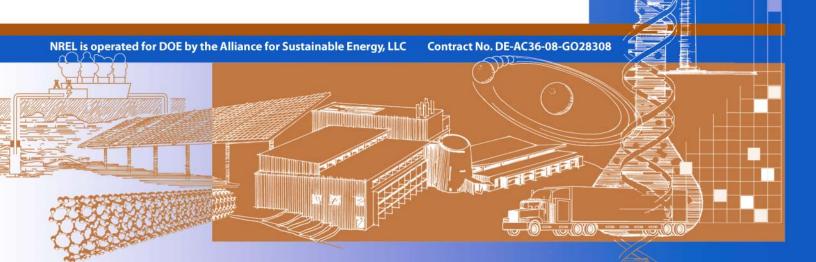


Innovation for Our Energy Future


Polycrystalline Thin-Film Solar Cell Technologies

Preprint

H.S. Ullal National Renewable Energy Laboratory

To be presented at the 18th International Photovoltaic Science and Engineering Conference and Exhibition Kolkata, India
January 19–23, 2009

Conference Paper NREL/CP-520-44622 December 2008

NOTICE

The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC, (ASE) a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728

email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800,553,6847

phone: 800.553.6847 fax: 703.605.6900

email: orders@ntis.fedworld.gov

online ordering: http://www.ntis.gov/ordering.htm

Polycrystalline Thin Film Solar Cell Technologies*

Harin S. Ullal, Ph.D.
National Center for Photovoltaics
National Renewable Energy Laboratory
1617 Cole Boulevard
Golden, Colorado 80401 USA

Tel: 303-384 6486, Fax: 303-384 6430, E-mail: harin_ullal@nrel.gov

1.0 Introduction

In this paper, we report on the significant progress made worldwide by polycrystalline thin-film solar cells, namely, cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS). Polycrystalline thin-film PV technology status is also discussed in details. In addition, R&D and technology challenges in both areas are elucidated in this paper. The worldwide estimated projection for thin-film PV technology production capacity announcements (including a-Si/thin Si) which was estimated at 3700 MW in 2006 [1] is now estimated at more than 8000 MW by 2010.

1.0 Thin-Film Cadmium Telluride Solar Cell Technologies

Thin-film CdTe solar cells are one of the most promising thin-film PV devices. With a bandgap of 1.45 eV it has an excellent match with the solar spectrum. Since these are direct bangap semiconductors with high absorption coefficient, very thin absorber layer are needed to absorb the photons. Theoretical efficiencies for these devices are about 26%. Laboratory efficiencies of 16.5% for thin-film CdTe solar cell has been demonstrated by NREL scientists [2]. Historically, thin-film CdTe solar cells were referred to as the "dark horse" for thin-film PV devices. Subsequent concerted research effort by several groups worldwide has resulted in developing several deposition processes for the growth of the absorber layer. The processes are close-space sublimation, electrodeposition, vapor transport deposition, spray, screen-printing, sputtering, physical vapor deposition, laser ablation, metal organic chemical vapor deposition, molecular beam epitaxy, and atomic layer epitaxy [3]. Many of these processes has resulted in thin-film CdTe solar efficiency of 10% or higher. Five of these processes have demonstrated prototype power modules, namely, close-space sublimation, electrodeposition, spray, screen printing and vapor transport deposition.

For thin film CdTe technology, five key research, development, and technology challenges include: (1) standardization of equipment for deposition of the absorber layer, (2) higher module conversion efficiency, (3) back-contact stability, (4) reduced absorber layer thickness to less than 1 micrometer and (5) control of film and junction uniformity over large area for power modules.

Employees of the Alliance for Sustainable Energy, LLC, under Contract No. DE-AC36-08G028308 with the US. Dept. of Energy have authored this work. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-lip, irrevocable, worldwide license to publish or reproduce the published form of this work. or allow others to do so, for United States Government purposes.

