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Abstract

The ability of k-ω models to predict compressible turbulent skin friction in hypersonic boundary
layers is investigated. Although uncorrected two-equation models can agree well with correlations
for hot-wall cases, they tend to perform progressively worse - particularly for cold walls - as the
Mach number is increased in the hypersonic regime. Simple algebraic models such as Baldwin-
Lomax perform better compared to experiments and correlations in these circumstances. Many of
the compressibility corrections described in the literature are summarized here. These include cor-
rections that have only a small influence fork-ω models, or that apply only in specific circumstances.
The most widely-used general corrections were designed for use with jet or mixing-layer free shear
flows. A less well-known dilatation-dissipation correction intended for boundary layer flows is also
tested, and is shown to agree reasonably well with the Baldwin-Lomax model at cold-wall condi-
tions. It exhibits a less dramatic influence than the free shear type of correction. There is clearly a
need for improved understanding and better overall physical modeling for turbulence models applied
to hypersonic boundary layer flows.

1 Introduction

Compressibility is typically not considered to be important for wall-bounded turbulent flows over a
wide range of Mach numbers. As stated in Wilcox [1] (p. 239): “Generally speaking, compressibil-
ity has a relatively small effect on turbulent eddies in wall-bounded flows. This appears to be true
for Mach numbers up to about 5 (and perhaps as high as 8), provided the flow doesn’t experience
large pressure changes over a short distance such as we might have across a shock wave. At sub-
sonic speeds, compressibility effects on eddies are usually unimportant for boundary layers provided
Tw/Te < 6.”

The hypothesis of Morkovin [2] states that the compressibility effects on turbulence can be ac-
counted for by mean density variations alone. For many applications, this hypothesis has proved
correct in that good results can be obtained for mean velocity and temperature fields using incom-
pressible turbulence models extended directly to compressible turbulent boundary layers. Further-
more, So et al. [3] have shown the Morkovin hypothesis to be equally applicable for prediction of
the turbulence field itself, for flat plate boundary layers up to a Mach number of at least 10. They
state: “there is indeed a dynamic similarity of the incompressible and compressible mean and turbu-
lence field, and the Morkovin hypothesis is valid for both fields.” In other words, for many subsonic
through hypersonic boundary layer applications, the incompressible forms of turbulence models
(with mean density variations accounted for) are expected to be reasonable approximations.

The most common classes of compressibility correction for Reynolds-averaged Navier-Stokes
(RANS) turbulence models were developed for the purpose of improving correlations with experi-
ment for free shear layer or jet spreading rates. See, e.g., Refs. 4–6. However, what we are concerned
with here is primarily (attached) hypersonic boundary layer flow. In this paper, compressibility cor-
rections (particularly applicable to boundary layer flows) from the literature are described. The
focus here is solely on thek-ω form of two-equation models. The claim that compressibility correc-
tions are not required for hypersonic boundary layer flows is investigated for a wide range of Mach
numbers and wall-temperature boundary conditions.

The paper is organized as follows. First, several standard forms of thek-ω model are given.
Then, compressibility corrections from the literature are described. Finally, results for hypersonic
boundary layer flows are shown, and conclusions are made.
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2 Standard Forms of Two-Equation Turbulence Models

2.1 Wilcox 1988

The original incompressible form of the Wilcoxk-ω model [7], referred to here as Wilcox88, is
written as:

Dk

Dt
=

P
ρ
− β∗ωk +

∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
(1)

Dω

Dt
=

γ

µt
P − βω2 +

∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
(2)

whereν = µ/ρ andνt = µt/ρ. The eddy viscosity is given by:

µt = ρ
k

ω
(3)

and the production termP is given by

P = −τij
∂ui

∂xj
(4)

where

τij = ρuiuj = −2µt

(
Sij −

1
3

∂uk

∂xk
δij

)
+

2
3
ρkδij (5)

Sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(6)

Note that the definition forτij varies in the literature: sometimes it is defined with the opposite
sign, and sometimes it is defined without the density. The definition does not matter as long as the
production term is defined appropriately in Eq. (4), with+2µtSij(∂ui/∂xj) as the leading term in
P. In Eq. (5), the−(1/3)(∂uk/∂xk)δij term and the(2/3)ρkδij term are often ignored for low-
speed flows (the former term makes the strain rate tensor traceless in 3-D flows), but these both may
be non-negligible for higher speed flows, or near stagnation regions. The constants areβ∗ = 0.09,
σk = 0.5, γ = 5/9, β = 3/40, andσω = 0.5.

For clarity, the production term is expanded out here:

P = 2µtSij
∂ui

∂xj
− 2

3
µt

(
∂uk

∂xk

)2

− 2
3
ρk

∂uk

∂xk
(7)

= µt

[(
∂ui

∂xj
+

∂uj

∂xi

)
∂ui

∂xj
− 2

3

(
∂uk

∂xk

)2
]
− 2

3
ρk

∂uk

∂xk
(8)

Note that

S2 ≡ 2SijSij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)(
∂ui

∂xj
+

∂uj

∂xi

)
=
(

∂ui

∂xj
+

∂uj

∂xi

)
∂ui

∂xj
(9)

So:
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P = µtS
2 − 2

3
µt

(
∂uk

∂xk

)2

− 2
3
ρk

∂uk

∂xk
(10)

= 2µtSijSij −
2
3
µt

(
∂uk

∂xk

)2

− 2
3
ρk

∂uk

∂xk
(11)

= 2µtSijSij −
2
3
ρk

∂uk

∂xk
(12)

whereSij is the traceless form of the strain rate tensor (in 3-D):

