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Abstract

A computational study of the separated flow through a 2-D asymmetric subsonic diffuser has been
performed. The Wind Computational Fluid Dynamics code is used to predict the separation and
reattachment behavior for an incompressible diffuser flow. The diffuser inlet flow is a two-dimensional,
turbulent, and fully-developed channel flow with a Reynolds number of 20,000 based on the centerline
velocity and the channel height. Wind solutions computed with the Menter SST, Chien &-¢, Spalart-
Allmaras and Explicit Algebraic Reynolds Stress turbulence models are compared with experimentally
measured velocity profiles and skin friction along the upper and lower walls. In addition to the turbulence
model study, the effects of grid resolution and use of wall functions were investigated. The grid studies
varied the number of grid points across the diffuser and varied the initial wall spacing from y" = 0.2 to 60.
The wall function study assessed the applicability of wall functions for analysis of separated flow. The
SST and Explicit Algebraic Stress models provide the best agreement with experimental data, and it is
recommended wall functions should only be used with a high level of caution.

Introduction

Diffusers are integral parts of jet engines and many other devices that depend on fluid flow.
Performance of a propulsion system as a whole is dependent on the efficiency of diffusers. Identification
of separation within diffusers is important because separation increases drag and causes inflow distortion
to engine fans and compressors. Diffuser flow computations are a particularly challenging task for
Computation Fluid Dynamics (CFD) simulations due to adverse pressure gradients created by the
decelerating flow, frequently resulting in separation. These separations are highly dependent on local
turbulence level, viscous wall effects, and diffuser pressure ratio, which are functions of the velocity
gradients and the physical geometry. Thus, turbulence modeling and geometry modeling become
dominant factors that affect the ability of CFD to accurately predict flow through diffusers.

Obi et al. (ref. 1) performed extensive experimental investigations for an asymmetric planar diffuser
using Laser Doppler Velocimetry to measure mean velocity and Reynolds stress components at axial
stations throughout, and compared them to computations using a variety of turbulence models. Obi found
that representing the anisotropy of Reynolds Stress (or Second Moment Closure) based k-¢ turbulence
models is crucial for capturing the turbulent flow separation in these types of problems.

Buice and Eaton (ref. 2) repeated the experimental work of Obi et al. (ref. 1) using a larger aspect
ratio experimental apparatus, paying extra attention to the treatment of the endwall boundary layers. In
addition, the straight tailpipe section of the diffuser was extended to facilitate an examination of the
boundary layer downstream of reattachment.
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The present work aims to reproduce Buice and Eaton’s work (ref. 2) computationally, focusing on
four aspects of CFD modeling and their effects on the diffuser flow computations. The first part focuses
on the effect of the total number of grid points on the solution. The second part focuses on a y* variation
and its effect on computed skin friction and velocity profiles with the SST turbulence model. The third
part addresses a turbulence model study in which velocity profiles and skin friction are computed at
nominal " values of 0.2 with several available turbulence models in Wind. Finally, the fourth part
focuses on the wall function feature in Wind, which allows the analyst to use fewer grid points when
modeling the boundary layer, decreasing the computational time required to obtain solutions. The Buice
and Eaton diffuser case allows the performance of Wind’s wall function and turbulence model
implementations to be assessed for a well-defined benchmark separated flow.

Numerical Model

Calculations were obtained with Wind (ref. 3) version 5, a general purpose 3-D Computational Fluid
Dynamics (CFD) code which solves the turbulent, time-dependent, Reynolds-Averaged Navier-Stokes
(RANS) equations using a node-centered finite volume approach. Wind is the production solver of the
NPARC Alliance, a joint code development group of NASA Glenn Research Center, USAF Arnold
Engineering Development Center, and the Boeing Company. In addition to perfect gas capabilities, Wind
can also solve the equations which govern equilibrium air, non-equilibrium air, and frozen gas chemistry.
For this study, the solver was configured to run with the following specifications:

2-D flow

local time stepping (steady-state)

