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Abstract

Previous work has introduced the Planning Coordinator
(PCOORD) , a coordinator functioning within the hierar-
chy of the Intelligent Machine Model. Within the structure
of the Planning Coordinator resides the Primitive Structure
Database (PSDB) functioning to provide the primitive
structures utilized by the Planning Coordinator in the
establishing of error recovery or on-line path plans. The
following further explores the Primitive Structure Database
and establishes the potential of utilizing Semantic Net-
works as a means of efficiently storing and retrieving the
Generalized Stochastic Colored Petri Nets from which the
error recovery plans are derived.

1.0 Introduction

The problemdomainwhich thispaperaddressesisa

component of thePlanningCoordinatorknown as the
Primitive Swucture Database (PSDB). As the name indi-
cates, the Primitive Structure Database is a database con-

tainingprimitivestructuresrepresentingthebasicopera-

tions that can be performed by an Intelligent Machine as
derived from environmental model(s) in which themachine
must operate. Collectively called a Current World Model

(C'%VM),theenvironmentalmodelormodels represent the

mostup-to-dateinformationavailableregardingtheInteUi-
gentMachine'senvironment.

Note that the usage of the term Intelligent Machine is
meant to include any machine that functions to perform
intelligent tasks. For the purposes of this paper and the
continuing research it represents, intelligent tasks can
rangeintypefromprimarilycerebral,asintheidentifica-

tionofanobject,toprimarilymechanicalasintheassembly

ofanobject.The common denominatorsinallofthetasks
aretwofold:

1) While task sequences must be performed in a given,

arbitrary amount of time, the components of the sequences

are primarily event driven.
2) Relationships among tasks may be opportunistically

used in later task composition if the relationships axe
known.

Generalized Stochastic Colored Petri Nets (GSC"PN)are
used as tools for effectively and efficiently modeling mul-

tiple level discrete event or continuous event dynamic
systems. While the general structure of a GSCPN allows for
the synthesis of more complex GSCPNs from simpler ones,
there is no easily apparent mechanism for databasing the
GSCPNs in such a way as to easily build relations among
them.

Semantic Networks, on the other hand, have been used

as in [1] and [2] as a means of establishing relationships
between differing states within a network. These relation-
ships can be databased and modified without the destruction
of the existing relations or the existing database. It is the
intent in the remainder of this paper, to examine the basic
concepts of Semantic Networks as they pertain to the PSDB,
and to determine if through the utilization of Semantic
Networks, a dynamic means of representing GSCPNs can
be established.

The paper is organized into the following sections:

1.0 Introduction
2.0 Generalized Stochastic Colored Petri Nets
3.0 Semantic Networks
4.0 Derivation of GSCPN's From Semantic Networks
5.0 Conclusions
References

2.0 Generalized Stochastic Colored Petri Nets

Simply put, a Petri Net is a graph theoretic abstract mod-
eling concept used to efficiendy model the states, precondi-
tions and functions of a discrete event, or continuous event,
dynamic system, particularly when concurrency and con-
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flict arc involved. The discrete or continuous system is
modeled as a continuum of sequences of event driven states
and timed transitions. Note that the us¢ of timed transitions
does not alter the event driven nature of the Pctri Net as it is

the completion of the function that the transition represents
which signals the next action, not the length of time the
function takes to complete.

As defined in [3] and [4], and augmented h_e to include
colors, a Generalized Stochastic Colored Petri Net
(GSCPN) is a sextuplet consisting of places, P, a finite set of
token colors, C, a finite set of transitions, T, a f'mite set of
arcs, A, a f'mite set of firing functions, F, and a set of initial
markings, M0, which indicate the initial configuration of
tokens in each place.

The components are defined below:

Describe the set of states represented in the
system andare divided into input places and output places
which source and sink arcs to/from transitions respec-
tively.

Used to d/fferendate levels of operation or
functions required by the executing Pea'i Net through
tokens.

Tokens: Markers of various colors, shape, used to
denote the location of activity within a Petri Net.

Divided into immediate Transitions,
Ti, and exponential transitions, Te, the transitions dcf'me
events that can change the sys_ states.

Arcs (A); Represent the connections from input places to
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mausitionsandtransitions tooutputplaces. Az'csare defined
as a proper subset of."(PxT) U (TxP).

