
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

Final Technical Report 2092

APPLICATION OF EXPERT SYSTEMS IN PROJECT
MANAGEMENT DECISION AIDING

August 1987

SCIENTIFIC AND TECHNICAL REPORT

Submitted to:

National Aeronautics and Space Administration
Eugene Grunby

Contracting Officer's Technical Representative
Goddard Space Flight Center

Greenbelt, MD

Prepared by:

Regina Harris
Steven Shaffer
James Stokes

Dav id Goldstein

1

I
I
I
1
1
I
I
I
I
I
I
I
I
I
1
I
I
I
I

SUMMARY

The purpose of this research was to assess the feasibility of
developing an expert systems-based project management decision aid to
enhance the performance of NASA project managers. The research effort
included extensive literature reviews in the areas of project management,
project management decision aiding, expert systems technology, and human-
computer interface engineering. Literature reviews were augmented by
focused interviews with NASA managers. Time estimation for project
scheduling was identified as the target activity for decision augmentation, and a
design was developed for an Integrated NASA System for Intelligent Time
Estimation (INSITE). The proposed INSITE design was judged feasible with a
low level of risk. A partial proof-of-concept experiment was performed and was
successful.

Specific conclusions drawn from the research and analyses include:
time estimation is critical to NASA planning/scheduling needs; existing methods
of project time estimation rely on the identification of analogous projects which
have already been completed; the identification of analogies is usually based
on the experience and recall of a single person, severely limiting the number
and accuracy of those project histories which can be brought to bear on the
problem; expertise in estimation by analogy can be captured using existing
technologies such as pattern matching, statistical inference, and rule-based
analysis; given an effective human-computer interface, an automated
estimation-by-analogy system will enhance manager performance by providing
a framework for systematic time estimation and by allowing managers to
transcend the limitations of their own experience.

ii

I

I
I
I
I
1
I
I
I
I
I
I
1
I
I
I
1
1
I
I

The INSITE concept is potentially applicable in any management
sphere, commercial or government, where time estimation is required for project
scheduling. As project scheduling is a nearly universal management activity,
the range of possibilities is considerable. The INSITE concept also holds
potential for enhancing other management tasks, especially in areas such as
cost estimation, where estimation-by-analogy is already a proven method.

iii

1

I
I
I
I
1
I
I
I
I
1
I
I
I
I
I
I
1
I
1

SBlR RIGHTS NOTICE (APRIL 1985)

This SBlR data is furnished with SBlR rights under NASA Contract No. NAS5-
30040. For a period of two years after acceptance of all items to be delivered
under this contract, the Government agrees to use this data for Government
purposes only, and it shall not be disclosed outside the Government (including
disclosure for procurement purposes) during such period without permission of
the Contractor, except that, subject to the foregoing use and disclosure
prohibitions, such data may be disclosed for use by support Contractors. After
the aforesaid two-year period, the Government has a royalty-free license to use,
and to authorize others to use on its behalf, this data for Government purposes,
but is relieved of all disclosure prohibitions and assumes no liability for
unauthorized use of this data by third parties. This Notice shall be affixed to any
reproductions of this data in whole or in part.

iv

TABLE OF CONTENTS

1 . 0 INTRODUCTION ... 1-1
1.1 Phase I Objectives .. 1-1
1.2 Results of the Phase I Research Effort .. 1-2
1.3 Report Overview .. 1-4

2.0 PROJECT MANAGEMENT .. 2-1
2.1 Project Management Process .. 2-1

2.1 . 1 Planning ... 2 ~ 2
2.1.2 Scheduling ... 2-3
Project Management Software Support ... 2-9 2.2
2.2.1

2.2.2
2.2.3
2.2.4
2.2.5

Expert Mission Planning and Replanning Scheduling
System .. 2-10
Callisto .. 2-10
INNOVATOR .. 2-11
COCOMO ... 2-12
Conclusions ... 2-12

2.3 Time Estimation ... 2-13

3.0 TECHNICAL APPROACH ... 3-1
3.1 Concept Definition .. 3-1
3.2 INSITE System: High-Level Design Goals ... 3-1

3.3 User Requirements ... 3-2
3.4 Allocation of Functions ... 3-4
3.5 Time Estimation Methodology .. 3-4
3.6 User Interface Approach .. 3-6
3.7 Development Approach ... 3-7

V

TABLE OF CONTENTS (continued)

I
I
I
1
1
I
I
1
1

1
1
I
I
I
1
1
I

4.0 ESTIMATION AND RELATED TECHNOLOGIES ... 4-1
4.1 Algorithmic Approaches .. 4-1

4.1.1 Cost Estimating ... 4-1
4.1.1 . 1 Bottom-Up Costing .. 4-1
4.1.1.2 Comparison .. 4-2
4.1.1.3 Statistical Analysis ... 4-2
4.1 . 1 . 4 Parametric Analysis ... 4-2
4.1.1.5 Conclusions .. 4-3

4.1.2 Statistical Estimation .. 4-4

Statistical Pattern Matching ... 4-5

4.1.3.3 Pattern Matching Automata .. 4-6
4.1.3.4 Structural Pattern Matching ... 4-7
4.1.3.5 Conclusions .. 4-7

4.1.3 Pattern Recognition and Pattern Matching 4-4
4.1.3.1
4.1.3.2 Parametric Pattern Matching ... 4-6

4.2 Heuristic Approaches ... 4-7
4.2.1 Reasoning by Analogy ... 4-7

4.2.1 . 1 Analogy in Everyday Experience 4-8
4.2.1.2 Automating Natural Reasoning 4-10
4.2.1.3 Conclusions .. 4-12

4.2.2.1 Translation f rom Natural Language into
Symbolic Logic Notation .. 4-15

4.2.2.2 No Algorithm for Symbolic Logic Proofs 4-16
4.2.2.3 No New Information ... 4-16

4.2.3 Automatic Theorem Proving ... 4-16
4.2.3.1 Clausal Form .. 4-17
4.2.3.2 Resolution ... 4-18
4.2.3.3 Data Base Management and Deduction 4-19
4.2.3.4 Conclusions .. 4-20

4.2.2 Symbolic Logic .. 4-12

4.2.2.4 Conclusions .. 4-16

vi

TABLE OF CONTENTS (continued)

4.2.4 Probabilistic Reasoning ... 4-21
4.2.4.1
4.2.4.2 Types of Probabilities .. 4-22
4.2.4.3 Dependence Relations ... 4-22
4.2.4.4 Probabilities and Logic ... 4-23
4.2.4.5
4.2.4.6 Conclusions .. 4-25

4.2.5 Fuzzy Logic and Fuzzy Set Theory ... 4-25
4.2.5.1 Fuzzy Thinking ... 4-26
4.2.5.2 Conclusions .. 4-27

4.3 Expert Systems ... 4-27
4.3.1 Expert System Shells ... 4-29

Probability of an Hypothesis .. 4-21

Probability Trees and Bayes Theorem 4-24

5.0 KNOWLEDGE REPRESENTATION TECHNOLOGIES 5-1
5.1 Knowledge Representation Techniques .. 5-1

5.1 -1 Procedural Representation ... 5-2
5.1.2 Semantic Nets ... 5-2
5.1.3 Frames and Scripts .. 5-2
5.1.4 Production Rules ... 5-3
5.1.5 Conclusions ... 5-4

5.2 Knowledge Acquisition .. 5-4
5.2.1 Initial Knowledge Base Construction .. 5-6

5.2.1.1 Interviewing ... 5-6
5.2.1.2 Questionnaires ... 5-7
5.2.1 . 3 External Sources ... 5-8

6.0 USER-COMPUTER INTERFACE TECHNOLOGIES .. 6-1
6.1 Intelligent User Dialogue ... 6-2

vi i

TABLE OF CONTENTS (continued)

6.1 . 1 Dialogue Types ... 6-2
6.1.1.1
6.1.1.2
6.1.1.3
6.1.1.4
6.1.1.5
6.1.1.6

Command-Driven Dialogues ... 6-3
Me nu- Dri ve n I n t e rfaces .. 6 . 3
Question and Answer Dialogues 6-4
Form Fill-In Interfaces .. 6-5
Graphics-Driven Interfaces .. 6-5
User Dialogue Recommendations 6-5

6.2 User Profiles .. 6-6

7.0 INSITE SYSTEM ... 7-1
7.1 High-Level Design .. 7-1
7.2 ESTIMATOR ... 7-2

7.2.1 Multiple-Estimate Architecture .. 7-3
7.2.2 Algorithm Design Approach .. 7-6

7.3 MEDIATOR ... 7-17
7.4 HISTORIAN .. 7-24
7.5 DIRECTOR ... 7-25

8.0 PHASE II DEVELOPMENT ... 8-1
8.1 Phase I Feasibility Assessment .. 8-1
8.2 Goals of Phase I 1 Research Effort .. 8-2

8.3 Phase I1 Objectives ... 8-2
8.4 Summary .. 8-5

BIBLIOGRAPHY

viii

2- 1

2-2

3- 1

3-2

4-1

4-2

5- 1

7- 1

7-2

7- 3

7-4

7-5

7-6

7- 7

7-8

LIST OF FIGURES

Sample Gantt Bar Chart ..

Sample PERT-Type Chart ...

INSITE Technical Approach ...

Prototyping Software Development Approach

Representation of Analogical Paradigm in the ARCHES
System ..

Probability Tree ...

Knowledge Acquisition Process ..

Block Diagram of INSITE System Organization

Schema of ESTIMATOR Module ...

Set-by-Variance Test Runs ...

SETBYVAR Sample Dialogue ...

Project Specifications Window ...

Analogs Window ...

Project Attributes Window ...

Magnitude Help Box ...

ix

2-4

2-7

3-3

3-8

4-12

4-24

5-6

7-2

7-4

7-7

7-8

7-20

7-21

7-22

7-23

1 .O INTRODUCTION

1.1 PHASF I O BJFCTIVES

TI-$:: report was produced as part of a Phase I research effort awarded
by the National Aeronautics and Space Administration (NASA) under the Small
Business Innovation Research (SBIR) Program, contract NAS5-30040,
monitored by the Goddard Space Flight Center.

Development of complex systems, such as the Space Shuttle or
Space Station, requires managing and performing many activities
simultaneously (e.g., design, construction, and deployment of the various
subsystems). Inadequate management of these activities can result in critical
and costly delays. The primary objective of the Phase I research was to
investigate the feasibility of developing a project management aid based on
expert systems technology to assist NASA project managers in the successful
management of complex programs.

The original Phase I proposal outlined four major tasks to be
conducted:

1. Identification of current expert systems technology relevant to
project manage me nt.

2. Identification of stand-alone NASA project management tasks
which are well-defined but also complex or require a large
measure of expertise.

3. Assessment of the feasibility of a project management expert
systems tool, including development of a system architectural
concept.

4. Documentation of the Phase I efforts as well as development of
a work plan for Phase II.

All objectives for the Phase I research effort have been met. This
report presents the documentation of these tasks.

1-1

i
I
I
1
c

1.2 RFSULTS 0 FTHE P HASF 1 RFSEARCH EFFORT

In an environment of limited resources but with an almost boundless
horizon of new ideas, goals, proposed projects, and experiments, it is
necessary to utilize the available resources in a maximally efficient manner.
This is especially true for an organization such as NASA, in which important
proposed projects require substantial funding. A system to identify and store
relevant information on previous and ongoing programs that will allow project
managers to accurately estimate important program milestones such as time-to-
complete is needed. Successful project managers have developed intuitive
associations for interconnecting seemingly isolated facts and propositions
about a project as well as methods for determining what are the important
aspects and interrelationships between project variables. The goal of this
research effort is to determine the feasibility of capturing and formalizing this
knowledge into an expert system for project managers.

Based upon our interviews with NASA personnel, time estimation for
project scheduling was identified as the focus for our continuing effort under the
Phase I SBIR. It is an area of project management which is both critical to
NASA's needs and amenable to the application of expert systems technology.

One of the main problems currently being faced at the Goddard
Space Flight Center is that of scheduling the design and construction of the
Space Station. The scheduling that is required for this effort is of the Gantt and
CPM/PERT chart type. Basically, this is the process of decomposing a project
into tasks and designing a structure which graphically represents the
dependencies and interactions of those tasks. Discussions with NASA
personnel revealed that project management software, delivered by Boeing
under the Technical and Management Information System (TMIS) effort, is
expected to provide the capability to generate project management charts (e.g.,
Gantt, CPM, and PERT), determine critical paths, and assist in monitoring
project activities and propagating the effects of schedule changes. However,
this is a customized, expensive, and sophisticated data base that will require

1-2

extensive training and will only be available to a limited number of priority
programs. Therefore, a need exists for a cost-effective, user-friendly system for
project management that is available to a large user community and requires
minimal training.

The Phase I effort concentrated on an investigation of an automated
system to assist project managers in the estimation of the time requirements for
tasks. The proposed system, the Integrated NASA System for Intelligent Time
Estimation (INSITE), utilizes analogous cases and historical data to develop
accurate time estimates. The INSITE inference mechanism will be based upon
recent advances in artificial intelligence (i.e., reasoning by analogy, pattern
matching, etc.). As with any expert system shell, INSITE will require some
customization, based on historical project information, for each installation site.
The more information available, the better the INSITE system will perform. An
elicitation tool to help extract information from the human operator and to
increase INSITE's knowledge base was also investigated.

The following steps served as the approach to determining the
feasibility of INSITE:

1. Review relevant technology in reasoning by analogy, pattern
matching, statistical inference, and knowledge elicitation.

2. Review project scheduling methodologies and cost estimation
techniques (as a model for time estimation).

3. Specify system functionality for the time estimation aid,
including what the system will do for the user, what the system
will demand of the user, and how the system will look to the
user.

4. Review relevant human factors engineering literature t o
determine relevant techniques for the user-computer interface.

1-3

5. Evaluate the feasibility of constructing a system as described,
taking into account such factors as current technology,
cosVbenefit trade-offs, etc.

6. Develop a preliminary design for the Phase I I prototype effort.

The development of the INSITE system will assist NASA program and
project managers in planning and scheduling projects. Computerized time
estimation systems, such as the proposed INSITE system, assist in formalizing
the time estimation process since all project managers will have access to the
entire body of knowledge and not just one isolated piece. The use of a system
such as INSITE will result in improved and more consistent time estimates,
particularly by novice project managers. INSITE will also increase the
productivity of the project manager by automating the lengthy and tedious
procedures currently used to determine time estimates. It will also enhance
responsiveness to changing requirements by allowing the project manager to
modify project features and quickly obtain new estimates.

1.3 REPORT OVERVIEW

This report is organized as follows:

Section 2 presents an overview of the project management
process.

Section 3 presents the technical approach used to develop the
INSITE system.

Section 4 provides a review of the research conducted on
technologies relevant for the INSITE estimator.

Section 5 provides a review of the research conducted on
technologies relevant for the INSITE knowledge base.

Section 6 provides a review of the research conducted on
technologies relevant for the INSITE user interface.

1-4

0 Section 7 presents the preliminary design of the INSITE
system.

Section 8 presents an assessment of the proposed system's
feasibility, including risk areas, and provides a description of
the goals and objectives of a Phase It program to develop the
INSITE system.

1-5

2.0 PROJECT MANAGEMENT

Project management (PMGT) is defined as: "the coordination of group
activity wherein the manager plans, organizes, staffs, directs, and controls to
achieve an objective with constraints on time, cost, and performance of the end
product" (Cleland and King, 1983). PMGT is critical to NASA projects which are
typically large, complex, involve many different NASA centers and contractors,
and are also constrained by time and dollars. Many NASA projects are also
unique, and therefore, project managers do not have similar past projects to use
as models. Although similar projects may have been performed in the past, the
projects are not usually being repeated on a production basis. Therefore,
NASA projects, unlike other agencies, can be more difficult to plan and manage
effectively.

Many aspects of the PMGT process have evolved into a well-defined
methodology, particularly with the development of standard presentation
techniques such as PERT, CPM, and Gantt charts (described in Section 2.1).
The use of these various techniques assists in the PMGT process because they
require the project manager to specify the project goals, develop a project plan,
make decisions about each component's requirements, track the
implementation of the plan, and evaluate the impact of any deviations from the
plan.

The planning and scheduling components of the PMGT process,
project management software support, and time estimation are described
below.

2.1 PROJECT MANAGEMENT PROCESS

The project management process consists of the following
components:

0 P l a n n i n g - high-level definition of the project scope,
required activities, and resource requirements.

2- 1

Scheduling - definition of project activities, their relationship
to one another, and determination of their resource
requirements (e.g., time, cost, personnel, etc.).

Monitoring and controlling - tracking project progress,
identifying deviations from the schedule, and determining
corrective act ions.

Based upon our interviews with NASA personnel, it was determined that the
focus of the Phase I effort should be directed towards the planning and
scheduling aspects of project management. These topics are discussed in
more detail below.

2.1.1 Planning
For the purposes of this report, the term "project" refers to a set of

related activities leading to the accomplishment of a goal. Project planning is
the process of:

1. Defining the scope of the p-roject, determining project
constraints and budget parameters.

2. identifying the project activities and in what sequence they
should be performed.

3. Defining key milestones and deadlines.

4. Estimating time duration, resources, and costs for each project
activity.

5. Creating an overall representation of the plan.

The planning process starts with a set of objectives and
specifications. These criteria are used to subdivide the project into the smaller
steps, or tasks, necessary to complete a project. Each task occurs within a
defined time frame and has a starting and ending point. The starting point can
be a specific date or be dependent upon the completion date of another task or
tasks. Key points of time are specified as milestones which again may be

2-2

1
I
I
1

specific dates or be based upon the completion date of a task or tasks. Each
task can be further reduced to subtasks and the process repeated as the project
manager gradually develops a more precise plan about the specific work to be
performed.

A critical part of the planning process is estimating the time required
to perform each project activity. The project manager generally develops the
time estimates intuitively based upon past experience with similar projects. The
time estimation problem will be described in more detail in Section 2.2.

The project plan is frequently displayed as a Gantt chart (as illustrated
in Figure 2-1). The Gantt chart is a horizontal bar chart with time represented as
a calendar on the horizontal axis and project activities displayed on the vertical
axis. Each horizontal bar typically shows the scheduled start and finish time as
well as the duration of each major project activity. Numerous variants of the
standard Gantt chart have been developed which additionally display such
items as project milestones, percent complete, float time, etc. Milestones are
used to identify major project goals and usually do not have any associated
time duration. They are depicted on the Gantt chart using a special symbol
(e.g., a triangle) to identify a single date. Gantt charts are useful for viewing the
overall project schedule. However, they are not useful for showing the
relationships between activities, determining the critical path, or identifying
slack time for non-critical activities.

2.1.2 Scheduling

The project plan is then combined with task dependencies and
resource availability in order to develop a project schedule. The processes
used to develop the schedule will vary, depending on the type of scheduling
required. For example, one may wish to "schedule" the use of a conference
room, a truck route, or the development of a Space Station. These scheduling
concepts are not directly interchangeable. Basically, there are five types of
schedu Ii ng :

1
c

2-3

8
R
I
I
Y
I
I
I
1
I
¶

I
I
D
II
II
1
1

87-21 - 0 3 - F R

Y
&-
(TI r
0

(TI
m
CI
c
C tn
c3
Q)

E
(TI cn

2-4

0 Job-shop scheduling deals with the problem of deciding the
order of items to be processed (as in, for example, a
manufacturing environment). The problem is to optimize the
flow through the system based on certain constraints such as
cost, time, etc.