Sij = Sij −
1
3

∂uk

∂xk
δij (13)

2.2 Wilcox 2006

In 1998 Wilcox presented a modified version of thek-ω model [8]. Because it has been superseded,
this 1998 version is not described here. A newer form of the Wilcoxk-ω model [1, 9], referred to
here as Wilcox06, was developed to improve the predictive accuracy compared to the 1988 and 1998
versions for free shear flows and strongly separated flows (and hence be more competitive with the
Menter SST model, described in the next section). Wilcox06 is given by:

Dk

Dt
=

P
ρ
− β∗ωk +

∂

∂xj

[
(ν + σkν′t)

∂k

∂xj

]
(14)

Dω

Dt
=

γ

µt
P − βω2 +

∂

∂xj

[
(ν + σων′t)

∂ω

∂xj

]
+

σd

ω

∂k

∂xj

∂ω

∂xj
(15)

whereν′t = k/ω. The eddy viscosity is given by:

µt = ρ
k

ω̃
(16)

where

ω̃ = max

ω;Clim

√
2SijSij

β∗

 (17)

andClim = 7/8. The coefficients areγ = 13/25, β = β0fβ , β∗ = 0.09, σω = 0.5, σk = 3/5,
σd0 = 1/8, β0 = 0.0708, and

σd = 0
∂k

∂xj

∂ω

∂xj
≤ 0 (18)

σd = σd0
∂k

∂xj

∂ω

∂xj
> 0 (19)

Also:

fβ =
1 + 85χω

1 + 100χω
(20)

χω =

∣∣∣∣∣ΩijΩjkŜki

(β∗ω)3

∣∣∣∣∣ (21)
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whereŜki = Ski − 1
2 (∂um/∂xm)δkl. This form forcesχω = 0 for 2-D flow (both incompressible

and compressible). Thefβ parameter was added by Wilcox to account for the round-jet/plane-jet
anomaly [1]. For boundary layer applications, the vortex stretching parameterχω is sometimes
ignored (set to zero), yieldingfβ = 1.

2.3 Menter SST

The two-equation SST model of Menter [10] is written as:

Dk

Dt
=

P
ρ
− β∗ωk +

∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
(22)

Dω

Dt
=

γ

µt
P − βω2 +

∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
+ 2(1− F1)

σω2

ω

∂k

∂xj

∂ω

∂xj
(23)

The eddy viscosity is given by:

µt = ρ
a1k

max(a1ω, ΩF2)
(24)

wherea1 = 0.31, Ω is the magnitude of vorticity, andF1 andF2 are blending functions (given
below).

The “shear stress transport” (SST) part of the model is based on Bradshaw’s assumption that
the principal shear stress is proportional tok, via: τ12 = −ρa1k. From Eq. (5), the primary term
in eddy viscosity models is:τ12 = −2µtS12. In adverse pressure gradient boundary layer flows,
the standard method often leads to too much eddy viscosity (an overprediction ofτ12), inhibiting or
delaying separation. In these situations, it is better for the model to chooseτ12 based on Bradshaw’
assumption. Using:

ρa1k = 2µtS12 (25)

we find how to set the eddy viscosity in order to recover values corresponding with Bradshaw’s
assumption:

µt =
ρa1k

2S12
≈ ρa1k

Ω
(26)

Functionally, Eq. (24) chooses the minimum eddy viscosity between the standard one and that dic-
tated by Bradshaw’s assumption limited to within the boundary layer region.

In the SST model, there are two sets of coefficients, which are combined using a blending
function. The constants for set 1 areβ∗1 = 0.09, σk1 = 0.85, β1 = 0.075, σω1 = 0.5, and
γ1 = β1/β∗1 − σω1κ

2/
√

β∗1 ≈ 0.55317. The constants for set 2 areβ∗2 = 0.09, σk2 = 1.0,
β2 = 0.0828, σω2 = 0.856, andγ2 = β2/β∗2 − σω2κ

2/
√

β∗2 ≈ 0.44035. The constantκ is defined
asκ = 0.41. Set 1 and set 2 are blended via:

φ = F1φ1 + (1− F1)φ2 (27)

and

F1 = tanh(arg4
1) (28)

arg1 = min

[
max

( √
k

0.09ωd
;
500ν

d2ω

)
;

4ρσω2k

CDkωd2

]
(29)

CDkω = max
(

2ρσω2
1
ω

∂k

∂xj

∂ω

∂xj
; 10−20

)
(30)
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whered is the distance to the nearest wall. TheF2 term is given by:

F2 = tanh(arg2
2) (31)

arg2 = max

(
2

√
k

0.09ωd
;
500ν

d2ω

)
(32)

2.4 Other Considerations fork-ω Models

For situations in which compressibility is important (and shocks may be present), the turbulence
equations are sometimes solved in conservation form. For example, making use of the continuity
equation∂ρ/∂t + ∂(ρuj)/∂xj = 0, Eqs. (1) and (2) can be written:

∂(ρk)
∂t

+
∂(ρujk)

∂xj
= P − β∗ρωk +

∂

∂xj

[
(µ + σkµt)

∂k

∂xj

]
(33)

∂(ρω)
∂t

+
∂(ρujω)

∂xj
=

γρ

µt
P − βρω2 +

∂

∂xj

[
(µ + σωµt)

∂ω

∂xj

]
(34)

It is unclear whether the turbulence model equation form (conservative vs. non-conservative) makes
much difference in the common situation where the turbulence models are solved separately (loosely
coupled) from the conservative mean flow equations. But certainly if the equations are fully coupled,
all should be solved consistently in conservation form.

