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SYMBOLS USED 

A(k,X;w, 79 
Fourier coefficient of <(x.X;t,T) used in 

appendix A 

index counter 

pressure on the free surface resulting 
from air motion; also used as a counter 
for data points A(t,o) a deterministic modulating function, 

which is unity for a stationary process position vector 
D a parameter used in Barnett's parameteri- 

zation of nonlinear energy transfer 
that represents the part receiving 
energy from other components 

nth order covariance function 

nth order spectrum; S without subscript 
n represents a second-order spectrum 

total energy total time; also representing a coupling 
function in the Boltzmann integral in 
appendix C 

space vector in Cartesian coordinates 

linear frequency = w/2n 

mean frequency 

acceleration due to gravity a space parameter used in appendix A; 
also used as a Fourier transform, 
X(w), for data r,(t) 

source function; also used in Barnett's 
parameterization to represent the part 
that transfers energy to other com- 
ponents 

Cartesian coordinate 

complex random function for surface r 
used in the Fourier-Stieltjes represen- 
tation 

a counting symbol used in stationarity 
tests 

(-1)"' in complex representation, also 
used as an index counter 

Cartesian coordinate, directed verti- 
cally upward 

index counter free surface displacement 
wave number vector with magnitude 

k = Ikl; k also is used as an index 
counter 

wave direction 

3.14159 . . . . 
counter for data points density of water 

index counter time 

velocity potential L counter for data points 

M counter for data points complex random function for 4 used in 
the Fourier-Stieltjes representation 

N counter for data points 
radian wave frequency 

N, N(k,) action density at wave number ki 
used in the Boltzmann integral in ap- 
pendix C 



SPECTRAL GROWTI3 AND NONLINEAR CHARACTERISTICS 
OF WIND WAVES IN LAKE ONTARIO 

Paul Chi Liu 

ABSTRACT. Recent studies have shown that the growth processes of wind waves are primarily 
associated with the nonlinear energy flux due to wave-wave interactions. A detailed empirical examina- 
tion of these interactions uses calculated unispectra, bispectra, and trispectra of continuously recorded 
wave data during three episodes of growing waves. While the unispectmm provides information on the 
energy content of the frequency components, the bispectmm and trispectmm generally provide informa- 
tion on the interactive relations between two- and three-frequency components respectively. These 
higher-order interactive relations can be considered characterizations of nonlinear interactions. The 
results indicate that the peak-energy frequency transfers more energy to the lower frequency components 
than to the higher ones, which is confirmation that unispectral peaks shift progressively toward lower fre- 
quencies during wave growth. 

1. INTRODUCTION 

The study of wind-generated waves has experi- 
enced significant and extensive development during 
the last 20 years or so. Ursell's (1956) review, in 
which he found the state of our knowledge of wind- 
wave generation profoundly unsatisfactory with re- 
spect to both theory and observation, has often been 
credited with providing the major stimulation for 
modern studies. After two decades and vast theoreti- 
cal and experimental efforts, a recent review by Bar- 
nett and Kenyon (1975) observed that 

At the time Ursell reviewed the field, the 
body of theoretical work exceeded that of 
the experimental work, but both were in an 
unsatisfactory state. Today the same ratio 
holds in that the theoretical ideas are still 
ahead of the experimental testing. In par- 
ticular, field observations relevant to wave 
generation and dissipation in the oceans in 
1955 were nearly nonexistent. Today they 
are simply very scarce. 

Theorv often leads ex~eriment in science. In the 
study of wind waves, however, the difference is so 
large that experiment cannot interact with theory 
very efficiently. Theoretical analyses result in mathe- 
matical complexity, which prevents exact and practi- 
cable solutions; at the same time a lack of basic 
knowledge of the actual wave processes limits the 
ability to develop new models. This report presents a 
detailed empirical examination of the temporal evo- 
lution processes of the energy spectrum of wind- 
generated surface waves. Our measurements and 
analyses, presented here, help satisfy the need for 
basic inforkation about wave processes. 

Because several recent studies (Hasselmann et 
al., 1973; Longuet-Higgins, 1976; Fox, 1976) stress 

the importance of nonlinear energy transfer in the 
wave-growth processes, we have examined these im- 
plications empirically. Since the nonlinearity comes 
from the higher-order terms in the equations of 
motion, the first step in evaluating the nonlinearity 
of a set of wave data recorded from a single station is 
to analyze the higher-order moments of the process. 
In practice, this is equivalent to performing bispec- 
tral and trispectral analyses of the data. 

A bispectrum is the two-dimensional Fourier 
transform of the third-order covariance function of 
the data. A trispectrum is the three-dimensional 
Fourier transform of the fourth-order covariance 
function of the data. As two- and three-dimensional 
Fourier transform of the corresponding covariance 
functions are very cuhnbersome, we have found a 
way to calculate b i s p t r a  and trispectra by using a 
fast Fourier transform algorithm directly on the wave 
data. (The details will be discussed in section 5.) 
Physically, just as the unispectra provide informa- 
tion on the energy codtent of the frequency compo- 
nents, the bispectra and trispectra provide informa- 
tion on the interactive relations between two-fre- 
quency components and between three-frequeqcy 
components, respectively. We consider these higher- 
order relations to be estimates or characterizations of 
nonlinear interactions. 

Hasselmann, Murik, and McDonald (1962) and 
Garrett (1970) have diemonstrated that calculations 
of observed bispectra of ocean waves correlate rea- 
sonably well with theoretically derived bispectra. 
These studies, however, are not extensive enough to 
provide much insight into the detailed behavior of 
the physical processes. 

Using continuous wave data recorded in Lake 
Ontario, this report examines, identifies, and re- 
solves the temporal characteristics of linear and non- 
linear interactions during wave growth. Our demon- 
stration that the mean energy of the waves is closely 



related to the unispectra, bispectra, and trispectra of 
the data provides some analytical background to our 
basically intuitive approach. 

2. THEORETICAL CONSIDERATIONS 

All theoretical studies of surface waves start 
from basic equations of fluid dynamics with varied 
idealizations or assumptions for obtaining the solu- 
tions. We assume irrotational motion of a hori- 
zontally unbounded incompressible fluid with infi- 
nite depth and a free surface at z = { (x, t), where x 
= ( x ,  y) and z are Cartesian coordinates and the z- 
axis is directed vertically upward; then a velocity 
potential 4 (x, z, t) exists and the motion is governed 
by the Laplace equation 

Further neglect: ilg the surface tension, the kinetic and 
dynamic boundary conditions at the free surface 
z = { are given, respectively, by 

and 

where p represents the pressure on the free surface re- 
sulting from the air motion, e the water density, and 
g the acceleration due to gravity. Now if we assume 
that the random surface dis~lacement is statisticallv 
stationary with respect to both space and time, we 
can use the Fourier-Stieltjes representation (Phillips, 
1966) as 

Under the same assumptions and the further assump- 
tion that 4-0 as z - - a ,  the solution to (1) can be 
represented by 

Here d@(k,w) and dY(k,o) are complex random func- 
tions of the horizontal wave number vector k and fre- 
quency w with k = Ikl. Analogously, the pressure 
on the surface resulting from air motion can be repre- 
sented by 

The representations (4), (S), and (6) are quite general 
and appropriate for studying stationary random 
wave processes. Most of the studies in the literature 
consider processes that are stationary only with re- 
spect to space and thus reduce the equations of 
motion into differential equations with time deriva- 
tives only. Examples are Phillips (1960), Hasselmann 

(19621, and Benney (1962). Assuming the process is 
stationary with respect to both space and time, how- 
ever, further reduces the equations of motion into 
algebraic operations. Substituting (4), (S), and (6) 
into (2) and (3); expanding the factor ekr in (5) as a 
power series; and using (4) again in the series, we 
obtain 

