NASo-Cr—5 cag

NASA Contractor Report 178024
NASA-CR-178024

ICASE REPORT NO. 85-55 BRYISANTO
i ‘-.\,‘-n;‘_.'
ey :‘\ \jx:';‘.—l::g"“_,r:_.

TR L |

) . ,\..,.,,-,.;x.».—sx-a

PR S | ‘:c:;

| «r?ﬂfiﬂ?ﬁﬁt?ﬂﬁﬁ»

L 0T hxo)

A PARTITIONING STRATEGY FOR NON-UNIFORM
PROBLEMS ON MULTIPROCESSORS

Marsha J. Berger

Shahid Bokhari

Contract No. NAS1-17070

November 1985 VARPTON, Vigorny,

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NANASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton. Virginia 23665

.

v

_I.
PP i IO

i

e

jea
_‘.lt.—

i, -
LN

] ow
S f) e S

st

L

S VA D

[

A Partitioning Strategy for Non-Uniform Problems on

Multiprocessors

Marsha J. Berger*

Courant Institute of Mathematical Sciences

New York University
251 Mercer St.
New York, NY 10012

Shahid H. Bokhari**

Institute for Computer Applications in Science and Engineering

and

University of Engineering and Technology

Lahore-31, Pakistan

ABSTRACT

We consider the partitioning of a problem on a domain with unequal
work estimates in different subdomains in a way that balances the work load
across multiple processors. Such a problem arises for example in solving par-
tial differential equations using an adaptive method that places extra grid
points in certain subregions of the domain. We use a binary decomposition

of the domain to partition it into rectimgles requiring

equal computational

effort. We then study the communication costs of mapping this partitioning

onto different multiprocessors: a mesh-connected array,

a tree machine and a

hypercube. The communication cost expressions can be used to determine the

optimal depth of the above partitioning.

*Supported in part by Department of Energy Contract No. DEACO0276ER03077-V, and b
the National Aeronautics and Space Administration under NASA Contract No. NAS1-1707

while the author was in residence at the Institute for Computer
Engineering, NASA Langley Research Center, Hampton, VA 23

lications in Science and
668"

**Supported by NASA Contract No. NAS1-17070 while the author was in residence at the
Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley

Research Center,

LS

1. Introduction

We consider the partitioning of a problem on a domain with unequal computational
work estimates in different subdomains, in a way that balances the work load across multiple
processors. Such a problem arises, for example, in solving hyperbolic partial differential
equations using an adaptive method that places extra grid points in certain subregions of the
domain (see e.g. [S] and [6]).Such an approach has also been proposed in the multigrid litera-

ture ([2],[3],{12],[15]). At a given instant of time a typical computational mesh for either of
these problems might look like Fig. 1.1.

Fig. 1.1 Increased resolutions is obtained by superimposing fine grid patches over an
underlying global coarse grid.

Hence, any simple partitioning scheme must account for the unequal amount of work to be
done in the left half versus the right half of the domain. If Fig. 1.1 represents the grid for a
time dependent problem, the work load in the left and right halves is significantly different,
since the finest grids in space typically need a smaller step in time (if an explicit finite dif-
ferent scheme is used to integrate the solution), and 30 many time steps are taken on the fine
grid for every one on any coarser grid.

Other numerical examples which give rise to a problem with unequal work estimates
might come from solving a pde with different equation sets in different regions. For exam-
ple, in calculating transonic flow around aisfoils, the Navier Stokes equations may be used in
a boundary layer around the airfoil, and the Euler equations or even the potential equations
can be used in the farfield. These different sets of equations have very different costs associ-
ated with their corresponding difference schemes. Another possibility is that the work esti- -
mates come from different physics in different parts of the domain, for example in weather

-3.

calculations, depending on whether a region is over water or over land. Other examples of
unequal work include an iteration scheme such as SOR where a certain percentage of the
domain is relaxed a second time before iterating on the entire domain again. This ad hoc

procedure, applied to say the 10% of the grid with the largest residual can greatly reduce the
cost of convergence.

In addition to the above static domains, we are interested in investigating the possibili-
ties of solving adaptive mesh refinement problems on a multiprocessor system. A major dif-
ficulty is that, no matter how portions of the mesh are initially assigned to processors, a
change in the mesh refinement will ultimately cause the computational load on the processors
to become unbalanced. Attempts at rebalancing are complicated by the need to keep the
interprocessor communication overhead at a minimum. Since the adaptive mesh refinement
strategy in [6] is already based on a partitioning of the domain into rectangular grid patches,

we can derive an approach presented here which is simple and tractable. Other approaches
are given in [9], [17].

Most partitioning strategies use some type of domain decomposition to balance the work

load over many processors. Typically, these uniform mesh problems can be divided into
boxes (Fig. 1.2a) or strips (Fig. 1.2b).

(a) (b)

Fig. 1.2 Two common partitioning strategies for rectangular mesh problems.

The benefits of one over the other depend on the cost of transferring information around the
perimeter of a box to the neighboring partition/processor (which depends on the machine
architecture), and the order in which computations on such configurations can proceed.
Papadimitriou and Ullman [13] discuss communication/time tradeoffs for such partitionings,
and obtain lower bounds on the rate such computations can proceed.

-4.

A different kind of partitioning is evident in the work of Adams and Jordan [1]. By
partitioning down to the grid point level, using a multi-color SOR iteration scheme, simul-

taneous updates can proceed for any given color grid point throughout the entire mesh. This
can be useful on processor arrays as well as vector computers.

