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Abstract
First, a method for determining the optimal size for a single pipe segment in a
district heating system is developed. The method is general enough to allow for
any set of economic or physical parameter values. In addition, any form of load
management, i.e., temperature or flow modulation, or both, can be accommo-
dated by the integral form of the coefficients in the cost equation. An example
is presented that shows a 17% savings in life cycle costs over a design based
on a common rule of thumb. Next the heat consumer and his effects on the
piping system are studied. A new model is developed for the consumer’s heat
exchanger that uses the geometric mean temperature difference as an approxi-
mation for the logarithmic mean temperature difference. The new consumer
model is integrated into the previous single pipe model and, for a sample case,
its effect is determined. For systems having multiple pipes and consumers, the
constraints are first developed and then the general solution strategy. The
method makes use of the solution to the unconstrained problem as a starting
point for the constrained solution. Monotonicity analysis is then used to prove
activity of some of the constraints, and thus simplify the problem. Finally, the
branch-and-bound technique is shown to be suitable for finding a design with
discrete values for all the pipe diameters. A simple example is provided. In
addition, a method is also demonstrated for further refinement of the pipe
network to eliminate excessive throttling losses in the consumer’s control
valves. The method developed here should be feasible for designing the piping
networks for district heating systems of moderate size, and its major advantage
is its flexibility.
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NOMENCLATURE

a coefficient in friction factor equation determined by curve fitting
(dimensionless)

A1 empirical parameter related to pump costs ($/pump)
A2 empirical parameter related to pump costs ($/W)
A3 parameter related to pipe costs ($/m)
A4 parameter related to pipe costs ($/m2)
A5 defined parameter related to pumping energy at the design conditions

($ m5+b+c)
A6 defined parameter related to the density and dynamic viscosity of the

supply and return fluids at the design conditions (m3+c sc/kg1+c)
A7 defined parameter related to the density and dynamic viscosity of the

supply and return fluids (m6+c sc/kg2+c)
A7,d A7 evaluated at the design condition (m6+c sc/kg2+c)

A8 defined parameter related to the fluid density (m6/kg2)
A9 defined parameter related to maintenance and repair costs ($/m)

A10 defined parameter related to heat losses (m)
A11 defined parameter related to pipe costs (m)
A12 defined parameter related to pumping energy (mb+1)
A13 over-design factor for the consumer’s radiators (dimensionless)
A14 empirical coefficient related to the annual load curve (dimensionless)
A15 empirical coefficient related to the annual load curve (dimensionless)
A16 defined parameter related to heat losses ($/[°C hr])
Aη empirical coefficient related to pumping (dimensionless)

Ahe expression that relates the fluid properties and physical properties of
the heat exchanger to the pressure drop at a given flow rate (kg1–β/
m–s2–β])

Am&r annual maintenance and repair rate as a fraction of initial capital costs
(dimensionless)

At number of hours per year (8760)
AF approach factor for the heat exchanger (dimensionless)

b exponent in friction factor equation determined by curve fitting
(dimensionless)

c exponent in friction factor equation determined by curve fitting
(dimensionless)

Ccpe cost of pumping energy dissipated in the consumer’s heat exchanger
and control valve ($)

Ce cost of electricity ($/Wh)
Ch cost of heat ($/Wh)
Chl cost of heat losses ($)

Cm&r cost of maintenance and repair ($)
Cp cost of the pipes ($)
cp specific heat of water at constant pressure (kJ/kg °C)

Cpe cost of pumping energy ($)
Cpp capital costs of pipes and pumps ($)
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Cfixed fixed cost of pipes and pumps, and the maintenance and repair on this
portion of their costs ($)

Cpv diameter variable cost of pipes and the maintenance and repair on that
portion of pipe cost ($)

Cpev diameter variable cost of pumps and pumping energy attributable to
piping pressure losses, and the maintenance and repair on that portion
of pump costs ($)

Cpvc variable cost of pumps attributable to the pressure losses at the
consumer ($)

Cpumps cost of the pumps ($)

    ′Cpt total diameter variable pipe costs for the system ($)
Cst total system cost ($)
Ct total system owning and operating cost ($)

    ′Ct portion of total system cost that is dependent on the pipe diameter ($)
d inside diameter of pipe (m)

Do outer diameter of insulation (m)
f friction factor (dimensionless)
g acceleration of gravity (9.8 m/s2)
gl equality constant numbers l (dimensions vary)
hl inequality constant numbers l (dimensions vary)

Hp burial depth to pipe centerline (m)
I1 defined integral parameter related to heat loss costs ($)
I2 defined integral parameter related to pumping energy ($ m5+b+c)
I3 defined integral parameter related to pumping energy and mainte-

nance and repair costs ($ m5+b+c)
ki insulation thermal conductivity (W/m °C)
ks soil thermal conductivity (W/m °C)
L pipe length (m)

ṁ mass flow rate (kg/s)

    ṁd maximum (design) mass flow rate (kg/s)
n total number of heat consumers

n1 empirically determined exponent in radiator equation (dimension-
less)

n2 empirically determined exponent in the radiator equation (dimension-
less)

np number of pumps
npi total number of pipe segments (measured in supply and return pipe

pairs)
Pa atmospheric pressure (≈ 105 N/m2)

Pasa minimum safety margin above atmospheric pressure (N/m2)
Php,s absolute pressure in supply pipe at heating plant (N/m2)
Php,r pressure in the return line at the inlet to pump (N/m2)

PI pressure at the inlet to the pipe segment (x=0) (N/m2)
Pmax maximum absolute pressure for the piping system being used (N/m2)

PNPSH minimum allowable pressure at the pump inlet due to NPSH require-
ments (N/m2)

vi



PPa actual pumping power required, including pump and pump driver
inefficiencies (W)

PPf frictional pumping power, exclusive of pump and pump driver inef-
ficiencies (W)

Ps absolute pressure in supply pipe at point in question (N/m2)
Psaf minimum allowable safety margin on saturation pressure require-

ments (N/m2)
PVFe present value factor for electrical energy (dimensionless)
PVFh present value factor for heat (dimensionless)

PVFm&r present value factor for maintenance and repair costs (dimensionless)
Px,sat saturation pressure of the liquid at point x within the pipe segment

(N/m2)
Px pressure at point x (N/m2)

q heat output from the radiator (W)
Qhl rate of heat loss (W)
Re Reynolds number for the pipe flow (dimensionless)
Ro overall resistance to heat transfer (W/m °C)
RR relative roughness of pipe (dimensionless)

t time of year (hr)
tu equivalent full load utilization time (hr)
T water temperature (°C)

Ta indoor air temperature (°C)
Tao air temperature at radiator outlet (°C)

Tavg average of supply and return temperature (°C)
Tg soil temperature (°C)

Tm mean soil temperature (°C)
Tma arithmetic mean temperature difference (°C)
Tmg geometric mean temperature difference (°C)
Tml logarithmic mean temperature difference (°C)
Tp pipe outer surface temperature (°C)
Tr return temperature (°C)
Ts supply temperature (°C)

Tsmin minimum supply temperature required by next consumer (°C)
v flow velocity (m/s)

w1 weight of term 1 (dimensionless)
w2 weight of term 2 (dimensionless)

x position along the pipe in the direction of flow with x = 0 being defined
as the inlet end to the pipe segment in question (m)

z elevation at point in question relative to heating plant (m)

Greek
β exponent yielding the appropriate mass flow rate dependency for the

heat exchanger (dimensionless)
ε absolute roughness of the piping (m)

εa relative approximation error for the arithmetic mean temperature
difference (dimensionless)
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εg relative approximation error for the geometric mean temperature
difference (dimensionless)

γ ki/ks (dimensionless)
ηp pump efficiency (dimensionless)

ηpm efficiency of the motor driving the pump (dimensionless)
µ dynamic viscosity (Pa s)
ρ fluid density (kg/m3)

ρd fluid density at design conditions (kg/m3)
∆Pcv pressure drop in the control valves (N/m2)

∆Pcvm minimum pressure drop in the control valve (N/m2)
∆Pcvs,i slack variable for consumer control valve pressure losses (N/m2)

∆Pd total pressure drop (supply and return) at design flow rate (N/m2)
∆Phe pressure drop in the heat exchangers (N/m2)
∆Php pressure increase across the pump (N/m2)

∆Pncv,i non-control-valve pressure losses (N/m2)
∆Pr,j pressure loss in the servicing return line j (N/m2)
∆Pr pressure drop in the return piping (N/m)

∆Ps,j pressure loss in supply pipe j (N/m2)
∆Ps pressure drop in the supply piping (N/m2)

∆Ps&r combined pressure loss of supply and return (N/m2)
∆Tra smallest temperature difference between fluids in the consumer’s heat

exchanger (°C)
∆Tsa greatest temperature difference between fluids in the consumer’s heat

exchanger (°C)
∆xi insulation thickness (m)

(∂z/∂x) partial derivative of the elevation of the pipe with respect to its
position (dimensionless)

(dP/dx)d hydrodynamic pressure gradient (N/m3)
(dP/dx)h hydrostatic pressure gradient (N/m3)

Subscripts
d design maximum load condition
i consumer index
j pipe segment index

sp straight pipe heat exchanger
he conditions within the heat exchanger or physical parameters of the

heat exchanger
0 “design” condition for the consumer’s heat exchanger, usually the

maximum load condition at maximum supply temperature
1 condition for the consumer’s heat exchanger of actual supply

temperature with the flow rate as determined under the design
condition

2 any actual operating condition in the consumer’s heat exchanger

viiviii



CHAPTER 1: INTRODUCTION

District heating is the practice of heating multiple buildings from a single heating
plant. Heat is conveyed to the buildings by means of hot water or steam. District
heating systems offer enormous potential for energy conservation, in addition to the
advantages of fuel flexibility and reduced environmental impact. For these reasons
district heating has been used extensively in Europe with favorable results. For
example, in Denmark district heating serves 42% of the demand for space and hot
tap water heating (NRC 1985).

In the United States district heating is much less widespread, accounting for
about 4% of the space and hot tap water heating (NRC 1985). A few cities have
systems, as well as a number of college campuses and other large institutions. With
approximately 6000 miles (10,000 km) of district heating piping in place (Segan and
Chen 1984), the Department of Defense is the single largest user of the technology
within the United States. A major barrier to more widespread use of district heating
in the United States is the high capital cost of the piping required to convey the heat
to the buildings. The piping system is most often the major cost of district heating.
However, the lack of development of district heating in the United States is often
attributed to “institutional barriers.” Such barriers, where they truly exist, would be
significantly weakened if not removed should the economics become more favor-
able.

CURRENT DESIGN PRACTICE

Because the hot water or steam piping networks represent such a major portion
of the capital costs, they also represent an opportunity for significant cost savings by
optimal design. Despite this, in practice little effort is expended either here or in
Europe to ensure that proposed designs reduce costs as much as possible. Currently,
most designs are based on previous experience and often may be far from optimal.
Rules of thumb are commonly used, as are design guides developed for other
purposes, such as for plumbing within buildings.

To achieve an optimal design with minimum life cycle costs, all major costs
associated with constructing and operating the system must be considered. Capital
costs for piping and installation vary widely and must be determined for each case.
Operating costs strongly depend on the nature of the load and the load management
strategy adopted. For these reasons, it is impossible to develop guidance that can be
applied universally to obtain designs that are sufficiently close to the lowest life
cycle cost.

As with most areas in the practice of engineering, computer-aided design
methods are becoming more widespread in district heating system design. The use
of such methods allows the rapid evaluation of many alternate designs, a formidable
task if carried out without such methods. A number of computer-aided design
methods are available for thermal piping networks (Reisman 1985, Rasmussen and
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Lund, undated, Cowiconsult 1985, Hart and Ponsness 1992). Most of the computer-
aided design methods that have been developed are proprietary and thus any
optimization that they profess to make is not open to inspection or modification. An
optimal design model that is open to inspection and modification is therefore
needed. The objective of this work is the development of such a model.

OPTIMIZATION IN DISTRICT HEATING SYSTEM DESIGN

Determination of pipe sizes is one of the major decisions that the designer of a
district heating system faces. Other critical decisions that must be made are heat
source, distribution media, distribution temperatures and load management strat-
egy. Many of these factors have been addressed by previous studies. The emphasis
of this work will be on determining pipe size.

Currently, pipe sizes are usually determined on the basis of simple criteria, such
as maximum pressure loss or maximum flow velocity. A number of investigators
have addressed the issue of pipe size determination, trying to improve on these
simple criteria. Aamot and Phetteplace (1976) presented a method that relies on
establishing the ratio between the heat losses and the pumping cost and then finds
the lowest cost pipe diameter by minimizing the sum of capital, heat loss and
pumping costs. Their work only addressed a single pipe segment and did not
include the effect of varying load over the yearly cycle. Szepe and Calm (1979)
presented a model for single pipe segments that neglected heat losses and time
varying loads, but used geometric programming theory to achieve additional
insight into their simplified problem. In later work, Phetteplace (1981) included the
effect of annual load variations, but only single pipe segments were addressed.
Frederiksen (1982) provided a detailed analysis of the heat generating station and
the consumer’s systems, but simplified the transmission network to a single supply
and return pipe.

A number of investigators have addressed multiple pipe networks. Of course, a
great deal of work has been done for water distribution systems where the problem
is much simpler owing to the lack of heat losses and load variation with temperature
as well as mass flow rate. Marconcini and Neri (1979) described a model that
calculates the flow rate, pressure and temperature in networks of steam pipes. They
discussed the effect that pipe diameter has on operation, but did not offer any
methodology for selecting diameter values.

Stoner (1974) discussed models that are capable of modeling either steam or water
networks. Although the models do not determine optimum diameters, he gave a
procedure for achieving an optimal design by sensitivity analysis, but did not dis-
cuss how this process would be accomplished for networks of more than one pipe.

Zinger et al. (1976) described a computer program for calculating flows and
pressure levels in branched networks of hot water pipes. Their program accounts for
pressure drops in the consumers’ equipment and throttling devices placed in the
network. Diameters are assumed to be known and they did not discuss how to
determine them.

Morofsky and Verma (1979) developed a feasibility analysis and costing tool for
district energy systems, not intended for detailed design. They found the appropri-
ate pipe sizes by finding those that absorbed all of the available pressure difference.
They started the search for pipe size at the smallest available discrete pipe diameter
and then calculated pressure losses. If the pressure losses were more than the
available pressure difference, they increased the pipe size to the next discrete size
and repeated the calculation. They proceeded in this fashion until they reached a
discrete pipe diameter that did not result in pressure losses greater than the available
pressure difference.
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McDonald and Bloomster (1977) discussed a model for laying out and sizing the
piping network for a city heated with geothermal water. Pipe diameter is deter-
mined using a “simple search” of feasible pipe sizes by minimizing the sum of the
annual capital cost, heat loss cost and pumping cost. They provided no information
on how to handle network constraints or consider annual load variations.

Bøhm (1986) noted that, in the case of consumers directly connected to the
network, the “classical” approach of determining the optimal diameter by finding
the minimum of the sum of the capital, heat loss and pumping costs results in
pressures that are too high at the heating plant. He suggested the use of Munser’s
(1980) method, which proportions the total available pressure loss in a network
using the equation
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0
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1 3
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∆

P
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n=
∑ 



=

i i
/˙

˙

(1-1)

where∆P1 = pressure loss in pipe number 1 (N/m2)
∆P0 = total pressure loss in the pipe network (N/m2)

L1 = length of pipe number 1 (m)
Li = length of pipe i (m)

    1ṁ = mass flow rate in pipe number 1(kg/s)

    iṁ = mass flow rate in pipe i (kg/s)
n = total number of pipes
i = pipe index.

Equation 1-1 is intended for use on “linear networks” that do not have branches.
Koskelainen (1980) developed a method that is able to solve for optimal diameters

in a branched network. His method consists of successively assuming that the
objective function and constraints locally are linear and repeatedly solving the
problem with a linear programming algorithm. He gives an example where his
“optimal” network has a cost that is 16.4% less than one sized using a head loss
design rule.

In this work we develop a rational design method that yields the optimal pipe
sizes for an application based on case-specific parameter values. This method allows
for the inclusion of all major costs and can account for such factors as escalation of
energy prices, seasonal energy costs, increases in heat losses over system life,
variation in seasonal heat demand, load management strategy, the effect of the heat
consumer, etc. Each of the major constraints on the design of a realistic district
heating network is derived and considered. This method is felt to be practical for
sizing much of the piping of a district heating system.

We begin our study in Chapter 2 by first finding a suitable method for deter-
mining the optimal size for a single pipe, independent of any others. In developing
this method, we endeavor to keep the formulation as simple as possible, yet
complete and accurate enough for design calculations. We make use of geometric
programming theory to identify a lower bounding problem that can be used to guide
us to our solution. At the end of Chapter 2 is an example that shows a 17% saving
in life cycle cost.

In Chapter 3 we study the heat consumer and the effect he has on the piping
system. We develop a new model for the consumer’s heat exchanger, which uses the
geometric mean temperature difference as an approximation for the logarithmic
mean temperature difference, thus allowing for an explicit expression for return
temperature. We integrate this consumer model with our single pipe model of
Chapter 2 and show what effect the consumer has on the system.

In Chapter 4 we develop the constraints for systems with multiple pipes and

3



consumers. Both absolute and differential pressure constraints are derived and
where possible strategies are given to allow for constraint satisfaction at all points
implicitly without considering every point in the system.

After a brief review of general methods for constrained nonlinear optimization
techniques at the beginning of Chapter 5, our general solution strategy is developed
for systems with multiple pipes and consumers. The method makes use of the
solution to the problem, unconfined by the network constraint requirements.
Monotonicity analysis is used to prove activity of some of the constraints and thus
simplify the problem somewhat. The result is used as a starting point for two
methods proposed to find a solution to the constrained problem with continuous
values for some of the pipe diameters. Finally, the branch-and-bound technique is
used to find a design with discrete values for all the pipe diameters.

In Chapter 6 we work a simple example with only four consumers and seven pipe
segments. The example illustrates the use of our method and also shows how the
branch-and-bound technique can be used to quickly eliminate candidate designs.

In Chapter 7 is a summary of our results and offers some conclusions and
suggestions for further study.

Because of the inordinate number of variables and parameters involved in the
analysis that follows, in choosing symbols for them, an attempt has been made to
make their meaning as intuitive as possible. Where accepted symbols exist they have
been used to the maximum extent possible. Where it has been mathematically
convenient to represent quantities that may have no particular physical significance
by a symbol, subscripted A’s have been used for sums, products and quotients and
I’s have been used for integrals.

4



CHAPTER 2: OPTIMAL PIPE DIAMETER FOR A
SINGLE PIPE SEGMENT

To find the optimal diameter for a single pair of supply and return pipes, we need
to consider the costs involved and minimize their sum with respect to the pipe
diameter. The cost minimization is done for the life cycle of the system using a net
present value approach. Some types of heat distribution systems may have a salvage
value, while others will, in fact, have a disposal cost associated with the end of their
useful lifetime. Since these will in general be mild functions of the pipe diameter,
they will not significantly affect the optimal pipe diameter and thus will not be
treated here. With these limitations in mind, our objective function, the total life
cycle cost, becomes

min. Ct = Chl + Cpe + Cpp + Cm&r (2-1)

where Ct = total system owning and operating cost ($)
Chl = cost of heat losses ($)
Cpe = cost of pumping energy ($)
Cpp = capital costs of pipes and pumps ($)

Cm&r = cost of maintenance and repair ($).

Now let’s look at each of the costs in eq 2-1 in detail, starting with the cost of heat
losses.

COST OF HEAT LOSS

The basic form of the heat loss cost is

    
C PVF C Q tyrhl h h hld= ∫ (2-2)

where Ch = cost of heat ($/Wh)
PVFh = present value factor for heat (dimensionless)

Qhl = rate of heat loss (W)
t = time of year (hr [0 ≤ t ≤ 8760]).

In the most general case, the cost of heat Ch  can be a function of time because of
seasonal usage rates. The rate of heat loss Qhl will also be a function of time over the
yearly cycle. In fact, deterioration of the thermal insulation will result in increasing
heat losses as the system ages. This can not be incorporated directly into the
formulation as given above, but could be allowed for by using an appropriate
escalation factor in the present value factor for heat costs PVFh.

The only variable defined above that is dependent on our decision variable, the
pipe diameter d, is the heat loss rate itself Qhl. For a single buried pipe, the
relationship is

Qhl = L(Tp – Tg)/Ro (2-3)

where Tp = pipe outer surface temperature (°C)
Tg = soil temperature (°C)
Ro = overall resistance to heat transfer (W/m °C)

L = pipe length (m).

The dependence on d is from the overall thermal resistance Ro. This resistance is
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found by adding the resistance attributable to the soil to that resulting from the pipe
insulation (Phetteplace and Meyer 1990). After simplification the following result is
obtained

Ro = ln[ (Do/d) (4Hp/Do)γ ]/2ki (2-4)

where γ = ki/ks (dimensionless)
ki = insulation thermal conductivity (W/m °C)
ks = soil thermal conductivity (W/m °C)

Do = outer diameter of insulation (m)
Hp = burial depth to pipe centerline (m).

In this form it becomes easy to see how each factor affects this parameter. The
(4Hp/Do)γ factor represents the contribution of the soil to the overall thermal
resistance. If γ << 1, that is, if the soil conductivity is much greater than the insulation
thermal conductivity, then this factor will be close to unity and the overall thermal
resistance reduces to the thermal resistance of the insulation alone.

To obtain a simpler form for the cost of heat loss, we make the following
assumptions:

1. That the soil temperature at the pipe depth varies sinusoidally over the yearly
cycle about a mean temperature.

2. That the cost of heat is constant over the yearly cycle. This does not limit us to
fixed heat cost over the life of the system, since escalation factors may be used.

3. That the outer surface temperature of the carrier pipe is equal to the tem-
perature of the carrier medium.

The result of these assumptions is the following form for the cost of heat loss

Chl = I1/ln(A10/d) (2-5)

where I1 = PVFh L 4πki (∫ Ch Tavg dt – At Ch Tm) ($)

A10 = Do(4Hp/Do)γ (m)
Tavg = (Ts+ Tr)/2 (°C)

Tm = mean soil temperature (°C)
Tr = return temperature (°C)
Ts = supply temperature (°C)
At = number of hours per year (8760).

COST OF PUMPING

Now let’s consider the pumping costs. A cost is associated with the electrical
energy input to drive the pumps. The portion of this energy that results in frictional
heating of the fluid in the pipes is recovered as heat. In general the value of the heat
recovered will, of course, be less than the value of the electrical energy input to drive
the pumps. It can be significant, however, and therefore it has been included here.
Thus, we have the following for the pumping cost

Cpe = PVFe ∫ CePPa dt – PVFh ∫  ChPPf dt (2-6)

where PVFe = present value factor for electrical energy (dimensionless)
Ce = cost of electricity ($/Wh)

PPa = actual pumping power required, including pump and pump driver
inefficiencies (W)

yr yr
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PPf = frictional pumping power, exclusive of pump and pump driver
inefficiencies (W).

The first integral term represents the total cost of electrical energy input to drive
the pumps. The second integral term is the value of heat recovered in frictional
heating of the fluid. The actual pumping power and the fluid frictional portion are
related as follows

PPa = PPf /ηpηpm (2-7)

where ηp = pump efficiency (dimensionless)
ηpm = efficiency of the motor driving the pump (dimensionless).

The pumping power of a closed system with return lines will not be affected by
elevation differences within a network and therefore they need not be considered
here. Elevation differences will, however, become a factor in determining the
absolute pressure level within a network. A constraint will arise owing to absolute
pressure limitations of the piping. This will be addressed later.

Now we assume that the product of the pump and motor efficiency can be
expressed as a function of the fraction of maximum volumetric flow. A similar
approach was used by Phetteplace (1981) based on data from Gartman (1970). This
gives an expression of the form

ηpηpm = Aη (    ṁ /ρ) (ρd/    ṁd ) (2-8)

where Aη = empirical coefficient (dimensionless)
    ṁ = mass flow rate (kg/s)

    ṁd = maximum (design) mass flow rate (kg/s)
ρ = fluid density (kg/m3)

ρd = fluid density at design conditions (kg/m3).

The frictional pumping in the supply or return line is given by

PPf = 2 (2/π)2 f L ρ–2     ṁ3  d–5 (2-9)

where f is a friction factor (dimensionless).
Using the above expression for both the supply and return pipes, we substitute

the results, along with our earlier result for PPa, and our expression for PPf, into our
original expression for the pumping energy cost and simplify to obtain

    

C d A
C m
A m

PVF
PVF

C A m f t
yr

pe
e d

d

h

e
h 8 d= −











− ∫5
11

3ρ
ρη

˙
˙

˙ (2-10)

where A11 = (4/π)2 PVFe L (m)

A8 =
  
ρ ρs r

− −+( )2 2 2/  (s and r subscripts denote supply and return conditions
respectively) (m6/kg2).

Now we would like to find a simple function to approximate the friction factor f
over a range of interest. A simple power function relationship would be desirable to
keep the number of terms to a minimum and thus not complicate the above
expression further. The form of such a function is suggested by the dimensionless
groups of the Moody diagram (Jeppson 1976). A method of finding an approximat-
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ing function by converting to logarithmic variables and using a least-squares curve
fit was developed (Appendix A) to fit an equation of the form

f = a (ε/d)b Rec (2-11)

where a, b and c = coefficients determined by curve fitting (dimensionless)
ε = absolute roughness of the piping (m)

Re = Reynolds number for the pipe flow (dimensionless).

As an example, the following coefficients are obtained over the parameter range
given

a = 0.119
b = 0.152
c = –0.0568

for

50 ≤ T ≤ 130
0.5 ≤ v ≤ 4.5
0.050 ≤ d ≤ 0.770

where T = water temperature (°C)
v = flow velocity (m/s).

When compared to the Colebrook and White equation (Jeppson 1976), the
maximum error of this approximation is 6.9%, with the average error over the range
given being only 1.1%. If more accuracy is required, a much better result could be
obtained by narrowing the parameter ranges. Some examples of results for other
parameter sets are given in Appendix A. The coefficients will be carried for the
general case in the derivations following to allow for values obtained with other
parameter sets.

By expressing the Reynolds number as a function of the quantities previously
used in the formulation, our equation for the friction factor becomes

f = a (4/µπ)c εb d–(b+c)     ṁc (2-12)

where µ is dynamic viscosity (Pa s).
Now if we substitute this result into our expression for the cost of pumping

energy and simplify, we obtain

Cpe = I2d –(5+b+c) (2-13)

where

    

I A
C m
A m

PVF
PVF

C A m t
yr

c b c
2 12

3 5= −
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˙
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ρ

ρη
m

A7 = [(ρ –2µ –c)s + (ρ–2µ–c)r]/2  (m6+c sc/kg2+c)

A12 = a (4/π)2+c εb PVFe L  (mb+1).
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COST OF PIPES AND PUMPS

Now we need to find expressions for the capital cost of the pipes and pumps. In
general, for the entire system the pump capital costs will be assumed to be of the
following form

Cpumps = A1np + A2(
    ṁd  /ρd) ∆Pd (2-14)

where A1 = empirical constant ($/pump)
A2 = empirical constant ($/W)
np = number of pumps

∆Pd = total pressure drop (supply and return) at design flow rate (N/m2).

