is seen that the effect of variations 
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in VB is multiplicative rather than additive. Thus, the coefficients, A,,  A,, AH and A D  

are implemented according to: 

where A V ,  A V A ,  A H A  and A D  are constants determined during ground calibration, and 

c is the digital to analog conversion factor. 

c = 409.5 counts/volt (25) 

The first term in (23) is the most important term, with the remaining terms playing 

a relatively smaller role. The input of the second term in (23) is to allow for small but 

systematic effects not included in the first term. Note that the space clamp difference and 

heatsink temperature difference are correlated. Thus, the coefficients for these terms are 

determined from ground calibration data to allow for unexpected effects which may not 

be constant during the scan, but occur in a systematic manner every scan. 

Finally, the effect of the temporal processing discussed in the last section is approx- 

imately accounted for by the delay 7 in (23). As mentioned, a dynamic algorithm would 

be required to reduce the distortion or blurring introduced. However, the delay at least 

recognizes that the scanner voltage output at  time t is more representative of the IFOV 

at t - 7 than it is of the current IFOV. The value used is 46 msec. which corresponds to 

the most significant time constant of the temporal processing. Using some flight data, this 

delay was validated to within 10% and the value modified. 
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111. CALIBRATION 

A. Calibration Sources. 

The ERBE ground calibration was performed in a calibration chamber especially de- 

signed for obtaining the required measurements. The calibration chamber is shown in Fig. 

18. To achieve high accuracy, the ground calibration is performed in vacuum. The Cal i -  

bration sources are the Master Reference Blackbody (MRBB), shown in Fig. 19, and the 

ERBE Integrating Sphere, shown in Fig. 20, placed at opposite ends of the ERBE calibra- 

tion chamber. A Sola;: Simulator is also available to produce a radiation source similar to 

the solar spectrum and intensity. The MRBB provides a highly accurate longwave calibra- 

tion source, while the integrating sphere provides a calibration with both shortwave and 

longwave radiation [6] - [9]. 
The MRBB has six calibrated platinum resistance thermometers (PRT) mounted at  

.selected points which verify the uniformity of its surface temperature and is traceable to 

the IPTS68. 

The ERBE integrating sphere provides a calibration source containing both short- 

wave and longwave radiation, thus producing a spectral content similar to earth’s. The 

shortwave radiation is obtained from four 250 W tungsten lamps through a projection 

optics system that re9ects the light off a mirror before entering the sphere through four 

entrance ports made D f  flashed opal glass. The flashed opal glass are intended to diffuse 

the light uniformly onto the sphere wall thus producing an uniform sphere wall radiance. 

The sphere wall is coated by 3M White Velvet and then Barium Sulfate thus producing a 

uniform and diffuse reflectivity over the sphere wall. The sphere wall radiance is monitored 

by two silicon photodiodes (SiPD) with wide fields-of-view. For an uniform wall radiance, 

the intensity at  an a r~ i t ra ry  point of the sphere can be thus monitored. 
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The intensity of the light entering the sphere can be varied by blocking part of the 

radiation from the entrance ports. Thus, various levels of shortwave radiation can be 

mixed with a given intensity of longwave radiation emitted by the sphere wall. The sphere 

wall temperature is controlled by circulating a water and alcohol mixture through a tubing 

around the outer wall of the sphere. By making measurements of the sphere wall radiance 

at various levels of shortwave (including lamps off or no shortwave) and longwave radiation 

whose intensity is known by the SiPD measurements, it is possible to  calibrate the scanners 

by scanning the uniform sphere wall. 

During the ground calibration the integrating-sphere data showed the following char- 

acteristics: 

(1) The NFOV scaning  sensors measure non-uniformities (8%) on the sphere wall after 

known sources of error are taken into account to  the extent possible. 

(2) The MFOV nonscanner sensor consistently measures a higher irradiance than does 

the WFOV nonsciinner sensor for both longwave and shortwave radiation. 

(3) The integrating sphere photodiode response shows nonlinear characteristics relative 

to the nonscanner measurements. 

(4) With the lamps off, the nonscanner sensors measure a higher (longwave) irradiance 

than expected by about 10 - 20 W/m2. 