This paper is organized as follows. We describe the binary decomposition used to parti-
tion the work load in section 2, and discuss some of its properties in section 3. In sections 4,
5 and 6, we study the communication costs of mapping this partitioning onto different types
of multiprocessors: a nearest neighbor array, a tree machine, and a hypercube. We derive
expressions for the communication versus computation costs which can be used to determine
an optimal depth for the above partitioning. Section 7 summarizes the results.

2. Binary Decomposition of the Domain

In this section we describe the strategy used to partition a domain into subunits requir-
ing equal computational effort. In this presentation we will assume that the number of avail-
able processors is a power of 2, although many of our results generalize. Another underlying
assumption is that the number of grid points N>>p, the number of processors. We will con-

centrate on the static case, and only say a few words about adaptively rebalancing the decom-
position later in the section.

Suppose that work estimates on a given domain have already been obtained, through a
priori knowledge, or from an initial computation on a uniform mesh using a partitioning as in
Fig. 1.2. Given these work estimates, we can now make a vertical cut through the domain so
that the left and right segments each contain half the work (or as near as possible given the
constraint that the line is vertical, and the number of grid points in each segment increases by
a finite amount on shifting the location of the cut by one column). If there are four proces-
sors available, the two segments are each partitioned using two different line segments of a
horizontal cut line next, into a total of four equally balanced work loads. This procedure con-
tinues by recursively partitioning using first vertical then horizontal cut line segments, so that
the length of the longest side of any subregion is reduced every other step. A typical decom-
position for the grids in Fig. 1.1 using 16 processors is shown schematically in Fig. 2.1. The
idea for this decomposition was inspired by the similar looking rectangular regions used by
Bentley [4] in answering two dimensional point domination questions.

We emphasize that the computational work of an iteration on any rectangular region in
Fig. 2.1 is identical. However, the communication requirements across the perimeters are
not. In particular, if the source of the problem is a grid such as Fig. 1.1, then the grid point
density along any given line segment varies, depending on whether a cut line intersects a .
finer grid or not. In general, therefore, we will only obtain upper bounds for communication

8 10
0 2
9 11
1| 3 14
12
4 6
13 15
5 7

Fig. 2.1 A binary decomposition using 16 processors.

costs assuming the worst case grid point distribution. Instead, therefore, we will now assume
that the problem gives rise to different work requirements in different regions, but is based
on an underlying grid of N2 points which are uniformly distributed.

There are several points to note about the decomposition depicted in Fig. 2.1. First, by
restricting the subunits to be rectangular blocks, we avoid a messy problem with data struc-
tures. If more general L-shaped regions or diagonal lines were used, the specification of a
region would be more difficult. All that this approach requires to specify each block is the
four corners of the rectangle (2 will do). This is sufficiently low overhead that every proces-
sor can keep a map of the entire domain with each processor/rectangle pair. A tree data

structure can easily be traversed for any neighbor information that is needed, for example,
for a non-shared memory machine.

Secondly, this approach does not suffer the drawbacks that other decompositions sug-
gested for this problem have. For example, Fig. 2.2 indicates a grid configuration with four
fine grids superimposed on a global coarse grid, and 2 further refined grids nested in 2 of the
four. Itis tempting to use these grids, which already form one type of decomposition of the
domain (and are each regular with a simple data structure) as the basis for assignment of
work to a processor. However, there is no attempt at load balancing in this approach. In
addition, if the mesh is later changed so that there are 8 subgrids, for example, either the
computation must request 8 processors, or some of them were idle beforehand.

We mention that the partitioning itself is easily accomplished. In principle, the parti-
tioning can be done by summing the numbers of grid points (or work per grid point times the
number of grid points) first rowwise, then columnwise. The partitioning cut is then made in

Fig. 2.2 A domain decomposition with 4 subgrids, and 2 sub-subgrids.

the middle.

We point out one final advantage of the binary decomposition. As the computation
proceeds, if it turns out that one region gets more work (say a finer mesh is introduced), a
local rebalancing can be done without necessarily redoing the entire partitioning. For exam-
ple, in Fig. 2.1 if region 14’s work load increases by some amount , the last cut line in the
partition, which separates regions 14 and 15, can be adjusted so that both regions have an
imbalance of only 8/2. If the k previous cut lines are adjusted, the imbalance is reduced to
8/2*, The cost of rebalancing (which might include time to send data to the new governing
partition, for example), can be traded off against the lost time of having an imbalance in the
work load. This can determine how high in the tree (the number k above) to rebalance.

3. Analysis of Partitionings

In this section we present several definitions related to our partitionings and analyze
some of their important properties, These are essential to our discussion of mappings of
subregions onto various processor architectures, which we present in subsequent sections.

3.1. Definitions

The depth of a partiﬁoning is the number of times the domain has been partitioned.
This equals the depth of the corresponding binary tree, with root node corresponding to the
entire domain, and leaf nodes corresponding to each rectangle in the final partitioning,

-7

Each partition line is divided into a number of segments by the incidence of other parti-
tion lines. '

The total number of segments of a partitioning is the sum of all such segments.

The depth of a segment is the depth of the partition line to which it belongs.

For example, Fig. 3.1 shows a partitioning of depth 2. The depth 1 partition line a-b is
divided into 3 segments by the incidence of the two depth 2 partition lines c-d and e-f. The
total number of segments in this partitioning are 5.

Fig. 3.1 A depth 2 partitioning with 5 segments.

We observe that if two adjacent regions of a partitioning are assigned to different pro-
cessors then the segment between them represents a communication requirement between the
processors. The following definition makes this easier to appreciate.