The total pressure drop at maximum flow conditions is given by

∆Pd = a εb (4/π)2+c A6     ṁd
2+c L d–(5+b+c) (2-15)

where A6 = [(ρ–1 µ–c)d,s+ (ρ–1 µ–c)d,r]/2  (m3+c sc/kg1+c).

So, our pump cost becomes

Cpumps = A1 np + A5 d –(5+b+c) (2-16)

where A5 = A2a εb(4/π)2+c A7,d     ṁd
3+c L ($ m5+b+c)

A7,d = A7 evaluated at the design condition (m6+c sc/kg2+c).

For the capital cost of the supply and return piping, including installation, we
assume the following form

Cpipes = (A3 + A4d)L (2-17)

where A3 = empirical constant ($/m)
A4 = empirical constant ($/m2).

COST OF MAINTENANCE AND REPAIR

The cost of maintenance and repair is assumed to be of the following form

Cm&r = PVFm&r Am&r Cpp (2-18)

where Am&r = annual maintenance and repair rate  as a fraction of initial capital cost
(dimensionless)

PVFm&r = present value factor for maintenance and repair costs (dimension-
less).

TOTAL COST

With each of the component costs defined, our expression for the objective
function, the total cost Ct, becomes

9



    ′Ct  = I1/[ln (A10/d)] + I3 d –(5+b+c) + A9 d (2-19)

where     ′Ct = Ct – [(1+ PVFm&rAm&r)(A1np+ A3L)]

I3 = I2 + (1+PVFm&rAm&r) A5

A9 = (1+PVFm&rAm&r) A4L.

Minimizing     ′Ct  with respect to d is, of course, equivalent to minimizing the
original total cost function Ct. Therefore, we can work with     ′Ct  for convenience. If
we neglect the first term, which represents the cost of heat losses, we have a
geometric programming problem (Papalambros and Wilde 1988) with zero degrees
of difficulty. Without specifying the parameter values, we see from inspection that
the weights of the two remaining terms will be

w1 = 1/(6 + b + c) and w2 = (5 + b + c)/(6 + b + c).

With heat losses neglected, at the optimum pipe diameter the variable costs
associated with pumping are 1/(6 + b + c) of the total variable costs. The variable
costs attributable to pipe capital and maintenance costs are the remaining portion.
Here, the variable costs represent that portion which is a function of our decision
variable, the pipe diameter. Also note that the pumping costs include the variable
portion of the capital cost of the pumps and the maintenance associated with that
portion, as well as the pumping energy costs.

Considering a more specific case, if the values of parameters b and c found in the
example given for eq 2-11 (b = 0.152, c = –0.0568) are used, we find the following
values for the weights

w1 = 16.4%
w2 = 83.6%.

These results vary very little over the range of values found for b and c in
Appendix A. Thus, when heat losses are neglected, we find this very simple solution
is applicable in most cases.

Once values for the remaining parameters are known, the pipe diameter is found
by using the equations given above and the two terms of the objective function
remaining. The resulting expression is

d = [(5 + b + c)(I3/A9)][1/(6+b+c)]. (2-20)

It should be noted that this solution obtained using geometric programming theory
also could have been easily obtained using classical differential methods, as used
later. The advantage of the geometric programming method is that it ensures that a
global rather than a local minimum has been found. Differential methods only ensure
a local extremum and require the evaluation of second order terms to determine the
nature of the extremum, i.e., maximum or minimum.

To arrive at this simple expression for the pipe diameter, we have neglected the
heat losses. Because the cost of heat losses will always be greater than zero, we have
constructed a lower bounding problem for our original problem by neglecting this
cost, i.e.

I3 d–(5+b+c) + A9 d ≤ I1/[ln(A10/d)] + I3 d–(5+b+c) + A9 d.

The cost of any design that includes heat losses can never be less than the same
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design excluding the cost of heat losses. And, since we have found the optimum
design (lowest cost) neglecting heat losses, we now know that no design can achieve
a lower cost when heat losses are included. This simple result can be very useful. It
may be possible to find a design, not necessarily known to be optimal, whose cost
including heat losses is acceptably close to that of the optimal design for the lower
bounding problem.

The solution to the complete problem including heat losses is slightly more
complicated, but is easily obtained. To find the extremum of the total variable cost
function     ′Ct , we simply take its partial derivative with respect to d and set the result
to zero. Before proceeding to do so, however, we must take note of the value of A10
in the heat loss term being a function of the pipe diameter. This results from the outer
diameter of the pipe being a function of pipe diameter and insulation thickness. The
appropriate insulation thickness is determined by a separate optimization proce-
dure that would consider the insulation and jacket material costs and the cost of heat
loss. As a result of this separate “sub-optimization,” the insulation thickness
becomes a function of the pipe diameter.

For a given set of operating conditions and economic data, the optimal insulation
thickness can be found as a function of the pipe diameter. Here, for the sake of
simplicity, we will assume that the insulation thickness is fixed. We then find an
expression for A10 as follows

A10 = (d + 2∆xi)
1–γ (4Hp)γ (2-21)

where ∆xi is the insulation thickness (m). In turn we approximate this expression by
one of the following form

A10 = (d1–γ + (2∆xi)
1–γ) (4Hp)γ. (2-22)

For a typical set of parameter values

ki = 0.030 W/m °C

ks = 1.3 W/m °C

∆xi = 0.050 m.

This approximation is within 2% for values of d from 0.025 to 1.0 m. Using this
approximation for A10, we obtain the following equation for     ′Ct

    ′Ct  = [I1/ln((4Hp)γ (d–γ + (2∆xi)
1–γ d–1))] + I3d–(5+b+c) + A9d. (2-23)

If we take the partial derivative of     ′Ct  and set the result to zero, we have

0 = {I1/d [ln((4Hp)γ(d–γ+ (2∆xi)
1–γ d–1))]2}{1–((1–γ)/(1+(2∆xi)

1–γ d γ–1))}
– (5 + b + c)I3d–(6+b+c) + A9. (2-24)

This equation can not be solved explicitly for d. A solution can be obtained by
using a root-finder technique. An initial estimate needed for the solution can be
found by using the value of d obtained from the solution to the lower bounding
problem, which neglects heat losses. The cost associated with this optimal design
that neglects heat losses also provides us with a global lower bound on the actual
cost. In the next section, we consider the solution to a representative case.
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A SIMPLE EXAMPLE

To illustrate the application of the method developed in the previous section, an
example using realistic parameter values is presented in this section. In addition, the
results obtained are compared to those obtained by using a common rule of thumb.
Before we can proceed with the calculation of the parameters, we need to define the
economic and technical assumptions upon which our solution is based.

Economic assumptions
The assumptions concerning economic conditions of an application are the most

controversial in an analysis of this type. Here, we will endeavor to select conditions
that are felt to be representative of the majority of applications rather than any
specific application. The analysis is quite sensitive to these economic assumptions,
so the reader is cautioned that specific information must be obtained before
applying these results. This can not be overemphasized.

The most significant cost to be considered is the capital cost of the piping system.
This cost is also highly variable, depending on the piping system used and, above
all, the site conditions. Our pipe cost equation is from Phetteplace (1981) and has
been adjusted for inflation from 1980 to 1988 using factors from R.S. Means Co.
(1987). The following expression results

Cp = 218 L + 2180 Ld. (2-25)

The capital costs of pumps is also taken from Phetteplace (1981), with cost ad-
justments made as indicated above to arrive at

Cpumps = 1060 np + 0.242 ∆Pd     ṁ d/ρd. (2-26)

The present value factors (PVF’s) are assumed to be equal for electrical cost, heat
cost, and maintenance and repair costs. As noted earlier, these PVF’s could be
modified to allow for escalation of energy, labor or material costs and could even be
modified to allow for increasing heat loss over the life of the system. For simplicity,
however, such modifications are not made here. We assume an interest rate of 10%
per annum and a system lifetime of 25 years in calculating the PVF’s using the
following expression (CRC Press 1987)

PVF = [1 – (1+i)–n]/i = [1 – (1.10)–25]/0.10 = 9.08. (2-27)

We assume that both heat and electricity costs are constant over the year,
although the formulation allows for varying rates over the yearly cycle. Again, these
costs are highly variable, dependent mainly on the sources of the energy and the
values given are not for a specific application, although it is felt that they are
representative. The assumed costs are

Ce = 7.0 × 10–5 $/Wh ($0.07/kWh)

Ch = 3.4 × 10–5 $/Wh ($10/106Btu).

The rate of maintenance and repair on the system is also taken from Phetteplace
(1981) as 2% of the capital cost per year. This factor is assumed to apply to both the
piping system and the pumps. Again, note that maintenance and repair increasing
with component age could be easily accounted for using escalation factors to adjust
PVFm&r , although this is not done here.
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Technical assumptions
The major technical assumptions that we make are related to the heat load

characteristics and the method by which the heat load is met. In district heating
systems, the amount of heat supplied can be varied to accommodate varying
demand by adjusting either the supply temperature or flow rate. However, certain
constraints imposed by consumer equipment and minimum temperature re-
quirements must be observed. In larger systems, both the supply temperature and
flow rate are varied over the course of the year. In small systems, which must adopt
simpler control strategies, often only the flow rate is varied. For the sake of
simplicity, we assume the latter here and assume that the supply and return
temperatures remain fixed over the yearly cycle. This is never actually the case, but
for system design, it is felt that this is an appropriate simplifying assumption for a
first analysis. Ideally, for example, the supply temperature, return temperature and
flow rate at the consumer would be determined by the heat transfer characteristics
of his heat exchanger under the prevailing load. A model that simulates the
consumer’s heat exchanger is developed in Chapter 3, but here it is not considered.

The actual heat load in district heating systems has several major components. A
detailed treatment of the heat load would be difficult and is not warranted for design
purposes. For an excellent treatment of the actual heat loads in operating district
heating systems, see Werner (1984). The assumption we make here for design
purposes, that the heat load can be approximated as sinusoidal, is supported by the
data presented by Werner (1984) as well as by the data of Phetteplace et al. (1981).
We assume here that the heat load varies sinusoidally from a minimum of 15% of its
maximum value to its maximum value. The assumed minimum load of 15% would
result primarily from hot tap water use and heat losses from the pipelines. Thus,
with our assumption of constant supply and return temperatures, the mass flow rate
as a function of time is

    ṁ /    ṁd  = 0.575 + [0.425 cos(2πt/8760)].  (2-28)

The ratio of the mass flow rate to its maximum value as determined by eq 2-28 is
shown in Figure 1. With this simple function for the load curve, it is easy to determine
the shape of what is normally referred to as the “load duration curve.” Since eq 2-

Figure 1. Assumed annual load curve.
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Figure 2. Load duration curve.
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28 is an even function about its midpoint of 8760/2 = 4380 hours, the number of hours
for which the load will exceed any given level is simply twice the number of hours
from the time of maximum load (t = 0) until the time that load would have occurred.
This yields an equation of the same form as eq 2-28, except that the period of the
function is now twice as long, i.e.,

    ṁ /    ṁd  = [0.425 cos(2πt/17,520) + 0.575]. (2-29)

The form of the resulting load duration curve is shown as Figure 2. This result is
similar to the shape of empirical load curves determined by other investigators, such
as Werner (1984), except that it over-predicts the number of hours at which high
loads occur. Since this will result in a conservative design, this is a suitable
approximation for design purposes. The equivalent full load utilization time is
another factor used to evaluate the load in district heating systems. The equivalent
full load utilization time is the amount of time at which the load would have to be
at its maximum value to result in the total heat supplied being equal to that supplied
over the actual yearly cycle. This time can be easily found by integrating eq 2-28 over
the yearly cycle

    
t t tu (0.425 cos(2 /8760)  +   0.575) d= ∫

0

8760
π (2-30)

where tu is the equivalent full load utilization time (hr). Carrying out this integration
yields a value of tu = 5037 hours. This value is near the upper end of the range of
measured values reported by Bøhm (1988) for a number of Danish district heating
systems.

A number of other technical parameters need to have values assigned to them for
us to proceed with this sample calculation. The following values selected are felt to
be well within the range of what could reasonably be expected in an actual design:

Aη = 0.90 (dimensionless)
Tm = 6.4°C

ki = 0.030 W/m °C
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ks = 1.3 W/m °C
Hp = 1.0 m
∆xi = 0.050 m

ε = 5 × 10–5 m
a = 0.119 (dimensionless)
b = 0.152 (dimensionless)
c = –0.0568 (dimensionless)

Ts = 120°C
Tr = 60°C.

Application
For the application, we consider a main portion of a distribution system that

would serve a large number of consumers. We assume a maximum heating load,
including pipeline heat losses, of 25 MW. At the temperature difference specified
above, this would require a “design” or maximum flow of     ṁd  = 100 kg/s. We also
assume that the length of the pipeline is 1000 m. Note, however, that the length used
will not affect the diameter determined, as the length could be factored out of each
of the variable terms in the objective function eq 2-23, and the calculation would then
be done on a unit length basis. To arrive at a realistic total cost, which includes the
cost fixed with respect to d, the calculations here are for the system length specified
above. We also assume that only one pump is associated with the system.

Solution
For the problem described above, we arrive at the following values for the

parameters in the objective function:

γ = 0.0231 (dimensionless)
A9 = $2.58 × 106/m
I1 = $8.56 × 104

I3 = 44.1 $ m5.095

A1 = $1060/pump
A3 = $2.18 × 105.

The calculation of the above parameters is straightforward with the exception of
I3. The integral in the I3 parameter was evaluated numerically by a FORTRAN
program adapted from Ferziger (1981), which uses Romberg integration. The
program is included in Appendix B.

Before solving eq 2-24 to determine the optimum diameter, we first find an
approximate solution using eq 2-20, which neglects the heat losses. From eq 2-20 we
solve for the diameter directly, obtaining d = 0.216 m. Using this value of d as an
initial estimate, we can proceed to solve eq 2-24. We know that the solution to eq 2-
24, which includes heat losses, will be a smaller diameter than the solution to eq 2-
20, which does not include heat losses, since heat losses are an increasing function
of the diameter. Various “root finder” methods can be used to find the solution to
eq 2-24. Guided by the value obtained above, a simple trial-and-error method was
used here, which yielded a solution to three significant digits with several function
evaluations. The optimal diameter d was found to be 0.208 m. The total cost for this
design is Ct = $1.11 × 106. In the following section, this result will be compared to one
obtained using a common design rule of thumb.

Comparison with a design based on a rule of thumb
Ideally, an analysis similar to the one above would be used to size all major district

heating pipes. In reality, however, most systems are designed on the basis of rules
of thumb that have evolved from practice. Although such rules of thumb may prove
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Table 1. Pressure drops and costs for discrete pipe sizes
under maximum flow conditions (pipe data from Marks
1978).

Nominal Inside diameter
pipe size schedule 40 ∆Pd Ct

(in.) (in.) (m) (Pa/m) ($ × 106)

— 8.187 0.208 340 1.111
8 7.981 0.203 384 1.112

10 10.020 0.255 120 1.178
12 11.938 0.303 50 1.305

adequate in some cases, they lack the flexibility to account for varying conditions,
most notably economic. Because these rules of thumb are based on designs proven
only to be functional, they cannot profess to yield least life cycle cost designs. To see
how the results of the above example would compare with a rule of thumb based
design, we consider a very common design rule of thumb used in Europe for systems
in this temperature range: that the pressure loss in the piping not exceed 100 Pa/m.
For this example, standard schedule 40 pipe sizes are used.

To apply the above rule of thumb, we simply calculate the pressure loss that
would result at maximum flow conditions using increasing pipe size until we find
a size that satisfies the rule. This calculation is done using eq 2-15 given earlier. The
results are shown in Table 1. We see from Table 1 that a 12-in. (300-mm) pipe would
be necessary to satisfy the rule of thumb. The pressure loss for the 10-in. (250-mm)
pipe exceeds the 100-Pa/m level by over 20% and therefore would probably be
considered unacceptable.

Now we need to determine what discrete pipe diameter would be recommended
by the procedure outlined in the previous section. The optimal nondiscrete diameter
was found to be 0.208 m or 8.187 in. We see from Table 1 that this lies between the
inside diameters of the 8- and 10-in. (200- and 250-mm) nominal pipe sizes.

To determine which to use, we simply calculate the cost of each alternative using
eq 2-19. These results are also included in Table 1. We see from these figures that the
total life cycle cost of the 8-in. pipe is about 6% less than the 10-in. pipe and thus the
8-in. pipe should be selected. We also note that the life cycle cost of the 8-in. pipe is
only 0.1% greater than that of an optimal 8.187-in. inside diameter pipe, if such a pipe
were available.

If we compare the cost of the 8-in. pipe, which our method recommends, to the
12-in. pipe required by the maximum pressure drop rule of thumb, we find that the
life cycle cost of the rule based design is 17% greater. This great saving in life cycle
cost is also accompanied by an even greater 30% reduction in capital costs (sum of
eq 2-16 and 2-17). As the financing of a new district heating system is often a barrier
to implementation, such large reductions in capital costs could make a system
feasible where it might not be otherwise.

We have arrived at an optimal pipe size that promises to save 17% in life cycle cost
over a rule of thumb based design. This result is consistent with the results of others
(Bøhm 1986, Koskelainen 1980) who have compared optimized designs with rule of
thumb based designs. In determining this pipe size, we have not considered any
constraints on the selection, other than it be a commercially available size. Of course,
in reality, other constraints exist. Before this method could be used to design an
entire system, the constraints that arise from interconnection of the pipes need to be
considered. Constraints also arise because of the consumer’s equipment and mini-
mum temperature requirements. Other constraints are associated with the limita-
tions of the piping system and the plant that supplies the heat. These constraints will
be considered in the following chapters.
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CHAPTER 3: THE CONSUMER’S HEAT LOAD

In the design and subsequent operation of a district heating system, the charac-
teristics of the load can be very significant. The load will not only dictate the
combination of supply temperature and mass flow rate necessary for its satisfaction,
but the heat exchanger equipment used at the consumer will also determine the
return temperature of the water. Lowering return temperature is desirable because
it results in larger temperature differences and thus lower mass flow rates, pumping
energy expenditure, and possibly smaller pipes. The importance of this issue is
evidenced by many district heating utilities in Europe having taken significant
actions to achieve large temperature differences. Thus, it is essential that our design
methodology for the distribution piping system account for the characteristics of the
consumer’s load and the constraints that result.

The primary type of heat load for most district heating systems is space heating.
In some cases industrial process loads can also be significant. In most cases where
buildings rely on a district heating system for space heat, they also use the system
to heat hot water. Here we will develop simple models for space heating loads only.

SIMPLE MODEL FOR THE CONSUMER’S SPACE HEATING EQUIPMENT

As noted above, in addition to the maximum magnitude of the load placed on the
district heating system by the consumer, several other characteristics of the load are
important. The way in which the load varies is of primary importance. This was
discussed in Chapter 1 and will be addressed in more detail later. The other major
way in which the load affects heat distribution systems is through the response of
the consumer’s heat exchanger to changes in supply temperature. To address this
issue, we need a model for the consumer’s heat exchanger equipment. We will
develop such a model in this section.

In district heating systems using hot water, the water-to-air heat exchangers of the
consumers can either be directly connected to the network or indirectly coupled by
a heat exchanger. Each type of connection has its advantages and limitations. For the
sake of simplicity, we will assume that the buildings are directly connected in this
work. To address indirect systems, it would be necessary to either develop alternate
models or attempt to modify the model for a direct system developed below.

The normal radiator common on many residential and light commercial hydronic
heating systems can be classified as a cross flow heat exchanger with one of the fluids
mixed (water) and the other fluid (air) unmixed, as described by Kays and London
(1964). Although the term “radiator” is commonly used for these heat exchangers,
they function via both convective and radiative heat transfer within the temperature
ranges normally encountered in practice. A schematic representation of this cross
flow heat exchanger is shown in Figure 3.

Because the water is considered to be ideally mixed, its temperature is assumed
to be uniform in the direction of air flow at any point along the heat exchanger. As
the water moves through the heat exchanger, it varies from the supply temperature
Ts at the water inlet to the return temperature Tr at the outlet. The incoming air
temperature Ta is assumed to be constant along the length of the heat exchanger.
However, the outgoing air temperature Tao will vary along the length of the radiator
owing to the decline in water temperature.

Although it would be possible to describe the performance of a radiator using
traditional approaches, such as those described by Kays and London (1964), simpler
equations have been proposed. These are based on experimental results for such
heat exchangers, an example being the equation given by Bøhm (1988)
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q2/q0 = [(Tml)1/(Tml)0]n1 [(Tml)2/ (Tml)1]n2 (3-1)

where q = heat output from the radiator (W)
Tml = logarithmic mean temperature difference (°C)

n1, n2 = empirically determined coefficients (dimensionless).

and the subscripts denote the following operating conditions

0 = “design” condition for the radiators, usually the maximum load condition
at maximum supply temperature

1 = condition of actual supply temperature with the flow rate as determined
under the design condition

2 = any actual operating condition.

Equation 3-1 uses the logarithmic mean temperature difference Tml and exper-
imentally determined constants to predict heat exchanger performance. The log-
arithmic mean temperature difference is defined as

    
T

T T T T

T T T T
T T

T T T Tm1
s a r a

s a r a

s r

s a r a
=

−( ) − −( )
−( ) − −( ) = −

−( ) −( )[ ]ln ln ln /
 . (3-2)

One problem that results from using the logarithmic mean temperature differ-
ence is that an explicit expression for either the supply temperature Ts, or the return
temperature Tr, cannot be obtained from the expression for the logarithmic mean
temperature. This limits the extent of closed form analysis and ultimately, when
calculations are required, it forces solution by iterative numerical methods. As a
solution to these problems, the use of the arithmetic mean as an approximation for
the logarithmic mean was proposed by Soumerai (1987). The arithmetic mean
temperature difference for this case is defined as

Tma= [(Ts – Ta) + (Tr – Ta)]/2 = (Ts + Tr – 2Ta)/2. (3-3)

The arithmetic mean temperature difference has the advantage that it can be used
to find a very simple explicit expression for either the supply temperature Ts or the
return temperature Tr given the value of the arithmetic mean temperature differ-
ence. The disadvantage of using the arithmetic mean temperature difference as an
approximation for the logarithmic mean temperature difference is the error induced
by this approximation. As Soumerai (1987) points out, within certain ranges of the
temperatures involved, the resultant errors are usually acceptable, given the other
uncertainties in heat transfer engineering. Soumerai (1987) recommends the use of
the arithmetic mean as an approximation for the logarithmic mean in cases where
the approach factor AF is equal to or greater than 0.5. The approach factor for this
type of heat exchanger is given by

Air Temperature

Supply
Temperature

Return
Temperature

Figure 3. Schematic of a hydronic heating system radiator.
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AF = (Tr – Ta)/(Ts– Ta) . (3-4)

In the case where the above criterion for the approach factor is met, the error of
approximation is always less than 4%. The arithmetic mean always overestimates
the logarithmic mean and thus any estimates of the heat transfer based on the
arithmetic mean will overestimate the actual heat transfer that will be achieved. This
could result in undersized heat exchangers, assuming that no other margin of safety
is included, which is of course seldom the case.

As an alternative approximation to the logarithmic mean temperature difference,
the use of the geometric mean temperature difference is proposed. The geometric
mean temperature difference for this type of heat exchanger is defined as

Tmg = (Ts – Ta)1/2 (Tr – Ta)1/2 = (    Ta
2  + TsTr  – TaTs – TaTr)

1/2. (3-5)

The geometric mean temperature difference, like the arithmetic mean tempera-
ture difference, has the advantage that an explicit expression for the supply or return
temperature can be obtained from it. The geometric mean temperature difference,
however, is a much better approximation of the logarithmic mean temperature
difference than is the arithmetic mean temperature difference, as will be shown
below.

To simplify the analysis, we introduce the following expressions

∆Tsa = Ts – Ta (3-6)

∆Tra = Tr – Ta (3-7)

AF = ∆Tra/∆Tsa (3-8)

where ∆Tsa = greatest temperature difference between fluids (°C)
∆Tra = smallest temperature difference between fluids (°C)

AF = approach factor for the heat exchanger (dimensionless).

Two limiting cases of heat transfer set the range of values possible for the
approach factor AF. The first case is the case where no heat transfer takes place in the
heat exchanger. In this case the temperature of the water flowing through the
radiator will not decrease, and thus the supply and return water temperatures will
be equal and the approach factor becomes unity. The other limiting case occurs when
the maximum amount of heat transfer occurs in the heat exchanger, in which case
the return temperature equals the air temperature and approach factor becomes
zero. Thus, we have the following range of values for the approach factor AF

0 ≤ AF ≤ 1 . (3-9)

Now we can examine the errors that can result from each of the approximations
presented above over the entire range of possible approach factors. First, we define
the relative error of each of the approximations

εa = (Tma/Tml) – 1 (3-10)

εg = (Tmg/Tml) – 1 (3-11)

where εa is a relative approximation error for the arithmetic mean temperature
difference (dimensionless) and εg is a relative approximation error for the geometric
mean temperature difference (dimensionless). Then, by combining eq 3-2, 3-3, 3-6,
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3-7, 3-8 and 3-10, we can arrive at the following expression for the relative error of
the arithmetic mean temperature difference εa in terms of the approach factor AF

εa = { [(AF + 1) ln(AF)]/[2(AF – 1)] } – 1. (3-12)

Similarly, we combine eq 3-2, 3-5, 3-6, 3-7, 3-8 and 3-11 to arrive at an expression for
the relative error of the geometric mean temperature difference εg in terms of the
approach factor AF

εg = {[(AF)1/2 ln(AF)]/[AF – 1]} – 1. (3-13)

Now we can study the approximation errors for the arithmetic and geometric
mean temperature differences over the range of possible approach factors by
examining eq 3-12 and 3-13 respectively. It is immediately obvious that the error
from the arithmetic mean temperature difference approximation εa becomes infinite
as AF approaches zero. However, it is not clear what the error from the geometric
mean temperature difference approximation becomes as AF approaches zero. To
determine what value εg approaches as AF approaches zero, we use l’Hôpital’s rule.
It states that

    

limit ( )/ ( ) limit ( )/ ( )f x g x f x g x
x x

( ) = ′ ′( )
→ →λ λ (3-14)

where f(x) and g(x) are some functions of x that both approach either zero or infinity
when x approaches the value λ. To apply this to the error expression for the
geometric mean temperature difference, we let

x = AF
f(x) = f(AF) = ln(AF)
g(x) = g(AF) = (AF–1)/AF1/2 = AF1/2 – AF –1/2

εg = f(AF)/g(AF) – 1 .

Taking the first derivatives of f(AF) and g(AF), we have

f ′(AF) = 1/AF
g′ (AF) = 0.5 AF –1/2 + 0.5 AF –3/2 .

Now we can determine the value that εg approaches as AF → 0 from

limit limit   limit   g
AF AF

f AF g AF f AF g AF
→ → →

+( ) = ( ) = ′ ′( ) =
0 0

1ε ( )/ ( ) ( )/ ( )
AF 0

limit   
AF

AF AF
→

+ =
0

0 5 1 01 2( /[ . ( )])/

Thus, we find that the error from approximating the logarithmic mean temperature
difference with the geometric mean temperature difference εg reaches –100% as the
approach factor AF goes to zero. Although this is a very high relative error, it is still
much better than that of the arithmetic mean temperature difference approximation,
which becomes infinite at the same condition. Of course, in reality this limiting case,
where heat transfer is at its maximum value and the approach factor becomes zero,
is never achieved. As we will now show, the errors attributable to using the
geometric and arithmetic mean temperature difference approximations for the
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logarithmic mean temperature difference are always less than the values for an
approach factor of zero.

