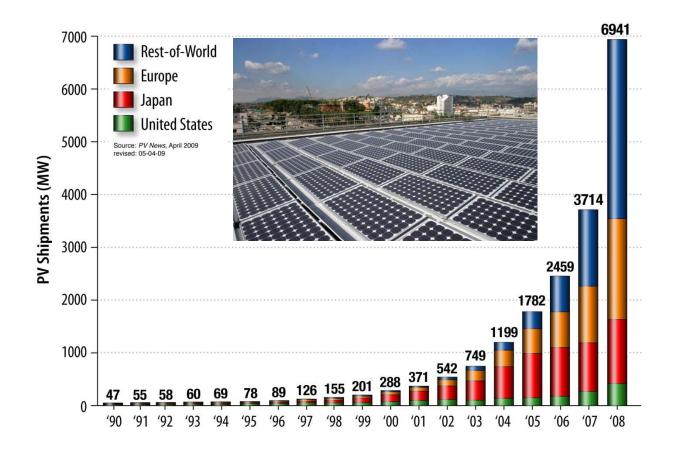
Photovoltaic Reliability R&D Toward a Solar-Powered World

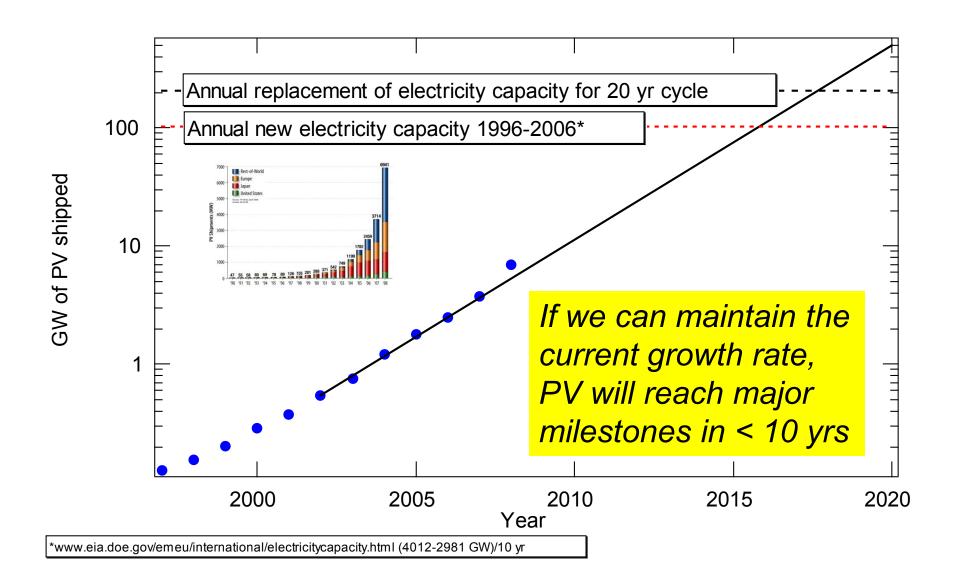
Sarah Kurtz and Jennifer Granata
with help from many others
National Renewable Energy Laboratory,
Sandia National Laboratories
SPIE
San Diego, CA
August 2-7, 2009

NREL/PR-520-46412

- A vision of a solar-powered world
- Importance of reliability to success of solar
- Working together to establish reliability
- R&D issues related to:
 - Product Development
 - Quality Assurance during manufacturing
 - Lifetime Predictions
- Current status
- Technology-specific R&D issues
 - Selected highlights from SPIE


How fast can a world change?

Solar power is within reach

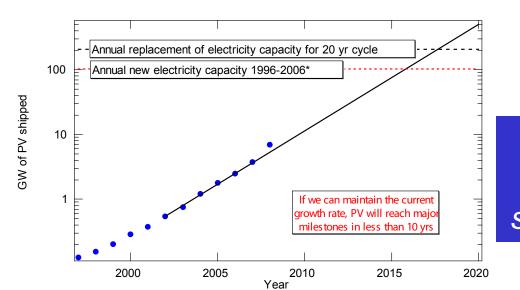


Growth of PV industry

PV shipments have been doubling every two years

Growth of PV industry

Why is reliability important?


Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Improved reliability helps to reduce life-cycle cost:

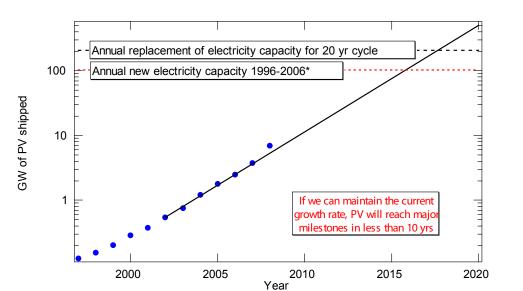
- Longer lifetime
- Slower degradation
- Lower O&M costs

Improved reliability improves customer satisfaction

- Good performance builds customer confidence
- Better confidence inspires investors

With reliability, this graph leads to a solar-powered world

Why is reliability important?


Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Improved reliability helps to reduce life-cycle cost:

- Longer lifetime
- Slower degradation
- Lower O&M costs

Improved reliability improves customer satisfaction

- Good performance builds customer confidence
- Better confidence inspires investors

Without reliability:
a Ponzi scheme? Bill Marion

Reliability should be considered by venture capitalists

Venture capitalists funding dot.com look for

- Novel (secret) idea
- Return on investment in a couple of years
 Venture capitalists funding PV need to look for
- Good approach (not necessarily novel)
- Excellent implementation
- Plan for enough time to check reliability

Developing a PV product is difficult!!!
The investors must recognize that the potential return on investment is huge, but will take time.

Community should demand public demonstration of reliability before IPO.

Building a solarpowered world

Universities

- -Educate work force
- -Original research to extend useful PV-reliability knowledge

National labs

- -Build foundation of PV-reliability knowledge through R&D
- -Long-term or larger projects

Complementary roles

Companies (& investors)

- -Develop reliable products
- -Manufacture quality products
- -Customer satisfaction

Universities

- -Educate work force
- -Original research to extend useful PV-reliability knowledge

National labs

- -Build foundation of PV-reliability knowledge through R&D
- -Long-term or larger projects

Building a solarpowered world

Solar-powered world

Defining complementary roles allows more efficient use of resources

Social acceptance and utility acceptance of PV

- Companies (& investors)
- -Development of reliable product
- -Manufacturing of quality product
- -Customer satisfaction

Universities

- -Educate work force
- -Original research to extend useful PV-reliability knowledge

National labs

- -Build foundation of PV-reliability knowledge through R&D
- -Long-term or larger projects

What do we mean by reliability?

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

For a solar-powered world, Reliability means: the lights go on when the switch is flipped

For today's talk,
Reliability means a PV system working as expected when
the sun is shining (with low O&M costs and long life)

Developmental stages

Achieving excellent reliability is a step-by-step process; you can't skip the early steps and expect to be successful with the final steps

Product development

- -Identify failure modes
- -Understand failure mechanisms
- -Test for failures
- -Mitigate

Quality assurance

- -Test raw and refined materials
- -Control process
- -Test final products

Predict reliability

- -Identify useful tests
- -Understand all components
- -Make predictions

Developmental stages

Achieving excellent reliability is a step-by-step process; you can't skip the early steps and expect to be successful with the final steps

Product development

- -Identify failure modes
- -Understand failure mechanisms
- -Test for failures
- -Mitigate

Quality assurance

- -Test raw and refined materials
- -Control process
- -Test final products

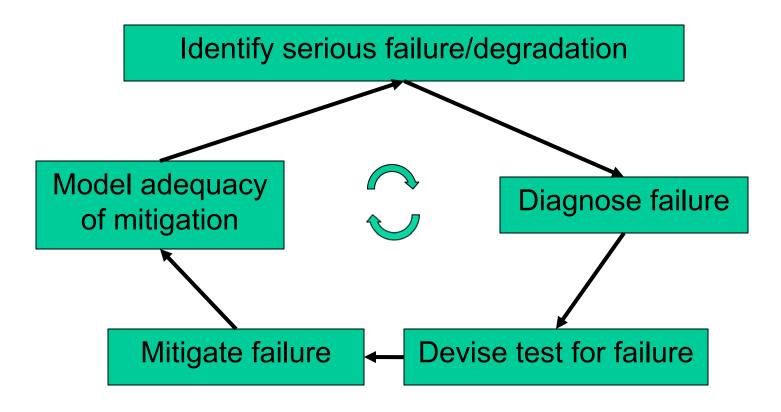
Predict reliability

- -Identify useful tests
- -Understand all components
- -Make predictions

Product development

Product development

- -Identify failure modes
- -Understand failure
- mechanisms
- -Test for failures
- -Mitigate


Reliability should be considered from day 1 forward Lots of tools:

- -Advanced Product Quality Planning
- -Design Failure Modes Effects and Analysis
- -Fault Tree Analysis
- -Design for Manufacturability
- -Design Review Based on Failure Mode (Toyota)

Product development

- -Identify failure modes
- -Understand failure mechanisms
- -Test for failures
- -Mitigate

This cycle has been effective at improving PV module reliability and in developing standard for qualification test; not done yet!