For flows in which the turbulent kinetic energy is non-negligible compared to the square of the
mean velocity, thek contributes to the conservation of total energy viaρE = ρ(e + 1

2uiui + k) (see
Wilcox [1]). Also, the molecular and turbulent diffusion ofk, typically modeled as

∂

∂xj

[
(µ + σkµt)

∂k

∂xj

]
(35)

in the mean flow energy equation [11], should be included. Furthermore, the perfect gas equation of
state then becomes [12]:p = (γ − 1)ρ(E − 1

2uiui − k). Because many CFD codes include other
(simpler) turbulence models beside two-equation models, for whichk is not available, the turbulent
kinetic energy contribution to total energy (and its explicit appearance in the energy equation and
equation of state) is often ignored.

In an often-used variant of thek-ω model, the production term is simplified by an approximation
that makes use of the local magnitude of vorticityΩ:

P = µtΩ2 − 2
3
ρkδij

∂ui

∂xj
= µtΩ2 − 2

3
ρk

∂uk

∂xk
(36)

This vorticity source term is often a good approximation of the exact source term in boundary layer
flows [13], and its use can avoid some numerical difficulties sometimes associated with the use of
the exact source term. Again, it is often common to ignore the(2/3)ρk term in the production source
of Eq. (36) for many applications, but this may have a non-negligible influence for high-speed flows.

The recommended wall boundary conditions fork-ω models are [10]:kwall = 0, ωwall =
60ν/[β1(∆d1)2]. In his boundary layer code, Wilcox [1] overwrites the computed value ofω with
the theoretical valueω ≈ 6ν/(β1y

2) at the first grid point off the surface (for smooth walls), but this
method of overwriting field variables rather than specifying boundary conditions is undesirable in
general-purpose Navier-Stokes codes. The farfield boundary conditions are more difficult to define
with confidence. Part of the problem is that the freestream levels are not preserved; they decay
rapidly (both due to the equations themselves as well as due to typically coarse grid spacing in the
farfield). This decay, which occurs fork-ε equations as well, makes the local “ambient” levels near
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the body a function of the farfield grid extent. In the freestream, thek-ω governing equations dictate
that the decay of eddy viscosity occurs according to:

µt = µt,∞

[
1 + βω∞

x

u∞

]1−(0.09/β)

(37)

wherex is the distance from the location where the boundary conditions are set. As discussed
in Spalart and Rumsey [14], real flow over external aerodynamic configurations has no reason to
obey the decay equations used to calibrate two-equation models in isotropic turbulence. In reality,
the kinetic energy (and eddy viscosity) relevant to the aircraft flow varies very little over the size
of the typical CFD domain. Thus, the behavior represented by decaying freestream turbulence is
not representative of reality. Ref. 14 describes the use of sustaining terms which, when added to
thek-ω equations, preserve the freestream levels without decay. Although maintaining freestream
turbulence is probably important from the point of view of numerical-transition consistency with
grid refinement, at high Reynolds numbers the effect is generally small. Therefore, results in this
paper will not use the sustaining terms.

For typical subsonic/transonic/supersonic applications, most CFD application codes have devel-
oped their own methodology for setting farfield boundary conditions fork andω, in order to yield
reasonable results across a broad range of problems. For example, in CFL3D (Krist et al. [15]), the
boundary conditions are:k/a2

∞ = 9 × 10−9 andωµ∞/(ρ∞a2
∞) = 1 × 10−6, which always gives

µt,∞/µ∞ = 0.009. Because the freestream turbulence level, Tu (in percent), is given by:

Tu,% = 100

√
2
3

k

u2
∞

(38)

this means that a fixedk/a2
∞ = 9 × 10−9 yields (for example):Tu = 0.0387% for M = 0.2,

0.0039% for M = 2.0, 0.0016% for M = 5.0, and0.0008% for M = 10.0. Thus, perhaps, it
makes better sense when solving over a broad range of Mach numbers to use a fixed Tu (i.e., fixed
k/u2

∞) in the freestream instead of fixedk/a2
∞). Otherwise higher Mach number cases will have an

even greater tendency to become laminar.

3 Compressibility Corrections

Wilcox [1] describes many of the compressible-flow closure approximations. A few of them are
already employed in most compressible flow CFD codes. For example, the Reynolds stress tensor of
Eq. (5) is already written appropriately for compressible flows. The most commonly used turbulent
heat-flux vector (qT = −(µt/Prt)∂h/∂xj , whereh is enthalpy andPrt is typically around0.9
for boundary layers), has been in common use in compressible flow CFD codes for many years.
However, the models for pressure-diffusion, pressure-dilatation, and pressure-work are all either
under development, very little is known, or proposed models are too complex or have not gained
wide acceptance (see, e.g., Zeman [16], Grasso and Falconi [17], and Yoshizawa et al. [18]). Many
of these compressibility effects are presumed to be small in boundary layers [1]. As a result, most
widely-used models do not include them. For example, Sarkar’s model for the pressure-dilatation
correction in compressible flows [19] is rarely employed for boundary-layer computations. See
also Wilcox [1] and Grasso and Falconi [17]. In the Sarkar model, the pressure-dilatation adds the
following term to thek-equation (in thek-ε model):

(−α2P + α3ρε)M2
T (39)

whereα2 = 0.15 (0.4 in Ref. 17),α3 = 0.2, MT = (
√

2k)/a, anda is the local speed of sound.
On the other hand, the Sarkar/Zeman compressibility corrections for dilatation-dissipation are

often employed for jets and free shear mixing layers, in spite of the fact that the reasoning behind
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them is fundamentally flawed [1]. See also Sarkar [20]. It turns out that dilatation-dissipation
is small or negligible, and mixing-layer compressibility effects likely manifest themselves in the
pressure-strain redistribution term. Properly formulated corrections are still being explored. In
the mean time, the existing dilatation-dissipation corrections provide the desired trends for mixing
layers, albeit for the wrong reasons, and so are still considered useful for those cases. It should also
be noted that dilatation-dissipation models typically account for the pressure-dilatation correction
[21], so when employing both corrections the coefficient in the dilatation-dissipation model must be
reduced by about a factor of two from its standard value [17].

