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Abstract 
The paper describes an effective formal method that can be used to simulate design properties for 

composites that is inclusive of all the effects that influence those properties. This effective simulation 
method is integrated computer codes that include composite micromechanics, composite macromechanics, 
laminate theory, structural analysis, and multi-factor interaction model. Demonstration of the method 
includes sample examples for static, thermal, and fracture reliability for a unidirectional metal matrix 
composite as well as rupture strength and fatigue strength for a high temperature super alloy. Typical results 
obtained for a unidirectional composite show that the thermal properties are more sensitive to internal local 
damage, the longitudinal properties degrade slowly with temperature, the transverse and shear properties 
degrade rapidly with temperature as do rupture strength and fatigue strength for super alloys. 

Introduction 
As candidate materials for advanced high temperature aerospace structures, metal matrix composites 

(MMCs) have been the subject of considerable interest and extensive research. With concurrent advances 
in processing, fabrication, and experimental mechanics, MMCs will increasingly be used as structural 
materials for advanced propulsion systems. The extreme temperatures and stresses of these propulsion 
systems create a hostile environment for the composite to withstand. Therefore, the analysis and design of 
these materials are critically important and require the use of mathematical models to predict thermal and 
mechanical behavior. One such model is the computer code METCAN (METal matrix Composite 
ANalyzer, reference 1) developed at NASA Glenn Research Center. 

This paper presents the mechanical and thermal properties of a unidirectional composite from silicon 
carbide (SiC)/titanium (Ti6) MMC as computationally simulated by METCAN from constituents properties 
as described subsequently. It provides results for one fiber volume ratio at a range of temperatures in 
graphical form. These plots include stress-strain, elastic and shear moduli, Poisson’s ratio, thermal 
expansion, and thermal conductivity. Similar information can be readily generated for: 1) other loading 
condition, 2) other composites, and 3) other service conditions. A list of symbols used is included in the 
appendix where a short table of conversion factors from customary units to SI units is also included. 

Background 
METCAN has the capability to predict many aspects of high temperature MMCs by using room 

temperature constituent properties. METCAN’s integrated approach is illustrated in figure 1 as a cyclic 
arrangement that defines the computational methodology for each load increment. As can be seen from 
the figure, this predictive capability consists of several computational modules encompassing the material 
nonlinear behavior (bottom), composite mechanics (sides), and the finite element analysis of structural 
components (top). Material nonlinearity is treated at the constituent level, where the current material 
model, namely the Multi-Factor Interaction Model (MFIM), figure 2, describes a time-temperature-stress  
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dependence of a constituent’s mechanical and thermal properties at any point in its material history 
(ref. 2). Characteristic properties of the composite are calculated from the instantaneous constituent 
properties using composite mechanics. This synthesis results in a point description of equivalent pseudo-
homogeneous properties for the composite. 

Naturally, some assumptions have been made in the development of this code. The MFIM utilizes a 
large number of exponents that, ideally, have been calculated from experimental data. When reliable 
experimental data is unavailable, default values are used. These values were established from studies 
conducted on other MMCs (ref. 3). The exponents used in this study are summarized in table 1. Secondly, 
the Ti6 matrix melting temperature in METCAN was given a value close to the consolidation 
temperature. Since the matrix has no remaining strength at the consolidation temperature and METCAN 
must simulate this behavior, the actual melting temperature was replaced with one that was slightly higher 
than the consolidation temperature. The room temperature constituent properties used are listed in table 2. 
Verification of METCAN (comparisons with experimental data) is described in reference 4. 

Additionally, a modification was made in METCAN for this particular task. Since progressive failure 
of the composite was not a consideration, the method of stopping the program after failure was altered 
slightly. Normally, when failure occurs in one region, the load is channeled into the remaining regions 
until the composite suffers a complete fracture. For this study, once failure takes place in a critical region, 
the simulation is stopped and the material properties for that strain are set at zero. Under a longitudinal 
load, this critical region is defined as the fiber. For transverse and shear loads, the determining sector is 
the micro-region A of the matrix (fig. 2). 

