
. 

cr2 SIMULATION STUDIES FOR SURFACES 
AND M A T E R I A L S  STRENGTH 

Semi-Annual Report 

for 
Cooperative Agreement NCC2-297 

for the period 
November 1 ,  1986 - April 30, 1987 

Submitted to 

National Aeronautics and Space Administration 
Ames Research Center 

Moffett Field, California 94305 

Computational Chemistry Branch 
Dr. David Cooper, Chief and Technical Monitor 

Thermosciences Division 
Dr. Jim Arnold, Chief 

Prepared by 

ELORET INSTITUTE 
3788 Fabian Way 

Phone: 408 730-8422 and 415 493-4710 
Palo Alto, CA 94303 

K. Heinemann, President and Grant Administrator 
Timur Halicioglu, Principal Investigator 

(tiASA-Ca-180539) I S I E U L A T I C I  SIUCIES FOR N87-22277 
SUBPACES A N D  HAIERIALS STEENG1IP Semiannual 
iieport, 1 Hov. 1466 - 30 Apr- 1987 (Bloret 
Corp.) 13 p Ava i l :  "XIS EIC AOz/HF A 0 1  U n c l a s  I CSCL 20K G3/39 007U105 



Three different investigations based on computer simulations were carried out 
during this period. Simulation calculations were performed using model potentials 
with two- and three-body interactions which were represented by the Mie and the 
Axilrod-Teller potentials, respectively. In the first part, to analyze stability criteria 
for simple crystals, a parametrical investigation was carried out and stability regions 
for five different crystalline structures were determined with respect to potential 
energy parameters. To simulate some of the basic surface processes such as diffusion 
and nucleation, in the second and third parts, we considered silicon surfaces as a 
specific example. In these studies diffusion of adatoms on stepped surfaces were 
simulated and energetics associated with the formation of kink sites were calculated. 

1. Stability Diagrams for Simple Crystals 

In simulation calculations structural stability of the model system is an impor- 
tant aspect. Often, it is desired that the structure of the system under consideration 
corresponds to the energetically most favorable configuration. For a given potential 
energy function, finding the most stable structure among different possible configu- 
rations is a cumbersome and time consuming procedure. This problem emerges, in 
particular, for potential energy functions involving three-body interactions which 
furnish stability regions for a large number of crystalline structures ranging from 
the close-packed (HCP or FCC) to more open (e.g., diamond cubic or p-tin) struc- 
tures. The significance of three-body interactions in calculating the energy and 
structure-related properties of simple crystals were shown in our earlier investiga- 
t ions. 

In the present study, stability regions for five different crystalline structures 
(HCP, FCC, BCC, @-tin and diamond cubic) were calculated for a wide range of 
potential parameters. Calculations were carried out in a dimensionless form using 
the Mie potential and the Axilrod Teller function to represent t w e  and three-body 
interactions, respectively. The results are presented in a graphical form in Figure 
1. This representation is found to be very useful in deciding parameters for various 
specific systems in which two-body and three-body interactions are operational. 
The stability map shown in Figure 1 represents clearly the effect of the three-body 
interaction on the stability of crystals. A potential energy function based only 
on a two-body potential is able to provide stable regions only for HCP and FCC 
structures. In analyzing Figure 1 one should remember that every point on these 
maps corresponds to the energetically most stable structures among the five dif- 
ferent crystals taken into consideration in this work. The general tendency in the 
stability of these crystals as a function of 2’ is changing as HCP-tFCCdBCC 
for small n, as HCP-FCC-t P-tin-tdiamond cubic for intermediate values of n 
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and as HCP-tFCC +diamond cubic for larger n values. Because of the structural 
similarities, the difference between energies calculated for HCP and FCC structures 
turned out to be very small. Within our accuracy limits the HCP and FCC struc- 
tures were considered energetically degenerate for regions denoted by HF which 
occupies large areas in the stability maps for n 5 6 (see Figure 1). 

Boundaries between the stability regions should not be taken as sharp limits. 
Due to the discrete nature of the calculations all boundaries must be regarded 
rather as somewhat broader transition regions. The map for n = 5 is interesting; 
for example for Z* = 0.825 and rn = 9 all five crystalline structures seem to have a 
common region. The @-tin structure has a narrow stability region from n = 5 to  
n = 8. 

2. Adatom Diffusion and Ledge Interactions on the Si(l l1) Surface 

Knowledge concerning the diffusion of atoms on surfaces containing ledges is 
essential for the proper understanding of crystal growth phenomena at an atomic 
level. Early studies on metal surfaces revealed the importance of adatom-ledge in- 
teractions for surface diffusion when attempting to evaluate different growth mech- 
anisms. Based on calculations of surface structure and energetics for single atoms, 
the motion of particles across an otherwise flat ideal Si(ll1) surface will occur by 
activated jumps between hole sites. These jumps will carry the atom through the 
cradle sites so that the minimum energy path for the motion of an atom from the 
hole to the cradle site will control this diffusion process. Figure 2 defines these and 
other possible adatom positions. Of course, the actual macroscopic process of sur- 
face diffusion depends on the detailed structure of the surface so that diffusion via 
this simple unit process is expected to be somewhat modified by (7 x 7), (2 x 1) or 
(1 x 1) surface reconstruction patterns and by the presence of ledges on the surface. 