Unfortunately, the Sarkar/Zeman compressibility corrections can have a detrimental effect on
many boundary-layer predictions (they tend to produce wall skin frictions that are too low, and can
also negatively impact the size of the predicted separation region [22]). Wilcox [1, 23] developed a
modification that significantly decreases this detrimental effect, and Brown [24] further attempted to
eliminate its potential impact in very high Mach number boundary layers by combining it with the
F1 function of Menter (Eq. (28)). In the Wilcox correction, the coefficients of thek-ω destruction
terms are modified as follows:

β∗c = β∗ [1 + ξ∗F (MT )] (40)

βc = β − β∗ξ∗F (MT ) (41)

where

F (MT ) =
(
M2

T −M2
T0

)
H (MT −MT0) (42)

andξ∗ = 2, MT0 = 0.25, MT = (
√

2k)/a,H(·) is the Heaviside function, anda is the local speed
of sound.

However, it has been observed1 that for cold-wall cases the skin friction is typically overpre-
dicted to such an extent that including a dilatation-dissipation correction can yield improved results,
although possibly for the wrong reasons. Zeman [16] noted that the apparent unimportance of the
pressure-dilatation and dilatation-dissipation in boundary layers is “only a question of degree.” He
found that as freestream Mach number increases and wall cooling increases, compressibility effects
become increasingly important. In the Zeman dilatation-dissipation correction for boundary layers,
the coefficients of thek-ω destruction terms are modified as in Eqs. (40) and (41), only nowF (MT )
is given by:

F (MT ) =

[
1− exp

(
−
(

MT −MT0

Λ

)2
)]

H (MT −MT0) (43)

with ξ∗ = 0.75, MT0 = 0.2, andΛ = 0.66.
In addition to a pressure-dilatation correction and a dilatation-dissipation correction, Grasso and

Falconi [17] also included a correction to thek-equation in theirk-ε model, due to the scalar product
of the Favre-velocity and the mean pressure gradient. They believed that this term may be influential
in regions of large pressure and density gradients.

Both Wilcox [1] and Huang et al. [25] mention that thek-ε form of the two-equation model
exhibits more deviation from the compressible law-of-the-wall thank-ω at high Mach numbers.
Wilcox also points out that thek-ε form is more problematic for adverse pressure-gradient wall-
bounded flows. Huang et al. proposed a possible iterative procedure to reproduce the expected
profile, and also mentioned that alternative forms such ask-(ε5/6/k) may reduce the sensitivity, but
neither of these proposals were widely used.

Catris et al. [26] extended the analysis of Huang et al. [25], and showed that specific corrections
to the diffusion terms are necessary to make the models consistent with the logarithmic law for

1White, J. A., private communication 2008.
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compressible boundary layers. The corrections were derived for a variety of models. Here, we are
only concerned with thek-ω form. For example, Eqs. (33) and (34) get altered as follows:

∂(ρk)
∂t

+
∂(ρujk)

∂xj
= P − β∗ρωk +

∂

∂xj

[
1
ρ

(µ + σkµt)
∂(ρk)
∂xj

]
(44)

∂(ρω)
∂t

+
∂(ρujω)

∂xj
=

γρ

µt
P − βρω2 +

∂

∂xj

[
1
√

ρ
(µ + σωµt)

∂(
√

ρω)
∂xj

]
(45)

where the only changes are in the diffusion terms. However, Catris et al. point out that fork-ω, the
difference in results due to modifying the diffusion terms is only very slight. This further confirms
the low sensitivity ofk-ω to compressibility effects in boundary layer flow, as described in Refs. 1
and 25.

A length-scale modification was proposed by Vuong and Coakley [27] and Huang and Coak-
ley [28], to reduce the magnitude of heat transfer for high-speed separated boundary layers near
reattachment. See also Brown [24] and Coratekin et al. [29]. In this correction, the length scale
going into the eddy viscosity is limited based on Bradshaw’s relationτt/ρ ∝ a1k and the mixing
length relatioǹ = κd. The turbulent length scale is limited by:

` = min

(
κd
√

a1;

√
k

ω

)
(46)

(Note that in Vuong and Coakley and Huang and Coakley, there is an additional factor ofCµ = 0.09
present due to the different way thatω is defined.) Becauseω =

√
k/`, the end result is that the

eddy viscosity is limited according to:

µt = min
(
µt,std; ρκd

√
a1k
)

(47)

whereµt,std is the eddy viscosity computed the usual way, via Eq. (3), (16), or (24). It should be
noted here that the assumption of constant turbulent Prandtl number has been recently questioned,
relative to its effect on heat flux for shock/boundary layer cases [30]. A variable turbulent Prandtl
number model was shown to improve heat flux near reattachment.