The current status of the manufacturing technology is power modules with a conversion efficiency of 10.6% made by First Solar (FS). Their manufacturing cost is \$1.08 per watt and installed system price is in the range of \$ 4-5 per watt, the lowest in the industry for any PV system. Clearly, FS is the world leader in all thin-film PV manufacturing technology. They have an installed capacity of more than 140-MW in Perrysburg, Ohio. They have also installed a 192-MW manufacturing plant in Germany. In addition, they are installing more than 700-MW thin-film CdTe manufacturing line in Malaysia, which will be commissioned in phases in 2009 and 2010. Thus FS's target is to have a worldwide installed thin film manufacturing capacity of more than 1100-MW by December 2009. FS is also projecting cost to decline to \$ 0.92 per watt by Dec 2009. To date, FS has installed 500 MW of thin-film CdTe power modules mainly in Germany and Spain for commercial roof-top and utility-scale applications. They are also working very closely with a system integrator -- Juwi Solar to install a 40-MW solar farm in Germany to be completed in December 2008. Like for all PV companies, the German and Spanish feed-in-tariff law has clearly helped in the market acceptance of the thin-film CdTe power modules. A few more emerging companies are AVA Solar, Colorado, USA; Primestar Solar, Colorado, USA; Calyxo, Ohio, USA; Calyxo, Germany; and Arendi, Italy.

3.0 Thin-Film Copper Indium Gallium Diselenide Solar Cell Technologies

Thin-film PV technology based on copper indium gallium diselenide is another attractive option for fabricating high-efficiency, low-cost, and reliable thin-film power modules. Thin-film CIS is also a direct bandgap semiconductor and has a bandgap of ~0.95 eV. When Ga is added to CIS, the bandgap increases to ~1.2 eV depending on the amount of Ga added to the CIGS film. This material has demonstrated the highest total-area, conversion efficiency for any thin-film solar cells in the range of 19.3% to 20.0%, fabricated by NREL scientists [4,5,6,7].

Several challenges still need to be addressed as emerging and new groups develop CIGS thin-film PV technologies. The following six challenges are critical for developing low-cost and reliable CIGS products: (1) standardization of equipment for the growth of the CIGS absorber films, (2) higher module conversion efficiencies, (3) prevention of moisture ingress for flexible CIGS modules, (4) improved processing for CIGS deposited by alternative process for high efficiency cells and modules, (5) thinner absorber layers of less than 1 micrometer or less and (6) CIGS absorber film stoichiometry, and junction and film uniformity over large areas for power module fabrication.

Worldwide, some 40 companies are actively involved in the technology development of thin-film CIGS products. Towards this end, ten deposition processes are being used for growing the thin-film absorber layers. In all cases, Mo is used as the back contact deposited by sputtering, while majority of the groups use ZnO as the front contact deposited by sputtering or chemical vapor deposition. Some companies use ITO instead of ZnO for the front contact. Six thin-film CIGS companies: Wurth Solar, Germany; Global Solar Energy (GSE), USA; Showa-Shell, Japan; Honda Soltec, Japan; Sulfurcell, Germany; and Solyndra, USA are in commercial production. The production capacity

varies between 5 to 40 MW per year. GSE has recently installed a 40 MW CIGS manufacturing plant in Tucson, Arizona, USA and are installing a 35 MW manufacturing plant in Germany later in 2008. In addition, GSE is also planning an expansion of 100 MW plant in Tucson, Arizona that will be completed by December 2010. Thus, GSE will have a cumulative production capacity of 175 MW worldwide by December 2010.

The thin film CIGS absorber layers vary in thickness from 1.5 to 2.5 micrometer and are deposited by coevaporation or the two-stage process in which the first step is the growth of the precursors, Cu, In, Ga by sputtering followed by selenization in H₂Se gas for CIGS film formation.

4.0 Summary

Rapid progress is being made by CdTe, and CIGS-based thin-film PV technologies in entering the commercial markets. In the United States, market share for thin-film (includind a-Si) was about 65% in 2007 compared to less than 10% in 2003, and has surpassed Si shipments in the year 2007 [8]. Several critical research, development, and technology issues need to be addressed by emerging thin-film PV companies as they plan to enter the market. The projections for worldwide production capacity announcements for all thin-film PV (including a-Si) are estimated at more than 8000 MW in 2010, with First Solar's global target at 1000 MW by Dec 2009 and Sharp's target of 1000 MW by March 2010. These economies-of-scale production capacity should substantially reduce the manufacturing price of the thin-film PV products and potentially make solar electricity price-competitive with grid-parity electricity and met the U.S. Department of Energy's Solar America Initiative's levelized cost of electricity goals by the year 2015.

5.0 Acknowledgment

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08G028308. The authors would like to thank the numerous managers, engineers, scientists, and technicians whose data are included in this paper.