Second-order Roe upwind scheme with modification for stretched grids

Spalart-Allmaras (ref. 4) (S-A), Menter Shear Stress Transport (ref. 5) (SST), Chien k-¢ (ref. 6),
and Rumsey-Gatski k-&¢ Explicit Algebraic Reynolds Stress (refs. 7 and 8) (EASM) turbulence
models

e Perfect gas, air, y = 1.4

The Spalart-Allmaras turbulence model has been shown to perform well for attached and separated
wall bounded flows. A rotation and curvature correction (ref. 9) is available for the Spalart-Allmaras
model to account for streamline rotation and curvature, especially in duct flows. The Chien k- model is a
widely used variant of the standard k- model with near wall treatments allowing turbulence, &, and
dissipation, €, to be set to zero at no-slip walls, facilitating treatment within CFD frameworks. A variable
C, correction (ref. 10) available with the Chien k- model is designed to improve performance in adverse
pressure gradient flows. The SST model combines the k-@ formulation to treat inner regions of wall
boundary layers with a transformed k-¢ formulation to handle the outer, mixing regions of the flow. The
k-& based EASM has been recently installed in Wind to better predict flows with strong anistropy and is
also being used as a foundation for future turbulence model development work. The EASM is derived
from a simplified form of the Reynolds Stress transport equation, which eliminates the limitations of the
Boussinesq approximation and enables the model to predict anistropy among the Reynolds normal
stresses. However, due to the algebraic nature of the resulting turbulent stress expressions, EASM is not
significantly more computationally expensive than linear two-equation models.

The S-A and SST solutions were started from scratch. The k-¢ calculations were started from the SST
solutions. Lastly, the EASM solution was started from a k-¢ solution.

The diffuser flow boundary conditions are shown in table 1. The inflow conditions were specified
using Wind’s Arbitrary Inflow boundary condition. Total pressure and temperature were held constant at
the inflow boundaries. The static pressure across the outflow boundary was specified to that measured in
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TABLE 1.—DIFFUSER FLOW BOUNDARY CONDITIONS

Inflow total pressure 14.7 Ib/in’
Inflow total temperature 530°R
Inflow Mach number 0.0588981
Outflow static pressure 14.65 Ib/in’
Turbulence (% of freestream velocity) 0.00014

the experiment (14.65 Ib/in”). The upstream channel was made sufficiently long to obtain fully developed
turbulent channel flow at the inlet of the diffuser section.

The solutions were run with a CFL number of five. A typical solution took approximately 130,000
iterations to converge. The convergence criterion consisted of monitoring skin friction values and velocity
profiles for changes with iteration, reduction of several orders of magnitude in the residual error, and
conservation of mass within the diffuser.

Wall Functions

The Wind code uses the White-Christoph law of the wall (ref. 11) in its wall function formulation.
The law of the wall assumes that, for attached flow, the flow in the logarithmic portion of the boundary
layer behaves according to:

U*
+ == _ + 1
U A (y ) (1)
The non-dimensional characteristic wall coordinate, y", is defined by:

*
_ YU pw )
Haw

y+

where y is the dimensional distance between the wall and the first grid point off the wall, p is the absolute
viscosity obtained from Sutherland’s law, and p is the density. The wall friction velocity, U, is defined
as:

Ut = ;—W 3)
w

where 7, is the shear stress at the wall. The use of a wall function in a computational flow solver allows
fewer points to be placed near the wall: whereas points are typically packed to y'~1 for a wall integration
grid, initial grid point spacing typically ranges from y* = 15 to y" = 100 near the wall in a wall function
grid. The effect of the initial grid point spacing is investigated in this paper. Wall functions can enable
substantial savings in computational costs: increasing the initial grid point spacing reduces the total
number of grid points and increases the limiting time stepping which usually corresponds to the smallest
computational cell.

Computational Grids and Diffuser Geometry
Diffuser Geometry

The computational domain models the experimental apparatus of Buice and Eaton (ref. 2) (see fig. 1).
The diffuser apparatus can be divided into three sections: an inflow channel, the asymmetric diffuser, and
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an outflow channel. Buice and Eaton used the channel height, H = 0.591 inches, as their reference length.
The inflow channel section has a length of 110H. The diffuser has a 10 degree expansion angle and is
21H in length. At the end of the expansion, the diffuser channel is 4.7H in height. The axial station
corresponding to the beginning of the expansion section is set as x/H = 0.

Baseline Grid

Two-dimensional, structured, computational grids were generated for all cases using Pointwise, Inc.’s
Gridgen (ref. 12) software. Figure 2(a) shows a trace of the entire computational domain. Figure 2(b)
shows detail of the diffuser section highlighting the baseline 341x81 grid details (initial wall spacing set
toy =0.2).