0 Resource allocation scheduling attempts to spread limited
resources among consuming entities using some rules or
heuristics (as in the scheduling of the use of a conference
room, assigning labs, or assigning employees to projects).

0 Assembly line balancing seeks to optimize throughput of
an assembly line process based on certain precedence
relations and rules. This differs from job-shop scheduling in
that it deals with optimizing a jepet itious process.

0 Routing attempts to optimize the itinerary of a single operator
as it flows through multiple "checkpoints." This is the well-
known "travelling salesman" problem. Given that a salesman
must pass through X number of towns, what route should be
taken to minimize time on the road?

0 Project scheduling is the process of breaking a project into
its component parts and then defining the interrelationships
between the components in such a way that a time schedule
can be produced.

Although each of these types of scheduling problems may be
applicable for NASA project management, this effort will focus on the last type-
project scheduling. Based upon interviews with NASA personnel, project
scheduling was identified as the most critical and relevant project management
task associated with large-scale development projects such as the Space
Station. Therefore, the remainder of this section will address this problem.

Managing large projects involves detailed planning, scheduling, and
organization of the project's numerous tasks and subtasks. To aid in this
process, network analysis techniques have been developed and enhanced
since the late 1950's. Two of the methods have reached prominence - PERT
(Program Evaluation and Review Technique) and CPM (Critical Path Method)
- though the two are often treated as synonymous. For the purposes of this

2-5

report, these methods will be referred to as PERT-type systems. PERT systems
are based upon network diagrams that depict the relationships between project
activities. In order to develop a plan using PERT-type systems, the project
manager defines each activity for the project, its duration, project milestones,
time and resource allocations, and time constraints. Each activity is shown as a
node on the network (as illustrated in Figure 2-2). For each node, various time
parameters are specified, including start and finish dates. In addition, the
dependencies between each activity are also specified (i.e., which activity must
be completed before another one can start). The linkage between the activity
nodes is also tagged as to whether it is a critical or non-critical pathway. Critical
paths indicate the activities that must be performed in successive steps if the
project is to be completed on time; non-critical paths represent activities that can
occur in parallel. Information such as project milestones, time and resource
allocations, and time constraints may also be specified, depending upon the
particular variant on the PERT approach being utilized.

PERT-type systems aid in the scheduling and control of large projects
by creating a model of the project that can then be adjusted and enhanced in a
"what-if" fashion, allowing the project manager to test ideas and to evaluate the
results before any decision is made. PERT-type systems reveal "bottlenecks" in
the project, thus allowing the project manager to redistribute the resources or, if
possible, to correct the problem.

The main concept in PERT-type systems is the precedence
relationship. This graphically depicts the relationship of tasks and subtasks of
projects in such a way that an ordering of tasks can be defined. This ordering
then can be used to create a schedule.

Once the order of the tasks has been defined, time estimates are
attached to each of the activities, thus creating a schedule. According to Hillier
and Lieberman (1974), three times are typically defined for each event:

2-6

L

15

Leaend

Task Number n

-& Normal Path

r-b Critical Path

- - - + Dummy Path (No Time)

A,B, ... K Path Names
_____)

m Time m

Figure 2-2. Sample PERT-Type Chart

87-21 -03-FR 2-7

e Earliest time - the (estimated) time at which the event will
occur if the preceding activities are started as early as possible.

e Latest time - the (estimated) last time at which the event can
occur without delaying the completion of the project beyond its
earliest time.

0 Slack time - the difference between its latest and its earliest
time.

The word estimated appears in two of the definitions above (and in
the third by reference), which is one of the major problems with PERT-type
scheduling methods. Each event time is based on the estimate of the times for
each process that precedes it. The question is: "How does the PM make these
estimates?" The original PERT method attempted to deal with this problem via
the "three-estimate approach" which required the user to make three estimates
- most likely, pessimistic, and optimistic - and included a formula to calculate
the time for the activity from these additional estimates. The problem with this
method is one of infinite regression: in order to develop a single estimate, three
estimates are required.

This problem has been recognized for more than twenty years as
indicated in the following quotation:

"There is always room for error when estimates are supplied t o
describe outcomes. Mental gymnastics are required which defy
description simply because they are totally internalized and part of the
process of cerebral behavior ... It would appear that a mental image
must be constructed from prior experiences to be as close a
representation of the situation that is being analyzed as can be
developed from prior experiences ... That is why the range of
experience of such an individual is important. Unless his library of
experience is sufficiently great, he cannot be expected to call up from
memory sufficiently good analogs ... Therefore, the ability to adapt,
alter, interpolate, and extrapolate supposes that some basic pattern of
association can be determined." (Starr, 1964)

2-8

--

As a result of interviews with NASA personnel, it quickly became clear
that the problem of estimating time requirements for projects is a major problem.
The problem is intensified since many of the NASA projects are unique and on
the leading edge of technology - and are, therefore, harder to estimate.
Currently, time estimates are derived from the project manager's experience
base and intuition. The process is very time-consuming, particularly for new
project managers, and requires considerable trial and error and numerous
iterations. The time estimation problem will be described in more detail in
Section 2.2.

2.2 PROJFC T MANAGEMFNT SO W A R E SU PPORT

The application of project management methodologies is in a
transition phase from a basically "paper and pencil" manual process to a more
"automatic" process performed on a computer. This transition has resulted in
numerous changes to the PMGT process. The computer relieves the project
manager of many previously manual tasks, but the project manager still must
develop the project plans and scheduling based upon his knowledge about the
project. The TMlS system will include software to support traditional PMGT
functions such as the generation of project charts and monitoring project
activities. This software will be geared towards relieving the project manager of
many charting and bookkeeping functions.

As a part of the current effort, project management tools which
incorporate expert systems capabilities were investigated. A tremendous
amount of research has been done in both the expert systems and project
management domains, yet few efforts have been made to bridge the two
domains. Application of expert systems technology to project management has
largely been limited to academic research institutions heavily involved in
artificial intelligence and organizations encountering significant project
management difficulties themselves. Of the expert systems related to project
management, the two receiving the far greatest amount of attention in relevant

2-9

I
I

3
II

literature are the Expert Mission Planning and Replanning Scheduling System
(EMPRSS), by NASA, and Callisto, an experimental system at Carnegie-
Mellon's Robotics Institute. These are discussed below. Another less well-
known expert system named INNOVATOR will also be discussed.

2.2.1
The Expert Mission Planning and Replanning Scheduling System

(EMPRSS) is a prototype project scheduling expert system being developed
jointly by the MITRE Corporation and NASA Kennedy Space Center (Hankins et
at., 1985). The system's intended use is as an aid in planning and scheduling
the activities required to process a payload to be carried aboard the Space
Transportation System (commonly referred to as the Space Shuttle). The
system's inputs consist of data concerning the flight and hierarchies of tasks to
be accomplished. From this data, schedules can be generated at various levels
within the hierarchies of tasks and information concerning critical resource
consumption.

Dert M ission Plannina and Rep lannina Sc hedulina Svsteq

EMPRSS seems to be midway through development. The system
calculates the appropriate flow for mission payload, schedules start and end
times for activities, posts requests for resources as needed to accommodate the
derived schedule, attempts to resolve resource bottlenecks, and generates
alternative schedules to answer "what-if" questions. However, further work has
to be done in developing expert heuristics for scheduling and planning -
especially for constructing long-term plans and implementing a dynamic
planning and replanning system to facilitate short-term dynamic planning and
scheduling.

2.2.2 Callisto

Callisto is an ongoing research project at Carnegie-Mellon's Robotics
Institute to examine the application of artificial intelligence to large project
management (Fox et at., 1986). This work, supported by Digital Equipment
Corporation, has led to the development of several expert systems with varying
degrees of sophistication. Currently being developed is a system which

2-1 0

combines the Institute's previous efforts in activity, configuration, and resource
management with the modeling of negotiations and the trade-offs involved as
the conflicting goals of multiple managers arise. The system's input data
consists of the hierarchies of tasks to be accomplished along with their
appropriate relationships, constraints, and construction specifications. From
this data, reports are generated providing a description of how to accomplish
the project without violating important constraints.

Several project scheduling expert systems have been developed at
the Institute, each one producing a more realistic solution as more real-world
conditions are considered. The current system performs a wide variety of
functions - such as change of orders management; communication among
v a r i o u s " m i n i - C a I I i s t 0" (c o m put e ri zed) d e part m e n t m a nag e rs ; m u It i - I eve I
scheduling of activities; and generation of PERT, Gantt, and pie charts - and
can consider subtleties such as resource management; weak-constraint
violation, and availability of space. Yet most of the Institute's work, while
ground-breaking in examining the project management problem, is application-
specific to large engineering projects and seems to entail the construction of
substantial, experiment-specific data bases. Callisto does provide tremendous
foundation work for other developments, but still must be considered in the
experimental st age.

2.2.3 INNOVATOR

INNOVATOR is an expert system developed for NASA and the military
that deals with the problem of reasoning by analogy for system planning
(Silverman and Moustakis, 1987). Since it was primarily a research effort, the
scope of this system was limited. However, some useful results were obtained
in reference to a paradigm for analogical reasoning systems. The small
informational base (40 projects) and its development environment (LOTUS on
an IBM XT microcomputer) limited the potential "real-world" applicability of the
actual developed system.

2-1 1

2.2.4 COCOMO

A number of systems employing the Constructive Cost Model
(COCOMO) software cost estimating model have been written, including a
system called COCOMOl (Williamson, 1986). COCOMOl is a software system
which guides the user through a series of questions which must be answered in
order for the COCOMO cost model to work. After this has been done, the
system calculates an estimate using the model and gives results to the user
through a series of reports. One problem with COCOMO1 is that it uses a
parametric approach to estimating which has been shown to have questionable
accuracy (Kemerer, 1987). COCOMOl serves as a good model for the
development of an interface design and the potential for a time estimation
system.

2.2.5 Conclusions

A careful examination of current project management expert
systems experiments demonstrates that, although such systems are certainly
feasible, they pose certain requirements which are difficult to meet. First,
because the most popular methodology to implement such systems seems to
perform an exhaustive search for providing the solution with the smallest conflict
of resources, the systems require the entry of a tremendous amount of instance-
specific data. Data concerning all activities and subactivities must be defined,
including information specifying the hierarchical relationships and the efforts
and resources that the tasks require. These systems also fail to solve one
critical aspect of the problem: the quality of project schedules in current systems
is proportional to the quality of data specified for each activity, so good
estimates of activities yield good schedules, while bad estimates yield poor
schedules. Finally, although these systems do provide for plans and schedules
to be corrected by changing the data and rerunning the system, historical
examples of similar projects which provided good estimates are not specifically
offered to replace the user's guesswork.

2-1 2

2.3 TlMF FSTIMATION

A common thread to both the project planning and scheduling
process is the requirement for the project manager to develop time estimates.
Estimating the time that a project (or task) will take is a complicated, error-prone
process. In fact, this section could be subtitled "Murphy's Laws of Project
Management." There are several reasons for this:

0 Lack of information - Project managers can only make
estimates based on projects that they have worked on, projects
that others have told them about, and historical records of
projects. However, many times accurate historical information
is not available or, at least, not readily available. Thus,
estimates tend to be biased toward projects that the project
manager knows the most about, which may or may not be
appropriate to the estimation task at hand.

Lack of resources - Producing an accurate project
estimate will often constitute a significant investment of
resources (i.e., time and money). The project manager may be
either unable or unwilling to expend these resources for a
project that is only in the initial stages of development or for a
project that has not yet been funded.

Project complexity - The complexity associated with
various project types has a strong influence on the accuracy of
schedule estimates. For example, applied research is harder
to estimate than production, basic research is harder to
estimate than applied research, etc. NASA projects fall within
each of these categories and therefore will have varying needs
as far as estimation models are concerned.

0 Parkinson's law - Parkinson's law ("Work expands to fill up
time available for completion") works in a recursive fashion
against project estimation as follows: An estimate for a project
is made, that project (due to Parkinson's law) overruns;
therefore, the next time such a project is undertaken, a greater
estimate is given and that project overruns. This, in turn,
causes the next similar project to be overestimated, a d
nauseam.

2-1 3

Process
perfect knowledge of all appropriate past projects, the task of
actually creating an estimate from this information would be
fraught with difficulty. The reason for this is that the questions
associated with determining the appropriate analogies, valid
statistical inference, and combinatorial complexity would
overwhelm all but the most tenacious project estimator.

complexity - Even if the manager had full and

Because of the problems cited above, most scheduling is done "by the seat of
the pants" - largely based on intuition. As the person scheduling the project
gains experience, intuition typically gets better and estimates become more
accurate. Yet there is a potentially severe penalty in incorrectly estimating
project schedules.

One way to relieve some of the potential consequences of bad
estimations is a technique known as "sensitivity analysis." This is basically a
technique for assigning risk factors to the estimate, with the idea of making "best
case" and "worst case" plans. As with the PERT estimation process, however,
this technique relies mostly on sophisticated guessing.

Another aspect of the problem is that overestimation and
underestimation have an additive, not a complementary, relationship. This
means that an overestimate does not "balance out" an underestimate, but
instead compounds the costs. Moore and Hendrick (1977) note that schedule
slippage almost always occurs in the positive direction (i.e., the project was
underestimated) and that the slippage tends to be around 50 percent. This

seems to indicate that all estimates should automatically have 50 percent
added to them, but this has been shown to be incorrect due to Parkinson's law.

2-1 4

I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I

3.0 TECHNICAL APPROACH

Project managers typically base their estimates of the time required
for project tasks on somewhat arbitrary decisions. In many cases, there is a
general notion that a particular type of task usually takes a certain amount of
time. For large-scale projects, the project manager's experience may be limited
to one or two similar tasks. In such situations, the estimation process combines
the knowledge that a specific task in the past required a certain amount of time
with a belief it is similar to the task at hand. Experienced project managers tend
to develop intuitive models based on previous experience to be used in
developing time estimates. There is currently no systematic way of
transcending a single individual's relevant experience. Also, formal procedures
for evaluating the relevance of isolated historical cases do not exist. Therefore,
the primary objective for the Phase I effort is to define a consistent framework for
developing time estimates and to conceptualize the features of such a tool. The
direction of the Phase I research is to identify the technologies (e.g., artificial
intelligence, expert systems, etc.) that are relevant to the time estimation task
and determine what role the relevant technologies should play in the
development of an expert system to aid project managers in the management of
technical projects.

3.1 CONCEPT DEFINITION

The innovative approach to estimating the time required to complete
technical tasks that are part of a large, complex project is to develop an expert
system that captures and stores the knowledge of program managers. This
system will be referred to as the Integrated NASA System for Intelligent Time
Estimation (INS ITE).

3.2 INSITE SYSTEM: HIGH-LEVEL DESIGN GOALS

Establishing high-level design goals for INSITE is the first step in
ensuring the development of a practical and functional system. These design
goals include the development of a user-oriented INSITE system and a system
structure flexible enough to meet the future needs and changing scope of NASA

3- 1

I
I
I
I

I
I

I
I
I
I
I

programs. Ease of programming and maintenance will also be a major goal of
the design. A top-down analysis (as illustrated in Figure 3-1) was performed as
part of the high-level design goal process which focused on:

0 Defining user requirements,

0 Allocating functions between the user and INSITE,

0 Developing a time estimation methodology,

0 Evaluating user-computer interface options, and

0 Defining a software development approach.

The system considerations and research for each of these areas are
described in this section.

3.3 USER REQUIREMENTS

The first step in developing any system is to define the skills and
knowledge of the intended users. The users of INSITE will most probably be
project or program managers who are experts for their particular projects and
possess extensive amounts of project-specific knowledge that permit very
efficient problem understanding, analysis, and solutions. However, the INSITE
users may be computer novices with minimal experience in using computers. In
addition, INSITE users may possess varying levels of skills for project
management, scheduling, and estimation. Therefore, the user interface must be
"user-friendly," require minimal computer knowledge, promote rapid learning of
INSITE, and provide the flexibility to solve a wide range of problems. INSITE
will require extensive dialogue with the user in order to characterize their
problem, which requires sophisticated techniques to guide and direct the user
in this process. Once INSITE is an established system, the ranks of more
experienced users will grow. Therefore, the needs of the novice must be
balanced against the needs of a more experienced user in developing the user-
computer interface.

3-2

87-21-03-FR

w

. .

3-3

I
1
I
I
B
I
I
I
I
I
l
I
I
I
I
I
I
I

3.4 ALLOCATION OF FUNCTIONS

The functional allocation step is necessary to determine what system
functions should be distributed between the user and INSITE. The INSITE user
communicates with INSITE to define and characterize a project, obtain time
estimates, and evaluate the results. The INSITE user needs to be provided with
a body of systematic guidance on how to develop and validate the appropriate
knowledge and system procedures for their particular application. In
accordance with the goal of a high-level, user-oriented interface, as many
functions as possible will be allocated to INSITE. These include user aids such
as menu-driven interface; on-line guidance via a HELP capability; an
explanation facility to assist in the interpretation of results; and detailed and
easily understood error messages and recovery procedures.

3.5 TI ME ESTIMATION METHODOLOGY

The INSITE system will assist project managers in developing more
accurate time estimates for their projects. Time estimates are currently
developed based upon the project manager's intuition or upon informal
comparisons with previous work. In order to determine the methodologies to be
considered, characteristics of a "perfect" estimation system were considered.

It would be unreasonable to expect any method of estimation to
always return an absolute, correct answer (if this were the case, the system
would be calculating instead of estimating). However, the system time
estimations should exhibit low deviations when compared to the actual outcome
(Le., it should have a low average deviation and a low maximum deviation). A
low maximum deviation is important due to the fact that overestimates and
underestimates do not "balance out" (as described in Section 2.3).

3-4

I
I
1
I
I
I

I
I

Additionally, the system should be smart in the following ways:

0 It should know that i f a task has been done before, this fact
should override all other considerations.

0 It should know that i f an exactly analogous case is known
which only differs in degree, that this case is very significant.

0 If available information is not very useful, it should indicate that
fact to the user but still give an answer.

In short, the system should know what it is doing, not just how to do it.

The ideal system should use several approaches to solve the
problem and consider each technique when making a determination. Each
approach would serve as a guard against one estimate being very biased or
totally wrong. Such a system would also be able to explain the determined
estimates, including the historical case histories and their relevancy. The
system should also allow the user to specify a parameter that should be ignored
or given greater weight in this particular case, thus allowing the system to "work
with" the user in determining a solution. Section 5 describes several
methodologies that are potentially relevant to the development of time
estimates, including cost estimation, reasoning by analogy, automatic theorem
proving, pattern matching, and fuzzy logic. Section 8 describes how the
relevant technologies will be integrated into INSITE.

An additional consideration is the determination of what knowledge is
necessary to support an effective time estimation system and how that
knowledge should be encoded in such a manner to facilitate its use by the
selected INSITE time estimation methodologies. Section 6 presents the
technologies that can be utilized for the development of the knowledge base.

I
1

3-5

I
I
I
1
I
I

I
I

3.6 USFR INTF RFACF APPROACH

Since INSITE will be a complex system, the nature of the INSITE
user-computer interface (UCI) will be an important determinant of successful
system operation and effective performance. The UCI will be designed to take
advantage of the most recent advances in human factors engineering, artificial
intelligence, and advanced display technologies. A primary design goal is the
development of a system which is maximally flexible and adaptable for new
applications and which is highly usable in terms of both operation/execution
and analysis of results. The design of the UCI will be considered during every
phase of the development of INSITE to ensure that INSITE incorporates high
degrees of flexibility, adaptability, consistency, and responsiveness with regard
to the way in which the user will interact with all the components of INSITE. It is
essential to integrate human factors into the early stages of the design process
where it can have the greatest benefit. A good user interface design may cost
more in terms of time and money to implement, but it may also result in
significant benefits during the system's productive life. Non-productive training
time can be reduced; user misunderstandings leading to interpretation errors
can be avoided; and user satisfaction can be dramatically increased.