6.0 References

- [1] H. S. Ullal and B. von Roedern, "Thin Film CIGS and CdTe Photovoltaic Technologies: Commercialization, Critical Issues and Applications" Proceeding of the 22nd Photovoltaic Solar Energy Conference, Milan, Italy; September 3-7, 2007; in press
- [2] X. Wu, "High Efficiency Polycrystalline CdTe Thin-Film Solar Cells, Solar Energy, 77, 204, pg. 803-814
- [3] H.S. Ullal, K. Zweibel, and B. von Roedern, "Current Staus of Polycrystalline Thin-Film PV Technologies," 26th IEEE Photovoltaic Specialists Conference, Anaheim, CA; September 29-October 3, 1997
- [4] K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, "Properties

- of 19.2%Efficiency ZnO/CdS/CuInGaSE2 Thin-film Solar Cells," Progress in Photovoltaics: Research and Applications, <u>11</u>, 2003, pg.225-230
- [5] M.A.Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D.L. Young, B. Egaas, and R. Noufi, "Diode Characteristics in Stat-of-the-Art ZnO/Cu(In_{1-x}Ga_x) Se₂ Solar Cells," Progress in Photovoltaics: Research and Applications, <u>13</u>, 2005, pg. 209-216
- [6] R.N. Bhattacharya, M.A. Contreras, B. Egaas, and R.N. Noufi, "High Eficiency Thin-Film CuIn_{1-x} Ga_xSe₂ photovoltaic cells using a Cd_{1-x} Zn_xS Buffer Layer," Applied Physics Letters, **89**, 2006, pg. 253503-1--23503-2
- [7] I. Repins, M.A.Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi, "19.9%-Efficient ZnO/CdS/CuInGaSe₂ Solar Cell with 81.2% Fill Factor," Progress ion Photovoltaics: Research and Applications, <u>16</u>, 2008, pg. 235-239
- [8] PV News 2003 to 2008

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.								
		ATE (DD-MM-Y)	(YY) 2. R	EPORT TYPE Conference Paper			3. DATES COVERED (From - To)	
4	TITLE AND			omerenee i aper		Fo. CON	TRACT NUMBER	
4.			m Solar Cell	Technologies: Pr	eprint	DE-AC36-08-GO28308		
						5b. GRA	5b. GRANT NUMBER	
						5c. PROGRAM ELEMENT NUMBER		
_	AUTUOD/C					54 DDO	JECT NUMBER	
ь.	AUTHOR(S) H.S. Ullal)					5d. PROJECT NUMBER NREL/CP-520-44622	
						5e. TASK NUMBER		
						PVB91199		
						5f. WOF	RK UNIT NUMBER	
7.	 PERFORMING ORGANIZATION NAME(S) A National Renewable Energy Laborate 1617 Cole Blvd. Golden, CO 80401-3393 			• •			8. PERFORMING ORGANIZATION REPORT NUMBER NREL/CP-520-44622	
9.	9. SPONSORING/MONITORING AGENCY NAM			ME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S) NREL	
							11. SPONSORING/MONITORING AGENCY REPORT NUMBER	
12. DISTRIBUTION AVAILABILITY STATEMENT								
	National Technical Information Service							
	U.S. Department of Commerce							
	5285 Port Royal Road							
40	Springfield, VA 22161							
13. SUPPLEMENTARY NOTES								
14	14. ABSTRACT (Maximum 200 Words) In this paper, we report on the significant progress made worldwide by polycrystalline thin-film solar cells, namely, cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS). Polycrystalline thin-film PV technology status is also discussed. In addition, R&D and technology challenges in both areas are elucidated in this paper. The							
	worldwide estimated projection for thin-film PV technology production capacity (including a-Si/thin Si) was estimated at 3700 MW in 2006 is now estimated at more than 8000 MW by 2010.							
15. SUBJECT TERMS								
PV; polycrystalline; thin film; solar cells; cadmium telluride; copper indium gallium diselenide; grid-parity electricity; research and development; market projections;								
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON							OF RESPONSIBLE PERSON	
a. REPORT b. ABSTRACT c. THIS PAGE OF ABSTRACT OF PAGES								
Unclassified Unclassified Unclassified				UL		19b. TELEPH	IONE NUMBER (Include area code)	

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18