The other limiting value for the approach factor is unity. In this case no heat
transfer occurs. First, let’s examine what happens to the error from the arithmetic
mean approximation εa. We must again use l’Hôpital’s rule, proceeding as before

f(AF) = (AF – 1) ln(AF)
g(AF) = 2(AF –1)

f′ (AF) = 1 + ln(AF) + 1/AF
g′ (AF) = 2 .

In the limit as AF approaches unity, we have

    

limit limit limitg
AF AF AF

f AF g AF f AF g AF
→ → →

+( ) = ( ) = ′ ′( ) =
1 1 1

1ε ( )/ ( ) ( )/ ( )

    

limit
AF

AF AF
→

+ +( ) =
1

1 1 2 1( ln( ) / )/  .

So, we see that the error induced by using the arithmetic mean temperature
difference as an approximation for the logarithmic mean temperature difference
approaches zero as AF approaches unity. Now let’s look at what happens to the error
for the geometric mean temperature difference as AF approaches unity. Again we
see that l’Hôpital’s rule is needed and we proceed as follows

f (AF) = AF1/2 ln(AF)
g (AF) = AF – 1
f′ (AF) = AF –1/2 [(ln(AF)/2) + 1]
g′ (AF) = 1 .

In the limit as AF approaches unity we have

    

limit limit limitg
AF AF AF

f AF g AF f AF g AF
→ → →

+( ) = ( ) = ′ ′( ) =
1 1 1

1ε ( )/ ( ) ( )/ ( )

    

limit
AF

AF AF
→

− +[ ]( ) =
1

1 2 2 1 1/ (ln( ))/ )  .

Thus, we find that the error for the geometric mean temperature difference
approximation to the logarithmic mean temperature difference also approaches
zero as AF approaches unity. The errors resulting from using the arithmetic and
geometric mean temperature differences as approximations for the logarithmic
mean temperature difference are shown in Figure 4. Some numerical values for these
errors are also given in Table 2.

Several important observations can be made by studying Table 2. First, we note
that the error from approximating the logarithmic mean temperature difference
with the arithmetic mean temperature difference is always positive. Since the heat
transfer is proportional to the logarithmic mean temperature raised to some positive
power, using the arithmetic mean temperature difference as an approximation will
always over-predict the actual heat transfer. Also note that, as we have shown
analytically, the arithmetic mean temperature difference approaches infinity as the
AF goes to zero and approaches zero as AF goes to unity. For the geometric mean
temperature difference, the error resulting from using it as an approximation for the

21



300

200

100

0

Approach Factor

A
pp

ro
xi

m
at

io
n 

E
rr

or
 (

%
)

Arithmetic
Error

Geometric 
Error (abs.)

10–3 10– 2 10 – 1 100

Figure 4. Errors from approximating the logarithmic mean temperature differ-
ence with arithmetic and geometric mean temperature differences.

Table 2. Errors from approximating the logarithmic mean
temperature difference.

Approach Arithmetic Geometric Ratio of
factor mean error mean error errors
AF εa(%) εg(%) εg/εa

0.0 + ∞ –100.0 – 0.00
0.0001 361.0 –90.8 – 0.25
0.001 246.0 –78.1 – 0.32
0.01 135.0 –53.4 – 0.40
0.1 40.7 –19.1 – 0.47
0.2 20.7 –10.0 – 0.48
0.3 11.8 –5.79 – 0.49
0.4 6.90 –3.41 – 0.495
0.5 3.97 –1.97 – 0.497
0.6 2.17 –1.08 – 0.498
0.7 1.058 – 0.528 – 0.4992
0.8 0.415 – 0.207 – 0.4997
0.9 0.0925 – 0.0462 – 0.4999
1.0 0.0 0.0 → – 0.500...

logarithmic mean temperature difference is always negative. Thus, the predicted
heat transfer using this approximation would always be conservative; i.e., it would
under-predict the actual heat transfer. We also note from Table 2 that, as we had
shown analytically, the error resulting from the use of the geometric mean approxi-
mation approaches 100% in magnitude as AF goes to zero and approaches zero as
AF approaches unity.

The ratio of the error from using the arithmetic mean and geometric mean
approximations is also given in Table 2. Because the error from the arithmetic mean
approximation becomes infinite and the error from the geometric mean approxima-
tion approaches –100% as the approach factor AF goes to zero, their ratio approaches
zero at that point. Thus, the geometric mean approximation is infinitely better than
the arithmetic mean approximation at that point. Since neither approximation is
acceptable near that point, this observation is of little use. However, it is of interest
to note that the ratio of errors approaches 1/2 as AF approaches unity. Although this

22



is seemingly apparent from Table 2, we can prove this analytically by using
l’Hôpital’s rule. In this case it becomes necessary to take successive derivatives up
to the third derivatives in order to arrive at an expression that is not indeterminate.
This is an acceptable application of l’Hôpital’s rule, however. The analysis is
presented briefly below.

    

ε
ε

g

a
= − +

+[ ] − +
AF AF AF

AF AF AF

1 2 1
1 2 1

/ ln( )
( ) ln( )/

Let

εg = f(AF) = AF1/2ln(AF) – AF + 1

εa = g(AF) = [(AF + 1) ln(AF)/2] – AF + 1

f ′(AF) = [AF1/2ln(AF)/2] + AF –1/2 – 1

g′ (AF) = ln(AF)/2 + 1/2AF – 1/2 .

In the limit as AF → 1, we see that both f ′(AF) and g′(AF) approach zero; thus, we still
have an indeterminate expression. Applying l’Hôpital’s rule to that expression

f ′′(AF) = – [AF –3/2ln(AF)]/4

g′′(AF) = (AF –1– AF –2)/2 .

Again, we see that both f ′′(AF) and g′′(AF) approach zero as AF approaches unity
and we are left with another indeterminate expression. Once again we take deriva-
tives so that we can apply l’Hôpital’s rule

f ′′′(AF) = [(3AF –5/2ln(AF))/8] – AF –5/2/4

g′′′(AF) = AF –3 – AF –2/2

    

limit limit ( )/ ( ) ( / )/( / ) /ε εg a+( ) = ′′′ ′′′( ) = − = −
→ →

f AF g AF
AF AF

1 4 1 2 1 2
1 1

And we now have our desired result.
The significance of this result is that we now know that the error from using the

geometric mean temperature difference as an approximation to the logarithmic
mean temperature difference is always 50% or less of the error that would result
from using the arithmetic mean temperature difference. For applications where the
use of the logarithmic mean temperature difference is undesirable, use of the geo-
metric mean temperature difference will result in errors of less than 5% for values
of AF greater than 0.33. As Soumerai (1987) points out, given the other uncertainties
in heat exchanger design calculations, errors of this magnitude are certainly accept-
able. Most heat exchanger designs will have approach factors greater than 0.33 and
thus our findings here should be applicable in the majority of cases.

Now that we have this approximation for the logarithmic mean temperature
difference, we can construct a simple model for the consumer’s heat exchanger using
it. Equation 3-1 will be used to construct our model. For our model two possible cases
exist, dependent on the values of the empirical parameters n1 and n2. Here, we will
only address the simpler case where n1 = n2. This is the result that occurs for “high
radiators” according to Bøhm (1988), in which case n1 = n2 = 1.3. In that case eq 3-1
becomes

    
q q T T

n

2 0 2 0

1
/ /= ( ) ( )



m1 m1 . (3-15)
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Our model of the consumer’s heat exchanger should accept as input the supply
temperature to the radiators and the heat load q2. The values of the operating
parameters at the design “0” condition will also be needed. The output from the
model will be the return temperature. We would like this model to be as accurate as
possible while being in a simple form, thus allowing ease in both analytical and
numerical procedures involving it. As stated earlier, it is not possible to obtain an
explicit model if the log mean temperature difference is used. Thus, we will proceed
using our geometric mean approximation for the log mean temperature difference.
Making this substitution, we have

    
q q T T

n

2 0 02

1

/ /= ( ) ( )



mg mg . (3-16)

Note that the log mean temperature difference at the design 0 condition is also being
approximated with the geometric mean temperature difference. Since all of the
temperatures are known at the design condition, we could have evaluated the log
mean temperature difference and used the result here and still achieved an explicit
result. However, to ensure that no error occurs in the resultant model at the design
condition, we have used the geometric mean approximation. This will also reduce
the errors at the “off-design” (2) condition. The same procedure has been adopted
for the model using the arithmetic mean temperature difference.

To obtain our model for the return temperature as a function of the load and
supply temperature, we simply solve eq 3-16 for the return temperature at the 2
condition (actual load). The result is

    
( ) ( ) ( ) ( / )

/
T T T T T q q

n
r a s a mg2 2

1
0
2

2 0
2 1= + −





− . (3-17)

We can also obtain a model for the return temperature using the arithmetic mean
approximation to the log mean temperature difference. It is

    
( ) ( ) ( / ) ( )/T T T q q Tn

r a ma s2 0 2 0
1

22 1= + [ ]{ } − . (3-18)

To evaluate the performance of our models that use approximations to the log mean
temperature difference, we need a model that uses the log mean temperature
difference. As noted earlier, this model will be implicit and thus will require solution
by an iterative numerical method of some type. The model can be arranged in several
forms for numerical solution, one being

    
( ) ( ) /exp ( / ) ( ) /( )

/
T T T T q q T T T

n
r a s a s r m12 2 2 0

1
2 0

1= + − −













−
 . (3-19)

A number of iterative methods can be used to solve this implicit equation for the
return temperature (Tr)2. Most iterative methods are very sensitive to the quality of
the initial estimate. Here, we are fortunate to have the geometric mean temperature
difference approximation that can be used to obtain the initial estimate. Figure 5
below shows some of the results for the three models developed. In addition more
detail as well as numerical values are given in Table 3. It is clear from Figure 5 that
the model using the arithmetic mean temperature difference is unacceptable for
most values of the load ratio q/q0, while the model using the geometric mean
temperature difference is acceptable over the entire range of values given for q/q0.
The results for the model using the log mean temperature difference were obtained
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by using the geometric mean approximation as an initial estimate, then proceeding
with a simple “iterative improvement” method where the previous estimate of (Tr)2
was substituted into the right-hand side of eq 3-19, which yielded the next estimate.
This procedure is repeated until successive estimates of (Tr)2 varied by no more than
the prescribed tolerance.

For each of the consumer models, we can easily develop an expression to calculate
the flow rate for any given load condition by starting with the heat balance for the
radiator. We assume that the mass of the radiator is negligible so that with the
gradual temperature changes typical of these systems, conditions are very close to
steady state. Treating the radiator as a control volume, we have

q =     ṁ  cp(Ts – Tr) (3-20)

where cp is the specific heat of water at constant pressure (kJ/kg °C).
Thus, our mass flow rate relative to the mass flow rate at the design condition is

given by

    ṁ /    ṁ d = (q/qd)(Ts – Tr)d/(Ts – Tr)2. (3-21)

Notice that we have used the d subscript to denote the design condition for the
piping system rather than the 0 subscript used to denote the design condition for the
consumer’s radiators. If both the network piping and the consumer’s radiators are
designed for the same maximum load condition, then it would not be necessary to
distinguish between these two conditions. However, in most cases this will not be
the case. For the piping network, little or no over-design is desirable in order to keep
costs at a minimum. In fact, diversity of demand between consumers will allow the
network to be designed for a total maximum demand of less than the sum of the
individual demands, as will be discussed later. The consumer’s radiators, on the
other hand, will always be somewhat oversized. In addition to the normal conser-
vatism in design, quick recovery from night setback and other off periods also favors
significant over-design. Relative mass flow rates calculated using eq 3-21 for each of
the consumer models are given in Table 3. The results in Table 3 assume the same
design condition for the piping network and the consumer’s radiators. Some
examples with differing design conditions will be given later.
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Figure 5. Results for the return temperature models. Top family is for Ts =
80°C; middle family is for Ts = 90°C; bottom family is for Ts = 100°C.
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Table 3. Return temperatures and flow rates calculated with the consumer models for n1 = n2 = 1.3.

Heat GMTD AMTD LMTD
Supply loss rtn. rtn. rtn. GMTD AMTD
temp. ratio temp. temp. temp. GMTD AMTD LMTD GMTD AMTD LMTD GMTD AMTD m/md m/md
(°C) (q/qo) (°C) (°C) (°C) AF AF AF error error m/md m/md m/md error error

100 1 63.75 60.00 62.75 0.55 0.50 0.53 –0.0160 0.0438 0.5369 0.5517 0.5000 –0.0277 0.0687
100 0.9 57.20 50.66 55.56 0.47 0.38 0.44 –0.0295 0.0883 0.4051 0.4206 0.3648 –0.0383 0.0994
100 0.8 51.04 41.07 48.73 0.39 0.26 0.36 –0.0473 0.1572 0.3121 0.3268 0.2715 –0.0471 0.1300
100 0.7 45.27 31.21 42.31 0.32 0.14 0.28 –0.0700 0.2625 0.2427 0.2558 0.2035 –0.0541 0.1614
100 0.6 39.94 21.01 36.39 0.25 0.01 0.20 –0.0974 0.4227 0.1887 0.1998 0.1519 –0.0590 0.1948
100 0.5 35.06 10.41 31.09 0.19 –0.12 0.14 –0.1277 0.6653 0.1451 0.1540 0.1116 –0.0611 0.2309
100 0.4 30.68 –0.70 26.57 0.13 –0.26 0.08 –0.1550 1.0263 0.1089 0.1154 0.0794 –0.0594 0.2708
100 0.3 26.86 –12.47 23.04 0.09 –0.41 0.04 –0.1657 1.5411 0.0780 0.0820 0.0533 –0.0522 0.3158
100 0.2 23.68 –25.21 20.81 0.05 –0.57 0.01 –0.1379 2.2113 0.0505 0.0524 0.0319 –0.0376 0.3675
100 0.1 21.27 –39.58 20.03 0.02 –0.74 0.00 –0.0618 2.9763 0.0250 0.0254 0.0143 –0.0157 0.4271

95 1 66.67 65.00 66.20 0.62 0.60 0.62 –0.0071 0.0181 0.6944 0.7059 0.6667 –0.0165 0.0400
95 0.9 59.68 55.66 58.62 0.53 0.48 0.51 –0.0181 0.0505 0.4948 0.5097 0.4575 –0.0301 0.0753
95 0.8 53.11 46.07 51.38 0.44 0.35 0.42 –0.0335 0.1034 0.3668 0.3819 0.3270 –0.0411 0.1086
95 0.7 46.96 36.21 44.55 0.36 0.22 0.33 –0.0540 0.1874 0.2775 0.2914 0.2381 –0.0500 0.1420
95 0.6 41.27 26.01 38.22 0.28 0.08 0.24 –0.0798 0.3195 0.2113 0.2233 0.1739 –0.0567 0.1770
95 0.5 36.07 15.41 32.49 0.21 –0.06 0.17 –0.1099 0.5258 0.1600 0.1697 0.1256 –0.0606 0.2147
95 0.4 31.40 4.30 27.55 0.15 –0.21 0.10 –0.1397 0.8438 0.1186 0.1258 0.0882 –0.0605 0.2563
95 0.3 27.32 –7.47 23.62 0.10 –0.37 0.05 –0.1569 1.3163 0.0841 0.0887 0.0586 –0.0547 0.3034
95 0.2 23.92 –20.21 21.03 0.05 –0.54 0.01 –0.1378 1.9610 0.0541 0.0563 0.0347 –0.0408 0.3579
95 0.1 21.35 –34.58 20.05 0.02 –0.73 0.00 –0.0651 2.7253 0.0267 0.0272 0.0154 –0.0177 0.4216

90 1 70.00 70.00 70.00 0.71 0.71 0.71 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000
90 0.9 62.52 60.66 62.00 0.61 0.58 0.60 –0.0084 0.0216 0.6429 0.6550 0.6135 –0.0188 0.0457
90 0.8 55.47 51.07 54.33 0.51 0.44 0.49 –0.0210 0.0600 0.4486 0.4634 0.4110 –0.0330 0.0837
90 0.7 48.88 41.21 47.06 0.41 0.30 0.39 –0.0388 0.1243 0.3260 0.3405 0.2869 –0.0444 0.1199
90 0.6 42.79 31.01 40.27 0.33 0.16 0.29 –0.0625 0.2300 0.2413 0.2542 0.2034 –0.0533 0.1570
90 0.5 37.21 20.41 34.09 0.25 0.01 0.20 –0.0917 0.4013 0.1789 0.1894 0.1437 –0.0592 0.1966
90 0.4 32.21 9.30 28.68 0.17 –0.15 0.12 –0.1231 0.6756 0.1305 0.1384 0.0991 –0.0611 0.2401
90 0.3 27.84 –2.47 24.30 0.11 –0.32 0.06 –0.1460 1.1017 0.0913 0.0965 0.0649 –0.0571 0.2895
90 0.2 24.20 –15.21 21.30 0.06 –0.50 0.02 –0.1363 1.7139 0.0582 0.0608 0.0380 –0.0441 0.3470
90 0.1 21.45 –29.58 20.07 0.02 –0.71 0.00 –0.0686 2.4741 0.0286 0.0292 0.0167 –0.0201 0.4152

85 1 73.85 75.00 74.17 0.83 0.85 0.83 0.0044 –0.0112 1.8471 1.7931 2.0000 0.0292 –0.0828
85 0.9 65.79 65.66 65.75 0.70 0.70 0.70 –0.0006 0.0014 0.9351 0.9370 0.9306 –0.0020 0.0048
85 0.8 58.20 56.07 57.61 0.59 0.55 0.58 –0.0102 0.0268 0.5843 0.5970 0.5531 –0.0218 0.0533
85 0.7 51.11 46.21 49.86 0.48 0.40 0.46 –0.0249 0.0734 0.3985 0.4131 0.3609 –0.0366 0.0943
85 0.6 44.54 36.01 42.59 0.38 0.25 0.35 –0.0458 0.1545 0.2829 0.2966 0.2449 –0.0482 0.1343
85 0.5 38.54 25.41 35.91 0.29 0.08 0.24 –0.0733 0.2924 0.2037 0.2152 0.1678 –0.0566 0.1762
85 0.4 33.15 14.30 29.99 0.20 –0.09 0.15 –0.1053 0.5231 0.1454 0.1543 0.1132 –0.0609 0.2219
85 0.3 28.45 2.53 25.11 0.13 –0.27 0.08 –0.1331 0.8992 0.1002 0.1061 0.0728 –0.0591 0.2737
85 0.2 24.53 –10.21 21.65 0.07 –0.46 0.03 –0.1331 1.4715 0.0631 0.0661 0.0420 –0.0476 0.3346
85 0.1 21.56 –24.58 20.11 0.02 –0.69 0.00 –0.0722 2.2228 0.0308 0.0315 0.0183 –0.0229 0.4078

80 1 78.33 80.00 78.49 0.97 1.00 0.97 0.0020 –0.0192 13.2420 12.0000 ∞ 0.0938 ∞
80 0.9 69.60 70.66 69.90 0.83 0.84 0.83 0.0043 –0.0108 1.7827 1.7315 1.9268 0.0287 –0.0809
80 0.8 61.38 61.07 61.29 0.69 0.68 0.69 –0.0015 0.0036 0.8553 0.8594 0.8454 –0.0048 0.0116
80 0.7 53.70 51.21 53.02 0.56 0.52 0.55 –0.0127 0.0343 0.5190 0.5323 0.4862 –0.0256 0.0631
80 0.6 46.58 41.01 45.22 0.44 0.35 0.42 –0.0302 0.0931 0.3450 0.3591 0.3078 –0.0409 0.1079
80 0.5 40.08 30.41 37.99 0.33 0.17 0.30 –0.0551 0.1996 0.2380 0.2505 0.2016 –0.0524 0.1529
80 0.4 34.25 19.30 31.52 0.24 –0.01 0.19 –0.0866 0.3876 0.1650 0.1748 0.1318 –0.0596 0.2012
80 0.3 29.15 7.53 26.07 0.15 –0.21 0.10 –0.1181 0.7112 0.1113 0.1180 0.0828 –0.0606 0.2559
80 0.2 24.90 –5.21 22.08 0.08 –0.42 0.03 –0.1277 1.2357 0.0691 0.0726 0.0469 –0.0512 0.3203
80 0.1 21.69 –19.58 20.16 0.03 –0.66 0.00 –0.0757 1.9714 0.0334 0.0343 0.0201 –0.0262 0.3991

Averages –0.0700 0.6902 0.0360 0.1899

Table Nomenclature: LMTD = log mean temperature difference (°C); GMTD = geometric mean temperature difference (°C);
AMTD = arithmetic mean temperature difference (°C); m/md = ratio of mass flow rate to design condition mass flow rate.
Assumed conditions: at “0” condition Ts = 90°C, Tr = 70°C; for all calculations Ta= 20°C, n1= n2 = 1.3.
Tolerance for iterative calculation of Tr with LMTD model was < 0.01°C.
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As expected, the results for the normalized mass flow rates in Table 3, which use
the geometric mean approximation for the log mean temperature difference, are
much better than those obtained using the arithmetic mean approximation. Clearly,
the errors induced by the arithmetic mean approximation are unacceptable for any
load–supply temperature condition that deviated significantly from the design
condition for the radiators. Over the range of supply temperatures and heat loads
given in the Table 3, the average error in the return temperature obtained using the
geometric mean approximation is only 7% compared to 69% for the results obtained
using the arithmetic mean approximation. Also, note that the errors in approxima-
tion of the mass flow rate average only 3.6% for the model using the geometric mean
approximation, while the average error for the model using the arithmetic mean
approximation is about 19%.

In addition, it should be noted that the model based on the arithmetic mean
approximation in a number of instances at lower loads results in physically im-
possible return temperatures, i.e., ones lower than the room air temperature of 20°C.
Note that at lower loads (lower q/q0 values), the errors of approximation tend to be
larger. This is predicted by our error analysis carried out earlier, since the approach
factor is lower in these cases. Also note that, like our basic geometric mean
approximation, our model based on it is conservative and under-predicts the heat
transfer on the average. An exception sometimes occurs at supply temperatures
lower than the design condition of 90°C. Since our model for the radiator predicts
the return temperature based on the return temperature at the design 0 condition,
the error in approximation of the return temperature at the design condition has an
effect on the error in our model at conditions other than the design condition. At
lower supply temperatures and high loads, for example Ts = 85°C and q/q0 = 1.0, the
approach factor is 0.83 for the geometric mean approximation and is thus higher
than the approach factor of 0.71 encountered at the design condition. Because the
error in the geometric mean approximation decreases with increasing approach
factor, our model for the prediction of the return temperature actually under-
predicts it slightly at that point. This under-prediction is not, however, a cause for
concern, since it is so slight and in addition it exists at a load–temperature condition
that would not normally be encountered because it would require mass flow rates
greater than the design condition.

DESIGN OF A SINGLE PIPE SEGMENT WITH A CONSUMER MODEL

In Chapter 2 we developed a methodology to determine the optimal pipe
diameter for a single pipe segment. In the example given, it was assumed that both
the supply temperature and return temperature were constant over the entire yearly
cycle. This is of course not the case, and now that we have a simple model for the
consumer’s space heating substation, we can examine what the effect is of coupling
this model with our design methodology.

First, let’s consider what the effect is of assuming a constant supply temperature,
as we had done earlier, but rather than assuming a constant return temperature as
well, let this be determined by our consumer model. The varying return temperature
will affect the heat losses by altering the A1 parameter (eq 2-5) to some degree; this
will be addressed later. The primary effect, however, will be on the mass flow rate.
The heat load will be assumed to vary sinusoidally, as before, except now the
variation in the mass flow rate will not be sinusoidal itself, but will be determined
by the load and the return temperature from the consumer model. The relationship
between the mass flow rate, load, design supply–return temperatures and the actual
supply–return temperatures was given by eq 3-21. If we substitute our expression
for the return temperature as determined using the geometric mean approximation
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(eq 3-17) into eq 3-21, we have

    ṁ /    ṁ d = (q/qd) (Ts – Tr)d/{Ts – 
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Notice that we have used both q/qd and q/q0 in this expression. In both cases q
represents the actual load on the system. The quantity q0 represents the maximum
load for which the consumers’ radiators were designed, while the quantity qd
represents the maximum load for which the piping network was designed. These
two “design” loads will in most cases not be equal, as discussed earlier. They will,
however, be related by some “over-design factor,” which will be a constant

(q/qd) = A13 (q/q0) (3-23)

where A13 is the over-design factor for the consumer’s radiators (dimensionless).
In the example of Chapter 2, we assumed a sinusoidal form for the variation of the

load over the yearly cycle. In general terms this can be written as

q/qd = A14 + [A15 cos(2πt/8760)] (3-24)

where A14 is the midpoint of the load curve (dimensionless) and A15 is the amplitude
of the load curve (dimensionless). The midpoint of the load curve A14 is simply the
average of the maximum and minimum loads. The amplitude of the load curve A15
is the maximum load minus the minimum load divided by two.

Now if we combine eq 3-22–3-24, we have the following expression for the
normalized mass flow rate over the yearly cycle
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If we select the same values for A14 and A15 as we used in the Chapter 2 example
(0.575 and 0.425 respectively), we can compare the resulting mass flow rate function
of eq 3-25 to the mass flow rate function without the consumer model (eq 2-28). We

Figure 6. Mass flow rate function with and without consumer
models, Tr = 60°C.
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have done so in Figure 6. Notice, for the case where the consumer model has been
included, that the maximum value of the normalized mass flow rate is less than
unity. This results from an inconsistency in the design conditions chosen for the
original problem of Chapter 2 and the consumer’s radiator model. Our model for the
consumer’s radiators assumes design temperatures of 90 and 70°C for the supply
and return respectively. With the supply temperature of 120°C, the radiator model
will predict a return temperature of 55°C, rather than the value of 60°C we assumed
earlier. In the case where the return temperature is assumed rather than determined
by a consumer model, the choice of 60°C is entirely appropriate, as are the normal
design temperatures of 90 and 70°C for supply and return radiator temperatures
respectively. Normal design practice would be to assign these temperatures inde-
pendently. Thus, the lower flow rate that results when we include the effect of the
consumer model illustrates one of the inaccuracies encountered when normal
design practice is followed. If we make the design return temperature for the piping
network equal to that which results from the consumer’s radiator model, i.e., 55°C,
it results in the normalized mass flow rates shown in Figure 7. From Figure 7 it is
clear that the effect of including the consumer model on the mass flow rate is still
significant once the load condition drops slightly from its maximum value. Aver-
aged over all load conditions, the normalized mass flow rate is 20% less for the case
that includes the consumer model.

