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INTRODUCTION

We derive upper and lower bounds for the probabilityof failurefor

systems that achieve high reliabilitywith architecturesthat use redundancy

and reconfiguration. The engineeringassumptionsare that individual

componentsfail independentlyat a low constant rate and that the system

quickly recoversfrom all faults. The mathematicalassumptionis that the

processof componentfailureand system recoverycan be representedby a

semi-Markovmodel where competingevents are stochasticallyindependent. The

bounds are syntheticin the sense that descriptionsof componentfailureand

system recoveryare obtainedfrom differentsources. The reliabilitymodel is

constructed(synthesized)under the assumptionthat the processesare

independent.

UPPER AND LOWER BOUNDS

Figure 1 displaysa generalpath in a reliabilitymodel that begins at an

initialfault-freestate and ends at an absorbingsystem-failurestate. The

global time-independenceof a semi-Markovmodel permitsthe rearrangementof

states on the path for notationaland computationalconvenience. In the first

line of figure 1, successfulfault transitionsthat have rate xk compete

with fault transitionsthat have rate Yk- In the second line, successfulI

recoverytransitionsthat have generalizeddensitydFi,_ competewith other
t

recoverytransitionsdFi,z,...,dFi,biand fault occurrences€i. In

the third line, successfulfault occurrencesaj competewith recovery

transitionsdGj,l,...,dGj,cjand other fault occurrencesBj. For

notation
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D(T) = Probabilityof traversingthe path in figure 1 by time T

p(Fi) = Probabilitythe transitiondFi,I is successfulwhen competing

against other recovery transitions

= 0f [I - Fi,z(t)]...[l- Fi,bi(t)]dFi,i(t)

m1(Fi) = First conditionalmoment of dFi,I

: p--_;O_ t [I - Fi z(t)]. [1 - Fi (t)] dFi, (t)• . "" 'bi l

mz(Fi) = Second conditionalmoment of dFi,i

: _1 of tz [I - Fi,z(t)]...[1- Fi,bi(t)ldFi,l(t)

m1(Cj) = First moment of the holdingtime in state Cj consideringonly the

recoverytransitions

: 0f [1 - Gj,1(t)]...[1- Gj,cj(t)]dt

mz(Cj) = Second moment of the holdingtime in state Cj consideringonly

the recovery transitions

_ o

: 2 oft [1 - Gj,1(t)]...[1- Gj,c.(t)]dt.J
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There is a relationship between the moments of a holding time for a state and

the conditional moments of the transition functions given by

, mi(Cj) : _J p ) mi{:1 (Gj,_ (Gj,{)

where p(Gj,_) and mi(Gj,{) are definedjust as the probabilitiesand

moments for the F's are.

Continuingto developingthe notation,figure 2 displaysthe constant

rate part of the path in figure 1. Let

E(T) = Probabilityof traversingthe path in figure 2 by time T.

Let V = T - r_ - ... - rm - s_ - ... - sn where

ri = [mi(Fi)jI/2

s i = [m,(Cj)jl/2

We assume r_ +...+ rm + s_ +,,,+ sn < T.



The proof of the assertionsbelow uses the elementaryfacts that if H is

a distributionsuch that H(O-) = 0 then

w

I [Z-H(t)]dt = mz(H)
0

" mz(H)

I tLZ-H(t)]dt=T
0

GO

mz(H)
1-H(c) = f dH(t) < _ for c > 0 (Markov'sinequality)

C _ c z

Theorem With the notation and assumptionsas above

m mz(Fi)j
E(V) II P(Fi) [I - cimz(F)-i=1

n + Bj)mz(Cj) )
H aj_(cj)L1- (_j) mz(Cj
j=l 2m1(Cj [m_(Cj)]'3/2J

< D(T)

m n

< E(T)II P(Fi) II _j mz(Cj)
-- i=1 j=1



proposition

- -_ixi

(i) I e [l"Fi,z(xi)J'"[l"Fi,bi(Xi)JdFi L (xi)< P(Fi)O _ .

W

' (Ii)01_j e-_jyje'Bjyj[1 - Gj,i(yj)]...[1- Gj,cj(yj)]dyj<__jm1(Cj)
J

• -€.X i
(iii)_I e

[1 - Fi z(xi)]...[1- Fi,bi(xi)] dFi 1(xi)0 •

mz(Fi)
>p(F i) [1 - €i mi(Fi) ----_zj

ri

._i/ (iv)_J _j e"_jyje-Bjyj[1 - Gj,1(yj)]...[1- Gj,cj(yj)]dyj

aJm1(CJ)L1 (aj+Bj)mz(Cj) mz(Cj)
_-- 2mi(Cj) sjm_(Cj)"j

Proof of the proposition

Assertions(i)and (ii)followfromthe inequalitye-a < 1 for a > O.



Assertions (iii) and (iv) requiremore work and use the equation

f = f - _ and the inequalities1-a < e-a < 1 for a > O.
0 0 c

|

To prove (iii) note that the integralis bigger than or equal to

(1 - cixi)ll- Fi,z(xi)J...ll- Fi,bi(xi)JdFi 1(xi)0 '

- _ [1 - Fi,z(xi)]...[1- Fi,bi(Xi)]dFi,1(xi)r i

whichis biggerthanor equalto

mz(Fi)
p(Fi) - ciP(Fi) m1(Fi) - P(Fi)

ri

when the last integral is replacedby Markov'sinequality.

To prove (iv) note that the integralis bigger than or equal to

(1-(_j+Bj)yj)[1- Gj,I(yj)J...[1- Gj,cj(Yj)Jdyj ,



w

• - aj _j[1 _ Gj,i(yj)]...[1- Gj,cj(Yj)]dyj.

The integrandin the last integralis equal to one minus the probabilityof

being in state Cj at time yj and by Markov's inequalityis less than or

(cj)
equal to 2

Yj

Hence (iv) is bigger than or equal to

_j(_j + Bj) mz(Cj) _jm_(Cj)

_jm_(Cj)- 2 sj

Proof of the theorem

Let q(t) be the densityfunction for traversingthe path in figure 2 by

time t.

The probabilityof reachingstateD in figure1 beforetimeT is

T
D(T) = S q(t)

0

T-t -clx_

• f e [I - Fx,z(x,)J...[z- Fx,b1(Xl)]0 _

T-t-x1-. -xm. -

./. " x eCmXmL1- F ] L1 Fm,bm( ]0 m'z(Xm) "'" " Xm)



T-t-xI-.•--xm "(aL+131)YI

I e [I - G_,_(yl)]...[l. G1,c,(y,)]0

i

T-t-x, "( an+Bn)Yn
i """Yn-i a e [1 )1 [1 -
0 n " Gn,i(Yn "'" Gn,cn(Yn)]

dYn...dY_ dFm,l(Xm)...dFl,l(x l) dt

Workingwith just the limits of integration

V_ I _m) I )n T= -- ®i ...... _<D(T)_<i i-.. i i ..- i •
O0 0 0 0 O0 O0 0

The theorem is proved by applyingthe inequalitiesin the propositionto the

integralsin the above inequalityfor D(T).

CONCLUDINGREMARKS

A new method for bounding the probabilityof enteringan absorbing

state of a semi-Markovmodel has been presented. The method is based on

a path analysis of the model, and reducesthe calculationof an absorbing

state probabilityto a single algebraiccomputation. The bounds are typically

close and consequentlyrepresenta practicalsolutionto the analysisof a

class of semi-Markovreliabilitymodels.
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FigureI: GeneralPathin a Semi-MarkovModel
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Figure 2: ConstantRate Part of the Path
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