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SUMMARY 

The purpose of this research was to assess the feasibility of 
developing an expert systems-based project management decision aid to 
enhance the performance of NASA project managers. The research effort 
included extensive literature reviews in the areas of project management, 
project management decision aiding, expert systems technology, and human- 
computer interface engineering. Literature reviews were augmented by 
focused interviews with NASA managers. Time estimation for project 
scheduling was identified as the target activity for decision augmentation, and a 
design was developed for an Integrated NASA System for Intelligent Time 
Estimation (INSITE). The proposed INSITE design was judged feasible with a 
low level of risk. A partial proof-of-concept experiment was performed and was 
successful. 

Specific conclusions drawn from the research and analyses include: 
time estimation is critical to NASA planning/scheduling needs; existing methods 
of project time estimation rely on the identification of analogous projects which 
have already been completed; the identification of analogies is usually based 
on the experience and recall of a single person, severely limiting the number 
and accuracy of those project histories which can be brought to bear on the 
problem; expertise in estimation by analogy can be captured using existing 
technologies such as pattern matching, statistical inference, and rule-based 
analysis; given an effective human-computer interface, an automated 
estimation-by-analogy system will enhance manager performance by providing 
a framework for systematic time estimation and by allowing managers to 
transcend the limitations of their own experience. 
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The INSITE concept is potentially applicable in any management 
sphere, commercial or government, where time estimation is required for project 
scheduling. As project scheduling is a nearly universal management activity, 
the range of possibilities is considerable. The INSITE concept also holds 
potential for enhancing other management tasks, especially in areas such as 
cost estimation, where estimation-by-analogy is already a proven method. 
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1 .O INTRODUCTION 

1.1 PHASF I O  BJFCTIVES 

TI-$ :: report was produced as part of a Phase I research effort awarded 
by the National Aeronautics and Space Administration (NASA) under the Small 
Business Innovation Research (SBIR) Program, contract NAS5-30040, 
monitored by the Goddard Space Flight Center. 

Development of complex systems, such as the Space Shuttle or 
Space Station, requires managing and performing many activities 
simultaneously (e.g., design, construction, and deployment of the various 
subsystems). Inadequate management of these activities can result in critical 
and costly delays. The primary objective of the Phase I research was to 
investigate the feasibility of developing a project management aid based on 
expert systems technology to assist NASA project managers in the successful 
management of complex programs. 

The original Phase I proposal outlined four major tasks to be 
conducted: 

1. Identification of current expert systems technology relevant to 
project manage me nt. 

2. Identification of stand-alone NASA project management tasks 
which are well-defined but also complex or require a large 
measure of expertise. 

3. Assessment of the feasibility of a project management expert 
systems tool, including development of a system architectural 
concept. 

4. Documentation of the Phase I efforts as well as development of 
a work plan for Phase II. 

All objectives for the Phase I research effort have been met. This 
report presents the documentation of these tasks. 

1-1 
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1.2 RFSULTS 0 FTHE P HASF 1 RFSEARCH EFFORT 

In an environment of limited resources but with an almost boundless 
horizon of new ideas, goals, proposed projects, and experiments, it is 
necessary to utilize the available resources in a maximally efficient manner. 
This is especially true for an organization such as NASA, in which important 
proposed projects require substantial funding. A system to identify and store 
relevant information on previous and ongoing programs that will allow project 
managers to accurately estimate important program milestones such as time-to- 
complete is needed. Successful project managers have developed intuitive 
associations for interconnecting seemingly isolated facts and propositions 
about a project as well as methods for determining what are the important 
aspects and interrelationships between project variables. The goal of this 
research effort is to determine the feasibility of capturing and formalizing this 
knowledge into an expert system for project managers. 

Based upon our interviews with NASA personnel, time estimation for 
project scheduling was identified as the focus for our continuing effort under the 
Phase I SBIR. It is an area of project management which is both critical to 
NASA's needs and amenable to the application of expert systems technology. 

One of the main problems currently being faced at the Goddard 
Space Flight Center is that of scheduling the design and construction of the 
Space Station. The scheduling that is required for this effort is of the Gantt and 
CPM/PERT chart type. Basically, this is the process of decomposing a project 
into tasks and designing a structure which graphically represents the 
dependencies and interactions of those tasks. Discussions with NASA 
personnel revealed that project management software, delivered by Boeing 
under the Technical and Management Information System (TMIS) effort, is 
expected to provide the capability to generate project management charts (e.g., 
Gantt, CPM, and PERT), determine critical paths, and assist in monitoring 
project activities and propagating the effects of schedule changes. However, 
this is a customized, expensive, and sophisticated data base that will require 
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extensive training and will only be available to a limited number of priority 
programs. Therefore, a need exists for a cost-effective, user-friendly system for 
project management that is available to a large user community and requires 
minimal training. 

The Phase I effort concentrated on an investigation of an automated 
system to assist project managers in the estimation of the time requirements for 
tasks. The proposed system, the Integrated NASA System for Intelligent Time 
Estimation (INSITE), utilizes analogous cases and historical data to develop 
accurate time estimates. The INSITE inference mechanism will be based upon 
recent advances in artificial intelligence (i.e., reasoning by analogy, pattern 
matching, etc.). As with any expert system shell, INSITE will require some 
customization, based on historical project information, for each installation site. 
The more information available, the better the INSITE system will perform. An 
elicitation tool to help extract information from the human operator and to 
increase INSITE's knowledge base was also investigated. 

The following steps served as the approach to determining the 
feasibility of INSITE: 

1. Review relevant technology in reasoning by analogy, pattern 
matching, statistical inference, and knowledge elicitation. 

2. Review project scheduling methodologies and cost estimation 
techniques (as a model for time estimation). 

3. Specify system functionality for the time estimation aid, 
including what the system will do for the user, what the system 
will demand of the user, and how the system will look to the 
user. 

4. Review relevant human factors engineering literature t o  
determine relevant techniques for the user-computer interface. 
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5. Evaluate the feasibility of constructing a system as described, 
taking into account such factors as current technology, 
cosVbenefit trade-offs, etc. 

6. Develop a preliminary design for the Phase I I  prototype effort. 

The development of the INSITE system will assist NASA program and 
project managers in planning and scheduling projects. Computerized time 
estimation systems, such as the proposed INSITE system, assist in formalizing 
the time estimation process since all project managers will have access to the 
entire body of knowledge and not just one isolated piece. The use of a system 
such as INSITE will result in improved and more consistent time estimates, 
particularly by novice project managers. INSITE will also increase the 
productivity of the project manager by automating the lengthy and tedious 
procedures currently used to determine time estimates. It will also enhance 
responsiveness to changing requirements by allowing the project manager to 
modify project features and quickly obtain new estimates. 

1.3 REPORT OVERVIEW 

This report is organized as follows: 

Section 2 presents an overview of the project management 
process. 

Section 3 presents the technical approach used to develop the 
INSITE system. 

Section 4 provides a review of the research conducted on 
technologies relevant for the INSITE estimator. 

Section 5 provides a review of the research conducted on 
technologies relevant for the INSITE knowledge base. 

Section 6 provides a review of the research conducted on 
technologies relevant for the INSITE user interface. 
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0 Section 7 presents the preliminary design of the INSITE 
system. 

Section 8 presents an assessment of the proposed system's 
feasibility, including risk areas, and provides a description of 
the goals and objectives of a Phase It program to develop the 
INSITE system. 
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2.0 PROJECT MANAGEMENT 

Project management (PMGT) is defined as: "the coordination of group 
activity wherein the manager plans, organizes, staffs, directs, and controls to 
achieve an objective with constraints on time, cost, and performance of the end 
product" (Cleland and King, 1983). PMGT is critical to NASA projects which are 
typically large, complex, involve many different NASA centers and contractors, 
and are also constrained by time and dollars. Many NASA projects are also 
unique, and therefore, project managers do not have similar past projects to use 
as models. Although similar projects may have been performed in the past, the 
projects are not usually being repeated on a production basis. Therefore, 
NASA projects, unlike other agencies, can be more difficult to plan and manage 
effectively. 

Many aspects of the PMGT process have evolved into a well-defined 
methodology, particularly with the development of standard presentation 
techniques such as PERT, CPM, and Gantt charts (described in Section 2.1). 
The use of these various techniques assists in the PMGT process because they 
require the project manager to specify the project goals, develop a project plan, 
make decisions about each component's requirements, track the 
implementation of the plan, and evaluate the impact of any deviations from the 
plan. 

The planning and scheduling components of the PMGT process, 
project management software support, and time estimation are described 
below. 

2.1 PROJECT MANAGEMENT PROCESS 

The project management process consists of the following 
components: 

0 P l a n n i n g  - high-level definition of the project scope, 
required activities, and resource requirements. 
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Scheduling - definition of project activities, their relationship 
to one another, and determination of their resource 
requirements (e.g., time, cost, personnel, etc.). 

Monitoring and controlling - tracking project progress, 
identifying deviations from the schedule, and determining 
corrective act ions. 

Based upon our interviews with NASA personnel, it was determined that the 
focus of the Phase I effort should be directed towards the planning and 
scheduling aspects of project management. These topics are discussed in 
more detail below. 

2.1.1 Planning 
For the purposes of this report, the term "project" refers to a set of 

related activities leading to the accomplishment of a goal. Project planning is 
the process of: 

1. Defining the scope of the p-roject, determining project 
constraints and budget parameters. 

2. identifying the project activities and in what sequence they 
should be performed. 

3. Defining key milestones and deadlines. 

4. Estimating time duration, resources, and costs for each project 
activity. 

5. Creating an overall representation of the plan. 

The planning process starts with a set of objectives and 
specifications. These criteria are used to subdivide the project into the smaller 
steps, or tasks, necessary to complete a project. Each task occurs within a 
defined time frame and has a starting and ending point. The starting point can 
be a specific date or be dependent upon the completion date of another task or 
tasks. Key points of time are specified as milestones which again may be 
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specific dates or be based upon the completion date of a task or tasks. Each 
task can be further reduced to subtasks and the process repeated as the project 
manager gradually develops a more precise plan about the specific work to be 
performed. 

A critical part of the planning process is estimating the time required 
to perform each project activity. The project manager generally develops the 
time estimates intuitively based upon past experience with similar projects. The 
time estimation problem will be described in more detail in Section 2.2. 

The project plan is frequently displayed as a Gantt chart (as illustrated 
in Figure 2-1). The Gantt chart is a horizontal bar chart with time represented as 
a calendar on the horizontal axis and project activities displayed on the vertical 
axis. Each horizontal bar typically shows the scheduled start and finish time as 
well as the duration of each major project activity. Numerous variants of the 
standard Gantt chart have been developed which additionally display such 
items as project milestones, percent complete, float time, etc. Milestones are 
used to identify major project goals and usually do not have any associated 
time duration. They are depicted on the Gantt chart using a special symbol 
(e.g., a triangle) to identify a single date. Gantt charts are useful for viewing the 
overall project schedule. However, they are not useful for showing the 
relationships between activities, determining the critical path, or identifying 
slack time for non-critical activities. 

2.1.2 Scheduling 

The project plan is then combined with task dependencies and 
resource availability in order to develop a project schedule. The processes 
used to develop the schedule will vary, depending on the type of scheduling 
required. For example, one may wish to "schedule" the use of a conference 
room, a truck route, or the development of a Space Station. These scheduling 
concepts are not directly interchangeable. Basically, there are five types of 
schedu Ii ng : 

1 
c 
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0 Job-shop scheduling deals with the problem of deciding the 
order of items to be processed (as in, for example, a 
manufacturing environment). The problem is to optimize the 
flow through the system based on certain constraints such as 
cost, time, etc. 

0 Resource allocation scheduling attempts to spread limited 
resources among consuming entities using some rules or 
heuristics (as in the scheduling of the use of a conference 
room, assigning labs, or assigning employees to projects). 

0 Assembly line balancing seeks to optimize throughput of 
an assembly line process based on certain precedence 
relations and rules. This differs from job-shop scheduling in 
that it deals with optimizing a jepet itious process. 

0 Routing attempts to optimize the itinerary of a single operator 
as it flows through multiple "checkpoints." This is the well- 
known "travelling salesman" problem. Given that a salesman 
must pass through X number of towns, what route should be 
taken to minimize time on the road? 

0 Project scheduling is the process of breaking a project into 
its component parts and then defining the interrelationships 
between the components in such a way that a time schedule 
can be produced. 

Although each of these types of scheduling problems may be 
applicable for NASA project management, this effort will focus on the last type- 
project scheduling. Based upon interviews with NASA personnel, project 
scheduling was identified as the most critical and relevant project management 
task associated with large-scale development projects such as the Space 
Station. Therefore, the remainder of this section will address this problem. 

Managing large projects involves detailed planning, scheduling, and 
organization of the project's numerous tasks and subtasks. To aid in this 
process, network analysis techniques have been developed and enhanced 
since the late 1950's. Two of the methods have reached prominence - PERT 
(Program Evaluation and Review Technique) and CPM (Critical Path Method) 
- though the two are often treated as synonymous. For the purposes of this 
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report, these methods will be referred to as PERT-type systems. PERT systems 
are based upon network diagrams that depict the relationships between project 
activities. In order to develop a plan using PERT-type systems, the project 
manager defines each activity for the project, its duration, project milestones, 
time and resource allocations, and time constraints. Each activity is shown as a 
node on the network (as illustrated in Figure 2-2). For each node, various time 
parameters are specified, including start and finish dates. In addition, the 
dependencies between each activity are also specified (i.e., which activity must 
be completed before another one can start). The linkage between the activity 
nodes is also tagged as to whether it is a critical or non-critical pathway. Critical 
paths indicate the activities that must be performed in successive steps if the 
project is to be completed on time; non-critical paths represent activities that can 
occur in parallel. Information such as project milestones, time and resource 
allocations, and time constraints may also be specified, depending upon the 
particular variant on the PERT approach being utilized. 

PERT-type systems aid in the scheduling and control of large projects 
by creating a model of the project that can then be adjusted and enhanced in a 
"what-if" fashion, allowing the project manager to test ideas and to evaluate the 
results before any decision is made. PERT-type systems reveal "bottlenecks" in 
the project, thus allowing the project manager to redistribute the resources or, if 
possible, to correct the problem. 

The main concept in PERT-type systems is the precedence 
relationship. This graphically depicts the relationship of tasks and subtasks of 
projects in such a way that an ordering of tasks can be defined. This ordering 
then can be used to create a schedule. 

Once the order of the tasks has been defined, time estimates are 
attached to each of the activities, thus creating a schedule. According to Hillier 
and Lieberman (1974), three times are typically defined for each event: 
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e Earliest time - the (estimated) time at which the event will 
occur if the preceding activities are started as early as possible. 

e Latest time - the (estimated) last time at which the event can 
occur without delaying the completion of the project beyond its 
earliest time. 

0 Slack time - the difference between its latest and its earliest 
time. 

The word estimated appears in two of the definitions above (and in 
the third by reference), which is one of the major problems with PERT-type 
scheduling methods. Each event time is based on the estimate of the times for 
each process that precedes it. The question is: "How does the PM make these 
estimates?" The original PERT method attempted to deal with this problem via 
the "three-estimate approach" which required the user to make three estimates 
- most likely, pessimistic, and optimistic - and included a formula to calculate 
the time for the activity from these additional estimates. The problem with this 
method is one of infinite regression: in order to develop a single estimate, three 
estimates are required. 

This problem has been recognized for more than twenty years as 
indicated in the following quotation: 

"There is always room for error when estimates are supplied t o  
describe outcomes. Mental gymnastics are required which defy 
description simply because they are totally internalized and part of the 
process of cerebral behavior ... It would appear that a mental image 
must be constructed from prior experiences to be as close a 
representation of the situation that is being analyzed as can be 
developed from prior experiences ... That is why the range of 
experience of such an individual is important. Unless his library of 
experience is sufficiently great, he cannot be expected to call up from 
memory sufficiently good analogs ... Therefore, the ability to adapt, 
alter, interpolate, and extrapolate supposes that some basic pattern of 
association can be determined." (Starr, 1964) 

2-8 



-- 

As a result of interviews with NASA personnel, it quickly became clear 
that the problem of estimating time requirements for projects is a major problem. 
The problem is intensified since many of the NASA projects are unique and on 
the leading edge of technology - and are, therefore, harder to estimate. 
Currently, time estimates are derived from the project manager's experience 
base and intuition. The process is very time-consuming, particularly for new 
project managers, and requires considerable trial and error and numerous 
iterations. The time estimation problem will be described in more detail in 
Section 2.2. 

2.2 PROJFC T MANAGEMFNT SO W A R E  SU PPORT 

The application of project management methodologies is in a 
transition phase from a basically "paper and pencil" manual process to a more 
"automatic" process performed on a computer. This transition has resulted in 
numerous changes to the PMGT process. The computer relieves the project 
manager of many previously manual tasks, but the project manager still must 
develop the project plans and scheduling based upon his knowledge about the 
project. The TMlS system will include software to support traditional PMGT 
functions such as the generation of project charts and monitoring project 
activities. This software will be geared towards relieving the project manager of 
many charting and bookkeeping functions. 