To determine what effect this change in normalized mass flow rate will have on
our optimal pipe diameter determined in the example of Chapter 2, we need to
recompute I3, which is the only parameter affected by the changes in the mass flow
rate. We have modified the computer program used in Chapter 2 to calculate I3 by
including eq 3-25 in place of the original normalized mass flow rate as given by eq
2-29. The modified program is included in Appendix B as Program I2-C-GMT. All
constants were assumed to have the same values as before, with A13 taken as unity.
This results in the value of the I3 parameter decreasing by 15% from 44.1 to 37.5 ($
m5.095) because of the effect of the consumer model.

Now we need to determine what other parameters in the solution of the Chapter
2 example would be affected by our consumer model. The only additional effect will
be on the I1 parameter. Since this parameter arises out of heat loss considerations, the
varying return temperature caused by the consumer model will change it some-
what. In the example of Chapter 2, since the supply and return temperature were
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Figure 7. Mass flow rate function with and without consumer
models, Tr = 55°C.
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both constant over the yearly cycle, the integration needed to find I1 (see eq 2-5) is
unnecessary. With the varying return temperature produced by our consumer
model, however, we will need to carry out this integration. Assuming that the cost
of heat Ch is constant, our new equation for I1 becomes
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where A16 = PVFh L Ch 4πki ($/[°C hr]).
Because the cosine function is raised to a non-integer power, it is not possible to

carry out the integration in eq 3-26 analytically. Once again we have used the
Romberg method of numerical integration to evaluate the integral. The calculation
of I1 was done using the FORTRAN program I1EQ3-26, which is included in
Appendix B. Using the parameter values assumed earlier in this section, we obtain
I1 = $7.33 × 104. Thus, we find that including the consumer model reduces the value
of the I1 parameter by 14.4% from 8.56 × 104 to 7.33 × 104.

Now that we have new values for the parameters that are affected by the
consumer model, we can recompute the optimal diameter for the sample application
given in Chapter 2. We proceed as before, i.e., before solving eq 2-24 to determine the
optimum diameter, we first find an approximate solution using eq 2-20, which
neglects the heat losses. From eq 2-20 we solve for the diameter directly, obtaining
d = 0.210 m. Using this value of d as an initial estimate, we can proceed to solve eq
2-24. We know that the solution to eq 2-24, which includes heat losses, will be a
smaller diameter than the solution to eq 2-20, which does not include heat losses,
since heat losses are an increasing function of the diameter. Guided by the value
obtained above, a simple trial-and-error method was once again used here. This
method yielded a solution to three significant digits with only four function
evaluations. The optimal diameter d was found to be 0.203 m. The total cost for this
design is found to be Ct = $1.064 × 106 using eq 2-19. By coincidence, the optimal
diameter we have found also is one of the standard discrete diameter pipes
available; thus, it is not necessary for us to compute total costs for other discrete
diameters as before.

The addition of the consumer model has changed the optimal diameter from
0.208  to 0.203 m, a decrease of only 2.5%. The optimal discrete diameter remains
unchanged. While in this particular case, the inclusion of the consumer model had
no net effect on the choice of optimal discrete diameter, this obviously will not
always be the case.

The cost predicted for any pipe diameter is also changed slightly by the addition
of the consumer. The total cost with and without the consumer model is given in

Table 4. Pressure drops and costs for discrete pipe sizes under maximum flow
conditions with and without the consumer model (pipe data from Marks 1978).

Nominal Inside diameter Ct , w/o Ct,  with
pipe size schedule 40 ∆Pd consumer model consumer model

(in.) (in.) (m) (Pa/m) ($ × 106) ($ × 106)

— 8.187 0.208 340 1.111 1.065
8 7.981 0.203 384 1.112 1.064

10 10.020 0.255 120 1.178 1.140
12 11.938 0.303 50 1.305 1.267
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Table 4 for each optimal diameter and the discrete diameters found when using the
rule of thumb based design method. Pressure drops at maximum flow conditions
are also given in Table 4. Note that these are unchanged from those in Table 1, since
the maximum flow condition remains the same. Thus, the rule of thumb based
design would remain the same and a 12-in. nominal diameter pipe would be
required. The cost saving of the optimal discrete design increases slightly once the
consumer model is added. Now the rule of thumb based design is 19% more costly
than the optimal discrete design. Also, note that the total life cycle costs are reduced
in all cases when the consumer model is added. Since it is important to have accurate
cost predictions when comparing district heating to alternatives, these seemingly
minor changes in total life cycle cost can be significant. For instance, the total life
cycle cost of our optimal discrete diameter design decreases 4% with the addition of
the consumer model. This is a very significant cost reduction. In our example 1-km-
long pipe segment with a design capacity of 25 MW, this refinement in predicted life
cycle cost amounts to $48,000. Note that since our optimal discrete diameter is
unchanged by the addition of the consumer model, the capital cost of this design is
unchanged as well. Thus, the optimal discrete design still represents a 30% reduc-
tion in capital costs from the rule of thumb based design.

HEAT CONSUMER CONSTRAINTS

Before leaving the topic of the consumers, let’s consider the constraints that they
place on the design. The consumers of heat place two very basic requirements on the
heat supply system:

1. That the delivered temperature of the heat be high enough to meet their
requirements.

2. That their heat demand be met at all times.
The first requirement will simply result in the following inequality constraint

Ts,i ≥ Tsmin,i (3-27)

where Ts,i is the supply temperature at the heat consumer i (°C) and Tsmin,i is the
minimum supply temperature required by heat consumer i (°C).

Satisfaction of the second requirement will result in an equality constraint that
must be obeyed at each heat consumer. This constraint will be based on the model
developed in the previous section. The load placed on the system by the consumer
will be known, expressed as a fraction of the load under the design condition, i.e.,
q/q0. The supply temperature will also be known. The model for the consumer heat
exchanger then becomes our constraint on the return temperature. Equation 3-17 is
modified slightly by removing the 2 subscript, the unsubscripted values now
representing the actual operating condition
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There is also an additional equality constraint on the mass flow rate that results
from eq 3-21

    ṁ /    ṁ d = (q/qd)(Ts – Tr )d/(Ts – Tr). (3-29)

In the next chapter, we will examine how these and other constraints interact
when multiple consumer designs are considered.
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CHAPTER 4: CONSTRAINTS ON SYSTEMS WITH
MULTIPLE CONSUMERS AND PIPES

All district heating systems, with the exception of pure transmission systems, will
have multiple consumers and pipes. If each pipe were independent of the others, it
would be possible to apply the procedure developed earlier to each pipe and create
a complete design in that way. Of course each pipe segment does not operate
independently of the others and the system can thus not be designed completely in
that way for all but the most trivial cases. Many constraints are imposed on the
design by the physical process involved in the network, the consumer’s require-
ments and physical limitations of the piping. As we shall see, many of these
constraints will be inactive at the optimum system design and thus they can be
relaxed. Our task is then to formulate these constraints into mathematical expres-
sions, and then identify those that must be active and use this information to develop
a solution methodology. All of this must be done with the minimum amount of
computational effort so as not to render the method intractable for large networks,
which often have hundreds or thousands of piping segments.

SYSTEM CONSTRAINTS

Constraints on the design of a heat distribution system originate from limitations
imposed in several distinct areas. Before we begin to formulate constraints into a
form suitable for inclusion in our problem, let’s consider where and why these
constraints arise. The source of constraints can be grouped into three basic catego-
ries:

1. Physical limitations of the piping systems.
2. Fluid dynamic and thermodynamic considerations for the network, con-

sumers, and heat source.
3. Requirements dictated by the consumer’s equipment or processes.
In some instances considerations from each of these categories are coupled

together into a single constraint or set of constraints. Thus, as we formulate the
constraints below, we will address considerations from each of the categories above
and their interaction.

DIFFERENTIAL PRESSURE CONSTRAINTS

A very important set of constraints on the system arises from requirements for the
pressure difference between supply and return. At the consumer this differential
pressure must maintain a minimum level to ensure adequate flow through the
consumer’s heat exchanger. This pressure differential is consumed in both the heat
exchangers and control valves. In the heat exchanger, the pressure losses are caused
by fluid dynamic friction. In the control valve, the pressure losses are introduced by
a throttling process used to control the flow rate through the heat exchanger and
thus control its output. In the supply piping between the heat source and the
consumer, pressure losses occur due to friction. Similarly, in the return line from the
consumer back to the heat source, pressure losses also occur. There is then, in effect,
a requirement at each point in the piping network for a given differential between
supply and return pressure necessary to overcome downstream losses, including
those in the return system. Ultimately, at the heating plant pumps must be used to
provide the total differential pressure needed downstream of that point. In theory
it’s possible that pumps can be placed anywhere in the system or even dispersed
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throughout. In practice this is not done very frequently, owing to the practical
considerations of monitoring, controlling and maintaining the pumps as well as
availability of power for them. Here, we will assume that all pumps are located at
one central heating plant, although some very interesting optimal design questions
arise if this limitation is removed, as we will see later.

We can write the constraint that arises from all of these differential pressure re-
quirements easily by summing the pressure drops and increases around the system.
Since the entire district heating system, consisting of the heating plant, the piping
system and the consumer, forms an essentially closed loop, the pressure losses and
increases around this loop must sum to zero. Thus, we have the following result

    
∆ ∆ ∆ ∆ ∆P P P P P

pipes
hp s r cv he= +( )∑ + + (4-2)

where ∆Php = pressure increase across the pump (N/m2)
∆Ps = pressure drop in the supply piping (N/m2)
∆Pr = pressure drop in the return piping (N/m2)

∆Pcv = pressure drop in the consumer control valves (N/m2)
∆Phe = pressure drop in the consumer heat exchangers (N/m2).

Each consumer will have at least one segment of the piping system that is not
shared with any other consumers. In addition, all consumers will have their own
control valve and heat exchanger. Thus, we will have one of these equations for each
consumer, each one representing a constraint on the design. Therefore, the summation
in eq 4-2 must be conducted over only the pipes that serve the consumer in question.

The pressure losses given above will vary with the flow rate in the system. In
many cases, flow rates in district heating networks are modulated over the course
of the year as a means of meeting varying loads. Flow can be modulated either by
using variable speed pumps or using what is called a “shunt” at the heating plant.
The shunt simply diverts a fraction of the flow from the pump back to its inlet. The
pressure increase across the pump is reduced as is the flow rate into the network.
Regardless of how it is done, if flow modulation is used, we must ensure that the
constraint of eq 4-2 is not only satisfied for each consumer, but in addition we must
also determine that this will be the case for all load (i.e., flow) conditions encoun-
tered. However, we will show later, after some other necessary constraints have
been introduced, that satisfying this set of constraints for only one load condition
will be sufficient, if we assume that all consumers have loads that vary in the same
manner. This is a reasonable assumption as long as the primary loads are space and
hot water heating, as is the case for most hot water based systems. Steam systems,
which are not addressed by this work, often have much larger fractions of industrial
and absorption air conditioning loads; thus, this assumption might not be reason-
able for them.

In addition to the above equality constraint (eq 4-2), we have both equality and
inequality constraints on each of the quantities appearing within that constraint. At
this point we will formulate each of these additional constraints.

At the heating plant, the pressure increase by the pump must be related to the
pumping power attributable to the consumer in question. This results in the
following expression

∆Php= PPf,i ρ/    ṁ i (4-3)

where the i subscript is the consumer index. The combined pressure loss of the
supply and return piping is simply given by

    ∆ ∆ ∆P P P a A m L db c c b c
s r s&r j j j j+ = = ( ) + + − + +ε π4 2

6
2 5/ ˙,

( ) (4-4)
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where the j subscript is the pipe segment index and ∆Ps&r is the combined pressure
loss of supply and return (N/m2).

The control valve will have varying amounts of pressure drop across it, de-
pending on the consumer’s load. The minimum pressure drop for any given flow
rate condition will occur when the control valve is completely open and the flow rate
through the consumer’s heat exchanger is at its maximum value—what we have
called the design condition. Thus, we have the following simple constraint for each
control valve in the system

∆Pcv,i ≥ ∆Pcvm,i (4-5)

where ∆Pcvm is the minimum pressure drop in the control valve (N/m2).
And finally, for the heat exchanger the pressure drop will be related to the flow

rate in a manner very similar to that for the pipes as given by eq 4-4 above. First, let’s
assume the following simple form

    ∆P A mhe,i he,i i= ˙ β (4-6)

where Ahe relates the fluid properties and physical properties of the heat exchanger
to the pressure drop and flow rate (kg1–β/m s2–β) and β is an exponent yielding the
appropriate mass flow rate dependency for the heat exchanger (dimensionless).

In most cases Ahe and β would probably be empirically determined coefficients
and would depend on the type of heat exchanger and its specific design. The basic
form of Ahe would probably be dictated by the heat exchanger geometry. For
example, if a straight section of pipe formed the hydraulic passageway for the heat
exchanger, the form of Ahe based on our previous analysis for pressure loss in pipes
would be

    A a L dc b c b c
he,sp he he he he he= + − − − + +( / )( / ) ( )2 4 2 1 5π ε ρ µ (4-7)

where the sp subscript denotes straight pipe heat exchanger and the he subscripts
denote conditions within the heat exchanger or physical parameters of the heat
exchanger.

Equation 4-7 assumes the same form of approximation for the friction factor as
was derived for flow in the district heating pipes earlier in Chapter 2. Using this
approximation for the friction factor also determines β from eq 4-6 to be

βsp = 2 + c. (4-8)

We can now substitute the results for the pressure losses around the district
heating system loop (eq 4-3, 4-4 and 4-6) into our original pressure loss constraint (eq
4-2) to obtain the following constraint
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Again, in eq 4-9 the summation over the j pipes only includes those pipes that serve
consumer i.

MAXIMUM ABSOLUTE PRESSURE CONSTRAINTS

Several constraints on the absolute pressure of the water within the system must
be considered. First, we consider the upper limit on pressure that results from the
absolute pressure limits of the piping. This limit will be established by the prevailing
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piping code. In the case where all points in the distribution system are at or above
the level of the heating plant, the maximum absolute pressure will occur in the
supply pipe at the heating plant. In the general case, however, this will not always
be true and it will be necessary to determine that this constraint is not violated at any
point within the system. However, several heuristics will allow us to forgo compu-
tation of the absolute pressure level at many of the points. At any point in the supply
side of the system the absolute pressure is given by

    
P P P g z

j
s hp,s s, j s= − ∑ −∆ ρ (4-10)

where Ps = absolute pressure in supply pipe at point in question (N/m2)
Php,s = absolute pressure in supply pipe at heating plant (N/m2)
∆Ps,j = pressure loss in supply pipe j (N/m2)

z = elevation at point in question relative to heating plant (m).

Again, we have assumed that no intermediate pumping is employed and that the
summation over j includes only those pipe segments between the heating plant and
the point in question along the supply line. If Pmax is the maximum absolute pressure
for the piping system being used (N/m2), our constraint arising from it is then

    
P P P gz

j
max hp,s s, j s≥ − ∑ −∆ ρ (4-11)

where Pmax is the maximum absolute pressure for the piping system being used
(N/m2).

We can easily eliminate the need to verify that the upper limit on absolute
pressure is not exceeded for the return side of the system. First, we assume that the
supply and return line are at the same elevation at any given point, certainly a
reasonable assumption. Since there will always be a finite pressure drop across the
consumer’s heat exchanger and control valve, the absolute pressure in the return
line will always be less than that in the supply line at any point, with the difference
being the smallest at the consumer. Thus, we need not verify that the maximum
absolute pressure constraint (eq 4-11) is satisfied for the return system.

We can also easily show that eq 4-11 only needs to be satisfied at certain points
along the supply line. For pipelines that are laid at a constant slope between junction
points, the hydrostatic component of the pressure gradient along the pipe will be
constant as well. This gradient is given by the following equation

(dP/dx)h = –ρg(∂z/∂x) (4-12)

where (dP/dx)h = hydrostatic pressure gradient (N/m3)
(∂z/∂x) = partial derivative of the elevation of the pipe with respect to

its position (dimensionless)
x = position along the pipe in the direction of flow with x = 0

being defined as the inlet end to the pipe segment in question
(m).

Using our approximation for the friction factor previously determined (eq 2-12),
we can find the pressure gradient attributable to frictional losses in the flowing fluid
from the following equation

    d d dP x a m dc b c c b c/ ( / )( / ) ˙ ( )( ) = + − − + − + +2 4 2 1 2 5π ε ρ µ (4-13)
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where (dP/dx)d is the hydrodynamic pressure gradient (N/m3).
The pressure at any point along a segment of the piping system is simply the

pressure at the inlet to the pipe segment plus the sum of the hydrostatic and
hydrodynamic gradients multiplied by the distance

Px = PI + [(dP/dx)h + dP/dx)d]x (4-14)

where Px is the pressure at point x (N/m2) and PI is the pressure at the inlet to the
pipe segment (x = 0) (N/m2).

Since (dP/dx)h and (dP/dx)d are both independent of x, we only need to know
if their sum is positive or negative to determine if the pressure will be higher or lower
than the inlet pressure at the outlet of the pipe segment. We can also easily show by
using monotonicity analysis (Papalambros and Wilde 1988) that the maximum
pressure must occur at either the inlet or the outlet of the pipe section and cannot
occur at an intermediate point. To do so we convert the maximization problem to its
equivalent minimization problem

min. Px = –{PI + [(dP/dx)h + (dP/dx)d]x}  (4-15)

subject to
g1 = –x ≤ 0 g1(x –) (4-16)

g2 = –x – L ≤ 0 g2(x+) . (4-17)

The conventions for constraints and the labeling of monotonicity are from
Papalambros and Wilde (1988). If the sum of the gradients is positive, the objective
function is monotonically decreasing in x and must therefore be bounded from
above. Constraint g2 is the only constraint that bounds the objective from above, so
it must be critical and thus x = L. If the opposite is true, the sum of the gradients is
negative, the objective will be monotonically increasing in x and must therefore be
bounded below. Constraint g1 is the only constraint that bounds the objective from
below, so it must be critical and x = 0. If the sum of the gradients is zero, the pressure
will be the same at all points along the pipe segment. Thus, we have shown that the
maximum pressure must always be at one end of the pipe segment and it will only
be necessary for us to ensure that our absolute pressure constraint (eq 4-11) is
satisfied at these points. Remember that in arriving at this result, we assumed that
the pipe segment had a constant slope between end points. If in reality this is not the
case, the pipe segment in question can be broken up into two or more equivalent pipe
segments for applying this constraint.

The number of points at which the maximum absolute pressure constraint must
be checked for satisfaction may possibly be reduced even further if we proceed as
follows.

1. Starting at the heating plant, we proceed along the supply line checking only
the “junction” points as discussed earlier.

2. For any point that is at the same elevation or higher than the upstream point
previously identified as having the maximum pressure, we need not compute the
pressure.

3. When a point is identified that does not meet the above criteria, we proceed by
first computing the sum of the hydrostatic and hydrodynamic gradients. If this
quantity is negative, we do not need to compute the pressure.

4. If the sum of the gradients is positive, we will need to compute the pressure at
this point. To compute the pressure, we first find the elevation difference and
resulting hydrostatic pressure difference between the point in question and the
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previously identified point of highest pressure. We then must calculate the pressure
losses attributable to the hydrodynamic gradients in each of the pipe segments be-
tween the previously identified point of highest pressure and the point in question.

5. If we maintain a running total of pressure losses computed as we complete the
above step, we can stop the calculation procedure as soon as this total pressure loss
exceeds the hydrostatic pressure difference computed above. Otherwise, we must
continue the calculation, in which case we will have identified a new maximum
pressure location.

6. Steps 2 through 5 are repeated until we reach the end of the piping network. At
branching points we will need to proceed out each branch following the procedure
as outlined.

MINIMUM ABSOLUTE PRESSURE CONSTRAINTS

Minimum allowable pressure constraints arise from three distinct considera-
tions.

1. Net Positive Suction Head (NPSH) requirements of the pump.
2. Minimum pressure over atmospheric necessary to preclude the infusion of air

into the system.
3. Pressure necessary to prevent flashing of the liquid.
The constraint resulting from minimum NPSH requirements necessary to pre-

clude pump cavitation only needs to be satisfied at the inlet to the pump. This
pressure requirement will be a function of the saturation pressure and hence the
temperature of the liquid at that point. The NPSH requirement is usually specified
by the manufacturer of the pump. Thus, this constraint is simply

Php,r ≥ PNPSH (4-18)

where Php,r is the pressure in the return line at the inlet to pump (N/m2) and PNPSH
is the minimum allowable pressure at the pump inlet from NPSH requirements
(N/m2).

The amount of pressure over atmospheric necessary to prevent infusion of air into
the system will be another area where engineering judgment will be required. This
will be an issue primarily in portions of the system that are operating at tempera-
tures below 100°C, since the saturation pressure constraint (eq 4-20) will dominate
it at higher temperatures, given equal safety margins. If, as we assumed earlier, no
intermediate pumping is being used, then the minimum pressure level will be at the
inlet to the pump for a system that is at or below the level of the heating plant at all
points. For other systems, we must check for dominance of this constraint or the
saturation pressure constraint derived below, and then constraint satisfaction must
be verified at all points within the system. At the heating plant, this constraint can
be written as

Php,r ≥ Pa + Pasa (4-19)

where Pa is atmospheric pressure (≈ 105 N/m2) and Pasa is the minimum safety
margin above atmospheric pressure (N/m2).

The second constraint on minimum allowable absolute pressure results from the
requirement that the fluid must be maintained above its saturation pressure some
finite amount to preclude flashing to the vapor phase. The amount of excess pressure
above the saturation pressure of the fluid is a matter of engineering judgment.
Because localized areas of pressure lower than the “bulk” pressure of the fluid may
occur because of hydrodynamic effects, a safety margin above the saturation
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pressure is prudent. The resulting constraint is

Px ≥ Px,sat + Psaf (4-20)

where Px,sat is the saturation pressure of the liquid at point x within the pipe segment
(N/m2) and Psaf is the minimum allowable safety margin on saturation pressure
requirements (N/m2).

The saturation pressure is a function of the fluid temperature, which will vary
between supply and return portions of the system, as well as within each portion.
Thus, it will be necessary to verify the satisfaction of this constraint at all points
within the system. Again, some simple rules will allow us to forgo the calculation at
many points, as with the maximum absolute pressure constraint described earlier.
As noted earlier, in some cases when the temperature is below 100°C, the air infusion
constraint above (eq 4-19) will dominate. The concept of constraint dominance is
illustrated later in Chapter 5.

The pressure level at any point in the supply side can be calculated with eq 4-10.
For the return side, the absolute pressure is given by

    
P P P gz P P P

j j
r hp,s s, j s cv,i he,i r, j= − ∑ − − − − ∑∆ ∆ ∆ ∆ρ (4-21)

where Pr,j is the pressure loss in the servicing return line j. The j subscript on the
return line summation indicates only those return pipes servicing consumer i
between consumer i and the point in question.

The evaluation of pressures in the return pipes using this expression requires
some care and forethought to avoid errors and redundant calculations. Errors can
result if the summations include pipes other than the appropriate ones, which will
be different in the case of supply and return. Equation 4-20, as written, could be
evaluated for each consumer at all locations in the piping system. However, all that
is required is to find the pressure at each location once for any consumer served
through that point. The evaluation of the equation for all remaining consumers
served through that point would yield the same result and thus is not required. Some
simple rules will allow us to reduce the number of locations where calculation of the
pressure will be necessary. For example, consider the case where the entire system
is at or below the elevation of the heating plant. In this case, the minimum pressure
in the return line would be at the heating plant. In the supply line, however, the
lowest pressure could be at any location, dependent on the relative magnitude of the
hydrodynamic gradient from friction and the hydrostatic gradient from elevation
differences. If the entire system was at the elevation of the heating plant, then the
lowest pressure in the return line would be at the consumer, who is, in a hydraulic
sense, the most distant from the heating plant.

It is important to note that in the case of this absolute pressure constraint,
the supply and return piping must be considered separately, since the temperature,
and thus saturation pressure, will usually be quite different in each. Strictly
speaking, it would be necessary to determine the actual temperature at each
location in the system and compare the saturation pressure requirement with
the other applicable low pressure constraints to determine which one is dominant
there.

Once the pressure has been calculated at the locations where the minimum
pressure constraint could be active, these pressures would be compared to the
minimum allowed pressure for that location determined from the dominant con-
straint of the applicable ones given above. Thus, our minimum pressure constraint
for the supply pipe becomes
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For the return pipe our minimum pressure constraint is
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And at the inlet to the pump located at the heating plant, we have two constraints

Php,r ≥ PNPSH (4-24)

Php,r ≥ Pa+ Pasa. (4-25)

Now we have identified all of the constraints on the multiple consumer–multiple
pipe solution and derived mathematical expressions for each one. In the next
chapter, we will examine a method of finding an optimal solution that satisfies all
of the constraints.
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CHAPTER 5: OPTIMAL DESIGN OF SYSTEMS WITH
MULTIPLE PIPES AND CONSUMERS

As noted in the Chapter 4, all district heating networks, with the exception of pure
transmission systems, will have multiple consumers and pipes. If each pipe were
independent of the others, it would be possible to apply the procedure developed
earlier in Chapters 2 and 3 to each pipe independently and develop a complete
design in that way. Unfortunately, as the constraints introduced in Chapter 4 show,
each pipe segment does not operate independently of the others. Thus, the system
can not be designed completely in that way for all but the most trivial cases.

However, the “optimal independent design,” as we will call it, is very useful, even
though we can not guarantee that it would be feasible, for we can use it to form a
lower bound on any other designs that we might propose. We know that it is not
possible for us to achieve a lower cost design for any one of the pipe segments than
the one we have determined independently. Thus, it follows that we also are assured
that no design for the entire system of pipe segments can be lower in cost than the
sum of the costs for the optimal independent designs. While this may appear to be
of little significance to the designer who is subject to system constraints, it’s actually
a very useful result. It will serve two very important functions for us. First, it will give
us a lower bound on total system cost to which we can compare other designs to see
if they are sufficiently close to render additional effort at achieving better designs
impractical or unnecessary. The second function of this “optimal independent
design” will be as a starting point for a solution strategy that will move towards an
optimal solution that satisfies all the system constraints. Both of these attributes of
the optimal independent design will be exploited in this chapter.

Our objective here will be to develop methodologies that will help us find the
optimal discrete pipe diameters for systems with multiple pipes and consumers,
while minimizing the computational effort necessary, such that large networks
often encountered in practice may be treated with an acceptable degree of effort.
Because of excessive computational effort, many of the methods that have been
previously applied to problems of this type are felt to be unsuitable. Several of the
more common approaches are discussed very briefly below.

SOME POSSIBLE APPROACHES

The classical approach to a constrained optimization problem like this one is to
include all the constraints in the problem solution and find a solution that satisfies
all the constraints. Here, we have many constraints that would need to be included.
For our problem from eq 4-2 and 4-5, we would have two constraints for every
consumer. Equations 4-11 and 4-22 would result in two constraints for every node
in the supply pipe. Equation 4-23 gives us one constraint for each node in the return
pipe, and at the heating plant there are two additional constraints (eq 4-24 and 4-25).
If, for example, we considered a moderate sized system, with 100 consumers and 125
nodal points, we would have 577 constraints. Several of the more common methods
for handling such problems are discussed below.