History of Si module qual. test: JPL (Jet Propulsion Lab) Block buys

Bringing you a	prosperous future	where energy is clear	n, abundant, reliabl	e, and affordable

Test	I	II	III	IV	V
Year	1975	1976	1977	1978	1981
Thermal Cycle (°C)	100 cycles -40 to +90	50 cycles -40 to +90	50 cycles -40 to +90	50 cycles -40 to +90	200 cycles -40 to +90
Humidity	70 C, 90%RH, 68 hr	5 cycles 40 C, 90%RH to 23 C	5 cycles 40 C, 90%RH to 23 C	5 cycles 54 C, 90%RH to 23 C	10 cycles 85 C, 85%RH to -40 C
Hot spots	-	-	-	-	3 cells, 100 hrs
Mechanical load	-	100 cycles ± 2400 Pa	100 cycles ± 2400 Pa	10000 cyc. ± 2400 P	10000 cyc. ± 2400 Pa
Hail	-	-	-	9 impacts 3/4" - 45 mph	10 impacts 1" - 52 mph
NOCT	-	-	-	Yes	Yes
High pot	-	< 15 µA 1500 V	< 50 µA 1500 V	< 50 µA 1500 V	< 50 μA 2*Vs+1000

JPL Block buys led to dramatic improvements

- One study claimed (Whipple, 1993):
 - Pre-Block V: 45% module failure rate
 - Post-Block V: <0.1% module failure rate

Today's qualification test retains similarities to JPL tests

- IEC 61215 Crystalline silicon design qualification includes 18 test procedures
 - Thermal cycling 200 cycles -40°C to +85°C
 - Humidity freeze 10 cycles +85°C, 85% RH to -40°C
 - Damp heat 1000 hrs at +85°C, 85% RH
 - Wet leakage current Wet insulation resistance X area > 40
 MΩm² at 500 V or system voltage
 - Requirement is typically to retain 95% of original power production
- IEC 61646 (thin film) and IEC62108 (CPV) are similar

www.iec.ch

Developmental stages

Achieving excellent reliability is a step-by-step process; you can't skip the early steps and expect to be successful with the final steps

Product development

- -Identify failure modes
- -Understand failure mechanisms
- -Test for failures
- -Mitigate

Quality assurance

- -Test raw and refined materials -Control process
 - -Test final products

Predict reliability

- -Identify useful tests
- -Understand all components
- -Understand field failures
- -Make predictions

Quality assurance

- -Test raw and refined materials
- -Control process
- -Test final products

SunTech raised question of purity of silicon in 2008

Quality assurance – R&D opportunities

- IEC standards do not address periodic retesting (when?)
- What QA tests/controls are needed? (e.g. Si purity, EVA cure)
- How can we keep the cost of the QA low, while keeping confidence high and learning as much as possible?

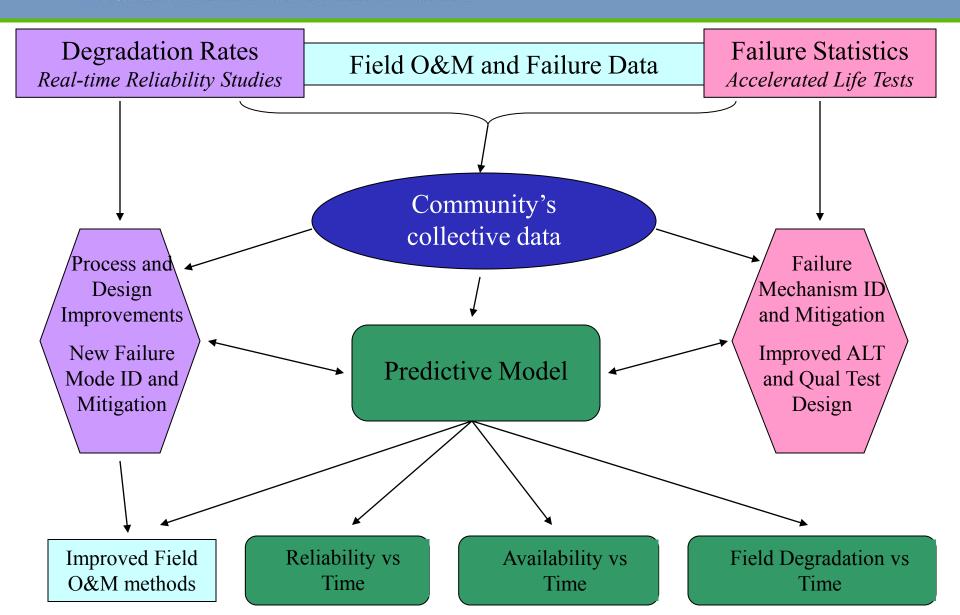
QA must be in place before confident predictions can be made