The graph of a partitioning is the dual graph obtained in the usual way [8] by represent-
ing each region by a node and connecting two nodes if and only if the corresponding regions
are adjacent (share a segment on their perimeter). Each edge in the graph of a partitioning
represents a communication requirement between the two regions represented by the nodes at
its end points. Fig. 3.2 shows a partitioning of depth 4 along with its graph. The assignment
of regions of a partitioning to the processors of a multiple computer system is now equivalent
to the mapping of the graph of a partitioning onto the graph of a multiple computer system

[7].

KN

Fig. 3.2 A depth 4 partitioning and its dual graph.

3.2. Properties

Clearly, the total number of segments of a partitioning is an important number in our
analysis, since it represents the total number of different communication paths required. A
lower bound on this number occurs when the domain has uniform computational density in
which case the partitioning is made up of continuous horizontal and vertical lines extending

from one side of the region to the other. Itis easy to show that in this case the total number
of segments T, is

4y

T (k) = 2k*1 -~ 22 | k even (3.1)
k=L

To(k) = 21 = 32 7, Kk odd,

for a depth k partitioning for 2 processors.

To obtain an upper bound Ty(k) on the number of segments, we need to investigate further
properties of partitionings.

3.2.1. Property 1

Note that the graph of a partitioning remains unchanged no matter how much the verti-
cal (horizontal) partitioning lines are displaced as long as the sequence of the vertical (hor-
izontal) coordinates of these lines are not disturbed. Because each edge of this graph

corresponds to a segment, this property implies that the total number of segments is
unchanged under such displacements.

3.2.2. Property 2

A partitioning of depth k may be considered to be made up of the juxtaposition of two
partitionings of depth k—1. The line at which the constituent depth k—1 partitionings abut

each other becomes the new depth 1 line, and the depth of the remaining lines increases by

k L)
one. If k is even, the constituent depth k—1 partitionings will have 22 by 22 sides; in this

case the sides with the larger number of regions will face each other. If k is odd, the consti-
k=1
tuent regions have 2 2 regions along either side.
Because of Property 1 above, we can displace the segments perpendicular to the inter-
face of the constituent regions to any extent as long as we do not disturb their sequence.
This allows us to distort the constituent partitions so that no two depth k—1 segments on

either side of the interface are collinear, and thus obtain the maximum number of depth 1
segments, which turns out to be

ki
Spu(k) =22 ~1, keven 3.2

k+1

Son(®) =2 2 =1, kodd.

It is possible for a partitioning of depth k to have the maximum possible number of
depth 1 segments, independent of its constituent depth k—1 partitionings.

3.2.3. Property 3

It thus follows that the depth k partitioning with maximum total segments is made up of
two depth k—1 partitionings with maximum total segments. This leads to the following
recurrence for maximum total number of segments,

kyy
Ty(k)=22 =1+ 2Ty(k=1), keven (3.3)

k+1

The solutions to these recurrences are

k
=~+2
Ty(k) = 24*2 = 2 = 22 41, keven (.4)

At)
Tu(k) = 2k+2 - 2k e 3'2 2 + 1, kOdd

<10 -

3.2.4. Property 4

Another property of great interest is the maximum degree of any node in the graph of a

partitioning. A simple counting argument shows that for 2* processors, k=4, the maximum
degree is

£
2

[S1¢ 3

1
+ 24 43, keven (3.5)

k+1
2

2 + 3, kodd.

The node with this maximum degree borders on the depth 1 partitioning line (see Fig. 3.3).

"N /

/ \

Fig. 3.3 Maximum degree possible for a 2* processor decomposition, k=4.

In fact, a simple counting procedure shows the following. For 2* processors, k even,
the partition consists of k/2 segments of vertical cut lines interlaced with k/2 horizontal cut
line segments. If we number the cut lines from j = 1 to k in total, then the number of
incident edges a segment from a cut line of depth j can have is at most

Eyy- I.Ll
e,(j) = 2? 21~ 1, keven (3.6)

!_:.1.+1-lu_ll
ej)=2"2 2121, kodd

Using the fact that 2/~! line segments make up the j* cut line, the expressions in (3.6) can be
summed to provide an alternate derivation of (3.4) for the maximum number of edges in the ‘

-11-

dual graph.

4. Mapping onto Nearest Neighbor Arrays.

In this section we investigate how the binary partitionings can be mapped onto nearest
neighbor arrays. By nearest neighbor arrays we mean multicomputer systems in which the
processors may be thought of as points on an integer lattice, where each processor has com-
munication links to its 4, 8 or more nearest neighbors. For example, the Illiac machine (if
we ignore its wraparound connections) is an example of a 4 nearest neighbor array (4nn

array). The FEM [11] is an example of an 8nn array.

In this analysis we will consider rectangular arrays of size 2. For such arrays, there
exists what we call narural mappings of depth k partitioned regions onto processors, defined
as follows. When partitioning the domain into two regions, partition the processor array into
two equal halves. Assign the left subdomain to the left half and the right subdomain to the
right half. Repeat recursively until the processor partitions have exactly one processor in

them. At this point every partitioned region has been assigned to a processor.

4.1. Cardinality of Natural Mappings

One way to measure the quality of a mapping is to compute its cardinality [7], defined
as the number of edges of the problem graph that fall on edges of the processor graph
divided by the total number of edges in the problem graph. Mappings with a cardinality of
one have minimum interprocessor communication overhead since all processes that need to
communicate lie on processors that are adjacent to each other. One such extreme case occurs
when the domain being partitioned is uniform (as described in Section 3.2), and the graph of
the partitioning matches the graph of a 4nn array perfectly.