 
 
 

TABLE 1.—METCAN EXPONENTS 
    Values 

Exp Array 
Location 

Property Determining
Property 

SiC Ti6 

A 2 Modulus σ�  0.25 0.50 
m 3 Modulus σ 0.25 0.50 
n 4 Modulus T 0.25 0.587 
A 5 Strength σ�  0.25 0.50 
m 6 Strength σ 0.0 0.0 
n 7 Strength T 0.25 0.902 
A 8 Poisson’s Ratio σ�  0.25 0.50 
m 9 Poisson’s Ratio σ 0.25 0.50 
n 10 Poisson’s Ratio T 0.25 0.50 

A 14 Heat 
Conductivity σ�  0.25 0.50 

m 15 Heat 
Conductivity σ 0.0 0.50 

n 16 Heat 
Conductivity T 0.25 0.50 

A 17 CTE σ�  0.25 0.50 
m 18 CTE σ 0.0 0.50 
n 19 CTE T 0.25 0.037 
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TABLE 2.—INPUT CONSTITUENT PROPERTIES AT ROOM TEMPERATURE 
Fiber: Silicon Carbide on 

Aluminum 
Matrix: Titanium 

Property 
(units) 

 Property 
(units) 

Ti6 

Nf 1 Kν 0.019 

Df 0.0102 ρm (lb/in∗∗3) 0.170 

ρf (lb/in∗∗3) 0.110 TMm(F) 1740 

TMf 4870 Em (Mpsi) 16.5 

Ef11 (Mpsi) 62.0 νm 0.300 

Ef22 (Mpsi) 62.0 αm ( in/in/F) 5.24 

Gf12 (Mpsi) 26.1 Km (BTU/hr/F/in) 0.390 

Gf23 (Mpsi) 26.1 Cm (BTU/lb) 0.120 

νf12 0.190 SmT (ksi) 74.0 

νf23 0.190 Smc (ksi) 74.0 

αf11 ( in/in/F) 2.72 Sms (ksi) 74.0 

αf22 ( in/in/F) 2.72 εmT (in/in) 44.4 

Kf11 (BTU/hr/F/in) 0.750 εmc (in/in) 0.350 

Kf22 (BTU/hr/F/in) 0.750 εmS (in/in) 0.350 

Cf (BTU/lb) 0.290 εmTOR (in/in) 0.350 

Sf1T (ksi) 500 Processing Temperature 1200 °F 
Sf1C (ksi) 500   

Sf2T (ksi) 500   

Sf2C (ksi) 500   

Sf12s (ksi) 300   

Sf23s (ksi) 300   

Results and Significances 
For this evaluation, a perfect bond was assumed to exist between the fiber and the matrix. This is 

reflected by the plots which depict the upper boundaries of the material properties. Fiber volume ratio 
(FVR) of 0.30 provided a good test for this material. Longitudinal loads were imposed on a unidirectional 
Silicon Carbide fiber Titanium Matrix (SiC/Ti6) composite system at three different temperatures (70, 
500, and 1000 °F) to obtain an extensive profile of the thermal and mechanical properties. 

In order to properly model a composite, the residual stresses generated by processing is included. To 
accomplish this, the cool-down history from consolidation temperature to room temperature (70 °F) was 
simulated before the mechanical load was applied. For the high temperature cases (500 and 1000 °F), the 
load was applied after the heat-up from room temperature to service temperature. Due to the mismatch in 
the coefficient of thermal expansion (CTE), the stresses developed in the fiber were compressive while 
those developed in the matrix were tensile. 

Table 3 presents the anticipated tangent properties of each composite. As predicted by METCAN, 
each composite’s thermal and mechanical properties were evaluated at the test temperature after a small 
increment of load was applied. Material properties resulting from a compressive load will vary, but not 
significantly, from those listed in table 3. 
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TABLE 3.—ANTICIPATED INITIAL THERMAL AND MECHANICAL 
PROPERTIES OF A UNIDIRECTIONAL COMPOSITE (0.30 FVR SiC/Ti6) 

Temperature in °F 
Property Units 

70 500 1000 
α111 ppm/F 4.577 4.389 4.205 
α122 ppm/F 5.571 5.245 5.003 
α133 ppm/F 5.571 5.245 5.003 
C1 BTU/lb 0.157 0.157 0.157 