The non-uniforrni:y of the sphere wall can be seen in Fig. 21 which shows measure- 

ments of the ERBE shortwave sensor as it scans the sphere wall. As a result of the 

non-uniformity and the other unexpected phenomena, the SiPD measurements, having a 

wide field-of-view, do not provide the shortwave intensity. The causes of these effects are 

investigated and explained in 191 which also suggests a different procedure to calibrate the 

shortwave ERBE scani iers and nonscanners. 

B. Calibrat ion Procedures. 

The objective of the calibration is to obtain the coefficients necessary for the interpre- 

tation of the sensor output, namely, obtaining the coefficients in the algorithm developed 
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in Section II-D. These coefficients consist of A V ,  A V A ,  A H A  and A D  in (24) and the 

offsets a(t )  which are then substituted into (23) to compute the estimate of the radiative 

power absorbed by the active flake. 

Originally, a constant offset throughout the complete scan had been expected. How- 

ever, during the ground calibration, significant variations in the offset during a scan were 

noticed. When scanning a uniform wall, the scanner output tends to vary according to the 

sample number, repeating regularly in successive scans. As a result an offset, a(t),  which 

depends on the sample number during the scan, but not on the particular scan, is included 

in the sensor interpretation algorithm (23). The precise cause of this variable offset is not 

determined; however, it is thought to be of electronic origin, possibly due to  power supply 

ground reference variations, and electromagnetic pulse effects at  different configurations 

during the scan, transients due to pulses which occur every scan, etc. 

For the scanner instrument on the NOAA-9 satellite, the transmission of the house- 

keeping data every scan (4 sec.) produced significant transients in the electronics. To avoid 

the contamination of the radiometric signal by this effect, the algorithm in (23) was slightly 

modified so that the housekeeping data is transmitted once every eight scans. Thus, the 

transient occurs only once every 32 seconds, and does not contaminate the remaining seven 

scans. The modified algorithm is shown in Table 2. 

1. Total and Lorigwave Channels 

The total and longwave channels are calibrated using MRBB data. The data is o b  

tained by scanning the MRBB inside the calibration chamber, after it has reached a uniform 

temperature set at  varims levels. The temperatures generally have been varied from -60" 

C to +45" C at six or :even different temperature levels. 

The algorithm coeficients are determined directly by a least-squares method of (23) 

and (24) to determine AV, AVA,  A H A  and A D  and a constant offset bias, say b, added 

to the offsets a,(t). The offsets aa(t)  are obtained by scanning a uniform wall in air. The 

offset bias, b, represent:; the vacuum to air correction which is applied to  the in-air-offsets, 
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Table 2. NOAA-9 Count Conversion Equations 

I 
COEFFICIENTS 

AV 1 AHA 
A B  I A D  

A V A  
I 
I 

C C ( I ,  J, K )  = G A I N ( J )  * ( R C ( I ,  J ,  K) - C O F F ( J ,  K) - S C ( I ,  J ) )  

A V A ( J )  * OFFSTl(J) * M O D ( I -  1,8) 

where 

TOTAL 
CHANNEL 

5493.6354 
-17.11888 
0.0 
2.048750 
-6302.2166 

I - Scan Counter 

J - Channel Indicator 

W - Sample Counter 

GAIN(J )  = AV(J) / (VB * C V L T ( J ) )  

OFFSTl(J) = AHA(J )  * T H D I F ( J )  + A B ( J )  * ABDIF + AD(J )  * V D D I F ( J )  

O F F S E T ( I , J )  = (AVA(J)/(VB * CVLT(J)))  * ( S C D I F ( I , J )  + O F F S T l ( J ) )  

3261.6735 
-3.90308 
0.0 
0.7042702 
- 8 5 34.5 1306 

CVLT(COUNTS/VOLTS) = 409.5 

4221.3476 
-15.963174 
0.0 
0.0816490 
- 2673.2286 

DELAY(7) = -046 Seconds 

160 



i.e., 

a(t)  = a,(t) + 6 ( 2 5 )  

On the other hand, the data i d ( t  - 7 )  is obtained by its definition in (1): 

where Ls(X,T)  is Planck's equation for a cavity at  temperature T, T B B ( ~ )  is the average 

MRBB temperature at time t. 