Firine Functions (1;3:Associates with each transition in

the set of transitions a fh'ing time which is a continuous
random variable, independently distributed.

Initial Markings (M0): Is a mapping called the initial
marking, wMch associates zero or more tokens to each
place in the GSCPN. Markings in general define the state
of the GSCPN through the distribution of tokens.

As an example of the operation of a Petri Net, refer to
Figure 1 through Figure 8 . These figures represent an

example of a simple manufacturing system containing two
machines and a single shared robotic resource used for
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loading and unloading the machines. All wansidons are
considered immediate. It is assumed that the operations of
the two machines never overlap (i.e. machine two is always
ready to accept input from machine one).

Initially, see Figure 1, raw stock is available for use by
machine one, the robot is available for use, machine one is
available and machine two is available. A transition is

considered active, ready to fire, if all of its input places
contain tokens. Initially only transition tl is active. It rrres,
resulting in machine one being loaded. This is rvpresenw.A
in Figure 2. Note that when a transition fires, a token is
removed from each of its input places, and a token is
deposited in each of its output places.

Transition t2 is now active and fires, resulting in Figure 3
where a token has been deposited back to Robot Available
and M1 Machine Raw stock. Figure 4 through Figure 8
show the operation of the system as it continues. Note that
inFigure5,bothtransitiontland transitiont5areactive;

hence both can f'tmresultingin both machineMI and

machineM2 operatingconcurrently.The examplegiven

above isa simpleone used to demonstratesome of the

capabilitiesofthePetriNet.

Thisexamplewillbe furtheredinSection4 whereitwill
be shown thataPetriNet canbederivedfromtheSemantic

Networkdescriptionofactivitiesthatmay berepresentedby

theoperationofthePetriNet. SemanticNetworksarethe

subject of the next Section.

3.0 Semantic Networks

As described in [5], [6], and [7], a Semantic Network

(SNET) is an abstract conceptual strucatre representing
knowledge as a net-like graph. It consists of nodes, repre-
senting conceptualunits,anddirectedlinksrepresentingthe

relationshipsbetween units.The essentialideabehind
SemanticNetworksisthatthisgraphtheoreticstructureof

relationsandabstractionscanbeusednotonlyforinference,

butalsoforunderstanding.

Unlikespecializednetworksand othergraphtheoretic
structuressuchasPetriNets,SemanticNetworks aim to

representanykindofknowledgewhichcanbe describedin

naturallanguage.Inaddition,theSemanticNetwork pro-
videsmethodsforautomaticallydcrivinglargerbodiesof

impliedknowledgewithoutdestroyingtheunderlyingbody

ofknowlcdgeexplicitlystoredintheSemanticNetwork
structure. This approach remains valid because any event,
idea, object or situation can be shown to have some compos-
ite structure which can be decomposed for storage provided
that characteristic relations are maintained.

Semantic Networks possess multiple layers of abstraction.
These multiple layers of abstraction provide the SNET with
the capability of maintaining multiple classes and super-
classes for state description. This capability is extremely
important in professional applications, such as hierarchical
object modelling, which have gone past the point where
pure mathematical modeling is effective.

Such activities require in-depth conceDtual analysis as

opposed to repeated processing of modeled elements. This
conceptual analysis is provided through an arranged, or-
dered structure cailed a knowledge base. However, a

simple knowledge base for storage and retrieval of informa-
tion is effectively useless for complicated activities such as
those to be performed by an Intelligent Machine, unless the
structured knowledge base can be used to infer other knowl-
edge from what has been stored explicidy. Accomplishing
this task requires the examination and use of the
structttre of the concepts involved.

A SNET provides a map of the semantic meaning of a
natural language sentence in an ordered, arranged, struc-
tured knowledgebase. Thispermitsseveralsyntactically
differentsentences,allof whichhavethesame meaning,to

be relatedimmediately.Were theSNET beingusedasa

database of information,a savingsof spacewould bc

achieved,sincemultipledistinctrepresentationswould not

needtobe maintained.Inaddition,themodelingofdata-

basesthroughtheuseof SNETs can be preferabletorood-
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eting databases in some other way, because in the former
one can make use of the relational structures and concepts
in the data model.