A rapid compression fix was implemented by Coakley and Huang [31] (see also Vuong and
Coakley [27], Coratekin et al. [29], and Forsythe et al. [32]). In this fix, the production term in the
ω-equation

γρ

µt
P = −γρ

µt
τij

∂ui

∂xj
=

γρ

µt

[
µtS

2 − 2
3
ρkδij

∂ui

∂xj

]
(48)

= γρS
2 − 2

3
γρω

∂uk

∂xk
(49)

is altered to read:

γρ

µt
P = γρS

2 − 4
3
ρω

∂uk

∂xk
(50)

where

S
2 ≡

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
∂ui

∂xj
=
(

∂ui

∂xj
+

∂uj

∂xi

)
∂ui

∂xj
− 2

3

(
∂uk

∂xk

)2

= S2 − 2
3

(
∂uk

∂xk

)2

(51)
or equivalently:
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S
2

= 2SijSij (52)

whereSij was defined earlier in Eq. (13). Thus, in this rapid compression fix, the original(2/3)γ
(which is close to1/3) gets increased to a fixed value of4/3 for linear deformations.

This modification was made in order to increase the size of computed separation bubble regions,
by insuring that the turbulent length scale does not change too quickly when undergoing rapid com-
pression. However, as discussed in Forsythe et al. [32], the shear-stress transport part of the Menter
SST model already improves correlations with experimental bubble size, so the ad hoc rapid com-
pression fix was not used for that model. The Wilcox06 model is designed with a similar stress
limiter modification, so this model, too, probably would not benefit from the rapid compression fix.

In summary, when considering high Mach number compressible boundary layer flows using
k-ω models, the conservation of total energy should be configured to include the contribution of
the turbulent kinetic energyk, and the mean flow energy equation should include the molecular
and turbulent diffusion ofk. It is sometimes common practice to ignore these effects, which is
certainly justified whenk is significantly smaller than the square of the mean velocity. Furthermore,
turbulent production should officially include the(2/3)ρk term, which multiplies∂uk/∂xk and
hence is identically zero for incompressible flows. Because this term typically has little effect over a
broad range of conditions, it is sometimes ignored, particularly when other approximations, limiting,
etc. are employed for turbulence production. Other than these considerations (which may or may
not be important, depending on the case), little extra appears to be called for – based on the currently
available literature – in terms of specific corrections for compressible Navier-Stokes codes applied
to boundary layer flows. Adopting the modified diffusion-term form of Catris et al. [26] has been
shown to make very little difference fork-ω models. The length-scale modification of Vuong and
Coakley [27] appears to only be important for the specific circumstance of predicting heat transfer
near reattachment after separation, but this flow feature may also be improved by adopting models
with variable turbulent Prandtl number. The rapid compression fix of Coakley and Huang [31] has
been negated by the more accepted stress limiters that appear in SST and Wilcox06.

However, Zeman [16] and practical experience indicates that the need for corrections in hyper-
sonic boundary layers becomes increasingly evident as Mach number increases, particularly for cold
walls. But the “traditional” Sarkar / Zeman / Wilcox fixes for free shear flows tend to over-correct
in many cases when applied to boundary layer flows. In the Results section, the influence of the
less-widely-used Zeman correction (formulated for boundary layer flows) is explored.

4 Results

4.1 Experimental Correlations for Skin Friction and Heat Transfer on a Flat
Plate

Wall skin friction is given by the formula:

Cf =
τw

2ρeU2
e

(53)

whereτw is the wall shear stressµw∂u/∂y|w and the subscript “e” represents “edge” or freestream
values. There have been a plethora of correlations for wall skin friction (and heat transfer) for the
flat plate over the years. See, for example, White [33], Peterson [34], and Hopkins and Inouye [35].
One of the reasons for the large number is the fact that there is a significant amount scatter in the
available experimental data, especially those with heat transfer, making certainty difficult. Many of
the skin friction correlations use a compressibility transformation idea:

Cf =
1
Fc

Cf,incomp(ReθFReθ
) (54)
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In other words, the formula for incompressibleCf,incomp, which is often expressed as a function of
Reθ, is instead computed using the altered variableReθFReθ

, and then divided by the functionFc.
A widely-used correlation forCf,incomp is the Karman-Schoenherr relation (see Roy and Blottner
[36]):

Cf,incomp =
1

log10 (2Reθ) [17.075log10 (2Reθ) + 14.832]
(55)

Here, we examine three correlations forCf : van Driest [37], Spalding and Chi [38], and White and
Christoph [33]. For each of these, theFc is defined the same way:

Fc =
Taw/Te − 1(

sin−1A + sin−1B
)2 (56)

whereTe represents the “edge” or freestream temperature, and

Taw = Te

(
1 + r

γ − 1
2

M2

)
(57)

The recovery factorr is taken to be0.9. This empirical factor is often introduced because in practice
energy recovery is not perfect. The numerator of Eq. (56) is thus simply1

2r(γ − 1)M2. TheA and
B are given by:

A =
2a2 − b

(b2 + 4a2)1/2
(58)

B =
b

(b2 + 4a2)1/2
(59)

where

a =
(

r
γ − 1

2
M2 Te

Tw

)1/2

(60)

b =
Taw

Tw
− 1 =

Te

Tw

(
1 + r

γ − 1
2

M2

)
− 1 (61)

A contour plot ofFc as a function of Mach number andlog10(Tw/Te) is shown in Fig. 1. A different
version of this same plot is also given in Spalding and Chi [38].