As a part of the current effort, project management tools which 
incorporate expert systems capabilities were investigated. A tremendous 
amount of research has been done in both the expert systems and project 
management domains, yet few efforts have been made to bridge the two 
domains. Application of expert systems technology to project management has 
largely been limited to academic research institutions heavily involved in 
artificial intelligence and organizations encountering significant project 
management difficulties themselves. Of the expert systems related to project 
management, the two receiving the far greatest amount of attention in relevant 
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literature are the Expert Mission Planning and Replanning Scheduling System 
(EMPRSS), by NASA, and Callisto, an experimental system at Carnegie- 
Mellon's Robotics Institute. These are discussed below. Another less well- 
known expert system named INNOVATOR will also be discussed. 

2.2.1 
The Expert Mission Planning and Replanning Scheduling System 

(EMPRSS) is a prototype project scheduling expert system being developed 
jointly by the MITRE Corporation and NASA Kennedy Space Center (Hankins et 
at., 1985). The system's intended use is as an aid in planning and scheduling 
the activities required to process a payload to be carried aboard the Space 
Transportation System (commonly referred to as the Space Shuttle). The 
system's inputs consist of data concerning the flight and hierarchies of tasks to 
be accomplished. From this data, schedules can be generated at various levels 
within the hierarchies of tasks and information concerning critical resource 
consumption. 

Dert M ission Plannina and Rep lannina Sc hedulina Svsteq 

EMPRSS seems to be midway through development. The system 
calculates the appropriate flow for mission payload, schedules start and end 
times for activities, posts requests for resources as needed to accommodate the 
derived schedule, attempts to resolve resource bottlenecks, and generates 
alternative schedules to answer "what-if" questions. However, further work has 
to be done in developing expert heuristics for scheduling and planning - 
especially for constructing long-term plans and implementing a dynamic 
planning and replanning system to facilitate short-term dynamic planning and 
scheduling. 

2.2.2 Callisto 

Callisto is an ongoing research project at Carnegie-Mellon's Robotics 
Institute to examine the application of artificial intelligence to large project 
management (Fox et at., 1986). This work, supported by Digital Equipment 
Corporation, has led to the development of several expert systems with varying 
degrees of sophistication. Currently being developed is a system which 
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combines the Institute's previous efforts in activity, configuration, and resource 
management with the modeling of negotiations and the trade-offs involved as 
the conflicting goals of multiple managers arise. The system's input data 
consists of the hierarchies of tasks to be accomplished along with their 
appropriate relationships, constraints, and construction specifications. From 
this data, reports are generated providing a description of how to accomplish 
the project without violating important constraints. 

Several project scheduling expert systems have been developed at 
the Institute, each one producing a more realistic solution as more real-world 
conditions are considered. The current system performs a wide variety of 
functions - such as change of orders management; communication among 
v a r i o u s " m i n i - C a I I i s t 0" ( c o m put e ri zed ) d e part m e n t m a nag e rs ; m u It i - I eve I 
scheduling of activities; and generation of PERT, Gantt, and pie charts - and 
can consider subtleties such as resource management; weak-constraint 
violation, and availability of space. Yet most of the Institute's work, while 
ground-breaking in examining the project management problem, is application- 
specific to large engineering projects and seems to entail the construction of 
substantial, experiment-specific data bases. Callisto does provide tremendous 
foundation work for other developments, but still must be considered in the 
experimental st age. 

2.2.3 INNOVATOR 

INNOVATOR is an expert system developed for NASA and the military 
that deals with the problem of reasoning by analogy for system planning 
(Silverman and Moustakis, 1987). Since it was primarily a research effort, the 
scope of this system was limited. However, some useful results were obtained 
in reference to a paradigm for analogical reasoning systems. The small 
informational base (40 projects) and its development environment (LOTUS on 
an IBM XT microcomputer) limited the potential "real-world" applicability of the 
actual developed system. 
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2.2.4 COCOMO 

A number of systems employing the Constructive Cost Model 
(COCOMO) software cost estimating model have been written, including a 
system called COCOMOl (Williamson, 1986). COCOMOl is a software system 
which guides the user through a series of questions which must be answered in 
order for the COCOMO cost model to work. After this has been done, the 
system calculates an estimate using the model and gives results to the user 
through a series of reports. One problem with COCOMO1 is that it uses a 
parametric approach to estimating which has been shown to have questionable 
accuracy (Kemerer, 1987). COCOMOl serves as a good model for the 
development of an interface design and the potential for a time estimation 
system. 

2.2.5 Conclusions 

A careful examination of current project management expert 
systems experiments demonstrates that, although such systems are certainly 
feasible, they pose certain requirements which are difficult to meet. First, 
because the most popular methodology to implement such systems seems to 
perform an exhaustive search for providing the solution with the smallest conflict 
of resources, the systems require the entry of a tremendous amount of instance- 
specific data. Data concerning all activities and subactivities must be defined, 
including information specifying the hierarchical relationships and the efforts 
and resources that the tasks require. These systems also fail to solve one 
critical aspect of the problem: the quality of project schedules in current systems 
is proportional to the quality of data specified for each activity, so good 
estimates of activities yield good schedules, while bad estimates yield poor 
schedules. Finally, although these systems do provide for plans and schedules 
to be corrected by changing the data and rerunning the system, historical 
examples of similar projects which provided good estimates are not specifically 
offered to replace the user's guesswork. 
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2.3 TlMF FSTIMATION 

A common thread to both the project planning and scheduling 
process is the requirement for the project manager to develop time estimates. 
Estimating the time that a project (or task) will take is a complicated, error-prone 
process. In fact, this section could be subtitled "Murphy's Laws of Project 
Management." There are several reasons for this: 

0 Lack of information - Project managers can only make 
estimates based on projects that they have worked on, projects 
that others have told them about, and historical records of 
projects. However, many times accurate historical information 
is not available or, at least, not readily available. Thus, 
estimates tend to be biased toward projects that the project 
manager knows the most about, which may or may not be 
appropriate to the estimation task at hand. 

Lack of resources - Producing an accurate project 
estimate will often constitute a significant investment of 
resources (i.e., time and money). The project manager may be 
either unable or unwilling to expend these resources for a 
project that is only in the initial stages of development or for a 
project that has not yet been funded. 

Project complexity - The complexity associated with 
various project types has a strong influence on the accuracy of 
schedule estimates. For example, applied research is harder 
to estimate than production, basic research is harder to 
estimate than applied research, etc. NASA projects fall within 
each of these categories and therefore will have varying needs 
as far as estimation models are concerned. 

0 Parkinson's law - Parkinson's law ("Work expands to fill up 
time available for completion") works in a recursive fashion 
against project estimation as follows: An estimate for a project 
is made, that project (due to Parkinson's law) overruns; 
therefore, the next time such a project is undertaken, a greater 
estimate is given and that project overruns. This, in turn, 
causes the next similar project to be overestimated, a d  
nauseam. 
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Process 
perfect knowledge of all appropriate past projects, the task of 
actually creating an estimate from this information would be 
fraught with difficulty. The reason for this is that the questions 
associated with determining the appropriate analogies, valid 
statistical inference, and combinatorial complexity would 
overwhelm all but the most tenacious project estimator. 

complexity - Even if the manager had full and 

Because of the problems cited above, most scheduling is done "by the seat of 
the pants" - largely based on intuition. As the person scheduling the project 
gains experience, intuition typically gets better and estimates become more 
accurate. Yet there is a potentially severe penalty in incorrectly estimating 
project schedules. 

One way to relieve some of the potential consequences of bad 
estimations is a technique known as "sensitivity analysis." This is basically a 
technique for assigning risk factors to the estimate, with the idea of making "best 
case" and "worst case" plans. As with the PERT estimation process, however, 
this technique relies mostly on sophisticated guessing. 

Another aspect of the problem is that overestimation and 
underestimation have an additive, not a complementary, relationship. This 
means that an overestimate does not "balance out" an underestimate, but 
instead compounds the costs. Moore and Hendrick (1977) note that schedule 
slippage almost always occurs in the positive direction (i.e., the project was 
underestimated) and that the slippage tends to be around 50 percent. This 

seems to indicate that all estimates should automatically have 50 percent 
added to them, but this has been shown to be incorrect due to Parkinson's law. 
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3.0 TECHNICAL APPROACH 

Project managers typically base their estimates of the time required 
for project tasks on somewhat arbitrary decisions. In many cases, there is a 
general notion that a particular type of task usually takes a certain amount of 
time. For large-scale projects, the project manager's experience may be limited 
to one or two similar tasks. In such situations, the estimation process combines 
the knowledge that a specific task in the past required a certain amount of time 
with a belief it is similar to the task at hand. Experienced project managers tend 
to develop intuitive models based on previous experience to be used in 
developing time estimates. There is currently no systematic way of 
transcending a single individual's relevant experience. Also, formal procedures 
for evaluating the relevance of isolated historical cases do not exist. Therefore, 
the primary objective for the Phase I effort is to define a consistent framework for 
developing time estimates and to conceptualize the features of such a tool. The 
direction of the Phase I research is to identify the technologies (e.g., artificial 
intelligence, expert systems, etc.) that are relevant to the time estimation task 
and determine what role the relevant technologies should play in the 
development of an expert system to aid project managers in the management of 
technical projects. 

3.1 CONCEPT DEFINITION 

The innovative approach to estimating the time required to complete 
technical tasks that are part of a large, complex project is to develop an expert 
system that captures and stores the knowledge of program managers. This 
system will be referred to as the Integrated NASA System for Intelligent Time 
Estimation (INS ITE). 

3.2 INSITE SYSTEM: HIGH-LEVEL DESIGN GOALS 

Establishing high-level design goals for INSITE is the first step in 
ensuring the development of a practical and functional system. These design 
goals include the development of a user-oriented INSITE system and a system 
structure flexible enough to meet the future needs and changing scope of NASA 
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programs. Ease of programming and maintenance will also be a major goal of 
the design. A top-down analysis (as illustrated in Figure 3-1) was performed as 
part of the high-level design goal process which focused on: 

0 Defining user requirements, 

0 Allocating functions between the user and INSITE, 

0 Developing a time estimation methodology, 

0 Evaluating user-computer interface options, and 

0 Defining a software development approach. 

The system considerations and research for each of these areas are 
described in this section. 

3.3 USER REQUIREMENTS 

The first step in developing any system is to define the skills and 
knowledge of the intended users. The users of INSITE will most probably be 
project or program managers who are experts for their particular projects and 
possess extensive amounts of project-specific knowledge that permit very 
efficient problem understanding, analysis, and solutions. However, the INSITE 
users may be computer novices with minimal experience in using computers. In 
addition, INSITE users may possess varying levels of skills for project 
management, scheduling, and estimation. Therefore, the user interface must be 
"user-friendly," require minimal computer knowledge, promote rapid learning of 
INSITE, and provide the flexibility to solve a wide range of problems. INSITE 
will require extensive dialogue with the user in order to characterize their 
problem, which requires sophisticated techniques to guide and direct the user 
in this process. Once INSITE is an established system, the ranks of more 
experienced users will grow. Therefore, the needs of the novice must be 
balanced against the needs of a more experienced user in developing the user- 
computer interface. 
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3.4 ALLOCATION OF FUNCTIONS 

The functional allocation step is necessary to determine what system 
functions should be distributed between the user and INSITE. The INSITE user 
communicates with INSITE to define and characterize a project, obtain time 
estimates, and evaluate the results. The INSITE user needs to be provided with 
a body of systematic guidance on how to develop and validate the appropriate 
knowledge and system procedures for their particular application. In 
accordance with the goal of a high-level, user-oriented interface, as many 
functions as possible will be allocated to INSITE. These include user aids such 
as menu-driven interface; on-line guidance via a HELP capability; an 
explanation facility to assist in the interpretation of results; and detailed and 
easily understood error messages and recovery procedures. 

3.5 TI ME ESTIMATION METHODOLOGY 

The INSITE system will assist project managers in developing more 
accurate time estimates for their projects. Time estimates are currently 
developed based upon the project manager's intuition or upon informal 
comparisons with previous work. In order to determine the methodologies to be 
considered, characteristics of a "perfect" estimation system were considered. 

It would be unreasonable to expect any method of estimation to 
always return an absolute, correct answer (if this were the case, the system 
would be calculating instead of estimating). However, the system time 
estimations should exhibit low deviations when compared to the actual outcome 
(Le., it should have a low average deviation and a low maximum deviation). A 
low maximum deviation is important due to the fact that overestimates and 
underestimates do not "balance out" (as described in Section 2.3). 
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Additionally, the system should be smart in the following ways: 

0 It should know that i f  a task has been done before, this fact 
should override all other considerations. 

0 It should know that i f  an exactly analogous case is known 
which only differs in degree, that this case is very significant. 

0 If available information is not very useful, it should indicate that 
fact to the user but still give an answer. 

In short, the system should know what it is doing, not just how to do it. 

The ideal system should use several approaches to solve the 
problem and consider each technique when making a determination. Each 
approach would serve as a guard against one estimate being very biased or 
totally wrong. Such a system would also be able to explain the determined 
estimates, including the historical case histories and their relevancy. The 
system should also allow the user to specify a parameter that should be ignored 
or given greater weight in this particular case, thus allowing the system to "work 
with" the user in determining a solution. Section 5 describes several 
methodologies that are potentially relevant to the development of time 
estimates, including cost estimation, reasoning by analogy, automatic theorem 
proving, pattern matching, and fuzzy logic. Section 8 describes how the 
relevant technologies will be integrated into INSITE. 

An additional consideration is the determination of what knowledge is 
necessary to support an effective time estimation system and how that 
knowledge should be encoded in such a manner to facilitate its use by the 
selected INSITE time estimation methodologies. Section 6 presents the 
technologies that can be utilized for the development of the knowledge base. 

I 
1 
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3.6 USFR INTF RFACF APPROACH 

Since INSITE will be a complex system, the nature of the INSITE 
user-computer interface (UCI) will be an important determinant of successful 
system operation and effective performance. The UCI will be designed to take 
advantage of the most recent advances in human factors engineering, artificial 
intelligence, and advanced display technologies. A primary design goal is the 
development of a system which is maximally flexible and adaptable for new 
applications and which is highly usable in terms of both operation/execution 
and analysis of results. The design of the UCI will be considered during every 
phase of the development of INSITE to ensure that INSITE incorporates high 
degrees of flexibility, adaptability, consistency, and responsiveness with regard 
to the way in which the user will interact with all the components of INSITE. It is 
essential to integrate human factors into the early stages of the design process 
where it can have the greatest benefit. A good user interface design may cost 
more in terms of time and money to implement, but it may also result in 
significant benefits during the system's productive life. Non-productive training 
time can be reduced; user misunderstandings leading to interpretation errors 
can be avoided; and user satisfaction can be dramatically increased. 

The development of the user interface will be based upon analysis of 
the following: 

0 Interactive dialogue analysis - establishing dialogue 
style (e.g., menu, command, graphics, etc.), user response, 
data entry screen design, on-line help, error message design, 
and color coding. 

0 Input device and techniques analysis - examining 

Output requirements analysis - examining properties of 

properties of available input devices (e.g., keyboard, mouse, 
etc.) and their interaction with the dialogue. 

available output devices and information to be conveyed (e.g., 
text, graphics). 

0 
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Another design goal is that the user interface should be consistent 
across all components of the INSITE system. Other principles that have been 
identified in the human factors literature as critical to successful user interfaces 
include the following: 

0 " F ri e n d l y " d i a I og u e s and e r ro r hand I i n g , 

0 On-line help routines, 

0 Meaningful feedback provided to avoid confusion, 

0 Minimal strain on human memory capacity, 

Simplicity rather than complexity, and 0 

0 Demands tailored to the user's skill levels. 

Wherever possible, the design of the user interface will be in accordance with 
established human factors guidelines and standards. 

Section 7 describes the technologies researched for the development 
of an effective INSITE computer interface. 

3.7 DEVELOPMENT APPROACH 

Traditional software development approaches assume that all system 
requirements can be precisely determined and specified in detail prior to any 
contextual design, implementation, or operational experience. The design 
specifications are frozen at some point, and the entire system is based upon 
these specifications. By contrast, the prototype approach assumes that precise 
requirements are not always predefinable so the system is developed utilizing a 
building block approach. A building block approach to system development 
develops a working foundation of a system quickly in such a manner that it can 
be gradually expanded one step at a time. The premise of prototyping is that it 
is easier and quicker to modify and improve a tangible system than to draw up 
specifications for a system that can handle every conceivable requirement. This 
is particularly true for expert and knowledge-based systems where an iterative 
approach is required to establish and refine the knowledge base. Prototyping 
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begins in the analysis phase of system development with a first prototype based 
on a high-level functional analysis. It does not include every feature the 
eventual system might include, but at each stage implements the desired goals 
effectively with minimal development costs. The prototyping approach, 
illustrated in Figure 3-2, consists of the following steps: 

1. Specify prototype goals - clearly identify the scope of the 
prototype and determine how it is to be evaluated. 

2. Develop prototype - design and implement prototype; 
determine what functional modules must be developed and 
how they will be integrated with modules in the current 
ope rational version. 