2. Shortwave Channels 

Due to the unexplected non-uniformity, of the ERBE integrating sphere, the calibra- 

tion procedure developed for this channel is significantly more complicated. The basic 

philosophy is to use the total and longwave channels as transfer standards, and calibrate 

the integrating sphere output using these two channels which have been MRBB-calibrated. 

The remaining step is to similarly use a least-squares approach to determine the algorithm 

coefficients. The shortwave channels were calibrated using the following procedure: 

(1) Check longwave output of integrating sphere (at nadir) using longwave channel MRBB 

calibrated count conversion coefficients, integrating sphere wall temperature and long- 

wave spectral response 

00 

LSLw = I ,  rLW(X)  LB(X,TUJ) 

(2) Estimate shortwave output of integrating sphere (at nadir) using total channel MRBB 

calibration. 

a) Obtain 

b) Obtain 

using MRBB count coefficient algorithm. 

- som T T ( ~ )  L*(x,T,) dX fi: s," T T ( X )  [ C L d l ]  dX.. L d l  is output 

due to lamp. 

c) Solve for c. 

1 6 1  I 



~ (3) Compute L S s w  

00 

Lssw = 1 ? S W ( X )  [ & A I  + L B ( X , T , ) ]  dX 

(3) Assumption: integrating sphere output is 

(4) Use integrating sphere sample 41  data (thought to be clean) at different shortwave 

levels and many scans to obtain count conversion coefficients. 

The calibration coefficients thus obtained for the three ERBE satellites are shown in 

Tables 3, 4 and 5. 

C. In-Flight Offset Stability. 

The ERBS satellite provides a capability to test the sensor offsets for stability over 

a period of time. The offsets can be tested by a pitch-over maneuver where the satellite 

pitch angle is commanded to 180". In this position, the sensors scan space, one of the most 

uniform sources provided the sun or moon are not in the field-of-view. 

The stability of the scanner offsets is in question as it is related to power supply 

reference variations over long periods of time. Table 6 shows the variation of the offsets 

determined from two pitch-over maneuvers approximately one year apart, from October 

1984 to October 1985. The mean variations are less than 0.27 W/m2-sr. 

Table 7 shows in-flight calibration results analyzed to indicate the stability of the 

offsets. This also shows a relatively small variation in the offsets of as much as 0.9 W/m2- 

sr for the ERBS total scanner. 

D. SWICS Stability. 

The in-flight calibration source for the shortwave scanners, the SWICS, appears to 

indicate a drift in its SiPD amp output. This can be seen in Fig. 22 which shows the 

NOAA-9 SWICS amp output over time. The amplifier output is clearly drifting. 
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Table 3. ERBE ERBS (FM1) Scanner Data Interpretation Coefficients 

COEFFICIENTS 
TOTAL LONGWAVE SHORTWAVE 
CHANNEL CHANNEL CHANNEL 

I 

A D  
A V A  

Table 4. ERBE NOAA-9 (PFM) Scanner Data Interpretation Coefficients 

5477.2314 3174.3511 4267.8746 
15.604489 9.5852644 - 11.568366 
0.0 0.0 0.0 
0.1164209 5.435 1765 5.665687 
-7810.8822 -8354.0546 -7968.1652 

t 

TOTAL 
COEFFICIEYTS CHANNEL 

AV 5695.2 

A B  0.0 
A D  182.30 
A V A  -7265.6 

A H A  139.47 

SHORTWAVE 
CHANNEL 

4392.0 
-506.26 
0.0 
170.25 
-4445.8 

LONGWAVE 
CHANNEL 

3130.0 
-98.59 
0.0 
- 409.2 7 
-3985.7 

Table 5. ERBE NOAA-10 (FM2) Scanner Data Interpretation Coefficients 

COEFFICIENTS 
TOTAL LONGWAVE SHORTWAVE 
CHANNEL CHANNEL CHANNEL 

I AV ' 5773.01 
- 12.4677 
0.0 
11.6246 
-28 11.24 

I 
3080.27 
70.84 66 
0.0 
- 11.1559 
-1001.32 

A H A  
AB 
AD 
A V A  I -- - - - - 

4188.21 
0.0 
0.0 
0.0 
-494 1.1 1 
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Table 6. ERBS Scanner Offset Stability 