In the present study, the ”Constrained Statics” method is utilized to find the 
minimum energy configuration of the surface when one adatom is constrained to  
relax only in a specific plane while all other atoms relax in all three dimensions. 
Many similar computations are performed for the specific atom in different initial 
positions and minimum energy trajectory which takes the atom from one position 
to  another is thus mapped out. The result for the hole to cradle trajectory is shown 
in Figure 3. The moving atom stayed in the vertical plane containing the two sites, 
as expected, so that it passed through the bridge site with an interaction energy of 
1.24 eV (see Figure 2), which is clearly an inflection point on the energy trajectory. 
A small additional energy hump (0.12 eV) exists between the bridge site and the 
metastable cradle site (0.99 eV). Upon analysis of overall structure when the adatom 
was near the energy maximum (1.36 eV), the energy hump was seen to be caused 
by the development of a significant local reconstruction underneath the cradle site. 

2 



The subsequent cradle to hole site energy barrier, to complete the overall hole to 
hole motion, is E,  = 0.36 eV. 

These are the absolute minimum energy changes that can be associated with 
the jump. In practice, the large local atomic reconstruction at  the cradle site is not 
likely to happen during an adatom jump so that the hole site to hole site adatom 
movement could exhibit an average maximum activation energy somewhat greater 
than 1.36 eV. Experimental estimates for the Si( 111) surface diffusion activation 
barrier range from 0.2 to 2.0 eV due to  the very indirect nature of the data which 
must be analyzed and interpreted, and because of the uncertainty of the local surface 
structure and composition. 

Adatom-ledge Interactions 

Although it is important to  study all adatom-ledge interactions, only the hole 
adatom-[211] ledge interactions are considered here. Figure 4 gives side views of the 
12111 lower and upper ledges, respectively, displaying the adatom positions tested. 
Simulation calculations were performed with ledges at 25.45A spacings. Figure 4c 
plots the hole formation energies, E f ,  using circles for the lower ledge and squares 
for the upper ledge. The data points are vertically coincident with their spatial 
positions in Figures 4a and 4b. The horizontal dashed line shows the formation 
energy for the adatom at a hole site on the flat ideal surface, labeled as E f ,  indicating 
the energy that would obtain a t  an infinite distance from the ledge. 

From our earlier study, we found that the hole adatom puts the surface further 
into compression, and that a 0.5% in-plane tensile strain caused the E f  of the hole 
adatom to decrease (become more favorable) by 0.08 eV. In Figure 4, where the 
upper ledge causes a major reduction of the surface compression, the hole E f  should 
be much lower near the edge, as Figure 4c clearly confirms. In fact, the stress effect 
is larger on the terrace above the ledge than on the lower terrace, and the E f  
is also more negative above the ledge. The increase in the adatom energies right 
next to the ledge is arguably due to the interference of short range reconstruction 
displacements of the adatoms and ledge which begin to  dominate the longer range 
stress interactions. 

The lower [211] ledge has a much smaller effect on the surface compression, but 
it still decreases it somewhat, particularly on the terrace above the ledge. However, 
in the explicit calculation of Figure 4, the hole adatom is not at all favored on the 
upper site of this ledge, and it is repulsed significantly from the terrace below the 
ledge. It may be that the shear fields may offset the otherwise favorable effect of the 
normal stresses above the ledge. The repulsion below the ledge does not have any 
obvious explanation in terms of simple stress interactions. As argued above, the 
local reconstructions interfering with one another may be the source of repulsion. 
Or, the stresses in the underlying puckered layers, which have not been extensively 
analyzed thus far, may be involved in the repulsion effect. 
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The only firm conclusion to be drawn from these results is that the surface 
behavior is not always so easily cast into a simple top layer stress interaction model. 
In the case of the upper ledge, where the stress effect is huge, the stress analysis 
is sufficient. For the lower ledge, where the surface compression is not a dominant 
feature, there is no simple correlation between the stress effects of the separate 
defects and their interaction energy. 

Perhaps the most important point to notice about Figure 4 is that the adsorp- 
tion energies of adatoms near the ledge are symmetrical, an assumption that has 
been used in most computations of adatom diffusion to  ledges via both the lower 
and upper terraces. Of course, these numbers are expected to change when more 
adatoms and surface vacancies are present and when the terraces reconstruct into 
distinctive patterns. 

3. Kink-Site formation Energies on the S i ( l l1 )  Surface 

A semiempirical potential energy function (PEF) has been developed for Si 
comprising both two-body and three-body effective potentials that has significant 
application to a variaty of phenomena ranging from cluster stabilities to crystal 
growth considerations. The parameters contained in this PEF were obtained from 
fits to various experimental properties. Using this PEF, as described in our earlier 
reports, more than 25 different materials properties of Si bulk, clusters and surfaces 
were successfully reproduced. The  calculated energy quantities are all within *20% 
while structural properties, such as bond distances for small clusters and the nearest 
neighbor distance in relaxed crystals, were reproduced to within 7%. However, 
quantities related to the second derivatives of energy, such as bulk modulus, elastic 
constants and vibrational properties were not predicted so well and only qualitative 
agreement is obtained for such parameters. On the other hand, surface energy 
values for the Si(lOO), (110) and (111) surfaces were predicted with good precision 
and the PEF produces the correct surface reconstruction geometry for the (2 x 1) 
Si(100) surface and for the (2 x 1) Si(ll1) surface. 