3. Use and evaluate prototype - demonstrate the prototype 
to the user in the context of actual applications and elicit 
feedback from the users in terms of how the prototype meets 
their needs and requirements. 

4. Implement required modifications - incorporate any 
indicated modifications into the prototype and repeat the 
evaluation process. 

When a particular prototype is functioning satisfactorily, it is made 
available to the user for evaluation to determine if the system development is on 
the right track and performs as expected and/or required. Users can 
knowledgeably suggest changes that will improve the system and make it more 
applicable to their needs. The system developers can then incorporate those 
changes with a clear understanding of what exactly needs to be changed and 

how it should look when completed. Each succeeding version of the prototype 
more accurately reflects the users' requirements and incorporates more of the 
features of the eventual system. The prototyping process is reiterated until all 
system goals have been developed and evaluated. 

The traditional approach to software development is best suited for 
systems with simple and static requirements. But for dynamic and complex 
systems, the best way to develop the system is with a prototyping approach. 
The user's understanding of a system is an evolutionary process. Changes of 
meaning and structure of the system reflect the learning process and growth 
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that accompany every application experience. In order to increase the usability 
of the system, it is necessary to accommodate these changes, not to impede 
them. An approach that exposes the user to realistic versions of the final 
application will lead to wide exploration of the application alternatives during 
the earliest stage of development 

Several studies have indicated that a prototype approach significantly 
improves the probability that a useful system will be developed and that the 
overall development cycle will be shortened (Mason and Carey, 1983). 
Additional experimental results suggest that prototyping increases the actual 
utilization of a system by the user, and systems performance (as measured in 
terms of user satisfaction with the system and its perceived accuracy, utility, and 
functionality) was rated higher by users of prototyped systems than by users of 
systems developed using traditional approaches (Alavi, 1984). 
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4.0 ESTIMATION AND RELATED TECHNOLOGIES 

The primary objective of INSITE is to create time estimates for project 
managers. The relevant technologies that were thoroughly investigated can be 
grouped into two categories: algorithmic and heuristic. Algorithmic methods are 
well-defined, have a "step-by-step" process, and are guaranteed to have a 
solution. Heuristic approaches are based on general strategies or rules of 
thumb. The algorithmic and heuristic approaches are discussed in Sections 4.1 
and 4.2. Section 4.3 provides a description of expert systems technology. 

4.1 ALGORITHMIC APPROACHES 

4.1.1 F st i m at i ng 
The methodologies utilized for cost estimation are analogous to those 

used for time estimation. Cost estimation procedures are regularly used in 
construction, defense contracting, software development, and many other 
areas. Cost estimating can be done in a variety of ways as described in the 
following sections (Defense Systems Management College, 1983). 

4.1.1.1 
procedure even if, as the name implies, it is a method of summing the costs of 
components to derive a total cost figure. The cost of the project is defined as the 

sum of the costs of each component plus an "overhead" or "administrative" cost. 
The problem with this method is that it, like many similar estimation methods, 
only postpones estimation. To say that the cost of a project is the sum of its 
components is definitional. The question becomes: "What are the costs of each 
component?" Unless one is working on a fixed-price contract basis, this method 
of estimating is of limited use. However, it does compel the project manager to 
reduce the project into lower-level components such as a work breakdown 
structure. This process is useful since any attempt at structuring the project is 
bound to enhance the PM's knowledge of the situation which, in turn, will aid in 
the creation of estimates. 

Botto m-UD cost ing. Bottom-up costing is considered an estimation 

4- 1 



I 
I 
I 
1 

4.1.1.2 ComDarison. If a PM has knowledge of a previous project that is very 
similar to the one in question, this can be used as a model for making estimates 
about the current project. However, there are several questions associated with 
this process: 

How dissimilar can the projects be and how much dissimilarity 
can a good estimate tolerate? 

If the dissimilarity is great, how should the estimates be 
adjusted in order to account for the differences? 

What aspects of the projects should be considered when 
making the comparison? 

These questions have no simple answers and, in fact, are applicable to many of 
the estimating methodologies discussed in this report. However, the nature of 
cost estimating is very error-prone due to the lack of definition of the 
methodology. 

4.1.1.3 Stat ist ical Analvsis. The problem with the previous two 
methodologies for cost estimating is that they are too subjective. A method that 
does not rely solely on the PM's particular knowledge and biases is preferred. 
In this regard, the use of statistical analysis seems appropriate. In an ideal 
situation, a PM could simply look up the cost of a project in a book, based on 
some criteria. For example, the buildingkonstruction trades often refer to a 
structural cost handbook which lists average costs for different types of 
structures by region. This method works for the building trades since there are 
numerous examples from which to draw the "average" cost, and the processes 
are well-defined so that meaningful comparisons can be made. In the case of 
more complex projects, however, problems of data collection and problems of 
definition of appropriate criteria of comparison combine to make this method of 
estimation unsuitable. 

4.1.1.4 Parametric Analvsis. Mathematical modeling is an estimation 
technique that is less subjective. This approach describes the cost of a project 
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via equations based on a set of input parameters or comparison factors. The 
appropriate comparison factors are developed based upon the emphasis of the 
particular model and adjusted based upon the "goodness" or "badness" of the 
estimate for a particular project. 

The Programmed Review of Information for Costing and Evaluation 
(PRICE) model was developed by RCA for the Defense Systems Management 
College (1983). Its 
usefulness is based on the fact that it does not incorporate a single model, but 
several. As with any such system, it needs calibration for the particular user's 
project. PRICE also includes a list of the factors that are the most important for a 
variety of project types. 

This system is an example of parametric analysis. 

The major problem with this method is that often the model is not 
suited for the project at hand. In fact, in a study of four of the most popular 
software cost estimation models, an average error rate was found to be 460% 
(Kemerer, 1987). 

The trade-off for parametric analysis techniques tends to be between 
generality and accuracy. As a model becomes less general, its usefulness 
begins to decline since more work is needed to determine which model to use 
as well as identifying the appropriate factors. In the worst case, the estimation 
method degrades to the "bottom-up" approach described in 4.1.1 .l. 

4.1.1.5 Conclusions. The problems associated with cost estimation are very 
similar to the problems of time estimation. However, the cost estimation 
techniques currently available seem to have minimal utility for NASA's time 
estimation problem due to the fact that they (a) are not applicable (particularly 
the statistical method), (b) require excessive "up-front" time (particularly the 
bottom-up method), or (c) provide inaccurate results. Thus, while current cost 
estimation methodologies can be very instructive, it remains an area where 
further research and development is needed. 
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4.1.2 m i c a 1  Fstimation 

Statistical estimation is used in virtually every scientific and business 
related enterprise. Its usefulness is almost axiomatic; virtually no one will 
question a justification by valid statistical analysis. It will be seen in Section 7 
that statistical analysis will be integral to the design of INSITE; more detail as to 
the approach will be given at that point. 

4.1.3 Pattern Recoanition and Pattern Matching 

Pattern matching and recognition, which combine a statistical 
approach with computer science and mathematics, is central to the study of 
robotics, signal processing, and AI. Pattern matching determines the degree of 
similarity between a set of data points describing a particular situation and a 
previously constructed data set. Given a set of data points, these techniques 
dete rmi ne : 

a. If there are patterns which define classes of data points; and 

b. Given a new data point, if it can be placed in any existing class 
from which information about the point can be inferred. 

The relevance to project scheduling and time estimation is clear: if information 
about historical projects can be obtained and patterns detected, perhaps an 
inference can be generated regarding current projects. 

Using the pattern recognition approach to estimate project costs, a set 
of n measurements, called features, is defined to represent a common set. 
Each of the n features is connected to an n-dimensional feature space, with 
each task having a feature vector. The main problem is to find a match between 
the feature vector of some known source (or group of sources known as a 
cluster) and the feature vector of the source in question. For our purposes, the 
problem is to find a cluster into which the project fits and then, based on 
information about that cluster, derive a time estimate. 
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Cohen and Feigenbaum (1982) have classified the algorithms for 
pattern matching into four categories, which are each discussed below. 

4.1.3.1 Statistical Pattern Matchinq. There are numerous algorithms for this 
process. One basic approach is the nearest neighbor classification 
approach, which seeks to find the nearest data point to the point in question and 
determine if the new point belongs to the cluster of the point nearest to it. That 
is: 

If there exists a k,l such that I Xk,l- X I < I Xi,j - X I for all i,j 

where X x,y is the yth sample in the x class and 

X is the unknown vector 

then X is assigned to class k. 

This is a parsimonious approach, but is error-prone due to the fact that clusters 
can overlap. This technique yields unreliable results since proximity to a point 
does not necessarily denote homogeneity. A variation to this scheme would be 
to sample a set of closest points and assign the class of the unknown to be the 
most common class within that set. This is somewhat better, but still suffers from 
the same false assumption. 

An effective variant of this method uses the distance to the center of 
the cluster to define the class. This means that any point whose center is 
nearest is in the class. This is an appropriate strategy if the clusters are well- 
defined and symmetric, but not very accurate otherwise. 

It is also possible to define the boundaries between classes through 
the use of probability density models. These models take into account not only 
proximity to the center of a class cluster, but also the relative density of the 
points at that location as compared to the density of the next nearest class 
cluster. The boundaries are established to minimize the cost of error, not just 
the occurrence of it. 

4-5 



I 
I 

I 
I 

m 

None of these models allow the analysis of clusters with complex 
shapes or classes with multiple clusters. Research on more complex analysis 
techniques is ongoing, though further discussion of these techniques is beyond 
the scope of this paper. 

Michalski and Stepp (1983) indicate that one of the major limitations 
of these types of approaches is that the a priori classes defined for the data 
often lack any simple conceptual interpretations. They cite the reason for this as 
the implicit assumption that all of the attributes of the data sources are of equal 
relevance, whereas in reality, some of the properties will have overriding 
importance to the cohesion of the group, while others are of little importance. 
They suggest an approach (conjunctive conceptual clustering) in which the 
attribute selection is performed simultaneously with the formation of clusters. 

4.1.3.2 Parametric Pattern Matching. In parametric pattern matching, the list 
of possible parameter vectors (rule space) is searched by "hill-climbing" or 
gradient descent in order to find the class that minimizes the error between the 
model and the unknown. Typically, the following linear functional is used: 

where x is the feature vector and 

w is a weight vector, the elements of which are the unknown 
parameters. 

What is needed, then, is to find the hyperplane that separates the classes. If 
none exists, then either a more complex relationship can be found or a 
hyperplane which results in low error percentages can be used. The algorithms 
used to find this hyperplane are explained in Cohen and Feigenbaum (1982). 

4.1.3.3 Pattern Matchina Automab. The Pattern Matching Automata method 
seeks to find "a finite-state automaton whose behavior imitates that of the 
unknown system" (Klaus and Horn, 1986). In this approach, the system is 
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defined from an initial state and the transitions from one state to another are 
described. One method describes the transitions via a probability matrix, while 
another uses fuzzy set membership as the criterion (fuzzy set theory is 
described in more detail in Section 4.2.5). Pattern Matching Automata have not 
as yet produced much in the way of practical application. 
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4.1.3.4 St ructu rat Pattern Mat c hi nq. Structural Pattern Matching borrows 
from formal language theory in that it attempts to define a grammar for a 
particular class. An unknown is parsed (checked against a defined grammar) 
and is placed in the appropriate class. Stochastic grammars use statistical 
analysis in an attempt to accommodate ambiguous or ungrammatical patterns. 
Few practical structural pattern matching algorithms have been proposed, but 
work is continuing and may yet yield some useful results. 

4.1.3.5 Conclusions. A problem associated with all of the pattern matching 
techniques is the selection of the feature measurements. Klaus and Horn 
(1986) contend that "no amount of sophistication in the decision algorithm can 
make up for a poor selection of features." Thus, the selection of the comparison 
criteria is crucial to the success of the classification. Since pattern matching 
capabilities will play a significant role in the estimator portion of INSITE, a large 
portion of the design time will be devoted to the definition of the relevant 
features of projects which will be used for the comparisons. 

4.2 HEURISTIC APPROACHES 

4.2.1 Reasonina bv Analoav 

In general, time estimates can be made in two different ways based 
on two different types of knowledge. First, an estimate can be based on an 
understanding of the factors which determine project time requirements. If this 
understanding is complete and detailed, direct calculations can be made to 
produce an estimate. If domain knowledge is less complete and at a more 
general level, a series of heuristics/rules may be applied to generate an 
estimate. Second, an estimate can be made based on past experience. That 
is, a project may be estimated by reference to some other similar project (or 
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projects) which has already been completed and whose time requirements are 
therefore known. This second approach depends on the ability to identify 
completed projects which are somehow "analogous" to the project in question. 

4.2.1.1 Analoav in Evervdav ExDerience. Analogical reasoning has long 
been recognized as a major component in human thought. It is integral to our 
problem solving strategies from the hard sciences to the most trivial everyday 
activity (Sternberg, 1977): 

"Reasoning by analogy is pervasive in everyday experience. We 
reason analogically whenever we make a decision about something 
new in our  experience by drawing a parallel to something old. When 
we buy a new goldfish because we liked our old one, or when we 
listen to a friend's advice because it was correct once before, we are 
re as o n i n g an a Io g i ca I I y .'I 

It is the fact that analogy is a central technique for dealing with new 
situations that has caused a number of disciplines, from psychology to the 
history of science, to focus on analogical reasoning. The most substantial body 
of work has been produced by psychologists who have, for some time, 
recognized the relation between analogical reasoning and intelligence. 
Anyone who has ever taken an intelligence test is familiar with the classic 
formulation "A is to 6 as C is to D", where the subject is presented with a 
multiple-choice option for "D". It is assumed that the ability to deal with new 
situations (as seen in a person's ability to manipulate analogies) is central to 
the notion of intelligence. Even 60 years ago, Spearman (1 927) claimed that "it 
is certain that [analogy] tests - if properly made and used - have correlations 
with all that are known to contain g [Spearman's general factor of intelligence]." 

Although the concern is as old as the interest in analogy itself, recent 
work in psychology has focused on understanding analogy as a process. 
Some researchers continue to extend a traditional approach by attempting to 
reduce analogical reasoning to a series of low-level (now information 
processing) components. Sternberg's five-component theory (1 977) can be 
used to exemplify this strategy. The components themselves are best described 
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in the context of an analogy problem: Washington is to 1 as Lincoln is to (10,5)? 
The answer to the problem is "5" because Washington appears on the one- 
dollar bill and Lincoln appears on the five-dollar bill. According to Sternberg's 
model, the steps taken to arrive at this answer are the following: 

1. Encoding: The subject begins the solution with attribute 
identification for all terms in the analogy. Attributes and values 
which may be relevant for analogy solution are retrieved from 
memory. For Washington, these might include "first president", 
"portrait on dollar bill", and "revolutionary war hero". For 
Lincoln, these might include "sixteenth president", "portrait on 
five-dollar bill", and "Civil War hero". 

2. Inferring: The subject attempts to relate attributes of the first 
and second terms in the analogy. Two attributes of 
Washington, "first president" and "portrait on dollar bill", are 
found to relate to attributes of the digit 1 (namely, ordinal 
position and amount). 

3. Mapping:  The subject attempts to relate, by means of 
retrieved attributes, the first and third terms in the analogy. The 
subject notes that Washington and Lincoln were both 
presidents, were both war heros, and are both depicted on 
currency. 

4. Application: The subject attempts to construct a relation 
between the third term and each of the candidate solutions, 
based on the relations already inferred. No relation between 
Lincoln and the number 10 can be found on this basis. The 
fact that Lincoln appears on the five-dollar bill allows the 
subject to construct a relation between Lincoln and 5 which is 
analogous to one of those inferred between Washington and 1, 
and therefore arrive at a unique solution. 

5. Response: The subject responds with "5", having completed 
the analogy problem. 

Although inferring, mapping, and application may appear to be the 
most complex components in this model, the selection of "relevant" attributes is 
a major problem. Aspects of human thought which are critical to our 
understanding of analogical reasoning are simply swept aside by explanations 
such as the following (Sternberg, 1977): "Potentially relevant attributes are 
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those that experience has indicated are useful in relating one concept to other 
concepts." The idea that the structure of memory itself may play a major role in 
analogical reasoning has only recently emerged. Rumelhart and Abrahamson 
(1973) believe that portions of semantic memory can be represented as a 
multidimensional space. In this case, analogies are treated as similarity 
judgments and can be assessed directly since distance is a straightforward 
computation within the context of a multidimensional Euclidean space. Other 
models which are capable of extending or replacing the process-component 
approach will undoubtedly emerge as our understanding of brain functioning 
improves. 