At the other extreme, decompositions of the type illustrated in Fig. 3.3 have graphs in
which some nodes have exponential degree. We could not possibly acommodate the edges

incident on such nodes using any fixed degree nearest neighbor array. The question then is
how low the cardinality can be over all possible decompositions.

A simple but important observation towards this goal is the following. In a natural
mapping of the graph of a partitioning onto a 4nn array,r the edges on the perimeter of any
subdomain are all mapped on the corresponding edges of the mesh. This can be seen in Fig.

2.1, where the 12 edges on the perimeter of the complete domain fail on the perimeter edges

-12.

of the array. At the same time, the 8 perimeter edges in the left and right hand subdomains

also fall on perimeter edges of the two halves of the array and so on.

It follows that the edges of the partitioning graph that fail to fall on edges of the array
graph cannot exceed the number of edges that extend across partitions and are not perimeter
edges. The number of such ‘misses’ that extend across the depth 1 partition is precisely the

number of depth 1 segments (eq. (3.2)) less 2 (the perimeter edges), giving the following
recurrences,

L)
M(k) = 22 =3+2M(k—1), k even 4.1)

+ 1

k
M(k) =22 =3+2M(k-1), k odd, k>1.

It is important to appreciate that for k=1, M(k)=0.

Restricting to the case of k even, these recurrences can be solved to yield

L3
M(k) = 3-21 = 22 4 3, 4.2)

Combining (4.2) with the expression for the total number of edges yields the cardinality

Ty(k)~M (k)
Ty(k)

32412

k49
3.2k-22 41

C(k)

(4.3)

with a similar expression for k odd. Clearly, when k = 1, C(k) = 1, and it drops gradually
as k increases. It can be seen, however, that as k becomes large the cardinality converges to
0.5 and does not drop further. For example, for k=4, C(k)=.67, but for k=10, C(k)=.52.

A similar analysis for the 8nn array gives the recurrence relation

iy
M(k) = 22 e 5 + 2M (k- 1), which reveals that C(k) converges to .79,

One question to consider is whether these natural mappings are near optimal, or
whether there exists other mappings of regions to processors with higher cardinality. A
worst-case partitioning can have T, edges, where Ty, is given by eq. (3.4). A 4nn array has

only T, edges, where T, is given by eq. (3.1). An optimal mapping is one which uses all 4nn

Ty-T,
edges, and thus has cardinality of at most UT L = 75%. In the worst case, there are
v

-13-

natural mappings that use all 4nn edges, and have the maximum number of additional edges
for a total of T, and so by this measure, natural mappings are within 2/3 of optimal. We
conjecture that in fact, no other mapping can do better for a 4nn array. A similar analysis
cannot be applied to 8nn arrays, since even in the worst case, the number of edges in these
arrays exceeds the number of edges in the partitioning graph. An 8nn array is not well util-

ized by our partitionings, since it has so many unused edges.

4.2. Communication Requirements

The cardinality expressions of the previous section are interesting, but do not give pre-
cise expressions for the communication overhead. In this section, we obtain upper bounds
for the total cost of communication when running our dissections on 4nn meshes. We
assume that the solution method is as follows. All processes compute in parallel and, by con-
struction, take the same amount of time. The communication step proceeds as follows. First
the information to be communicated across vertical boundary segments is transmitted (first
left then right) by each processor. Then this step is repeated for horizontal segments (top
then bottom). Inspection of Fig. 3.2 reveals that when the dual graph of a binary dissection is
naturally mapped onto a 4nn mesh, adjacent nodes of the dual graph are mapped onto nodes
of the mesh that lie at least in adjacent rows or adjacent columns. This means that each com-
munication step above has two phases. In the first phase, data makes at most one horizontal
(vertical) movement to get to the correct column (row). In the second phase, it travels zero
or more steps in the vertical (horizontal) direction to get to the correct row (column). The
hardware communication mechanism at each node is assumed to be such that a unidirectional
transmission of data can be performed on one communication link in one time step. Thus a

two way exchange of data over a single communication line takes two time steps.

By definition all processors have equal amounts of computation. It remains to evaluate
how much communication overhead is incurred. Notice that in the best case of a simple uni-

form partition, the length of the side of any square subdomain is

Luny‘orm(k’N) = ENEIZ_’

for a total communication time

Tun#‘onn(ka) = S'ENE'- (4.9)

k
for a problem with N points on a side mapped on to a square mesh with 22 processors on a

-14 -

side. In the case of non-uniform regions, the degree of distortion of a partitioning deter-
mines the time required during the second phase of a communication step. This time is slight

for mildly distorted partitions but can be a major factor in partitions with large distortion.

4.2.1. Skewness of a partitioning

To quantify the amount of distortion in a partitioning, we introduce the following con-
cept.
The x-skewness(S,) of a given partitioning with N x N points and depth k is the ratio of

the length of the longest horizontal side of any subdomain in that partitioning to the length of

the side of the square in the corresponding uniform partitioning.
The y-skewness(S,) is similarly defined for vertical sides.
For example in Fig. 3.3, §, is about 2.5 and S, about 4,

We work under the assumption that there is always at least one point per processor.

k
k —
= (22 - 1)
This constrains the skewness to lie between 1 and 22(1 — 2 N 1).

4.2.2. Dilation of edges in a dual graph. -

Skewness itself does not completely determine the communication overhead. A parti-
tioning can be highly skewed yet have a dual graph that precisely matches a 4nn array. On
the other hand, a partitioning can have this same skewness, but with a large mismatch
between the graph of the partitioning and a 4nn mesh.,

To more accurately describe this mismatch we define the dilation of an edge in a dual
graph that has been naturally mapped onto a 4nn mesh to be the number of edges that data

passes through between two communicating processors during the second phase of communi-
cations.