The method of linear programming (Wilde and Beightler 1967) is very efficient at
solving optimization problems with large numbers of constraints. However, as the
name of the method implies, the objective and constraints must be linear. Here, we
have a highly nonlinear problem because of the pressure losses being proportional
to the pipe diameters raised to approximately the negative five power. Methods
have been devised (Reklaitis et al. 1983) to use linear programming algorithms on
nonlinear problems by making linear approximations about a point using a Taylor
series expansion about that point. The computational effort involved in the use of

40



such methods can be considerable for problems with many variables and con-
straints, as is the case here. Additionally, if an “optimum” is found by such a method,
there is no guarantee that it is a global optimum.

Methods have also been developed for general nonlinear problems. Perhaps the
method most commonly referred to is Lagrange’s method of undetermined multi-
pliers (Wilde and Beightler 1967). This method requires that the solution to a set of
nonlinear equations be found. The number of unknowns is equal to the number of
variables (pipe diameters and consumer control valve pressure losses) plus the
number of constraints. In our case this would result in very large systems of
nonlinear equations for all but the most trivial problems. The solution of large
systems of nonlinear equations can be a very difficult task, usually done by adapting
methods for the solution of linear equations. For this reason, Lagrange’s method is
felt to be impractical for this problem.

The Generalized Reduced Gradient (GRG) method is a popular one used for
nonlinear constrained problems (Reklaitis et al. 1983). It is based on extending
methods used for linear problems to nonlinear problems. The basic concept of the
GRG method is to follow along the direction of a constraint subset while seeking
improvement in the objective function. By requiring some subset of the constraints
to be satisfied, the number of degrees of freedom of the problem can be effectively
reduced. When inequality constraints are present in the problem, as is the case here,
either an active set strategy must be adopted or slack variables must be introduced
for each constraint. Gill et al. (1981) indicate that GRG methods can encounter
difficulties when highly nonlinear constraints are involved, as is the case here.
Because methods developed for linear problems are being used for nonlinear
problems, it is necessary to iterate at each step to achieve a feasible design. The
Newton-Rapson method is used for this iteration and it becomes the main compu-
tation burden of the GRG method (Arora 1989). Other quasi-Newton methods have
been proposed, but they can cause other problems with this method (Arora 1989).
Vanderplaats (1984) indicates that convergence of the Newton-Rapson method may
be a problem when using the GRG method for highly nonlinear problems.

Another class of methods for general nonlinear constrained problems is the
penalty function methods (Rao 1984). These methods reduce the constrained
problem to an unconstrained problem that can then be solved using any of the
various methods suitable for such problems. With many variables, as we have here,
the multidimensional optimization problem that results can be quite time consum-
ing to solve. In addition, it’s usually necessary to solve the problem repeatedly for
different values of the penalty parameter until some convergence criterion has been
met. A feasible starting point is required as is an initial value for the penalty
parameter and the multiplication factor that is used to adjust the penalty parameter.

In this problem the diameters of the pipe segments must take on discrete values
in the final solution, while other variables such as the consumer control valve
pressure losses are continuous. Such a problem, which has both discrete and
continuous variables, can be formulated as what’s called a “mixed integer” problem
(Reklaitis et al. 1983). The methods described above can not be applied directly to
integer or mixed integer problems. They must be used in combination with another
technique, most notably the “branch-and-bound” approach, to find the solution for
the discrete variables. The branch-and-bound approach will be discussed later.

In search of a simpler and more efficient method than those described above, we
will proceed by starting with our optimal independent (unconstrained) design and
identifying methods to move from this design to one that satisfies all the constraints.
We will attempt to conduct this process of modifying the solution so that it satisfies
the constraints in a manner that will keep us as close as possible to the true globally
optimal design.
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PIPE AND PIPE JUNCTION LABELING SCHEME

Before proceeding further with the development of our solution technique, we
first need to develop a methodology for identifying consumers, pipe junctions and
pipe segments. We would like this system to be as simple and intuitive as possible,
yet sufficiently general so as to be easily extendible to much larger networks. A
method that meets these requirements is a simple identification number for each
“node.” A node can be any one of the following items within the pipe network.

1. A source node where a net inflow of heat occurs, i.e., the heating plant.
2. A sink node where a net outflow of heat occurs, i.e., a consumer.
3. A pipe junction node where no net inflow or outflow of heat occurs.
Note that there are at least a couple of special cases of the pipe junction node that

might be of interest: a storage node where heat could be stored for release at later
times, and a “junction” node with only two pipe segments connected. The latter
could be simply a transition in pipe size or an intermediate pumping station for
instance. These special cases would be of interest for advanced system optimization
studies but are beyond the scope here.

The number of a node does not necessarily need to be assigned in any particular
fashion. They could be assigned sequentially from the plant or some consumer, or
in no particular sequence at all. In fact, alphanumeric characters could be used for
identification. The point is that the assigned identification characters have no
significance relative to one another, other than being unique to the node in question.

With an identification system established for our nodes, we need to establish the
identity of the pipes connecting these. The simple convention we will adopt is to use
the node numbers on either end of the pipe segment to identify the pipe segment that
connects them. For example, the pressure loss in the pipe segment between nodes
1 and 2 would be written as ∆P1,2. We will establish the convention of letting the first
node number in the pair be the upstream node in the supply line, with the second
node being the downstream node, again in the supply line. For the return line of the
same pipe segment, the convention will be established by the supply line, i.e., the
first node number in the pair will be the downstream node in the return line and the
second node will be the upstream node. Note that a system segment, as we have
currently defined it, can not have any intermediate nodes within it.

Now we are ready to begin the development of our solution method. As always,
we start by determining our objective function.

SYSTEM OBJECTIVE FUNCTION

The objective function for an entire system of pipes will include the sum of the
individual objective functions for each pipe segment. We must also include the cost
of pumping energy dissipated at the consumer and the capital cost of the pumps
needed to generate this pumping energy. At first it might seem unnecessary to
include costs associated with the consumer in our objective function when in fact
there are no decisions to be made about the consumer’s equipment. However,
constraints that the consumer places on the system will require that these costs be
included in order to achieve an optimal design that does not violate these con-
straints.

Additional costs would also need to be included if we were to expand the
objective of our design. For example, if we wished to determine an optimal
operational strategy for the system, as well as a design, it would be necessary to
include some additional costs in the objective function. These would be the costs of
generating the heat ultimately supplied to the consumer. Another example of an
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expanded objective would be if we also wanted to determine the optimal size for the
consumer’s heat exchanger equipment, which would require including these costs
in the objective as well. Here, however, we will not address these additional issues.
With these limitations in scope our objective function becomes
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where Cst = total system cost ($)
Cfixed = fixed cost of pipes and pumps, and the maintenance and repair on

this portion of their costs ($)
Cpv = diameter variable cost of pipes and the maintenance and repair on

that portion of pipe cost ($)
Cpev = diameter variable cost of pumps and pumping energy attributable

to piping pressure losses, and the maintenance and repair on that
portion of pump costs ($)

Cpvc = variable cost of pumps attributable to the pressure losses at the con-
sumer ($).

Notice that the density used in the last term of this equation is the taken at the
return condition. This is done because the pumps are usually located on the return
side of the system at the heating plant. The cost of pumps, which was previously
lumped with the piping cost, has been broken out as a separate cost since the number
of pumps will be discrete for the system.

In general, the mass flow rate for any consumer     ṁi  and the pressure losses at the
consumer (∆Pcv + ∆Phe)i will be functions of time. Previously, we assumed that the
mass flow rate over the yearly cycle was given by eq 3-25. Since the pressure loss in
the consumer’s heat exchanger ∆Phe,1 is a function of mass flow rate, as given by eq
4-6, it will also be a function of time. As we will show later, the pressure loss in the
consumer’s control valve ∆Pcv,i will be used to “balance” the network. Hence, it will
become a function of time in most all cases as well. We will have some choices as to
the best way to balance the network using the consumer’s control valve, as will also
be shown later.

In eq 5-1 we have separated the cost of the pumps into the fixed costs, that portion
which does not depend on pump capacity, and the variable costs, which are
attributable to either pressure losses at the consumer or in the piping network. We
have also separated the fixed portion of the pipe cost as well from that portion that
depends on pipe diameter. Effectively, this does not change our objective function
as far as terms that contain the pipe diameters are concerned, since the fixed costs
of the pipes and pumps are not considered in determining the optimum pipe
diameter, as can be seen from eq 2-19. For a multiple pipe system, these fixed costs
are
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The variable cost of pumps attributable to pressure losses at the consumer Cpvc
will be determined by the pressure losses and flow rate at the design condition. It is
this condition for which the pressure difference between the supply and return at the
heating plant, as well as the mass flow rate, are greatest. Thus, the pumps must be
sized for this condition. This portion of the pump cost will be given by

Cpvc = A2 (1+PVFm&rAm&r) 
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SOLUTION STRATEGY

Now we are ready to formulate our solution strategy. Inspecting the objective
function, eq 5-1, we see that the costs have been grouped with respect to their source.
All of the costs that are dependent on our decision variables, the pipe diameters,
have been included in the first summation over j, the pipe segment index. The
summations in the third and fourth terms are those that arise from the pumping
energy expended at the consumer. The decision variables in the terms of these
summations are the ∆Pcv,i values.

We notice immediately from the form of the objective that it is a separable
function with regards to the pipe diameter for each of the system segments j. A
separable function is a function of more than one variable that may be written as a
combination of functions, one independent function for each variable. Thus, from
examining the objective function, it appears that we can consider each pipe diameter
function independent of the other pipe diameters and find its optimum. We will
proceed as if this is the case, although later we will see that the constraints will not
allow the diameters to be considered completely independent of one another in all
cases.

We begin by inspecting the objective function for monotonicity, since this will
help us simplify the solution as much as possible. Looking first at the terms in the
summation over the pipe segment index j, we look at each term in the summation
separately

Chl, j = I1/ln(A10/d)
    

dj
+( )

Cpv, j = A9d
    

dj
+( )
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The monotonicities with respect to dj of each term are given and we see that we
have both increasing and decreasing terms, so we are unable to use monotonicity
analysis on these at the outset. This is consistent with our findings in Chapter 2,
where we first neglected the Chl term and then used geometric programming theory
to find a solution to the lower bounding problem thus formed. This result was used
as a starting point for a simple search to find the solution to the problem without
neglecting Chl. Since the objective function is separable for each of the dj values, we
will proceed with the same methodology and find the “optimal independent”
values for each dj in the same way.

The other remaining decisions variables in the objective are the ∆Pcv,i variables,
of which there is one for each consumer. The ∆Pcv,i variables appear in both of the
last two terms of the objective function once eq 5-3 has been substituted for Cpvc
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Both of these terms are monotonically increasing in each ∆Pcv,i and thus the objective
is monotonically increasing in each ∆Pcv,i. The First Monotonicity Principle, MP1
(see Papalambros and Wilde 1988), therefore tells us that each ∆Pcv,i must be
bounded below by at least one active constraint. We will examine the issue of
determining the constraint activity for these decision variables.
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Constraint activity for consumer control valve pressure losses
We have two possible constraints for each ∆Pcv,i
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g1 = ∆Pcvm,i – ∆Pcv,i ≤ 0     ( )∆Pcv,i
− . (4-5)

The inequality constraint g1 is monotonically decreasing in ∆Pcv,i so it bounds ∆Pcv,i
in the proper sense. The equality constraint h1 could also be “directed” (see
Papalambros and Wilde [1988] for procedure for directing equality constraints) such
that it would bound ∆Pcv,i in the proper sense. At this point it is not clear which of
these two constraints would bound each of the ∆Pcv,i variables in the proper sense.
In fact it’s entirely possible that the active constraint may vary depending on the
particular consumer in question. If no other decision variables appeared in these two
constraints, they would form a conditionally critical set for each ∆Pcv,i (see
Papalambros and Wilde [1988] for definition of conditional criticality).

However, we see that pressure increase across the pump at the heating plant ∆Php
has not yet been fixed. ∆Php is monotonically increasing in constraint h1; thus, it
becomes a monotonic nonobjective variable in our problem. The Second Monotonic-
ity Principle, MP2 (Papalambros and Wilde 1988) tells us that either ∆Php is
irrelevant and can be deleted from the problem together with all the constraints in
which it appears, or it is relevant and bounded by two active constraints, one
bounding it from above and one bounding it from below. If for just one consumer
i the constraint h1 is critical for ∆Pcv,i, then ∆Php becomes relevant. A critical
constraint is an active constraint whose deletion would cause the problem to become
unbounded. This active constraint would have the following monotonicities when
directed to bound ∆Pcv,i in the proper sense
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If one constraint is critical for more than one variable in the problem, it is said to
be “multiply critical” (Papalambros and Wilde 1988) and this would be the case for
h1 above. Papalambros and Wilde (1988) warn that multiply critical constraints
should be eliminated from the problem whenever possible. Here, we have that
option since we can combine the h1 constraints for any two consumers and eliminate
∆Php from the problem. Before we do so, let’s consider briefly what is physically
happening in our problem.

First, we note that the pressure increase required across the pump at the heating
plant ∆Php appears in eq 4-2 for each consumer. Since, physically, we know that ∆Php
can only assume one value, it must be the greatest value that results from consider-
ation of all the consumers. For the remaining consumers, ∆Pcv,i must be greater than
the minimum value ∆Pcvm,i. The consumer who requires the greatest ∆Php will be
called the “critical” consumer. Notice that the equality constraint of eq 4-2 can be
satisfied for the remaining consumers by letting ∆Pcv,i > ∆Pcvm,i as allowed by eq 4-
5. This is, in fact, how it is done in practice in most cases; the ultimate balancing of
the pipe network flows is done by the consumer’s control valves. For the case of the
critical consumer, eq 4-5 will be satisfied as a strict equality, i.e., ∆Pcv,i > ∆Pcvm,i.
While these arguments of constraint activity would appear to be completely
intuitive, since we would not want to supply any more pumping energy than
necessary, they can also be shown analytically as follows.
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The pressure difference across the pump at the heating plant ∆Php must be equal
in all of the constraints of eq 4-2 at any instance in time, so we can write this constraint
set in the form
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where i ≠ k.
If we have n consumers, there will be (n – 1) such equality constraints containing

∆Pcv,i that apparently could be “directed” such that they would bound ∆Pcv,i from
below as required. However, these constraints are not all independent. Since we
started with n independent equations and then eliminated ∆Php, we will have at
most (n – 1) independent equations remaining. Below, we will show that these
(n – 1) independent equations may bound at most (n – 1) of the ∆Pcv,i objective
variables in the proper sense. The arguments made will be for an instant in time but
must hold for any time during the yearly cycle.

We begin by examining the ∆Pcv,i term for the consumer arbitrarily chosen to be
consumer “1.” Now, ∆Pcv,1 for consumer 1 can be bounded from below as required
by any one of the (n – 1) constraints in which it appears with another consumer.
Suppose we let the constraint with consumer “2” bound ∆Pcv,1. Now we have
(n – 2) constraints remaining that can bound ∆Pcv,2 in the proper sense, since the
equality constraint with consumer 1 has been directed such that it would bound
∆Pcv,2 in the improper sense

Similarly, let ∆Pcv,2 be bounded by properly directing its equality constraint with
consumer “3.” Now, at first it would appear that ∆Pcv,3 could be bounded by (n – 2)
constraints as well, since we have only directed the constraint involving ∆Pcv,2 in the
improper sense and any one of the remaining (n – 2) constraints can be directed as
needed. However, since we directed the constraint between ∆Pcv,1 and ∆Pcv,2 such
that it bounded ∆Pcv,1 below, we are not free to direct the constraint between ∆Pcv,1
and ∆Pcv,3 as needed; in fact, it must be directed in the opposite sense of that
required, that is, if
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Thus, ∆Pcv,3 has only (n – 3)  
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constraints that could be directed to bound it in the proper sense.
If we continue to follow this line of reasoning, we find that when we reach
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consumer i = n, we have no constraints remaining that can be directed in the proper
sense to bound the ∆Pcv,n term in the objective. Note that because the assignment of
the numerical value for the consumer index i is arbitrary, its assignment will have
no impact on what we have shown here and that this result would hold for any set
of consumer indices.

Since we have n variables ∆Pcv,i in the objective, one for each of the n consumers,
and the objective is monotonically increasing in each of these variables, we must
have n constraints bounding the ∆Pcv,i from below. Above we have shown that at
most (n – 1) of these constraints could result from eq 4-2. The only remaining
constraints on the ∆Pcv,i are the set formed by eq 4-5. Let’s assume for the moment
that all consumers have the same minimum pressure differential requirement for
their control valves, i.e., that ∆Pcvm,i is the same for all i. Now we see that it must be
the consumer with the minimum value of ∆Pcv,i whose constraint from eq 4-5 is
active. This is true since a consumer with any greater value would cause at least one
of the other constraints from the set of eq 4-5 to be violated, i.e., if consumer i has the
minimum control value pressure loss

    ∆ ∆P Pcv,k cv,i> for all k ≠ i.

And if for all i and k the minimum allowable control valve pressure losses are equal

    ∆ ∆P Pcvm,i cvm,k= .

Now, if the constraint for consumer i is active

    
∆ ∆P Pcv,i cvm,i>

then the constraint for consumer k can not be active

    ∆ ∆P Pcv,k cvm,k> .

We have already shown that (n – 1) of the constraints from the set of eq 4-2
are active and can thus be treated as equalities. These (n – 1) constraints
force the pressure loss summations to be equal for all n values of the consumer’s
index i
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for all i ≠ k.

This means that we identify the consumer whose value of ∆Pcv,i is at its mini-
mum allowed ∆Pcvm,i by finding the consumer with the maximum value for the
quantity

    
∆ ∆ ∆ ∆P P P P

j
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+( )∑ + +











.

Once the pipe sizes are known, this quantity is easily calculated. This consumer who
has the minimum value of ∆Pcv,i is our so called “critical” consumer.

It follows then that there are only two cases where more than one of the
constraints from the set of eq 4-5 may be active:

1. In the case where the     ∆Pcvm,i  values are identical for all consumers, if the
maximum value of
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is identical for more than one consumer.
2. If the consumers have different values of     ∆Pcvm,i  such that the maximum value

of the quantity
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+

is identical for more than one consumer.
Under either of these two conditions, the corresponding constraints from the eq

4-5 set for the consumers with identical values as described above will be active.
However, under neither condition will more than one be critical, since the deletion
of any additional constraints from the problem will not make the objective un-
bounded. This is true because the constraints from the set of eq 4-2 directed as
described earlier will bound the ∆Pcv,i of all the consumers but one in the proper sense.

What is not immediately apparent is why all (n – 1) of the constraints from the set
of eq 4-2 must be critical for some ∆Pcv,i objective variable. To illustrate why this is
so, consider the case where for an arbitrary consumer k when we let ∆Pcv,k be
bounded below by the constraint from the set of eq 4-5, thus ∆Pcv,k = ∆Pcvm,k. Now
suppose that
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and that ∆Pcvm,k > ∆Pcvm,i, where consumer i is the consumer with the minimum
value of ∆Pcv,i. The constraint from the set of eq 4-2 that states that
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would be violated. Notice that this constraint has not been directed and shown to be
active, yet it still must not be violated by any feasible solution. Thus, this is not a
feasible solution and we see that only one of the constraints from the set of eq 4-5 may
be critical, since (n – 1) of the critical constraints must come from the set of eq 4-2.

Thus, our general result is that we must have (n – 1) of the constraints from the set
of eq 4-2 active and critical for (n – 1) of the ∆Pcv,i values. Thus, we have (n – 1) critical
constraints of the form
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≡ 0

(5-5)

Where the consumer index i does not equal the consumer index k and the monoto-
nicities are

    
∆ ∆P Pcv,i

–
cv,k
+,( )

we also have one critical constraint on the remaining ∆Pcv,i not bounded below by
one of the (n – 1) constraints of eq 5-5 of the form
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    ∆ ∆P Pcvm,i
–

cv,i
+− < 0

    
∆Pcv,i

–( ) . (5-6)

The assessment of which consumer will be the “critical” consumer having his ∆Pcv,i
bounded below by eq 5-6 was found above to be determined by finding the
consumer who has the maximum value of the sum of the non-control-valve pressure
losses ∆Pncv,i and the minimum control valve pressure loss ∆Pcvm,i. The non-control-
valve pressure losses ∆Pncv,i are given by

    
∆ ∆ ∆ ∆P P P P

j
ncv,i s r j he

i

= +( )∑ +











(5-7)

where the non-control-valve pressure losses (N/m2) are easily computed once the
pipe sizes are determined using the procedure discussed below.

Initial pipe size determination
As noted earlier, our objective function is separable in each pipe diameter. The

pipe diameter function for each pipe segment j is increasing in some terms while
decreasing in others. Thus, we should be able to find a minimum cost for each
diameter by proceeding exactly as we did in Chapter 2 if we at first ignore the
constraints. Therefore, we first find the optimal “independent” discrete diameters
using the methods developed in Chapter 2.

System constraint satisfaction
Once our pipe sizes are determined, we need to ensure that the constraints are

satisfied and, if not, determine a methodology for achieving this. Below is listed the
various constraints that were developed in Chapters 3 and 4, categorized by the
portion of the system in which they originate.

At each consumer

    
∆ ∆ ∆ ∆ ∆P P P P P

j
hp s r j cv he= +( )∑ + + (4-2)

    ∆ ∆P Pcv,i cvm,i≥ . (4-5)

In the supply pipe

    
P P P gz

j
max hp,s s, j s≥ − −∑ ∆ ρ (4-11)

    
P P gz P P

j
hp,s s, j s x,sat saf− − ≥ +∑ ∆ ρ . (4-22)

In the return pipe

    
∆ ∆ ∆ ∆ ∆P P gz P P P P P

j j
hp,s s, j s he,i cv,i r, j x,sat saf− − − − −∑ ∑ ≥ +ρ . (4-23)

In the return pipe at the heating plant

    P Php,r NPSH≥ (4-24)

    P P Php,r a asa≥ + . (4-25)

All of these constraints deal with pressure levels at various points within the
system. Note that in eq 4-2 we have expressed the total piping pressure loss as its
supply and return components because it will be necessary to compute these
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independently for the constraints given by eq 4-11, 4-22 and 4-23. Since verification
of satisfaction for all of these constraints requires either directly or indirectly the
calculation of the pressure losses in the supply and return pipes, we begin by doing
so for each of the pipe segments. The pressure loss in either the supply or return line
is calculated by modifying eq 2-15 slightly so that it applies to each pipe indepen-
dently. The results are

    
∆P a m L db c c c b c

d,s j d,s d
j

( ) = ( ) ( )





+ + + +( )/ / ˙– – –2 4 2 1 2 5ε π ρ µ (5-8)
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+ + + +( )/ / ˙– – –2 4 2 1 2 5ε π ρ µ . (5-9)

Once the piping pressure losses are known, we can calculate the non-control-
valve pressure losses ∆Pncv,i for each consumer using eq 5-7 and sum this with the
minimum control valve pressure loss ∆Pcvm,i to find the consumer with the highest
value of this sum, our critical consumer. The sum of the pressure losses for this will
become our pressure increase across the pump at the heating plant ∆Php, as given by
eq 4-2. For this consumer the constraint of eq 4-5 will be active, as shown earlier.
Using the value of ∆Php calculated for the critical consumer, we can then calculate
the control valve pressure losses for all of the other consumers using eq 4-2.

With the piping and consumer pressure losses known, we can calculate the abso-
lute pressure level at all nodes in the pipe network with either a maximum absolute
pressure assigned to the supply pipe at the heating plant, or a minimum absolute
pressure assigned to the return pipe at the heating plant. If we set the minimum
pressure level in the return pipe at the heating plant, we can use the constraints of
eq 4-23, 4-24 and 4-25 to guide our choice. Note that when eq 4-23 is evaluated at the
heating plant, the entire left-hand side of the equation reduces to the value ∆Php,r.
Dependent on the particular parameter values for the problem at hand, one of these
constraints will “dominate” (see Papalambros and Wilde [1988] for concept of
constraint dominance). The cases for constraint dominance are simply as follows. If

    P P P P Pa asa NPSH x,sat saf+ ≤ ≤ +

eq 4-23 dominates. If

    P P P P Pa asa x,sat saf NPSH+ ≤ + ≤

eq 4-24 dominates. If

    P P P P Px,sat saf NPSH a asa+ ≤ ≤ +

eq 4-25 dominates.
Alternately, as noted above, we can also assign the maximum absolute pressure

in the supply pipe at the heating plant and use that value to find the other absolute
pressures in the network. The logical choice for the maximum absolute pressure
value in the supply pipe at the heating plant would be the maximum absolute
pressure allowable for the piping system being used Pmax. In most cases the
maximum absolute pressure in the system will occur at the heating plant in the
supply pipe; thus, this is a logical choice. It is possible that this will not be the case,
however. Using eq 4-15 we have shown earlier that the maximum pressure must be
at a nodal point location. In the discussion after eq 4-15, we also developed a
procedure that can be used to minimize the number of nodes at which the absolute
pressure must be calculated. If this procedure is used, we can quickly determine if
the heating plant will be the location of the maximum absolute pressure.
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Figure 8. Hypothetical pressure distribution under high and low flow
conditions and absolute pressure constraints.

All the calculations made to check for absolute pressure constraint satisfaction
should use the maximum (design) mass flow rate. This will assure that constraint
satisfaction will be possible at all flow rate conditions. Since the pressure losses in
the piping and the consumer’s heat exchanger will be greatest under this load
condition, the difference between supply and return pressure at the heating plant
will also be greatest under this load condition. Thus, under this condition the least
flexibility exists to adjust the supply or return pressure at the plant without violating
either the maximum pressure constraint in the supply, eq 4-11, or one of the
minimum return line pressure constraints at the plant, eq 4-24 and 4-25. If the
various maximum and minimum pressure constraints are satisfied for all points in
the network at the higher flow rate condition, it will always be possible to satisfy
them at the lower flow rates. This is easily shown graphically by considering the
pressures in the system along the piping route out to a consumer and back, as shown
for a hypothetical consumer in Figure 8.

In Figure 8 the horizontal lines are the constraints on the absolute pressures that
must be satisfied at all points along the route to the consumer. The solid lines that
have both positive and negative slopes are the supply and return pressures under
maximum load conditions. The magnitude and the sign of the slope of these lines are
determined by the sum of the hydrodynamic and hydrostatic pressure gradients as
given by eq 4-14. The dotted lines that behave in a similar fashion are the supply and
return pressures under some mass flow condition that is lower than the maximum.
In the extreme case where there is no flow, the pressure losses in the piping and
consumer equipment all vanish and the absolute pressure level is identical in the
supply and return lines for any point along the route. Also notice that we have
shown the pressure drop at the consumer as being lower at the reduced flow
condition. This results from lower pressure losses in the consumer’s heat exchanger
at the reduced flow rate (see eq 4-6) as well as lower losses in the consumer’s control
valve. If the network were ideally balanced and this consumer were the critical
consumer, his control valve would be completely open at all levels of load (i.e., flow
rate) and the pressure losses would always be the minimum possible.

By studying Figure 8, we can see that if we are able to “fit” the supply and return
absolute pressure lines within the constraints at the maximum flow condition, then
we can always do so for any lower flow condition simply by adjusting the absolute
pressure of either the supply or return at the heating plant. This results from the
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hydrodynamic losses in the piping always being lower for the lower flow rates and
thus the total pressure increase necessary at the plant is reduced.