+ jk, jw, jk,, j,,, - k'ak" kfd@(k',w') 

x dY(k",wn ) dY(k - k' - k", w - w' - a" ) 

and 

x dY(k - k' - k", u - W' - u") 

Equations (7) and (B), retaining terms to the third 
order, can be solved for dY(k,o) and d@(k,w) if the 
representation dP(k,w) is given. From the point of 
view of the empirical study, the higher order terms in 
(7) and (8) clearly point to the need for study of 
higher order spectra. Most of the nonlinear studies in 
the literature assume the processes are undisturbed 
by air motion; hence dP(k,w) = 0 in (8). Linearized 
analyses by Phillips (1957) and Miles (1957) con- 
sidered dP(k,w) to be primarily associated with the 
turbulent wind field and to consist of two parts: the 
part produced by the turbulent eddies in the wind 
and in random phase with the wave field, and the 
part directly induced by and phase-locked with the 
wave field. A combination of the two mechanisms 
(Phillips, 1966) shows that the growth of wave 



energy is initially linear with time under the turbulent 
pressure alone and subsequently becomes expo- 
nential because of the induced pressure acting on the 
growing waves. A more realistic representation for 
dP(k,o) is not available. 

The Fourier-Stieltjes transforms dY(k,w) and 
d@(k,w), solvable from (7) and (8), are closely related 
to the distribution of energy per unit among the com- 
ponents of the wave field. The mean energy of the 
waves per unit projected surface area is 

where the bars denote ensemble averages. It can be 
shown (e.g., Phillips, 1961) that 

hence, substituting (4) and (5) into (lo), we obtain 

The relation between d@(k,w) and dY(k,o), correct to 
the first order, is given by 

Furthermore, since we assume stationarity with re- 
spect to both time and space, we expect non-zero 
contributions to the integral in (11) to occur only 
when both k = 0 and w = 0; thus (11) becomes 

where dY*(k,w) is the complex conjugate of dY(k,w). 
From appendix A, we see that the averages 
dY(k,w)dY(kl,wl) . . . dY*(k,,w,) relate to the nth 
order spectrum. Thus, to study the complete energy 
distribution, it is necessary to examine the higher 
order spectra. 

3. OBSERVATIONAL CONSIDERATIONS 

The results presented in section 2 and appendix 
A are derived for the characterization of the whole 
lake surface. To correlate the results with actual 
wave observations, usually made from a wave gage 
installed at a single selected location, the equations 
are integrated and normalized over all directions and 
wave numbers; this explicitly depends on time and 
wave frequency only. We can rewrite equations A.8 
and A.9 as 

and 

Equation (13) now becomes 

where S2(w), S3(w,wl), and S4(w,w1,wZ) are the uni- 
spectrum, bispectrum, and trispectrum, respectively. 

For a completely stationary process with respect 
to both time and space, E is constant in (16). How- 
ever, our intent is to examine the time rate of change 
of the mean energy during a growing wave process 
that is in general nonstationary. Because in the non- 
stationary case E changes with time, its application 
seems to be somewhat contradictory. To pursue our 
interest within the framework of (16), we use a basic 



assumption of local stationarity in which the process 
is assumed to be stationary and E constant only 
within a given segment of data, a segment long 
enough to provide sufficient degrees of freedom to 
lead to reasonable spectral estimates. Although E and 
hence the spectra are constant within the given seg- 
ment, they invariably change from segment to seg- 
ment. Therefore if we calculate S2, S3, and S, over 
consecutive overlapping segments during wave 
growth, we can indirectly examine the temporal 
growth behavior of the energy spectra. 

The above scheme is demonstrated graphically 
by figure 1 .  The discrete time series ~ ( t , ) ,  t ,  = nAt, n 
= 1, 2 ,  . . . , N represents an episode of growing 
wave data NAt in total time length with a sampling 
rate of l / A t .  We subdivide ~ ( t , )  into M overlapping 
segments { ,( tp) ,  tp = PAt, P = 1, 2 ,  . . ., L, rn = 1, 2,  
. . ., M. Each { ,( tp)  is LAt in time length. The data P 
= K to P = L of {,(t,) overlap the data P = 1 to P = L 
- K  + 1of {m+l(tP).Thu~wehave N = ( M - 1 ) K  + 
L .  While the process ~ ( t , )  is not stationary, we as- 
sume each { , , ( t p )  is locally stationary and hence all 
considerations we have presented pertaining to { ( t )  
can be applied to {,,(!At), P = 1,  2,  . . ., L.  

Since we represented { ( t )  as a continuous 
process, 

To use the discrete time series, we write 

rat(! At) = j2,/AteiwPAtdYAt(w), (18) 

where 

can be considered as complex amplitudes at frequen- 
cies w + 2rP/At ,  in view of the fact that eidAt is 
periodic at frequency w + 2xlAt .  The relationship 
between the continuous nth order spectrum S,(wl, 
. . ., LO,) and the discrete nth order spectrum S n , A t ( ~ l ,  
. . . , a,) has been given by Brillinger and Rosenblatt 
(1967) as 

with 
w , = w , + .  . . + w , - 1 ,  

and 

Thus using the Nyquist frequency of * / A t  radians 
per second or 1 / (2At )  Hz in sampling to avoid alias- 
ing problems, we can effectively represent the con- 
tinuous process with a discrete time series in our sub- 
sequent analysis. 

Some further remarks concerning our sta- 
tionarity assumption can be stated here: 

Figure 1.-Graphical demonstration of data segments. 

4 



(1) The use of the local stationarity assumption is 
not new; Kolmogoroff (1941) used local homogeneity 
in his turbulence studies. Most wave growth studies 
in the literature use this assumption implicitly. To 
evaluate the approximate validity of this assumption, 
appendix B gives some nonparametric stationarity 
tests on the data used in this study. The results show 
that the assumption is generally within the acceptable 
range of the tests and can be considered valid for our 
purpose. 

(2) We are not attempting explicitly to calculate E 
in (16). Rather we use (16) to show the significance of 
the spectral terms in connection with mean energy 
and thus concentrate our interests on the temporal 
growths of the frequency components of S2(u), 
S3(w,w1), and S4(w,ul,u2) and their physical implica- 
tions. 

(3) A different approach to analyzing a non-sta- 
tionary process, perhaps more rigorous statistically, 
was developed by Priestly (1965). He introduced a 
representation of 

where A(t,w) is a deterministic modulating function 
that approaches unity when the process approaches 
stationarity. This representation could have been 
used in our analyses. However, since A(t,u) is not a 
known function and its application inevitably re- 
quires further assumptions and complications, we 
did not use it. It is of interest to note that Priestly's 
model leads to the conclusion that "the evolutionary 
spectrum at each instant of time may be estimated 
from a single realization of a process." This is exactly 
what the local stationarity assumption implies. 

(4) We define local stationarity here in its literal 
sense. Silverman (1957) introduced the concept of a 
locally stationary random process with a locally sta- 
tionary covariance that can be written as the product 
of a stationary covariance and a nonnegative func- 
tion. Since we allow our local covariance to vary 
from segment to segment and the variation is gener- 
ally smooth and gradual, it seems analogously pos- 
sible that a nonnegative function could depend on 
time segments and that a stationary covariance can 
be deduced from our consecutive local covariances. 
As we expect the property to apply to third- and 
fourth-order covariances also, our assumption car- 
ries a different sense than Silverman's rigorous 
process. 

4. DATA ACQUISITION AND 
PROCESSING 

The data used in this study were recorded in 
Lake Ontario from 1 April 1972 to 31 March 1973, 
the International Field Year for the Great Lakes 
(IFYGL). Seven Waverider Buoys and a large number 
of Physical Data Collection System (PDCS) buoys 

LAKE ONTARIO 

Figure 2.-Location of wind and wave gages in Lake Ontario. 

were deployed for the IFYGL programs. The wave 
data in this study were recorded from the two Wave- 
riders designated as 0s-1 and 0s -2  (figure 2); the 
corresponding wind data used here were recorded 
from PDCS buoy 11. 