Developmental stages

Achieving excellent reliability is a step-by-step process; you can't skip the early steps and expect to be successful with the final steps

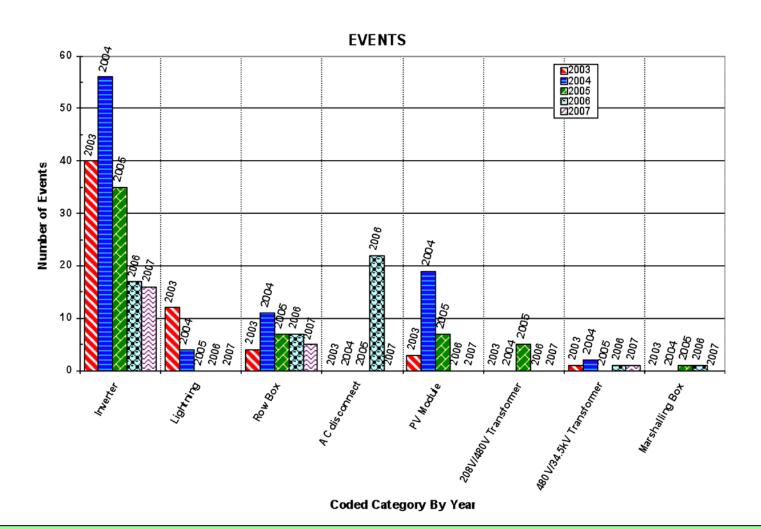
Product development

- -Identify failure modes
- -Understand failure mechanisms
- -Test for failures
- -Mitigate


Quality assurance

- -Test raw and refined materials
 - -Control process
 - -Test final products

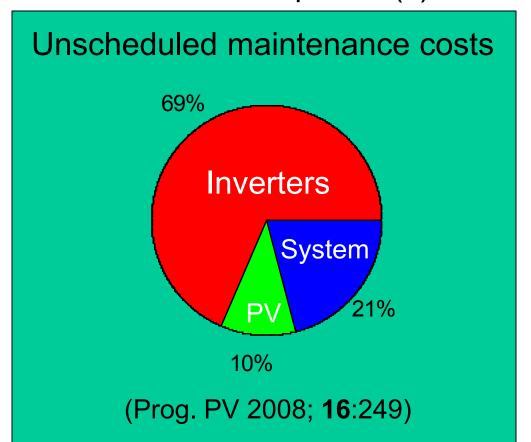
Predict reliability


- -Identify useful tests
- -Understand all components
- -Make predictions

Predictive Model Development

Predictive Model Development

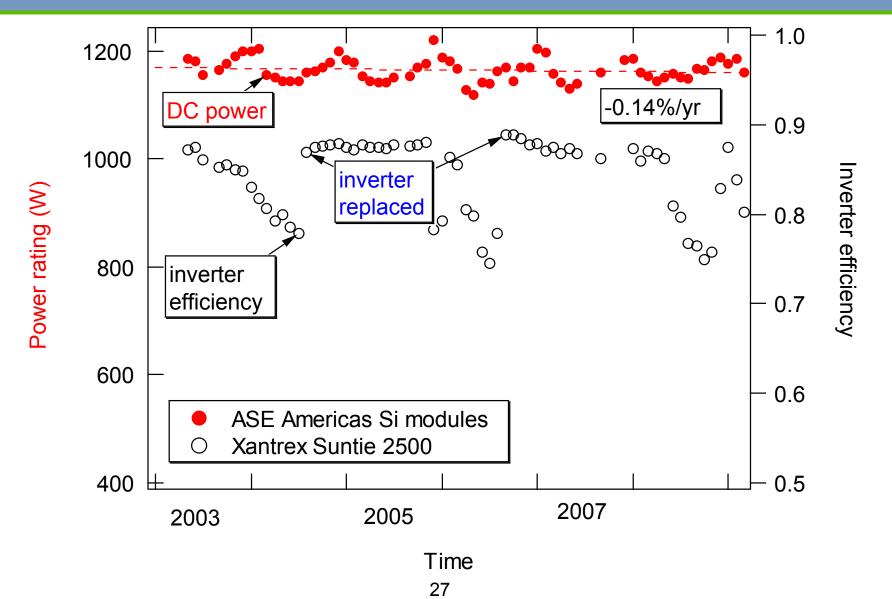
Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable



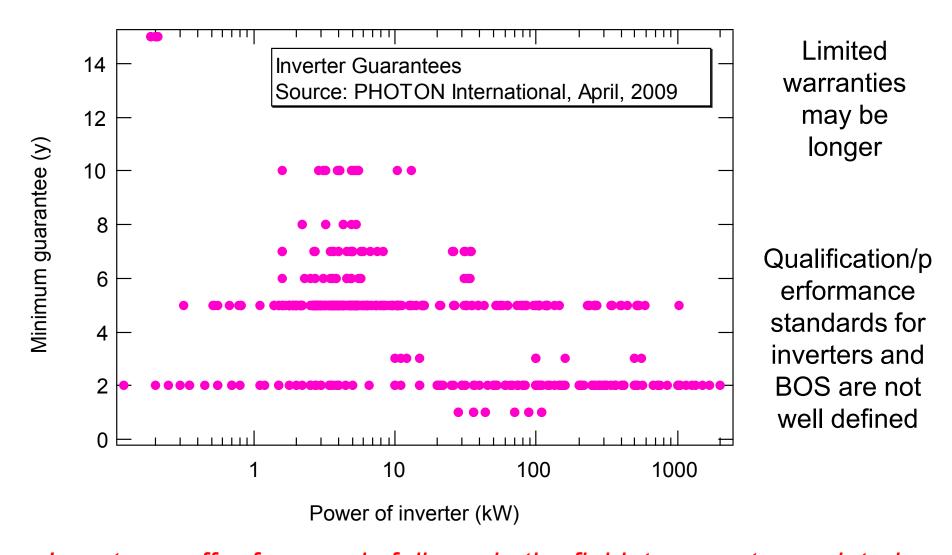
Reliability and availability analysis of a fielded PV system 34th PVSC Elmer Collins

Status – System level

Systems Approach:


- Understand how each component fits into the system
- The overall reliability of the system is dominated by the least reliable component(s)

Studies of c-Si systems typically show few module failures;
Inverters typically dominate O&M cost


Reliable Si modules are demonstrated, but not guaranteed

Systems model helps to evaluate status

Module performance can be good; Some inverters have short lifetimes

Inverters are improving, but still need more

Inverters suffer from early failures in the field, temperature-related failures, & mismatch between PV voltage & inverter window.

Documented degradation rates

Module Tech.

c-Si

p-Si

a-Si

CIS

c-Si

p-Si

a-Si

c-Si

Degradation

rate (%/year)

0.5 - 2.7

1.0 - 2.9

18.8

12.6

0.4

0.53

1.16 (6.7 year) to 3.52 (2.7 year)

0.4

Summary of some studies on PV module field degradation around the v

Test duration

16-19 months

2.4-4 years

2-4-2-7 years

2.7-6.7 years

11 years

Vazquez, Prog. in PV (2008)

Bringing you a p	prosperous future w	vnere energy is clea	in, abundant, reliai	ole, and allordable

Manufacturer	Module Type	Exposure (years)	Degradation Rate (% per year)	Measured at System Level?	Ref.
ARCO Solar	ASI 16-2300 (x-Si)	23	-0.4	N	2
ARCO Solar	M-75 (x-Si)	11	-0.4	N	3
[not given]	[not given] (a-Si)	4	-1.5	Y	4
Eurosolare	M-SI 36 MS (poly-Si)	11	-0.4	Y	5
AEG	PQ40 (poly-Si)	12	-5.0	N	6
BP Solar	BP555 (x-Si)	1	+0.2	N	7
Siemens Solar	SM50H (x-Si)	1	+0.2	N	7
Atersa	A60 (x-Si)	1	-0.8	N	7
Isofoton	I110 (x-Si)	1	-0.8	N	7
Kyocera	KC70 (poly-Si)	1	-0.2	N	7
Atersa	APX90 (poly-Si)	1	-0.3	N	7
Photowatt	PW750 (poly-Si)	1	-1.1	N	7
BP Solar	MSX64 (poly-Si)	1	0.0	N	7
Shell Solar	RSM70 (poly-Si)	1	-0.3	N	7
Würth Solar	WS11007 (CIS)	1	-2.9	N	7
USSC	SHR-17 (a-Si)	6	-1.0	Y	8
Siemens Solar	M55 (x-Si)	10	-1.2	Y	9
[not given]	[not given] (CdTe)	8	-1.3	Y	9
Siemens Solar	M10 (x-Si)	5	-0.9	N	10
Siemens Solar	Pro 1 JF (x-Si)	5	-0.8	N	10
Solarex	MSX10 (poly-Si)	5	-0.7	N	10
Solarex	MSX20 (poly-Si)	5	-0.5	N	10

Table 1. PV module degradation rates published within the past five years.