A simplified objective function
If all the constraints are shown to be satisfied, then we have found the optimal

solution to the multiple-consumer–multiple-pipe problem and we need not do any
further calculations. If, however, we find that constraints have been violated, we
need to refine our design. The first reaction of the designer when faced with this
result should be to closely examine the nature of the constraint that has been
violated. Often these constraints are “soft” and may be changed if the optimum
design indicates so. For example, in this problem one such constraint would be the
maximum allowed pressure. The designer has the option of using a higher pressure
class of piping if he or she feels it is warranted. This, of course, will most likely add
to the cost and, if this additional cost is significant, the designer may choose to
evaluate the design subject to the original constraint and the revised constraint, as
well to determine which one yields the lowest cost when the additional cost of the
higher pressure class piping is included.

Now that we have shown activity for some of the constraints, let’s consider the
problem again with a reduced objective and determine if solution is possible. Thus,
in our reduced objective, we are only interested in the terms in the objective function
that relate to variable piping costs, since we have shown that constraint activity
determines the values of the other decision variables. Thus, our problem can be
restated as

    
min  pt hl pev pv j

. C C C C
j

′ = + +( )∑ (5-10)

where     ′Cpt   is the total diameter variable pipe costs for the system ($).
The constraints to which this solution is subject are that the absolute pressure

levels not be exceeded. The activity of the constraints of eq 4-2 and 4-5 fixes the
pressure increase at the heating plant and therefore the pumping power for the
system. Thus, at this point we no longer need to include the pumping power
consumed in the piping in our reduced objective function, eq 5-10. If we remove the
pumping power from eq 5-10, it becomes a monotonically increasing function of
pipe diameter. Thus, for the problem to be bounded, we must have monotonically
decreasing constraints on the pipe diameters. The sum of eq 5-8 and 5-9 forms one
such equality constraint for each pipe diameter that can be directed to bound it
properly. This constraint is
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with the monotonicities being 
    

d P Pj s, j r, j
− − −( ), ,∆ ∆  .

Notice that the constraints in the set of eq 5-5 will bound ∆Ps,j and ∆Pr,j in the
opposite sense to this constraint, so these nonobjective variables are bounded above
and below as required by MP2.

Thus, our problem is now to use these active constraints to solve for the diameters.
We will have one constraint from eq 5-11 for each pipe segment in the system. In
addition, we have already shown that we have (n – 1) active constraints from eq 4-
2, where n is the total number of consumers. We have one additional active
constraint from eq 4-5 for the critical consumer. However, at this point we are unsure
as to which consumer is the critical consumer; thus, we must include all n of the
constraints from the set of eq 4-2. In addition, we would still need to include all of
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the constraints from the sets of eq 4-11, 4-22 and 4-23, since at this point we have no
way of knowing which of these constraints will be active. For each of these latter sets
of constraints, we have one member for each node in the system. We can use the
constraint of either eq 4-23, 4-24 or 4-25 coupled with the fact that ∆Php must be the
difference between Php,s and Php,r to eliminate Php,s from eq 4-11, 4-22 and 4-23. Once
the parameter values for the problem are known, the choice of which equation to use
will be determined by the dominance argument given earlier. Thus, if we have nn
nodes in the system and n consumers, our result would be 3nn + 2n simultaneous
equations.

To introduce the inequality constraints of eq 4-5, 4-11, 4-22 and 4-23 directly into
a set of simultaneous equations, we would need to introduce a “slack” variable for
each inequality constraint. The slack variable allows us to convert the inequality
constraint to an equality constraint. For example, eq 4-5 would be converted into an
equality constraint of the form

Pcv,i = Pcvm,i + Pcvs,i (5-12)

where ∆Pcvs,i is equal to the slack variable for consumer control valve pressure losses
(N/m2).

Equation 5-12 would introduce n slack variables into the problem. It could,
however, be used immediately to eliminate the ∆Pcv,i unknowns in eq 4-2, thus
reducing both the number of unknowns and equations by n to 3nn + n.

The constraints of eq 4-11 and 4-22 would each introduce nn slack variables as
well. The constraint of eq 4-23 would introduce one less slack variable than these
constraints, since there will be no slack variable at the heating plant where the
pressure level is determined by the constraint dominance arguments discussed
earlier. Thus, eq 4-23 will result in (nn – 1) additional slack variables.

In addition to the slack variables, we would still have the diameters of our pipe
segments as unknowns as well. The number of pipe segments will always be one less
than the number of nodes. This result is easily shown if we consider the process of
building the network from one node to the next. The first two nodes introduced into
the system will require one pipe. Any subsequent nodes introduced will require one
pipe for each node, since one node will already be an existing connected node. The
only case where this would not be true is if we had a looped network, rather than the
pure branched networks to which we will limit our discussion. We have one
additional unknown ∆Php that appears in all of the constraints of eq 4-2. So, then our
total number of unknowns would be (n + 4nn – 1).

With (n + 4nn – 1) unknowns and only (n + 3nn) equations, we have no unique
solution. Recall, however, that (nn – 1) of the unknowns are the pipe diameters,
which must take on discrete values. If the pipe diameters were to be considered as
continuous, we would have an infinite number of solutions. It’s actually fortunate
that they are discrete because this limits the number of possible solutions. The
number of possibilities can still be quite large for a system of any significant size. For
example, if we were to consider only 3 possible pipe sizes for each pipe segment we
would have 3(nn – 1) possible solutions. For our system discussed earlier with 125
nodes (124 pipe segments), we would have 3124 ≅ 1.46 × 1059, a combinatorial
problem of staggering proportions by any measure.

Notice that by applying monotonicity analysis to this problem we were able
reduce it to one of solving for the variables using the constraint set, which has been
reduced somewhat. The constraint set is linear in all the variables except the pipe
diameters and the pipe diameters only appear in one set of constraints. We could
make the problem linear by making the transformation for pipe diameters of

    
ˆ –d d b c
j j= + +( )5 .
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We would then substitute this into the constraints of eq 4-2 and solve the resulting
problem linearly in the     d̂j  values. However, we would still have a significant task in
the solution of the system of equations. For this reason we will abandon the
possibility of achieving a solution by this approach.

Constraint resolution by pipe size refinement
We have an infeasible solution from the unconstrained problem. For each of the

consumers whose absolute pressure distribution of Figure 8 exceeds the constraints,
we need to reduce the piping pressure losses by increasing pipe diameters enough
to allow for constraint satisfaction. Since the system constraints all deal with
pressure levels in the network, we need to find a strategy to resolve these constraint
violations. Let’s attempt to find a solution by starting with our optimal independent
design and identifying methods to move from this design to one that satisfies all the
constraints. We will attempt to conduct this process of modifying the solution so that
it satisfies the constraints in a manner that will keep us as close as possible to the true
globally optimal design. We have the distinct advantage of knowing that our opti-
mal independent design will form an absolute lower bound on system cost. At any
point we can compare the cost of our feasible design to the cost of the optimal inde-
pendent design and determine if further attempts at improvement are warranted.

Examining Figure 8, we see that to bring excessive pressure differences within the
bounds of the constraints, we will need to reduce the slope of the pressure vs.
distance lines. The slope of these lines is the pressure loss per unit length of pipe.
Equations 5-8 and 5-9 tell us that if we are to reduce the slope we must do so by
increasing the pipe size. We would like to identify a method of determining which
pipe sizes to increase and by how much to satisfy constraints with minimum cost
increase.

At first it might seem that the best procedure would be to start by increasing pipe
sizes at the consumer’s end of the system, where the sizes are smallest and the pipes
tend to be shorter. In the smaller pipe sizes, the incremental increases in diameters
are in general less than for the larger pipe sizes. Thus, we could make smaller moves
away from the lower bounding cost. Starting at the consumer appears to be the most
logical way to proceed if the critical consumer is the only consumer who has
exceeded the absolute pressure constraint. In the more general case, however, more
than one consumer will have violated the absolute pressure constraints; thus, we
will examine that case first.

If more than one consumer has violated the absolute pressure constraints, we
could achieve constraint satisfaction by increasing pipe sizes that serve each
consumer individually until all the constraints are satisfied. Alternately, we could
increase pipe diameters in pipes that serve all of the consumers with violated
constraints. Because the pipe sizes are discontinuous (discrete) and the incremental
differences between adjacent diameters are nonuniform, it’s not possible for us to
predict a priori which diameters would be the best candidates for increasing. Thus,
we need to identify a method that will guide our search for a feasible and acceptable
solution expediently. In deciding when to stop our search, we always have the
benefit of knowing our lower bounding cost.

If we refer back to Figure 8, we see that satisfaction of the absolute pressure
constraints relies on keeping the pressure in the supply and return lines within the
bounds prescribed by the maximum absolute pressure constraint and the two
minimum absolute pressure constraints. We can adjust pressures at the plant to
achieve a state that satisfies all the constraints, as long as the maximum pressure
difference within the system does not exceed the absolute pressure constraints
discussed above. Since the critical consumer previously identified will be the
consumer who requires the largest pressure differential within the system, we will
examine this consumer’s requirements first and attempt to resolve the constraint
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1. For the set of consumers whose constraints are violated, find the pipe segments that they all share
in common. Identify those pipe segment within this group that are shared with no other consumers.
In the event that there are no pipe segments shared with no other consumers, choose those pipe
segments shared with the minimum number of other consumers.

2. Increase the pipe segment diameters within this set enough so that the consumer whose constraint
from eq 4-2 was closest to satisfaction in the original solution now has his constraint satisfied. The
first pipe segment to have its diameter increased should be the one that this consumer shares with
the largest number of other consumers within the set of consumers with violated constraints.

3. Now remove this consumer whose constraint is satisfied from the set and find the new set of
common pipe segments for the remaining set of consumers with violated constraints, again including
the minimum number of other consumers in this set.

4. Again increase the pipe segment diameters within the remaining set enough so that the consumer
whose constraint was closest to satisfaction in the new set now has his constraint satisfied. The choice
of the pipe segment diameter to increase first is done in the same way as in step 2 above.

5. Repeat the above steps until all consumers have their constraints satisfied.

Figure 9. Method A.

violations that result. In the process we will consider the other consumers whose
constraints have also been violated.

Starting from an infeasible point, which is at the lowest possible cost for any
design, we want to move in the direction that will satisfy all of the constraints that
are violated by this solution. Since the critical consumer is the consumer whose
constraint has been violated by the greatest amount, we will have to travel the
“furthest” from our infeasible point to the boundary of his constraint. Thus, it would
seem tempting to try to resolve this constraint first and then look and see what other
violated constraints remain. However, it’s possible that we can plot a course that will
take us straight to a point that will resolve all constraints rather than handling them
one at a time. To do so we might consider the algorithm given in Figure 9.

Note that the last consumer to have his constraint satisfied is the consumer who
was identified as the critical consumer in the original solution. Now, however, all of
the consumers whose pressure constraints were violated in the original solution are
“critical” consumers as well, having pressure levels just meeting the constraints,
within the tolerance achievable with the discrete pipe diameters available.

As an alternate to the above methodology, we could proceed by adjusting
diameters of the critical consumer first, but only enough to bring his piping pressure
loss to the level of the next highest consumer, i.e., using the method in Figure 10.

Since in many cases consumers will share more than one pipe segment, we still
may be left with a number of alternatives that must be evaluated at each of the steps
above. If in each case we choose the alternative that produces the minimum amount
of increase in cost over the previous design, we should be able to move to an ultimate
solution that satisfies all the constraints while reducing the cost as much as practical.
Because we may be faced with many possible alternatives when a number of pipe
segments are shared by two or more consumers, we may decide to stop the process
after finding an alternative whose cost is within some reasonable tolerance of the
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1. Proceed by first finding the set of servicing pipe segments unique to the critical consumer; this will
be his final service pipe only. Increase the diameter of that pipe segment until it reduces his pressure
loss to the same level as the consumer with the next highest pressure losses.

2. Now identify the pipe segments that these two consumers alone share and increase those pipe
diameters enough to reduce their pressure losses to the level of the next highest consumer. Note that
it may be that there are no shared pipe segments for these two consumers alone. In that event proceed
to the next step directly.

3. Again look for pipe segments shared by the three consumers with the highest pressure losses and
increase the diameters of those pipe segments enough to bring the pressure losses of these three
consumers to the level of the consumer with the fourth highest pressure loss. Once again, in the event
that no shared pipe segments exist, proceed directly to the next step.

4. Repeat this procedure until no consumers remain with pressure losses exceeding the constraints.

Figure 10. Method B.

lowest cost up to that point in the process.
To address the instances where more than one alternative is available at a

particular step in either of the processes outlined in Figures 9 and 10, we would like
a strategy that minimizes cost. Let’s investigate the effect of pipe diameter to see if
it would be to our advantage to choose smaller or large pipes as candidates for the
diameter increase.

First, we note that the capital cost Cpv,j is a linearly increasing function of pipe
diameter. Thus, an incremental increase in pipe diameter would have the same effect
regardless of the absolute value of the pipe diameter.

The cost of heat loss Chl,j is a somewhat complicated function of the pipe diameter.
It also includes an approximation introduced in Chapter 2. Within the range of
validity of the approximation (0.025 m ≤ d ≤ 1.0 m), we can see how the heat loss cost
behaves by examining its slope as shown in Figure 11.

The slope of the heat loss cost as plotted below in Figure 11 is essentially the first
term of eq 2-24 with the values of the parameters taken from the example of Chapter
3. From Figure 11 we see that the slope of the heat loss curve is always positive within
our range of interest. This tells us that whenever we increase the pipe diameter we
will increase heat losses, as we would expect. We also see that the slope is a
decreasing function of the diameter, except for pipe diameters over about 0.75 m,
where it becomes a slightly increasing function. For the portion of the range where
the slope is decreasing, we know that an incremental change in pipe diameter will
result in less increase in heat loss for larger diameters than for smaller ones.

The pressure loss as a function of pipe diameter is given by the sum of eq 5-8 and
5-9, which is our former eq 4-4

∆Ps&r = (a εb (4/π)2+c A6     ṁ d
2+c L d –(5+b+c))j. (4-4)

If we take the partial derivative of this pressure loss with respect to diameter, we
have

∂∆Ps&r/∂d = –(5 + b + c) (a εb (4/π)2+c A6    ṁ d
2+c L d –(6+b+c))j.
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Figure 11. Slope of the heat loss cost term as a function of pipe diameter.

Figure 12. Slope of the pressure loss as a function of pipe diameter.

This result is plotted in Figure 12, where we have arbitrarily set the aggregate of all
the coefficients of d equal to –1. We see that the slope is everywhere negative and that
it is increasingly negative for decreasing values of the pipe diameter. This tells us
that an incremental increase in the pipe diameter will have a greater effect on
reducing the pressure loss at smaller pipe diameters than at larger ones. Thus, if we
have a choice of several possible pipe segments whose diameters we can increase,
we can achieve a larger pressure loss reduction for a given increase in pipe size by
choosing the pipe segment with the smallest diameter.

Unfortunately, our results tell us we should favor the smaller diameters from a
pressure losses reduction standpoint, but from the standpoint of heat loss costs,
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larger diameters would be better. Thus, it is unclear from this analysis whether we
should try to choose smaller or larger pipes for increased diameters to satisfy
constraints. We do know that incremental increases in the discrete sizes of pipes will
be smaller in general for the smaller pipes. However, this does not necessarily mean
that we will be able to get closer to just satisfying the constraint in all cases by
increasing the diameter of the smaller pipes. Fortunately, the branch-and-bound
method mentioned earlier will provide us with a general solution strategy despite
our inability to better characterize the nature of the path to the solution.

Branch-and-bound method
The objective of the branch-and-bound method is to use what is known about

designs already explored to reduce the number of remaining ones that must be
examined in detail. An additional caveat is that we would like to do so without
dismissing any designs superior to the best feasible ones identified. According to
Reklaitis et al. (1983), the branch-and-bound algorithm is the most widely used
method for mixed integer problems and is the basis for most commercial computer
codes for solving such problems. The essence of the branch-and-bound method is
that it breaks the problem down into branches, each of which corresponds to some
particular choice of a single discrete decision variable.

The first step in the method is to compute the optimal solution to the problem with
all the variables assumed to be continuous. This becomes our global lower bound.
The branching usually starts by choosing what is felt to be the most fruitful branch
(variable) to explore; some criteria are given in Reklaitis et al. (1983). A discrete value
for the variable of this branch is chosen; this will be one of the discrete values
bracketing the optimum continuous value. The lower bounding cost for this branch
is found by finding the optimum continuous values of the remaining decision
variables with the branching variable fixed at its discrete value. At this point we can
explore the discrete designs within this branch by branching on the other variables
or we can go directly to the next branch. If we continue to explore this branch and
we find a discrete design sufficiently close to our lower bounding continuous
design, we can stop searching and accept this design. Otherwise, we move on to the
next branch. If we decide to search this branch further, we do so by comparing costs
obtained for designs within the branch by making permutations of the other
decision variables in turn to their bracketing discrete values.

This process continues until a feasible design with discrete values for all those
variables requiring such values is found. This is our first candidate design and its
cost becomes our upper bounding cost. Through the remainder of the process all
solutions will be compared in cost to this one until another feasible discrete design
with a lower cost is found. Any designs with higher cost will immediately be
rejected, and if continuous variables are still included in these designs for variables
that must ultimately take on discrete values, then all other designs within that
branch will be rejected as well. This can be done since we know that restricting any
of the continuous variables to discrete values will only increase the cost. The process
of rejecting these other designs for which the cost is never computed is called
“implicit fathoming,” as opposed to “explicit fathoming” where the cost is com-
puted and the design is rejected because its cost exceeds our upper bounding cost.
Any remaining feasible discrete designs are also compared to the lower bounding
cost for the branch found with continuous values of the non-branching variables. If
any are sufficiently close to this lower bound, the search of the branch is concluded
and the design found is accepted as an adequate design representative of what can
be expected within the branch.

The next branch to be explored will use the other bracketing value of the first
branching variable. Its lower bounding continuous cost design is compared to our
current upper bounding cost from the best design of the previous branch. If the
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lower bounding cost of this branch is less, then we continue the search of this branch,
proceeding as we did in the first branch, with one exception. We now have an upper
bounding cost and if at any point we find a design, either fully discrete of not, higher
in cost than our upper bounding design, we fathom this node and implicitly fathom
any branches of this design. However, as long as improvement appears possible, the
branch is searched until a discrete design acceptably close to the lower bounding
cost is found or all alternatives are exhausted. If a discrete design with a lower cost
than the lowest cost discrete design of the previous branch is found, it becomes the
new upper bound on cost. If this cost is sufficiently close to the continuous lower
bounding cost, then the search is concluded. Otherwise, another variable is chosen
to branch on. When exploring alternatives within any main branch, the same basic
branch-and-bound approach is applied within the “sub-branch.” Below we will
show how the branch-and-bound method is applied to our problem.

Solution by the branch-and-bound method
Before we can apply the branch-and-bound method as described above, we must

first have a feasible solution point from which to start. To find such a solution, we
use one of the methods described earlier in the section entitled Constraint Resolution
by Pipe Size Refinement. For example, if we use the method A step 2 (Fig. 9), we
calculate the continuous pipe size necessary to reduce the pressure loss to the next
level as described there. This is done by combining eq 4-2 and 4-4 to obtain
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In this case the pipe segment index j1 is the pipe segment whose diameter we have
chosen to increase and the consumer index i is for the consumer with the second
highest pressure loss at the heating plant as determined by eq 4-2. We continue to
use method A, which essentially repeats steps 1 and 2 until all the constraints that
were previously violated are now satisfied. When we have finished, we can check
our application of the method by taking the pipe segments that were in the sets of
those constraints previously violated and decreasing them to the next lowest pipe
diameter one at a time. If our application of method A was correct, each pipe
diameter that is decreased should result in the violation of at least one constraint.

At the conclusion of the use of method A, we will have a number of pipe segments
whose diameters are continuous as a result of the refinement process used by the
method. To obtain discrete diameter values for these pipe segments, we use the
branch-and-bound method as described above. Note that the unconstrained discrete
solution, what we have called our “optimal independent design,” will form a greater
lower bound than the unconstrained continuous solution. It may not, however, form
a greater lower bound than the constrained continuous solution, which we have
chosen not to attempt to find owing to the computational effort involved, as
discussed earlier. What we have found using method A is a feasible solution whose
cost is greater than the unconstrained discrete solution. The solution we have must
also be higher in cost than the constrained continuous solution, since the deletion of
the requirement of discrete sizes for those pipe segments that already have discrete
sizes would allow us to find a feasible solution at some lower cost. We can not be
certain, however, that the solution of method A is lower in cost than the constrained
discrete solution that we seek. For this reason, when we use the cost found in method
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Figure 13. Hypothetical branch-and-bound problem.

A as our lower bounding cost, we can not be certain that this is the greatest lower
bound. If the application of the branch-and-bound method finds feasible solutions
with costs lower than our solution found by method A, then we must from that point
on use the unconstrained discrete solution as the greatest lower bound.

Note that, similar to method A (Fig. 9), method B (Fig. 10) would also provide a
number of pipe segments whose diameters are continuous as a result of the
refinement process used. Thus, we would proceed in the same manner with the
branch-and-bound method regardless of which of the two methods had been used
for the pipe size refinement process.

The application of the branch-and-bound method to our feasible solution of
method A or B is straightforward and proceeds as described earlier. Many of the
branches will have infeasible designs, since we know decreasing any of the continu-
ous pipe diameters will result in the violation of at least one constraint, unless other
pipe diameters have also been increased. Thus, any branch that only decreases pipe
diameters in any one of the combinations in which they appear in the previously
violated constraints will be infeasible and need not be explored.

Consider a hypothetical case where we have four pipe segments with continuous
diameters after the application of either method A or B. If we limit ourselves to only
the two discrete pipe sizes that bracket the continuous values found, we will have
24 = 16 possible discrete solutions. A “tree” diagram of the problem is shown in
Figure 13. The symbols within each “node” of the tree represent the particular case
being evaluated. The “0” symbol indicates the continuous pipe size as found by
either method A or B. A “+” symbol indicates the next larger discrete pipe size and
a “–” symbol indicates the next smaller discrete pipe size. The sequence of the
symbols represents the order of the four pipe segments under investigation. As
noted above, any possibilities that only decrease the size of one or more pipe
segments are immediately known to be infeasible. These nodes have been shown
with dotted outlines in Figure 13.

Applying the branch-and-bound method, we would proceed initially by choos-
ing the first pipe segment to branch on. Starting at the top of Figure 13, we branch
on the first pipe segment by computing the value of the objective function with the
branching diameter, rounded both up and down to the adjacent discrete diameter
values. However, we notice that one of the options, the (– 000) case, is infeasible.
Thus, there is no use in computing the value of the objective at that point since it’s
of no use as a lower bound on the constrained problem. In this case we then proceed
further down this branch in search of a feasible case. Suppose that we find that the
(– + + 0) is the first feasible case in this branch. We then branch on the last pipe
segment by examining the cases (– + + +) and (– + + –). Assume that we find both of
these to be feasible, but the (– + + –) case is lower in cost. This is our first completely
discrete and feasible design. It now becomes our upper bounding cost. If this cost is
sufficiently close to our current lower bounding cost of the (0000) case, then we can
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(+-++) (+-+-) (+--+) (+---)

(+-+0) (+--0)

(+-00)

(++++)(++++) (++-+) (++--)

(+++0) (++-0)

(++00)

(+000)

(-+00)

(-+++) (-++-) (-+-+) (-+--)

(-++0) (-+-0)

(--++) (--+-) (---+) (----)

(--+0) (---0)

(--00)

(-000)
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accept this solution and terminate the search. Let’s assume, however, that this is not
the case.

Thus, we now need to start the process of “backtracking“ and examining the
delayed cases that we passed over. We begin by examining the case (– + – 0). Since
we found that the (– + 00) case was infeasible, then we immediately know that the
(– + – 0) case must be infeasible as well, since it only decreases diameters from an
infeasible case. Consequently, the (– + – –) case must be infeasible as well for the same
reason. The (– + – +) case might be feasible and let’s assume that we find this to be
true. Assume that the cost of this completely discrete design is less than the cost of
the (– + + –) design and thus it becomes our new upper bound on cost. Again, we
would compare the cost of this upper bound with the lower bounding cost of the
(0000) design and decide if further searching is warranted. Let’s assume that we are
still not satisfied with the gap between the upper and lower bounding costs, so we
decide to continue our search.

Backtracking further, we explore the alternatives (– – 0 +), (– – + +), (– – + –) and
(– – – +). Assume that we find these to all be infeasible. We then return back to the
other side of the first branch explored, the alternatives in the (+ 000) branch. Assume
that we find that both the (+ + 00) and the (+ – 00) cases are feasible, but the (+ – 00)
case has a lower cost. Thus, we defer any further exploration of the (+ + 00) branch.
We continue in the (+ – 00) branch by exploring the (+ – + 0) case and the (+ – – 0) case.
Suppose that both cases are feasible, but the (+ – – 0) case has a lower cost. Thus, we
continue by checking the cost and feasibility of the (+ – – +) and the (+ – – –) cases.
Assume that the (+ – – –) case is infeasible, but the (+ – – +) case is not only feasible
but lower in cost than our former upper bounding cost of the (– + – +) design. Assume
that this cost is indistinguishable from the lower bounding cost of the (0000) case,
and thus we accept the (+ – – +) design and terminate the search.

As illustrated here, one of the techniques used by the branch-and-bound method
is to continuously move the upper and lower bounding costs closer together until
the remaining possible improvement (i.e., reduction in cost) does not justify further
effort. At this point, the search can be stopped regardless of how many alternatives
have actually been explored. This process is accomplished by moving the upper
bound down as low as possible, i.e., finding the “least upper bound.” The least upper
bounding cost is always the lowest cost feasible discrete design found up to that
point in the process. The difference between the lower and upper bounding costs is
also refined by finding the “greatest lower bound.” The lower bounding cost is
initially determined by the continuous feasible design found by either method A or
B. As we proceed with the branching process, we will find lower bounding costs
within that branch for designs that have some, but not all, of their diameters at
discrete values. These greater lower bounding costs allow us to refine the difference
between the upper and lower bounding costs for that branch only. They also,
however, may tell us that further exploration of the branch is unwarranted if they
exceed our current upper bounding cost.

Once we have reached a solution by the method described above, there is an
additional area where we can seek further cost reductions. Note first that those
consumers who did not have their constraint of eq 4-2 violated will have pressure
losses in their control valves greater than the minimum allowed values. We then
observe that if these excessive pressure losses were absorbed by decreasing the sizes
of the pipes servicing only these consumers, our constraints would still be satisfied,
but the cost of the piping network would be reduced by use of the smaller pipe sizes.
This possibility is explored in the next chapter.

The procedure we have developed in this chapter to solve for the pipe diameters
in a general multiple-pipe–multiple-consumer system may be used with any
number of pipes and consumers. In the next chapter we will illustrate the use of the
method presented here on a simple example.
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CHAPTER 6: A SIMPLE MULTIPLE-PIPE–MULTIPLE-
CONSUMER EXAMPLE

To demonstrate our solution strategy, it’s illustrative to use an example. The
example should be as simple as possible, but must at the same time include the
salient features of a realistic system. Thus, our simplistic system must include as a
minimum:

1. A heat generating plant.
2. At least one heat consumer.
3. A section of pipe feeding only other sections of pipe but no consumers.
4. A pipe junction feeding at least two consumers with unequal hydraulic
characteristics.
5. A pipe junction feeding only one consumer.
With these requirements in mind we will examine the system shown in Figure 14.
First, we define the physical parameters for the network. For each of the nodes,

we assign an arbitrary elevation and, in the case of the consumers, an arbitrary
maximum heat demand expressed as maximum flow mass rate at the design
condition. The maximum demands assigned to the consumers are representative of
multiple residential consumers or large commercial loads. The assigned values are
given in Table 5.