The Waveriders were deployed in 150 m of 
water and freely moored to a chain sinker with a 
mooring line approximately twice the depth of the 
water. The Waverider Buoy, manufactured by Data- 
well, Holland, is of spherical shape 1 m in diameter 
and weighs about 100 kg. It contains two main com- 
ponents: an accelerometer and a transmitter. The ac- 
celerometer, mounted on a pendulous system, meas- 
ures the vertical component of acceleration as the 
buoy moves with the waves. Two electronic inte- 
grators in cascade then transform the output into a 
voltage that represents the vertical displacement of 
the buoy. This voltage controls the frequency of an 
audio oscillator, which in turn modulates a crystal- 
controlled transmitter that transmits the signal by 
telemetry to a shore receiver. The telemetered wave 
data were recorded continuously on analog magnetic 
tapes. The analog wave data tapes were subsequently 
processed through a computer digitization and edit- 
ing system (Liu and Robbins, 1974) to obtain final 
data tapes, which were digitized at a sampling rate of 
approximately three per second. This sampling rate is 
more than sufficient to avoid an aliasing problem, 
since the buoy response is such as to adequately 
damp waves having a frequency of > 1.0 Hz. On the 
other hand the Waverider's frequency range is given 
as between 0.065 Hz and 0.50 Hz; hence, in the ac- 
tual computations we use a sampling period of At = 
2/3 s to yield a Nyquist frequency of 0.75 Hz for the 
computed spectra. Referring to the scheme discussed 
in the last section, we use the following numbers in 
the analysis: 

Consequently each selected episode is 177.5 minutes 
long. The episodes are subdivided into 64 equal seg- 
ments of 20 minutes each, with an overlap of 17.5 
minutes from one segment to the next. 



5. SPECTRAL COMPUTATIONS 

In the previous discussion we have been using 
general nth order spectra. For the actual applications, 
however, we shall concentrate only on n = 2, 3, and 
4 for the unispectrum, bispectrum, and trispectrum, 
respectively, defined as 

(22) The corresponding transforms of the symmetry rela- 
tions are 

dY(w)dY(wz)dY*(wl + ~ 2 )  SAW) = S2(-4, (31) 
S3(~1r~2) = dwldw2 

S3(w1,w2) = S3(~2,~1)  = S3(w2,-w1 -w2) 

= j W, j W,R3(~1r 72)e-i(W1T1+ w272'd~1d72, (23) = S~(-WI - 0 2 , ~ ~ )  

= S3(~l,-wl - ~ 2 )  = S3(-0i - WZ,OI), (32) 

and 
and 

x d~ld72d73, (24) = S4(-~1- 02 - ~ 3 r ~ 3 r ~ 2 )  

= S4(w2,-w1- a 2  - ~ 3 ~ ~ 3 )  

where = S4(w2,w3,-w1- W2 - '03) 

= S4(~3,-~1- W2 - ~ 3 ~ ~ 2 )  

R2(7) = {(t){(t + 7), (25) = S4(w3,wZ,-w1 - 0 2  - ~ 3 )  

= S4(-~1 - 0 2  - ~ 3 r ~ l r ~ 3 )  

~ 3 ( 7 1 , 7 2 )  = {(t)t(t + 71){(t + 72)t (26) = s ~ ( - w I -  wz - ~ 3 r ~ 3 r ~ l )  

= S4(~1,-~1 -WZ - ~3rw.3) 

and = S4(~1,"3,-~1- w2 - w3) 

= S4(~3, -~1 - a 2  - ~ 3 r ~ 1 )  

R 4 ( ~ 1 r ~ 2 , ~ 3 )  = c(t){(t + ~l)C(t  + 72)b(f + 73).(27) 
= = ~ 4 ( ~ 3 , ~ 1 , - ~ 1  S4(-~1 - ~2 - - ~ 3 r ~ l r ~ 2 )  02 - 0 3 )  

The above definitions lead to the following sym- 
metry relations: 

and 

Because of these symmetries, we need only to esti- 
mate the S,'s, n = 2, 3, and 4, within a fundamental 

- )  (29) region. The fundamental region for unispectrum 
S2(w) is the line segment 0 I w I ON; for bispectrum 
S3(~lrc&) is the triangle defined by 0 I w2 I wt, and 
0 I wl I WN; and for trispectrum S4(wlr w2, w3) is the 
tetrahedron defined by 0 I w3 I w2, 0 I w2 5 wl, 

and 0 5 wl I WN, with WN = 2n/(2At) representing 
the Nyquist frequency. 

Comparing the definitions (22), (23), and (24) 
with (A.19) in appendix A, we see that for a finite 
segment of a time series the coefficients of its Fourier 
transform X(w) can be used as approximations for the 
theoretical values dY(w) and hence for the appro- 
priate products of Fourier coefficients for estimating 



corresponding spectral densities. We used the follow- 
ing approach generally similar to those discussed by 
Haubrich (1965) and Hinch and Clay (1968). 

Starting with f(PAt), P = I ,  2, . . ., L, we sub- 
divide the series into P non-overlapping groups each 
of length K, such that for p = 0,1, . . ., P - 1 and k 
= 1,2,  . . ., Kwe have 

and the K complex Fourier coefficients for each group 
are given by 

We can then sum and obtain the average estimates by 

and 

Equations (34)-(37) represent the basic approach in 
spectral computations used in this report. The ap- 
proach is quite efficient and feasible, especially with 
the fast Fourier transform algorithm (Cooley and 
Tukey, 1965) available as a computing subroutine. In 
the actual computations, we use P = 30 for each 
data segment of L = 1800 to obtain smoothed spec- 
tral estimates with 60 degrees of freedom and a 95 
percent confidence interval between 1.48 and 0.72. 

6. RESULTS AND DISCUSSION 

6.1 The Episodes 

From the ample supply of wave data recorded in 
Lake Ontario during IFYGL, we selected three epi- 
sodes for our study: 

9 August 1972 EST 1215-1515, 
30 September 1972 EST 0540-0840, 

' 7 October 1972 EST 0000-0300. 
The August and October episodes were recorded 
from Waverider 0s-2  shown in figure 2; the Septem- 
ber episode was recorded from Waverider 0s-1. The 

wind conditions during these periods, recorded at 10- 
minute intervals at 4 m above the lake surface on 
PDCS buoy 11, are shown in figures 3, 4, and 5. The 
group of short and straight lines plotted on the fig- 
ures under wind direction and wind speed indicate 
the locations in time of the 64 overlapping segments 
of wave data analyzed for each episode. Each seg- 
ment is 20 minutes long and has a 17.5-minute over- 
lap with the next segment. Although each of the epi- 
sodes represents a growing, nonstationary wave 
field, the 20-minute segments are assumed to be 
locally stationary, and thus we can calculate unispec- 
trum, bispectrum, and trispectrum for each segment 
using equations (35), (36), and (37), respectively. 

The three episodes are representative of growing 
wave conditions in the Great Lakes. Because we are 
interested in the early stage of wave growth, none of 
the episodes is under severe storm conditions. The 9 
August episode started at a wind speed of 8 m s-' and 
increased to more than 11 m s-I in 3 hours. The 

9 August 1972 

Figure 3.-Wind conditions for the episode of 9 Ailgust 1972. The 
series of short lines in the lower part indicates the locations in 
time of the 64 overlapping segments of wave data analyzed. 