The x-dilation, d, (y-dilation d,) of a partitioning is the maximum dilation over all edges
in the x (y) direction.

In uniform partitionings (with S,=S,=1), the maximum dilation is zero. As skewness
increases, the maximum possible dilation also increases. The biggest change occurs as the

k

2
skewness increases from 1 to 2, since the maximum y-dilation increases from 0 to -2-2— . The -

-15-
general expression for the worst case dilation is

= ok2 _ | 2¥2
yom-|zz|

k
The maximum possible y-dilation in a partitioning of depth k is 22~1. Here we assume that

the first cut we make in our partitioning is always a vertical line. However it is still possible

for a partitioning with very high skewness to have zero dilation.

4.2.3. Data Transmitted Per Step

The x and y dilations and skewnesses allow us to compute the time required for com-
munication. Each data point can be transmitted to its destination row or column in one time
step in phase 1 of the communication. Assume the hardware first takes care of all data that
is to move in the x direction and then all data to be moved in the y direction. For a non-
uniform partitioning, the maximum number of data points transmitted per communication
step is 28,L,uyorm(k,N) in the x direction and 25 L, ,y,(k,N) in the y direction, since each
region has two vertical and two horizontal sides. The time required for phase one is then no
more than

N

T,(k,N) = 2(S,+Sy)-272-.

Phase 2 of communication is complicated by the fact that there may be several overlap-

ping communication paths in a single row or column. For example if the first processor in a
row is transmitting to the 4th, then the 2nd might be transmitting to the Sth at the same time,

causing congestion. Furthermore, the total time for communication is influenced by the x
and y-dilations.

4.2.4. Communication Strategies

We propose two communication strategies for this troublesome phase two of communi-
cation. These are the permutation strategy and the pipelined strategy. Both strategies are use-

ful over the range of values of problem size N, depth of partitioning k and skewness S.

-16 -

4.2.5. The permutation strategy.

We may view phase 2 of communication as the permutation of a set of data on a chain
of processors. Each processor sends a data value to a processor at most d, (d,) processors
away in the x (y) directions. All processors can send one data value out to its destination in
2*d, or 2*d, time steps. The constant 2 arises because it takes 2 time units for a processor to
receive and transmit one data point. The constant is not 4, which it would be for arbitrary

permutations, because planarity insures no processor both transmits and receives in the same

direction. The time for phase 2 of communications is thus

Tperm = 2 * (Max points per side) * (Max dilation).

for each side. This works out to be

N
Tpurma(k,N)= 2% S, E}?‘dx

- N
Tyemmy(kN)= 2% 8, =44,

The total time for phase 2 of communications is the sum of the two expressions multiplied by
2, since each region has two vertical and two horizontal sides,

Tipem = 4(S,*d, + S,d) 2—':/’2- (4.5)

4.2.6. The pipelining strategy

Instead of viewing phase 2 as a sequence of permutations, we can think of it as a
sequence of data transfers in which each processor transmits all of its data points to all pro-
cessors to which it needs to transmit in a pipelined fashion. That is, if processor 3 needs to
send data to processors 5, 6 and 7, it pipelines this transfer so that as soon as it finishes send-
ing off data intended for processor 7, it starts sending data for processor 6 etc. In this case it
is impossible for, say, processor 5 to send data to processor 8 (should it need to do s0) until
processor 3 has finished. This situation can arise from the parﬁtioning in Fig. 4.1a, where
the configuration gives rise to two separate, overlapping chains of communication. A chain is
a contiguous sequence of processors in a column (row) that all receive data from a single pro-

cessor in an adjacent column (row). Fig. 4.1b shows the chains from the column in Fig. 4.1a.

Thus there exists the problem of congestion which we define to be the number of over-

lapping chains of communication in a given row or column. As might be expected,

-17-

W N =
Altly
YJ\V
1
|
— P

!
>

!

T j
o P~ w N
<
a A W N

J

(6}
<
r—Pﬁ

<
<——.
¢ —
o N o

A
YN
—

p
)

.

.{.—

Fig. 4.1 Overlapping chains of communication cause congestion.

congestion varies with dilation. The form of this relationship is somewhat unexpected. As
dilation increases from 1, the congestion increases but then reaches a maximum at half the

maxiumum dilation and starts decreasing again. The exact expressions are

£,

d, d, =22
Gx(k) = k -1 ___2
22 " —d, d,>22

(4.6)

L
d, d, = 2?

Gyk) =1 % £y
22 -4, d,>2?

The amount of time required to complete phase 2 using the pipelined strategy is the max-

imum time for one region to send out its data multiplied by the maximum congestion.

The time required is thus

T,y = 2*(Max points/side + Max dilation) * congestion, i.e.

plpe r(k’N) 2*(sx—u?+d) * Gx(k)

plpe.y(k,N) 2*(y lr/2 dy) * Gy(k)

-18 -

The total time for phase 2 of communications is again the sum of the two expressions multi-
plied by 2, giving
N
T spe = (850 ~i7 + d)*G, (k) + 4(S, uz ==+ d)*G,(k). 4.7
Comparison of (4.5) and (4.7) shows that the permutation strategy is always preferable
for partitions with low skewness, when §=<2. For §>2 and low to moderate depth of parti-
tioning, pipelining is better, since in this case the congestion G is small. Fig. 4.2 shows
graphically the ratio of the respective costs of these communication strategies, for a problem
where N = 4096 is the number of points on a side.