K111 BTU/F-hr*in 0.585 0.619 0.706 
K122 BTU/F-hr*in 0.572 0.606 0.701 
K133 BTU/F-hr*in 0.572 0.606 0.701 
E111 Mpsi 26.676 25.606 23.618 
E122 Mpsi 17.884 16.410 13.293 
K133 Mpsi 17.884 16.410 13.293 
G112 Mpsi 8.373 7.052 5.378 
G123 Mpsi 7.227 6.750 5.586 
G113 Mpsi 8.373 7.052 5.378 
S111T Ksi 195.00 180.00 160.00 
S111C Ksi 193.05 178.20 158.40 
S122T Ksi 64.75 50.75 35.00 
S122C Ksi 101.75 74.25 45.00 
S112 Ksi 43.75 36.25 23.75 
S123 Ksi 43.75 36.25 23.75 
S113 Ksi 43.75 36.25 23.75 
ν112 in/in 0.255 0.222 0.183 
ν1123 in in 0.237 0.215 0.190 
ν131 in/in 0.171 0.143 0.103 
ρ1 lb/in**3 0.152 0.152 0.152 

Note: Properties obtained under initial tensile load. 
Strengths obtained from respective stress/strain curves. 

 

 

The plots presented in figures 3 to 10 demonstrate METCAN’s ability to capture the behavior of a 
metal matrix composite at varying temperatures for one fiber volume ratio. By using these plots as an 
initial guideline, it becomes clear that the behavior at various fiber volume ratios for different composites 
can be similarly simulated. It should also become clear that obtaining all this information by test will be 
time and cost prohibitive. 

All the properties in figures 3 to 10 are plotted against longitudinal strain for commonality. The stress 
strain curve is plotted in figure 3. Note the mild nonlinearity for almost the entire range. Note also the 
decrease with temperature. The longitudinal modulus is plotted in figure 4. The discontinuities indicate 
local region (sector A in fig. 2) fractures. It is important to note these discontinuities are imperceptible in 
the stress-strain plots in figure 3. As can be seen, the modulus decreases continuously and exhibits an 
abrupt drop near composite fracture which occurs as a result of fiber fractures. 
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A comparable plot for the transverse modulus is shown in figure 5. Note the insensitivity of the 
transverse modulus with respect to longitudinal strain. The interpretation for this is that transverse local 
damage (cracks) has negligible effect on the transverse modulus when a unidirectional composite is 
loaded along the longitudinal (fiber) direction. Similarly for the in-plane shear modulus, Gℓ12 plotted 
versus longitudinal strain εℓ11 in figure 6. However, this is not the case when the composite is loaded in 
the transverse or in-plane shear. 
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The in-plane major Poisson’s ratio νℓ12 is plotted versus εℓ11 in figure 7. As can be observed, νℓ12 is not 
sensitive to εℓ11 which is comparable to Eℓ22 and Gℓ12 and for the same reasons that were mentioned. A 
different situation arises when the through-the-thickness νℓ32 is plotted versus εℓ11. The results are 
displayed in figure 8. Note that the magnitude increases continuously with discontinuous “jumps” in the 
region 0.3≤εℓ11≤0.5. These discontinuous jumps coincide with those in the longitudinal modulus in 
figure 4. Note also the rapid increase near the fracture region and almost instantaneous drop at fracture. 
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The reasons for this behavior are the same as previously mentioned. The conclusion from this discussion 
is that local directional damage may be present that may be detected by some properties and may be 
insensitive to others. The graphical results described thus far demonstrate that generalizations should be 
avoided when interpreting test results from these complex composites tested at high temperatures. 
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The longitudinal thermal expansion coefficient αℓ11 is plotted versus longitudinal strain in figure 9. 
The curves increase nonlinearly up to the local longitudinal damage exhibited by the instantaneous 
discontinuity drop. Thereafter remain insensitive till fracture. The important point to be made from the 
results in figure 9 is that longitudinal thermal expansion monitoring during loading may be a sensitive test 
to identify local damage in these types of composites. Comparable results for longitudinal thermal 
conductivity Kℓ11 are shown in figure 10. The behavior for Kℓ11 is more pronounced than that for αℓ11. 
However, the interpretation and point to be made are similar to those made for αℓ11. 