7 October 1972 30 September 1972 

Figure 4.-Wind conditions for the episode of 30 September 1972. Figure 5.-Wind conditions for the episode of 7 October 1972. The 
The series of short lines in the lower part indicates the locations series of short lines in the lower part indicates the locations in 
in time of the 64 overlapping segments of wave data analyzed. time of the 64 overlapping segments of wave data analyzed. 

westerly wind direction provided long and approxi- 
mately constant fetches during the episode. The 30 
September episode included the passage of a steep 
low-pressure center directly over eastern Lake On- 
tario, and wind speeds increased from 4 m s-' to 
more than 14 m s-' within an hour, while wind direc- 
tions were changing rapidly from south through west 
to north during the early part of the episode. The 7 
October episode was milder with wind speed in- 
creased from 2.5 m s -' to 8.5 m s -' under south- 
westerly direction. The total wave energy under 
these three wind fields was growing steadily in each 
of the three cases. 

6.2 , , the Unispectra 

We first plot the computed unispectral density 
versus frequency versus time for three episodes as 
shown in figures 6, 7, and 8. These three-dimensional 
perspective figures present a clear overview of the 

spectral growth of the episodes. Several basic charac- 
teristics can be observed from these figures: 

(1) The growth activity is mainly concentrated 
over the low-frequency side; the high-frequency side 
does not change much during the episode. 

(2) During the growth period, the peaks of the 
spectra tend to shift toward lower frequencies. 

(3) The growth rate varies for different frequency 
components. 

(4) Once a frequency component grows to be the 
spectral peak, it reaches a relative equilibrium and its 
growth rate tends to diminish. 

(5) A comparison of these local spectral growth 
episodes with their respective wind conditions shown 
in figures 3, 4, and 5 indicates that dominant growth 
of the spectra happens during increasing wind 
speeds. 

The above features are generally known; similar 
results were obtained in laboratory studies, e., 
Jacobson and Colonel1 (1972) and more recently by 
Wu et al. (1979). 



Figure 6.-Perspective view of the unispectrum during the episode Figure 7.-Perspective view of the unispectrum during the episode 
of 9 August 1972. of 30 September 1972. 

With respect to the well-known shifting of specA 
tral peaks during wave growth, Hasselmann et al. 
(1973) suggested that nonlinear energy transfer plays 
a dominant role in the process. They concluded that 
the spectral form results from the self-stabilizing 
property of the nonlinear interactions that con- 
tinually readjust the energy distribution within the 
spectrum. We shall further explore these im- 
plications. 

6.3 Temporal Growth of Unispectral 
Components 

To examine the time-dependent behavior of the 
frequency components individually, we first smooth 
them in time by hanning and then plot them semi- 
logarithmically. The components have different time 
dependences, but they can be grouped into three fre- 
quency ranges. The results are shown in figure 9 for 
the 9 August episode, in figure 10 for the 30 Septem- 
ber episode, and in figure 11 for the 7 October 
episode. 

(1) Figures 9(a), 10(a), and l l ( a )  show the low-fre- 
quency group that contains components with fre- 
quencies less than all the peak-energy frequencies 
during the episode. The components in this group 
can be characterized by their sensitivity to the wind 
field. Their growth seems to follow directly with the 
increases in wind speed. The approximate linearity 
during the growth as shown in the logarithmic plot 
indicates the exponential growth that Miles' theory 
predicts. 

(2) Figures 9(c), 10(c), and l l ( c )  show the high-fre- 
quency group that contains components with fre- 
quencies beyond the peak-energy frequencies during 
the episode. The components in this group represent 
the portion of the spectrum that is usually considered 

Figure 8.-Perspective view of the unispectrum during the episode 
of 7 October 1972. 

to be the equilibrium range. They tend to parallel 
each other in time and are insensitive to either in- 
creasing wind speed or time duration. Some anoma- 
lous behavior shown in figure 10(c) during the early 
stage may be due to the fact that wind direction dur- 
ing this short time interval was changing con- 
tinuously and thus further complicated the whole 
picture. 

(3) Figures 9(b), 10(b), and l l ( b )  show the compo- 
nents, lying between groups 1 and 2, that have been 
peak frequency during the episode. The behavior of 
components in this group is complicated since they 
have mixed properties of both of the first two groups. 
This group contains a large part of the total spectral 
energy. 



Minutes from beginning of episode 

Figure 9a.-Growth of low-frequency unispectral components during the episode of 9 August 1972. 
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Figure 9b. -Growth of middle-frequency unispectral components during the episode of 9 August 1972. 

7 

- 0  < 0  

X X X 
x x x x t g x  x g e e -  

0  
X X 

+ + X  X + + : + + & O ? : + + + + + + + +  + + + + + + + + + + + + * *  + + 
+ + 

t * t * * * * * * * * *  +++++++:::++++::+++t:t*t********E~~2*t***80i:******* X * t t t * * *  

+ + X X X X X X X X X  
X X  

0  
3,++ - 

X X K X  
X X X  

X X 
- a 0  

X X X X  
X X X 0 '  

X 
X X X 

X X X X X  
OoO 

0  

0 0 * 0 0 0 0 0 0 0 0 0 0 0  
0  0  O 

0 0 0 0 0 0 0 0 0 °  
- 

O O O O O m m O  

- - 

- - 

-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
0 30 60 90 120 150 

Minutes from beginning of episode 



6 6 6 6 6 6 6 6 6 6 6 6 6 L 6 6 6  6 a 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6  ...................... 
0 0 0 0 0 0 0 0 0 6 0  

X X X X X X X  
X X X  

x x x x x x x x x x x x + ~ ~ ~ O O  * * + + * * *  Y X X X  
X X X X X X X X X X X X + + t t + + - + , + + + + +  * * * * * * * * * * * t t t t $ * * * * * * * . t . t t  

Minutes from beginning of episode 

Figure 9c.-Growth of high-freqqency unispectral components during the episode of 9 August 1972. 

6.4 The Source Function- 
Empirical and Theoretical 

One of the main problems in developing wave 
growth models is determining the source function G 
in the energy balance equation (Gelci et al., 1956; 
Hasselmann, 1960): 

whek E is the energy density, the second and third 
terms on the left side represent the advection and re- 
fraction of the processes, respectively; the dots de- 
note the time derivatives. The source function G is 
the total rate of change of the energy representing all 
processes of generation, dissipation, and linear and 
nonlinear interactions. Most wave studies in recent 
years have aimed at assessing some aspects of the 
source function. Perhaps the most significant one is 
the Joint North Sea Wave Project (JONSWAP) in 
which Hasselmann et al. (1973) found that the non- 
linear energy transfer, computed from integrating the 
theoretical Boltzmann integral (appendix C), is im- 
portant for explaining the form of the wave spectrum 
during wave growth. 

With the available tem~oral functions of the fre- 
quency components, we estimated aE/at empirically 
for each spectrum S2(w) by fitting a smooth cubic 
spline curve through the components and calculating 

their time derivatives. For waves at a single location, 
if both the advection and refraction terms can be 
ignored in equation (38), the empirical aS2(w)/at also 
represents the empirical source function. (Given 
duration t, fetch L, and group velocity v ,  advection 
can be neglected if t 4 L/v. This condition is gener- 
ally satisfied in this study since duration is small for 
increasing wind speed and fetch is large during the 
episodes.) 

Hasselmann et al. (1973) also calculated empiri- 
cal source functions by parameterization of (38). 
Their method includes the advection term. However, 
they give only one average source function for each 
episode. Our method, on the other hand, provides 
consecutive source functions throughout the episode 
and thus more detailed information. 

With these empirical source functions available, 
the next task is to correlate them with the theoretical 
nonlinear source functions. The numerical integra- 
tion of the Boltzmann integral by Sell and Hassel- 
mann (1972) requires 30 minutes of computer time 
for each spectrum and, at this stage, is rather imprac- 
tical. In appendix C we show that Barnett's (1966) 
parameterization of Hasselmann's earlier calculations 
(1963a,b) leads to essentially the same conclusions as 
those obtained by Sell and Hasselmann. Therefore 
we choose to use the low-frequency part of the results 
calculated from Barnett's parameterized scheme to 
represent the theoretical nonlinear source function in 

. -.- .... 
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Figure 10a.-Growth of low-frequency unispectral components during the episode of 30 September 1972. 