LW 

1 . 6 2  

4 .66  

4.60 

16 . 02 

17 . 33 

EBBS SCANNER OFFSETS: (AS CURRENTLY IMPLEMENTED) 

sw 
-6 09 

-7 63 

-6 . 76 

-4 48 

-3.61 

Position Total 

LW (1 a) ( 1 d  

4.27 ( 4 . 6 3 )  -0.71 (3 .62 )  

6 .18  ( 4 . 1 7 )  -8.65 (4 .61 )  

3 .98  ( 3 . 7 3 )  -8.69 (4 .63 )  

14.39 ( 3 . 2 1 )  -7.69 ( 4 . 1 6 )  

17.76 ( 3 . 3 7 )  -4.17 ( 3 . 4 6 )  

26 

40 

r 

2 .39 

2.08 

EBBS SCANNER OFFSETS: (AS DETERMINED F R O M  PITCHOVEB OCT. 8 5 )  

8 0 0  8C-6 

1.97  ( 2 . 2 5 )  

26 1 1 . 6 1  ( 2 . 2 3 )  

40 

66 

0.66 ( 2 . 1 0 )  

6 . 4 8  ( 2 . 1 8 )  

66 1 7 .92  ( 2 . 2 4 )  
L I I 

n 1 -El d i f f i l  
mean N 

i=l 
mean (counts) 1.616 1.408 2.202 

mean (W/m2 - sr) 0.243 0 . 134 0 271 

max (counts) 2.64 

max ( ~ / m 2  - ar) 0.423 

2.76 

0.26 

4 .38  

0 6399 

1 6 4  



k 

Q 
d 
id 
m V 

d 

m 
Y 

8 
w 

0 H 
H 

w 
t.c 
4 a 

165 



0 
0 

0 

B 

Q 
Q 

a 

l m a 

n 

.- 
t- 

0 
0 cv 

0 

166 



a 

However, this does not mean that the SWICS output itself is drifting. In fact, Fig. 

23 implies that the drift is actually in the SWICS photodiode output, rather than its 

own radiative output. Figure 23 which shows the NOAA-9 shortwave scanner looking at 

the SWICS with its lamps on shows no drift at all. Therefore, it is more likely that the 

NOAA-9 shortwave sensor and the SWICS are stable while the SiPD is drifting. 

E. “Striping” Algorithm. 

During flight, features which appear as stripes on the data charts were observed by 

investigators. Closer analysis shows that, occasionally, the space clamp seems to jump to 

a new value, stay there for several scans, then jump back to a new value. However, the 

earth-viewing portion of the scan did not appear to be influenced by this phenomenon. So 

that, at  every jump of the space clamp, all the values would also show a jump with the 

appearance of a stripe. This “striping” phenomenon has been noted on the ERBS and 

NOAA-9 scanners, but not so far on NOAA-10. The following empirical algorithm has 

been implemented with significant reduction of this effect. 

1. Read a record from the telemetry tape. 

2. Calculate the zero radiance a t  the internal calibration position (sample 74). 

3. Compare this to the space clamp. 

4.  If the difference between the space clamp and the zero radiance at the internal cal- 

ibration position is greater than a threshold ( x  5 counts), then check to see which 

value has the greatest dispersion (using a window which includes the value of interest 

and 4 values ahead and behind it). 

5 .  Replace the space clamp with the internal calibration radiance if the space clamp’s 

dispersion is greater than the zero radiance a t  internal calibration dispersion. (Note, 

the threshold and dispersion tests are bypassed for all 3 channels if the scanner is not 

in the normal scan mode and for the shortwave channel if the scanner is performing 

an  internal calibration.) 

6. Store the revised telemetry record on a direct access file which resides on a removable 
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disk pack. (Note, this is a temporary file which is purged at the end of the run.) 
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