Two types of grid dependence studies were completed to define the baseline grid. The first study
examined the overall grid resolution in terms of the total number of points spread vertically across the
domain. The wall spacing for each of these grids was held constant, and the grids have the same number
of axial points, 341. The second grid dependence study investigated the grid resolution, or spacing, near
the wall, termed the “y" study,” with each grid having the same number of points vertically and axially
across the domain.

In order to determine the overall grid resolution required to get a grid independent solution, a grid
sensitivity study was conducted on three different grid levels; the coarse being at 341x41, medium at
341x81, and fine at 341x161. The grid point spacing in the transverse (j-direction) decreases as more
points are placed transversely across the diffuser. At a particular location in the axial direction
(i-direction), the grid fineness can be measured as the maximum grid point spacing in the transverse
direction, normalized by the local height of the diffuser:

()/i,j — Vi, j-1 ) max

fineness; =

“)

Yi, jmax ~ Vi, jmin

For the coarse grid, the value of fineness; ranges from 0.075 to 0.097. The grid fineness is
fineness; = 0.032 to 0.043 for the medium grid and fineness; = 0.013 to 0.019 for the fine grid. The
average y value at the wall for this study was one, and results were computed with the SST turbulence
model. The medium grid and fine grid solutions were essentially identical, so the medium grid was
selected for the calculations in this paper. The specific results of the grid dependence study will be
discussed in the results section.

The y* study examined grid spacing at the wall ranging from a y* 0of 0.2 to 15 for the 341x81 grid.
Recall that " is the non-dimensional characteristic wall coordinate defined in equation (2). When
calculating U in equation (3), the shear stress at the wall, 7,,, is defined as:

Ty =5:Cs-p-UZ (5)

where Cyis the skin friction coefficient. In the fully-developed entrance channel flow (x/H~0), Buice and
Eaton (ref. 2) found C,= 0.0061. This Crvalue was used to determine initial wall spacing. The bulk
velocity in the channel, U,, defined by:

(6)

where U is the axial velocity as a function of the vertical position. By conservation of mass for this
incompressible flow, this integral may be evaluated anywhere in the constant area duct to yield the same
value of U,. Again, the experimental data from Buice and Eaton (ref. 2) was assumed, in which

NASA/TM—2005-213894 4



U, = 65.6 ft/s (20 m/s). As is the convention, a constant initial grid point spacing was used for the entire
grid, insuring that the grid is sufficiently packed across the laminar sublayer at all points. Results for the
y" study are discussed in more detail in the results section.

Wall Function Grids

A total of six cases were run using wall functions on the Buice and Eaton diffuser. These cases were
divided into two sets of three grids; in which each set included grids with a specified spacing between the
wall and the first grid point adjacent to the wall, or “initial grid point spacing.” With the wall function
option turned on, Wind implements wall functions when this second grid point has a calculated y* value
greater than 15 (ref. 13). For portions of the grid where the initial grid point spacing is less than y"= 15,
wall integration is used even though the generally accepted higher-end values for use of wall integration
is y'<5.

This study examined wall function grids with initial grid point spacing at the wall of y" =15, y" = 30,
and y" = 60. These values of y" were chosen to assess Wind’s wall function capabilities across several
positions in the boundary layer logarithmic region. Similar to what was discussed earlier, values of Crand
U, were assumed from the Buice and Eaton data to calculate the initial grid point spacing for a given y*
value using equations (2), (3), (5), and (6). Table 2 lists the initial grid point spacing for y* values of 15,
30, and 60. It is important to note that because the initial grid point physical spacing was held constant
through the entire grid, the y* value of the initial grid point varies with flow properties in equation (2). It
will later be shown that the initial grid point spacing of y* = 15 allowed this study to observe what
happens when Wind switches between wall functions and wall integration.

TABLE 2.—INITIAL GRID POINT SPACING AT WALL

. + Initial Grid Point Spacing Number of Points in
Nominal y* value s
[ft] y-direction
Baseline (0.2) 8.72e-6 81
15 6.41e-4 63
30 1.28e-3 55
60 2.57e-3 45