Figure 10b.-Growth of middle-frequency unispectral components during the episode of 30 September 
1972. 
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Figure 10c.-Growth of high-frequency unispectral components during the episode of 30 September 1972. 
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Figure 1la.-Growth of low-frequency unispectral components during the episode of 7 October 1972. 
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Figure 1lc.-Growth of high-frequency unispectral components during the episode of 7 October 1972. 
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Figure 1lb.-Growth of middle-frequency unispectral components during the episode of 7 October 1972. 
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Figure 12.-Unispectra (-1 and empirical (-) and Barnett's (---4 Figure 13.-Unispectra (-) and empirical (-) and Barnett's (----3 
source functions during the episode of 9 August 1972. The num- source functions during the episode of 30 September 1972. The 
bers 2.5, 32.5, . . ., and 152.5 are minutes from beginning of numbers 2.5, 32.5, . . ., and 152.5 are minutes from beginning 
episode. of episode. 

our subsequent comparisons. (More recently, Wu et 
al. (1979) also used Barnett's parametric equation in 
calculating nonlinear energy transfer and found good 
comparisons in the low and intermediate frequency 
region of a wave spectrum.) We ignore the high fre- 
quency part of the parameterized results because it 
was based on Neumann's (1953) assumption that 
energy density is proportional to wb6 at the high fre- 
quency side rather than to w-=, which most recent 
studies have confirmed as correct. The results for the 
three episodes are shown in figures 12, 13, and 14. 
Because of gradual changes in the process, we present 
only six spectra and source functions for each episode 
at 30 minutes apart to show the essential features. In 
the figures we plot the logarithm of unispectra log 
S2(w), and the empirical and calculated a[log 
S,(w)]/at all with respect to the frequency of w/27r. 
The distinction between the empirical and calculated 
"theoretical" source functions is quite evident. The 
theoretical source function consistently has large 

positive lobes at frequencies below the peak-energy 
frequency. The empirical source function develops 
similar positive lobes only toward latter stages of the 
episode when the growth activity is intense. At the 
beginning of the episode when the growth is gener- 
ally slow or when the waves are well developed and 
further growth is slowing down, the empirical source 
function tends to be much less pronounced in its 
lobes, positive and negative. 

This behavior of the empirical and theoretical 
source functions is not particularly surprising since 
the theoretical results are dependent on the shape of 
the spectrum whereas the empirical results are de- 
pendent on temporal changes in the spectrum. This 
also provides a possible explanation for the domi- 
nance of nonlinear interactions during growth. If we 
assume that the empirical results represent the com- 
plete source function and the theoretical results only 
the nonlinear interactions, their differences then rep- 
resent the other processes, such as wave breaking and 
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Figure 14.-Unispectra t-) and empirical (-) and Barnett's (-----9 
source functions during the episode of 7 October 1972. The 
numbers 2.5, 32.5, . . ., and 152.5 are minutes from beginning 
of episode. 

dissipation. At the beginning of the episode, when 
growth is generally slow or when the waves are well 
developed and growth is also slowing down, the non- 
linear interactions must be balanced by some equally 
important dissipation process in order to yield the 
smaller total source function. During rapid growth, 
on the other hand, both the nonlinear interactions 
and the total source functions have large positive 
peaks, which implies that dissipation is less signifi- 
cant and that most of the growth is through non- 
linear interaction. 

6.5 The Bispectra 

There are three published bispectral studies on 
wind-generated waves: Hasselmann, Munk, and 
McDonald (1962), and Garrett (1970) compared four 
bispectra computed from actual wave data with 
those theoretically derived and found satisfactory 

agreement, and Houmb (1974) presented three 
examples of computed wave bispectra. In the present 
study we are interested in the higher order interac- 
tions during wave growth. As a first step we have 
computed 64 consecutive bispectra for each of the 
three growth episodes. Because the temporal varia- 
tions are gradual, we present only six bispectra from 
each episode at 30 minutes apart as representative of 
the whole process. Figures 15, 16, and 17 show the 
sample bispectra for episodes 9 August, 30 Septem- 
ber, and 7 October. 

Since the bispectrum S 3 ( ~ t r ~ Z ) ,  computed from 
equation (36), is complex, it is convenient to express 
it as a bispectral amplitude rather than as co-bi- 
spectra and quadrature-bispectra separately. Figures 
15, 16, and 17 show the contours of the logarithms of 
bispectral amplitude plotted in the fundamental re- 
gion of 0 < w2 < W, and 0 < w, I WN. 

Several main features can be seen in these 
figures: 

(1) The bispectrum has a hill at (wp,w,), where up is 
the frequency of the spectral peak in the correspond- 
ing unispectrum. 

(2) Each bispectrum also shows two ridges ap- 
proximately parallel to the two frequency axes and 
sloping down from the bispectral hill toward both 
higher and lower frequencies. 

(3) The magnitude of the bispectral amplitude in- 
creases and the hills and ridges migrate toward lower 
frequencies during wave growth. 

(4) These obsenred characteristics are qualitatively 
similar to those depicted by Hasselmann, Munk, and 
McDonald's (1962) deep-water wave co-bispectrum. 

It is not readily discernible that these features re- 
sult from a nonlinear Drocess. However. from the 
qualitative resemblanc; to Hasselmann, Munk, and 
McDonald's results and the fact that their results 
agree with those derived from a theoretical nonlinear 
process, we may conjecture that these features are 
characteristic of a weakly nonlinear wave growth 
process and hence proceed to examine their temporal 
behavior. 

6.6 Temporal Growth of 
Bispectral Components 

Since the' predominant bispectral interactions 
occur when the frequency of the spectral peak in the 
corrpsponding unispectrum interacts with itself and 
these interactions migrate toward lower frequencies 
during wave growth, it is sufficient that we examine 
the time-dependent behavior of those bispectral com- 
ponents oi the 45" line whose frequencies interact 
with themselves. We proceed in a manner similar to 
that for unispectral components by temporally 
smoothing them with hanning and then plotting them 
semi-logarithmically as a function of time. The re- 
sults are quite similar to those unispectral compo- 
nents. weagain separate them into three groups for 
the three episodes (figtlres 18, 19, and 20). 
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F i ~ ~ r r  15. -Hisp~ctra during the cpisudc uf August 1972. The nurnberq 2.5, 32.5, . . ., and 152.5 arc  
minutes from beginn~ng ot episode. 

Several points should be noted here: 
( I  I The figures are plotted with log[S,(w,w)] versus 

linear time as before but with a smaller range. Conse- 
quently the exponential growth rates shown in fig- 
ures 18. 29, and 20 that appear comparable with 
those shown in figures ?, 10, and 11 are acttraIlv 
about four times smaller. 

(2) We have seen that in unispectral growth the 
spectral peak moves to a lower frequency during 
wave growth. The bispectsa provide some indication 
of phenomena that can be attributed to this transfer, 
namely, that the interactinns of ~ R P  peak frequency 
with the next lower Crequency grow consistently 
stronger relative to the interactions with the next 
higher frequency during the  latter part of the ~ r o w t h .  
Examples are shown in figures 21, 22,  and 23. As 
growth continues, the component of the next lower 
frequency eventually bccornes the spectra1 peak. 

( 3 )  It  the bispectral amplitudes represent the ~ c -  
and-order nonlinear intcrackions in the wave growth 
Drocess. as we have coniectur~d. then otIr results 
show that the nonlinear interactions should also have 
functional relationships with respect to time. This 1s 

not unexpected. Since the theoretical nonlinear 

source term is a function of the unispectrum, i t  must 
vary with time if the ~~nispectrum does. 