The use ofa SNET as a databasing tool is of interest in
the operation of an InteUigent Machine. This is due to the
requirement that in order to be competent in the execution of
fully autonoumous tasks, an Intelligent Machine must nec-
essarily Ix)able to interpret its surroundings and make con-
nections between similar and dissimilar concepts. To ac-
complish this efficiendy requites a set of Primitive Scuc-
ttwes derived from an environmental model which details not

only the environment but also the capabilities of the Intelli-
gent Machine. These Primitive Structu_s form a core of

Level Components Structures

Arb. Concepts, Sentence

L|nguiatl¢ words, express. Descriptions

Semantic or Concept. Concept t)ep.,

Conceptt.tai Relations (cases), Oeep Case

prim. obis. , actions Semantic Nets

C4n¢lpl types, Associative

"pistemologica| Inheritance etc. Rdilationei

Logloa|

Implementation

Propositions

PredlcatSl Boolean Logic)

_0gicat Operators Nodes

Alomt Oats $1ructur|s

Pointers Frames

R_m 9: Brac'-anan's A_ysis

concepts from which remaining concepts can be built. Note
that this does not prohibit the introduction of new concepts
that arc not built from the cote.

The concept of using a core of primitives was first
re,aJized by R. H. Pdchens in his creadon Nude, which was
responsible for language translation [8]. Richens' Nude
sysmm utilJz_ semandc primitives [9], a core of concepts
fl"om which other conceptscould be bull _ pttrpose was
to retain the meaning of the concept. His work on Nude
was organized and improved by M. Mastennan in her Se-
mantic Network T [10] which creamd a thesaurus for or-
ganizing langtmge concepts hierarchically. She postulated
that a lattice structure was more effecdve than a _'ee taxon-

omy. The T lattice was the final product of a network of
sub-lattices in which Masterman used what she mimed
rrdn/nm/a rather thanprimidvea, sincehers we,re not ultimate
primitives. The combined work of Richens and Masterman

was adapted for Preference Semantics (I I] and provides a
ftmcdonal foundation that is usdul for incorporadon into
and adapdon by Primitive Sttuctttre Database of the Plan-

ATTACK

e_sss i TYP_ RESTRICTION
J

ACTOR I animate agent

OBJECT I person 0r thing

INSTRUMENT I movable thing

BENEFICIARY t live being, group, cause

A'T T1ME l time point onlnter*el

)

Fx;ure 10 C_e_Ft_rr, e f(:r ATTACK

ning Coordinator.
The ability to compose additional concepts from a core of

original concepts is extremely important. However, in addi-
tion to the general concepts there must be some specification
as to the content of the concepts. This specific information
is necessary to ensure distinction of objects within the same
conceptual class as well as formulauon of new concepts and
conceptual classes. R.J'. Brachman [12] realized this and

suggested five link]node levels as shown in Figure 9 below.
A descripuon using a Semantic Network can exist on all of

the levels simultaneously, with objects and reladons at one
level being realized using the structures of a lower level.
The question becomes, how are the structures represented for
implementation in computer environs.

The standard representation of Semandc Networks in
conventional computer environs is achieved through the

use of frames. However, it has been shown by F'dlmore and
Simmons [13], [14] that simple frame relauons are insuffi-
cient. They postulated that the semandc case represents the
real- world role played by an ACTOR in an EVE, VT. Hence
they applied restrictions to the frames developed by
Minsky. This new frame type, characterized by an event,
its cases and the type restrictions placed on related objects
is called a case frame or schema. An example of such a
case_frame is given in Figure 10, for the case frame .A.T.z
TACK.

With respect to the Primitive Structure Database and its
operation, the use of case_frames is highly appropriate.
This is due to the fact that in a limited environment such

as that represented by a specific robodc testbed, only
specific actions may be appropriate. For example, ira robot

has a particular type of gripper it may not be able to pick up
certain types of objects. Application of the limiting restric-
tions of a schema permits those limitations to be easily
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identified within the type restrictions of the schema. This, in
turn, provides a speed up in overall operation as less
searching need be performed to determine what applica-
tions are possible given the available information.