31st IEEE PVSC p.2085 (2006)

Manufacturer	Module Type	Exposure (years)	Degradation Rate (% per year)	No. of Modules
BP Solar	BP 585F (x-Si)	7	-0.30	2
BP Solar	BP 270F (x-Si)	8	-0.32	2
Kyocera	KC40 (poly-Si)	4.5	-0.91	2
Solarex	SX40U (poly-Si)	5.6	-0.01	2
Siemens	PC-4-JF (x-Si)	9.5	-0.51	1
Photowatt	PWX500 (poly-Si)	6	-0.13	1
Sanyo	H124 (a-Si/x-Si HIT)	2.6	-1.59	1
ECD Sovonix	[none] (a-Si) †	12	-1.17	1
Solarex	SA5 (a-Si)	12	-0.69	1
Uni-Solar	UPM-880 (a-Si)	12	-0.62	2
APS	EP55 (a-Si)	9.5	-1.62	2
Solarex	MST-22ES (a-Si)	6	-0.86	1
Uni-Solar	US-32 (a-Si)	8.5	-0.39	1
EPV	EPV40 (a-Si) †	6.5	-1.40	2
BP Solarex	MST-50 MV (a-Si)	4	-2.47	2
Siemens	ST40 (CIS) †	7	-1.63	1
Solar Cells Inc.	[none] (CdTe) †	10	-1.84	1

Table 2. PV module degradation rates obtained from monthly PTC regressions of PERT I-V data. Module types marked with a 't' indicate non-production prototypes that are not indicative of current products.

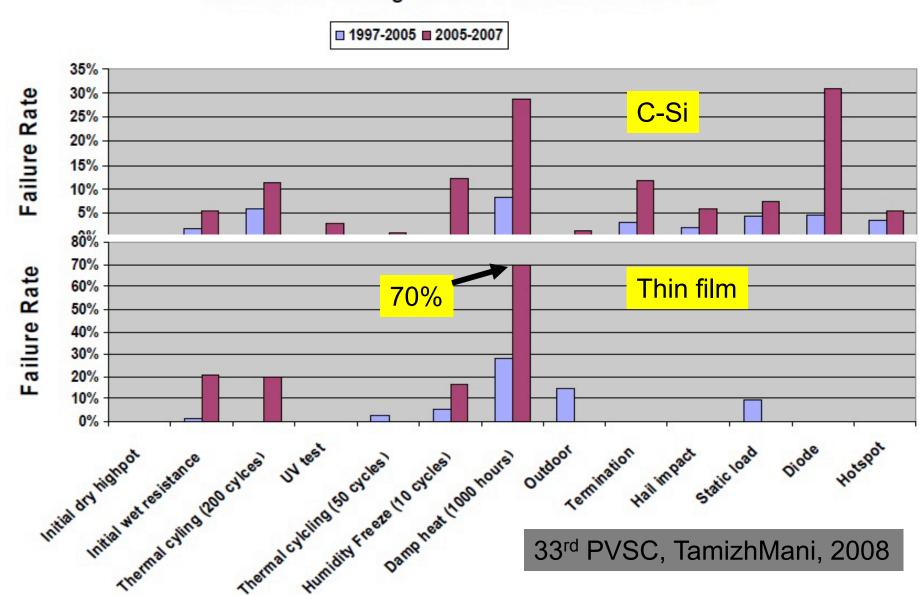
Cool coastal climate			
Hamamatsu (Japan) Temperate climate	10 years	c-Si	0-62
Golden, Colorado (USA) Mountain continental climate	8 years	c-Si	0.75
Ispra (Italy) Temperate climate	22 years	p-Si	0-3 (Silicone)
		c-Si	0-67 (EVA)
Lugano (Switzeland) Temperate climate	20 years	c-Si	0.53
Negev desert (Israel) Desert climate	3.4 years	p-Si	1.3

About two-thirds of degradation rates are measured as < 1%/yr

Location

Perth (Australia)

Temperate climate


Mesa, Arizona (USA)

Trinidad, California (USA)