The three correlations differ in their definitions ofFReθ
:

FReθ
=

µe

µw
van Driest (62)

FReθ
=

(
Tw

Te

)−0.702(
Taw

Tw

)0.772

Spalding and Chi (63)

FReθ
=

√
Fc

(
µe

µw

)(
Te

Tw

)1/2

White and Christoph (64)

(Note the typographical error in White [33] in Table 7-3, where the termQ is inverted.) Both van
Driest and White/Christoph correlations are functions ofµe/µw. This quantity can be obtained via
Sutherland’s law (see White [33]):

µ = µ0

(
T

T0

)3/2
T0 + S′

T + S′
(65)
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where for airµ0 = 0.1716 mP,T0 = 491.6 R, andS′ = 199 R. Thus:

µe

µw
=
(

Tw

Te

)−3/2 (Tw/Te) + (S′/Te)
1 + (S′/Te)

(66)

Therefore, when Sutherland’s law is used, both of these correlations are functions not only of the
ratioTw/Te, but also of the freestream temperatureTe itself. For all of the work herein,Te is chosen
to be540 R. Contour plots ofFReθ

for the three correlations are shown in Figs. 2(a) - (c). Note that
a different version of Fig. 2(b) can also be found in Spalding and Chi [38].

Using Eq. (55) for theCf,incomp value, results for the compressibleCf can be computed for each
of the correlations. It turns out that results using van Driest and White/Christoph are very similar,
so only the results of van Driest and Spalding/Chi are shown in Fig. 3 for clarity of presentation.
Plots ofCf/Cf,incomp are shown here for a variety ofTw/Te ratios, as well as for adiabatic wall
temperature. In all cases, an assumedRex of 5 × 106 was used. In terms ofReθ, this translates
to approximatelyReθ = 14200, using the formulaReθ ≈ 0.0142Re

6/7
x from White [33]. For

the adiabatic case (for which the most experimental data exist), the correlations give nearly the
same result (black lines). But for fixed wall temperature ratios, the results can differ significantly.
Spalding and Chi [39] claim a smaller root mean square error compared to van Driest [37] using a
variety of experiments, but recall that relatively few experiments exist for walls with heat transfer.
Plots of compressibleCf vs. Rex are shown in Figs. 4(a) and (b) for several specific cases. In
Fig. 4(a), the results of the correlations agree well, whereas in Fig. 4(b) the correlations are seen to
differ by as much as 50% or more. The main point here is that there is some uncertainty regarding
Cf for walls with heat transfer, so it is more difficult to validate (or invalidate) turbulence models
for these cases with confidence. In the literature, most people tend to compare with the van Driest
correlation, but others have since developed correlations that may work better in specific cases. For
example, Huang et al. [40] developed a method for which skin friction for strongly cooled walls falls
below van Driest, in better agreement with data.

The wall heat flux is often expressed [33] in terms of the Stanton number:

St = Ch =
qw

ρeUecp(Taw − Tw)
(67)

where the heat flow at the wallqw = −k(∂T/∂y)|w. The so-called Reynolds analogy is usually
used to relate the local wall heat flux in terms of skin friction:

St ≈ 1
2
CfRaf (68)

whereRaf is the Reynolds analogy factor. This factor generally lies in the range0.9 < Raf < 1.3,
and is believed to be close to unity for hypersonic flows [36] and for very cold walls [22]. Thus,St
is directly proportional toCf , at approximately half its numerical value (with appropriate sign).

4.2 CFD Results on a Flat Plate

In order to test the ability ofk-ω turbulence models to predict compressible boundary layer flow,
computations were performed for flow over a flat plate in zero pressure gradient for a variety of flow
conditions. Most of the computations were performed using the CFL3D code [15]. Note that in
CFL3D, the turbulence models are decoupled from the mean flow equations,k is not included in
the definition of total energy, and diffusion ofk does not appear in the mean flow energy equation
for its models tested here. Furthermore, for the current applications, Eq. (36) is used for production,
with the(2/3)ρk term ignored. (Some computations were tried with this term included, and it was
found to make little difference even forM = 10 cases.) The(2/3)ρk term was also neglected in
τij , Eq. (5). For comparison, several results were also obtained using the VULCAN code [41], in
which the turbulence models are fully coupled to the mean flow equations and no approximations
are made forτij or the turbulence production terms.
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Table 1. Flat plate cases computed

Mach Tw/T∞ Tw/Taw,ideal wall type
0.2 1.008 1.0 adiabatic
5.0 6.0 1.0 adiabatic
10.0 21.0 1.0 adiabatic
0.2 5.0 4.96 hot
2.0 1.0 0.556 cold
2.0 2.0 1.11 hot
5.0 1.0 0.167 cold
5.0 3.0 0.5 cold
5.0 20.0 3.33 hot
10.0 1.0 0.0476 cold
10.0 10.0 0.476 cold
10.0 40.0 1.905 hot

The majority of runs were performed using the Menter SST model. Full Navier-Stokes (as op-
posed to thin-layer) was employed. For subsonic Mach numbers, the inflow boundary condition set
total pressure and total temperature conditions (according to the particular Mach number). The pres-
sure was extrapolated from the interior of the domain, and the remaining variables were determined
from the extrapolated pressure and the input data, using isentropic relations. The outflow boundary
condition setp/p∞ = 1 and extrapolated all other quantities from the interior of the domain. For
supersonic Mach numbers, the inflow boundary condition set all primitive variables, and the outflow
boundary condition extrapolated all variables from the interior of the domain. In all cases the top
boundary, located a nondimensional distancey = 1 from the wall, used a farfield Riemann invariant
boundary condition. The wall boundary condition enforced no slip, and set temperature either (1)
according to a desiredTw/T∞, or (2) according toTw = Taw,ideal, whereTaw,ideal is the ideal
adiabatic wall temperature computed fromTaw,ideal = T∞(1 + 1

2 (γ − 1)M2). This latter method
yielded almost the same results as enforcing zero wall temperature gradient, which insured no heat
flux at the wall. The freestreamT∞ was taken to be540 R.