It had been mentioned earlier that Semantic Networks

permit classes and superclasses to be established. This is in
keeping with the idea of multiple levels of abstraction
provided by Semantic Networks. Conceptual graphs have
been examined extensively by Sowa [15] and use nested
contexts derived odginaUy from the nested negations of
Pierce's Existential Graphs. The idea of conceptual graphs
can be utilized in the PSDB, allowing primitive structures,
which represent primitive actions , some of which are
themselves non-trivial, to themselves be represented by

complex nested structures.
It has been discussed previously that Semantic Net-

works provide the capability of building concepts from a
core of concepts, limiting relations between objects exist-
ing at multiple levels of absgaction, and providing a struc-
tured arranged net composed of nodes and links which
represent concepts and the relations between concepts re-
spectively. Previously, Generalized Stochastic ColoredPetri
Nets were inlroduced and theft structure defined. What
remains is to determine whether or not GSCPNs can be

derived from SNETs. This is the subject of the next
section.

4.0 Derivation of Petri Nets From
Semantic Networks

As defined in Section 2 a Generalized Stochastic

Colored Petri Net is a sextuplet of places, colors, transi-

tions, arcs, f'n'ing function(s), and initial markings. As de-
scribed in Section 3 a Semantic Network is a doublet of

arbitrarily complex nodes and arcs. If it is to be anticipated
that a GSCPN can be derived from a SNET, some relation-
ship between the varying components which form a GSCPN
and those that form a SNET must be identified.

The nodes of a SNET have been described as being
arbitrarily complex, consisting of possible nested structures.
This description is akin to the use of colors in the GSCPN,
which arc used to distinguish different levels of activity.
Hence it is possible to chromatically identify the differing
levels of a complex node in a manner similar to the identifi-
cation of differing functional levels in a GSCPN. Since, as
stated, the complex hierarchy of the nodes can be repre-
sented by unfolding them, the structure of their functional
representation can easily be revealed.

Semantic Network arcs ate also complex, representing

non-arbitrary relations between the nodes that connect to
the head and tail of the arc. In effect, the arcs can be

viewed as functions relating the two nodes, taking one node

(state) to the other node (state). This is the exact function
of the arc-transition (Firing Function)-arc structure of the
GSCPN.

One complex difference between GSCPNs and SNETs
is that the GSCPN utilizes tokens as markers to visually in-
dicate the flow of the system operation over a marked path.
It is in this that a problem may arise. The problem is that
while both the SNET and the GSCPN have mechanisms

for identifying a flow pattern, how is it possible to create
one flow pattern from the other. Specifically, how is it
possible to create a GSCPN from a SNET.

By definition, Petri Nets are useful for the modeling of
concurrent systems. As shown in the example of Sectionl
this concurrency can be easily achieved. Effectively, the
Petri Net passes a marker or markers, called tokens, from
one finite state to another through functions represented by
transitions.

J. A. Hendier [16] and M.R. Quillian [17] performed ex-
tensive work on massively parallel marker passing in Se-
mantic Networks. Effectively, symbolic marker passing is a
technique developed for finding connections between ob-
jects in a Semantic Network, while avoiding many irrelevant
facts. Essentially, two nodes representing the objects to be
connected, are marked, meaning that they are identified as
being of interest. The algorithm then marks appropriate
neighbor nodes and continues in that fashion until a node (or
nodes) is marked from two differing origins. The algorithm
then uses the back pointers it established during marking to
compute a path comprised of the set of nodes and links that
were marked during the marking expansion phase of the

algorithm. The established path connects the two original
nodes that a connection was initially desired for.

It is possible that during the marking procedure,
exponential explosion of the number of marked nodes can
take place due to the large number of nodes that would exist
in even a simple SNET. This difficulty and that of algo-
rithmic improvements for avoiding false paths were exam-
ined in [18], [19], and [20], with the result being that through
restrictions on type and limitations on acceptable link tra-
versals, false paths and exponential explosion could be
virtually eliminated.

In all, this indicates that a path can and was derived from
the node and link relationships of the Semantic Network. If
those node and link relationships were to represent Intelli-

gent Machine activities, it is feasible that the derived paths
would represent an ordered sequence of Intelligent Ma-
chine activities. Like a GSCPN, the nodes of the path could
represent system states of arbitrary complexity. Unlike a
GSCPN however, the links of the SNET represent rela-
tionships between the nodes. This structure is unlike the
input arc, transition, output arc structure of the GSCPN,
where the transition represents the relation or rather action
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that takes one system s_ tO another. It is apparent that the

transition can be made to represent the relation of the S/VET

while the input and output arc, can be formed by following

the directional pointer retnesented by the arc of the SNET.
Once all SNET node, and links have been transformed

to their equivalent GSCPN nodes, wansifions and arcs, one

of the nodes must be designated as the initial node in the

GSCPN. This node is necessarily one of the two from

which the marking algorithm began. What remains at this

point is the establishment of the initial markings of the newly

derived GSCPN. Logically, it can be assumed that the

wansifion to which the lead place is connected should be

active. Hence whatever lXecondidons it needs must be met.