As mentioned previously, two groups of three grids were used in the wall function portion of this
study. The first group followed the method of creating wall function grids as recommended by the Wind
User’s Guide (ref. 14). For this method, the grid points between the wall and the grid point at a particular
y" value are removed from the baseline grid. The Wind utility cfsubset was used to remove those points.
The resulting number of points across the diffuser grid for each y" is given in table 2. This first set of
grids shall be referred to as the “log layer packed” (LLP) wall function grids. Figures 3(a) and (b) show
the baseline grid and a LLP wall function grid. The second group of grids was created by specifying the
initial grid point spacing and redistributing the remaining points with the grid generator in a similar
manner as typically done when creating a wall integration grid. These grids shall be referred to as the “log
layer unpacked” (LLU) wall function grids, because the grid points are not packed tightly through the log
layer in comparison to the baseline wall integration or LLP wall function grids. Figure 3(c) shows a LLU
wall function grid and can be compared to the wall integration grid and LLP wall function grid in
figures 3(a) and (b). This method of creating wall function grids is often used for simplicity, and it is
important to assess the performance of this type of wall function grid. For consistency, the LLU wall
function grids use the same number of grid points as with the LLP wall function grids. Details of the six
cases run as part of the wall function study are given in table 3.
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TABLE 3.—WALL FUNCTION STUDY CASE DETAILS. “LLP” = LOG LAYER PACKED;
“LLU” = LOG LAYER UNPACKED

Case LLP, LLP, LLP, LLU, LLU, [ LLU,
y =151y =30 |y =60]| y =15 | y =30 | y =60

Nominal y" initial spacing 15 30 60 15 30 60

LLP wall function grid X X X

LLU wall function grid X X X

Grid points in x-direction 371 371 371 371 371 371

Grid points in y-direction 63 55 45 63 55 45

Post Processing

In order to provide a direct comparison with experimental data, results are presented by showing
velocity profiles at several axial stations and skin friction values on the upper and lower walls. Axial and
vertical positions are non-dimensionalized by H. The velocity profiles are normalized by U, defined in
equation (6). The fully developed channel centerline velocity is 1.14U,. The skin friction coefficient Cyis
described as:

T
Cr=1—"77% ™
1
The shear stress 7, 1s calculated as:
ou
Ty &L {—J ®)
ay wall
Results
Grid Dependency Study

A grid dependence study was conducted on three different grid levels; the coarse being at 341x41,
medium at 341x81, and fine at 341x161. Each grid had an initial grid point spacing of y* = 1.0.
Figure 4(a) shows the velocity profiles at axial stations across the diffusing section. Figures 4(b) and (c)
show skin friction plots along the lower wall. The medium (341x81) and fine (341x161) grids show much
closer agreement with the experimental data than the coarse grid (341x41). While the fine grid does show
a small improvement over the medium grid, it took much longer to reach a converged solution (twice as
many iterations with twice as many grid points). The computational cost of the fine grid far exceeded the
minimal benefit of the improved solution. As a result, the medium grid (341x81) was used to obtain the
results shown in the rest of this paper.

y" Variations

A study of the effects of varying the " values on the diffuser behavior is described next. Grids using
reference y* values of 0.2, 1, 5, and 15 were analyzed. The solutions presented here were completed with
the SST turbulence model. Figures 5(a) and (b) show the upper and lower wall skin friction plots,
respectively, computed with the SST turbulence model. On the upper wall (fig. 5(a)), it can be seen that
y" values of 0.2 and 1 give very similar results for x/H<0. Interestingly, all values of y" give similar
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results for x/H>0 due to the fact that the lower velocity flow in this region means that one can afford a
larger spacing at the wall because the actual values in the diffusing section are substantially smaller than
the reference values. Therefore, physical wall spacing can be higher and still give similar results (because
of the lower velocity flow). This is the case with the bottom wall (fig. 5(b)) as well. In the channel portion
(x/H<0), differences in the skin friction values become apparent. Figure 5(c) shows the velocity profiles.
It is clear that the variations in axial velocity are small, especially in stagnant and separated regions of the
flow (towards the bottom wall).

For the following turbulence model study, an initial spacing of y'= 0.2 was selected because of the
variations noted in the constant area channel region of the flow and due to the usually tighter y"
specification required by EASM formulations.

Turbulence Model Variation

Figures 6(a) and (b) show the typical flow patterns in terms of axial velocity contours computed with
the SST model. Figure 6(c) shows the extent of the separation region. Relatively thick boundary layers
can be seen in conjunction with a higher-speed core indicative of fully-developed channel flow. The flow
enters the diffuser and separates on the lower wall at about 3—4H due to the adverse pressure gradient
created by the reduction in flow velocity. A separation bubble forms along the lower wall, with
subsequent turbulent reattachment downstream. The flow remains attached on the upper wall. Table 4
lists the separation and reattachment points (x/H) for the various turbulence models studied at a y* of 0.2.