Desert climate

Past success does not guarantee future success

Qualification Testing of c-Si PV Modules at ASU-PTL

Current/recent studies

With highlights of presentations at SPIE this week

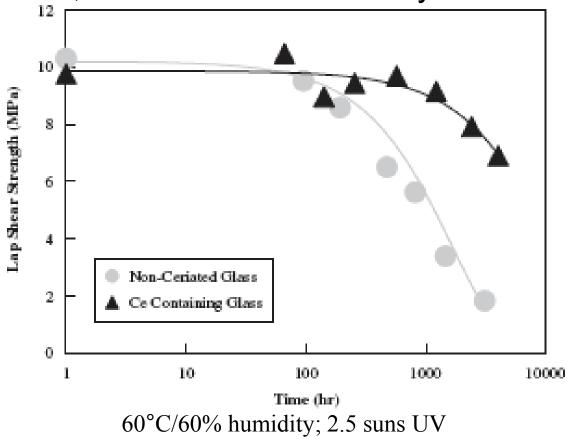
Improved stress testing

Stress tests need to be

- More complete (all stresses)
- More thorough
- More quantitative
- Faster
- Less expensive

Development and application of a UV light source for PV-module testing Wed. 8:30 am Michael Kohl (7412-2)

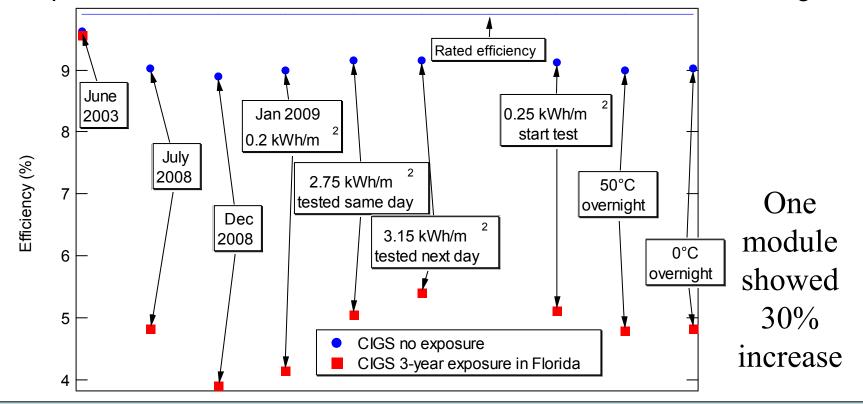
Outdoor monitoring and high voltage bias testing of PV modules as necessary test for assuring long-term reliability


Thurs. 3:50 pm Neelkanth Dhere (7412-28)

Accelerated stress testing of hydrocarbon-based encapsulants for medium-concentration CPV applications 34th PVSC Michael Kempe

Application of the NREL test-to-failure protocol for PV modules Silicon Workshop (Aug 2009) Peter Hacke

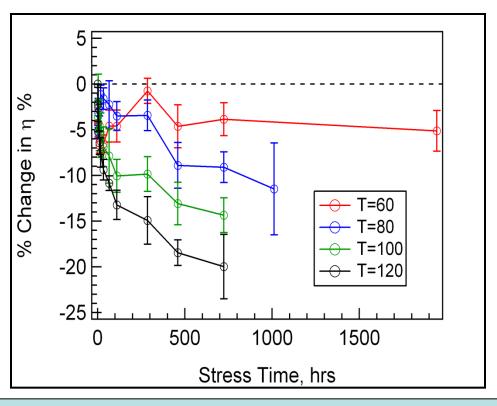
Improved performance requires vigilance for reliability


Removing Ce from glass may improve performance and decrease cost, but will it affect reliability?

Effects of cerium removal from glass on photovoltaic module performance and stability Thurs. 3:05 pm Michael Kempe (7412-26)

Separate reversible from irreversible changes

After exposure, thin-film modules show reversible and irreversible changes



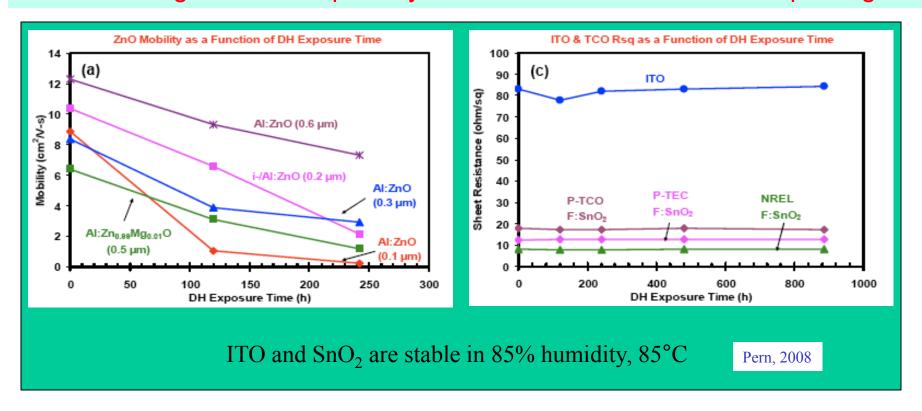
Striving for a standard protocol for preconditioning or stabilization of polycrystalline thinfilm PV modules