The development of the user interface will be based upon analysis of
the following:

0 Interactive dialogue analysis - establishing dialogue
style (e.g., menu, command, graphics, etc.), user response,
data entry screen design, on-line help, error message design,
and color coding.

0 Input device and techniques analysis - examining

Output requirements analysis - examining properties of

properties of available input devices (e.g., keyboard, mouse,
etc.) and their interaction with the dialogue.

available output devices and information to be conveyed (e.g.,
text, graphics).

0

3-6

Another design goal is that the user interface should be consistent
across all components of the INSITE system. Other principles that have been
identified in the human factors literature as critical to successful user interfaces
include the following:

0 " F ri e n d l y " d i a I og u e s and e r ro r hand I i n g ,

0 On-line help routines,

0 Meaningful feedback provided to avoid confusion,

0 Minimal strain on human memory capacity,

Simplicity rather than complexity, and 0

0 Demands tailored to the user's skill levels.

Wherever possible, the design of the user interface will be in accordance with
established human factors guidelines and standards.

Section 7 describes the technologies researched for the development
of an effective INSITE computer interface.

3.7 DEVELOPMENT APPROACH

Traditional software development approaches assume that all system
requirements can be precisely determined and specified in detail prior to any
contextual design, implementation, or operational experience. The design
specifications are frozen at some point, and the entire system is based upon
these specifications. By contrast, the prototype approach assumes that precise
requirements are not always predefinable so the system is developed utilizing a
building block approach. A building block approach to system development
develops a working foundation of a system quickly in such a manner that it can
be gradually expanded one step at a time. The premise of prototyping is that it
is easier and quicker to modify and improve a tangible system than to draw up
specifications for a system that can handle every conceivable requirement. This
is particularly true for expert and knowledge-based systems where an iterative
approach is required to establish and refine the knowledge base. Prototyping

3-7

-i

b
NO

1
I
I
1
1
I
B
I
I
I
I
1
8
I
I
I
1

B
87-21 -03-FR

Implement
Required

Modifications

Specify
Prototype Goals .

I I Develop Prototype

t
Use and

Eva1 u at e Prototype

1

YES

I 1
Prototype Becomes

Interim Working
Version of INSITE

1

Prototype Becomes
Final Version of

INSITE

Figure 3-2. Prototyping Software Development Approach

3-8

begins in the analysis phase of system development with a first prototype based
on a high-level functional analysis. It does not include every feature the
eventual system might include, but at each stage implements the desired goals
effectively with minimal development costs. The prototyping approach,
illustrated in Figure 3-2, consists of the following steps:

1. Specify prototype goals - clearly identify the scope of the
prototype and determine how it is to be evaluated.

2. Develop prototype - design and implement prototype;
determine what functional modules must be developed and
how they will be integrated with modules in the current
ope rational version.

3. Use and evaluate prototype - demonstrate the prototype
to the user in the context of actual applications and elicit
feedback from the users in terms of how the prototype meets
their needs and requirements.

4. Implement required modifications - incorporate any
indicated modifications into the prototype and repeat the
evaluation process.

When a particular prototype is functioning satisfactorily, it is made
available to the user for evaluation to determine if the system development is on
the right track and performs as expected and/or required. Users can
knowledgeably suggest changes that will improve the system and make it more
applicable to their needs. The system developers can then incorporate those
changes with a clear understanding of what exactly needs to be changed and

how it should look when completed. Each succeeding version of the prototype
more accurately reflects the users' requirements and incorporates more of the
features of the eventual system. The prototyping process is reiterated until all
system goals have been developed and evaluated.

The traditional approach to software development is best suited for
systems with simple and static requirements. But for dynamic and complex
systems, the best way to develop the system is with a prototyping approach.
The user's understanding of a system is an evolutionary process. Changes of
meaning and structure of the system reflect the learning process and growth

3-9

that accompany every application experience. In order to increase the usability
of the system, it is necessary to accommodate these changes, not to impede
them. An approach that exposes the user to realistic versions of the final
application will lead to wide exploration of the application alternatives during
the earliest stage of development

Several studies have indicated that a prototype approach significantly
improves the probability that a useful system will be developed and that the
overall development cycle will be shortened (Mason and Carey, 1983).
Additional experimental results suggest that prototyping increases the actual
utilization of a system by the user, and systems performance (as measured in
terms of user satisfaction with the system and its perceived accuracy, utility, and
functionality) was rated higher by users of prototyped systems than by users of
systems developed using traditional approaches (Alavi, 1984).

3-1 0

4.0 ESTIMATION AND RELATED TECHNOLOGIES

The primary objective of INSITE is to create time estimates for project
managers. The relevant technologies that were thoroughly investigated can be
grouped into two categories: algorithmic and heuristic. Algorithmic methods are
well-defined, have a "step-by-step" process, and are guaranteed to have a
solution. Heuristic approaches are based on general strategies or rules of
thumb. The algorithmic and heuristic approaches are discussed in Sections 4.1
and 4.2. Section 4.3 provides a description of expert systems technology.

4.1 ALGORITHMIC APPROACHES

4.1.1 F st i m at i ng
The methodologies utilized for cost estimation are analogous to those

used for time estimation. Cost estimation procedures are regularly used in
construction, defense contracting, software development, and many other
areas. Cost estimating can be done in a variety of ways as described in the
following sections (Defense Systems Management College, 1983).

4.1.1.1
procedure even if, as the name implies, it is a method of summing the costs of
components to derive a total cost figure. The cost of the project is defined as the

sum of the costs of each component plus an "overhead" or "administrative" cost.
The problem with this method is that it, like many similar estimation methods,
only postpones estimation. To say that the cost of a project is the sum of its
components is definitional. The question becomes: "What are the costs of each
component?" Unless one is working on a fixed-price contract basis, this method
of estimating is of limited use. However, it does compel the project manager to
reduce the project into lower-level components such as a work breakdown
structure. This process is useful since any attempt at structuring the project is
bound to enhance the PM's knowledge of the situation which, in turn, will aid in
the creation of estimates.

Botto m-UD cost ing. Bottom-up costing is considered an estimation

4- 1

I
I
I
1

4.1.1.2 ComDarison. If a PM has knowledge of a previous project that is very
similar to the one in question, this can be used as a model for making estimates
about the current project. However, there are several questions associated with
this process:

How dissimilar can the projects be and how much dissimilarity
can a good estimate tolerate?

If the dissimilarity is great, how should the estimates be
adjusted in order to account for the differences?

What aspects of the projects should be considered when
making the comparison?

These questions have no simple answers and, in fact, are applicable to many of
the estimating methodologies discussed in this report. However, the nature of
cost estimating is very error-prone due to the lack of definition of the
methodology.

4.1.1.3 Stat ist ical Analvsis. The problem with the previous two
methodologies for cost estimating is that they are too subjective. A method that
does not rely solely on the PM's particular knowledge and biases is preferred.
In this regard, the use of statistical analysis seems appropriate. In an ideal
situation, a PM could simply look up the cost of a project in a book, based on
some criteria. For example, the buildingkonstruction trades often refer to a
structural cost handbook which lists average costs for different types of
structures by region. This method works for the building trades since there are
numerous examples from which to draw the "average" cost, and the processes
are well-defined so that meaningful comparisons can be made. In the case of
more complex projects, however, problems of data collection and problems of
definition of appropriate criteria of comparison combine to make this method of
estimation unsuitable.

4.1.1.4 Parametric Analvsis. Mathematical modeling is an estimation
technique that is less subjective. This approach describes the cost of a project

4-2

via equations based on a set of input parameters or comparison factors. The
appropriate comparison factors are developed based upon the emphasis of the
particular model and adjusted based upon the "goodness" or "badness" of the
estimate for a particular project.

The Programmed Review of Information for Costing and Evaluation
(PRICE) model was developed by RCA for the Defense Systems Management
College (1983). Its
usefulness is based on the fact that it does not incorporate a single model, but
several. As with any such system, it needs calibration for the particular user's
project. PRICE also includes a list of the factors that are the most important for a
variety of project types.

This system is an example of parametric analysis.

The major problem with this method is that often the model is not
suited for the project at hand. In fact, in a study of four of the most popular
software cost estimation models, an average error rate was found to be 460%
(Kemerer, 1987).

The trade-off for parametric analysis techniques tends to be between
generality and accuracy. As a model becomes less general, its usefulness
begins to decline since more work is needed to determine which model to use
as well as identifying the appropriate factors. In the worst case, the estimation
method degrades to the "bottom-up" approach described in 4.1.1 .l.

4.1.1.5 Conclusions. The problems associated with cost estimation are very
similar to the problems of time estimation. However, the cost estimation
techniques currently available seem to have minimal utility for NASA's time
estimation problem due to the fact that they (a) are not applicable (particularly
the statistical method), (b) require excessive "up-front" time (particularly the
bottom-up method), or (c) provide inaccurate results. Thus, while current cost
estimation methodologies can be very instructive, it remains an area where
further research and development is needed.

4-3

4.1.2 m i c a 1 Fstimation

Statistical estimation is used in virtually every scientific and business
related enterprise. Its usefulness is almost axiomatic; virtually no one will
question a justification by valid statistical analysis. It will be seen in Section 7
that statistical analysis will be integral to the design of INSITE; more detail as to
the approach will be given at that point.

4.1.3 Pattern Recoanition and Pattern Matching

Pattern matching and recognition, which combine a statistical
approach with computer science and mathematics, is central to the study of
robotics, signal processing, and AI. Pattern matching determines the degree of
similarity between a set of data points describing a particular situation and a
previously constructed data set. Given a set of data points, these techniques
dete rmi ne :

a. If there are patterns which define classes of data points; and

b. Given a new data point, if it can be placed in any existing class
from which information about the point can be inferred.

The relevance to project scheduling and time estimation is clear: if information
about historical projects can be obtained and patterns detected, perhaps an
inference can be generated regarding current projects.

Using the pattern recognition approach to estimate project costs, a set
of n measurements, called features, is defined to represent a common set.
Each of the n features is connected to an n-dimensional feature space, with
each task having a feature vector. The main problem is to find a match between
the feature vector of some known source (or group of sources known as a
cluster) and the feature vector of the source in question. For our purposes, the
problem is to find a cluster into which the project fits and then, based on
information about that cluster, derive a time estimate.

4-4

Cohen and Feigenbaum (1982) have classified the algorithms for
pattern matching into four categories, which are each discussed below.

4.1.3.1 Statistical Pattern Matchinq. There are numerous algorithms for this
process. One basic approach is the nearest neighbor classification
approach, which seeks to find the nearest data point to the point in question and
determine if the new point belongs to the cluster of the point nearest to it. That
is:

If there exists a k,l such that I Xk,l- X I < I Xi,j - X I for all i,j

where X x,y is the yth sample in the x class and

X is the unknown vector

then X is assigned to class k.

This is a parsimonious approach, but is error-prone due to the fact that clusters
can overlap. This technique yields unreliable results since proximity to a point
does not necessarily denote homogeneity. A variation to this scheme would be
to sample a set of closest points and assign the class of the unknown to be the
most common class within that set. This is somewhat better, but still suffers from
the same false assumption.

An effective variant of this method uses the distance to the center of
the cluster to define the class. This means that any point whose center is
nearest is in the class. This is an appropriate strategy if the clusters are well-
defined and symmetric, but not very accurate otherwise.

It is also possible to define the boundaries between classes through
the use of probability density models. These models take into account not only
proximity to the center of a class cluster, but also the relative density of the
points at that location as compared to the density of the next nearest class
cluster. The boundaries are established to minimize the cost of error, not just
the occurrence of it.

4-5

I
I

I
I

m

None of these models allow the analysis of clusters with complex
shapes or classes with multiple clusters. Research on more complex analysis
techniques is ongoing, though further discussion of these techniques is beyond
the scope of this paper.

Michalski and Stepp (1983) indicate that one of the major limitations
of these types of approaches is that the a priori classes defined for the data
often lack any simple conceptual interpretations. They cite the reason for this as
the implicit assumption that all of the attributes of the data sources are of equal
relevance, whereas in reality, some of the properties will have overriding
importance to the cohesion of the group, while others are of little importance.
They suggest an approach (conjunctive conceptual clustering) in which the
attribute selection is performed simultaneously with the formation of clusters.

4.1.3.2 Parametric Pattern Matching. In parametric pattern matching, the list
of possible parameter vectors (rule space) is searched by "hill-climbing" or
gradient descent in order to find the class that minimizes the error between the
model and the unknown. Typically, the following linear functional is used:

where x is the feature vector and

w is a weight vector, the elements of which are the unknown
parameters.

What is needed, then, is to find the hyperplane that separates the classes. If
none exists, then either a more complex relationship can be found or a
hyperplane which results in low error percentages can be used. The algorithms
used to find this hyperplane are explained in Cohen and Feigenbaum (1982).

4.1.3.3 Pattern Matchina Automab. The Pattern Matching Automata method
seeks to find "a finite-state automaton whose behavior imitates that of the
unknown system" (Klaus and Horn, 1986). In this approach, the system is

4-6

1
I
I
1

defined from an initial state and the transitions from one state to another are
described. One method describes the transitions via a probability matrix, while
another uses fuzzy set membership as the criterion (fuzzy set theory is
described in more detail in Section 4.2.5). Pattern Matching Automata have not
as yet produced much in the way of practical application.

I
I
I
i
I
I

I
I
I

4.1.3.4 St ructu rat Pattern Mat c hi nq. Structural Pattern Matching borrows
from formal language theory in that it attempts to define a grammar for a
particular class. An unknown is parsed (checked against a defined grammar)
and is placed in the appropriate class. Stochastic grammars use statistical
analysis in an attempt to accommodate ambiguous or ungrammatical patterns.
Few practical structural pattern matching algorithms have been proposed, but
work is continuing and may yet yield some useful results.

4.1.3.5 Conclusions. A problem associated with all of the pattern matching
techniques is the selection of the feature measurements. Klaus and Horn
(1986) contend that "no amount of sophistication in the decision algorithm can
make up for a poor selection of features." Thus, the selection of the comparison
criteria is crucial to the success of the classification. Since pattern matching
capabilities will play a significant role in the estimator portion of INSITE, a large
portion of the design time will be devoted to the definition of the relevant
features of projects which will be used for the comparisons.

4.2 HEURISTIC APPROACHES

4.2.1 Reasonina bv Analoav

In general, time estimates can be made in two different ways based
on two different types of knowledge. First, an estimate can be based on an
understanding of the factors which determine project time requirements. If this
understanding is complete and detailed, direct calculations can be made to
produce an estimate. If domain knowledge is less complete and at a more
general level, a series of heuristics/rules may be applied to generate an
estimate. Second, an estimate can be made based on past experience. That
is, a project may be estimated by reference to some other similar project (or

4-7

1
I
I

I
E

1
a

projects) which has already been completed and whose time requirements are
therefore known. This second approach depends on the ability to identify
completed projects which are somehow "analogous" to the project in question.

4.2.1.1 Analoav in Evervdav ExDerience. Analogical reasoning has long
been recognized as a major component in human thought. It is integral to our
problem solving strategies from the hard sciences to the most trivial everyday
activity (Sternberg, 1977):

"Reasoning by analogy is pervasive in everyday experience. We
reason analogically whenever we make a decision about something
new in our experience by drawing a parallel to something old. When
we buy a new goldfish because we liked our old one, or when we
listen to a friend's advice because it was correct once before, we are
re as o n i n g an a Io g i ca I I y .'I

It is the fact that analogy is a central technique for dealing with new
situations that has caused a number of disciplines, from psychology to the
history of science, to focus on analogical reasoning. The most substantial body
of work has been produced by psychologists who have, for some time,
recognized the relation between analogical reasoning and intelligence.
Anyone who has ever taken an intelligence test is familiar with the classic
formulation "A is to 6 as C is to D", where the subject is presented with a
multiple-choice option for "D". It is assumed that the ability to deal with new
situations (as seen in a person's ability to manipulate analogies) is central to
the notion of intelligence. Even 60 years ago, Spearman (1 927) claimed that "it
is certain that [analogy] tests - if properly made and used - have correlations
with all that are known to contain g [Spearman's general factor of intelligence]."

Although the concern is as old as the interest in analogy itself, recent
work in psychology has focused on understanding analogy as a process.
Some researchers continue to extend a traditional approach by attempting to
reduce analogical reasoning to a series of low-level (now information
processing) components. Sternberg's five-component theory (1 977) can be
used to exemplify this strategy. The components themselves are best described

4-a

in the context of an analogy problem: Washington is to 1 as Lincoln is to (10,5)?
The answer to the problem is "5" because Washington appears on the one-
dollar bill and Lincoln appears on the five-dollar bill. According to Sternberg's
model, the steps taken to arrive at this answer are the following:

1. Encoding: The subject begins the solution with attribute
identification for all terms in the analogy. Attributes and values
which may be relevant for analogy solution are retrieved from
memory. For Washington, these might include "first president",
"portrait on dollar bill", and "revolutionary war hero". For
Lincoln, these might include "sixteenth president", "portrait on
five-dollar bill", and "Civil War hero".

2. Inferring: The subject attempts to relate attributes of the first
and second terms in the analogy. Two attributes of
Washington, "first president" and "portrait on dollar bill", are
found to relate to attributes of the digit 1 (namely, ordinal
position and amount).

3. Mapping: The subject attempts to relate, by means of
retrieved attributes, the first and third terms in the analogy. The
subject notes that Washington and Lincoln were both
presidents, were both war heros, and are both depicted on
currency.

4. Application: The subject attempts to construct a relation
between the third term and each of the candidate solutions,
based on the relations already inferred. No relation between
Lincoln and the number 10 can be found on this basis. The
fact that Lincoln appears on the five-dollar bill allows the
subject to construct a relation between Lincoln and 5 which is
analogous to one of those inferred between Washington and 1,
and therefore arrive at a unique solution.

5. Response: The subject responds with "5", having completed
the analogy problem.

Although inferring, mapping, and application may appear to be the
most complex components in this model, the selection of "relevant" attributes is
a major problem. Aspects of human thought which are critical to our
understanding of analogical reasoning are simply swept aside by explanations
such as the following (Sternberg, 1977): "Potentially relevant attributes are

4-9

-

I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I

those that experience has indicated are useful in relating one concept to other
concepts." The idea that the structure of memory itself may play a major role in
analogical reasoning has only recently emerged. Rumelhart and Abrahamson
(1973) believe that portions of semantic memory can be represented as a
multidimensional space. In this case, analogies are treated as similarity
judgments and can be assessed directly since distance is a straightforward
computation within the context of a multidimensional Euclidean space. Other
models which are capable of extending or replacing the process-component
approach will undoubtedly emerge as our understanding of brain functioning
improves.

Most of the analogies dealt with in intelligence testing are
straightforward, usually based on relationships which are simple, well-
understood, and easily verbalized. In technology and science, however,
analogies are often complex and imperfect. Whether an analogy is made to a
past problem solution or a past theory, the analogy may be relatively poor, yet
provide a framework for continuing efforts (Oppenheimer, 1956):

"At each point the first scientists have tried to make a theory like the
earlier theories, light, like sound, as a material wave; matter waves
like light waves, like a real, physical wave; and in each case it has
been found one had to widen the framework a little, and find the
disanalogy which enables one to preserve what was right about the
a n a logy . "

This subtle kind of process is also seen in everyday problem solving and
remains a potentially fertile area for continuing research on reasoning by
analogy.