As mentioned earlier, the wall boundary conditions for turbulent quantities were those recom-
mended by Menter [10]. Although not shown, the boundary condition onωwall was varied by a
factor of10 in both directions, but this change did not have an appreciable influence on the results.
The farfield boundary conditions for turbulent quantities were determined fromTu = 0.08165%
andµt,∞/µ∞ = (2× 10−7)Re. For the results to be shown,Re = 107 over the length of a plate 2
nondimensional units long. Thus,Re per unit length was5× 106 andµt,∞/µ∞ = 1.0.

The finest grid employed was273× 193, with 225 points on the plate and49 points leading up
to the plate (where symmetry was imposed). Nondimensional minimum normal spacing at the wall
was approximately∆y = 1× 10−6, yielding averagey+ = 0.2 (or less for higher Mach numbers).
There was streamwise clustering near the plate leading edge, as shown in Fig. 5, for which only
every fourth grid point is shown for clarity. For supersonic Mach number cases, it was necessary to
employ a flux limiter in the computations.

Table 1 summarizes the cases computed. For the purposes of this study, the wall temperature
is defined as “hot” or “cold” depending on whether it is above or below the ideal adiabatic wall
temperature. Note that theM = 2, Tw/T∞ = 2 case is only slightly hot, with wall temperature
only slightly above adiabatic.

A grid study for theM = 5 adiabatic wall case was conducted using the SST model on the
273×193 (fine grid), along with two successively coarser grids for which every other grid point was
removed in each coordinate direction (medium:137 × 97; coarse:69 × 49). Results are shown in
Fig. 6. The biggest differences were near the plate leading edge, particularly for the coarse level. But
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over most of the plate the medium and fine grids yielded very close results. For example, between
Rex = 5 × 106 and the trailing edge of the plate, theCf results on the medium and fine grids
differed by less than0.2%.

In order to get an idea about the magnitude of the computed turbulent kinetic energy relative to
the square of the velocity, profiles of localk/U2 are shown as a function ofy in the boundary layer
at thex-location whereRex = 5× 106 for several different cases in Fig. 7(a). The maximum level
was only about 3%. Fig. 7(b) shows the value of another quantity sometimes used to ascertain the
compressibility effects of turbulence (albeit most commonly for free shear layer applications) [21],
the turbulence Mach numberMT = (

√
2k)/a, wherea is the local speed of sound. The highest

levels in the boundary layer at a given freestream Mach number occur for the cold-wall cases. For
example, forM = 10, Tw/T∞ = 1, the peakMT reaches approximately0.5.

Results for the adiabatic wall cases using the finest grid are shown in comparison with van Driest
and Spalding/Chi correlations in Fig. 8. The CFD results captured the correct trends compared to
theory, although the tendency of numerically-induced transition in the CFD to occur further aft
with increasing Mach number should be noted [42]. Compared to the correlations, the SST model
slightly underpredicted turbulent skin friction for the subsonic Mach number case and overpredicted
the correlations for the hypersonic Mach numbers. The Wilcox06 model produced similarCf as
SST for all three cases, although it had a greater tendency to remain laminar than SST as the Mach
number increased. (Although not shown, increasing freestream Tu could shift the transition location
for Wilcox06 forward.)

Effects of a different code (VULCAN with SST model), as well as effects of including two
different compressibility corrections, are shown in Fig. 9. The VULCAN results are seen to be
relatively close to the CFL3D results on the same grid, yielding slightly lowerCf levels. Regarding
the compressibility corrections, generally speaking, for adiabatic wall with freestreamM ≤ 10 there
is only a fairly small influence on the results. Both the Wilcox and the Zeman corrections reduce the
skin friction, with the Wilcox correction having the larger effect. Note that Wilcox [1] reported a
larger decrease inCf with the Zeman correction because he used different coefficients (his version
of the Zeman model was designed for free shear flows).

Results for two cold-wall cases are shown in Fig. 10. Again, both CFL3D and VULCAN (using
SST) yield skin friction levels that are very close. These SST results are significantly high in com-
parison with the correlations. It is generally well-known that simple algebraic turbulence models
such as Baldwin-Lomax [43] can perform reasonably well for attached hypersonic boundary layer
flows, provided that the definition ofy+ in the van Driest damping function uses local values forρ
andµ (rather than wall values) [44], as follows:y+ =

√
(ρτw)y/µ. As shown here, using this ver-

sion of Baldwin-Lomax for the two cold-wall cases yields better predictions than SST, in reasonably
good agreement with the van Driest correlation. Employing SST with the Wilcox compressibility
correction (SST + Wilcox cc) lowers skin friction significantly. Both CFL3D and VULCAN produce
nearly identical results. Although results still lie within the band defined by the two correlations, the
SST + Wilcox cc results are quite a bit lower than those of Baldwin-Lomax. Results with the Zeman
correction agree better with Baldwin-Lomax results and the van Driest correlation. As shown in
Fig. 11, the Baldwin-Lomax model and SST + Zeman cc produce lower eddy viscosity values than
uncorrected SST very near the wall (corresponding toy+ < O(100)). The lower levels produce a
“less turbulent” profile, and consequently lower wall skin friction.