Most of the analogies dealt with in intelligence testing are 
straightforward, usually based on relationships which are simple, well- 
understood, and easily verbalized. In technology and science, however, 
analogies are often complex and imperfect. Whether an analogy is made to a 
past problem solution or a past theory, the analogy may be relatively poor, yet 
provide a framework for continuing efforts (Oppenheimer, 1956): 

"At each point the first scientists have tried to make a theory like the 
earlier theories, light, like sound, as a material wave; matter waves 
like light waves, like a real, physical wave; and in each case it has 
been found one had to widen the framework a little, and find the 
disanalogy which enables one to preserve what was right about the 
a n a logy . " 

This subtle kind of process is also seen in everyday problem solving and 
remains a potentially fertile area for continuing research on reasoning by 
analogy. 

4.2.1.2 Automatina Natural Reasoninq. Since its inception, artificial 
intelligence has been motivated by an interest in emulating "intelligent" human 
behavior. In the context of a desire to automate natural reasoning, it is not 
surprising that AI research focused on the human ability to solve analogy test 
problems. It is hard to imagine a more striking demonstration of machine 
intelligence than a computer taking an IQ test. Twenty years ago, computer 
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programs already existed which could accomplish this task. ARGUS could 
solve verbal analogies (Reitman, 1965), and ANALOGY could solve geometric 
analogies (Evans, 1968). 

ANALOGY is a classic example of the describe and match paradigm. 
The relation between any two geometric objects can be described as a series of 
geometric operations (e.g., rotation, reflection, scaling) applied to the first object 
in order to obtain the second. To answer the question "A is to B as C is to (D1, 
D2)", the program determines which geometric transformations are necessary to 
get from A to B, from C to D1, and from C to D2. The correct solution is that 
solution which requires the same set of transformations as, or the most 
transformations in common with, the set required to go from A to 8. 

A reliance on matching underlies most AI approaches to analogy 
developed in recent years, including complex schemes such as Winston's 
learning by analogy (1 984). The ARCHES system (Chouraqui, 1985) provides 
an alternative approach to the automation of analogical reasoning. Figure 4-1 
presents the analogical paradigm in the ARCHES system, following the "A is to 
B as C is to D" formula. In general, to discover a new D, the system first 
assesses the similarity between A and C. For example, the knowledge base 
may include the fact that "the earth is round" and that "the earth is habitable by 
humans". Since the moon is also round, by analogy we might determine that 
the moon is habitable by humans. The inference is invalid for two reasons: 1) 
the inference is based on the resemblance of very incomplete descriptions of 

the earth and moon, but equally, because 2) there is no dependency relation 
between "the earth is round" and "the earth is habitable by humans". For this 
reason, the paradigm (as shown in Figure 4-1) stresses that analogies are valid 
when a dependency relation exists between "A and B" and "C and D" as well as 
when a similarity exists between A and C. In fact, the "degree of probability of 
conclusion D is as high as the relation of dependency is strong." (Chouraqui, 
1985). The dependency criteria, which "only experts are in a position to 
evaluate and justify in proportion to their scholarship," are the responsibility of 
the user of the system who establishes objects and attributes through a series of 
dependency graphs (Chouraqui, 1985): 

4-1 1 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

B 
dependency 

relation/ 

D 
depend en cy 

re1 at ion / 

A C 

Figure 4-1. Representation of Analogical Paradigm in the ARCHES 
System 

"This mode of using the rule of analogical inference - filtered by the 
dependency graphs - contributes to the production from a set of 
logically true (i.e., valid) structures, sets of structures whose truth 
depends on interpretations defined by these dependency graphs." 

4.2.1.3 Conclusions. Research by psychologists into the nature of 
analogical reasoning has given rise to a number of related procedural models. 
At best, however, these models are only adequate for the analysis of simple 
cases of reasoning by analogy. More complex processes remain poorly 
understood. AI approaches have also been successful in dealing with 
straightforward analogies. The underlying matching strategies have even been 
extended to more complex situations. As in other expert system approaches, 
automated analogical reasoning is dependent on human expertise which has 
been captured in system structures. In the case of analogies, it is the 
dependency relations which must be defined by the human expert. 

4.2.2 Svmbolic Lo-' 9LI; 

Symbolic logic (as opposed to syllogistic or classical logic) has 
been one of the main methods of attacking the problem of intelligent systems. 
Hundreds of years of development in this field had taken place before 
computers came into existence and, in fact, the field of computer science owes 
most of its existence to a logician named George Boole (father of Boolean 
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logic). Logic itself seeks to be a method of discriminating between valid and 
invalid arguments; symbolic logic systems are designed to provide precise, 
formal standards of validity (Haack, 1978). As such, AI researchers have used 
these formalized techniques of reasoning within computer systems to attempt to 
mimic human thought. 

Though there have been a number of symbolic logic systems (SLS) 
developed throughout the years, there are some consistent threads which 
connect them all. Each must begin with a symbology, or a system of 
symbolizing the primitive (base) concepts with which the system will be dealing. 
The main primitive in many logic systems is the statement (also: sentence or 
proposition), which is any sufficiently informational sequence such that that 
sequence must be true or false. For example, "Adam is three" is a statement, 
but "Adam" and "three" are not. In most cases, an SLS will symbolize the 
statement "Adam is three" as "A". Another statement, such as "Adam is terrible", 
would be symbolized as "T". 

Next, a procedure to relate the statements to one another is defined 
through the use of statement connectives. The following statement connectives 
are frequently used: 

0 And, 

- Not, 

2 Material implication, and 

t) Material equivalence. 

Thus, the statement "If Adam is three then he is terrible" would be symbolized "A 
2 T"; the statement "If Adam is three and Adam is terrible then Adam is typical" 
would be symbolized "(A T) 3 U" (where "U" stands for "Adam is typical"); and 
the statement "Adam is not typical if and only if Adam is not three or Adam is not 
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terrible" would be denoted as "-U t) (-A v -T)". This system allows for 
arbitrarily complex statements to be symbolized. The symbology used is 
designed to be "English-like" and is therefore more verbose than is necessary. 
In order to symbolize any two-valued (Le., TRUE or FALSE) logical statement, 
only the two operators - and (or, alternatively: - and v, or - and 2 )  is 
required.' This fact is important for the discussion of automatic theorem proving 
(see Section 4.2.3). 

The symbols described up to this point make up what is known as 
sentential logic; that is, the logic of sentences (statements). Sentential logic 
yields some interesting results, but it is very limited in its representational 
capabilities. Predicate logic expands upon the base of sentential logic by 
adding the ability to assign properties to individuals or classes of individuals 
using the following conventions2 : 

Capital letters (A-Z) denote property constants; 

Small letters (a-t) denote individual constants; and 

Small letters (u-z) denote individual variables. 

A property constant is any descriptive aspect of an individual (such as tall, 
smart, etc.). The phrase "Bob is smart" could be symbolized as Sb, with "S" 
standing for "is smart" and "b" standing for "Bob". This greatly enhances the 
capacity to represent a concept. 

Another type of phrase is the generalization which can be expressed 
using quantifiers in either of the following forms: 

Existential auantification: 

3(x) (e) "There exists an x such that proposition 8 is true." 

1Actually there are two operators that are sufficient in themselves: "I" (which may be understood 
as "not both - and J and "0" (which may be understood as "neither - nor -'I). 
*Uses symbology derived from: Kahane, J oak and PhilosoDhv, pp. 38-56. 
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U nive rsa I aua nt ificat io n : 

V(x) (0) "For all x,  proposition 0 is true." 

The above provide SLS with the capability to represent a wide range of 
propositions. But the symbolization of the statements is only half of the concept. 
A facility to make valid inferences from these symbols must be included in any 
SLS. This is handled by a set of valid deduction rules which can be 
mechanically applied to a proposition or set of propositions with the guarantee 
of deriving a true statement (given that the premises are true). By applying 
these rules appropriately, one can prove that given a certain set of premises a, 
a conclusion p follows necessarily. 

As a tool to enhance human thought processes, SLS have been 
proven through years of use. However, there are problems using SLS as a 
model for AI systems design; three such problems are discussed below. 

4.2.2.1 Translation from Natural Lanauaae into Sv mbolic Loaic Notation. 
The translation of an English sentence into a logical proposition is a non-trivial 
process. In fact, Copi (1954) states "It must be emphasized that there are no 
mechanical rules (italics added) for translating statements from English into our 
logical notation." And, although Otto (1978) differs on this issue, it is obvious 
from his work that it is not an easy task to define the rules for this translation. As 
computers are machines, mechanical rules are necessary for them to perform a 
task. 

What constitutes a "good" symbolization of a proposition is also a 
question. It is a necessary, but not a sufficient, condition that a symbolization be 
correct in order for a symbolization to be "good." The symbolization must also 
be sufficiently detailed for the proof at hand; otherwise, some necessary 
information may get "lost in the translation." For example, the sentence "If Adam 
is three and Adam is terrible then Adam is typical" could be symbolized as "X", 
just as correctly as the symbolization "(A T) 3 U". The difference between 
these two translations is in the level of detail. 
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4.2.2.2 No Alaorithm for Svmbolic Loaic Proof$. The SLS described above 
has no algorithmic (step-by-step) process for doing proofs. Choosing the rule to 
apply (and to what to apply it) at any step in a proof is the main challenge in 
doing proofs. In any non-trivial proof, the number of possible alternative 
strategies is astronomical. Thus, even if the premises are adequately 
symbolized (see above), doing the proof is still a problem for a computer, 
though there have been attempts (Otto, 1978). However, automatic theorem 
proving (as described in Section 4.2.3) attempts to work around this problem. 

4.2.2.3 No New Information. One severe limitation to the entire deductive 
inference methodology is that symbolic manipulation of propositions yields no 
new information. That is, what is obtained is only a conclusion as to whether a 
series of statements are logically consistent - nothing new is discovered. This 
is inherent in the system; if guaranteed correction is required, then insight is 
lost. 

4.2.2.4 Conclusions. SLS are a useful tool for humans, but are less 
applicable (except by analogy) to machine intelligence. The theoretical basis 
for symbolic logic systems is, however, one of the major underpinnings of AI 
and computer science in general. The next section delves into a methodology 
for applying SLS to AI. 

4.2.3 Automatic Theorem Provinq 
Though it has been around since the early 19603, automatic theorem 

proving (ATP) is a subject that has recently gained interest due to its 
applicability to AI in general and expert systems specifically. It is basically an 
approach to making mechanical derivations from premises to conclusions 
based on the principles of logic. It is a subfield of symbolic logic (as described 
in 4.2.2) in that it has the same theoretical basis, but differs in its orientation. 
Whereas the systems of symbolic logic described previously were created for 
use by humans, the ATP techniques are particularly suited to computers due to 
the i r computational complexity . 

4-1 6 



4.2.3.1 Clausal Form. In order for mechanical processes to be performed on 
SLS propositions, they must be converted into a standard form, called clausal 
form, in which no operators are used except - and v (as previously stated in 
Subsection 4.2.2, these two operators are sufficient to describe any two-valued 
logical statement). There is a mechanical procedure for converting any logical 
statement into clausal form (Clocksin and Mellish, 1984), which involves 
manipulating the logical symbols in a repetitious fashion. First, all conditionals 
and biconditionals are replaced by their logical equivalents as shown below: 

(A XI B) is replaced by (-A v B) 

(A t) B) is replaced by ((-A v B) (-B v A)) 

Next, all negations are manipulated so that they are attached to atomic formulae 
(anything which is not a complex statement), using the following rules (Cohen 
and Feigenbaum, 1982): 

-(-A) is replaced by A 

-(A 0 B) is replaced by -A v -B 

-(A v B) is replaced by -A -B 

-Vx A(x) is replaced by 3x -A(x) 

-3x A(x) is replaced by Vx -A(x). 

Next, all existentially quantified variables are replaced with constants unless it 
is within the scope of a universal quantifier (in which case, it is replaced by a 
function on the universally quantified variable). For example: 

Vx 3y P(x,y) is rewritten as Vx P(x, f(x)). 

Universal quantifiers are unnecessary after this, since we can assume 
that any variable that was not existentially quantified is universally quantified. 
Thus, the example above would be written as: 
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P(X ,f(x)). 

The last step is to convert to clausal form by applying DeMorgan's laws: 

-(A 0 B) is replaced by -A v -B 

-(A v B) is replaced by -A -B 

Once this process is complete, the next step in ATP is resolution. 

4.2.3.2 Resolution. The resolution algorithm is the basis of ATP. It is the 
process of trying to prove a proposition by showing that the proposition's 
negation yields a contradiction. The basic reasoning method is: 

(UP v Q) 

kLW3 
(-P v R) 

For example, given: 

Either Paul is not smart or the Queen is and 

Either the Queen is not smart or Ralph is. 

Then it is true that: 

Either Paul is not smart or Ralph is. 

A necessary function of any ATP is unification, which is the process of 
finding substitution instances for the variables in a statement in clausal form. 
This allows the ATP to find values to "plug into" the propositions in order to 
make deductions based on the information given by them. 
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search space 

resolution. The major 
(i.e., the number of 

combinations that must be examined in order to resolve a theorem) grows 
exponentially with the number of premises in the problem description. This 

means that even relatively small problems can take an unreasonable amount of 
time to solve. Some heuristic strategies have been developed which cut the 
processing time, but they have the drawback of not being complete (that is, they 
are not guaranteed to give an answer). 

4.2.3.3 Data Base Manaaement and Deduction. One class of problem in 
which ATP's are particularly suited is in the area of data base access. If all 
information in a data base were complete (that is, every possible property and 
relation were spelled out explicitly), then deductions would not be necessary. 
However, such a situation is technologically unfeasible as well as nearly 
theoretically impossible. The number of relations between the elements of even 
a small set of data can be almost infinite and therefore unmanageable. A better 
way to deal with this situation is to define relations between classes of data 
objects, then perform deductions on them. For example, given the following 
data base: 

Proiect Tvoe 
1 
2 
3 
4 
5 
6 
7 
8 

a 
P 
Y 
a 
P 
P 
a 
a 

and given that we know that all projects of type p and y are of type 8, we might 
want to ask: "What are all of the projects of type e?" In order to answer this, a 
field "meta-type" could be added to the data base as follows: 
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way to deal with this situation is to define relations between classes of data 
objects, then perform deductions on them. For example, given the following 
data base: 

P roi e ct TvDe 
a 
P 
Y 
a 
P 
P 
a 
a 

and given that we know that all projects of type P and y are of type 8, we might 
want to ask: "What are all of the projects of type e?" In order to answer this, a 
field "meta-type" could be added to the data base as follows: 

P roi e ct 

a 
P 
Y 
a 
P 
P 
a 
a 

Meta-tvDe 

0 

e 
e 
0 

e 
e 
0 

0 

This scheme would require more storage space. Alternatively, we could build 
the following rules into a data base retrieval mechanism: 
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0 
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0 

0 
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This scheme would require more storage space. Alternatively, we could build 
the following rules into a data base retrieval mechanism: 

All projects of type a are of type 0; 

All projects of type p are of type 0; and 

All projects of type y are of type 0. 

The above would provide for the same operation without using the extra storage 
space. It could be argued that this is simply a trade-off between storage and 
processing time (since the rule processing would take some time). However, 
this argument falls apart if a new piece of knowledge is added: all projects of 
type a or p are of type p. With the first method, a new field would be added, 
called "meta-type 2," and each of these types, along with the project information, 

would be stored. With the ATP method, only one more rule is added. This 
classification of projects could continue ad infinitum, and the first strategy would 
quickly become infeasible. This, then, is a class of problem to which ATP 
techniques are quite well-suited. 

4.2.3.4 Go nclusionz. Automatic theorem proving is a very useful technique 
for solving certain types of problems. However, it is not a panacea since the 
type of reasoning used by this approach is very stilted in that it allows for the 
representation of only a small class of problems. Also, the use of an ATP in an 

4-20 A 



8 
I 
8 
B 
1 
I 

expert system requires a large up-front investment in knowledge engineering to 
be effective since the rules must be very carefully coded to be of any use. 

4.2.4 Probab ilistic Reaso ning 

statements about which there is no uncertainty (Rauch, 1984). For example, 
Symbolic logic systems are most often designed to deal with 

(1) If evidence E is true, then hypothesis H is true. 

Frequently, however, information is not "black or white"; there is usually a 
measure of uncertainty associated with it. In order to denote uncertainty, the 
following formats are used: 

(2) If evidence E is true, then hypothesis H is true with probability 
PA (confirming evidence) or 

(3) If evidence E is not true, then hypothesis H is true with 
probability Po (disconfirming evidence). 