4.2.1.2 Automatina Natural Reasoninq. Since its inception, artificial
intelligence has been motivated by an interest in emulating "intelligent" human
behavior. In the context of a desire to automate natural reasoning, it is not
surprising that AI research focused on the human ability to solve analogy test
problems. It is hard to imagine a more striking demonstration of machine
intelligence than a computer taking an IQ test. Twenty years ago, computer

4-1 0

I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I

programs already existed which could accomplish this task. ARGUS could
solve verbal analogies (Reitman, 1965), and ANALOGY could solve geometric
analogies (Evans, 1968).

ANALOGY is a classic example of the describe and match paradigm.
The relation between any two geometric objects can be described as a series of
geometric operations (e.g., rotation, reflection, scaling) applied to the first object
in order to obtain the second. To answer the question "A is to B as C is to (D1,
D2)", the program determines which geometric transformations are necessary to
get from A to B, from C to D1, and from C to D2. The correct solution is that
solution which requires the same set of transformations as, or the most
transformations in common with, the set required to go from A to 8.

A reliance on matching underlies most AI approaches to analogy
developed in recent years, including complex schemes such as Winston's
learning by analogy (1 984). The ARCHES system (Chouraqui, 1985) provides
an alternative approach to the automation of analogical reasoning. Figure 4-1
presents the analogical paradigm in the ARCHES system, following the "A is to
B as C is to D" formula. In general, to discover a new D, the system first
assesses the similarity between A and C. For example, the knowledge base
may include the fact that "the earth is round" and that "the earth is habitable by
humans". Since the moon is also round, by analogy we might determine that
the moon is habitable by humans. The inference is invalid for two reasons: 1)
the inference is based on the resemblance of very incomplete descriptions of

the earth and moon, but equally, because 2) there is no dependency relation
between "the earth is round" and "the earth is habitable by humans". For this
reason, the paradigm (as shown in Figure 4-1) stresses that analogies are valid
when a dependency relation exists between "A and B" and "C and D" as well as
when a similarity exists between A and C. In fact, the "degree of probability of
conclusion D is as high as the relation of dependency is strong." (Chouraqui,
1985). The dependency criteria, which "only experts are in a position to
evaluate and justify in proportion to their scholarship," are the responsibility of
the user of the system who establishes objects and attributes through a series of
dependency graphs (Chouraqui, 1985):

4-1 1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

B
dependency

relation/

D
depend en cy

re1 at ion /

A C

Figure 4-1. Representation of Analogical Paradigm in the ARCHES
System

"This mode of using the rule of analogical inference - filtered by the
dependency graphs - contributes to the production from a set of
logically true (i.e., valid) structures, sets of structures whose truth
depends on interpretations defined by these dependency graphs."

4.2.1.3 Conclusions. Research by psychologists into the nature of
analogical reasoning has given rise to a number of related procedural models.
At best, however, these models are only adequate for the analysis of simple
cases of reasoning by analogy. More complex processes remain poorly
understood. AI approaches have also been successful in dealing with
straightforward analogies. The underlying matching strategies have even been
extended to more complex situations. As in other expert system approaches,
automated analogical reasoning is dependent on human expertise which has
been captured in system structures. In the case of analogies, it is the
dependency relations which must be defined by the human expert.

4.2.2 Svmbolic Lo-' 9LI;

Symbolic logic (as opposed to syllogistic or classical logic) has
been one of the main methods of attacking the problem of intelligent systems.
Hundreds of years of development in this field had taken place before
computers came into existence and, in fact, the field of computer science owes
most of its existence to a logician named George Boole (father of Boolean

4-1 2

logic). Logic itself seeks to be a method of discriminating between valid and
invalid arguments; symbolic logic systems are designed to provide precise,
formal standards of validity (Haack, 1978). As such, AI researchers have used
these formalized techniques of reasoning within computer systems to attempt to
mimic human thought.

Though there have been a number of symbolic logic systems (SLS)
developed throughout the years, there are some consistent threads which
connect them all. Each must begin with a symbology, or a system of
symbolizing the primitive (base) concepts with which the system will be dealing.
The main primitive in many logic systems is the statement (also: sentence or
proposition), which is any sufficiently informational sequence such that that
sequence must be true or false. For example, "Adam is three" is a statement,
but "Adam" and "three" are not. In most cases, an SLS will symbolize the
statement "Adam is three" as "A". Another statement, such as "Adam is terrible",
would be symbolized as "T".

Next, a procedure to relate the statements to one another is defined
through the use of statement connectives. The following statement connectives
are frequently used:

0 And,

- Not,

2 Material implication, and

t) Material equivalence.

Thus, the statement "If Adam is three then he is terrible" would be symbolized "A
2 T"; the statement "If Adam is three and Adam is terrible then Adam is typical"
would be symbolized "(A T) 3 U" (where "U" stands for "Adam is typical"); and
the statement "Adam is not typical if and only if Adam is not three or Adam is not

4-1 3

I

1
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

terrible" would be denoted as "-U t) (-A v -T)". This system allows for
arbitrarily complex statements to be symbolized. The symbology used is
designed to be "English-like" and is therefore more verbose than is necessary.
In order to symbolize any two-valued (Le., TRUE or FALSE) logical statement,
only the two operators - and (or, alternatively: - and v, or - and 2) is
required.' This fact is important for the discussion of automatic theorem proving
(see Section 4.2.3).

The symbols described up to this point make up what is known as
sentential logic; that is, the logic of sentences (statements). Sentential logic
yields some interesting results, but it is very limited in its representational
capabilities. Predicate logic expands upon the base of sentential logic by
adding the ability to assign properties to individuals or classes of individuals
using the following conventions2 :

Capital letters (A-Z) denote property constants;

Small letters (a-t) denote individual constants; and

Small letters (u-z) denote individual variables.

A property constant is any descriptive aspect of an individual (such as tall,
smart, etc.). The phrase "Bob is smart" could be symbolized as Sb, with "S"
standing for "is smart" and "b" standing for "Bob". This greatly enhances the
capacity to represent a concept.

Another type of phrase is the generalization which can be expressed
using quantifiers in either of the following forms:

Existential auantification:

3(x) (e) "There exists an x such that proposition 8 is true."

1Actually there are two operators that are sufficient in themselves: "I" (which may be understood
as "not both - and J and "0" (which may be understood as "neither - nor -'I).
*Uses symbology derived from: Kahane, J oak and PhilosoDhv, pp. 38-56.

4-1 4

U nive rsa I aua nt ificat io n :

V(x) (0) "For all x, proposition 0 is true."

The above provide SLS with the capability to represent a wide range of
propositions. But the symbolization of the statements is only half of the concept.
A facility to make valid inferences from these symbols must be included in any
SLS. This is handled by a set of valid deduction rules which can be
mechanically applied to a proposition or set of propositions with the guarantee
of deriving a true statement (given that the premises are true). By applying
these rules appropriately, one can prove that given a certain set of premises a,
a conclusion p follows necessarily.

As a tool to enhance human thought processes, SLS have been
proven through years of use. However, there are problems using SLS as a
model for AI systems design; three such problems are discussed below.

4.2.2.1 Translation from Natural Lanauaae into Sv mbolic Loaic Notation.
The translation of an English sentence into a logical proposition is a non-trivial
process. In fact, Copi (1954) states "It must be emphasized that there are no
mechanical rules (italics added) for translating statements from English into our
logical notation." And, although Otto (1978) differs on this issue, it is obvious
from his work that it is not an easy task to define the rules for this translation. As
computers are machines, mechanical rules are necessary for them to perform a
task.

What constitutes a "good" symbolization of a proposition is also a
question. It is a necessary, but not a sufficient, condition that a symbolization be
correct in order for a symbolization to be "good." The symbolization must also
be sufficiently detailed for the proof at hand; otherwise, some necessary
information may get "lost in the translation." For example, the sentence "If Adam
is three and Adam is terrible then Adam is typical" could be symbolized as "X",
just as correctly as the symbolization "(A T) 3 U". The difference between
these two translations is in the level of detail.

4-1 5

4.2.2.2 No Alaorithm for Svmbolic Loaic Proof$. The SLS described above
has no algorithmic (step-by-step) process for doing proofs. Choosing the rule to
apply (and to what to apply it) at any step in a proof is the main challenge in
doing proofs. In any non-trivial proof, the number of possible alternative
strategies is astronomical. Thus, even if the premises are adequately
symbolized (see above), doing the proof is still a problem for a computer,
though there have been attempts (Otto, 1978). However, automatic theorem
proving (as described in Section 4.2.3) attempts to work around this problem.

4.2.2.3 No New Information. One severe limitation to the entire deductive
inference methodology is that symbolic manipulation of propositions yields no
new information. That is, what is obtained is only a conclusion as to whether a
series of statements are logically consistent - nothing new is discovered. This
is inherent in the system; if guaranteed correction is required, then insight is
lost.

4.2.2.4 Conclusions. SLS are a useful tool for humans, but are less
applicable (except by analogy) to machine intelligence. The theoretical basis
for symbolic logic systems is, however, one of the major underpinnings of AI
and computer science in general. The next section delves into a methodology
for applying SLS to AI.

4.2.3 Automatic Theorem Provinq
Though it has been around since the early 19603, automatic theorem

proving (ATP) is a subject that has recently gained interest due to its
applicability to AI in general and expert systems specifically. It is basically an
approach to making mechanical derivations from premises to conclusions
based on the principles of logic. It is a subfield of symbolic logic (as described
in 4.2.2) in that it has the same theoretical basis, but differs in its orientation.
Whereas the systems of symbolic logic described previously were created for
use by humans, the ATP techniques are particularly suited to computers due to
the i r computational complexity .

4-1 6

4.2.3.1 Clausal Form. In order for mechanical processes to be performed on
SLS propositions, they must be converted into a standard form, called clausal
form, in which no operators are used except - and v (as previously stated in
Subsection 4.2.2, these two operators are sufficient to describe any two-valued
logical statement). There is a mechanical procedure for converting any logical
statement into clausal form (Clocksin and Mellish, 1984), which involves
manipulating the logical symbols in a repetitious fashion. First, all conditionals
and biconditionals are replaced by their logical equivalents as shown below:

(A XI B) is replaced by (-A v B)

(A t) B) is replaced by ((-A v B) (-B v A))

Next, all negations are manipulated so that they are attached to atomic formulae
(anything which is not a complex statement), using the following rules (Cohen
and Feigenbaum, 1982):

-(-A) is replaced by A

-(A 0 B) is replaced by -A v -B

-(A v B) is replaced by -A -B

-Vx A(x) is replaced by 3x -A(x)

-3x A(x) is replaced by Vx -A(x).

Next, all existentially quantified variables are replaced with constants unless it
is within the scope of a universal quantifier (in which case, it is replaced by a
function on the universally quantified variable). For example:

Vx 3y P(x,y) is rewritten as Vx P(x, f(x)).

Universal quantifiers are unnecessary after this, since we can assume
that any variable that was not existentially quantified is universally quantified.
Thus, the example above would be written as:

4-1 7

P(X ,f(x)).

The last step is to convert to clausal form by applying DeMorgan's laws:

-(A 0 B) is replaced by -A v -B

-(A v B) is replaced by -A -B

Once this process is complete, the next step in ATP is resolution.

4.2.3.2 Resolution. The resolution algorithm is the basis of ATP. It is the
process of trying to prove a proposition by showing that the proposition's
negation yields a contradiction. The basic reasoning method is:

(UP v Q)

kLW3
(-P v R)

For example, given:

Either Paul is not smart or the Queen is and

Either the Queen is not smart or Ralph is.

Then it is true that:

Either Paul is not smart or Ralph is.

A necessary function of any ATP is unification, which is the process of
finding substitution instances for the variables in a statement in clausal form.
This allows the ATP to find values to "plug into" the propositions in order to
make deductions based on the information given by them.

4-1 8

There are algorithms both for
problem with resolution is that the

unification and
search space

resolution. The major
(i.e., the number of

combinations that must be examined in order to resolve a theorem) grows
exponentially with the number of premises in the problem description. This

means that even relatively small problems can take an unreasonable amount of
time to solve. Some heuristic strategies have been developed which cut the
processing time, but they have the drawback of not being complete (that is, they
are not guaranteed to give an answer).

4.2.3.3 Data Base Manaaement and Deduction. One class of problem in
which ATP's are particularly suited is in the area of data base access. If all
information in a data base were complete (that is, every possible property and
relation were spelled out explicitly), then deductions would not be necessary.
However, such a situation is technologically unfeasible as well as nearly
theoretically impossible. The number of relations between the elements of even
a small set of data can be almost infinite and therefore unmanageable. A better
way to deal with this situation is to define relations between classes of data
objects, then perform deductions on them. For example, given the following
data base:

Proiect Tvoe
1
2
3
4
5
6
7
8

a
P
Y
a
P
P
a
a

and given that we know that all projects of type p and y are of type 8, we might
want to ask: "What are all of the projects of type e?" In order to answer this, a
field "meta-type" could be added to the data base as follows:

4-1 9

way to deal with this situation is to define relations between classes of data
objects, then perform deductions on them. For example, given the following
data base:

P roi e ct TvDe
a
P
Y
a
P
P
a
a

and given that we know that all projects of type P and y are of type 8, we might
want to ask: "What are all of the projects of type e?" In order to answer this, a
field "meta-type" could be added to the data base as follows:

P roi e ct

a
P
Y
a
P
P
a
a

Meta-tvDe

0

e
e
0

e
e
0

0

This scheme would require more storage space. Alternatively, we could build
the following rules into a data base retrieval mechanism:

4-20

a
P
Y
a
P
P
a
a

0

0
0

0
0

0

0

0

This scheme would require more storage space. Alternatively, we could build
the following rules into a data base retrieval mechanism:

All projects of type a are of type 0;

All projects of type p are of type 0; and

All projects of type y are of type 0.

The above would provide for the same operation without using the extra storage
space. It could be argued that this is simply a trade-off between storage and
processing time (since the rule processing would take some time). However,
this argument falls apart if a new piece of knowledge is added: all projects of
type a or p are of type p. With the first method, a new field would be added,
called "meta-type 2," and each of these types, along with the project information,

would be stored. With the ATP method, only one more rule is added. This
classification of projects could continue ad infinitum, and the first strategy would
quickly become infeasible. This, then, is a class of problem to which ATP
techniques are quite well-suited.

4.2.3.4 Go nclusionz. Automatic theorem proving is a very useful technique
for solving certain types of problems. However, it is not a panacea since the
type of reasoning used by this approach is very stilted in that it allows for the
representation of only a small class of problems. Also, the use of an ATP in an

4-20 A

8
I
8
B
1
I

expert system requires a large up-front investment in knowledge engineering to
be effective since the rules must be very carefully coded to be of any use.

4.2.4 Probab ilistic Reaso ning

statements about which there is no uncertainty (Rauch, 1984). For example,
Symbolic logic systems are most often designed to deal with

(1) If evidence E is true, then hypothesis H is true.

Frequently, however, information is not "black or white"; there is usually a
measure of uncertainty associated with it. In order to denote uncertainty, the
following formats are used:

(2) If evidence E is true, then hypothesis H is true with probability
PA (confirming evidence) or

(3) If evidence E is not true, then hypothesis H is true with
probability Po (disconfirming evidence).

This switch from certainty to uncertainty allows the acquisition of new
knowledge (Strawson, 1966) and is the basis of scientific reasoning. Thus,
techniques for valid inference with uncertainty have been developed. By
combining probabilities with symbolic logic, valid deductions can be made,
along with a calculation of a degree of certainty. The degree of certainty

indicates how likely it is that the consequent of the deduction is true. The
mechanics of these processes are discussed below.

4.2.4.1 Probability of an Hypothesis. Using the P1 and PO probabilities

described in (2) and (3) above, it is possible to calculate the probability of a
certain hypothesis (PH) to be:

where PE is the probability of the evidence being true.

4-21

I
1
I

I
I
1
I
1
1

I
R
e

The standard deviation of the error in the probability estimates can
then be used as a measure of confidence (OH) in the calculation. It can be

derived as follows:

where OE is the standard deviation in the error estimate of the probability of the

evidence.

4.2.4.2 Lypes o f Probabilities. The probabilities Po and P i can be either
stated or derived. Stated probabilities are values obtained by experiment or
definition (i.e., it is a given). Derived probabilities are based upon the
manipulation of two or more probabilities. There are two main schools of
thought as to the origin of these values. The classical theory of probability
states that probabilities are measures of rational expectation (Kahane, 1973).
For example, when throwing a die, most people know that there is a 1 in 6
chance of rolling a "three." This is an example of an a priori probability - the
value is determined before any dice are thrown. The frequentist theory
determines probabilities based on experimental evidence. A frequentist would
determine the probabilities of throwing a "three" by throwing a die numerous
times and dividing the number of occurrences of "three" by the number of times
the die was thrown. Sometimes a stated probability will be based on an
individual's estimate (in which case, there may or may not be any rationalization
at all).

As stated above, derived probability is determined by some
manipulation of one or more other probabilities, which may themselves be
either stated or derived. At some point, of course, some stated probabilities
must be given. The rules for the combination of probabilities are discussed
below.

4.2.4.3 Dependence Relations. Central to the discussion of probabilities is
the notion of dependence. Two events A and B are independent i f the
probability that A happens has no effect on the probability that B happens and

4-22

vice versa. Two events that are not independent are either maximally
dependent or minimally dependent. The notions of maximal and minimal
dependence do not, as the names might seem to indicate, differ as to the
strength of the dependence between the two events. An event A is minimally
dependent on an event B when A is maximally dependent on not B (that is,
there is a negative correlation between A and B). The strength of the correlation
remains the same.

4.2.4.4 Probabilities and Loaic. There are formal methods for calculating the
probability of an event E, where event E is an established dependency between
events A and B (E = A 0 B). The dependency relationship can be stated as:

Jndependent events:

j3 NOT TRUE

Maximum deee ndenca:

B TRUE B NOT TRUE

Minimum dependence:

B TRUE B NOTTRUE

AD!E PA-MAX(PA,~-PB) MAX(PA,~ -PB)
A NOT TRUE MAX(1 -PA,PB) 1 -PA-MAX(~ -PA,PB)

When the events are independent, it is easy to calculate a standard deviation
which can be used as a measure of confidence in the result. When the events
are not independent, a standard deviation can be estimated to arbitrarily close
tolerances (Rauch, 1984).

4-23

4.2.4.5 Probab ilitv Trees a nd Baves Theorem. Another approach to
calculating probabilities is by using a probability tree, which is illustrated in
Figure 4-2. This method allows the calculation of all possible probabilities of
multiple tests using the multiplication theorem of probability (Lipschutz, 1965):

P(A B) = P(A) P(B I A)

which states that the probability of A and B is equal to the probability of A times
the probability of 6 given that A has occurred.