6.7 The Trispectra 

RsilFinger and Rosenblat t (1967) presented one 
set of calculated trispectra for daily sunspot num- 
bers. Their work rcprcsents the only trispectral calcu- 
lations available in the literature. They did not, how- 
ever, provide an interpretation of their results. Tri- 
spectral analysis has remained rdatively unexplored. 

By extending the calculation scheme Haubrich 
(19651 used in bispectral calculations one step further 
and using equation (371, we have been able to calcu- 
late a trispcctrum for each of the 64 data segments for 
each episode. I t  is not immediately clear how to 
visualize and pres~nt  the trisp~ctra effectlveFy. I t  i s  
even more cumbersome to try to present them in 
time. Since the fundamental region for the trispec- 
trum is the tetrahedron defined by 0 I wl 5 WZ, 0 5 

CIIL  5 w ~ ,  and 0 i w1 5 w , ~ ,  we have the trispectral 
density S,(wl,wl,w,) in addition to the three tre- 
quency axe5 to form a four-dimensional manifold im- 
bedded in three-dimensional Euclidean geometry. By 
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quency axe5 to form a four-dimensional manifold im- 
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Figure 17.-Bispectra d u r i n ~  the episode of 7 October 1972. T h e  numbers 2.5, 32 .5 ,  . . ., and 752.5 are 
minute5 from beginning ul t.pi.sudc. 

time. The results, shown in figures 25, 26, and 27, are 
again quite similar to the unispectral and bispectral 
components. Since we have only the lower frequency 
components, grouping i s  not necessary. The results 
show again that the third-order interactions have 
functional relationships with respect to time during 
the wave growth process. 

In figures 28, 29, and 30, we concentrate on the 
peak-energy trequency achieved at  the laster stage of 
the episode by plotting the temporal growth of the 
frequency interacting with itself to the third order, 
the frequency interacting with itself and the next 
lower frequency, and the frequency interacting with 
the second-order interaction of the next higher fre- 
quency. These figures show quite clearly that the 
shifting of the peak-energy frequency toward the 
lower frequency i s  due to the stronger interactions of 
the peak-energy frequency with the lower frequency 
and that the interaction provides energy transfer 
from the peak-energy frequency to the lower fre- 
quency. This confirms that the higher-order non- 
linear interactions are responsible for the shifting of 
spectral peaks during wave growth. 

6.9 Further Remarks on 
Bispectra and Trispectra 

What have we gained from bispectral and tri- 
spectral analysis? First, we have developed methods 
for computing and presenting bispectra and tri- 
spectra from data. This experience will be useful in 
the luture. Second, and more important, we have 
presented evidence that during the later intensive 
part of wave growth, the interactions of the peak- 
energy frequency component with the next lower fre- 
quency component grow consistently stronger com- 
pared with the interactions with the next higher fre- 
quency component, and the next lower frequency 
subseqtrently becomes the peak-energy frequency. 
This result, which provides a clear expIanation for 
the well-known fact of shifting spectral peaks toward 
lower frequencies, can be demonstrated onIy by bi- 
spectral and trispectral analysis. 

Benjamin and Feir (1967) showed theoretically 
and experimentally that for deep-water waves with a 
fundamental frequency w, because of coupling 
through the nonlinear boundary conditions at the 
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Figure 18a.-Growth of low-frequency bispectral components during the episode of 9 August 1972. 

Figure 1Sb.-Growth of middle-frequency bispectral components during the episode of 9 August 1972. 
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Figure 18c.-Growth of high-frequency bispectral components during the episode of 9 August 1972. 
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Figure 19a.-Growth of low-frequency bispectral components during the episode of 30 September 1972. 
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Figure 19b.-Growth of middle-frequency bispectral components during the episode of 30 September 
1972. 
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Figure 19c.-Growth of high-frequency bispectral components during the episode of 30 September 1972. 
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Figure 20a.-Growth of low-frequency bispectral components during the episode of 7 October 1972. 

Figure 20b.-Growth of middle-frequency bispectral components during the episode of 7 October 1972. 
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Figure 20c.-Growth of high-frequency bispectral components during the episode of 7 October 1972. 
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Figure 21.-Growth of bispectral components during the episode of 9 August 1972. Above: 0.175 Hz vs. 
0.150,0.175, and 0.200 Hz; Below: 0.200 Hz vs. 0.175,0.200, and 0.225 Hz. 

free surface, energy is transferred to the side-band 
frequencies w (1 k {). Our results appear to re- 
semble, to some extent, this side-band energy trans- 
fer theory. We may conjecture that, analogously, the 
stronger interaction with the lower side-band fre- 
quency component than with the higher side-band 
frequency component is also due to the complicated 
couplings of the nonlinear boundary conditions at 
the free surface. Furthermore, Longuet-Higgins's 
(1976) recent theory, indicating that the transfer of 
energy tends to reduce any symmetry in the spec- 
trum, can also be qualitatively attributed to these un- 
equal side-band interactions. 

7. SUMMARY AND 
CONCLUDING REMARKS 

In this report we set out to empirically examine 
the temporal growth pyocesses of wind-generated 
waves using data recorded in Lake Ontario. We have 
examined unispectra, bispectra, .and trispectra com- 
puted consecutively for the three selected episodes. 
The scheme used for our study is based on the as- 
sumed property of local stationarity. This assump- 
tion allows us to apply successfully the analysis 
method developed for stationary processes to study 
nonstationaq wave growth processes. 
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Figure 22.-Growth of bispectral components during the episode of 30 September 1972. Ahooe: 0.175 Hz 
vs. 0.150,0.175, and 0.200 Hz; Below: 0.200 Hz vs. 0.175, 0.200, and 0.225 Hz. 

Results can be summarized as follows: 
(1) Wind waves grow fastest during increasing 

wind speeds. 
(2) Each unispectral component has a different 

temporal growth rate. The components can be 
grouped into three frequency groups: the low-fre- 
quency components, which consistently grow under 
increasing wind speeds; the high-frequency compo- 
nents, which are insensitive to wind speed and time; 
and the mid-frequency components, which contain 
those attaining spectral peaks during the episode and 
which contain mixed properties of both high- and 
low-frequency component groups. 

(3) Bispectral and trispectral components generally 
demonstrate temporal growth behavior similar to 
that of unispectral components with smaller growth 
rates. 

(4) From comparing empirical source functions 
with parameterized theoretical nonlinear source 
functions, we found that at the beginning and ending 
stages of wave growth the growth rate is low and the 
empirical source function is smaller; the larger non- 
linear source function under the spectral peak must 
be balanced by significant dissipation processes. Dur- 
ing intensive wave growth, where nonlinear and em- 
pirical source functions are both large, dissipation 
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Figure 23.-Growth of bispectral components during the episode of 7 October 1972. Above: 0.225 Hz vs. 
0.200, 0.225, and 0.250 Hz; Below: 0.250 Hz vs. 0.225,0.250, and 0.275 Hz. 

becomes less significant. terest of exploring the empirical aspects. Since the de- 
(5) During the latter part of wave growth, the in- tailed process of wave growth is still far from being 

teractions of the peak-energy frequency component completely understood, we hope our results will pro- 
with the next lower frequency component grow con- vide some insight that can be useful for further 
sistently stronger than the interactions with the next understanding of it. 
higher frequency component, and the next lower fre- 
quency subsequently becomes the peak-energy fre- 
quency. This result, as demonstrated clearly from an 
examination of the temporal growth of bispectral and 
trispectral components, provides an explanation for 
the well-known fact of unispectral peaks shifting 
toward lower Frequencies during wave growth. 