We will also need to assign lengths to the pipe segments between the nodes. In
Table 6 some arbitrary pipe segment lengths have been assigned. In addition, in
Table 6 the flows in each pipe segment and the elevation change for that segment
have been determined based on the data in Table 5.

Note that the maximum flow in each pipe segment has been assumed to be the
sum of all consumer flows downstream (again, in the supply line sense) from it.
Although this must be true at any instance during the operation of the system
because of simple conservation of mass principles, for design it may not be the most
appropriate assumption. Since the demand for heat by each consumer will most
likely not be completely coincident in time, the maximum aggregate demand of the
consumers will always be somewhat less than the total of all consumers’ maximum
demands. This concept, called “demand diversity” is recognized by the district
heating industry and is sometimes accommodated to some extent in design calcu-
lations. If it’s not included directly in the design, it has the effect of providing an
additional safety factor. While at this point we will make no effort to include the
effect of demand diversity in our solution methodology, it is important to make note
of it, since it’s here that it would be introduced.

Figure 14. Simple multiple-pipe–multiple-consumer system.
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Table 5. Assigned values for nodes of example in Figure 14.

Node Elevation Maximum demand
number Node type (m) (kg/s)

1 heat consumer 40 10
2 heat consumer 30 10
3 heat consumer 20 10
4 heat consumer 10 10
5 pipe junction 0 —
6 pipe junction 0 —
7 pipe junction 0 —
8 heating plant 0 40

Now we proceed to find the optimal pipe diameters for our example system of
Figure 14. As we found in the last chapter, a convenient starting point is what we will
call the “optimal independent design.” This is the design that we would arrive at if
we use the procedure developed in Chapters 2 and 3 for each pipe segment as if it
were independent of the others and its design were unconstrained by the system
constraints identified in Chapter 4. We will make use of all of the assumptions for
parameter values and operating strategy that we used in the examples of Chapters
2 and 3. For clarity these are repeated below:

Am&r = 2%/yr
Aη = 0.90 (dimensionless)
A1 = $1060/pump
A2 = $0.242/W
A3 = $218
A4 = $2180/m

A13 = 1.0 (dimensionless)
A14 = 0.575 (dimensionless)
A15 = 0.425 (dimensionless)
Tm = 6.4°C

ki = 0.030 W/m °C
ks = 1.3 W/m °C

Hp = 1.0 m
xi = 0.050 m

Table 6. Assigned values for the
pipe segments in the example of
Figure 14.

Elevation Maximum
Pipe Length change flow

segment (m) (m) (kg/s)

6,1 100 40 10
7,2 25 30 10
7,3 50 20 10
5,4 100 10 10
6,7 50 0 20
5,6 100 0 30
8,5 200 0 40
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ε = 5 × 10–5 m
a = 0.119 (dimensionless)
b = 0.152 (dimensionless)
c = –0.0568 (dimensionless)

Ts = 120°C
Tr = determined by consumer model (eq 3-18) (°C)
Ce = $7.0 × 10–5/Wh
Ch = $3.4 × 1–5/Wh

PVFe = PVFh = PVFm&r = 9.08 (dimensionless)
Load control by flow modulation with consumer model (eq 3-25).

There are a number of additional parameters that were introduced in developing
the multiconsumer constraints for which we have not yet assigned any typical
values. They are:

∆Pcvm,i = 5 × 104 N/m2 (for all consumers, i = 1,4)
∆Phe,i = 1.0 × 105 N/m2 (for all consumers, i = 1,4)
Pmax = 1.0 × 106 N/m2

Psaf = 1.0 × 105 N/m2

PNPSH = 2.0 × 105 N/m2

Pa = 1.0 × 105 N/m2

Pasa = 0.5 × 105 N/m2.

Before we can find the optimal independent diameters for the pipe segments, we
need to calculate the remaining parameters that are determined by the assumptions
above. Because the optimal pipe diameter for a single pipe segment is independent
of the pipe length and elevation (see eq 2-23), the optimal independent diameter will
be the same for pipe segments (6,1), (7,2), (7,3) and (5,4). Thus, we construct Table
7 with the parameter values needed and the resulting optimal independent diam-
eters. In each case, we have proceeded as before by solving the Lower Bounding
Problem (LBP) (eq 2-20), which neglects heat losses first and, subsequently, using
that as a starting point for finding the solution to the complete problem including
heat losses (eq 2-24). Also, as earlier, FORTRAN programs I1EQ3-26 and I2-C-GMT
were used to compute I1 and I3 respectively.

The optimal diameters found above do not necessarily correspond to actual
discrete pipe diameters available, so before we check this solution to see if it satisfies
the constraint set, we first need to determine what the optimal discrete diameters
would be. Table 8 contains pipe size data for standard metric pipe sizes in the range
needed for our example.

To find the optimal discrete diameters, we proceed as before in the example of
Chapter 2 by simply examining the total cost of the discrete pipe diameters that

Table 7. Parameter values and optimal independent diameters for ex-
ample of Figure 14.

Pipe I1/L I3/L d by LBP d by eq (2-24)
segment ($/m) ($ m4.095) (m) (m)

(6,1), (7,2), 73.3 4.276 × 10–5 0.0691 0.0666
(7,3), (5,4)

(6,7) 73.3 3.289 × 10–4 0.0966 0.0932
(5,6) 73.3 1.085 × 10–3 0.1175 0.1134
(8,5) 73.3 2.529 × 10–3 0.1350 0.1304
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Table 9. Discrete bounding diameters and variable costs for the example (optimal non–
discrete diameters shown in boldface, optimal discrete diameters shown in italic).

Variable costs ($/m)
Pipe d Discrete cost

segment (m) Heat loss Capital Pumping Total premium (%)

0.0545 64.76 140.61 117.31 322.68 12.44
(6,1), (7,2), 0.0666 72.90 171.83 42.23 286.96 —
(7,3), (5,4) 0.0703 75.34 181.37 32.06 288.78 0.63

0.0825 83.24 212.85 109.11 405.20 4.14
(6,7) 0.0932 90.02 240.46 58.62 389.09 —

0.1071 98.65 276.32 28.87 403.84 3.79

0.1071 98.65 276.32 95.21 470.18 0.85
(5,6) 0.1134 102.51 292.57 71.16 466.24 —

0.1325 114.03 341.85 32.19 488.07 4.68

0.1071 98.65 276.32 222.03 597.00 12.51
(8,5) 0.1304 112.77 336.43 81.44 530.64 —

0.1325 114.03 341.85 75.07 530.95 0.058

Table 8. Standard metric steel pipe sizes
(data from DFF 1985).

Nominal Outer Wall Inner
diameter diameter thickness diameter

(mm) (mm) (mm) (mm)

50 60.3 2.9 54.5
65 76.1 2.9 70.3
80 88.9 3.2 82.5

100 114.3 3.6 107.1
125 139.7 3.6 132.5

bound the optimal diameters we have found. The bounding diameter that has the
lowest total cost will become our optimal discrete diameter. Obviously, it is only
necessary for us to compute the portion of the total cost that is dependent on pipe
diameter in making this decision. Table 9 gives the cost data for the bounding
discrete diameter for each of the pipe segments of our example. The costs are
calculated on a unit length basis using eq 2-23 divided through by L, the pipe length.
The portions of the total variable cost ascribable to each of the major component costs
are also given in Table 9. The parameter values of I1/L and I3/L used for each pipe
segment are the same as those given in Table 7.

Now we need to consider the constraints on our multiconsumer system as
derived earlier in Chapters 3 and 4. These are summarized in Chapter 5 in the System
Constraint Satisfaction subsection. All of these constraints deal with pressure levels
at various points within the system. Since verification of satisfaction for these
constraints requires calculation of the pressure losses in the supply and return line,
we begin by doing so for each of the pipe segments. The pressure losses in the supply
or return pipes are calculated with eq 5-8 and 5-9 using the optimal discrete
diameters we have determined independently. The results are given in Table 10.

Satisfaction of the constraint of eq 4-2 at each of the consumers requires that we
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Table 10. Pressure losses for the pipe segments in the example.

Pipe Discrete Length Elevation Flow rate Pd ,s Pd ,r
segment diam. (m) (m) diff. (m) (kg/s) (N/m2) (N/m2)

6,1 0.0703 100 40 10 91,585 91,652
7,2 0.0703 25 30 10 22,896 22,913
7,3 0.0703 50 20 10 45,793 45,826
5,4 0.0703 100 10 10 91,585 91,652
6,7 0.1071 50 0 20 20,615 20,630
5,6 0.1071 100 0 30 90,655 90,721
8,5 0.1325 200 0 40 107,219 107,297

sum the pressure losses in the portions of the piping system servicing each con-
sumer. Recall that earlier we assigned values for the minimum pressure drop in the
consumer’s control valve and the pressure drop in the consumer’s heat exchanger,
∆Pcvm,i and ∆Phe,i, respectively, as follows:

∆Pcvm,i = 5 × 104 N/m2 (for all consumers, i = 1,4)
∆Phe,i = 1.0 × 105 N/m2 (for all consumers, i = 1,4).

We will also assume initially that for each consumer ∆Pcv,i = ∆Pcvm,i. The process of
calculating the ∆Php for each of the consumers is summarized in Table 11.

The pressure increase required across the pump at the heating plant ∆Php that we
have calculated is different for each consumer. As shown in Chapter 5, since ∆Php
can only assume one value, it must be the greatest value that results from consider-
ation of all the consumers, and for the other consumers ∆Pcv,i will be greater than
∆Pcvm,i. The consumer who requires the greatest ∆Php is called the critical consumer.

Referring to Table 11, we see that consumer 1 is our critical consumer and thus
∆Pcv,1 = Pcvm,1. This has been determined for the maximum load condition, but will
hold for all load conditions since we have assumed that all consumers have loads
varying in the same manner over the yearly cycle. For the other consumers, eq 4-2
will require that ∆Pcv,i > ∆Pcvm,i. By using the ∆Php calculated for consumer 1, our
critical consumer, we find the following values for the ∆Pcv,i of the other consumers
at the maximum load condition:

∆Pcv,2 = 146,183 N/m2

∆Pcv,3 = 100,374 N/m2

∆Pcv,4 = 231,376 N/m2.

Notice that the control valve pressure drops for all these consumers are high
compared to the minimum value of 5 × 104 N/m2. This situation sometimes makes
it difficult for the control valve to function properly. It also represents a wasteful

Table 11. Heating plant pressure increase required by eq 4-2 for each consumer.

Consumer Servicing Pcvm,i + Phe,i     
∆Php

index, i pipes, j (N/m2) (N/m2) (N/m2) (N/m2)

1 (6,1), (5,6), (8,5) 289,459 289,670 150,000 729,129
2 (7,2), (6,7), (5,6), (8,5) 241,385 241,561 150,000 632,946
3 (7,3), (6,7), (5,6), (8,5) 264,281 264,474 150,000 678,755
4 (5,4), (8,5) 198,804 198,949 150,000 547,753
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practice, since pumping energy, inherently more expensive than heat energy, is
being converted into frictional heating of the fluid. As noted at the close of the last
chapter, there is an alternative to these high control valve pressure losses: reduce the
pipe sizes further such that the pressure differential at the consumer’s control valve
is reduced. Such a practice was proposed by DFF (1985), where they suggest
reducing the size of the “service pipes,” those ultimately connecting the consumer
to the network. It may also be possible to reduce some of the pipes sizes within the
network as well. For our example problem, we see that we have limited options.
Consumer 1 is our critical consumer, so we cannot reduce any of the pipe sizes
servicing this customer; this rules out the pipe segments (6,1), (5,6) and (8,5). The
remaining pipe segments are (7,3), (6,7), (5,4) and (7,2). Thus, we investigate the
possibility of reducing the size of these pipes.

First, let’s look at pipe segment (5,4). This is the only pipe segment serving
consumer 4; thus, this is the only option for reducing the pressure loss in this
consumer’s control valve. What we would like to do is find the minimum pipe size
that will not violate the constraint of eq 4-2 for consumer 4. Effectively, what has
happened here is that we have removed the pumping power term from the objective
function so it now becomes monotonically increasing in d(5,4). We need to find the
constraint that will bound d(5,4) below. While not immediately obvious, eq 4-2 forms
such a constraint on d(5,4) when directed as follows

    
h P P P P P
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From eq 4-4, we see that ∆Ps,(5,4) and ∆Pr,(5,4) are related to d(5,4) by

h2 = {[(ρ–1 µ–c)d,s + (ρ–1 µ–c)d,r]

[(a/2) εb (4/π)2+c     ṁ
c

d
2+  L d–(5+b+c)](5,4)} – (∆Ps)(5,4) – (∆Pr)(5,4) ≡< 0

with the monotonicities being 
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So, we see that d(5,4) is bounded below by h2 and that the non-objective variables
∆Ps,(5,4) and ∆Pr,(5,4) are bounded below by this constraint and above by h1,, as
required by the second monotonicity principle (see Papalambros and Wilde 1988).
Now we can use constraints h1 and h2 to find the optimal value of d(5,4). To do so we
treat h1 as a strict equality and solve for (Ps)(5,4) + (Pr)(5,4). We then substitute the
result into h2, again treating it as a strict equality, and solve for d(5,4). The result is

d(5,4) = 0.0614 (m) .

The discrete diameters that bracket this value are 0.0545 and 0.0703 m. The lower
bracketing discrete diameter will cause constraint h1 to be violated since a decrease
in d(5,4) will increase 

    
∆ ∆P P

j
s r j+( )∑ . The optimal discrete diameter determined previ-

ously was 0.0703 m; thus, we are unable to improve on this result.
Let’s look at the remaining pipe segments (7,3), (6,7) and (7,2). These pipe

segments serve both consumers 2 and 3. Consumer 2 is served by pipe segments (6,7)
and (7,2) and consumer 3 is served by pipe segments (7,3) and (6,7). Both consumers
are served by pipe segment (6,7); thus, any decisions we make about this pipe
segment must be checked to ensure that both consumer constraints (eq 4-2) are
obeyed. Also, notice that if we decrease one of the pipe sizes and this violates
constraint h1, we may be able to increase the other pipe size in the pair serving that
consumer such that the total costs for the pipes and heat losses are reduced but
constraint h1 is still satisfied. It is also possible that a pipe size could be reduced or
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Table 12. Pipe size combinations for the example.

Pipe segment
Combination

number (6,7) (7,2) (7,3)

1 0* 0 0
2 0 0 +
3 0 0 –
4 0 + 0
5 0 + +
6 0 + –
7 0 – 0
8 0 – +
9 0 – –

10 + 0 0
11 + 0 +
12 + 0 –
13 + + 0
14 + + +
15 + + –
16 + – 0
17 + – +
18 + – –
19 – 0 0
20 – 0 +
21 – 0 –
22 – + 0
23 – + +
24 – + –
25 – – 0
26 – – +
27 – – –

*0 = pipe size unchanged; + = pipe size increased; – = pipe size
decreased.

increased by more than one discrete size. We will ignore this possibility for the
moment and return to it later, since it would result in many more combinations to
be checked, most of which would violate h1.

If we first look at all the possible combinations of increasing or decreasing the
three pipe sizes without regard to the constraints, we have 33 = 27 independent
possibilities; they are enumerated in Table 12. Combination number 1 is our design
as it now stands, the “do nothing” option. A number of these combinations are
known not to yield improvement in our design, however, and may be immediately
dismissed without further evaluation.

Specifically, any combination that increases any pipe sizes while decreasing none
will only result in additional pipe capital and heat loss costs and thus will be worse
than our design as is. Thus, the combinations 2, 4, 5, 10, 11, 13 and 14 can be
dismissed.

In addition, we know that any combination that increases the diameter of either
the final pipe servicing consumer 2 [(7,2)] or consumer 3 [(7,3)], while decreasing the
other and leaving pipe segment (6,7) unchanged, would be more costly than doing
the same yet not increasing the diameter of the one pipe; thus, we eliminate
combinations 6 and 8. As we proceed to explore the various combinations remain-
ing, we will discover that many other possible combinations will immediately be
shown to be infeasible by the infeasibility of related combinations.

In Table 13 we have listed the remaining combinations. Table 13 also gives the
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status of the two consumer constraints that must be satisfied and the total of the
variable portions of the capital costs and heat loss costs for each combination. We see
by examining the constraint satisfaction that only two combinations are feasible, i.e.,
they satisfy the h1 constraint for both consumers 2 and 3. However, when we
calculate the cost of these feasible combinations, we find that both cost more than our
original design. Thus, we are left with the result that none of the alternatives
investigated so far are better than our original design. There are some additional
designs that we have not investigated, however. Recall that earlier we dismissed the
possible designs that would increase or decrease pipe sizes by more than one
discrete size from the original design. Depending on how many pipe sizes we are
willing to deviate from our original design, there are many alternate designs. Of
course, there is no guarantee that these designs will be feasible, let alone lower in cost
than the original design. To explore these designs without resorting to “exhaustive
enumeration,” i.e., calculating the constraint satisfaction and cost of each, we can use
the branch-and-bound technique described in detail in Chapter 5. Below we apply
this technique to our example problem. In the process of doing so, we will not only
explore additional designs not considered yet, but we will show how the technique
would have allowed us to dismiss some of the alternatives in Table 13 without
computing the constraint satisfaction or total variable cost.

As noted in the previous chapter, the objective of the branch-and-bound tech-
nique is to use what is known about designs already explored to reduce the number
of remaining ones that must be examined in detail. In addition, we would like to do
so without dismissing any designs superior to the best feasible ones identified. We
have effectively already used the technique above to dismiss nine of the possible
combinations of Table 12. In that case, we used the fact that the variable portions of
the heat losses and capital pipe costs were monotonically increasing in pipe
diameter. This allowed us to dismiss cases that only increased pipe size.

After our initial elimination of nine combinations, as discussed above, we see that
half of our remaining combinations involve the case where d(6,7) is reduced; thus, we
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Table 13. Constraint satisfaction and costs for the remaining combinations. Our original design
(combination no. 1) is shown in bold, and the other feasible designs are shown in italic.

Cost
Comb. no. d(6,7) d(7,2) d(7,3) (h1)2 (h1)3 Variable premium
and type (m) (m) (m) (N/m2) (N/m2) costs ($) (%)

1 (0,0,0) 0.1071 0.0703 0.0703 –96,183 –50,374 38,002 0
3 (0,0,–) 0.1071 0.0703 0.0545 –96,183 193,207 35,435 –6.76
7(0,–,0) 0.1071 0.0545 0.0703 25,607 –50,374 36,718 –3.38
9(0,–,–) 0.1071 0.0545 0.0545 25,607 193,207 34,151 –10.13

12(+,0,–) 0.1325 0.0703 0.0545 –123,482 165,908 39,480 3.89
15(+,+,–) 0.1325 0.0825 0.0545 –149,022 165,908 40,464 6.48
16(+,–,0) 0.1325 0.0545 0.0703 –1,692 –77,673 40,764 7.27
17(+,–,+) 0.1325 0.0545 0.0825 –1,692 –128,753 42,732 12.45
18(+,–,–) 0.1325 0.0545 0.0545 –1,692 165,908 38,196 0.51
19(–,0,0) 0.0825 0.0703 0.0703 18,468 64,278 34,058 –10.38
20(–,0,+) 0.0825 0.0703 0.0825 18,468 13,198 36,027 –5.20
21(–,0,–) 0.0825 0.0703 0.0545 18,468 307,859 31,491 –17.13
22(–,+,0) 0.0825 0.0825 0.0703 –7,071 64,278 35,042 –7.79
23(–,+,+) 0.0825 0.0825 0.0825 –7,071 13,198 37,011 –2.61
24(–,+,–) 0.0825 0.0825 0.0545 –7,071 307,859 32,475 –14.54
25(–,–,0) 0.0825 0.0545 0.0703 140,259 64,278 32,774 –13.76
26(–,–,+) 0.0825 0.0545 0.0825 140,259 13,198 34,743 –8.58
27(–,–,–) 0.0825 0.0545 0.0545 140,259 307,859 30,207 –20.51



will explore that “branch” first. With d(6,7) assigned a discrete diameter one size
lower than our original design, we can use the constraint h1 for consumers 2 and 3
to find the lower bounding continuous values for d(7,2) and d(7,3). We obtain

d(7,2) = 0.0778
d(7,3) = 0.0892.

Thus, any combinations with discrete pipe diameters less than these need not be
considered, since they would violate the h1 constraint. This rules out combinations
19, 20, 21, 25, 26 and 27 because these would violate the h1 constraint for both
consumers. Also, we see that combinations 22, 23 and 24 would all violate the h1
constraint for consumer 3, so they are infeasible as well. Thus, we have eliminated
all the combinations in this branch as originally proposed. As noted earlier, there are
combinations that deviate by more than one pipe size from our original design that
were not considered. Before exploring any of these, we compute the cost of the
design above with continuous diameters to see if it is an improvement on our
original design. When doing so we find that the variable cost portion of the heat loss
and pipe capital costs is slightly less than our original design: a 0.77% reduction. At
this point we could decide not to further explore this branch, since it offers such a
small potential for improvement; however, we will continue since it illustrates the
method to be used. From combinations 22, 23 and 24, we know that if we increase
the pipe size of d(7,3) to the next discrete pipe size greater than 0.0892, the h1
constraint for consumer 3 will be satisfied as well. Thus, we propose the discrete
design

d(6,7) = 0.0825
d(7,2) = 0.0825
d(7,3) = 0.1071.

We know that this design is feasible, so now we need to compute its cost to see if
it’s an improvement over our original design. When the variable portion of the heat
loss and pipe capital cost is computed, we see that it’s 7.77% greater than the original
design. Thus, we dismiss this design as well as any other feasible designs in this
branch, since all other feasible designs would need to have larger discrete diameters
and would thus be more costly yet.

We have two other major branches yet to explore: one where d(6,7) remains the
same as in the original design and one where it is increased one discrete pipe size.
The latter branch has four combinations remaining, one more than the other branch,
so we will explore it first. We proceed as before by using the h1 constraint for
consumers 2 and 3 to find the lower bounding values for the continuous diameters
of d(7,2) and d(7,3), obtaining

d(7,2) = 0.0544
d(7,3) = 0.0624.

As before, we also compute the total variable cost portion of the heat losses and pipe
capital costs for this design. We find that this cost is 3.88% greater than our original
design. Thus, we need not look at any discrete designs in this branch, since all will
require larger discrete diameters than those continuous diameters found above and
thus they will be more costly. Note that the two feasible combinations 16 and 17 in
this branch identified in Table 13 do in fact have costs in excess of 3.88% above the
original design.

Now we explore the remaining branch, where d(6,7) is the same discrete pipe size
as found in our original design. As before, we compute the minimum continuous
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diameters using the h1 constraint for consumers 2 and 3 to find the lower bounding
values for the continuous diameters of d(7,2) and d(7,3), obtaining

d(7,2) = 0.0564
d(7,3) = 0.0646.

We know that this design must have a lower cost than the original since it has the
same pipe size for segment (6,7) and smaller pipe sizes for the other two pipe
segments. However, we go ahead and compute this cost saving to see if it justifies
exploring this branch further. We find that the saving is a significant 5.40%. We have
three combinations (3, 7 and 9) from Table 13 that have not been previously
eliminated from this branch. We see, however, that each of these will violate at least
one of the h1 constraints, since at least one of the pipe sizes is smaller than the
continuous minimums found above. Thus, we can dismiss all of these combinations.
In addition, we can dismiss any other designs in this branch as well, since they would
have pipe sizes greater than those of our original and would thus be more costly.
Note that our original design is actually in this branch, using the first discrete pipe
sizes greater than those found above for d(7,2) and d(7,3).

By using the branch-and-bound technique, we have eliminated all of the com-
binations of Table 13 and have only computed the cost four times. In addition, we
have computed diameters using the h1 constraint six times. These computations
compare favorably with those required for total “exhaustive enumeration” of the
possibilities (27 cost and 54 constraint calculations) and favorably to the computa-
tions of Table 13, which eliminated nine possibilities based on monotonicity consid-
erations. We have also shown that no other discrete designs in the branches
explored, i.e., even those deviating by more than one discrete pipe size, could be both
feasible and less costly that the original discrete design. What remains to be shown
is that other branches that allow d(6,7) to deviate by more than one discrete pipe size
are either infeasible or not cost effective, or both.

To explore the branches where d(6,7) is more than one discrete diameter away from
our original design, we once again look to the constraint h1 for consumers 2 and 3.
We notice that there is a limit on how much we can decrease either d(7,2) or d(7,3) and
still find values of d(6,7) that will satisfy the constraints. Physically, what has
occurred is that we have decreased the pipe sizes of d(7,2) or d(7,3) to the point where
all of the pressure loss available between the pipe junction node 6 and either
consumer 2 or 3 is being absorbed in the pipe segment (7,2) or (7,3). To utilize this
condition, we first ignore the pressure loss of pipe segment (6,7) and calculate the
minimum continuous values for d(7,2) and d(7,3) that will satisfy h1 for consumers 2
and 3 respectively. We then find the next largest discrete diameters in each case,
since any actual design would be bounded by these. The results are

d(7,2) = 0.0536 (continuous); 0.0545 (discrete)
d(7,3) = 0.0614 (continuous); 0.0703 (discrete).

Now, with these discrete diameters, we calculate the minimum continuous value
of d(6,7) that would satisfy the constraint h1 for both consumers 2 and 3. This value
is determined to be 0.1296. The minimum discrete value of d(6,7) is then 0.1325. We
see that these discrete diameters are identical to those of combination 16 in Table 13.
It was shown earlier that for this combination the cost exceeded our original design.
Thus, any larger discrete diameters would also exceed the cost of our original
design. Since this result is for the minimum possible discrete diameters for pipe
segments (7,2) and (7,3), regardless of the size of pipe segment (6,7), no lower cost
alternatives can exist since their diameters for pipe segments (7,2) and (7,3) would
be greater and thus the designs more costly.
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Now the remaining branches yet to be explored are those with discrete pipe sizes
for pipe segment (6,7) more than one size below our original design. To explore these
branches, we neglect the pressure losses of the pipe segments (7,2) and (7,3) and then
calculate the minimum value of d(6,7) that will satisfy constraint h1 for both consum-
ers 2 and 3. We find that the minimum continuous diameter of d(6,7) is 0.0800. The
next largest discrete diameter is d(6,7) = 0.0825 and we see that this branch has already
been searched. Thus, there are no other feasible branches with discrete values of d(6,7)
less than that of our original design. We have now exhausted all the alternatives and
have found our original discrete design to be the optimal discrete design.

We still have several constraints remaining that must be checked for satisfaction.
The remaining constraints are eq 4-11, 4-22, 4-23, 4-24 and 4-25. These constraints all
deal with the absolute pressure level in the piping. Before we can compute the
absolute pressure at any point, we must first assign an absolute pressure in the
supply pipe at the heating plant. Since we suspect that this will be the place of highest
pressure in the network, we let the absolute pressure at that point be equal to the
maximum allowed, i.e.