This switch from certainty to uncertainty allows the acquisition of new 
knowledge (Strawson, 1966) and is the basis of scientific reasoning. Thus, 
techniques for valid inference with uncertainty have been developed. By 
combining probabilities with symbolic logic, valid deductions can be made, 
along with a calculation of a degree of certainty. The degree of certainty 

indicates how likely it is that the consequent of the deduction is true. The 
mechanics of these processes are discussed below. 

4.2.4.1 Probability of an Hypothesis. Using the P1 and PO probabilities 

described in (2) and (3) above, it is possible to calculate the probability of a 
certain hypothesis (PH) to be: 

where PE is the probability of the evidence being true. 
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The standard deviation of the error in the probability estimates can 
then be used as a measure of confidence (OH) in the calculation. It can be 

derived as follows: 

where OE is the standard deviation in the error estimate of the probability of the 

evidence. 

4.2.4.2 Lypes o f Probabilities. The probabilities Po and P i  can be either 
stated or derived. Stated probabilities are values obtained by experiment or 
definition (i.e., it is a given). Derived probabilities are based upon the 
manipulation of two or more probabilities. There are two main schools of 
thought as to the origin of these values. The classical theory of probability 
states that probabilities are measures of rational expectation (Kahane, 1973). 
For example, when throwing a die, most people know that there is a 1 in 6 
chance of rolling a "three." This is an example of an a priori probability - the 
value is determined before any dice are thrown. The frequentist theory 
determines probabilities based on experimental evidence. A frequentist would 
determine the probabilities of throwing a "three" by throwing a die numerous 
times and dividing the number of occurrences of "three" by the number of times 
the die was thrown. Sometimes a stated probability will be based on an 
individual's estimate (in which case, there may or may not be any rationalization 
at all). 

As stated above, derived probability is determined by some 
manipulation of one or more other probabilities, which may themselves be 
either stated or derived. At some point, of course, some stated probabilities 
must be given. The rules for the combination of probabilities are discussed 
below. 

4.2.4.3 Dependence Relations. Central to the discussion of probabilities is 
the notion of dependence. Two events A and B are independent i f  the 
probability that A happens has no effect on the probability that B happens and 
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vice versa. Two events that are not independent are either maximally 
dependent or minimally dependent. The notions of maximal and minimal 
dependence do not, as the names might seem to indicate, differ as to the 
strength of the dependence between the two events. An event A is minimally 
dependent on an event B when A is maximally dependent on not B (that is, 
there is a negative correlation between A and B). The strength of the correlation 
remains the same. 

4.2.4.4 Probabilities and Loaic. There are formal methods for calculating the 
probability of an event E, where event E is an established dependency between 
events A and B (E = A 0 B). The dependency relationship can be stated as: 

Jndependent events: 

j3 NOT TRUE 

Maximum deee ndenca: 

B TRUE B NOT TRUE 

Minimum dependence: 

B TRUE B NOTTRUE 

AD!E PA-MAX(PA,~-PB) MAX(PA,~ -PB) 
A NOT TRUE MAX(1 -PA,PB) 1 -PA-MAX(~ -PA,PB) 

When the events are independent, it is easy to calculate a standard deviation 
which can be used as a measure of confidence in the result. When the events 
are not independent, a standard deviation can be estimated to arbitrarily close 
tolerances (Rauch, 1984). 
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4.2.4.5 Probab ilitv Trees a nd Baves Theorem. Another approach to 
calculating probabilities is by using a probability tree, which is illustrated in 
Figure 4-2. This method allows the calculation of all possible probabilities of 
multiple tests using the multiplication theorem of probability (Lipschutz, 1965): 

P(A B) = P(A) P(B I A) 

which states that the probability of A and B is equal to the probability of A times 
the probability of 6 given that A has occurred. 

(2/3)(1/4)(2/5) = 4/60 

(2/3) ( 1 /4) (3/5) = 6/60 

(2/3)(3/4)(5/5) = 30160 

(1/3)(2/4)(5/5) = 10160 

(1/3)(2/4)(1/5) = 2/60 

(1 /3)(2/4)(4/5) = 8/60 

Figure 4-2. Probability Tree 

Bayes Theorem provides a technique to calculate the probability of A 
given that B has occurred as follows (Charniak and McDermott, 1985): 

P(A1B) = P(A) P(B1A) 

An expert system named Prospector, which is a system for predicting 
the location of ore deposits, uses a Bayesian Inference Network. The Bayesian 
Inference Network is based on a principle of intermediate states (Charniak and 
McDermott, 1985). These states define a network of valid inferences, each with 
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associated probabilities, and allows situation modeling; the system searches for 
patterns of situations in which ore deposits occur. 

4.2.4.6 Conclusions. The concept of probability enhances the use of 
inference systems in that it allows valid conclusions to be drawn in the absence 
of complete information. At some level, however, the system still relies on a 
somewhat hazy notion - that of rational belief. The origin of the stated 
probabilities is still an open question. Nevertheless, despite theoretical 
questions, probabilities often provide a "commonsense" approach to problem 
solving. The ability to manipulate probabilities is central to most rule-based 
expert systems in use today. 

4.2.5 FUZZY Loa ic and Fuzzv Set T heoy 

At the heart of many AI problems is the basic fact that human problem 
solving often occurs under conditions of vagueness or uncertainty. The 
uncertainty may be in reference to the information used or the methods 
employed, or both. For example, given the following rule: 

(1) If a patient's temperature is high, then the patient has a fever. 

The following questions could be asked: 

What temperature is "high" and 

Is rule (1) always true? 

In a traditional computer program, "high" would be defined as crossing some 
threshold (e.g., 100°F) and the rule would be used as if  it were always true. 
Thus, if the patient's normal temperature were 96°F and his current temperature 
were 99OF, the program would not diagnose the patient as having a fever. 
Likewise, if the patient had just been removed from a vat of near-boiling water, 
the fact that his temperature was high would not necessarily indicate that he 
was suffering from a fever. 
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Traditional computer science is built upon Boolean logic, which is, in 
turn, based on set theory. One of the basic axioms of set theory is the concept 
of the excluded middle, which states that the following is always true: 

A V - A  

This translates into the fact that an element cannot be both in a set and not in 
a set at the same time. Though this seems self-evident enough, it is also a very 
limited way of looking at things. Consider, for example, the set of "expensive 
things." Most people, it is assumed, would agree that a Rolls Royce belongs in 
this set and that a pack of bubble gum does not. But what of a Ford Escort? 
Since it is a car, it is an expensive item. Yet, in relation to other cars, it is not 
very expensive. And what of a pack of gum that costs $1.50? Suddenly, this 
gum is in the same category as a Rolls Royce! There are two principles at work 
here: vagueness and open textureness. A word is vague if it is used differently 
at different times, but a word has an open texture if the lines of differentiation are 
not defined (and also not definable). Vagueness can be overcome by stricter 
definition; open textureness cannot. 

It is easy to dismiss this discussion as a problem of semantics, yet 
there is a fundamental concept here: human thought processes are not usually 
as "cut-and-dried" as traditional logic and set theory would have it. For 
computers to begin to more closely emulate human thought processes, 
appropriate fuzzy representation schemes would have to be devised. This was 
the impetus for the creation of fuzzy set theory and its corollary, fuzzy logic. 

4.2.5.1 Fuzzv Thinking. Fuzzy set theory has, as its base concept, sets 
without sharp borders. Subsets of these sets have elements, each of which has 
an associated "degree of membership." The degrees of membership are 
defined as a number between zero and one. For example: 

tal1:height -> [0,1] 

which might be defined as (Negoita, 1985): 

4-26 



TALL I 
1 
I 
II 
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I 
I 
B 
I 
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5'0" 
5'4" 
5'8" 
6'0" 
6'4" 
6'8" 
7'0" 

0.00 
0.08 
0.32 
0.50 
0.82 
0.98 
1 .oo 

The normal types of relations are defined for these fuzzy sets: 
complementation, conjunction, disjunction. By combining fuzzy relations, new 
relations can be defined (such as "middle sized" from "not tall and not short"). 
All of the normal properties (i.e.l communitivity, associativity, DeMorgan's laws) 
apply to the fuzzy set operations. Thus, an entire "fuzzy logic" is built. 

A compositional inference technique uses inferences made from sets 
of membership values and known relations between sets (Negoita, 1985). This 
technique permits the development of inferences between known and unknown 
values based on a correspondence between the membership values of the sets 
in question. For example, given the membership value of the subset TALL of 
the set HEIGHT, the inference could be made that the subject had a certain 
WEIGHT (within some certainty range) if  there was a known relation between 
the set HEIGHT and the set WEIGHT. 

4.2.5.2 Conclusions. Fuzzy set theory and fuzzy logic allow for a closer 
correspondence between the way humans think and the requirements of a 
computer system. In this way, human thought processes can be more readily 
captured in an AI or expert system. For example, it would be beneficial for the 
user to be able to use such words as "large," "expensive," etc., and have these 
concepts correctly interpreted by the system. 

4.3 EXPERT SYSTEMS 

An expert system codifies the specialized problem solving expertise 
of an authority (and, in some cases, many authorities) to assist in solving 
complex problems in narrow domains. Expertise in a specific domain may 
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generally be described as knowledge about the domain, the problems involving 
the domain, and the methods and approaches to solving the problems. 
Particularly important types of expert knowledge are the heuristics or "rules of 
thumb" which allow an expert to effectively evolve solutions. 

The terms "expert system" and "knowledge-based system" are often 
used interchangeably to refer to AI-based systems that capture expertise in 
problem domains. In this report, a knowledge-based system is considered 
to be a system consisting of two separated components: 

0 A knowledge base representing the heuristics, facts, 
judgments, and experience about a selected problem domain. 

0 An inference processor that interprets the contents of the 
knowledge base to infer conclusions toward a solution of the 
problem. 

The inference processor (or inference engine) very often incorporates an 
automatic theorem prover and probabilistic inference capabilities as discussed 
earlier in this section. A full discussion of knowledge encoding is in Section 5. 
The separation of the knowledge from the inferential mechanism permits more 
flexible development of the application and more closely follows how humans 
deal with complex problem domains. 

An expert system is considered to be a type of knowledge-based 
system in which: 

0 The knowledge base represents human expertise in the 
domain; 

e The inference engine mimics human expert reasoning 
processes; and 

0 The system's inferential processes are available to the user for 
review. 
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Traditionally, expert systems are generated by a "knowledge 
engineer" who extensively questions an expert in a particular field to determine 
information and know-how about a selected topic and translates the expert's 
knowledge into a knowledge base. As expert systems have become more 
available and sophisticated, it has become clear that this knowledge base 
construction process is both the heart of and the main bottleneck to building an 
expert system. Thus, less time is now available for the creation of the inference 
mechanisms themselves. This has led to the increased use of expert system 
shells, which are tools for creating expert systems that eliminate the need for 
"reinventing the wheel" (or, in this case, the inference engine). 

4.3.1 FxDert Svste m Shells 

The use of a good inference engine is critical to the success of 
building an expert system. An expert system shell provides numerous program 
modules to handle a variety of tasks, thus freeing the knowledge engineer from 
having to deal with these details. Programming the functions an expert system 
shell performs is generally considered an overwhelming effort: the modules 
must not only exist, but must also perform extremely efficiently. The more 
complete a shell is, the easier the knowledge engineer's job will be, since he 
will have more tools at his disposal. The more efficient a shell is, the more likely 
the system will actually be used, since expertise will be offered more quickly. 

The modules included in an expert system shell vary, but typically 
include: 

e A rule editor to create the structures the knowledge engineer is 
using to represent the information he has gathered during the 
knowledge acquisition phase, 

b A consistency checker to determine if the structures entered 
are logically consistent (a structure might be redundant or 
conflict with others), 

b An inference engine to perform the actual reasoning of the 
system to move from problem to solution by applying the 
knowledge base, 

@ 
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0 A data base manager to store the knowledge base, and 

A user interface to make the shell easy to use. 

Each of these modules may vary tremendously from shell to shell in 
sophistication. For example, a system's rule editor might require the structures 
to be entered as programming-type statements in some computer language or 
as abstractly as a series of pictures representing conditions which, when 
satisfied, derive a result. Similarly, an inference engine might search for 
solutions by simply exhaustively applying rules or could incorporate such 
features as using multiple paths of reasoning and certainty factors. The 
functional sophistication of a shell determines the level of effort a knowledge 
engineer must expend to make an expert system perform in a given manner. 

Besides considering the effort a knowledge engineer must make, the 
modules' efficiency also must be considered. Especially important in designing 
an expert system is the inference engine's capabilities since, as the number of 
rules in a system increases linearly, the time needed to reach a solution can 
increase geometrically. This exponential explosion of solution time has proven 
the downfall of many otherwise excellent expert systems; no user can afford to 
let a system spend hours making a decision needed in seconds. Finally, 
memory efficiency is also a significant consideration; knowledge bases tend to 
be very large, and when hardware constraints become significant, programming 
can become a nightmare. 

Expert system shells vary greatly from implementation to 
implementation, but the better ones provide numerous, efficiently programmed 
functions essential to creating an expert system. Shells provide functions which 
are not normally feasible to program due to the large developmental costs 
involved. Therefore, one heuristic concerning building expert systems is to 
choose a shell wisely since the shell's quality is often an important factor in 
determining the system's successful development and use. 

4-30 



5.0 KNOWLEDGE REPRESENTATION TECHNOLOGIES 

There are three types of information necessary to the successful 
operation of INSITE - historical project data, project knowledge, and user 
knowledge. The historical project data base will utilize standard data base 
management system technology (probably of the relational type). The 
technology driving this aspect of HISTORIAN is well-understood and readily 
available in "off-the-shelf" software packages. A knowledge base is distinct 
from a data base in that a knowledge base incorporates not just data, but the 
relationships among the data, the relationships among the types of data, and 
further, the relationships among the relationships among the data and types of 
data. Information for project and user knowledge will require the capabilities of 
a knowledge base, and this section presents information about relevant 
knowledge relation schemes and how this knowledge can be acquired. 

5.1 N W  N TI N T  HNI 

The representation of knowledge is the heart of any expert system 
and refers to employment of an explicit symbolic representation of the 
information in its domain of concern. One of the hypotheses of AI is that 
knowledge is representation: that is, "knowing" consists in large part in 
representing facts about the world symbolically (Brachman, 1985). Selection of 
the techniques used to represent the project and user knowledge is perhaps the 
most important decision about the INSITE system; this decision determines both 
the kinds of problems that can be solved and the methods of solving these 
problems. Research in AI knowledge-based systems has identified several 
major types of knowledge representation (KR) techniques which are 
summarized below. 
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5.1.1 Procedu ral ReD rese ntat ion 
In a procedural representation, relevant knowledge is embodied in 

"procedures" (i.e., subroutines that can do specific things in well-specified 
situations). Procedural representations have the advantage of capturing a large 
amount of knowledge, including heuristics, economically. On the other hand, 
the "big picture" may be lost and the underlying knowledge is not easily 
retrievable or modifiable. 

5.1.2 Semantic Nets 
A semantic net represents objects, concepts, and events as nodes in 

a network (and the interrelationships between them as links) and is based upon 
the concept formulated by Woods (1975). The nodes can be linked either 
through memberships in class (the "is-a" concept) or as a subproperty of 
another node (the "has-a" concept). Semantic nets provide a very flexible 
structure, and additional nodes and links can be added at any point. The 
semantic net is most useful to represent relationships between objects. The "is- 
a" and "has-a" relationships permit an inheritance capability such that any 
characteristics altered in a node can be automatically carried through another 
node. However, a major problem with the semantic net for knowledge 
representation is that a given net may have several interpretations and a given 
meaning may be reflected in several different nets. 

5.1.3 Frames and ScriDts 

Frames and scripts, based upon the ideas of Minsky (1975), are 
techniques to represent the sequence of events and properties that typically 
occur in a given situation in an organized fashion. A frame is a knowledge 
representation structure in which new data is interpreted in terms of previous 
experience. A frame has slots to represent all the attributes of interest. Slots 
can contain factual, descriptive, or procedural information. Slots can also 
represent another frame so that an inheritance hierarchy is established (i.e., 
lower-level frames inherit knowledge about the associated higher-level frames). 
Most frame techniques for knowledge representation also incorporate 
provisions for generic frames to be established for various object types. Frames 
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have the capability to represent a great complexity of information and are a very 
active current research area. Some of the important unresolved frame-related 
issues are control issues (such as determining the appropriateness of a given 
frame and selecting a second frame if the first is not appropriate). 

Scripts may be viewed as a special class of frames in that scripts 
embody a large amount of previous knowledge in "typical" situation 
representations. Scripts are specifically designed to represent knowledge 
about events; a normal or default sequence is represented as well as possible 
exceptions or errors. As with frames, there are procedural attachments with 
scripts. 