This will effectively identify the initial markings.
The result of all of the above is a G$CPN which is

ready to be used by the Planning Coordinator after having
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been derived from the Semantic Network on which the

Primitive Su'uctu_ Database was creauxi. The following
example shows the tzansformadon of a Scmand¢ Net'work
representing the manufacturing system of Section 1 into a
GSCPbl utilizing the above proc_urc. Following it arc
some conclusions as to further research and development.

Given that the following Semantic Network ex-
istz, the problem ix to derive the Petri Net of Fieure 1.
utilizing the marker pa_ing techniques outlined earlier in
this section. It ixa_xumed that pruaing tecimiques have been
and are applied to the overall SNE'I'srructare such that
unneeded branches are el'u'nin_ed.

The SNET _ven in Figure 11 , representsthe Semantic

F_jure 19
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Network description of the manufacturing system of Figure
I. The two nodes labeled 'Load MI' and 'Unload M2'

represent the nodes from which the marking algorithm is
called. Later, one of these nodes must be designated as the
GSCPN Start Node.

The marking algorithm begins by marking all neighbors
connected to the outgoing links of the two initial nodes. The

progression of this marking is shown in Figures 12 through
17 by thicker darkened lines.

As can be seen, at the completion of the marking phase,
the final figure appears as in Figure 18 which in this
example is the same structurally as Figure 11. Note how-
ever, that the marking algorithm has provided two alternate

paths from the ini_al nodes. They are designated by the solid
and dashed lines. This is acceptable for an overall primary
solution, because both the f'trst and second paths are imme-
diately connected to both of the initial nodes. Thus both will
be needed for the final GSCPN cons[auction.

Once the necessary paths have been generated, as above,
one of the two nodes initially calling the marking algorithm
must be designated as the start node of the GSCPN. In this
example that node is the one marked_

Upon designation of the GSCPN start node, it is
necessary to transform all nodes to GSCPN nodes and all
arcs to GSCPN arc- transition (Firing Function)-arc con-
structions. This is accomplished as follows. Starting from
the GSCPN start node, all outgoing ares are transformed
into input transitions and input ares, i.e. their direction is
¢tmn_ed and a transition re t)resenting their relation (func-
li_/a).Jf_gaL_. The nodes at the head of the SNET arc
become source nodes for this transition and an outgoing are
iscreated from the transition to the tail of theSNET arc. This

is shown in Figure 19 for the GSCPN start node.
Figures 20 through 26 show the progression of this

operation for each of the remaining nodes. Note that some
of this can be done in parallel. However, for clarity at this
point it is done serially. The resulting figure is the GSCPN
of Figure 1.

What remains is the initial marking of the net. From the
algorithm, it is obvious that the nodes connected to the
transition that is connected to the node designated as the
starting node of the GSCPN should each contain tokens.
Depending on the type of node, more than one token may be
necessary. Similarly, the nodes connected to the outgoing
side of the transition connected to the end node of the GSCPN
could contain tokens since the end node must necessarily

provide for the potentiality of these nodes acting concur-
re.nay in the operation of the GSCPN. In the previous
example the nodes did require tokens.

w
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The example provided above is a necessarily simple,

limited expression of what the overall capabilities of the

techniques proposed will eventually be able to do. The
following section provides some conclusions on the research
done and recommendations for future work on the subject.

5.0 Conclusions

This paper has introduced the use of Generalized
Stochastic Colored Petri Nets, and examined Semantic Net-

works with respect to their use as a means of realizing the

Primitive Structure Database of the Planning Coordinator.

In addition, a potential method for designing the Primitive

Structure Database of the Planning Coordinator such that
useful Generalized Stochastic Colored Petri Nets can be

derived from it was introduced. While the method

presented provides for a database structure that is both
refinable given new data and usefully structured as a knowl-

edge base, and uses an algorithm that has been tested and

accepted, the method itself has yet to be proven. Further

research, development and undoubtedly refinement par-

ticularly in the initial marking of the derived GSCPNs is

ongoing.
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