1024

8[|
5] 8988 NN
4 38829 IS N
2.00 === <025
1.74 o — 0.25 - 0.50
152] EJ 051 - 1.00
w
g 132 = HE 101200
f o
s LIS e BE 201 - 400
2 106 T
I B :
3o L B > 400
EmEs
1.04 [R
1.02 b by
- B
1.01

4 6 8 10121416 182022
depth of partitioning, k —»

Fig. 4.2 Ratio of cost of pipeline to permutation strategy for communicating processors.

5. Mapping onto Trees

In this section we consider the costs of mapping the partitions onto binary trees. At
first sight, tree structured multiprocessors would appear unsuitable for grid problems,
because of potential traffic bottlenecks at the root. However, they are natural to consider in
this case since we use a binary decomposition of the domain. Our results show that in the
worst case, with 2% processors, the performance of binary trees is within a factor of a con-

stant times k of the mesh performance.

-19.

In our model, the leaf nodes do all the computation, and the rest of the nodes are used
only for communication. Fig. 5.1 indicates how the partitions are matched with the leaf
nodes. Regions that are separated by the last depth k partitioning cut are mapped to adjacent

leaf nodes. Regions separated by the first partitioning cut are in different halves of the tree.

The solution algorithm starts with all leaf nodes computing on their respective sub-
domains. The communication step can be thought of as having k phases. In the first phase,
the leaf nodes send up all data that must pass through the root node. This includes all nodes
that border the first, depth 1 partition cut, and takes time proportional to the length of that
line. In the second phase, it sends data that rises no higher than the two children of the root
node. This communication is between nodes sharing one of the two depth 2 boundary seg-
ments, and takes time proportional to the length of the depth 2 segment. In the k* and last
phase, leaf nodes sharing a depth k boundary segment swap data. If each phase proceeds to
completion before the next phase starts, the communication time for phase j is proportional
to the length of the maximum depth j segment. The total communication time is then propor-
tional to the sum of these, and has latency k? through the tree. Instead, a leaf node can start
the next phase of communication as soon as it is ready. This pipelining gives both a smaller

communication time and a smaller latency through the tree of 2k—1. We define a hyperper-

k
imeter, (in analogy with the perimeter estimates for the meshes), as H (k) = 3 I, where
J=1

l; = any one line segment of depth j . Fig. 5.2 shows the maximum length hyperperimeter
in the given partitioning. If the communication is pipelined, the hyperperimeter is a con-
nected series of line segments. If instead, each communication phase proceeds to completion
before the next phase starts, the maximum hyperperimeter need not be connected. Instead of

the maximum of the sums, we would take the sum of the maximum length segments for each
depth j.

To have a fair comparison with the performance of meshes, we assume that each non-
leaf node can only receive or transmit in one direction over one link in one unit of time.
Thus, a node can receive 3 values on its input lines and transmit 3 values on its output lines
in 6 units of time. In the worst case therefore, buffers of size no greater than 2N are
required. The total communication cost is then 6-hyperperimeter + latency. For example,

for a uniform domain decomposition the maximum hyperperimeter is
N+%’-+%+ oty N N N3-2] Thus the total time |
-1

- k .
22 27 1 22 22

-20-

0123456?891011]21314"15
Fig. 5.1 A binary decomposition mapped onto a tree of processors.

_k
Tonorm(ksN) = 18N (1-2) + 2k—1. (5.1)

Clearly, this is much worse than the corresponding expression (4.4) for a mesh.

Fig. 5.2 Darkened hyperperimeter shows the maximum communication requirement in

the tree.

-21-

For a non-uniform partition, in the worst case the hyperperimeter can grow like
N+(N-1)+(N-2) - - -, except there must be at least 1 point per region. For k = 4, for
example, the hyperperimeter is N+(N-2)+(N—2)+(N~3). In general, the expression is

LS
H(k) = kN — 22 (k~3) — 3 for a total time of

k
T(k,N) = 6kn — 3-22(k=3)~9+(2k—~1) (5.2)
Notice that the latency is essentially irrelevant. In comparison with eq. (4.7) for nearest

neighbor meshes, where the leading term is 4N, the trees are a factor %—k- worse. However, a

naive analysis of trees gives a worst case bound of 6k*N, which is avoided here by using the

extremely ordered properties of the binary decomposition.

These communication estimates can be used to determine the optimal number of parti-
tions to use to solve a given sized problem, for a given efficiency. We do a sample calcula-
tion for the uniformly partitioned case. For an N by N square grid, the amount of computa-
tion to be done using 1 processor is W, = C;-N2. For a rather simple method, C, might

include 20 floating point operations per point. For 2% processors, the amount of work per
processor is

W, = C-N¥2% + C,-18N,

where we have dropped the lower order terms in the communication cost. The speedup is

-
W,
and the efficiency is
S 1
E==2= .
2k 1 -+ E_{_ 18'2k
C; N

For example, if the communication time for one item C, takes approximately the same time
as one floating point operation, then if N = 102, and k = 6, the efficiency is only 63%. For
an efficiency of 87%, k = 4, or 16 processors should be used.

-22 -

6. Communication Cost Analysis for Hypercubes.

An analysis similar to the one for nearest neighbor arrays can be performed for hyper-

k X
cubes. A nearest neighbor array of size 22 by 22 can be easily embedded in a hypercube of

dimension k using the well known Gray code mapping method. Fig. 6.1 shows a 16 x 16 pro-
cessor array that has been mapped onto a hypercube of dimension 8. All the edges of the
mesh but only some edges of the hypercube have been shown. Specifically, only the edges of
the hypercube that connect nodes that lie along one row and column of the 4nn mesh are
shown. These edges demonstrate the richer interconnection of the hypercube in relation to

the mesh. We would expect this richer interconnectibn_to reduce the communication over-
head when running our dissections.