5.1.4 Production Rules 
Production rule knowledge representations are based upon 

conditional statements that specify an action that is to occur under a certain set 
of enabling conditions. The rules are generally stated as two-part statements in 
the form: "If this premise is true, then perform this action or make this 
conclusion." Each rule is evaluated, and when the current condition matches 
the premise stated in the IF rule (Le., the condition is TRUE), then the indicated 
action is performed. Such rules permit explanation of system conclusions as a 
sequence of logical steps. Production rule techniques are most useful for 
presenting procedural knowledge (i.e., methods for accomplishing goals). 
Frequently, production rule techniques also incorporate forward and backward 
chaining rules and a pattern matching capability. Forward chaining matches 
rules against facts to formulate new facts; backward chaining attempts to prove 
a new rule by determining what facts are required. Pattern matching utilizes 
complex algorithms to formulate decisions based upon the best match to current 
conditions. Rule-based knowledge representation techniques have become 
dominant in current expert systems development. However, production rules 
become unwieldy and difficult to manage as the number of rules increase since 
rules can be added that conflict with previous specified rules. 
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5.1.5 Conclusions 
On the surface, it might appear that the "is-a" type of representation 

found in semantic nets would be ideal for representing historical project data. In 
this case, however, we are interested in encoding nothing more complex than 
sets of project attribute values, and typical data base record structures are 
sufficient. Semantic nets and frames are capable of representing very complex 
relations hips and carry a correspondingly large overhead for storing and 
processing very simple types of information. Project knowledge (the source of 
and relations between attributes) and user knowledge (profiles) are a very 
different matter. Here the amounts of data may be small, but the relationships 
may be complex. For example, on software development projects, the time 
needed to complete the project may be increased due to manager 
inexperience. At the same time, this effect may be offset by experienced 
programmers working in a highly productive development environment. 
Knowledge of this type could, for some purposes, be represented in semantic 
nets or similar structures. INSITE, however, requires that project knowledge 
and user knowledge be used to drive camputer-human interaction and single- 
analog estimation. A production rule system is the appropriate form of 
knowledge representation in this case. Such a system can easily capture both 
the relationships between data items and the relationships between data and 
required actions. Unlike procedural representation, production rule 
representation is also consistent with a rapid prototyping approach to 
development since a rule base can be continuously modified in an efficient 
manner. 

5.2 KNOWLEDGE ACQU ISITION 

Knowledge acquisition applies the psychological and statistical 
aspects of information gathering to artificial intelligence, thereby providing an 
essential element of any expert systems endeavor. Knowledge acquisition 
entails the elicitation of consistent, comprehensive information from expert 
sources organized in a concise fashion for inclusion into a knowledge base 
(KB). The importance of knowledge acquisition to a system providing expertise 
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on project planning/scheduling cannot be overstated. Once information 
concerning historical project estimates has been examined and the 
planning/scheduling process well-understood, a body of knowledge can be 
compiled from which expertise can be offered. 

Several types of information are needed to populate the knowledge 
base, principally structures and heuristics. Structures of various types, 
including rules, frames, and propositions, provide the elementary facts needed 
to solve specific pieces of a problem. Heuristics, on the other hand, are the 
more intuitive or "rules-of-thumb" considerations that an expert uses in solving a 
problem. Heuristics provide general guidelines which focus the problem solver, 
whether human or machine, on subsets of the domain in search of a solution. 
Both types of information must be included where any significant application of 
expert systems, including project scheduling, is undertaken. Information 
structures comprise the individual facts that are steps along the course to a 
solution, while heuristics provide the control to keep the path straight. The 
proper use of these two types of information is of paramount importance in 
expert systems development. Although structures provide solutions, heuristics 
ensure a solution within a reasonable amount of time. 

The following are descriptions of the most common methods used to 
acquire domain knowledge to construct an initial KB. Accompanying each 
technique is a critique of its strengths and weaknesses. It is important to realize 
that often a combination of methodologies is used in the knowledge acquisition 
process to ascertain information in a top-down (with a progressive expansion of 
detail) or bottom-up (with an increasingly generalized view) fashion as needed 
to facilitate the knowledge engineer's (KE) comprehension of the domain. 
Multiple techniques can also be employed to implement a more intelligent 
system since some methods are geared towards creating an initial knowledge 
base and others towards implementing a learning system whose knowledge 
base grows through use. The relationship of these processes to the knowledge 
engineering problem as a whole is rather complex (as illustrated in Figure 5-1). 
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Figure 5-1. Knowledge Acquisition Process 

5.2.1 Initial Knowledae Base Construction 

5.2.1.1 Interviewinq. Interviewing is the obtaining of information via the KE's 
direct discussions with one or more domain experts. This technique is 
commonly used to determine the objectives, methods, and structures which 
should be implemented in the proposed system. This method allows the KE to 
directly query the domain expert (DE) and to immediately qualify any 
ambiguities which arise. Also, subtleties in solutions visible only via direct 
interactions with an expert are noticed, providing insight unavailable by many 
other methods; interviewing facilitates discovering nuances such as exceptions 
to rules. However, since the KE dynamically interacts with the domain expert, 
the course of the session is unknown. Therefore, interviewing is an inexact 
science implemented using general guidelines, not formal procedures, to 
follow. Interviewing requires the continued cooperation of one or more experts 
over an extended period of time. Thus, a variety of organizational problems 
arise, including obtaining experts, determining the validity of differing expert 
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opinions, and scheduling experts with limited amounts of time. Since the 
process is very human-dependent, a variety of psychological issues must be 
accounted for, including maintaining the experts' cooperation and interest, 
allaying their fears of technology and job insecurity, and dealing with 
interpersonal communication barriers. 

Related to interviewing is another knowledge acquisition technique - 
observation. Observation is a technique whereby the KE observes the domain 
expert solve actual problems. It has many of the same advantages and 
disadvantages of interviewing. Observation does provide an exceptionally 
useful tool to understand the specific structures and procedures used to attack 
an actual problem. This method also is used to evoke information about 
aspects of the problem assumed as trivial. 

These two techniques are often combined with rapid prototyping to 
provide successively more sophisticated implementations of an expert system. 
By having the experts use each prototype system and provide feedback, advice 
is generated with increasing fidelity in each version. However, the method 
requires the ongoing efforts of a KE. Once the knowledge base has been set in 
place, information structures cannot be altered without the programming of a 
knowledge engineer. Other techniques must therefore be used to implement a 
true learning system. 

5.2.1.2 Questionnaires. The technique of questionnaires involves the 
construction and distribution of inquiries to domain experts and the encoding of 
responses by the KE. This method generally has the benefit of requiring little 
time and inconvenience on the part of domain experts. Another advantage is 
that it provides the statistical information which can be used to derive general 
rules, avoiding the problem of creating a rule for one instance. Unfortunately, 
however, this method offers organizational barriers to being implemented 
iteratively for feedback purposes and cannot be used to incrementally augment 
the knowledge base after the system has been developed. Further, the 
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psychological and statistical considerations involved in constructing a n d  
interpreting questionnaires are numerous. Research on complex analysis 
techniques has been done and is ongoing, but further discussion on the topic is 
beyond the scope of this report. 

5.2.1.3 External Sources. A variety of external sources can be used to 
compile information for a knowledge base. The simplest form consists of the 
outside information sources the domain expert uses in the normal course of 
work (such as drawings, tables, and handbooks). These types of sources offer 
expertise without domain experts and so are a convenient method to obtain 
information. Yet, for the same reason, these sources offer a fixed amount of 
information; if the KE is unsure of some presented concept, another data 
gathering technique would be necessary for further clarification. Consequently, 
external sources are most often used to acquire only basic information and for 
explanation purposes within the system. 

Another type of external sources is the use of examples or case 
studies. The use of examples is accomplished by providing data concerning 
historical instances of the process to the system. The data, in turn, is 
manipulated in some fashion by the expert system to extract and derive useful 
information. An example of using this technique might be an expert system 
modeling a courtroom judge (Schank, 1984). Ongoing entries of case histories 
of criminal behavior could continually refine the system's structures to more 
accurately reflect factors such as repeated criminal behavior, tendencies to 
violence, and abuse of parole privileges. Using examples entails many 
complicated considerations such as establishing proper metrics, determining 
how data is to be manipulated, and managing large quantities of information 
(since, generally, as more cases are entered into a system, the more accurate 
the information becomes). Further, since a system using this technique is highly 
dependent upon the user's evaluation of the historical instances, the issue of 
user interfaces becomes more significant. Yet the use of examples as a method 
driven by data (and not programs) does permit the system to refine its structures 
as the number of examples increase. 

5- 8 



6.0 USER-COMPUTER INTERFACE TECHNOLOGIES 

I 
I 
I 
I 
I 
I 

I 
I 
I 

The INSITE system will provide many powerful functions to the user to 
assist them in developing time estimates for their projects. However, these 
functions will go to waste if the user finds it difficult to communicate with INSITE, 
specify the characteristics of their projects, or decipher the results. Therefore, 
the nature of the user interface is a critical determinant to the successful use of 
INSITE. This section presents the results of research conducted into several 
critical areas for the user interface (namely, the user-computer dialogue and 
user profiling). 

Unfortunately, few absolute rules and guidelines are available to 
assist the system developer in designing interactive interfaces. This section will 
present "guiding principles," but it is expected that the exact nature of the user 
interface will evolve in conjunction with the development of the INSITE 
prototype through extensive involvement of the proposed user community and 
their feedback. 

The discussion of user interfaces assumes that INSITE will be 
developed on a PC class of microcomputers and that the microcomputer is 
equipped with 1) a color monitor capable of bit-mapped graphics and multiple 
windows and 2) a pointing device such as a mouse. Bit-mapped graphics 
permit every screen dot to be individually turned on or off by resetting the 
corresponding bit in memory and permit the rapid display of graphic 
information. Windows provide the capability to juxtapose several screens of 
information (text or graphics) simultaneously and to move information from one 
window to another. Pop-up windows with menu selections permit the user to 
scan the menu options and select the desired one without having to recreate 
the original screen of information. Windows are also very useful for displaying 
help messages. A mouse is a small box (about the size of a deck of playing 
cards) with one to three buttons on its top face that functions as a pointing 
device. The mouse motion translates into corresponding movements of a 
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pointer (e.g., a cursor) on a display. It allows the user to manipulate information 
and select commands or locations on the screen without having to enter 
specialized interface commands via the keyboard. 

6.1 INTFLLIGFNT USE R DIALOGUE 

One of the key issues in designing a user interface is the selection of 
the techniques used for communications between the user and the computer. 
This not only involves selection of a dialogue type, but the development of 
techniques to assist and guide the user's interactions with the computer system. 
As described in Section 3, INSITE users will possess varying levels of computer 
usage skills and project management expertise. The user-computer interface 
(UCI) must supply a meaningful structure within which the two-way dialogue 
between the user and INSITE occurs. 

6.1.1 Dialoaue TvDes 

objects to be manipulated. There are five primary dialogue types: 
The user communicates with the system by specifying commands and 

1. . Command-Driven, 

2. Men u-Driven, 

3. Question and Answer, 

4. Form Fill-In, and 

5. Graphics- Driven. 

Each dialogue structure type has a particular user appeal, depending on a 
user's knowledge of the system and computer expertise. Many systems are 
now based on a hybrid of these techniques. 
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6.1.1.1 Command-Driven Dialoaues . Command-driven dialogues typically 
display a brief prompt to the user (e.g., a question mark) and expect the user to 
type in a command name, phrase, or associated mnemonic (e.g., PRINT or PR). 
Since the system offers very few prompts or choices, the user is expected to 
know which system features are currently available and their syntax. If the 
system does not recognize a command that the user enters, it typically responds 
with an error message. The biggest advantage of a command-driven interface 
is speed. Very few keystrokes are required to initiate any action, and it 

eliminates stepping through multiple levels of menus to specify an action. 
Command-driven interfaces appeal to experienced users since the system 
functions are more readily accessible. Command dialogue's biggest 
shortcoming is its inherent "unfriendliness." A system or computer novice 
viewing a display with nothing but a prompt has no guide as to what to do next. 
Novice users have many problems learning a command dialogue system since 
they are unfamiliar with both the functions that can be accomplished and the 
command names required to invoke the functions. Additionally, in order to 
invoke a command, the user has to first remember the designated command. If 
there are too many commands to be able to remember them easily, users tend 
to find this facility too frustrating and time-consuming to use. 

6.1.1.2 Menu-Driven Interfaces. Menu-driven interfaces display every 
possible choice that the user can make in a menu that is typically arranged in 
an hierarchical manner (i.e., one choice or action must be taken before 
another). The selection of one menu item generates another menu, which 
brings up yet another until a final selection allows the desired function to be 
accomplished. The major advantage provided by menu dialogues is the ability 
to guide a user through the steps needed to accomplish a task. Menus reduce 
memory demands because they only require the user to recognize rather than 
recall the correct option (Martin, 1973). However, menu-driven interfaces are 
not without problems. New users might find that learning larger systems is 
difficult because information must be integrated across a series of displays. As 
each menu is viewed in isolation, relationships between menus are difficult to 
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grasp and the user may get lost in the hierarchical structure. However, menu 
interfaces do facilitate use by novices. On the other hand, experienced users 
are often frustrated when they must step through a number of menus before 
reaching the desired function since not all functions are available from all 
menus. 

A strategy that is effective for workstations with display windowing and 
mouse capabilities is the pull-down menu that combines command- and menu- 
driven techniques. Pull-down menus display a command bar at the top of a 
window with a submenu displayed in a new window box beneath it showing all 
available options. The user can use the mouse to move a pointer to one of the 
choices displayed in the box. As the pointer moves among the menu options, 
the current selection is highlighted and the user depresses a keyboard or 
mouse key to indicate the desired selection. 

6.1 .I .3 Quest ion and Answer Dialoaues . Question and Answer (Q&A) 
dialogues present the user with a series of questions to which the user 
responds one at a time. The Q&A process is repeated until the system has 
received the necessary information. Q&A dialogues typically decide the next 
question based upon the answer(s) to the previous question(s). Some 
incorporate a degree of natural language capabilities in order to avoid simple 
yes/no responses. If the system cannot understand a response or requires 
additional information, clarification questions may be generated. Similarly, if 
the user cannot understand a question, an explanation facility is typically 
provided. 

Q&A dialogues are most successful with novices who are unfamiliar 
with the problem to be solved. However, experienced users quickly become 
impatient when forced to step through a lot of questions. One way to alleviate 
this problem is to provide multiple modes of use (e.g., full sentence mode and 
abbreviation mode). Additionally, default response can be set for the particular 
user (this is described in more detail in Section 6.2) as part of their "user 
profile." An additional consideration is how to permit the user to change the 
response to a previous question. 
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6.1.1.4 Form Fill-In Interfaces . Form fill-in (or fill-in-the-blanks) interfaces 
provide the user with input forms in which the user enters necessary commands 
and data. A display of labeled fields and an area for entry of input are shown, 
and the user moves the cursor between the input areas and enters the 
appropriate information. This type of design is well-suited when there is a 
correspondence between the input display and paper forms familiar to the user. 
This type of interface requires the user to be cognizant of the field labels, 
permissible field values, and data entry techniques to be employed in moving 
among the displayed fields. Form fill-ins are most appropriate for frequent 
users. 

6.1.1.5 Graohics-Driven Interfaces . Graphics-driven interfaces are a fairly 
recent development and generally provide an interface that is both "friendly" 
and non-restrictive. Graphic icons replace or supplement words as command 
designators in menu-based systems. Instead of a temporal order display such 
as a menu, the user is presented with a spatial order of possible actions that are 
represented by "iconic" or pictorial representations of actions. The user 
positions a graphics pointer (such as a mouse) over the icon representing the 
desired action. Icons take advantage of the human ability to discern pictorial 
differences more quickly and easily than textual differences. However, the 
icons must be designed carefully in order to maximize their usefulness and are 
best suited when a limited set of clearly distinguishable options are available. 
The visual interfaces made possible by iconic representation provide an object 
orientation rather than a procedure orientation and enhance the user's 
knowledge about the system and its capabilities. However, there currently 
exists a very limited body of information about the effectiveness of iconic 
representations and how they should be designed to maximize information 
transfer. 

6.1.1.6 User Dialoaue Recommendations. It is recommended that the initial 
dialogue style for the prototype INSITE system be a combination of question 
and answer and menus as illustrated in Section 7. Menu bars can be used to 
show a list of available INSITE functions on a line at the top of the screen. Pull- 
down menus can list submenus in a separate window displayed beneath the 

6-5 



I 
1 

I 
I 
I 
1 
1 
I 
8 
1 
8 
I 
I 
I 
I 

menu bar and will contain the list of commands available for a particular 
selection from the menu bar. Once the user has specified the INSITE function, 
additional dialogue with the user will occur using a series of questions. Since 
the series of questions will vary, depending upon the responses to previous 
questions, the form fill-in type of input does not appear to be appropriate. 
However, recent research in the area of input templates such as those used on 
the Apple Macintosh computer will be considered in the development of the 
user interface (Smith et al., 1982; Norman and Draper, 1986). 