(2/3)(1/4)(2/5) = 4/60

(2/3) (1 /4) (3/5) = 6/60

(2/3)(3/4)(5/5) = 30160

(1/3)(2/4)(5/5) = 10160

(1/3)(2/4)(1/5) = 2/60

(1 /3)(2/4)(4/5) = 8/60

Figure 4-2. Probability Tree

Bayes Theorem provides a technique to calculate the probability of A
given that B has occurred as follows (Charniak and McDermott, 1985):

P(A1B) = P(A) P(B1A)

An expert system named Prospector, which is a system for predicting
the location of ore deposits, uses a Bayesian Inference Network. The Bayesian
Inference Network is based on a principle of intermediate states (Charniak and
McDermott, 1985). These states define a network of valid inferences, each with

4-24

associated probabilities, and allows situation modeling; the system searches for
patterns of situations in which ore deposits occur.

4.2.4.6 Conclusions. The concept of probability enhances the use of
inference systems in that it allows valid conclusions to be drawn in the absence
of complete information. At some level, however, the system still relies on a
somewhat hazy notion - that of rational belief. The origin of the stated
probabilities is still an open question. Nevertheless, despite theoretical
questions, probabilities often provide a "commonsense" approach to problem
solving. The ability to manipulate probabilities is central to most rule-based
expert systems in use today.

4.2.5 FUZZY Loa ic and Fuzzv Set T heoy

At the heart of many AI problems is the basic fact that human problem
solving often occurs under conditions of vagueness or uncertainty. The
uncertainty may be in reference to the information used or the methods
employed, or both. For example, given the following rule:

(1) If a patient's temperature is high, then the patient has a fever.

The following questions could be asked:

What temperature is "high" and

Is rule (1) always true?

In a traditional computer program, "high" would be defined as crossing some
threshold (e.g., 100°F) and the rule would be used as if it were always true.
Thus, if the patient's normal temperature were 96°F and his current temperature
were 99OF, the program would not diagnose the patient as having a fever.
Likewise, if the patient had just been removed from a vat of near-boiling water,
the fact that his temperature was high would not necessarily indicate that he
was suffering from a fever.

4-25

Traditional computer science is built upon Boolean logic, which is, in
turn, based on set theory. One of the basic axioms of set theory is the concept
of the excluded middle, which states that the following is always true:

A V - A

This translates into the fact that an element cannot be both in a set and not in
a set at the same time. Though this seems self-evident enough, it is also a very
limited way of looking at things. Consider, for example, the set of "expensive
things." Most people, it is assumed, would agree that a Rolls Royce belongs in
this set and that a pack of bubble gum does not. But what of a Ford Escort?
Since it is a car, it is an expensive item. Yet, in relation to other cars, it is not
very expensive. And what of a pack of gum that costs $1.50? Suddenly, this
gum is in the same category as a Rolls Royce! There are two principles at work
here: vagueness and open textureness. A word is vague if it is used differently
at different times, but a word has an open texture if the lines of differentiation are
not defined (and also not definable). Vagueness can be overcome by stricter
definition; open textureness cannot.

It is easy to dismiss this discussion as a problem of semantics, yet
there is a fundamental concept here: human thought processes are not usually
as "cut-and-dried" as traditional logic and set theory would have it. For
computers to begin to more closely emulate human thought processes,
appropriate fuzzy representation schemes would have to be devised. This was
the impetus for the creation of fuzzy set theory and its corollary, fuzzy logic.

4.2.5.1 Fuzzv Thinking. Fuzzy set theory has, as its base concept, sets
without sharp borders. Subsets of these sets have elements, each of which has
an associated "degree of membership." The degrees of membership are
defined as a number between zero and one. For example:

tal1:height -> [0,1]

which might be defined as (Negoita, 1985):

4-26

TALL I
1
I
II
1

I
I
B
I
I

5'0"
5'4"
5'8"
6'0"
6'4"
6'8"
7'0"

0.00
0.08
0.32
0.50
0.82
0.98
1 .oo

The normal types of relations are defined for these fuzzy sets:
complementation, conjunction, disjunction. By combining fuzzy relations, new
relations can be defined (such as "middle sized" from "not tall and not short").
All of the normal properties (i.e.l communitivity, associativity, DeMorgan's laws)
apply to the fuzzy set operations. Thus, an entire "fuzzy logic" is built.

A compositional inference technique uses inferences made from sets
of membership values and known relations between sets (Negoita, 1985). This
technique permits the development of inferences between known and unknown
values based on a correspondence between the membership values of the sets
in question. For example, given the membership value of the subset TALL of
the set HEIGHT, the inference could be made that the subject had a certain
WEIGHT (within some certainty range) if there was a known relation between
the set HEIGHT and the set WEIGHT.

4.2.5.2 Conclusions. Fuzzy set theory and fuzzy logic allow for a closer
correspondence between the way humans think and the requirements of a
computer system. In this way, human thought processes can be more readily
captured in an AI or expert system. For example, it would be beneficial for the
user to be able to use such words as "large," "expensive," etc., and have these
concepts correctly interpreted by the system.

4.3 EXPERT SYSTEMS

An expert system codifies the specialized problem solving expertise
of an authority (and, in some cases, many authorities) to assist in solving
complex problems in narrow domains. Expertise in a specific domain may

4-27

generally be described as knowledge about the domain, the problems involving
the domain, and the methods and approaches to solving the problems.
Particularly important types of expert knowledge are the heuristics or "rules of
thumb" which allow an expert to effectively evolve solutions.

The terms "expert system" and "knowledge-based system" are often
used interchangeably to refer to AI-based systems that capture expertise in
problem domains. In this report, a knowledge-based system is considered
to be a system consisting of two separated components:

0 A knowledge base representing the heuristics, facts,
judgments, and experience about a selected problem domain.

0 An inference processor that interprets the contents of the
knowledge base to infer conclusions toward a solution of the
problem.

The inference processor (or inference engine) very often incorporates an
automatic theorem prover and probabilistic inference capabilities as discussed
earlier in this section. A full discussion of knowledge encoding is in Section 5.
The separation of the knowledge from the inferential mechanism permits more
flexible development of the application and more closely follows how humans
deal with complex problem domains.

An expert system is considered to be a type of knowledge-based
system in which:

0 The knowledge base represents human expertise in the
domain;

e The inference engine mimics human expert reasoning
processes; and

0 The system's inferential processes are available to the user for
review.

4-28

Traditionally, expert systems are generated by a "knowledge
engineer" who extensively questions an expert in a particular field to determine
information and know-how about a selected topic and translates the expert's
knowledge into a knowledge base. As expert systems have become more
available and sophisticated, it has become clear that this knowledge base
construction process is both the heart of and the main bottleneck to building an
expert system. Thus, less time is now available for the creation of the inference
mechanisms themselves. This has led to the increased use of expert system
shells, which are tools for creating expert systems that eliminate the need for
"reinventing the wheel" (or, in this case, the inference engine).

4.3.1 FxDert Svste m Shells

The use of a good inference engine is critical to the success of
building an expert system. An expert system shell provides numerous program
modules to handle a variety of tasks, thus freeing the knowledge engineer from
having to deal with these details. Programming the functions an expert system
shell performs is generally considered an overwhelming effort: the modules
must not only exist, but must also perform extremely efficiently. The more
complete a shell is, the easier the knowledge engineer's job will be, since he
will have more tools at his disposal. The more efficient a shell is, the more likely
the system will actually be used, since expertise will be offered more quickly.

The modules included in an expert system shell vary, but typically
include:

e A rule editor to create the structures the knowledge engineer is
using to represent the information he has gathered during the
knowledge acquisition phase,

b A consistency checker to determine if the structures entered
are logically consistent (a structure might be redundant or
conflict with others),

b An inference engine to perform the actual reasoning of the
system to move from problem to solution by applying the
knowledge base,

@

4-29

0 A data base manager to store the knowledge base, and

A user interface to make the shell easy to use.

Each of these modules may vary tremendously from shell to shell in
sophistication. For example, a system's rule editor might require the structures
to be entered as programming-type statements in some computer language or
as abstractly as a series of pictures representing conditions which, when
satisfied, derive a result. Similarly, an inference engine might search for
solutions by simply exhaustively applying rules or could incorporate such
features as using multiple paths of reasoning and certainty factors. The
functional sophistication of a shell determines the level of effort a knowledge
engineer must expend to make an expert system perform in a given manner.

Besides considering the effort a knowledge engineer must make, the
modules' efficiency also must be considered. Especially important in designing
an expert system is the inference engine's capabilities since, as the number of
rules in a system increases linearly, the time needed to reach a solution can
increase geometrically. This exponential explosion of solution time has proven
the downfall of many otherwise excellent expert systems; no user can afford to
let a system spend hours making a decision needed in seconds. Finally,
memory efficiency is also a significant consideration; knowledge bases tend to
be very large, and when hardware constraints become significant, programming
can become a nightmare.

Expert system shells vary greatly from implementation to
implementation, but the better ones provide numerous, efficiently programmed
functions essential to creating an expert system. Shells provide functions which
are not normally feasible to program due to the large developmental costs
involved. Therefore, one heuristic concerning building expert systems is to
choose a shell wisely since the shell's quality is often an important factor in
determining the system's successful development and use.

4-30

5.0 KNOWLEDGE REPRESENTATION TECHNOLOGIES

There are three types of information necessary to the successful
operation of INSITE - historical project data, project knowledge, and user
knowledge. The historical project data base will utilize standard data base
management system technology (probably of the relational type). The
technology driving this aspect of HISTORIAN is well-understood and readily
available in "off-the-shelf" software packages. A knowledge base is distinct
from a data base in that a knowledge base incorporates not just data, but the
relationships among the data, the relationships among the types of data, and
further, the relationships among the relationships among the data and types of
data. Information for project and user knowledge will require the capabilities of
a knowledge base, and this section presents information about relevant
knowledge relation schemes and how this knowledge can be acquired.

5.1 N W N TI N T HNI

The representation of knowledge is the heart of any expert system
and refers to employment of an explicit symbolic representation of the
information in its domain of concern. One of the hypotheses of AI is that
knowledge is representation: that is, "knowing" consists in large part in
representing facts about the world symbolically (Brachman, 1985). Selection of
the techniques used to represent the project and user knowledge is perhaps the
most important decision about the INSITE system; this decision determines both
the kinds of problems that can be solved and the methods of solving these
problems. Research in AI knowledge-based systems has identified several
major types of knowledge representation (KR) techniques which are
summarized below.

5- 1

5.1.1 Procedu ral ReD rese ntat ion
In a procedural representation, relevant knowledge is embodied in

"procedures" (i.e., subroutines that can do specific things in well-specified
situations). Procedural representations have the advantage of capturing a large
amount of knowledge, including heuristics, economically. On the other hand,
the "big picture" may be lost and the underlying knowledge is not easily
retrievable or modifiable.

5.1.2 Semantic Nets
A semantic net represents objects, concepts, and events as nodes in

a network (and the interrelationships between them as links) and is based upon
the concept formulated by Woods (1975). The nodes can be linked either
through memberships in class (the "is-a" concept) or as a subproperty of
another node (the "has-a" concept). Semantic nets provide a very flexible
structure, and additional nodes and links can be added at any point. The
semantic net is most useful to represent relationships between objects. The "is-
a" and "has-a" relationships permit an inheritance capability such that any
characteristics altered in a node can be automatically carried through another
node. However, a major problem with the semantic net for knowledge
representation is that a given net may have several interpretations and a given
meaning may be reflected in several different nets.

5.1.3 Frames and ScriDts

Frames and scripts, based upon the ideas of Minsky (1975), are
techniques to represent the sequence of events and properties that typically
occur in a given situation in an organized fashion. A frame is a knowledge
representation structure in which new data is interpreted in terms of previous
experience. A frame has slots to represent all the attributes of interest. Slots
can contain factual, descriptive, or procedural information. Slots can also
represent another frame so that an inheritance hierarchy is established (i.e.,
lower-level frames inherit knowledge about the associated higher-level frames).
Most frame techniques for knowledge representation also incorporate
provisions for generic frames to be established for various object types. Frames

5-2

have the capability to represent a great complexity of information and are a very
active current research area. Some of the important unresolved frame-related
issues are control issues (such as determining the appropriateness of a given
frame and selecting a second frame if the first is not appropriate).

Scripts may be viewed as a special class of frames in that scripts
embody a large amount of previous knowledge in "typical" situation
representations. Scripts are specifically designed to represent knowledge
about events; a normal or default sequence is represented as well as possible
exceptions or errors. As with frames, there are procedural attachments with
scripts.

5.1.4 Production Rules
Production rule knowledge representations are based upon

conditional statements that specify an action that is to occur under a certain set
of enabling conditions. The rules are generally stated as two-part statements in
the form: "If this premise is true, then perform this action or make this
conclusion." Each rule is evaluated, and when the current condition matches
the premise stated in the IF rule (Le., the condition is TRUE), then the indicated
action is performed. Such rules permit explanation of system conclusions as a
sequence of logical steps. Production rule techniques are most useful for
presenting procedural knowledge (i.e., methods for accomplishing goals).
Frequently, production rule techniques also incorporate forward and backward
chaining rules and a pattern matching capability. Forward chaining matches
rules against facts to formulate new facts; backward chaining attempts to prove
a new rule by determining what facts are required. Pattern matching utilizes
complex algorithms to formulate decisions based upon the best match to current
conditions. Rule-based knowledge representation techniques have become
dominant in current expert systems development. However, production rules
become unwieldy and difficult to manage as the number of rules increase since
rules can be added that conflict with previous specified rules.

5-3

I
I
I
I
I
1

5.1.5 Conclusions
On the surface, it might appear that the "is-a" type of representation

found in semantic nets would be ideal for representing historical project data. In
this case, however, we are interested in encoding nothing more complex than
sets of project attribute values, and typical data base record structures are
sufficient. Semantic nets and frames are capable of representing very complex
relations hips and carry a correspondingly large overhead for storing and
processing very simple types of information. Project knowledge (the source of
and relations between attributes) and user knowledge (profiles) are a very
different matter. Here the amounts of data may be small, but the relationships
may be complex. For example, on software development projects, the time
needed to complete the project may be increased due to manager
inexperience. At the same time, this effect may be offset by experienced
programmers working in a highly productive development environment.
Knowledge of this type could, for some purposes, be represented in semantic
nets or similar structures. INSITE, however, requires that project knowledge
and user knowledge be used to drive camputer-human interaction and single-
analog estimation. A production rule system is the appropriate form of
knowledge representation in this case. Such a system can easily capture both
the relationships between data items and the relationships between data and
required actions. Unlike procedural representation, production rule
representation is also consistent with a rapid prototyping approach to
development since a rule base can be continuously modified in an efficient
manner.

5.2 KNOWLEDGE ACQU ISITION

Knowledge acquisition applies the psychological and statistical
aspects of information gathering to artificial intelligence, thereby providing an
essential element of any expert systems endeavor. Knowledge acquisition
entails the elicitation of consistent, comprehensive information from expert
sources organized in a concise fashion for inclusion into a knowledge base
(KB). The importance of knowledge acquisition to a system providing expertise

5-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

on project planning/scheduling cannot be overstated. Once information
concerning historical project estimates has been examined and the
planning/scheduling process well-understood, a body of knowledge can be
compiled from which expertise can be offered.

Several types of information are needed to populate the knowledge
base, principally structures and heuristics. Structures of various types,
including rules, frames, and propositions, provide the elementary facts needed
to solve specific pieces of a problem. Heuristics, on the other hand, are the
more intuitive or "rules-of-thumb" considerations that an expert uses in solving a
problem. Heuristics provide general guidelines which focus the problem solver,
whether human or machine, on subsets of the domain in search of a solution.
Both types of information must be included where any significant application of
expert systems, including project scheduling, is undertaken. Information
structures comprise the individual facts that are steps along the course to a
solution, while heuristics provide the control to keep the path straight. The
proper use of these two types of information is of paramount importance in
expert systems development. Although structures provide solutions, heuristics
ensure a solution within a reasonable amount of time.

The following are descriptions of the most common methods used to
acquire domain knowledge to construct an initial KB. Accompanying each
technique is a critique of its strengths and weaknesses. It is important to realize
that often a combination of methodologies is used in the knowledge acquisition
process to ascertain information in a top-down (with a progressive expansion of
detail) or bottom-up (with an increasingly generalized view) fashion as needed
to facilitate the knowledge engineer's (KE) comprehension of the domain.
Multiple techniques can also be employed to implement a more intelligent
system since some methods are geared towards creating an initial knowledge
base and others towards implementing a learning system whose knowledge
base grows through use. The relationship of these processes to the knowledge
engineering problem as a whole is rather complex (as illustrated in Figure 5-1).

5-5

Observation

I
I
I
I
I
I
I

Questionnaires
Domain 4 8 Knowledge Knowledge

Engineer Engineer Manipulation!
Responses

I
I
1
I
I

Expert
SY stem

Figure 5-1. Knowledge Acquisition Process

5.2.1 Initial Knowledae Base Construction

5.2.1.1 Interviewinq. Interviewing is the obtaining of information via the KE's
direct discussions with one or more domain experts. This technique is
commonly used to determine the objectives, methods, and structures which
should be implemented in the proposed system. This method allows the KE to
directly query the domain expert (DE) and to immediately qualify any
ambiguities which arise. Also, subtleties in solutions visible only via direct
interactions with an expert are noticed, providing insight unavailable by many
other methods; interviewing facilitates discovering nuances such as exceptions
to rules. However, since the KE dynamically interacts with the domain expert,
the course of the session is unknown. Therefore, interviewing is an inexact
science implemented using general guidelines, not formal procedures, to
follow. Interviewing requires the continued cooperation of one or more experts
over an extended period of time. Thus, a variety of organizational problems
arise, including obtaining experts, determining the validity of differing expert

5-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

opinions, and scheduling experts with limited amounts of time. Since the
process is very human-dependent, a variety of psychological issues must be
accounted for, including maintaining the experts' cooperation and interest,
allaying their fears of technology and job insecurity, and dealing with
interpersonal communication barriers.

Related to interviewing is another knowledge acquisition technique -
observation. Observation is a technique whereby the KE observes the domain
expert solve actual problems. It has many of the same advantages and
disadvantages of interviewing. Observation does provide an exceptionally
useful tool to understand the specific structures and procedures used to attack
an actual problem. This method also is used to evoke information about
aspects of the problem assumed as trivial.

These two techniques are often combined with rapid prototyping to
provide successively more sophisticated implementations of an expert system.
By having the experts use each prototype system and provide feedback, advice
is generated with increasing fidelity in each version. However, the method
requires the ongoing efforts of a KE. Once the knowledge base has been set in
place, information structures cannot be altered without the programming of a
knowledge engineer. Other techniques must therefore be used to implement a
true learning system.

5.2.1.2 Questionnaires. The technique of questionnaires involves the
construction and distribution of inquiries to domain experts and the encoding of
responses by the KE. This method generally has the benefit of requiring little
time and inconvenience on the part of domain experts. Another advantage is
that it provides the statistical information which can be used to derive general
rules, avoiding the problem of creating a rule for one instance. Unfortunately,
however, this method offers organizational barriers to being implemented
iteratively for feedback purposes and cannot be used to incrementally augment
the knowledge base after the system has been developed. Further, the

5-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

psychological and statistical considerations involved in constructing a n d
interpreting questionnaires are numerous. Research on complex analysis
techniques has been done and is ongoing, but further discussion on the topic is
beyond the scope of this report.

5.2.1.3 External Sources. A variety of external sources can be used to
compile information for a knowledge base. The simplest form consists of the
outside information sources the domain expert uses in the normal course of
work (such as drawings, tables, and handbooks). These types of sources offer
expertise without domain experts and so are a convenient method to obtain
information. Yet, for the same reason, these sources offer a fixed amount of
information; if the KE is unsure of some presented concept, another data
gathering technique would be necessary for further clarification. Consequently,
external sources are most often used to acquire only basic information and for
explanation purposes within the system.