Al
1]
/

T

{

Fig. 6.1 A 16 by 16 mesh mapped onto a hypercube of dimension 8. Only some hyper-
cube edges are shown,

-23.-

6.1. Mapping onto Hypercubes.

To map the dual graph of a partitioning onto a hypercube, first map the dual graph onto
a mesh, and then use the Gray codes to embed the mesh in the hypercube. The cardinality of
the mapping in this case is no better than that obtained when a 4nn mesh is used. However,

the richer interconnection of the hypercube leads to a smaller communication overhead when
a detailed analysis is done.

6.2. Communlcatlo:_l strategles.

As before, we assume a processor can send or receive only one item on one link at a
time. We believe this is an accurate model of a scalable multiprocessor. A hypercube that
can transmit on all links at one time is realizable only for a fixed dimension, but cannot be
extended to higher dimensions. We again use two different communication strategies. In the
case of the permutation strategy we take advantage of the logarithmic time to permute data

in a hypercube. For the pipelining strategy we exploit the logarithmic diameter of the hyper-
cube.

6.2.1. Permutation Strategy.

A hypercube of dimension k can perform any permutation of 2* elements, one per pro-
cessor, in 4k—1 time, under our communication assumptions [16]. We can do better than this
for our problem by noting that the edges connecting all the nodes in a single row or column
of a mesh embedded in a hypercube (see Fig. 6.1) form a sub-hypercube of dimension k/2.
Recall that data flows only along columns or rows during phase 2 of the communication step. -
Thus each permutation step takes at most 2k — 1 time. This is a worst case analysis, how-

ever, and may not be optimal, since it does not depend on the dilation of a given partitioning.
We obtain the following expressions, |

Tpcm,t(k9N) Sx-zz-.(u - 1)

Tptm,y(k,N) =S, _“(Zk - 1)

¥ ak2

for a total phaSc II time of
Thperm = 2%(2k=1)*(S, + S,) =—— 2"/2 . 6.1)

These correspond to (4.5) for meshes.

-24.-

6.2.2. Pipelining Strategy

In the case of hypercubes, the pipelining strategy utilizes the logarithmic diameter of

hypercubes to improve communication times. If we examine a contiguous subchain of d,
nodes in a row or column, it is easy to verify that there exists a tree of diameter no more

than 1+ [logz(d‘)] rooted at every node, that reaches every other node in the chain.. This

tree may be found by doing a breadth first search outwards from the desired node, staying
within the graph induced by the contiguous subchain. Thus the requirement of the pipelining

strategy that one node transmits to several other nodes in a subchain takes no more than
2+ [2103(:1,)] time. The problem of congestion remains. The amount of congestion is pre-

cisely the same as with 4nn meshes. This is because the problem and not the multicomputer
architecture determines the congestion. In the hypercube, a number of trees are pumping
data out towards their leaves in parallel, instead of a number of chains linearly pumping data

out towards their end points, as was the case for meshes. The time required is

Tmp..t(k,N)=(s,2—’Z; + 2log,(d,)+2) * G,(k)

Tppey(ksN)=(Sy= = + 2log,(d,)+2) * G, (k)
for a total time of

Thope = 2 (sx? + 2 log(dx)+2)G + 2:(5, m + 2:l0g(d,) +2)G,. 62)

Fig. 6.2 shows the ratio of the pipelining to permutation communication costs in a
hypercube. For any fixed skewness, the pipelining strategy is initially cheaper, but as with

meshes, the permutation strategy eventually wins with increasing depth of partitioning.

We compare the communication costs in a nearest neighbor array versus a hypercube in
Fig. 6.3. For each type of machine, the cost used is the cheaper of the permutation and pipe-
lining costs, for the given parameters. For a large range of skewness and low depth of parti-
tioning, the mesh is not much worse than a hypercube. For high depth of partitioning and
moderate skewness, the hypercube is much better, but its performance approaches that of a
mesh for very low and very high skewness. For large skewness, there is a region with a
large perimeter which takes a long time to transmit. The cost of this dominates both the

square root and logarithmic communication latencies of the mesh and hypercube respectively.

.925.

1024
512
256
128
64
32 o
16 R
8 B
S s e
200 I e <025
N
174 R 0.25 - 0.50
| e 051 - 1.00
! 152 == - : 2-00
4 1.32 -= 1.01 -2
o -
5 1.15 . B 201 -400
= 1.06 B > 400
1.05
1.04
1.02
1.01

4 6 8 10121416 18 20 22
depth of partitioning, k —»

Fig. 6.2 Ratio of cost of pipeline to permutation strategy for a hypercube.

7. Conclusions

We have shown how domains with non-uniform workloads can be partitioned to
equidistribute the computational load. For these types of grid problems, our binary decom-

positions can be mapped in a natural way onto trees, nearest neighbor meshes and hyper-

cubes.

For 4nn arrays, it is interesting that the map from the problem graph onto the array

graph has at least a 50% hit rate of edges. For an 8nn array this is 79%.

We further evaluated the performance by analyzing the traffic through these networks.
For an N by N problem using 2% processors in the worst cases, the communication overhead
using the pipelined strategy, was approximately 4N for hypercubes, 8N for meshes, and 6kN
for trees. The performance of trees was found to be better than a naive analysis would sug-
gest. While these results are encouraging, certainly a better approach is to partition using a
weighted sum of computational effort and communication costs. In addition, the more diffi-

cult problem of adaptive load balancing will have to confront the problems of modifying data

2.00
1.74
1.82
1.32
118
1.06
1.03
1.04
1.02
1.01

Skewness ——p

4 6 8

1012 14 16 18 20 22

depth of partitioning, Kk —»

H O

HEED

1.00

1.01 - 2.00
201 - 400
401 - 8.00
8.01 -16.00
>16.00

Fig. 6.3 Ratio of the communication cost of a nearest neighbor array and a hypercube.

structures within each processor. It will clearly be more efficient to tolerate small amounts of

load imbalance than to change partitions with every perturbation.