6.2 W R  PROFILES 

Typically, each user of a computer system develops a personal 
methodology for interconnecting seemingly isolated techniques and strategies 
in using a specific system. Over time, the user develops a great deal of 
problem-specific declarative and procedural knowledge; and as a result, the 
user becomes proficient in operating that particular system. During an 
individual's tenure in a specific position, he or she is exposed to various 
computer systems. The time and effort spent to learn a new system can be 
significant. The learning phase is not productive and can be considered "lost" 
time. If the "time to learn" could be reduced to a reasonably short amount of 
time, the "lost" time would be negligible and the user would be able to benefit 
more quickly from the system. Each user will also be applying the system to the 
needs of a particular project. A person oriented towards software projects will 
probably have a different focus than a person oriented towards hardware. 
Since INSITE will be applicable to all project types, it is important for it to 
include a capability to communicate with the user using a unique terminology 
applicable to the user's needs. For these reasons, it is recommended that 
INSITE include the capability to construct a user profile. The user profile 
module will be a tool designed to capture user preferences, store them, 
represent them, and permit the user to interact with INSITE in a customized 
manner that accommodates that particular user's knowledge rather than being 
restricted by system-defined commands and protocols. 
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This user profile capability will permit a computer user to tailor the 
INSITE interface by allowing the user to specify the terms used for 
communicating with INSITE using hidher particular jargon. This tailoring tool 
would also significantly reduce the training time required and therefore reduce 
the cost associated with training. For novice users, user profiles can assist in 
eliminating computer anxiety so that the individual will be willing to learn a new 
system rather than expend time and effort avoiding it. For the expert user, it will 
allow them to use their personal preferences in constructing their user protocol 
which will result in increased productivity. 

Once the issues that need to be addressed to initially construct the 
user profile have been resolved, the potential techniques employed to cause 
the system to recognize a particular user and then load the user's profile into 
the system's working memory will need to be explored. Issues concerning 
maintaining, updating, and reconfiguring a user profile, once it has been 
initialized, will require investigation with regard to the various functions of the 
operating systems - the issues of compatibility, usability, and portability. 

There are a few techniques currently available that allow a user to 
define system commands through the use of personal preference (such as 
macro and command files). However, such files are awkward to construct and 
may not be obvious to the infrequent or inexperienced user. Since many users 
do not possess a programming background, a criterion level of understanding 
needs to be established and then the degree of user control can be 
investigated. In addition, other variables (such as hardware limitations) may 
affect the degree of user freedom possible, and therefore, factors such as these 
need to be examined. 
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The exact nature of the user interface will also be considered in 
conjunction with system requirements. Sophisticated user interfaces frequently 
make heavy demands on the system, and trade-offs may be required to ensure 
that the benefits of the user interface are not nullified by slow system response 
time. The design of the user-computer interface will proceed iteratively in 
conjunction with the development of the INSITE prototype and will involve early 
and frequent interactions with the prospective user population. 
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The INSITE system will provide support to managers performing 
planning and scheduling tasks which require estimations of project/task 
duration. The system will be configured as an estimation workbench and will 
reside on a microcomputer. In the sections which follow, the high-level system 
design of INSITE will be presented and the major system modules described. 

7.1 HIGH-LEVEI DES IGN 

The four major functional components of INSITE are presented in 
Figure 7-1 . System responsibilities are divided between these software 
modules as follows: 

0 EST1 MAT0 R - gene rat e s project/t ask duration estimates. 

e MEDIATOR - manages all humankomputer interface 
processes, including key and mouse inputs, windowing, 
graphics, and formatting of data and dialogue outputs. 

0 HISTORIAN - manages historical data base as well as 
interface and estimation knowledge bases. 

0 DIRECTOR - controls activity of all other system components 
and drives human/computer dialogues. 

Each software module will be configured independently for maximum system 
flexibility. For example, moving from one computer display system to another 
will only require a code modification to MEDIATOR. Likewise, accessing a new 
data base will only require a modification to HISTORIAN. This approach will 
enhance both portability and the capacity for future upgrades. 
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Figure 7-1. Block Diagram of INSITE System Organization 

7.2 ESTIMATOR 

With the exception of the ESTIMATOR module, the components of 
INSITE are clearly feasible in the microcomputer environment due to the 
availability of text and graphics output. Window and mouse interfaces are 
supported on almost all computers. Data base systems and expert system 
shells are also becoming commonplace. However, it is not immediately 
obvious that it is feasible to develop a microcomputer-based system which can 
rapidly respond (i.e., minutes) to a request for estimates. In the two subsections 
which follow, the feasibility of a microcomputer implementation of INSITE will be 
explored -the structure of the INSITE estimation process will be specified, and 
the preliminary development and testing of a microcomputer-based estimation 
algorithm will be presented. 
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7.2.1 Jvlultiple-Estimate Architectu re 
For any given project, a time estimate could be based on a single 

previous project or several projects. Ordinarily, a set of relevant historical cases 
would be extracted from the data base. On the basis of this set, a measure of 
central tendency is calculated to predict project duration, providing an estimate 
not tied to the peculiarities of a single case. Basing an estimate on a single 
example would be required if the historical data base provided no other 
relevant cases (as might occur if  the data base had only recently been 
established). When a single previous project becomes the only source for an 
estimation, dependency knowledge (stored in a project knowledge base) must 
be brought to bear. For example, i f  the source project for the estimate was a 
larger project than the one being estimated, the known time for the source 
project must be adjusted downward to produce an estimate, based on the 
system's knowledge regarding the impact of project size on project duration. 
Figure 7-2 presents a procedural schema for the INSITE ESTIMATOR module. 
As shown in the diagram, INSITE provides two separate components to 
calculate estimates. With sets of cases, a straightforward computation of central 
tendency is possible. With single cases, dependency knowledge must be 
applied. It is expected that the dependency algorithms/heuristics will be fairly 
limited in scope, possibly encoded as a relatively small rule base since the 
dependencies involved are poorly understood and do not exist at the level of 
detail required to perform direct calculations. 

Projects in the historical data base have similar attributes to the new 
project being considered. The attributes recorded in the data base are selected 
on the basis of the underlying dependency relationship. That is, if a project 
attribute is believed to impact project time duration, it is included in the data 
base structure. Some historical cases will be very poor analogies to the new 
project; others will be good analogies to the extent that their attribute values 
vary from those of the new project. In the formulation "A is to B as C is to D", "B" 
and "D" represent project duration. "A" and "B" can be associated with the 
projects themselves or with the collection of attributes by which they are 
represented in the data base. The relation between "A" and "B" (and between 
"C" and "D") is, in fact, the complex dependency relation between project 
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attributes and duration, represented by the attribute values. The identification of 
good analogs in the data base is a matching problem, and this is the central 
problem addressed by the ESTIMATOR module. As shown in Figure 7-2, three 
separate analogy identification algorithms will be incorporated into INSITE. 

The feature clustering method of selecting analogs for use by the 
estimate calculator will use pattern matching algorithms to define project 
clusters based on project attributes. The project to be estimated will then be 
matched and placed into one of these clusters. The analogs used will be all of 
the projects within that cluster. As a method of finding only one analog, the 
projects will be seen as a point in an n-dimensional space (where n is the 
number of features defined for a project); the analog project will then be the 
nearest point to the project to be estimated. 

The feature variance method of analog identification defines a 
class of analogs using a threshold variance from the project to be estimated for 
each of the attributes defined for the project data base. This differs from 
selection by feature clustering. In this case, the groupings are created by the 
thresholds defined (that is, a "natural grouping" is not needed). This method is 
described in detail in Subsection 7.2.2 below. 

The feature relationships method defines a set of analogs via 
closeness of feature relationships (as opposed to closeness of features). For 
example, given the following subset of a data base: 

PROJECT PROJECT SIZE STAFF SIZE 
1 100 10 
2 
3 

2000 200 
8000 800 
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Selection by feature clustering or selection by feature variance may not find an 
analogy between projects 1, 2, and 3. However, the analogy is obvious to the 
human observer. Selection by feature relationships seeks to capture that 
feeling of "sameness" that is easy to see, but may be hard to describe. In this 
case, all three projects would have exactly the same "project size to staff size" 
relation (i.e., "10"). In selecting a group, some threshold difference would be 
defined (as with selection by feature variance). When selecting only one 
analog, the "closest" match would be selected. 

Since there is no way of determining which identification algorithm is 
best, and since it is unlikely that a single algorithm will be superior in all cases, 
all three algorithms will be implemented within INSITE. ESTIMATOR will 
therefore potentially produce six separate estimates, based on the combination 
of identification algorithms and calculation methods - set-by-clustering, single- 
by-clustering, set-by-variance, single-by-variance, set-by-relationship, and 
single-by-relationship (six separate paths through the schema in Figure 7-2). 
Various methods can be used to control or limit the presentation of this 
information, including confidence levels on the estimates, size of the analog set 
(if very small, the single-case strategy should produce better results), and user 
intervention. It is also possible to perform calibration runs to assess relative 
estimation accuracy for the six separate estimation strategies in combination 
with a specific data base. That is, each case in the historical data base can be 
used in turn as the "new" project and an estimate produced, based on the other 
cases. A measure of accuracy can then be calculated for each of the six 
algorithm combinations, according to its ability to predict times for cases already 
known. 

7.2.2 Alaorithm Des ian Amroach 

The use of analogies in INSITE is direct and computationally simple. 
Unlike the Generalized Analogical Reasoning System (GARS) proposed by 
Silverman (1985) for systems management applications, no attempt is made in 
INSITE to capture the entire range of human analogizing abilities. Also unlike 
GARS, which appears to have made little headway due to its complexity, 
INSITE can be readily implemented in a microcomputer environment using 
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known technologies. In order to demonstrate the feasibility of INSITE, this 
section will discuss in detail the design steps, implementation, and results of a 
set-by-variance identification algorithm in combination with a computation of 
central tendency. (The development of the other two identification algorithms 
and the heuristics for producing an estimate from a single historical example 
will proceed in a similar manner during the Phase II effort.) 

A program, SETBYVAR, was developed to compute time estimation 
based on the set-by-variance method. The program was coded and debugged 
using Microsoft C on an IBM AT-compatible microcomputer. First, four data 
bases of projects were created based on a set of rules for attribute interaction. 
While identical rules were used, the attribute values were generated randomly 
utilizing either a normal or a uniform distribution. A 100 and a 1000 item data 
base were created for each distribution type. This allowed an analysis of trends 
from the resulting data as illustrated in Figure 7-3. A sample SETBYVAR 
dialogue is shown in Figure 7-4. Initial results were promising, based upon a 
limited set of attributes and simple relationships between attributes. 
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Figure 7-3. Set-by-Variance Test Runs 
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The problem to be answered is briefly stated as follows: given an historical data 
base of projects and their respective durations, derive an accurate estimate of 
the duration of a new project (project A). Development of the algorithm 
proceeded as a series of questions answered as described in the following 
parag rap hs. 

What is the main conceDt behind this alaorithm? The main concept is 
to find "similar" projects in the data base using a variance technique, then 
extrapolate a project duration from them for project A. 

What is the definition of "similar"? "Similar" here means that the 
appropriate attributes of the project are close enough (within some threshold) to 
project A that they can be seen as good analogs far use in the estimate. 

What are the amrooriate attributes? The identification of appropriate 
attributes for the comparison of projects is one of the main tasks of Phase II of 
the INSITE project. These attributes must be defined before the project data 
base is created or populated. Far this discussion, they can be assumed to be 
the attributes of the projects defined in the data base which has already been 
created. For this example, five attributes were selected: type of project 
(hardware, software, etc.); size of project (in appropriate units); experience of 
manager (on a scale of 0-1 0); experience of technical staff (on a scale of 0-1 0); 
and development environment (on a scale of 0-10). The type of project for this 

example is the development of a software testbed; size is defined in thousands 
of source lines of code (KSLOC); the technical staff is the programming staff; 
development environment is a measure of the levels of programming tools 
avai I ab le. 

What are the thresholds which delimit a valid analoa? The thresholds 
are defined as a threshold deviation multiplier (TDM) times the standard 
deviation of the entire project data base for the attribute in question. The TDM is 
user-definable; for example, if the user thinks that programming staff is a much 
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more important factor than management experience, he might assign a TDM of 
0.8 to the former and a TDM of 1.2 to the latter. This will be discussed further 
below. 

How are the analoas culled from the data base? The data base is 
searched, looking for a set Z of projects, as follows: 

Z = {  x I lP lx  - P la l  <=TDMl(Sl )  and 
(P2x - P2a1 <= TDM2(S2) and 

e 

e 

e 

JPnx - Pnal <= TDMn(Sn) } 

where: 

n = number of attributes 
a = the project to be estimated 
Sx = standard deviation for attribute x 
Pnx =the value of attribute n for project x 
TDMx = threshold deviation multiplier for attribute x 

which defines the set of projects to be used as analogies for the estimate. 

How is the time estimate calculated? After the set of valid analogs is 

defined, the estimated duration (value) of the project is calculated as follows ( E  

indicates set membership): 
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where: 

a = project to be estimated 
VX = duration of project x 
n(Z) = number of elements in the set Z 

The estimate also includes a range of error value as in: 

ESTIMATE: 814 months plus or minus 66 months 

which is defined as: 

ERROR = (average TDM x std dev) 

where average TDM is the average of the threshold deviation multipliers 
entered by the user, and standard deviation (std dev) is the standard deviation 
of the time attributes for the historical data base. 

What is the optimum value for the TDM's? This can only be answered 
in a very general sense since the TDM's are user-controlled. However, some 
guidelines are available: 

Multipliers less than 1.0 often show erratic behavior (since the 
list of analogs becomes small), and estimates can therefore 
vary widely. Taken to an extreme, the estimate is calculated 
from a sample of one, which makes it very volatile. Pushed too 
far, small multipliers cause a "NO ANALOGS AVAILABLE" 
response from INSITE, thus giving no answer at all. 

Multipliers larger than 1.0 begin to cause a linear decay in the 
accuracy of the estimate. Taken to an extreme, large multipliers 
cause the estimate to be made based on the entire data base, 
thus returning as an answer the average duration of all projects 
in the data base. 
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These results are shown graphically in Figure 7-3. It shows that as 
threshold increases above 1.2, the error increases. It also shows erratic 
behavior below 1.0 as well as no answers at all (therefore, there was no error) 
below 0.5. This suggests that an initial value between 0.8 and 1.2 for the 
multiplier is useful, with further tuning made by the user afterward. 

What is the effect of the size of the data base on the est imate? 
Intuitively, one would expect that the estimates would become more accurate as 
the size of the example data base increases, and this is the case for the 
samples that we used. The real effect of a larger data base is, however, that the 
error curve is smoothed. These results are also shown graphically in Figure 7-3. 

What is the effect of the distribution of the data on the estimate? As 
shown in Figure 7-3, normally distributed data (the bottom two curves) results in 
much more accurate estimates than does uniformly distributed data (the top two 
curves). This is not difficult to explain since the calculation is based on standard 
deviation, which is defined only on normally distributed data. It is also not a 
particularly restrictive requirement since one would expect that all projects at a 
particular site would be "balanced" around some central tendency figure. The 
fact that the calculation yields meaningful results on uniformly distributed data 
as well is important, since such a case can certainly be imagined. 

What assumDtions are made about the data? The only assumption 
made about the data is that there is some relationship between the attributes 
and the time value. The usefulness of this approach over others (for example, 
the parametric approach) is in the fact that this relationship need not be known. 
The data used in our example of a software project has a fairly complex, though 
not unreasonable, relationship. This relationship is defined by the following 
rules: 

The time to perform a project is a function of its size in KSLOC. 

A poor manager adds time to a project, but this effect is 
reduced if the technical staff is good or excellent. 

@@ 
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0 A poor development environment adds time to a project, but 
this effect is similarly reduced by the presence of a superior 
technical staff (i.e., they would build their own tools). 

How re1 iable are the est imates? At thresholds between 0.8 and 1.2 
standard deviations, the errors in estimates were all less than 20% (and often 
below loo/,) with linear correlation coefficients between 0.94 and 0.998. With 
all four types of data samples, across thresholds ranging from 0.5 to 3.0 
standard deviations, the actual value for the project was within the predicted 
error range 99.95% of the time (one case in 2200 tests was outside of the 
range). Of course, the data used contained no noise component since the time 
values were wholly dependent on the attribute values. Whether results this 
good can be obtained using "real-world" data is dependent on the selection of 
appropriate comparison criteria (the attributes of the projects which are stored in 
the data base) and the strength of the relationships between the attribute values 
and the time values. 