Time dependent (rupture strength) behavior can be simulated by activating the time factor in the 
MFIM, which is the last term in the MFIM in figure 2. The combined thermal time effects can be 
simulated by activating the temperature and time factors (first and last terms, figure 2) simultaneously. 
The combined results obtained for a monolithic super alloy are shown in figure 11. Also, two 
experimental available points are plotted for comparison. The important point to be noted is that 
information for preliminary designs or early assessments can be generated for emerging or projected 
materials for specific applications. Comparable information can be generated for fatigue endurance. This 
is obtained by activating the mechanical fatigue factor (sixth term) in the equation in figure 2. These 
results are plotted in figure 12. Note the relatively rapid drop at small cyclic ratios and the leveling as the 
cyclic ratio increases. Fatigue resistance for composites has been also evaluated as reported in 
references 5 and 6. Probabilistic fatigue in composites is described in references 7 and 8. 
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The major observations from the above discussion are that: (1) The highest laminate strength is along 

the fiber direction; (2) The room temperature laminate transverse and shear strengths decrease 
substantially with temperature. The decreases are about 18 percent for the longitudinal tensile strength 
and about 55 percent for the transverse and shear strengths. Of lesser significance are the observations 
that: (1) The thermal expansion coefficient and the thermal conductivity indicate abrupt changes in 
regions where one or both constituents failed. These sharp drops correspond to a somewhat imperceptible 
change in the slope of the stress-strain plot in figure 3. 

Concluding Remarks 
The evaluation presents simulated (METCAN generated) results at temperatures of 70, 500, and 

1000 °F for SiC/Ti6 at a fiber volume ratio of 0.30. It includes the following: (1) Table of Anticipated 
Thermal and Mechanical Properties, (2) Stress-Strain Curves, (3) Thermal Conductivities, (4) Thermal 
Expansions, (5) Elastic and Shear Moduli, and (6) Poisson’s Ratios. It also includes simulated results for 
stress rupture and fatigue resistance of a high temperature super alloy. It is noted that the method is 
general and applicable to all types of composites, loading conditions, and service environments.  

Some general trends are: 
 
• The highest ultimate tensile strength (UTS) is along the fiber. The room temperature transverse and 

shear strengths are roughly one third and one fourth, respectively, of the longitudinal UTS. 
Temperature causes these two strengths to degrade by approximately 55 percent while the 
longitudinal strength degrades by only 18 percent. 

• Some of the curves for the coefficient of thermal expansion (CTE α) and thermal conductivity (K) 
indicate abrupt changes in regions where one or both of the constituents failed. These sharp drops 
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correspond to a sometimes imperceptible change in the slope of the stress-strain plot. When a failure 
of this type occurs, the mechanism for heat transfer is disrupted. 

• The elastic (E) and shear (G) moduli experience a moderate degradation due to increasing 
temperature. The highest modulus is along the fiber (26 Mpsi). The transverse moduli are somewhat 
less (18 Mpsi) while the shear moduli are much smaller (8 Mpsi). 

• The major Poisson’s ratio remains about constant as temperature and longitudinal strain increase. The 
through-the-thickness Poisson’s ratio increases nonlinearly with increasing strain and temperature, 
which is reflected in the behavior of the corresponding decreases in the longitudinal modulus. 

• The rupture strength of a high temperature super alloy decreases rapidly with exposure time and with 
exposure temperature. The major decrease is from 1500 to 2000 °F because 2000 °F is approaching 
the melting temperature of the matrix. 

• The fatigue strength of the super alloy decreases rapidly at low cyclic ratios and decreases somewhat 
slower as the cyclic ratio increases. 

• The collective results demonstrate the versatility and effectiveness of multi level computational 
simulation coupled with a multi factor interaction model. 
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Appendix—Symbols List 
C = Heat Capacity (BTU/Ib) 
E = Normal Modulus (Mpsi) 
G = Shear Modulus (Mpsi) 
K = Thermal Conductivity (BTU/°F*hr*in) 
S = Strength (Ksi) 
α = Coefficient of Thermal Expansion (ppm/°F) 
ε = Strain (in/in %) 
ν = Poisson’s Ratio (in/in) 
ρ = Density (lb/in3) 

Subscripts 

A = L Ply Related Quantity 
T, C = Tension, Compression 
1,2,3 = Material Coordinate System Axes 
 
 

CONVERSION FACTORS 

Property English Units Multiply By SI Units 

Modulus, 
(G&E) 

Mpsi 6.89 GPa 

Strength, 
(S) 

Ksi 6.89 MPa 

Thermal Conductivity,
(K) 

BTU/°F*hr*in 6.94 W/m-°K 

Heat Capacity, 
(C) 

BTU/Ib 2.326 kJ/Kg 

CTE, 
(α) 

ppm/°F 1.8×10–6 mm/mm K 

Density, 
(ρ) 

lb/in3 27.7 g/cm3 
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