Another type of external sources is the use of examples or case
studies. The use of examples is accomplished by providing data concerning
historical instances of the process to the system. The data, in turn, is
manipulated in some fashion by the expert system to extract and derive useful
information. An example of using this technique might be an expert system
modeling a courtroom judge (Schank, 1984). Ongoing entries of case histories
of criminal behavior could continually refine the system's structures to more
accurately reflect factors such as repeated criminal behavior, tendencies to
violence, and abuse of parole privileges. Using examples entails many
complicated considerations such as establishing proper metrics, determining
how data is to be manipulated, and managing large quantities of information
(since, generally, as more cases are entered into a system, the more accurate
the information becomes). Further, since a system using this technique is highly
dependent upon the user's evaluation of the historical instances, the issue of
user interfaces becomes more significant. Yet the use of examples as a method
driven by data (and not programs) does permit the system to refine its structures
as the number of examples increase.

5- 8

6.0 USER-COMPUTER INTERFACE TECHNOLOGIES

I
I
I
I
I
I

I
I
I

The INSITE system will provide many powerful functions to the user to
assist them in developing time estimates for their projects. However, these
functions will go to waste if the user finds it difficult to communicate with INSITE,
specify the characteristics of their projects, or decipher the results. Therefore,
the nature of the user interface is a critical determinant to the successful use of
INSITE. This section presents the results of research conducted into several
critical areas for the user interface (namely, the user-computer dialogue and
user profiling).

Unfortunately, few absolute rules and guidelines are available to
assist the system developer in designing interactive interfaces. This section will
present "guiding principles," but it is expected that the exact nature of the user
interface will evolve in conjunction with the development of the INSITE
prototype through extensive involvement of the proposed user community and
their feedback.

The discussion of user interfaces assumes that INSITE will be
developed on a PC class of microcomputers and that the microcomputer is
equipped with 1) a color monitor capable of bit-mapped graphics and multiple
windows and 2) a pointing device such as a mouse. Bit-mapped graphics
permit every screen dot to be individually turned on or off by resetting the
corresponding bit in memory and permit the rapid display of graphic
information. Windows provide the capability to juxtapose several screens of
information (text or graphics) simultaneously and to move information from one
window to another. Pop-up windows with menu selections permit the user to
scan the menu options and select the desired one without having to recreate
the original screen of information. Windows are also very useful for displaying
help messages. A mouse is a small box (about the size of a deck of playing
cards) with one to three buttons on its top face that functions as a pointing
device. The mouse motion translates into corresponding movements of a

6- 1

I
I
3
I
I
I
I
I
I
1
I
1
I
I
I
I
I
I

pointer (e.g., a cursor) on a display. It allows the user to manipulate information
and select commands or locations on the screen without having to enter
specialized interface commands via the keyboard.

6.1 INTFLLIGFNT USE R DIALOGUE

One of the key issues in designing a user interface is the selection of
the techniques used for communications between the user and the computer.
This not only involves selection of a dialogue type, but the development of
techniques to assist and guide the user's interactions with the computer system.
As described in Section 3, INSITE users will possess varying levels of computer
usage skills and project management expertise. The user-computer interface
(UCI) must supply a meaningful structure within which the two-way dialogue
between the user and INSITE occurs.

6.1.1 Dialoaue TvDes

objects to be manipulated. There are five primary dialogue types:
The user communicates with the system by specifying commands and

1. . Command-Driven,

2. Men u-Driven,

3. Question and Answer,

4. Form Fill-In, and

5. Graphics- Driven.

Each dialogue structure type has a particular user appeal, depending on a
user's knowledge of the system and computer expertise. Many systems are
now based on a hybrid of these techniques.

6-2

6.1.1.1 Command-Driven Dialoaues . Command-driven dialogues typically
display a brief prompt to the user (e.g., a question mark) and expect the user to
type in a command name, phrase, or associated mnemonic (e.g., PRINT or PR).
Since the system offers very few prompts or choices, the user is expected to
know which system features are currently available and their syntax. If the
system does not recognize a command that the user enters, it typically responds
with an error message. The biggest advantage of a command-driven interface
is speed. Very few keystrokes are required to initiate any action, and it

eliminates stepping through multiple levels of menus to specify an action.
Command-driven interfaces appeal to experienced users since the system
functions are more readily accessible. Command dialogue's biggest
shortcoming is its inherent "unfriendliness." A system or computer novice
viewing a display with nothing but a prompt has no guide as to what to do next.
Novice users have many problems learning a command dialogue system since
they are unfamiliar with both the functions that can be accomplished and the
command names required to invoke the functions. Additionally, in order to
invoke a command, the user has to first remember the designated command. If
there are too many commands to be able to remember them easily, users tend
to find this facility too frustrating and time-consuming to use.

6.1.1.2 Menu-Driven Interfaces. Menu-driven interfaces display every
possible choice that the user can make in a menu that is typically arranged in
an hierarchical manner (i.e., one choice or action must be taken before
another). The selection of one menu item generates another menu, which
brings up yet another until a final selection allows the desired function to be
accomplished. The major advantage provided by menu dialogues is the ability
to guide a user through the steps needed to accomplish a task. Menus reduce
memory demands because they only require the user to recognize rather than
recall the correct option (Martin, 1973). However, menu-driven interfaces are
not without problems. New users might find that learning larger systems is
difficult because information must be integrated across a series of displays. As
each menu is viewed in isolation, relationships between menus are difficult to

6-3

I
1
I
I
1

grasp and the user may get lost in the hierarchical structure. However, menu
interfaces do facilitate use by novices. On the other hand, experienced users
are often frustrated when they must step through a number of menus before
reaching the desired function since not all functions are available from all
menus.

A strategy that is effective for workstations with display windowing and
mouse capabilities is the pull-down menu that combines command- and menu-
driven techniques. Pull-down menus display a command bar at the top of a
window with a submenu displayed in a new window box beneath it showing all
available options. The user can use the mouse to move a pointer to one of the
choices displayed in the box. As the pointer moves among the menu options,
the current selection is highlighted and the user depresses a keyboard or
mouse key to indicate the desired selection.

6.1 .I .3 Quest ion and Answer Dialoaues . Question and Answer (Q&A)
dialogues present the user with a series of questions to which the user
responds one at a time. The Q&A process is repeated until the system has
received the necessary information. Q&A dialogues typically decide the next
question based upon the answer(s) to the previous question(s). Some
incorporate a degree of natural language capabilities in order to avoid simple
yes/no responses. If the system cannot understand a response or requires
additional information, clarification questions may be generated. Similarly, if
the user cannot understand a question, an explanation facility is typically
provided.

Q&A dialogues are most successful with novices who are unfamiliar
with the problem to be solved. However, experienced users quickly become
impatient when forced to step through a lot of questions. One way to alleviate
this problem is to provide multiple modes of use (e.g., full sentence mode and
abbreviation mode). Additionally, default response can be set for the particular
user (this is described in more detail in Section 6.2) as part of their "user
profile." An additional consideration is how to permit the user to change the
response to a previous question.

6-4

W

I
1
1
I

I
I
1
1
1
I
1
I
1
1
I
I

6.1.1.4 Form Fill-In Interfaces . Form fill-in (or fill-in-the-blanks) interfaces
provide the user with input forms in which the user enters necessary commands
and data. A display of labeled fields and an area for entry of input are shown,
and the user moves the cursor between the input areas and enters the
appropriate information. This type of design is well-suited when there is a
correspondence between the input display and paper forms familiar to the user.
This type of interface requires the user to be cognizant of the field labels,
permissible field values, and data entry techniques to be employed in moving
among the displayed fields. Form fill-ins are most appropriate for frequent
users.

6.1.1.5 Graohics-Driven Interfaces . Graphics-driven interfaces are a fairly
recent development and generally provide an interface that is both "friendly"
and non-restrictive. Graphic icons replace or supplement words as command
designators in menu-based systems. Instead of a temporal order display such
as a menu, the user is presented with a spatial order of possible actions that are
represented by "iconic" or pictorial representations of actions. The user
positions a graphics pointer (such as a mouse) over the icon representing the
desired action. Icons take advantage of the human ability to discern pictorial
differences more quickly and easily than textual differences. However, the
icons must be designed carefully in order to maximize their usefulness and are
best suited when a limited set of clearly distinguishable options are available.
The visual interfaces made possible by iconic representation provide an object
orientation rather than a procedure orientation and enhance the user's
knowledge about the system and its capabilities. However, there currently
exists a very limited body of information about the effectiveness of iconic
representations and how they should be designed to maximize information
transfer.

6.1.1.6 User Dialoaue Recommendations. It is recommended that the initial
dialogue style for the prototype INSITE system be a combination of question
and answer and menus as illustrated in Section 7. Menu bars can be used to
show a list of available INSITE functions on a line at the top of the screen. Pull-
down menus can list submenus in a separate window displayed beneath the

6-5

I
1

I
I
I
1
1
I
8
1
8
I
I
I
I

menu bar and will contain the list of commands available for a particular
selection from the menu bar. Once the user has specified the INSITE function,
additional dialogue with the user will occur using a series of questions. Since
the series of questions will vary, depending upon the responses to previous
questions, the form fill-in type of input does not appear to be appropriate.
However, recent research in the area of input templates such as those used on
the Apple Macintosh computer will be considered in the development of the
user interface (Smith et al., 1982; Norman and Draper, 1986).

6.2 W R PROFILES

Typically, each user of a computer system develops a personal
methodology for interconnecting seemingly isolated techniques and strategies
in using a specific system. Over time, the user develops a great deal of
problem-specific declarative and procedural knowledge; and as a result, the
user becomes proficient in operating that particular system. During an
individual's tenure in a specific position, he or she is exposed to various
computer systems. The time and effort spent to learn a new system can be
significant. The learning phase is not productive and can be considered "lost"
time. If the "time to learn" could be reduced to a reasonably short amount of
time, the "lost" time would be negligible and the user would be able to benefit
more quickly from the system. Each user will also be applying the system to the
needs of a particular project. A person oriented towards software projects will
probably have a different focus than a person oriented towards hardware.
Since INSITE will be applicable to all project types, it is important for it to
include a capability to communicate with the user using a unique terminology
applicable to the user's needs. For these reasons, it is recommended that
INSITE include the capability to construct a user profile. The user profile
module will be a tool designed to capture user preferences, store them,
represent them, and permit the user to interact with INSITE in a customized
manner that accommodates that particular user's knowledge rather than being
restricted by system-defined commands and protocols.

6-6

This user profile capability will permit a computer user to tailor the
INSITE interface by allowing the user to specify the terms used for
communicating with INSITE using hidher particular jargon. This tailoring tool
would also significantly reduce the training time required and therefore reduce
the cost associated with training. For novice users, user profiles can assist in
eliminating computer anxiety so that the individual will be willing to learn a new
system rather than expend time and effort avoiding it. For the expert user, it will
allow them to use their personal preferences in constructing their user protocol
which will result in increased productivity.

Once the issues that need to be addressed to initially construct the
user profile have been resolved, the potential techniques employed to cause
the system to recognize a particular user and then load the user's profile into
the system's working memory will need to be explored. Issues concerning
maintaining, updating, and reconfiguring a user profile, once it has been
initialized, will require investigation with regard to the various functions of the
operating systems - the issues of compatibility, usability, and portability.

There are a few techniques currently available that allow a user to
define system commands through the use of personal preference (such as
macro and command files). However, such files are awkward to construct and
may not be obvious to the infrequent or inexperienced user. Since many users
do not possess a programming background, a criterion level of understanding
needs to be established and then the degree of user control can be
investigated. In addition, other variables (such as hardware limitations) may
affect the degree of user freedom possible, and therefore, factors such as these
need to be examined.

6-7

The exact nature of the user interface will also be considered in
conjunction with system requirements. Sophisticated user interfaces frequently
make heavy demands on the system, and trade-offs may be required to ensure
that the benefits of the user interface are not nullified by slow system response
time. The design of the user-computer interface will proceed iteratively in
conjunction with the development of the INSITE prototype and will involve early
and frequent interactions with the prospective user population.

6-8

7.0 INSITE SYSTEM

1
If
1
1
II

i
1
8
I
1
I
i
I
I

The INSITE system will provide support to managers performing
planning and scheduling tasks which require estimations of project/task
duration. The system will be configured as an estimation workbench and will
reside on a microcomputer. In the sections which follow, the high-level system
design of INSITE will be presented and the major system modules described.

7.1 HIGH-LEVEI DES IGN

The four major functional components of INSITE are presented in
Figure 7-1 . System responsibilities are divided between these software
modules as follows:

0 EST1 MAT0 R - gene rat e s project/t ask duration estimates.

e MEDIATOR - manages all humankomputer interface
processes, including key and mouse inputs, windowing,
graphics, and formatting of data and dialogue outputs.

0 HISTORIAN - manages historical data base as well as
interface and estimation knowledge bases.

0 DIRECTOR - controls activity of all other system components
and drives human/computer dialogues.

Each software module will be configured independently for maximum system
flexibility. For example, moving from one computer display system to another
will only require a code modification to MEDIATOR. Likewise, accessing a new
data base will only require a modification to HISTORIAN. This approach will
enhance both portability and the capacity for future upgrades.

7 -1

USER

MEDIATOR

DIRECTOR ESTIMATOR

A

t
HISTORIAN

Figure 7-1. Block Diagram of INSITE System Organization

7.2 ESTIMATOR

With the exception of the ESTIMATOR module, the components of
INSITE are clearly feasible in the microcomputer environment due to the
availability of text and graphics output. Window and mouse interfaces are
supported on almost all computers. Data base systems and expert system
shells are also becoming commonplace. However, it is not immediately
obvious that it is feasible to develop a microcomputer-based system which can
rapidly respond (i.e., minutes) to a request for estimates. In the two subsections
which follow, the feasibility of a microcomputer implementation of INSITE will be
explored -the structure of the INSITE estimation process will be specified, and
the preliminary development and testing of a microcomputer-based estimation
algorithm will be presented.

7-2

7.2.1 Jvlultiple-Estimate Architectu re
For any given project, a time estimate could be based on a single

previous project or several projects. Ordinarily, a set of relevant historical cases
would be extracted from the data base. On the basis of this set, a measure of
central tendency is calculated to predict project duration, providing an estimate
not tied to the peculiarities of a single case. Basing an estimate on a single
example would be required if the historical data base provided no other
relevant cases (as might occur if the data base had only recently been
established). When a single previous project becomes the only source for an
estimation, dependency knowledge (stored in a project knowledge base) must
be brought to bear. For example, i f the source project for the estimate was a
larger project than the one being estimated, the known time for the source
project must be adjusted downward to produce an estimate, based on the
system's knowledge regarding the impact of project size on project duration.
Figure 7-2 presents a procedural schema for the INSITE ESTIMATOR module.
As shown in the diagram, INSITE provides two separate components to
calculate estimates. With sets of cases, a straightforward computation of central
tendency is possible. With single cases, dependency knowledge must be
applied. It is expected that the dependency algorithms/heuristics will be fairly
limited in scope, possibly encoded as a relatively small rule base since the
dependencies involved are poorly understood and do not exist at the level of
detail required to perform direct calculations.

Projects in the historical data base have similar attributes to the new
project being considered. The attributes recorded in the data base are selected
on the basis of the underlying dependency relationship. That is, if a project
attribute is believed to impact project time duration, it is included in the data
base structure. Some historical cases will be very poor analogies to the new
project; others will be good analogies to the extent that their attribute values
vary from those of the new project. In the formulation "A is to B as C is to D", "B"
and "D" represent project duration. "A" and "B" can be associated with the
projects themselves or with the collection of attributes by which they are
represented in the data base. The relation between "A" and "B" (and between
"C" and "D") is, in fact, the complex dependency relation between project

7-3

ldent if i cat ion
of Analogs

H i st o rica I
Knowledge

1 I I I 1

Estimates 0
Figure 7-2. Schema of ESTIMATOR Module

87-21 - 0 3 - F R 7-4

attributes and duration, represented by the attribute values. The identification of
good analogs in the data base is a matching problem, and this is the central
problem addressed by the ESTIMATOR module. As shown in Figure 7-2, three
separate analogy identification algorithms will be incorporated into INSITE.

The feature clustering method of selecting analogs for use by the
estimate calculator will use pattern matching algorithms to define project
clusters based on project attributes. The project to be estimated will then be
matched and placed into one of these clusters. The analogs used will be all of
the projects within that cluster. As a method of finding only one analog, the
projects will be seen as a point in an n-dimensional space (where n is the
number of features defined for a project); the analog project will then be the
nearest point to the project to be estimated.

The feature variance method of analog identification defines a
class of analogs using a threshold variance from the project to be estimated for
each of the attributes defined for the project data base. This differs from
selection by feature clustering. In this case, the groupings are created by the
thresholds defined (that is, a "natural grouping" is not needed). This method is
described in detail in Subsection 7.2.2 below.

The feature relationships method defines a set of analogs via
closeness of feature relationships (as opposed to closeness of features). For
example, given the following subset of a data base:

PROJECT PROJECT SIZE STAFF SIZE
1 100 10
2
3

2000 200
8000 800

7-5

I
I
t
I

I
1
8

I
8

e

E
B
1

Selection by feature clustering or selection by feature variance may not find an
analogy between projects 1, 2, and 3. However, the analogy is obvious to the
human observer. Selection by feature relationships seeks to capture that
feeling of "sameness" that is easy to see, but may be hard to describe. In this
case, all three projects would have exactly the same "project size to staff size"
relation (i.e., "10"). In selecting a group, some threshold difference would be
defined (as with selection by feature variance). When selecting only one
analog, the "closest" match would be selected.

Since there is no way of determining which identification algorithm is
best, and since it is unlikely that a single algorithm will be superior in all cases,
all three algorithms will be implemented within INSITE. ESTIMATOR will
therefore potentially produce six separate estimates, based on the combination
of identification algorithms and calculation methods - set-by-clustering, single-
by-clustering, set-by-variance, single-by-variance, set-by-relationship, and
single-by-relationship (six separate paths through the schema in Figure 7-2).
Various methods can be used to control or limit the presentation of this
information, including confidence levels on the estimates, size of the analog set
(if very small, the single-case strategy should produce better results), and user
intervention. It is also possible to perform calibration runs to assess relative
estimation accuracy for the six separate estimation strategies in combination
with a specific data base. That is, each case in the historical data base can be
used in turn as the "new" project and an estimate produced, based on the other
cases. A measure of accuracy can then be calculated for each of the six
algorithm combinations, according to its ability to predict times for cases already
known.

7.2.2 Alaorithm Des ian Amroach

The use of analogies in INSITE is direct and computationally simple.
Unlike the Generalized Analogical Reasoning System (GARS) proposed by
Silverman (1985) for systems management applications, no attempt is made in
INSITE to capture the entire range of human analogizing abilities. Also unlike
GARS, which appears to have made little headway due to its complexity,
INSITE can be readily implemented in a microcomputer environment using

7-6

known technologies. In order to demonstrate the feasibility of INSITE, this
section will discuss in detail the design steps, implementation, and results of a
set-by-variance identification algorithm in combination with a computation of
central tendency. (The development of the other two identification algorithms
and the heuristics for producing an estimate from a single historical example
will proceed in a similar manner during the Phase II effort.)