Results for two hot-wall cases are shown in Fig. 12. In these cases, the results using SST gener-
ally fell within the shaded band defined by the two correlations; forM = 0.2, Tw/T∞ = 5 results
were closer to the van Driest correlation, and forM = 5, Tw/T∞ = 20 results were closer to the
Spalding/Chi correlation. For these cases, the compressibility corrections made almost no difference
in the results.

Using the same plot format shown earlier in Fig. 3, CFD results using the SST model (without
and with the Zeman compressibility correction) for various cases in terms of the ratioCf/Cf,incomp

are over-plotted alongside the correlations forRex = 5× 106 in Figs. 13(a) and (b). In all cases the
Cf,incomp used was the CFD result forM = 0.2 with adiabatic wall temperature. The SST results
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are given by the large filled-in symbols. The trends discussed above can be clearly discerned in this
plot. Although overall the general effects of Mach number and wall temperature on skin friction
can bequalitativelypredicted by SST with no explicit compressibility correction, Fig. 13(a) shows
that adiabatic and cold-wall cases are consistently overpredictedquantitativelyas Mach number
is increased (up to about30% atM = 10 for adiabatic walls, and up to as much as40 − 100% at
M = 10 for cold walls). On the other hand, hot-wall cases yielded results that lay in or near the band
defined by the two correlations. Fig. 13(b) shows that SST results using the Zeman compressibility
correction are significantly closer to the correlations.

Results can also be plotted as a function ofTw/Taw,ideal. Fig. 14 shows van Driest and Spald-
ing/Chi correlations for bothM = 5 andM = 10, along with current SST results. The SST results
with no compressibility correction mostly lie above the shaded regions defined by the two corre-
lations, except for the hot wall cases where results start to fall below the Spalding/Chi correlation.
When the Zeman compressibility correction is employed, cold wall results are improved relative to
the correlations, while hot wall results are essentially not changed at all.

5 Conclusions

The most widely-used compressibility corrections fork-ω models for high Mach number boundary
layer flows are based on improvements intended for free shear applications. As such, these correc-
tions are often unacceptable for boundary layer flows, and many researchers prefer to employ no
corrections at all. Although it should be borne in mind that there is some uncertainty in the theo-
retical correlations (especially at Mach numbers well above 5), it appears that the uncorrectedk-ω
models perform progressively worse – particularly for cold walls – as the Mach number is increased
in the hypersonic regime. As is well-known, simple algebraic models such as Baldwin-Lomax per-
form better compared to experiment and correlations in these circumstances.

There is still no clarity about whether dilatation-dissipation and pressure-dilatation effects are
important in boundary layers or not, particularly at the higher Mach numbers and for cold-wall
hypersonic cases. Anything that reduces near-wall eddy viscosity in these situations can help obtain
better agreement with correlations, but there is currently no strong physical argument for choosing
one “fix” over another. Corrections designed for improving free shear flows tend to over-correct in
the boundary layer and yield wall skin friction (and heat transfer) values that are too low. In this
paper, it was shown that a dilatation-dissipation correction designed by Zeman specifically for use
in boundary layer flows works reasonably well for cold wall cases. Its influence is smaller in the
boundary layer than the popular Wilcox correction.

The physical modeling needed to improve wall skin friction predictions in highly compressible
boundary layer flows has yet to be formulated and accepted fork-ω turbulence models. Currently,
omitting explicit compressibility corrections works reasonably well only for lower Mach numbers
(e.g.,M < 5) or for hot-wall cases. Using the Zeman compressibility correction (formulated for
boundary layers) improves high-Mach-number cold wall results, but it would be an insufficient
correction for free shear flows. Better overall physics-based compressible turbulence modeling is
clearly needed.
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Figure 1. Contours ofFc using Eq. (56).
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Figure 2. Contours ofFReθ
using (a) Eq. (62), (b) Eq. (63), and (c) Eq. (64).
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Figure 3. Theoretical compressible wall skin friction compared to incompressible level forRex =
5× 106, Te = 540 R, using two different correlations.

Figure 4. Theoretical values of compressible wall skin friction as a function ofRex; (a) for selected
cases where the van Driest (solid lines) and Spalding/Chi (dashed lines) correlations agree well, (b)
for selected cases where the correlations differ.
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Figure 5. Flat plate grid with every fourth grid point removed in each coordinate direction for clarity.
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Figure 6. Wall skin friction coefficient grid study forM = 5, adiabatic wall, using SST on 3
successive grid sizes.

Figure 7. Profiles of local turbulent quantities in the boundary layer atRex = 5× 106, SST model:
(a)k/U2, (b) MT = (

√
2k)/a.
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Figure 8. Wall skin friction coefficients for adiabatic wall cases.

Figure 9. Effect of code and Wilcox/Zeman compressibility corrections on wall skin friction coeffi-
cients for adiabatic wall cases.
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Figure 10. Wall skin friction coefficients for two cold-wall wall cases.

Figure 11. Profiles of nondimensionalµt for M = 5 andM = 10 cases,Tw/T∞ = 1, at Rex =
5× 106.
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Figure 12. Wall skin friction coefficients for two hot-wall wall cases.

Figure 13. Theoretical compressible wall skin friction compared to incompressible level as a func-
tion of Mach number forRex = 5 × 106, Te = 540 R, including (a) SST (no compressibility
correction), and (b) SST (Zeman compressibility correction).
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Figure 14. Compressible wall skin friction as a function ofTw/Taw,ideal for Rex = 5 × 106,
Te = 540 R, with SST results included.
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