TABLE 4 —LOWER WALL SEPARATION AND REATTACHMENT POINTS. “RC” = SPALART-
ALLMARAS MODEL ROTATION AND CURVATURE CORRECTION (ref. 9); “VAR. C,” = k-¢
MODEL VARIABLE C, CORRECTION (ref. 10).

Model Type SelE;/r]a}It]ion Reat[tj;:[l;]ment

Experiment 7.4 29.2

SST 2.52 29.69
k-¢ (var. C, ON) 0.677 20.93
k-¢ (var. C, OFF) 0.771 20.69
S-A (RC OFF) 4.34 31.39
S-A (RC ON) 3.84 32.62
EASM 6.40 28.08

Table 4 indicates that the k-€ model overpredicts the separated region by predicting separation to
occur upstream of all other models, but as indicated in figure 7, it predicts a much smaller and thinner
separation region compared to the other models. The SST model is next with separation beginning at
2.52H downstream of diffuser inflow plane (x/H = 0), which is closer to the experimental value of 7.3H.
Figure 7 shows that the separation region size is about the same for the EASM, S-A, and SST models. Of
all the turbulence models examined, the EASM model gives the closest prediction of the experimental
separation point with a value of 6.40H.

Figure 8(a) shows the velocity profiles downstream with all turbulence models. The k-& model
underpredicts the flow velocities in the core regions, and slightly overpredicts the flow velocities towards
the lower wall. It predicts a more uniform spread of velocities in the vertical direction in the core region,
agreeing with the results of Obi et al. (ref. 1). The EASM and SST models provide the best prediction
overall to experimental data. Figures 8(b) and (c) show skin friction on both the lower and upper walls
respectively. On the lower wall, the SST and S-A models agree very well with the experimental data. On
the upper wall (fig. 8(c)), the SST again provides the best results. The S-A model underpredicts the data
just downstream of the diffuser entrance, and the EASM model overpredicts the data in the same location.
At x/H>14, the k-£ model overpredicts the skin friction values and, at x/H<14, it underpredicts the skin
fiction on both the upper and lower walls. In fact, the k-& model predicts separation on the upper wall. The
rotation and curvature correction for the S-A model had a negligible effect, which is expected because
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there is not strong curvature in this geometry. The k-¢ variable C,, option had a slightly better effect on the
upper wall. In the fully-developed region of the channel upstream of the diffuser, the SST model provides
the highest and most accurate skin friction values and the k-& model the worst.

Wall Function Analysis

As with the previous studies, the wall skin friction and axial velocity profiles are the primary measure
of performance for the wall function analyses conducted with the SST turbulence model. Figures 9(a) and
(b) show the skin friction along the lower and upper walls of the diffuser, respectively. All the solutions
predict flow separation and reattachment on the lower wall and attached flow on the upper wall. Table 5
gives the points of separation and reattachment for each case. It may be observed that, as the initial grid
point spacing is increased, the prediction of the separation and reattachment points vary substantially.
Figures 10(a) and (b) show the y* values of the second grid point through the entire diffuser
computational region. As expected, the y* values for each case are close to the nominal value of y*
upstream of the diffuser. As the flow passes through the diffuser, the y* values drop significantly in the
separated region. This is expected since, with a little manipulation of equations (2), (3), and (5),

R o o ©

Therefore, for a constant value of y, y* decreases with skin friction.

TABLE 4.—LOWER WALL SEPARATION AND REATTACHMENT POINTS
“LLP” = LOG LAYER PACKED; “LLU” = LOG LAYER UNPACKED

Case Separation Reattachment
[x/H] [x/H]
Experiment 74 292
Baseline, y" = 0.2
(no wall function) 2.52 29.69
LLP,y" =15 3.29 29.67
LLP,y =30 5.90 2901
LLP,y" =60 13.70 7583
LLU,y =15 191 29.90
LLU.y =30 6.10 28.66
LLU,y =60 13.37 2507

Along the upper wall, only the LLP (log layer packed) y =15 wall function grid solution shows
reasonable agreement with the experiment and baseline case. However, figures 9(a) and (b) show that this
case suffers from rather low skin friction prediction upstream of the diffuser along both the upper and
lower walls. This is significant because all the other analyses predict a similar level of skin friction in the
region upstream of the diffuser. This appears to be a result of Wind not activating the wall function in this
region. Figure 10(a) shows that the value of " along the lower wall is actually less than 15 upstream of
the diffuser. Because Wind only activates the wall functions when y™>15, the wall functions are not
activated and Wind is using full wall integration at this point in the flow.