A program, SETBYVAR, was developed to compute time estimation
based on the set-by-variance method. The program was coded and debugged
using Microsoft C on an IBM AT-compatible microcomputer. First, four data
bases of projects were created based on a set of rules for attribute interaction.
While identical rules were used, the attribute values were generated randomly
utilizing either a normal or a uniform distribution. A 100 and a 1000 item data
base were created for each distribution type. This allowed an analysis of trends
from the resulting data as illustrated in Figure 7-3. A sample SETBYVAR
dialogue is shown in Figure 7-4. Initial results were promising, based upon a
limited set of attributes and simple relationships between attributes.

100 I

U
0
U
U
W

-
80 - 1000 Cases - 100 Cases -
60 -

40 -

20 -

0

0.0 0.5 1 .o 1.5 2.0 2.5 3.0

THRESHOLD (TDM)

Figure 7-3. Set-by-Variance Test Runs

7-7

Uniform

Normal

f
I

I I

87-21-03-FR 7-8

87-21 -03-FR 7-9

I

0 .. z C ? E

0 0 0 0
- - w e

87-21 - 0 3 - F R 7-1 0

I
8

I ' I1

v) a >
0

F.
z
v)

0 c
v) a

E!

L

5
a, z

87-21-03-FR
1

n
U a
3
C

C
0
0

.-
L

v

K

> >
I- w
v)

a

m

p: r-
Q,
L

B. 7-1 1

The problem to be answered is briefly stated as follows: given an historical data
base of projects and their respective durations, derive an accurate estimate of
the duration of a new project (project A). Development of the algorithm
proceeded as a series of questions answered as described in the following
parag rap hs.

What is the main conceDt behind this alaorithm? The main concept is
to find "similar" projects in the data base using a variance technique, then
extrapolate a project duration from them for project A.

What is the definition of "similar"? "Similar" here means that the
appropriate attributes of the project are close enough (within some threshold) to
project A that they can be seen as good analogs far use in the estimate.

What are the amrooriate attributes? The identification of appropriate
attributes for the comparison of projects is one of the main tasks of Phase II of
the INSITE project. These attributes must be defined before the project data
base is created or populated. Far this discussion, they can be assumed to be
the attributes of the projects defined in the data base which has already been
created. For this example, five attributes were selected: type of project
(hardware, software, etc.); size of project (in appropriate units); experience of
manager (on a scale of 0-1 0); experience of technical staff (on a scale of 0-1 0);
and development environment (on a scale of 0-10). The type of project for this

example is the development of a software testbed; size is defined in thousands
of source lines of code (KSLOC); the technical staff is the programming staff;
development environment is a measure of the levels of programming tools
avai I ab le.

What are the thresholds which delimit a valid analoa? The thresholds
are defined as a threshold deviation multiplier (TDM) times the standard
deviation of the entire project data base for the attribute in question. The TDM is
user-definable; for example, if the user thinks that programming staff is a much

7-1 2

more important factor than management experience, he might assign a TDM of
0.8 to the former and a TDM of 1.2 to the latter. This will be discussed further
below.

How are the analoas culled from the data base? The data base is
searched, looking for a set Z of projects, as follows:

Z = { x I lP lx - P la l <=TDMl(Sl) and
(P2x - P2a1 <= TDM2(S2) and

e

e

e

JPnx - Pnal <= TDMn(Sn) }

where:

n = number of attributes
a = the project to be estimated
Sx = standard deviation for attribute x
Pnx =the value of attribute n for project x
TDMx = threshold deviation multiplier for attribute x

which defines the set of projects to be used as analogies for the estimate.

How is the time estimate calculated? After the set of valid analogs is

defined, the estimated duration (value) of the project is calculated as follows (E

indicates set membership):

7-1 3

where:

a = project to be estimated
VX = duration of project x
n(Z) = number of elements in the set Z

The estimate also includes a range of error value as in:

ESTIMATE: 814 months plus or minus 66 months

which is defined as:

ERROR = (average TDM x std dev)

where average TDM is the average of the threshold deviation multipliers
entered by the user, and standard deviation (std dev) is the standard deviation
of the time attributes for the historical data base.

What is the optimum value for the TDM's? This can only be answered
in a very general sense since the TDM's are user-controlled. However, some
guidelines are available:

Multipliers less than 1.0 often show erratic behavior (since the
list of analogs becomes small), and estimates can therefore
vary widely. Taken to an extreme, the estimate is calculated
from a sample of one, which makes it very volatile. Pushed too
far, small multipliers cause a "NO ANALOGS AVAILABLE"
response from INSITE, thus giving no answer at all.

Multipliers larger than 1.0 begin to cause a linear decay in the
accuracy of the estimate. Taken to an extreme, large multipliers
cause the estimate to be made based on the entire data base,
thus returning as an answer the average duration of all projects
in the data base.

7-1 4

Y

These results are shown graphically in Figure 7-3. It shows that as
threshold increases above 1.2, the error increases. It also shows erratic
behavior below 1.0 as well as no answers at all (therefore, there was no error)
below 0.5. This suggests that an initial value between 0.8 and 1.2 for the
multiplier is useful, with further tuning made by the user afterward.

What is the effect of the size of the data base on the est imate?
Intuitively, one would expect that the estimates would become more accurate as
the size of the example data base increases, and this is the case for the
samples that we used. The real effect of a larger data base is, however, that the
error curve is smoothed. These results are also shown graphically in Figure 7-3.

What is the effect of the distribution of the data on the estimate? As
shown in Figure 7-3, normally distributed data (the bottom two curves) results in
much more accurate estimates than does uniformly distributed data (the top two
curves). This is not difficult to explain since the calculation is based on standard
deviation, which is defined only on normally distributed data. It is also not a
particularly restrictive requirement since one would expect that all projects at a
particular site would be "balanced" around some central tendency figure. The
fact that the calculation yields meaningful results on uniformly distributed data
as well is important, since such a case can certainly be imagined.

What assumDtions are made about the data? The only assumption
made about the data is that there is some relationship between the attributes
and the time value. The usefulness of this approach over others (for example,
the parametric approach) is in the fact that this relationship need not be known.
The data used in our example of a software project has a fairly complex, though
not unreasonable, relationship. This relationship is defined by the following
rules:

The time to perform a project is a function of its size in KSLOC.

A poor manager adds time to a project, but this effect is
reduced if the technical staff is good or excellent.

@@

7-1 5

l
I
I
8

I
I
I
I
1
I
1
I
I

0 A poor development environment adds time to a project, but
this effect is similarly reduced by the presence of a superior
technical staff (i.e., they would build their own tools).

How re1 iable are the est imates? At thresholds between 0.8 and 1.2
standard deviations, the errors in estimates were all less than 20% (and often
below loo/,) with linear correlation coefficients between 0.94 and 0.998. With
all four types of data samples, across thresholds ranging from 0.5 to 3.0
standard deviations, the actual value for the project was within the predicted
error range 99.95% of the time (one case in 2200 tests was outside of the
range). Of course, the data used contained no noise component since the time
values were wholly dependent on the attribute values. Whether results this
good can be obtained using "real-world" data is dependent on the selection of
appropriate comparison criteria (the attributes of the projects which are stored in
the data base) and the strength of the relationships between the attribute values
and the time values.

What are the limitations of this app roach? As described above, there
must be some relationship between the attributes of projects and their duration.
For example, position of the moon on the first day of the project could probably
be shown not to have an effect on the outcome of the project. Having this field
in the data base would throw "noise" into the calculations, thus making the
estimates less accurate. Careful selection of the criteria for the calculations is
imperative. Another limitation with the method is that estimates tend to be
arbitrary as the data base tends toward zero elements. However, even with the
limited (15 item) data base used to test the software cost estimation models
cited above (Section 5.1)l average error was 53% when we used this method,
not 460% as given by the other methods (however, some projects could not be
estimated due to lack of analogs). This method is also limited in that it will
sometimes return no estimate at all, due to lack of analogs. This is either a
limitation or a feature: should a system return an answer - any answer- no
matter how bad? Or should it be intelligent enough to "know that it does not
know"? The discussion of an optimal system suggested that the latter choice
was preferable.

7-1 6

7.3 MEDIATOR

Since the INSITE interface is dependent on both user characteristics
and project attributes, which will only be specified during the course of
knowledge engineering in a Phase II effort, it is premature to present an
interface design at this stage of development. However, since the intent is to
rely on rapid prototyping, it is possible to present a plausible first-cut
configuration which could be constructed quickly, given a reasonable
development environment. In the paragraphs which follow, one simple
interaction sequence is presented which integrates many of the interface
technology options discussed in Section 7. It does not represent a final design,
but rather a potential starting point. (As shown in the accompanying figures, a
Macintosh-like environment is assumed.)

When the user first enters INSITE, a menu bar appears at the top of
the screen (see Figure 7-5). This menu bar remains in place throughout a
session and gives access to INSITE functions as follows:

0 File - permits storage, retrieval, and examination of
estimation runs.

0 Proj Spec - allows entry, modification, and examination of
project attributes for the project to be estimated.

0 Estimate - gives access to estimation parameters and
results and allows the user to initiate estimation runs.

0 Data Update - allows direct access to the historical data
base for entry, modification, and examination of project data.

Help - permits entry into help utilities for all system activities.

Quit - exits INSITE.

Menu bar selections are made by moving the mouse cursor over the
label of interest and holding down the mouse button. A pull-down menu then
appears, from which the required function can be selected. In a typical

7-1 7

interactive session, the user might first wish to enter the attributes of a project to
be estimated. This is accomplished by placing the arrow-shaped mouse cursor
over the "Proj Spec" label in the menu bar, depressing the mouse button
("clicking"), and selecting "Edit Attributes" from the menu which appears. A
Project Specifications Window will immediately appear, with the text "What type
of project?" in its upper left corner (see Figure 7-5). The user responds by
entering the type name. This is the first exchange in a dialogue which
establishes the attributes required by the estimation process. The sample of
dialogue presented in Figure 7-5 includes examples of:

1. Smart data entry - the system recognizes simple type-in
errors like "communications" and suggests a correction.

2. User profiling - the system establishes a meaning for the
user term "large" by referring to previous projects the user is
familiar with.

3. On-line help - the system is able to elaborate its question
if the user requires more information.

The Project Specifications Window is scrollable and allows the user to examine
the entire dialogue session at any time. In Figure 7-5, the user has scrolled
back to the top of the session after completing the specifications. The mouse
cursor has been moved over the "Estimate" label in the menu bar in preparation
to initiate an estimation run.

After running the ESTIMATOR software and seeing the estimate
results, the user may be interested in examining the set of analogs selected by
a particular algorithm. In this case, the user clicks on the "Estimate" label in the
menu bar and selects "Variance Set" from the pull-down menu. In response,
the system displays the Analogs Window as seen in Figure 7-6. This window
presents the characteristics of the set, including the thresholds for each attribute
as established by the user, as well as a scrollable list of the projects in the set.

7-1 a

E
I

I
I
ff
I

Each project in the set is identified by information which is likely to enable the
user to map the list to his or her actual recollections. In the figure, the user has
placed the mouse cursor over the name of a project of interest. Clicking on this
field causes the system to display a Project Attributes Window (see Figure 7-7).

The Project Attributes Window allows the user to examine all of the
attribute values for a specific historical case and compare them to the new
project being estimated. Since the actual significance of attributes will not
necessarily be obvious from the label assigned, embedded help messages are
available. If the mouse cursor is placed over a piece of text connected to a help
message, that text will switch to reverse video. In Figure 7-7, the user has
positioned the cursor over the label of the project magnitude attribute. If the
mouse button is then held down, a help box appears containing an explanation
of the term (see Figure 7-8).

It should be apparent that INSITE is not intended to simply supply a
single answer to a single question. INSITE is a workbench environment for the
estimation of project duration. The user must be involved in the estimation
process and ultimately make the estimation decision. The system provides
tools for building an estimate based on historical records. If needed, the user
may take the best estimate (as understood by the system) without question.
However, INSITE will be a more useful tool if the user explores the system's
alternative solutions and examines the source data for estimates of interest.
The system will have more historical data available than any single user and
will, in that sense, be a superior estimator. However, the system will only
capture part of the human expertise involved in the estimation process and
must, therefore, be provided with an interface which will allow it to function as
part of a human/machine estimation team.

7-1 9

Project Spec if icat i ons ll
What type of project?
communictions
Do you mean communications?
Yes
Communications hardware or software?
software
What is the size of the project?
large
Is this project larger than 1426-82 (SSSQ Development)?
no
Larger than 1497-84 (TPLOT Development)?
Yes
What portion of the effort is new work?
explain
What percentage of the design and code cannot be taken from existing
i nve nt o ry ?

Figure 7-5. Project Specifications Window

87-2 1 -03- F R 7-20

f File Proj Spec Estimate Data Update Help Quit

13 Project Specifications

11 What type of project? 1 ; ~ Analogs
I

-
co mm un ict io ns
Do YOU mean cmmunic Selection by: variance Count: 12

Communications hardwa i 0.0, 0.8, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2,
Yes

software

Standard Deviation Thresholds:

What is the size of the

Is this project larger
large

no 251 1-79 S56 Std Dev
Larger than 1497-84 (TP 1606-77
Yes 1 3401-82
What portion of the 0906-80 FOFJN Sys

What percentage of 1998-82 SIRCH Proj
2203-84 MANDOT4 explain

Start End

01 106179 04/06/
09/01 I79 06/01 I
1111 1/79 1111 11
04/08/82 0411 01
01 I1 7/81 0311 71
07/29/85 121041
01 I1 2/82 1 21201

Figure 7-6. Analogs Window

7-21

f File Proj Spec Estimate Data Update Help Quit \
Project Specifications

Analogs What type of project?
communictions
Do YOU n ~ a n c o m ~ u n i c i Selection by: variance Count: 12
Yes Standard Deviation Thresholds:
Communications hardwa
snftwa re

0.0, 0.8, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2,

I
I
!
e
1
5
I
I
Y
I
I
r
I
E
I.
0
I 87-21 - 0 3 - F R

Project Attributes
tat y e

SSSQ Development Project Is this
no Threshold: 0.0 0.8 1.2 1.2

Yes Source Project: Comm 6jL 68% 8
Large Attribute: Application -New Design Resources k,
What I Target Proiect: Comm 35 80% 7 1
explai
What

Figure 7-7. Project Attributes Window

7-22

li Proiect SDecifications
1

~ What type of project? Analogs
com mun ict ions
Do YOU mean communici Selection by: variance Count: 12
Yes Standard Deviation Thresholds:
Communications hardwa
software

0.0, 0.8, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2,

What 1E-J Project Attributes
iarge
Is this SSSQ Development Project

Attribute : Application

ing comment lines,
with no multi-
statement lines ,

Figure 7-8. Magnitude Help Box

r 87-2 1 -03-FR 7-23

7.4 J-l I STO R IAN

The HISTORIAN module will control access to all system data. There
are three information components necessary to the successful operation of
INSITE - historical project data, project knowledge, and user knowledge. In
order to process this information, INSITE will include both data base software
and knowledge base software. A knowledge base is distinct from a data base
in that a knowledge base incorporates not just data, but the relationships
among the data, the relationships among the types of data, and further, the
relationships among the relationships among the data and types of data.

The INSITE Historical Project Data Base will utilize standard data
base management technology. The attributes required to characterize project
history can easily be arranged in table format, with rows representing projects
and columns representing their attributes. This structure can be readily
accommodated using relational data base management systems. The
technology driving this aspect of HISTORIAN is well-understood and readily
available in "off-the-shelf" software packages. It is expected that a working
historical project data base will require a relatively small number of cases (i.e.,
hundreds) and that, therefore, the analog identification process will not be
degraded by microcomputer limitations.

Project and user interface knowledge require a totally different
management technique. The INSITE Project Knowledge Base contains the
kind of information required by INSITE concerning projects, their characteristics,
classification scheme, component structure, and time estimation dependencies,
and how that information needs to be encoded. The INSITE User Knowledge
Base contains the information concerning the user which will be required for
user profiling and the intelligent dialogue aspects of the system. This type of
information requires a knowledge management system (such as those used in
production rule knowledge schemes). For example, in the case of user
profiling, the interpretation of a particular user's terminology can be expressed
as in the following case:

7-2 4

e
I
I
1
P
1
I
f
I
e
P
I
I
I
8
I
I
I
I

IF project.size = large THEN lines-of-code > 50000

IF projectsize = average THEN 50000 > lines-of-code > 10000

IF projectsize = small THEN lines-of-code < 10000

This type of knowledge can be encoded using available knowledge
representation technology. The knowledge scheme developed for INSITE must
be capable of representing the full range of knowledge required by the system,
be easy to use, and provide the flexibility to be applicable to a wide variety of
applications.

Information encoded for use by HISTORIAN will derive from several
sources. System knowledge of project attributes and estimation heuristics
(required for estimation from single historical cases) must both be incorporated
into the basic structure of INSITE. The knowledge itself must be elicited from
experts in project planning/scheduling during the course of system
development. The historical project data base is specific to a single installation
or user community. Historical data may be entered by users as part of the
installation process, making the system immediately usable for estimation, or
built up over time by the entry of data as projects are completed. Profiling
information is specific to a single user, but it is expected that the acquisition of
this data will occur during system use and be largely transparent to the user as

noted in the discussion of MEDIATOR.

7.5 D 1 RECTOR

As its name implies, the DIRECTOR module of INSITE will control the
flow of information between the MEDIATOR, ESTIMATOR, and HISTORIAN
modules. It will decide what needs to be done, when it will be done, and who
(what module) has to do it. All interactions between the other three modules will

7-2 5

6
1
I
I
I
i
I
D
t
t
1
I
I
I
I
I
I
I
I

flow through the DIRECTOR; this will facilitate both system implementation and
system enhancement by keeping the functions of each module well-defined.
Interaction will occur via calls to the DIRECTOR as in:

CASE = DIRECTOR (HISTORIAN, NEXT-ANALOG, CURRENT-CASE)

DIRECTOR will have the same basic use to INSITE that an operating
system has to a computer program; it will control all of the aspects of the system
while allowing the other modules to perform their own functions. It will contain
the access paths to the "overhead" types of functions that each module will
need, either by directly controlling the process or by calling on another module
to do so. This design strategy will enable the components of INSITE to be
developed separately with a minimum of integration headaches when the
system is connected.

7-2 6

8.0 PHASE I I DEVELOPMENT

..

8.1 PHASF 1 FFAS 1 R I LlTY AS SF SS MFNT

The Phase I assessment has been completed, and the objectives
stated in the original proposal have been met. The Integrated NASA System for
Intelligent Time Estimation (INSITE) concept is assessed as feasible. The
detailed investigation and analyses surrounding this innovative concept have
produced the following conclusions:

Accurate time estimation is critical to effective project
management at NASA.

0 Time estimation, as performed currently, is a complex, error-
prone process.

Current technologies can be combined to produce an
automated tool to be used by project managers for time
estimation at all levels of development.

User profiling and intelligent dialogue systems will enhance
the usability of the INSITE system.

The primary risk areas associated with the development of the INSITE
system are in the development of the estimator algorithms, the population of
historical project data bases, and the ability of the host system to support the
user interface.

The level of risk associated with the selection and incorporation of the
estimating models is minimal. The partial proof-of-concept experiment
indicated that an algorithm can be developed that yields results which are better
than those produced using many current estimation techniques. Further,
additional models can be incorporated as deemed appropriate and existing
models modified on a continuing basis.

8- 1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I

Based on the above findings, the concept is judged feasible with a
low level of risk. The Phase I I effort will focus on the development of an INSITE
version to deal with an aspect of project management at NASA as defined
during the first task in conjunction with the panel of NASA experts.