In the crystal growth, as well as in the surface reconstruction processes, energy 
values associated with the kink formation are very important. It would be very 
nice if one could make first principles ab initio calculations of surface quantities like 
ledges and kinks; however, such calculations are only possible for very small systems 
containing only a few atoms. Since long-range surface stress effects due to interact- 
ing ledges on Si(ll1) surfaces have been calculated and found to be important to 
make meaningful ledge or kink calculations with any PEF, about 500-1000 atoms 
must be taken into account. It is for this reason that one is presently limited to the 
use of semiempirical potential functions. Of the alternate semiempirical Si PEF’s 
available today none has the track record of that proposed here. Each undoubtedly 
has its strengths and weaknesses but insufficient experience is available to catalogue 

4 



their applicability in a given situation. Perhaps it is best to look at each as the 
analogue of a particular experimental technique that provides a measurement with 
a certain error bar. Refinement of the technique generally reduces the error bar. 
Such semiempirical PEF's are able to make a determination of ledge and kink en- 
ergies which is more than present experimental techniques can do. Granted, one 
does not really know the magnitude of the error bar generated by using a particular 
PEF so the number should be treated with caution until substantiated in some al- 
ternate fashion; however, it is the best path presently available to  determine some 
quantities important to crystal growth modeling. 

Using the present PEF, most recently, the structure and energetics for the 
dominant ledges on the Si(ll1) surface have been calculated. These ledges are free of 
kinks and, therefore, are not the equilibrium configuration except at 0"K. However, 
the properties of four different kind of [2ii] and [211] ledges that can be found on 
the Si(ll1) provide a necessary baseline and are an important structural basis for 
kink formation studies. These four structures are presented in Figure 5. The ledge 
energy per atom for these four structures at large ledge spacing are X = 0.24 and 
0.01 eV for [21T] lower and upper ledges, respectively, while X = 0.192 and 0.01 eV 
for (2111 lower and upper ledges, respectively. This report presents calculations of 
the kink structure and the kink energetics on these ledges. These kink properties 
are also expected to depend upon the state of surface reconstruction, either by a 
direct structural connection or indirectly through the surface stresses. Although the 
surface reconstruction problem should be attacked first and a more thorough study 
of ledges in contact with such reconstructed surfaces is needed before the nature of 
the kink sites can be studied in detail, there is pedagogical value to be gained from 
a study of kink formation on these 0°K ledges. Because of these limitations, only 
a preliminary study of a few kink sites will be presented here. 

Results for isolated kink formation on both the (ZiI] and [ Z l l ]  upper ledges 
and the [211] lower ledge at  0°K are summarized in Figure 6. Although three 
examples do not constitute a statistically significant trend, the main feature of 
interest is that the kink formation energy is low when the reconstructed ledge energy 
is high. The ledge energy is low when the reconstruction produces a large tensile 
stress component and reduces the net local stress to very small values. Thus, little 
additional stress relaxation can occur via kink formation. For those ledges that do 
not reconstruct strongly, kink formation has the opportunity of strongly relaxing 
the local compressive stress. 

Large values of Ek will lead to  a small kink density and thus slow ledge move- 
ment during crystal growth at a given driving force. Small values of Ek lead to high 
kink densities and thus rapid ledge movement during growth at  such driving force. 
Thus, although the [Zii] and [ Z l l ]  ledges will bound the terraces on the Si(l l1) 
surface at equilibrium for energetic reasons, they will be the slowest growing ledges 
and will thus also bound the terrgces during crystal growth for kinetic reasons. In 
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actual practice, the foregoing conclusion is always valid, however, for doped mate- 
rials interaction energies must be properly modified to obtain correct kink energy 
values. 
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Figure Captions 

1 )  Stability regions for five simple crystalline structures, HCP (H) ,  FCC (F) ,  BCC 
(B), ,&tin (S) and Diamond cubic (D). Parameters m and n are the repulsive and 
attractive exponents of the Mie potential, respectively, while 2' represents the 
three- body intensity parameter. 

2) Top view of postulated adatom adsorption sites on the Si(ll1) surface 

3) Minimum energy path for the motion of an adatom from the hole site to the 
cradle site. Energies are in eV measured relative to the hole site adatom formation 
energy. 

4)  Formation energies for hole adatoms near the (a) lower and (b) upper 121 l ]  ledges. 
Adatom positions are shown with filled triangles in (a and b). Energies are plotted 
directly below in (c), using circles for the lower ledge and squares for the upper 
ledge. 

5) Relaxed structures of the basic (2111 and [Zii] single height ledge on Si(ll1). 

6) Structures and energies for selected single height ledges (Aoo) and kink sites (Ek) 
on Si(ll1). 
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