For the " =30 and y" = 60 grid cases, discontinuities are observed in the plots of skin friction
(figs. 9(a) and (b)) and in the plots of the y* values (figs. 10(a) and (b)). This again appears to be a result
of Wind switching between using wall functions and wall integration (and even back to wall functions
again) as the value of y* crosses the y"=15 threshold for determining the use of wall functions. Again,
wall functions are used when y">15 and wall integration is used when y'<15. When the solution is post-
processed, the deactivation and reactivation of the wall functions cause a small, but noticeable,
discontinuity in the y* values and, more importantly, in the computed values of skin friction.

Axial velocity profiles through the diffuser are plotted for each case in figure 11. The y'=15 wall
function grid cases show very good agreement with the baseline case. As shown earlier, this is probably
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because the second grid point y* values through the diffuser are much lower than 15, causing Wind to
disable the wall functions and solve the flow using wall integration, which can handle separated flows.
The y* = 30 wall function grid cases show reasonable agreement with the baseline case, deviating the
most due to the delayed point of flow separation. The y* = 60 wall function grid cases show poor
agreement with the baseline analysis through the entire flow.

The primary advantage of wall functions is the ability to trade solution fidelity for CPU time by
reducing the number of grid points near the wall. Table 6 shows the total CPU time required by each
analysis (run for the same number of iterations) and the CPU time savings over the baseline analysis. As
one might expect, the CPU time scaled linearly with the number of grid points. In flows with conditions
favorable for wall functions, CPU time can be reduced significantly by using wall functions without a
large reduction in fidelity. In fact, convergence time may be even further reduced by the increased
limiting time stepping associated with larger grid cell size near the wall, i.e., fewer iterations may be
necessary. For flows with significant separation, wall functions are not recommended as they trade too
much fidelity for CPU time savings, resulting in a poor prediction.

TABLE 6.—CPU TIMES OF WALL FUNCTION ANALYSES. “LLP”=LOG LAYER PACKED;
“LLU”=LOG LAYER UNPACKED

CPU Time CPU Time Grid Point
Case . .

[hours] Savings Savings

Baseline, y'=0.2
. 12.44 0.0% 0.0%
(no wall function)
LLP,y'=15 9.62 22.7% 22.2%
LLP,y'=30 8.32 33.1% 32.1%
LLP, y =60 6.79 45.4% 44.4%
LLU, y+:15 9.56 23.2% 22.2%
LLU,y'=30 8.26 33.6% 32.1%
LLU, y'=60 6.76 45.7% 44.4%
Conclusions

Results from a computational study of the separated flow behavior through a 2-D asymmetric
subsonic diffuser computed with the Wind CFD code have been presented. Using the SST turbulence
model and an initial grid point spacing of y* = 1, a grid sensitivity study was performed by varying the
number of grid points in the transverse direction across the diffuser. The study found that 81 grid points is
sufficient for this class of flows. This corresponds to a grid fineness (see eq. (4)) of roughly 0.04. A
sensitivity study of the initial grid point spacing (" study) was also performed. The axial velocity profiles
computed with " values ranging from 0.2 to 15 were close. However, skin friction results indicated an
initial grid point spacing of y* = 0.2—1.0 was necessary for best agreement with experimental skin friction
data.

For the turbulence model study, the SST and EASM models provided the best predictions in
comparison to experimental data in terms of skin friction and velocity profiles. The S-A, SST, and EASM
models predicted the same size of separation region with small differences in the predicted location of
separation. The k-€ model provided the least accurate results, underpredicting the separation point (just
past the inflow plane to the diffuser), and size of the separation region on the lower wall. The k- model
also predicted separation on the top wall, which did not occur in the experiment.

Wind’s wall functions, while they have been shown to perform well for attached flow problems, have
been found in this study to not be a good choice for flows with large amounts of separation. The log layer
packed (LLP) wall function grids appeared to give better skin friction predictions in the attached channel
flow when the wall functions were active. However, the wide range of skin friction and velocity
predictions through the rest of the flow made the comparison inconclusive. Finally, it was determined that
post-processing and interpreting results requires care when using wall functions.
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