These results are consistent with our primary in- 
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Fipyre 24a. -Trispectra during the episode of 9 August 1972, 2.5 minutes from beginning of episode. 
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Figure 24e.-Trispectra during the episode of 9 Auguqt 1972,122.5 minutes from b e ~ i n n i n ~  of episode. 
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Figure 24f.-Trispectra d u r i n ~  the episode of 9 August 1972,152.5 minutes from beginning of episode. 
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Figure 25.-Growth of trispectral components during the episode of 9 August 1972. 
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Figure 26.-Growth of trispectral components during the episode of 30 September 1972. 
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Figure 27.-Growth of trispectral components during the episode of 7 October 1972. 

Figure 28a.-Growth of trispectral components during the episode of 9 August 1972: Third-order interac- 
tions among components 0.175, 0.200, and 0.255 Hz. 
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Figure 28b.-Growth of trispectral components during the episode of 9 August 1972: Third-order inter- 
actions among components 0.200,0.225, and 0.250 Hz. 
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Figure 29a.-Growth of trispectral components during the episode of 30 September 1972: Third-order 
interactions among components 0.175,0.200, and 0.225 Hz. 
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Figure 29b.-Growth of trispectral components during the episode of 30 September 1972: Third-order 
interactions among components 0.200,0.225, and 0.250 Hz. 
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Figure 30a.-Growth of trispectral components during the episode of 7 October 1972: Third-order inter- 
actions among components 0.175,0.200, and 0.225 Hz. 
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Figure 30b.-Growth of trispectral components during the episode of 7 October 1972: Third-order inter- 
actions among components 0.200,0.225, and 0.250 Hz. 
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Appendix A: Relationships Between Higher Order Covariances and Higher Order Spectra 

In order to define a general higher order spec- 
trum in terms of the Fourier components of the sur- +i E (kj • xi - witj) - (k,, . xn - writ,,) 

x e 
face displacement, we follow Batchelor's (1953) basic 
approach by considering a stationary random func- 

C' I 
tion of both time and space defined by ,+id& lm x lm - I) (e-id;~l - 1 ) 

+ixlm 
. . . 

{(x,t) for -X 5 xi I X 
and - T I  t s  T 

{(x,X;t, T) = (A.1) 
for Ixil > X 

0 and It1 > T 

which satisfies the condition for a Fourier integral to 
exist. The corresponding Fourier coefficient is 

1 x dxldx2 . . .dx,(dt)". 
A(k,X;w, T) = - jxjt{(x,X;t, T)e+i(k.x-wt)dxdt. 

( 2 ~ ) ~  
(A.2) Now for stationarity with respect to both space and 

time, the right side can be written as 
From Weiner's generalized harmonic analysis, it can 
be shown that as the parameters X and T extend to 1 
00, the limit exists as -I . . . j {(x + rl,t + T ~ )  . . . 

( 2 ~ ) ~ "  

We can write 

k+dk,w+dw 
dY(k,w) = [Y(k,w)lk,w 

( )  dxdt, (A.4) 

x e 
which is the inverse relation of 

e + i d k ~ m r ~ r n  - 1 ) (e-id:7~ - 
Now we can obtain the ensemble average of an nth x n . . . (m=l +jr1rn -171 
order product of dY(k,w) as 



Since the stationary process is inde&nt of both x n-1 

and t, the above relation is identically zero udess -' E w,rj 

X e  i= l  d ~ , . . . d ~ , - ~ ,  

k, - kl - k2- . . . - k,-i = 0 and 

and 

w , - w 1 - w 2 - .  . . -a,-1 =o. 
' E wjr, 

Furthermore we let dk's and dw's approach zero to x e i=1 dul . . . Lfw,-l. 
obtain 

dY(kl,wl)dY(kz,wz) . . . dY(kn-l,an-l)dY*(kn,wn) For n = 2, we have the following familiar pair of 
dkldk2 . . . dk,-ldwldw2 . . . classic spectral analyses: 

1 
1 -- S2(w) = - jR2(~)e-iwrd~, - 2?r 

(A.13) 
(2?r)4(n-l) j. . . jRn(r1,rzr. . - rn-l,71r72,. . .7n-1) 

and 

and w, = q + w2 . . . + 0,-1 

and 

Detailed discussions corresponding to the formal 
definitions (A. l l )  and (A.12), as well as conditions 
for existence and convergence of estimates, are 

(A.8) 
beyond the scope of our present study and can be 
found in Brillinger and Rosenblat t (1967). 

In practical applications, we may define 

Let the Fourier transform of S;(t) be X(w); then we dY(klrw1)dY(k2,w2) . . . dY(kn-l,wn-l)dY*(kn,o,) have 
dkldk2. . . d k , - l d ~ l d ~ 2 .  . . 

if k , # k l + . . . + k , - l  

and on # wl + .  . . + an-1. 

and 

3;-(t) = j,X(w)eiwtdw. (A.17) 

Now for the nth order covariance we have 
The last expression in (A.8) gives the general defini- 
tion of the nth order energy spectrum, where R,,(T~ . . ., T,,-~) = {(t){(t + 71 . . . {(t + ~,,-1) 

1 
= lim T j,S;(t) j,, . . . j X(w1). . . X(~, , - I )  

"'11-1 
T- m 

ei [ (wl+.  . . + ~ , , . ~ ) t + w ~ 7 ~ +  . . .'",,-l7,,-ll 

1 For observations at single points, we may integrate = lim - T j.1 
. . . j X(wl). . . x(wl,-l) 

and normalize the above equations over all directions T -  m '"17-1 
and wave numbers to obtain 

ei(ulrl+. . .+u,,.,r,,.,) 



Comparing (A.18) with integrated (A.12), we have 
formally 

Sn(wl, . . . r  ~ n - 1 )  

Thus, in practical applications we can use the 
product of Fourier transforms of h(t), with the aid of 
the fast Fourier transform algorithm, to facilitate the 
calculations of higher order spectra. 





Appendix B: Testing for Stationarity 

In this report we have assumed local stationarity 
to study the temporal growth of spectral components 
that are in general nonstationary. To test the assump- 
tion of local stationarity, we adopted a testing 
method similar to that used bv Bierkaas (1976). The 
scheme divides each data set i i to  P equal-length sub- 
segments; calculates the <, CZ, r3, and c4 for each 
sub-segment; and then applies two nonparametric 
tests, the run test, and the reverse arrangement test 
(Bendat and Piersol, 1966) to the data set to examine 
its stationarity. 

In the run test, the test parameter for each inter- 
val is compared to the median value of the test 
parameter for all intervals. If the test parameter is 
greater than or equal to the median value, +1 is as- 
signed to the interval; otherwise, -1 is assigned. A se- 
quence of consecutive +l's or -1's is called a run, 
and the number of runs N,  in the P intervals is deter- 
mined. N,  gives an indication as to whether or not re- 
sults are independent random observations of the 
same random variable. The reverse arrangement test 
is most useful in detecting monotonic trends in the 
time series. Consider the test parameter Ai, with i = 
1, 2, . . ., P. If Ai > Aj for i < j, the pair of param- 
eters is called a reverse arrangement. 

The total number of reverse arrangements, Nu, is 
defined as follows: 

Let 

Table B.1. Stationarity test results 

Then 
P 

and 

Based on P and the level of significance, the ac- 
ceptance ranges for N ,  and N, can be calculated 
(Bendat and Piersol, 1966) and used as a basis to ac- 
cept or reject the stationarity assumption. 