Wed. 9:15 am Joseph del Cueto (7412-3)

Light-soaking and power measurements of thin-film modules Mon. 9:35 am Karl-Anders Weiss (7409-24)

Thin-film layers can change

Change in CdTe cells after annealing (Albin)

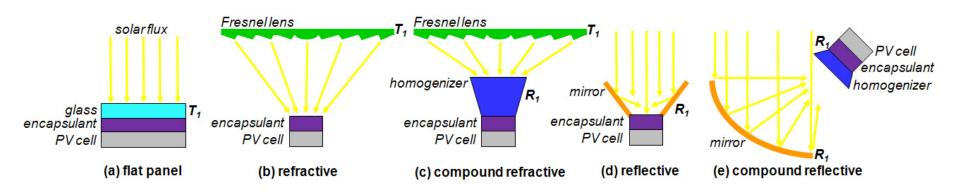

Degradation and capacitance voltage hysteresis in CdTe devices Thurs. 10:30 am David Albin (7412-18)

Understanding and mitigating effects of nonuniformities on reliability of thin-film PV Thurs. 11:40 am Victor Karpov (7412-21)

The effect of metal foil tape degradation on the long-term reliability of PV modules Thurs. 3:30 pm Rob Sorensen (7412-27)

Moisture can degrade TCO

Flexible configuration is especially difficult: harden the cell or the package?

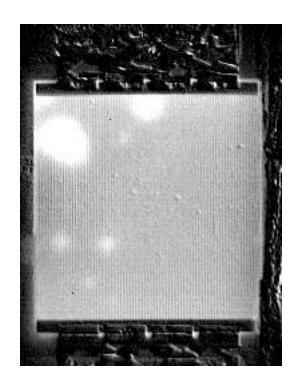


Stability of TCO window layers for thin-film CIGS solar cells upon damp heat exposures

Thurs. 10:55 am Rajalakshmi Sundaramoorthy (7412-19) Thurs. 11:15 am John Pern (7412-20)

When is concentrated UV a problem for CPV?

Does concentrated sunlight at cell contain damaging UV dose?


Analysis of transmitted optical spectrum enabling accelerated testing of CPV designs

Wed. 11:35 am David Miller (7407-16)

Are optics durable?

Stress in large-area optics for solar concentrators Wed. 10:25 am Ralf Leutz (7412-5)

Bond to heat sink is R&D topic for CPV

IR image of void in die attach

Reliability testing the die attach of CPV cell assemblies 34th PVSC Nick Bosco

- Solar is growing rapidly; could become a significant source of electricity within 10 yrs
- Excellent performance of silicon modules has been demonstrated in the field; but new products may repeat old mistakes
- Inverters currently dominate system failures
- Many R&D needs are best met by community working together
- Need to ensure reliability to build foundation for a solar-powered world

Planet powered by renewable energy By year 2100 or before?

Thank you for your attention!

Thank you to: Dave Albin

Glenn Alers Nick Bosco

Joe del Cueto Chris Deline Ed Gelak Steve Glick

Peter Hacke Dirk Jordan

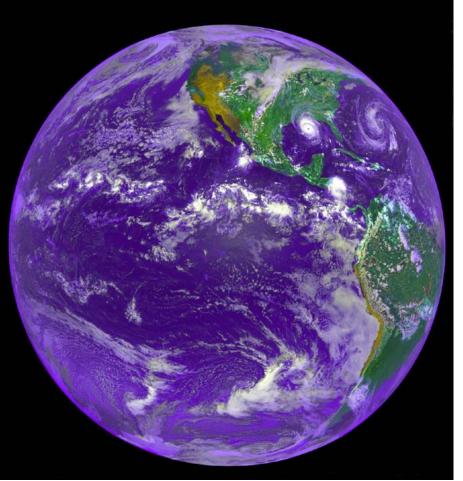
Mike Kempe

Tom Moricone Bill Marion

David Miller

Matt Muller John Pern

Jose Rodriguez


Bill Sekulic

Ryan Smith

Kent Terwilliger David Trudell Thank you to: Michael Quintana

Mike Mundt Elmer Collins Peggy Rhodes Jeff Mahn Rob Sorensen Many others

Special thanks to Dan Ton and DOE/SETP