What are the limitations of this app roach? As described above, there 
must be some relationship between the attributes of projects and their duration. 
For example, position of the moon on the first day of the project could probably 
be shown not to have an effect on the outcome of the project. Having this field 
in the data base would throw "noise" into the calculations, thus making the 
estimates less accurate. Careful selection of the criteria for the calculations is 
imperative. Another limitation with the method is that estimates tend to be 
arbitrary as the data base tends toward zero elements. However, even with the 
limited (15 item) data base used to test the software cost estimation models 
cited above (Section 5.1)l average error was 53% when we used this method, 
not 460% as given by the other methods (however, some projects could not be 
estimated due to lack of analogs). This method is also limited in that it will 
sometimes return no estimate at all, due to lack of analogs. This is either a 
limitation or a feature: should a system return an answer - any answer- no 
matter how bad? Or should it be intelligent enough to "know that it does not 
know"? The discussion of an optimal system suggested that the latter choice 
was preferable. 
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7.3 MEDIATOR 

Since the INSITE interface is dependent on both user characteristics 
and project attributes, which will only be specified during the course of 
knowledge engineering in a Phase II effort, it is premature to present an 
interface design at this stage of development. However, since the intent is to 
rely on rapid prototyping, it is possible to present a plausible first-cut 
configuration which could be constructed quickly, given a reasonable 
development environment. In the paragraphs which follow, one simple 
interaction sequence is presented which integrates many of the interface 
technology options discussed in Section 7. It does not represent a final design, 
but rather a potential starting point. (As shown in the accompanying figures, a 
Macintosh-like environment is assumed.) 

When the user first enters INSITE, a menu bar appears at the top of 
the screen (see Figure 7-5). This menu bar remains in place throughout a 
session and gives access to INSITE functions as follows: 

0 File - permits storage, retrieval, and examination of 
estimation runs. 

0 Proj Spec  - allows entry, modification, and examination of 
project attributes for the project to be estimated. 

0 Estimate - gives access to estimation parameters and 
results and allows the user to initiate estimation runs. 

0 Data Update - allows direct access to the historical data 
base for entry, modification, and examination of project data. 

Help - permits entry into help utilities for all system activities. 

Quit - exits INSITE. 

Menu bar selections are made by moving the mouse cursor over the 
label of interest and holding down the mouse button. A pull-down menu then 
appears, from which the required function can be selected. In a typical 
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interactive session, the user might first wish to enter the attributes of a project to 
be estimated. This is accomplished by placing the arrow-shaped mouse cursor 
over the "Proj Spec" label in the menu bar, depressing the mouse button 
("clicking"), and selecting "Edit Attributes" from the menu which appears. A 
Project Specifications Window will immediately appear, with the text "What type 
of project?" in its upper left corner (see Figure 7-5). The user responds by 
entering the type name. This is the first exchange in a dialogue which 
establishes the attributes required by the estimation process. The sample of 
dialogue presented in Figure 7-5 includes examples of: 

1. Smart data entry - the system recognizes simple type-in 
errors like "communications" and suggests a correction. 

2. User profiling - the system establishes a meaning for the 
user term "large" by referring to previous projects the user is 
familiar with. 

3. On-line help - the system is able to elaborate its question 
if the user requires more information. 

The Project Specifications Window is scrollable and allows the user to examine 
the entire dialogue session at any time. In Figure 7-5, the user has scrolled 
back to the top of the session after completing the specifications. The mouse 
cursor has been moved over the "Estimate" label in the menu bar in preparation 
to initiate an estimation run. 

After running the ESTIMATOR software and seeing the estimate 
results, the user may be interested in examining the set of analogs selected by 
a particular algorithm. In this case, the user clicks on the "Estimate" label in the 
menu bar and selects "Variance Set" from the pull-down menu. In response, 
the system displays the Analogs Window as seen in Figure 7-6. This window 
presents the characteristics of the set, including the thresholds for each attribute 
as established by the user, as well as a scrollable list of the projects in the set. 
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Each project in the set is identified by information which is likely to enable the 
user to map the list to his or her actual recollections. In the figure, the user has 
placed the mouse cursor over the name of a project of interest. Clicking on this 
field causes the system to display a Project Attributes Window (see Figure 7-7). 

The Project Attributes Window allows the user to examine all of the 
attribute values for a specific historical case and compare them to the new 
project being estimated. Since the actual significance of attributes will not 
necessarily be obvious from the label assigned, embedded help messages are 
available. If the mouse cursor is placed over a piece of text connected to a help 
message, that text will switch to reverse video. In Figure 7-7, the user has 
positioned the cursor over the label of the project magnitude attribute. If the 
mouse button is then held down, a help box appears containing an explanation 
of the term (see Figure 7-8). 

It should be apparent that INSITE is not intended to simply supply a 
single answer to a single question. INSITE is a workbench environment for the 
estimation of project duration. The user must be involved in the estimation 
process and ultimately make the estimation decision. The system provides 
tools for building an estimate based on historical records. If needed, the user 
may take the best estimate (as understood by the system) without question. 
However, INSITE will be a more useful tool if the user explores the system's 
alternative solutions and examines the source data for estimates of interest. 
The system will have more historical data available than any single user and 
will, in that sense, be a superior estimator. However, the system will only 
capture part of the human expertise involved in the estimation process and 
must, therefore, be provided with an interface which will allow it to function as 
part of a human/machine estimation team. 
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Project Spec if icat i ons ll 
What type of project? 
communictions 
Do you mean communications? 
Yes 
Communications hardware or software? 
software 
What is the size of the project? 
large 
Is this project larger than 1426-82 (SSSQ Development)? 
no 
Larger than 1497-84 (TPLOT Development)? 
Yes 
What portion of the effort is new work? 
explain 
What percentage of the design and code cannot be taken from existing 
i nve nt o ry ? 

Figure 7-5. Project Specifications Window 
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f File Proj Spec Estimate Data Update Help Quit 

13 Project Specifications 

11 What type of project? 1 ; ~  Analogs 
I 

- 
co mm un ict io ns 
Do YOU mean cmmunic  Selection by: variance Count: 12 

Communications hardwa i 0.0, 0.8, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 
Yes 

software 

Standard Deviation Thresholds: 

What is the size of the 

Is this project larger 
large 

no 251 1-79 S56 Std Dev 
Larger than 1497-84 (TP 1606-77 
Yes 1 3401-82 
What portion of the 0906-80 FOFJN Sys 

What percentage of 1998-82 SIRCH Proj 
2203-84 MANDOT4 explain 

Start End 

01 106179 04/06/ 
09/01 I79 06/01 I 
1111 1/79 1111 11 
04/08/82 0411 01 
01 I1 7/81 0311 71 
07/29/85 121041 
01 I1 2/82 1 21201 

Figure 7-6. Analogs Window 
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Large Attribute: Application -New Design Resources k, 
What I Target Proiect: Comm 35 80% 7 1  
explai 
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Figure 7-7. Project Attributes Window 
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li Proiect SDecifications 
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~ What type of project? Analogs 
com mun ict ions 
Do YOU mean communici Selection by: variance Count: 12 
Yes Standard Deviation Thresholds: 
Communications hardwa 
software 
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What 1E-J Project Attributes 
iarge 
Is this SSSQ Development Project 

Attribute : Application 

ing comment lines, 
with no multi- 
statement lines , 

Figure 7-8. Magnitude Help Box 
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7.4 J-l I STO R IAN 

The HISTORIAN module will control access to all system data. There 
are three information components necessary to the successful operation of 
INSITE - historical project data, project knowledge, and user knowledge. In 
order to process this information, INSITE will include both data base software 
and knowledge base software. A knowledge base is distinct from a data base 
in that a knowledge base incorporates not just data, but the relationships 
among the data, the relationships among the types of data, and further, the 
relationships among the relationships among the data and types of data. 

The INSITE Historical Project Data Base will utilize standard data 
base management technology. The attributes required to characterize project 
history can easily be arranged in table format, with rows representing projects 
and columns representing their attributes. This structure can be readily 
accommodated using relational data base management systems. The 
technology driving this aspect of HISTORIAN is well-understood and readily 
available in "off-the-shelf" software packages. It is expected that a working 
historical project data base will require a relatively small number of cases (i.e., 
hundreds) and that, therefore, the analog identification process will not be 
degraded by microcomputer limitations. 

Project and user interface knowledge require a totally different 
management technique. The INSITE Project Knowledge Base contains the 
kind of information required by INSITE concerning projects, their characteristics, 
classification scheme, component structure, and time estimation dependencies, 
and how that information needs to be encoded. The INSITE User Knowledge 
Base contains the information concerning the user which will be required for 
user profiling and the intelligent dialogue aspects of the system. This type of 
information requires a knowledge management system (such as those used in 
production rule knowledge schemes). For example, in the case of user 
profiling, the interpretation of a particular user's terminology can be expressed 
as in the following case: 
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IF project.size = large THEN lines-of-code > 50000 

IF projectsize = average THEN 50000 > lines-of-code > 10000 

IF projectsize = small THEN lines-of-code < 10000 

This type of knowledge can be encoded using available knowledge 
representation technology. The knowledge scheme developed for INSITE must 
be capable of representing the full range of knowledge required by the system, 
be easy to use, and provide the flexibility to be applicable to a wide variety of 
applications. 

Information encoded for use by HISTORIAN will derive from several 
sources. System knowledge of project attributes and estimation heuristics 
(required for estimation from single historical cases) must both be incorporated 
into the basic structure of INSITE. The knowledge itself must be elicited from 
experts in project planning/scheduling during the course of system 
development. The historical project data base is specific to a single installation 
or user community. Historical data may be entered by users as part of the 
installation process, making the system immediately usable for estimation, or 
built up over time by the entry of data as projects are completed. Profiling 
information is specific to a single user, but it is expected that the acquisition of 
this data will occur during system use and be largely transparent to the user as 

noted in the discussion of MEDIATOR. 

7.5 D 1 RECTOR 

As its name implies, the DIRECTOR module of INSITE will control the 
flow of information between the MEDIATOR, ESTIMATOR, and HISTORIAN 
modules. It will decide what needs to be done, when it will be done, and who 
(what module) has to do it. All interactions between the other three modules will 
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flow through the DIRECTOR; this will facilitate both system implementation and 
system enhancement by keeping the functions of each module well-defined. 
Interaction will occur via calls to the DIRECTOR as in: 

CASE = DIRECTOR (HISTORIAN, NEXT-ANALOG, CURRENT-CASE) 

DIRECTOR will have the same basic use to INSITE that an operating 
system has to a computer program; it will control all of the aspects of the system 
while allowing the other modules to perform their own functions. It will contain 
the access paths to the "overhead" types of functions that each module will 
need, either by directly controlling the process or by calling on another module 
to do so. This design strategy will enable the components of INSITE to be 
developed separately with a minimum of integration headaches when the 
system is connected. 
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8.0 PHASE I I  DEVELOPMENT 

.. 

8.1 PHASF 1 FFAS 1 R I LlTY AS SF SS MFNT 

The Phase I assessment has been completed, and the objectives 
stated in the original proposal have been met. The Integrated NASA System for 
Intelligent Time Estimation (INSITE) concept is assessed as feasible. The 
detailed investigation and analyses surrounding this innovative concept have 
produced the following conclusions: 

Accurate time estimation is critical to effective project 
management at NASA. 

0 Time estimation, as performed currently, is a complex, error- 
prone process. 

Current technologies can be combined to produce an 
automated tool to be used by project managers for time 
estimation at all levels of development. 

User profiling and intelligent dialogue systems will enhance 
the usability of the INSITE system. 

The primary risk areas associated with the development of the INSITE 
system are in the development of the estimator algorithms, the population of 
historical project data bases, and the ability of the host system to support the 
user interface. 

The level of risk associated with the selection and incorporation of the 
estimating models is minimal. The partial proof-of-concept experiment 
indicated that an algorithm can be developed that yields results which are better 
than those produced using many current estimation techniques. Further, 
additional models can be incorporated as deemed appropriate and existing 
models modified on a continuing basis. 
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Based on the above findings, the concept is judged feasible with a 
low level of risk. The Phase I I  effort will focus on the development of an INSITE 
version to deal with an aspect of project management at NASA as defined 
during the first task in conjunction with the panel of NASA experts. 

8.2 GOALS 0 F PHASF II RESFA RCH EFFORT 

The primary goal of the Phase I I  research effort is to develop a 
prototype version of INSITE. The primary emphasis of the Phase I I  effort is on 
the system design and prototype implementation. The prototype development 
process will culminate with an actual estimation of a current NASA project. 

8.3 PHASE I I  OBJECTIVES 
The primary objective of the Phase II research effort is development 

and demonstration of the prototype INSITE system. The effort will involve 
knowledge acquisition; hardware and software installation; detailed system 
design; system evaluation; system development; and system documentation. 
Specific technical objectives for each of these areas are presented below. 

Task 1 : Knowledge Acquisition 

Interview experts - Analytics and NASA will identify three to 
five project scheduling experts, set up an expert panel, and 
interview each expert separately. 

analyze and combine the information culled from the expert 
interviews into a cohesive form. 

e Compile baseline information - The development team will 

e Review with experts - After the baseline information is 
compiled, Analytics will then review it with the entire panel of 
experts. 

Refine project knowledge - The project information will be 
refined based upon the comments elicited from the panel of 
experts. 
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0 Coordinate project data collection - After the appropriate 
types of project information are identified, the team will obtain, 
in coordination with NASA, a sufficiently large set of project 
data to use as a testbed for the Phase Ii effort. 

Task 2: Hardware and Software Acquisition 

0 Install equipment and software - All necessary computer 
hardware and software will be purchased, configured, and 
installed at Analytics' offices. 

Task 3: Detailed System Design 

0 Design and prototype estimation algorithms - The five 
algorithms (three analog selection, two estimate from 
analog(s)) will be designed and prototyped with the data 
base obtained during Task 1. 

0 Design project data base - The project data base will be 
designed based on information obtained during Task 1. 

0 Design project knowledge base - The project knowledge 
base will be designed based on information obtained during 
Task 1. 

0 Design and prototype user interface - The user interface will 
be designed and prototyped. 

0 Design and prototype intelligent dialogue mechanism - The 
intelligent dialogue mechanism will be designed and 
prototyped. 

Design and prototype user profiling mechanism - The 
mechanism for the user profile will be designed and 
prototyped. 

0 Finalize the design of all components of the INSITE system and 
determine how they will be integrated. 
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Task 4: System Development 

0 Implement INSITE control mechanisms - The high-level 
system shell will be implemented on the target system. 

0 Implement estimation algorithms - The five estimation 
algorithms designed and prototyped in Task 3 will be 
implemented in the delivery environment. 

0 Implement project data base - The project data base which 
was designed during Task 3 will be implemented and 
populated. 

base which was designed during Task 3 will be implemented 
and populated. 

0 Implement project knowledge base - The project knowledge 

0 Implement user interface - The user interface prototyped and 
validated during Task 3 will be implemented in the delivery 
environment. 

0 Implement intelligent dialogue mechanism - The intelligent 
dialogue mechanism prototyped during Task 3 will be 
implemented in the delivery environment. 

0 Implement user profiling mechanism - The user profiling 
mechanism prototyped during Task 3 will be implemented in 
the delivery environment. 

Task 5: Svstem Evaluation 

. Refine estimation algorithms - The five estimation a\gorithms 
prototyped in Task 3 will be refined using data obtained during 
Task 1. 

0 Refine knowledge base - The knowledge base of project 
characteristics and their relationships will be refined using data 
obtained during Task 1. 

0 Refine user interface - Opinions on the user interface 
prototype will be solicited from the expert panel and NASA 
personnel and their suggestions incorporated into the final 
design. 
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Refine intelligent dialogue system - Opinions on the 
intelligent dialogue system prototype will be solicited from the 
expert panel and NASA personnel and their suggestions 
incorporated into the final design. 

Refine user profiling system - During the review of the user 
interface and intelligent dialogue system, the user profiling 
system will be analyzed and refined as necessary. 

Task 6: Svstem Documentation 

User's Guide - A user's guide will be developed for use with 
the Phase II version of INSITE. 

Phase II Report - A report of progress and a discussion of 
future development will be written. 

8.4 SUMMARY 

A set of system design criteria was established following the Phase I 
interviews with NASA staff and a survey of the current technologies available. 
The proposed INSITE system is based on both proven and new technology 
areas. Four primary system components comprise the INSITE concept: 

1. The estimation module; 

2. The system manager; 

3. The knowledge/data base; and 

4. The user interface. 

A partial proof-of-concept experiment was performed which successfully 
demonstrated use of statistical selection of analogs and the inference of 
estimates via central tendency among analogs. 

The results of the Phase I research effort indicate the technical 
feasibility of the INSITE system. The obvious utility of an accurate and easy-to- 
use time estimation system warrants the development of a prototype INSITE 
system during a Phase II effort. 

8-5 



I 
I 
I 
I 
I 
I 
1 

The INSITE system will be optimized continuously during the Phase II 
development. The two primary goals which will drive the optimization are: 

1. The ability of the INSITE system to supply accurate estimates 
for project activities; and 

2. Ease of user-computer interaction. 

The first goal must be achieved in order to provide a useful answer to the user. 
The second goal is also important in order to obtain operator acceptability of the 
INSITE system. In summary, the INSITE system provides for enhanced project 
management capabilities to meet the goals of future NASA missions. 
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