Accordingly, in our analysis eight separate tests 
were performed for each data set. The results, pre- 
sented in terms of the percentage of data failing the 
tests for the three episodes studied, are shown in 
table B.1. At a level of simificance a = 0.10. the .. 
overall failure rate was 29 percent; the rate reduced 
to 19 percent for a = 0.02. Every data set passed at 
least two of the eizht tests verformed. A total of 27 
percent passed all eight test;. The parameter l3 posed 
the best results; c4, on the other hand, posed the 
worst results. Although, ideally, absolute sta- 
tionarity requires that the data pass all the tests, we 
find that for a basically nonstationary process these 
results generally tend to enhance the acceptability of 
our assumption of local stationarity. Thus, without 
pursuing more complicated physical and statistical 
nonstationary analysis, we can employ available sta- 
tionary analysis methods to study an otherwise non- 
stationary process. 

Percentage of Data Failed 

August 9 September 30 October 7 All Data 

Level of a=0.10 a=0.02 a=0.10 a=0.02 a=0.10 cr=0.02 a=0.10 a=0.02 
Significance 

Run Test 

Reverse Arrangement Test F 0 0 2 0 2 0 1 0 
P - 28 17 53 30 50 33 44 27 
I3 - 8 2 5 0 0 0 4 0 
r' 34 20 53 38 48 33 45 30 

All Parameters 29 19 34 21 24 16 29 19 





Appendix C: Application of Barnett's Parameterization of a Nonlinear Source Function 

Theoretical results have shown that the non- 
linear energy transfer of gravity waves can be ex- 
pressed by the Boltzmann integral as 

where N, = N(k,) = S(k,)/w, with w, = (gki)lI2 and S- 
(k,) is the twodimensional wave spectrum with re- 
spect to wave numbers lk,l = k,. The delta functions 
express conditions for resonance between waves. The 
coupling coefficient T(kl,k2,k3,k4) is a very compli- 
cated function and its precise form does not provide 
any physical interpretation. While the Boltzmann 
integral has been applied to other fields of study, 
Hasselmann (1962, 1963a,b) first derived equation 
(C.1) for gravity waves. Other derivations have been 
given by Benney and Saffman (1966) and Watson 
and West (1975). Recently Longuet-Higgins (1976) 
presented a simplified model and showed that 
T(kl,k2,k3,k4) is equal to 47r when the four wave 
numbers kl, k2, k3, and k, are nearly equal. This re- 
sult implies that the exchange of energy within the 
peak of the spectrum is of dominant importance. No 
~ a c t i c a l  application of this simplified model has 
been developed, however. 

Attempts to evaluate the integral (C.l) have 
been made by Hasselmann (1963b) and more recently 
by Sell and Hasselmann (1972). The latter computa- 
tions, typically 30 minutes per spectrum on a 
CDC6600 computer, lead to interpretations of the 
JONSWAP measurements that strongly suggest that 
the nonlinear transfers of energy play an essential 
role in the development of the wave spectrum, par- 
ticularly in the growth of the wave energy at low 
frequencies. 

Because of the complexity of the direct calcula- 
tions of (C.l),  Barnett (1966), using a Neumann spec- 
trum, obtained a parameterization of (C.1) as part of 
a wave prediction stheme based on the earlier Hassel- 
mann (1963a,b) results. Mitsuyasu (1968) applied 
this parameterization to his studies on nonlinear 
energy transfer in wave spectrum and obtained fair 
agreement between calculated and observed non- 
linear source functions. Resio and Vincent (1976) 
satisfactorily applied Barnett's prediction scheme for 
hindcasting waves in the Great Lakes. 

Barnett's parameterization was based on Hassel- 
mann's (1962) theoretical results, which demon- 
strated that the wave-wave interaction of a spectral 
component consists of an active part that transfers its 
energy to other components and a passive part that 
receives energy from other components. Thus, 

Frequency in Hz 

Figure C.1.-A white spectrum and its computed source functions. 

with 

x exp [-4 (I - py + o.(?)~] , 

for f > 0.42 fo, and 19 - sol < " ; 
2 

G = 0, otherwise; 

and 

- - 

for f > 0.53 fo; 

D = 0, otherwise, 
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Figure C.2.-Pierson-Moskowitz spectrum and its computed 
source functions. 

where E, fo, and O0 are total energy, mean frequency, 
and mean direction, respectively, defined by 

E = I IS(f, O)dfdO, (C.5) 

1 
fo = X I  I fS(f,O)dfdo, (C.6) 

and 

In the above equations, 0 is the wave direction and f 
= w/27r is the linear wave frequency. 

We applied the above parameterization by 
further assuming a directional spreading fador of 
(8/37r) cos40 to compare some of the results given in 
Sell and Hasselmann (1972) that led to the major con- 
clusions based on JONSWAP measurements. The re- 
sults for a fairly white spectrum, a Pierson-Mosko- 
witz spectrum, and a mean JONSWAP spectrum are 

000012 - - Sell & Hasselman 

I - Barnett 
S .000010 - .- 
C)  

- .000004 - 

-.000006. 1 1 1 ) ) )  
.40 50 60 70 60 90 100 110 

30 Frequency in Hz 

Figure C.3.-JONSWAP spectrum and its computed source 
functions. 

presented in figures C.l,  C.2, and C.3, respectively. 
The JONSWAP study (Hasselmann et al., 1973) con- 
cluded that, as the sharpness increases from figure 
C . l  to figure C.3, the evolution of a sharp peak is pri- 
marily controlled by the nonlinear energy transfer 
evidenced by the shifting of the positive lobe in Sell 
and Hasselmann's calculations toward lower fre- 
quencies. While not necessarily profound, the same 
conclusion can also be drawn from the shifting of the 
positive lobe as a result of Barnett's parameteriza- 
tion. Therefore, with an overwhelming savings in 
effort and computer time, Barnett's parameterization 
can be used approximately for the examination of 
theoretical nonlinear energy transfers, particularly 
with respect to the location of the positive lobes of 
the parameterized nonlinear source function. 



Appendix D: Trispectra During the Episodes 30 September 1972 and 7 October 1972 

We present here the calcuIated trispectra for the tral sheets located 30 minutes apart, corresponding in 
episodes of 30 September and 7 October as figures time to the bispectra shown in figures 16 and 7 7. 
D.1 and D.2. Each figurc contains six sets of trispec- 

Frequency o/2a (Hz) 

Figure I J . l a .  - Trispectra dur in~  thc cpi,ridc ~ > f  30 Seplember 1472, 2.5 minute4 frnm beginning of 
episode. 



Frequency Y / 2s (Hz) 

Figure n.lb.--Trispectra during the episode of 30 September 1972, 32.5 minutes frum be~inning of 
episode. 
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Figure D.Ic.- Trispectra during the epicode of 30 September 1972, 62.5 minutes from be~inning of 
episode. 



Frequency w f 2 7  (Hz) 

Figure D.ld.-Trispectra during the episode of 30 September 1972, 92.5 minutes [rum beginning of 
episode. 
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S i ~ u r e  D.le.-Tri~pectra during the epi50de of 30 September 1972, 122.5 minute5 from beginning ot 
epiqode. 
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Figure D.lf.-Trispectm during the episode of 30 September 1972, 152.5 minutes from beainnina of 
episode. 
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Figure D.Za.-Trispectra during the episode of ?October 1972, 2.5 minutes from be~inning of episode. 



Frequency w / 27r (Hz) 

Figure D.Zb.-Trispectra during the episode of 7 October 1972,32.5 minutes from beginning of episode. 
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Fik~irc  l 3 . 2 ~ .  -Tri5pcctra during the cpisodc of 7 Ortoher 1972, h2 5 minntrs from he~innin~ of epfsode. 



Frequency m J 2 1  {Hz) 

F ~ R U I ~  D.2d.-Tri~pectra during the e p i s d e  of 7 October 1972, $2.5 minuter from beginning of episode. 
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Figure D.2e.-Tri~pectra during the episode of T October 1972,122.5 minutes from beg inn in^ of episode. 
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Fi~urel3.2f.-Trispctm during the episode of 7Octoher 1972,152.5 minutes from beg inn in^ of episnd~.  
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