We believe the decomposition technique presented here would be beneficial even on

shared memory machines such as the Ultracomputer [10] or the IBM RP3 [14]. Our parti-

tionings allow efficient load balancing across processors, without the overhead of a fine-

grained queueing mechanism that would otherwise be necessary. They would also reduce

memory traffic and increase the cache hit rate.

Acknowledgements

It is a pleasure to acknowledge several helpful discussions with Bob Voigt, and to thank

Vijay Naik for pointing out reference [16].

-27-

References

[1]

[2]

3]

[4]

[5]

(6]

[7]

[8)

[9]

[10]

L. Adams and H. Jordan, "Is SOR Color-Blind?", ICASE Report No. 84-14, May,
1984,

D. Bai and A. Brandt, "Local Mesh Refinement Multilevel Techniques"”, Weizmann
Institute of Science Report, 1984.

R. Bank and A. Sherman, "Algorithmic Aspects of the Multi-level Solution o Finite Ele-

ment Equations”, CNA-144, Center for Numerical Analysis, University of Texas at
Austin, October 1978.

J. Bentley, "Multidimensional Divide-and-Conquer”, Comm. ACM 23, (1980).

M. Berger and A. Jameson, "Automatic Adaptive Mesh Refinement for the Euler
Equations”, AIAA Journal 23, (1985).

M. Berger and J. Oliger, "Adaptive Mesh Refinement for Hyperbolic Partial Differen-
tial Equations”, J. Comp. Phys. 53, (1984).

S. Bokhari, "On the Mapping Froblem", IEEE Trans. Computers C-30,3 (1981).

N. Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice-
Hall, 1974, '

D. Gannon and J. Van Rosendale, "Parallel Architectures for Iterative Methods on
Adaptive Block Structured Grids", in Elliptic Problem Solvers II, G. Birkhoff and A.
Schoenstadt, editors, Academic Press. 1984,

A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe, L. Rudolph and M. Snir, "The

NYU Ultracomputer - Designing an MIMD Shared Memory Parallel Machine", IEEE
Trans. Computers C-32,2 (1983).

[11]

[12]

[13]

[14]

(1]

[16]

[17]

.28 -

H. Jordan, "A Special Purpose Architecture for Finite Element Analysis”, in Proc. 1978
Conf. on Parallel Processing, Aug. 1978.

S. McCormick and J. Thomas, "The Fast Adaptive Composite Grid Method for Elliptic
Equations”. To appear in Math. Comp., 1986.

C. Papadimitriou and J. Ullman, "A Communication-Time Tradeoff", in IEEE Proc.
25" Annual Symp. on Foundations of Computer Science, (1984).

G. Pfister, et al, "The IBM Research Parallel Processor Prototype (RP3): Introduction
and Architecture”, Proc. 1985 Intl, Conf. Parallel Proc, (1985).

J. Van Rosendale, "Rapid Solution of Finite Element Equations on Locally Refined
Grids by Multi-level Methods", Ph.D. Thesis, University of Tllinois UTUC, May 1980.

A. Waksman, "A Permutation Network", J. ACM 15,1, (1968).

P. Zave and W. Rheinboldt, “Design of an Adaptive, Parallel Finite-Element System",
ACM Trans. Math. Software 5, (1979).

1. Report No. NASA CR-178024 2. Government Accession No. 3. Recipient’s Catalog No.

ICASE Report No. 85-55

4. Title and Subtitle 5. Report Date

November 1985

A PARTITIONING STRATEGY FOR NON-UNIFORM 6. Performing Organization Code
PROBLEMS ON MULTIPROCESSORS

12. Sponsoring Agéncy Name and Address

7. Author(s) 8. Performing Organization Report Na.
Marsha J. Berger and Shahid H. Bokhari 83=33
10. Work Unit No.
9. Performing Organization Name and Address
Institute for Computer Applications in Science 11. Contract or Grant No.
and Engineering
Mail Stop 132C, NASA Langley Research Center NASL=11070-—

13, Type of 'Repon and Period Covered

Contractor Report

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546

505=31=83=01

o

15. Supplementary Notes

Langley Technical Monitor: Submitted to IEEE Trans. Comput.
J. C. South Jr.
Final Report

16. Abstract

We consider the partitioning of a problem on a domain with unequal work
estimates in different subdomains in a way that balances the work load across
multiple processors. Such a problem arises for example in solving partial
differential equations using an adaptive method that places extra grid points
in certain subregions of the domain, We use a binary decomposition of the
domain to partition it into rectangles requiring equal computational effort.
We then study the communication costs of mapping this partitioning onto
different multiprocessors: a mesh—connected array, a tree machine and a
hypercube. The communication cost expressions can be used to determine the
optimal depth of the above partitioning.

17. Key Words {Suggested by Author{s}) 18. Distribution Statement
partitioning problem, multi- 59 - Mathematical & Computer Sciences
processors, load balancing, (General)
hypercubes, trees, meshes 62 - Computer Systems
Unclassified - Unlimited

19. Security Classif, (of this report) 20. Security Classif. (of this page) 21, No. of Pages 22. Price

Unclassified Unclassified 30 A03

For sale by the National Technical Information Service, Springfield, Virginia 22161