8.2 GOALS 0 F PHASF II RESFA RCH EFFORT

The primary goal of the Phase I I research effort is to develop a
prototype version of INSITE. The primary emphasis of the Phase I I effort is on
the system design and prototype implementation. The prototype development
process will culminate with an actual estimation of a current NASA project.

8.3 PHASE I I OBJECTIVES
The primary objective of the Phase II research effort is development

and demonstration of the prototype INSITE system. The effort will involve
knowledge acquisition; hardware and software installation; detailed system
design; system evaluation; system development; and system documentation.
Specific technical objectives for each of these areas are presented below.

Task 1 : Knowledge Acquisition

Interview experts - Analytics and NASA will identify three to
five project scheduling experts, set up an expert panel, and
interview each expert separately.

analyze and combine the information culled from the expert
interviews into a cohesive form.

e Compile baseline information - The development team will

e Review with experts - After the baseline information is
compiled, Analytics will then review it with the entire panel of
experts.

Refine project knowledge - The project information will be
refined based upon the comments elicited from the panel of
experts.

8-2

I
I
I
I
I
I
I
I
I
I
I
I

0 Coordinate project data collection - After the appropriate
types of project information are identified, the team will obtain,
in coordination with NASA, a sufficiently large set of project
data to use as a testbed for the Phase Ii effort.

Task 2: Hardware and Software Acquisition

0 Install equipment and software - All necessary computer
hardware and software will be purchased, configured, and
installed at Analytics' offices.

Task 3: Detailed System Design

0 Design and prototype estimation algorithms - The five
algorithms (three analog selection, two estimate from
analog(s)) will be designed and prototyped with the data
base obtained during Task 1.

0 Design project data base - The project data base will be
designed based on information obtained during Task 1.

0 Design project knowledge base - The project knowledge
base will be designed based on information obtained during
Task 1.

0 Design and prototype user interface - The user interface will
be designed and prototyped.

0 Design and prototype intelligent dialogue mechanism - The
intelligent dialogue mechanism will be designed and
prototyped.

Design and prototype user profiling mechanism - The
mechanism for the user profile will be designed and
prototyped.

0 Finalize the design of all components of the INSITE system and
determine how they will be integrated.

8-3

I
I
I
I

I
I
I
I
I
I
1
I
I
I

Task 4: System Development

0 Implement INSITE control mechanisms - The high-level
system shell will be implemented on the target system.

0 Implement estimation algorithms - The five estimation
algorithms designed and prototyped in Task 3 will be
implemented in the delivery environment.

0 Implement project data base - The project data base which
was designed during Task 3 will be implemented and
populated.

base which was designed during Task 3 will be implemented
and populated.

0 Implement project knowledge base - The project knowledge

0 Implement user interface - The user interface prototyped and
validated during Task 3 will be implemented in the delivery
environment.

0 Implement intelligent dialogue mechanism - The intelligent
dialogue mechanism prototyped during Task 3 will be
implemented in the delivery environment.

0 Implement user profiling mechanism - The user profiling
mechanism prototyped during Task 3 will be implemented in
the delivery environment.

Task 5: Svstem Evaluation

. Refine estimation algorithms - The five estimation a\gorithms
prototyped in Task 3 will be refined using data obtained during
Task 1.

0 Refine knowledge base - The knowledge base of project
characteristics and their relationships will be refined using data
obtained during Task 1.

0 Refine user interface - Opinions on the user interface
prototype will be solicited from the expert panel and NASA
personnel and their suggestions incorporated into the final
design.

a-4

I
i
I
I
I
I
I
I
I
1
I
I
I
I
I
I
1
1

Refine intelligent dialogue system - Opinions on the
intelligent dialogue system prototype will be solicited from the
expert panel and NASA personnel and their suggestions
incorporated into the final design.

Refine user profiling system - During the review of the user
interface and intelligent dialogue system, the user profiling
system will be analyzed and refined as necessary.

Task 6: Svstem Documentation

User's Guide - A user's guide will be developed for use with
the Phase II version of INSITE.

Phase II Report - A report of progress and a discussion of
future development will be written.

8.4 SUMMARY

A set of system design criteria was established following the Phase I
interviews with NASA staff and a survey of the current technologies available.
The proposed INSITE system is based on both proven and new technology
areas. Four primary system components comprise the INSITE concept:

1. The estimation module;

2. The system manager;

3. The knowledge/data base; and

4. The user interface.

A partial proof-of-concept experiment was performed which successfully
demonstrated use of statistical selection of analogs and the inference of
estimates via central tendency among analogs.

The results of the Phase I research effort indicate the technical
feasibility of the INSITE system. The obvious utility of an accurate and easy-to-
use time estimation system warrants the development of a prototype INSITE
system during a Phase II effort.

8-5

I
I
I
I
I
I
1

The INSITE system will be optimized continuously during the Phase II
development. The two primary goals which will drive the optimization are:

1. The ability of the INSITE system to supply accurate estimates
for project activities; and

2. Ease of user-computer interaction.

The first goal must be achieved in order to provide a useful answer to the user.
The second goal is also important in order to obtain operator acceptability of the
INSITE system. In summary, the INSITE system provides for enhanced project
management capabilities to meet the goals of future NASA missions.

I
I

I
I
I

8-6

I

I
I
I
I
I
I
I
1
I
I
I
I
I
I
1
I
I
I
I

BIBLIOGRAPHY

Alavi, M. (1 984). An assessment of the prototyping approach to information
systems development. Communications of the ACM, 27(6), pp. 556-563.

Barto, A., and Anandan, P. (1 985). Pattern-recognizing stochastic learning
automata. IEEE Transactions on Svstems, Man. and Cvbernetics, 15(3),
pp. 360-375.

Bennett, J. (1 984). Managing to Meet Usability Requirements: Establishing and
Meeting Software Development Goals. In Visual DisDlav Terminals, J. Bennett,
D. Case, J. Sandelin, and M. Smith (Eds.).
Hall, Inc., pp. 161 -1 84.

Englewood Cliffs, NJ: Prentice-

Biswas, G., Oliff, M., and Sen, A. (1985). Design of an expert system in
operations analysis. IEEE ComDuter, pp. 121 -1 25.

Brachman, R. (1983). What IS-A is and isn't: An analysis of taxonomic links in
semantic networks. E E E Co mputer, 16(10), pp. 30-36.

Brachman, R. (1 985). ''I lied about the trees" or defaults and definitions in
knowledge representation. The AI Maaazine, Fall, pp. 80-92.

Brachman, R., and Levessque, H. (Eds.) (1985). Readinas in Knowledae
Representation. Los Altos, CA: Morgan and Kaufmann Publishers.

Buchana, B., and Shortliffe, E. (1 985). Rule-Based ExDert Syste ms: The
MYCIN Experiments of the Sfa nford Heuristic Proarammina Project. Reading,
MA: Addison-Wesley.

Buede, D., Yates, G., and Weaver, C. (1985). Concept design of a program
manager's decision support system. IEEE Transactions on Svstems. Man, and
Cvbernetics, pp.15(4), pp. 457-468.

Buffalano, C., Fogleman, S., and Gielecki, M. (1 976). Cost Estimation: An
Expert-Opinion Approach. NASA Technical Note TN D-8256. Washington, DC:
NASA.

Carbonell, J. (1 983). Learning by Analogy: Formulating and Generalizing
Plans from Past Experience. Machine Learnina: An Artificial lntelliaence
ApDroach. Palo Alto, CA: Tioga Publishing Co., pp. 137-1 61.

Charniak, E., and McDermott, D. (1 985). Jntroduction to Artificial lntelliaence.
Reading, MA: Addison-Wesley.

I

I
~1
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I

Chouraqui, E. (1985). Construction of a Model for Reasoning by Analogy. In
Proaress in Artificial Intelligence, L. Steels and A. Campbell (Eds.). Chichester,
England: Ellis Horwood Limited.

Cleland, D.L., and King, W.R. (1 983). Pro iect Manaaement Handboo k. New
York: Van Nostrand Reinhold Co., Inc.

Clocksin, W., and Mellish, C. (1984). Proarammina in Proloq, 2nd Edition.
Springer-Verlag.

Cohen, P., and Feigenbaum, E. (1982). Jhe Ha ndboo k of Artificial Intelliaence,
Volume 111. Stanford, CA: Heuris Tech Press.

Copi, I. (1954). Symbolic Loaic. New York: MacMillan.

Defense Systems Management College (1 983). Svste m Enaineering
Manaaement Guide. Fort Belvoir, VA: Defense Systems Management College.

Defense Systems Management College (1 984). Pepart ment of Defense
Manufacturina Manaaement Handboo k for Proaram Man-. Fort Belvoir,
VA: Defense Systems Management College.

Eliot, L. (1 986). Analogical problem solving and expert systems. IEEE ExDert,
Summer, pp. 17-26.

Evans, T. (1 968). A Heuristic Program to Solve Geometric Analogy Problems.
In Semantic Information Process ing, M. Minsky (Ed.). Cambridge, MA: MlT
Press.

Finder, N., Lo, R., and Bhaskaran, P. Two theoretical issues concerning expert
systems. IEEE Computer, pp. 236-240.

Finin, T. (1 986). Part I I : Understanding frame languages implementing PFL.
ExDert, December, pp. 51 -56.

Fischler, M., and Firschein, 0. (1986). Intelliaence: The Eve. the Brain. and the
Computer. Reading, MA: Addison-Wesley.

Fox, M. (1 982). The Intelligent Management System: An Overview. Processes
and Tools for Decision SUDDO~~. Netherlands: North-Holland Co.

Fox, M., Roth, S., Sathi, A., and Mattis, J. (1986). Callisto: An intelligent project
management system. The AI Maaazine, Winter, pp. 34-52.

Freiling, M., Alexander, J., Messick, S., Rehfuss, S., and Shulman, S. (1985).
Steps towards automating expert system development. IEEE ComDute r,
pp. 985-993.

Greenberg, S., and Witten, I . (1 985). Adaptive personalized interfaces - A
question of viability. Behaviour and Information Technology, 4, pp. 31 -45.

I

I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Haack, S. (1978). PhilosoDhv of Loaics. Cambridge, England: Syndics of the
Cambridge University Press.

Hankins, G., Jordan, J., Katz, J., and Mulvehill, A. (1985). Expert Mission
Planning and Replanning Scheduling System. Technical Report M85-33.
Bedford, MA: The MITRE Corporation.

Hartzband, D., and Maryanski, F. (1 985). Enhancing knowledge representation
in engineering data bases. JFFE Co mputer, September, pp. 39-48.

Hillier, F., and Lieberman, G. (1974). Dpe rations Resea rch, 2nd Edition. San
Francisco, CA: Holden-Day, Inc.

I

~

Ihara, J. (1987). Extension of conditional probability and measures of belief and
disbelief in a hypothesis based on uncertain evidence. IEEE Transactions on
Pattern Analvsis and Machine Learning, 9(4), pp. 561 -568.

Kahane, H. (1973). Loa ic and Philosop hv. . Belmont, CA: Wadsworth
Publishing Co.

Kemerer, C. (1 987). An empirical validation of software cost estimation models.
Communications of the ACM, 30(5).

Klaus, B., and Horn, P. (1986). Robot Vision. Cambridge, MA: Wadsworth
Publishing Co.

Kumara, S., and Kashyap, R. Knowledge representation in expert systems via
entity-relationships and its applications. JEE E Computer, pp. 495-500.

Lecot, K., and Parker, D. (1 986). Control over inexact reasoning. AI Expert,
Premier, pp. 32-43.

Lipschutz, S. (1 965). Probability. New York: McGraw-Hill.

Loveland, D. W. (1 984). Knowledge Acquisition and Evaluation within Expert
Systems. Defense Technical Information Center Technical Report ADP003035
Alexandria, VA: Defense Logistics Agency, DTIC.

Malone, T., Grant, K., Turbak, F., Brobst, S., and Cohen, M. (1 987). Intelligent
information-sharing systems. Communications of the ACM, 30(5), pp. 390-402.

Mandi, A., and Chu, Y. (1985). Network model-guided expert knowledge
elicitation. IEEE ComDuter, pp. 10-1 3.

Maron, M., Curry, S., and Thompson, P. (1986). An inductive search system:
Theory, design, and implementation. IEEE Transactions on Svste ms. Man. and
Cvbernetics, 16(1), pp. 21-28.

Martin, J. (1 973). Desian of Man-Computer Dialoaues. Englewood Cliffs, NJ:
Prentice-Hall, Inc.

I

I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I

Mason, R., and Carey, T. (1 983). Prototyping interactive information systems.
Commun i a ions o f the ACM , 26(5), pp. 347-354.

Michalski, R., and Stepp, R. (1 983). Automated construction of classifications:
Conceptual clustering versus numerical taxonomy. IEEE Transactions on
Pattern Analvsis and Machine Intelliaence, 544).

Moore, F., and Hendrick, T. (1 977). Production/ODerations Manaaement, 7th
Edition. Homewood, IL: Richard D. Irwin, Inc.

Nakamura, K., and lwai, S. (1982). Topological fuzzy sets as a quantitative
description of analogical inference and its application to question-answering
systems for information retrieval. IEEE Transactions on Svstems. Man, and
Cybernetics, 12(2), pp. 558-568.

Nakamura, K., Sage, A., and lwai, S. (1983). An intelligent data base interface
using psychological similarity between data. IEFF Transactions on Svste ms,
Man. and Cvbe rnetics, 13(4), pp. 193-204.

Negoita, C. (1985). Expert Svste ms and Fu zzv Svste ms. Menlo Park, CA: The
BenjaminKummings Publishing Co., Inc.

Norman, D., and Draper, S. (Eds.) (1986). Use r-Centered Svs tem Desian: New
Perspectives on Human-Comwter Interaction. Hillsdale, NJ: Lawrence
E rl baum Associates.

Oppenheimer, J. (1 956). Analogy in science. American Psycholow, 11.

Otto, H. (1978). The Linauistic Bas is of Loaic Translation. Washington, DC:
University Press of America.

Pitrat, J. (1984). An Intelligent System Can and Must Use Declarative
Knowledge Efficiently. In Artificial and Human Intelliaence, A. Elithorn and
R. Banerji (Eds.). Elsevier Science Publisher, pp. 271 -280.

PRC Government Information Systems (1 985). A Biblioaraphv for NASA
M a n a a u . Washington, DC: NASA Science and Technical Information
Branch.

Prerau, D. (1 985). Selection of an appropriate domain for an expert system.
The AI Maaazine, Summer, pp. 26-36.

Rada, R. (1 985). Gradualness facilitates knowledge refinement. JEEE
Transactions on Pattern Analysis and Mac hine Intelliaence, 7(5), pp. 523-530.

Rasmussen, J. (1 985). The role of hierarchical knowledge representation in
decision making and system management. IEEE Transactions on Systems,
Man. and Cvbernetics, 15(2), pp. 234-243.

m

I
I
1
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I

Rauch, H. (1 984). Probability concepts for an expert system used for data
fusion. The AI Maa azine, Fall.

Reitman, W. (1965). Coa nition and Thoua ht. New York: Wiley. I

Rine, D. (1985). Some applications of fuzzy logic to future and expert systems.
IEEE Computer, pp. 351 -356.

Rumelhart, D., and Abrahamson, A. (1973). A model for analogical reasoning.
Coanitive Psvcholoay, 5.

Rushinek, A., and Rushinek, S. (1986). What makes users happy?
Communications of the ACM , 29.

Sathi, A., Fox, M., and Greenberg, M. Representation of activity knowledge for
project management. IEEE Transactions on Pattern Analvsis and Machine
Intelliaence, 7(5), pp. 531 -552.

Schank, R. (1 984). Memory-Based Expert Systems. Defense Technical
Information Center Technical Report AFOSR-TR-84-0814. Alexandria, VA:
Defense Logistics Agency, DTIC.

Schnirring, B. (1 986). Artificial Intelligence. NASA Tech Briefs, Special Edition, ~

pp. 24-30.

Shen, H. and Chan, K. (1985). An Aid for Knowledge Acquisition in
Knowledge-Based Systems, Pattern Analysis and Machine Intelligence Group.
Department of Systems Design Engineering, University of Waterloo, Waterloo,
Canada.

Shneiderman, B. (1 986). Desian the User Interface: Strateaies for Effective
Human-Commter Interaction. Reading , MA: Addison-Wesley .

Silverman, B. (1 983). Analogy in systems management: A theoretical inquiry.
IEEE Transactions on Svstems. Man. and Cvbernetics, 13(6), pp. 1049-1 075.

Silverman, B. (1985). The use of analogs in the innovation process: A software
engineering protocol analysis. IEEE Transactions on Svste ms. Man. and
Cvbernetics, 15(1), pp. 30-44.

Silverman, B., and Moustakis, V. (1 987). Expert Systems Issue in INNOVATOR:
Representations and Heuristics. In Expert Svstems for Business, B. Silverman
(Ed.). Reading, MA: Addison-Wesley, pp. 402-439.

Smith, C., Irby, C., Kimball, R., Verplan, B., and Harslem, E. (1982). Design the
Star User Interface. Bvte, 7(4), pp. 242-282.

Spearman, C. (1 927). The Abilities of Man. New York: Macmillan.

Starr, M. (1 964). Production Manaaement: Svs tems and Svnthesis.
Englewood Cliffs, NJ: Prentice-Hall, Inc.

I-

I
I
I
I
1
I
I
I
I
I
1
I
I
I
I
I
I

I
m

Sternberg, R. (1 977). Component processes in analogical reasoning.
Psvcholoaical Review, 84, pp. 353-378.

Strawson, P.F. (1966). lntr oduction to Loa i ca ITh eoty . London: Methuen.

Trevellyan, R., and Browne, D. (1987). A Self-Regulating Adaptive System. In
Proceed inas of the 1987 Human Factors in Comnutina Sv . stems and Graphics
Interface, pp. 103-1 07.

Trig, C. (1 973). Guidelines for Cost Estimation by Analogy. Research and
Development Technical Report ECOM-4125. Fort Monmouth, NJ: United
States Army Electronics Command.

Vere, S. (1 983). Planning in time: Windows and durations for activities and
goals. IEEE Transactions on Pattern Analvsis and Machine Intelliaence, 5(3),
pp. 246-266.

Waterman, D. (1986). p\ Gu' ide to F xDert Svste ms. Reading, MA: Addison-
Wesley.

Wescourt, K., and Thorndyke, P. (1 983). Alternative Knowledge Acquisition
Interface Structures. Defense Technical Information Center Technical Report
PPAFTR-1131-83-1. Alexandria, VA: Defense Logistics Agency, DTIC.

Williamson, M. (1 986). Project costing with COCOMOl. AI Exnett, November,
pp. 52-57.

Winston, H. (1 984). Artificial Intelliaence. Reading, MA: Addison-Wesley.

Woods, W. (1 975). What's in a link: Foundations for semantic networks.
Representation and Understandina: Studies in Coanitive Sciences, D. Bobrow
and A. Collins (Eds.). New York: Academic Press, pp. 35-82.

Yaghmai, N., and Maxin, J. Expert systems: A tutorial. Journal of the American
Society for Information Science, 35(5), pp. 297-305.

Zadeh, L.A. (1 984). Making computers think like people. JEEE Spect rum,
August, pp. 26-32.

Zadeh, L.A. (1985). Syllogistic reasoning in fuzzy logic and its application to
usuality and reasoning with dispositions. IEEE Transactions on Svstems. Man,
and Cvbernetics, 15(6), November/December.