    P Php,s max
6 21  10  N/m= = ×   .

We start with eq 4-11, which is a constraint on the maximum pressure in the
supply pipe. The right-hand side of eq 4-11 equals the pressure level in the supply
pipe. As we have shown earlier in this chapter (see eq 4-15), the maximum pressure
must occur at a pipe node and not at an intermediate point. In Table 14, we have
calculated the pressure in the supply pipe at each of the nodes. We see that the
constraint of eq 4-11 is satisfied, since the pressure level does not exceed the
maximum allowed at any point in the supply piping.

Equation 4-22 requires that the pressure at each point in the supply pipe (the left-
hand side of the equation) exceed the sum of the saturation pressure Psat and a
safety margin Psaf. For the supply pipe temperature of 120°C, the saturation pressure
is 1.985 × 105 N/m2 (Reynolds and Perkins 1977). Thus, the sum of these two
becomes 2.985 × 105 N/m2. We see by examining Table 14 that this constraint is also
satisfied at all nodes.

We have a similar constraint for the return pipe, eq 4-23. The left-hand side of this
equation equals the pressure in the return pipe, which has also been computed and
is given in Table 14. The temperature and thus the saturation pressure in the return
pipe are different from those in the supply pipe, of course. The return temperature
will vary with load as per our consumer model, eq 3-25. The maximum temperature
will occur at the design condition of maximum load, as can be seen from Figure 5,
and its value is 55°C as determined in Chapter 3 for our supply temperature of 120°C
and our assumptions regarding the radiator design conditions. The saturation
pressure will be greatest at the highest temperature, so if our constraint is satisfied

Table 14. Pressure levels in the piping network.

Node ∆Ps Ps ∆Pr Pr Ps – Pr
number (N/m2) (N/m2) (N/m2) (N/m2) (N/m2)

1 659,272 340,728 150,000 190,728 150,000
2 518,744 481,256 246,183 235,073 246,183
3 449,187 550,813 200,374 350,439 200,374
4 291,257 708,743 231,376 477,367 231,376
5 107,219 892,781 –385,267 394,554 498,228
6 197,874 802,126 –294,546 485,275 316,852
7 218,488 781,512 –273,916 505,905 275,607
8 — 1,000,000 — 287,256 712,744
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at this condition, it will be satisfied at the lower temperature conditions.
For a return temperature of 55°C, the saturation pressure is 1.576 × 104 N/m2

(Reynolds and Perkins 1977). The sum of this and our safety margin is 1.157 ×
105 N/m2. By examining the return pressures in Table 14, we see the constraint of
eq 4-23 is satisfied at all points in the return piping.

Now we look at the two constraints on the pressure in the return line at the heating
plant, eq 4-24 and 4-25. We see that, for the parameter values chosen, eq 4-24 will
dominate. Equation 4-24 requires that the pressure in the return line at the heating
plant be greater than 2.0 × 105 N/m2. The pressure in the return line at node number
8, which is our heating plant node, is given as 287,256 N/m2 in Table 14, so we see
this constraint is satisfied as well. Thus, our design has satisfied all the constraints
specified.
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS

SUMMARY

In Chapter 2 we found a suitable method for determining the optimal size for a
single pipe, independent of any others. This method was developed to be as simple
as possible yet complete and accurate enough for design calculations. The method
is general enough to allow for any set of economic or physical parameter values. In
addition, any form of load management, i.e., temperature or flow modulation, or
both, can be accommodated by the integral form of the coefficients in the cost
equation. A new approximation was developed for the friction factor. The form of
this expression was a simple power function of the Reynolds number and the
relative pipe roughness. This form allowed us to easily incorporate it into the head
loss equation without additional complication or rendering the result implicit. We
made use of geometric programming theory to identify a lower bounding problem
that can be used to provide us with a very good first estimate of our solution and a
global lower bound on cost. At the end of Chapter 2, an example is presented that
shows a 17% saving in life cycle cost over a design based on a common rule of thumb.

In Chapter 3 we looked at the heat consumers and the effect that they have on the
piping system. We developed a new model for the consumer’s heat exchanger that
uses the geometric mean temperature difference as an approximation for the
logarithmic mean temperature difference. This allowed us to develop an explicit
expression for return temperature, a result not possible when using the logarithmic
mean temperature difference. We conducted a complete error analysis on the
geometric mean approximation and our new consumer model based on it. This
analysis confirmed that the resulting error from this model was acceptable for
design purposes and much less than the error resulting from using the arithmetic
mean temperature difference as an approximation of the logarithmic mean tempera-
ture difference, as has been suggested by others. We integrated our new consumer
model into our single pipe model of Chapter 2 and for a sample case determined
what effect the addition of the consumer has on the integral coefficients of the cost
equation. At the end of Chapter 3, we reworked the example of Chapter 2, including
the effects of the new consumer model.

In Chapter 4 we developed the constraints for systems with multiple pipes and
consumers. Both absolute and differential pressure constraints were derived. By
using the monotonicity of the hydrodynamic and hydrostatic pressure gradients,
we were able to easily show that the maximum pressure within a pipe segment must
occur at one of the end points. We then developed a strategy to allow for constraint
satisfaction at all points implicitly without considering every point in the system.

In Chapter 5 we briefly reviewed general methods for constrained nonlinear
optimization. For various reasons these alternatives are all abandoned in favor of the
approach taken. Subsequently, our general solution strategy is developed for
systems with multiple pipes and consumers. The method makes use of the solution
to the problem, unconstrained by the network constraint requirements, as a starting
point for the constrained solution. Monotonicity analysis was then used to prove
activity of some of the constraints and thus simplify the problem. In addition, the
concept of constraint dominance is used to reduce the number of constraints that
must be considered. Before proceeding with the problem solution, a brief graphical
analysis verified that we only needed to provide for constraint satisfaction at the
maximum load condition to ensure satisfaction at all other load conditions. The
resulting reduced problem was then used as a starting point for two methods
proposed to find a solution to the constrained problem with continuous values for
some of the pipe diameters. Finally, the branch-and-bound technique is explained
and then shown to be suitable for finding a design with discrete values for all the
pipe diameters.
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In Chapter 6 we worked a simple example with only four consumers and seven
pipe segments. The example illustrated the use of our method and also showed how
the branch-and-bound technique can be used to quickly eliminate candidate de-
signs. A method is also demonstrated for further refinement of the pipe network to
eliminate excessive throttling losses in the consumer’s control valves.

CONCLUSIONS

The method developed here should be feasible for designing the piping networks
for district heating systems of moderate size, and in particular the systems used on
military facilities or college campuses, which tend to be smaller and less complex
than those of large cities. For very large systems, the branch-and-bound method
used for finding the discrete diameters may become cumbersome and
computationally too expensive. However, this remains to be shown and it may be
that, with the commercially available software and the enormous power of today’s
computers, this perceived problem is quite manageable.

The major advantage of the method developed here is its flexibility to accommo-
date any set of economic and physical parameters and operating strategy. In
addition, the approximations, where used, are much more suitable than some made
in the past: for instance, linearization of the equations, neglecting heat losses, and
oversimplification of the effect of varying load. It is felt that a significant contribu-
tion has been made by the derivation of mathematical expressions for all of the major
constraints. Perhaps the most significant contribution of this work has been the
analysis of constraint activity and the development of a method to exploit that
knowledge to arrive at a solution. In addition, we have shown what bounds can be
put on the solution such that the designer can be reasonably assured of whether or
not further significant cost reduction is possible. This not only gives the designer
some comfort in knowing what possible improvement remains, but it also avoids
excessive calculations that often result when no such knowledge is available.

Another possible use of the methodology developed here is for studies of the
relative merits of various operating strategies and what effect they have on the
design of the system. The general form of the cost coefficients can be useful for such
studies and can not only be used to develop designs based on the methods presented
here, but they may also be used to evaluate the effect of economic or physical
parameter changes, including operating strategy changes, on existing designs.

With many systems already in use in Europe, the issue of optimal design is of
lesser importance there. Currently, however, the interest in optimal operation of
district heating systems is significant in Europe, as evidenced by several recent
conferences devoted almost entirely to this topic alone (Nordic Council of Ministers
1989, 1994). Most of the efforts seem to be centered on real-time simulations of
operation and subsequent forecasting of short-term operating strategy. It seems that
a method such as the one developed here would be useful for studies at a higher level
to determine optimal overall operating strategies for the yearly load cycle.

RECOMMENDATIONS

It is recommended that the methodology developed here be field tested on the
design of a moderately sized system, such as would be found on a military base or
college campus. The design should be compared with a completely independent
design, as would be achieved by methods normally used by the district heating
design profession.

Under the assumption that the results of the field test were positive, it is
recommended that the method be coded for computer execution to the maximum
extent possible. The resulting CAD program could then be incorporated into one or
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more of the currently available CAD systems explicitly created for district heating
system design and feasibility studies. If the economic benefits are as great as
indicated by the examples worked here, the incentive for doing so is significant.

Perhaps the most troubling aspect of using optimal design methods for sizing
district heating piping systems is the level of pressure losses resulting. These
pressure losses are rather high when compared to those encountered in operating
systems and designs based on other methods. This result is apparent when we
examine the pressure losses given in Table 1 for both the method presented here and
a common rule of thumb based design. This result has also been observed by others
(Bøhm 1986, Koskelainen 1980). It seems that current design practice and the
systems that result are ill-suited to the application of optimal design techniques.

Several possible solutions to this conflict exist. The first is simply to increase the
maximum pressure capability of the piping system used. The logic of this approach
can be seen in European practice where small district heating systems use piping
rated for only 6-bar (600-kPa) maximum pressure and often the connections to the
consumers are direct, i.e., without heat exchangers. For larger systems, piping rated
for 15-bar (1500-kPa) or greater maximum pressure is often used and heat exchang-
ers are used to isolate the consumers’ equipment from the high system pressures.
The designer should always find the unconstrained optimum pressure level for the
network first before making a decision of which pressure class of piping to use. It’s
quite possible that pressures higher than those used in current practice may be
justified in some instances.

The advent of friction reducing additives (Nordic Council of Ministers 1991),
which are currently being field tested, offers some relief for the problem of excessive
system pressures. Such additives promise to reduce friction and thus pressure losses
by 50% or more. Such a change in something always assumed to be a basic given in
design renders much of what has been learned to date about district heating system
design, optimal or otherwise, nearly worthless. The ability of the method developed
here to rapidly reevaluate either existing or proposed designs clearly illustrates the
value and necessity of such a design tool. For instance, one possibility is that some
of the frictional reducing additives will be relatively short lived when compared to
the life of the district heating system, or even the annual operating cycle. However,
since the maximum flow rate and thus maximum pressure drop are only encoun-
tered over a short period of the yearly cycle, it may be that such friction reducing
additives can be very effective. The method developed here would allow for rapid
evaluation of any possibility to see if they are worthy of further study or consider-
ation for field testing.
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APPENDIX A: APPROXIMATION OF THE FRICTION FACTOR

For incompressible flow in circular conduits (pipes), the head losses can be
calculated using the Darcy-Weisbach equation

hf = f L v2/2 g d (A-1)

where f = friction factor (dimensionless)
L = pipe length (m)
v = flow velocity (m/s)
g = acceleration of gravity (9.8 m/s2)
d = inside diameter of the pipe (m).

Numerous other expressions have been proposed for calculating frictional head
losses. The Darcy-Weisbach equation is, however, the most fundamentally ap-
pealing as it can be derived analytically while the other relationships are empirical
in nature (Jeppson 1976). For laminar flow it is possible to show that the friction
factor f is a function of the Reynolds number alone. Unfortunately, the flow in heat
distribution piping is seldom laminar. For turbulent flow the friction factor has been
determined empirically to be a function of the Reynolds number and the relative
roughness of the pipe. A number of correlations have been proposed for the friction
factor. Those correlations that give the best agreement with the experimental data
are implicit in the friction factor. This renders them impractical for analyses such as
this one. For this analysis, and other applications, it would be desirable to have a
simple expression that would provide sufficient accuracy over limited ranges of
interest. To keep the expression as simple as possible, while allowing it to be an
accurate approximation, a method is developed here that yields a one-term power
function.

To approximate friction factor information in the form of implicit equations or
empirical data, we can develop our approximation using the least-squares method.
First, we assume a desired form for our expression for the friction factor

    f̂ a RR Reb c= (A-2)

where     f̂ = predicted friction factor (dimensionless)
a, b, and c = coefficients determined by the least-squares method (dimensionless)

RR = ε/d = relative roughness of the pipe (dimensionless)
ε = absolute roughness of the piping (m)

Re = Reynolds number for the pipe flow (dimensionless).

If we assume that for any set of values for RR and Re we have an observed friction
factor f, we would like to minimize the sum of the squares between the f ’s predicted
by our equation and all the observed f ’s within the range of interest

    
min ˆf f−( )∑

2
. (A-3)

The summation is taken over all the observations available within the range of
interest for the parameters RR and Re. In the event that we are trying to approximate
an implicit empirical expression, we would choose incremental values of RR and Re
over the range of interest and use these to calculate a corresponding f value. This
approach will be illustrated later in this appendix. To accomplish the minimization,
we first convert to a linear form by making the following substitutions

Y = ln f (A-4)
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Ŷ  = ln f̂  = ln (a RRbRec) = ln a + b ln RR + c ln Re

= β0+ β1X1+ β2X2 (A-5)

where β0 = ln a
β1 = b
β2 = c
X1 = ln RR
X2 = ln Re.

Now we can restate the problem in a linear form

    
min ˆY Y Y X X

i

n

i

n
i i i ,i ,i−( )∑ = − − −( )∑

= =1

2

0 1 1 2 2
1

2
β β β . (A-6)

The summation index i has now been added. The summation occurs over the total
number of observations n. To find the minimum for this expression with respect to
the parameters β0, β1 and β2, we take the partial derivative of the expression with
respect to each of the parameters and set the result to zero in each case
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We now have three linear equations in the three unknown parameters by rear-
ranging as follows

    
β β β0 1 ,i 2,i i+ +∑ ∑ = ∑
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These equations can be written in matrix form as

    

A A A

A A A

A A A

C

C

C

11 12 13

21 22 23
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where A11 = n
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Table A1. Constants for the friction factor equation.

Water Flow Pipe Reynolds
temp. velocity diameter number Max. Avg.
(°C) (m/s) (m) × 10–6 error error

min/max min/max min/max min/max a b c (%) (%)

50/130 0.5/3.3 0.05/0.77 0.04/11 0.123 0.146 –0.0626 6.2 1.0
50/130 0.5/4.5 0.05/0.77 0.04/15 0.119 0.152 –0.0568 6.9 1.1
70/150 0.3/6.3 0.03/0.93 0.02/29 0.129 0.156 –0.0589 10.8 2.0
50/90 0.5/2.9 0.05/0.41 0.04/3.7 0.140 0.141 –0.0762 4.1 0.8
90/130 0.5/2.9 0.10/0.46 0.16/5.9 0.116 0.150 –0.0563 2.5 0.6
50/90 0.5/2.9 0.10/0.46 0.09/4.1 0.128 0.132 –0.0751 3.4 0.7
50/90 0.5/3.7 0.10/0.46 0.09/5.3 0.125 0.137 –0.0698 3.9 0.8
90/130 0.5/3.7 0.10/0.46 0.16/7.5 0.113 0.154 –0.0520 2.8 0.6
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This system of linear equations can be solved by forward elimination and
subsequent back solution. The resulting expressions for the parameters are
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    β β β0 1 12 1 13 2 11= − [ ] − [ ]{ }C A A A/ . (A16)

A FORTRAN program FFCONST was written to evaluate the A’s and C’s in the
above expressions and then solve eq A14, A15 and A16 to find the parameters β0, β1
and β2. The parameters in our original expression, eq A2, for the predicted friction
factor     f̂  can then be found. For this program, the “observed” friction factor f is found
using the Colebrook-White equation (Jeppson 1976)

f = [1.14 – 0.869 ln(RR + 9.35/Re     f )]−2 . (A-17)

The Colebrook-White equation is implicit in the friction factor f and thus it cannot
be solved directly. A number of methods can be used to solve implicit equations such
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as this one. The Newton-Raphson method has been used in SUBROUTINE CWFF.
This method uses knowledge of the first derivative of the function to find the
solution. A description of the method can be found in nearly any reference on
numerical methods, such as Forsythe et al. (1977).

To use the Newton-Raphson method to solve the implicit Colebrook-White
equation, an initial estimate of the f value is needed. An explicit equation for the
friction factor f can be used for this. The explicit equation does not need to be
extremely accurate to yield a suitable first estimate. The equation given by Wood
(1966) is a good explicit relationship for turbulent flow and can be used. Wood’s
equation is

    
f = + + ( ) 

















0 094 0 53 880 225 0 44 1 62 0 134

. . /. . . .

RR RR RR Re
RR

 . (A-18)

To calculate the friction factor using either eq A17 or A18 requires that we know
the Reynolds number Re and the relative roughness RR. To calculate these param-
eters, we need to specify the fluid density and dynamic viscosity as well as the pipe
diameter and absolute roughness and the flow velocity. The fluid properties are a
function of the temperature of the fluid and to a lesser extent its pressure as well.
Here, we will assume that the fluid is at its saturation pressure for the temperature
specified. Two FORTRAN subroutines were written to determine the fluid proper-
ties. The first, SUBROUTINE SATLN, calculates the saturation pressure for water
given the temperature. The second, SUBROUTINE WTRTBL, calculates the density
and dynamic viscosity given the temperature and pressure. The main program
FFCONST and each of the subroutines mentioned above are included in Appendix
B.

Using the program FFCONST, a number of the constants a, b and c were
determined for several sets of parameters. Table A1 summarizes the results. In each
of the examples of Table A1 the absolute roughness of the pipe was taken as 4.6 ×
10–5 m.
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APPENDIX B: COMPUTER PROGRAM LISTINGS

Program FFCONST
PROGRAM FFCONST
DIMENSION VI(10),DI(10),FI(10,10,10),FFCALC(10,10,10),
*ERROR(10,10,10),RNI(10,10,10),T(10)

100 FORMAT(15X,3E12.5)
200 FORMAT(////,15X,4E15.6,///,15X,4E15.6)
300 FORMAT(////,20X,3F18.6,/////)
400 FORMAT(2X,1F10.0,1F10.2, 1F10.3,1E15.4,3F10.4)
500 FORMAT(2X,4E12.4)
600 FORMAT(////,15X,3F18.6)

R=.046E-3
ESUM=0.
A1=0.
A2=0.
A3=0.
A4=0.
A5=0.
A6=0.
A7=0.
A8=0.
A9=0.
A10=0.
A11=0.
A12=0.
A13=0.
A14=0.
A15=0.
A16=0.
EMAX=0.
EMIN=1.
JV=9
ID=9
DELTAD=.025
DL=.025
VL=.25
VDELTA=.75
VI(1)=VL
KT=9
TDELTA=10.
TL=70.
T(1)=TL
N=JV*ID*KT
DO 4 K=1,KT
CALL SATLN(T(K),P)
CALL WTRTBL(T(K),P,RHO,XH,DV)

* PRINT 500,T(K),P,RHO,DV
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DO 3 J=1,JV
DI(1)=DL
DO 2 I=1,ID
RR=R/DI(I)
RNI(I,J,K)=DI(I)*VI(J)*RHO/DV
RN=RNI(I,J,K)
F=.094*(RR**.225)+(.53*RR)+(88.*(RR**.44))/(RN**(1.62*(RR**
*.134)))
FI(I,J,K)=F
A1=A1+LOG(F)
A2=A2+LOG(RR)
A3=A3+LOG(RN)
A4=A4+LOG(F)*LOG(RR)
A5=A5+((LOG(RR))*(LOG(RR)))
A6=A6+LOG(RN)*LOG(RR)
A7=A7+LOG(RN)*LOG(F)
A8=A8+((LOG(RN))**2.)

* PRINT 100,RNI(J),DI(I),FI(I,J)
DI(I+1)=DI(I)+(DELTAD*I)

2 CONTINUE
VI(J+1)=VI(J)+VDELTA

3 CONTINUE
T(K+1)=T(K)+TDELTA

4 CONTINUE
A9=A6-(A2*A3/N)
A10=A5-(A2*A2/N)
A11=A6-(A2*A3/N)
A12=A4-(A1*A2/N)
A13=A8-(A3*A3/N)
A14=A7-(A1*A3/N)
A15=A13-(A11*A9/A10)
A16=A14-(A12*A9/A10)
C=A16/A15
B=A12/A10-C*A11/A10
ALN=A1/N-C*A3/N-B*A2/N
A=EXP(ALN)

* PRINT 200,A1,A2,A3,A4,A5,A6,A7,A8
PRINT 300,A,B,C
RN=RNL
DO 7 K=1,KT
DO 6 J=1,JV
D=DL
DO 5 I=1,ID
RN=RNI(I,J,K)
FFCALC(I,J,K)=A*((R/D)**B)*(RN* *C)
ERROR(I,J,K)=(FFCALC(I,J,K)-FI(I,J,K))/FI(I,J,K)

* PRINT 400,T(K),VI(J),D,RN,FI(I,J,K),FFCALC(I,J,K),ERROR(I,J,K)
D=D+(DELTAD*I)
EABS=ABS(ERROR(I,J,K))
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ESUM=ESUM+EABS
EMAX=MAX(EMAX,EABS)
EMIN=MIN(EMIN,EABS)

5 CONTINUE
6 CONTINUE
7 CONTINUE

EAVG=ESUM/N
PRINT 600,EMIN,EMAX,EAVG
STOP
END

Subroutine WTRTBL(T,P,RHO,XH,DV)
SUBROUTINE WTRTBL(T,P,RHO,XH,DV)

* THIS SUBROUTINE CALCULATES THE THERMODYNAMIC AND
* TRANSPORT PROPERTIES OF WATER GIVEN THE TEMPERATURE AND
* PRESSURE CONDITIONS.
* INPUT VALUES ARE T(C) AND P(BARS). THE OUTPUTS ARE DENSITY
* RHO (KG/M3), THE ENTHALPY XH(KJ/KG), AND THE DYNAMIC
* VISCOSITY DV IN KG/M-SEC. THE EQUATIONS FOR THE VISCOSITY ARE
* NOT VALID FOR TEMPERATURES GREATER THAN 300 C.

T=T+273.16
* CALL SATLN(T,P)

DATA RI1,B0,B1,B2,B3,B4,B5,B6,B7,B8,B9,Ul ,Wl/22129.,-37444.8692,
*466453.368,-2666876.77,9030271.53,- 19769400.2,28949239.9,
*-28309932.7,17808942.6,-6534676.01,1065198.53,.58620689,
*.41666667/
DATA G,H,RK,RL,RM,RN,Fl,Gl ,Hl,RKl,RLl,RMl,RNl,Ql,Rl,Zl/
*.417,1.139706E-4,9.949927E-5,7.241165E-5,.7676621,1.052358E- 11,
*3.7E8,3.122199E8,199985.,1.72,1.362926E16,1.500705,.6537154,

*62.5,13.10268,1.5108E-5/
DATA A2,A3,A4,A5/.3828209486,.2162830218,.1498693949,.4711880117/

P1=221.287
T1=647.3
T=T/T1
P=P/P1
U=F1-(G1*T*T)-(H1*(T**(-6.)))
W=U+SORT((RK1*U*U)+(RL1*(P-(RM1*T))))
V1=(G/(W**(1./3.4)))-H+(RK*T)
V2=((ABS(RN1-T))**2.)*(RL+(((ABS(RN1-T))**8.)*RM))
V3=(RN*(R1+(R1*P)+(P*P)))/(Z1+(T**11.))
RHO=1./(V1+V2-V3)
H0=B0+(B1*T)+(B2*T*T)+(B3*T**3.)+(B4*T**4.)+(B5*T**5.)+
*(B6*T**6.)+(B7*T**7.)+(B8*T**8.)+(B9*T**9.)
Y1=RL1*RM1/2.
Q=2.*G/RL1
V=(-2.*G1*T*T)+(6.*H1/(T**6.))
H1=((U1 * W)-(W1*((3.4*U)-V)))*W
H1=Q/(W**(1./3.4))*(H1+(Y1*T)-(.72*V*U))
H2=(((RN1-T)*((RL*(RN1+T))+(RM*((ABS(RN1-T))* *8.)*(RN1+(9.*T)))))
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*-H)*P
H3=(RN*(Z1+(12.*(T**11.))))/((Z1+(T**11.))**2.)
H3=H3*(Q1+(((R1/2.)+(P/3.))*P))*P
XH=H0+(RI1*(H1+H2-H3))
TC=(T*T1)-273.16
CALL SATLN(TC,PS)
PS=PS/P1
DV=.02414+(10.**(A2/(T-A3)))*(1.+((P-PS)*A4*(T-A5)))
T=T*T1
P=P*P1
DV=DV*1.E-3
T=T-273.16
RETURN
END

Subroutine SATLN(T,P)
SUBROUTINE SATLN(T,P)

* THIS SUBROUTINE CALCULATES THE SATURATION PRESSURE FOR A
* GIVEN WATER TEMPERATURE. THE WATER TEMPERATURE IS IN C
AND
* THE SATURATION PRESSURE IS RETURNED IN BARS.

DATA RK,A,B,C,D,E,F/2.937E5,5.426651,-2005.1,1.3869E-4,1.1965E-11,
*-.0044,-.0057148/
T=T+273.16
T2=T+.01
Y=647.26-T
X=(T2*T2)-RK
T=T/647.3
A1=A+(B/T2)+(C*X/T2*(10.**(D*X*X)-1.))+(E*(10.**(F*(Y* *1.25))))
P=(1.01325*(10.**A1))+((T-.422)*(.577-T)*EXP(-12.+(T**4.))*
*9.80665E-3)
T=T*647.3
T=T-273.16
RETURN
END

Subroutine ROMBRG(FUN,A,B,C,ERR,RES)
SUBROUTINE ROMBRG(FUN,A,B,C,ERR,RES)

C THIS SUBROUTINE COMPUTES INTEGRALS OF A USER SUPPLIED
C FUNCTION USING ROMBERG’S METHOD. THIS SUBROUTINE IS FROM
C “NUMERICAL METHODS FOR ENGINEERING APPLICATION”,J.H.
C FERZIGER, JOHN WILEY AND SONS, 1981. THE ARGUMENT ARE:
C FUN = THE FUNCTION TO BE INTEGRATED
C A = LOWER LIMIT
C B = UPPER LIMIT
C C = ARRAY OF FUNCTION DEFINITION PARAMETERS IF REQUIRED
C ERR = THE DESIRED ACCURACY
C RES = THE RESULTING VALUE FOR THE INTEGRAL
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EXTERNAL FUN
C Z IS THE ARRAY OF APPROXIMATIONS

DIMENSION Z(10,10)
C INITIALIZE AND COMPUTE THE FIRST APPROXIMATION.

I=1
DEL=B-A
Z(1, 1)=.5*DEL*(FUN(A,C)+FUN(B,C))

C THE MAIN LOOP. THE FIRST PART COMPUTES THE INTEGRAL USING A
C 2J+1 POINT TRAPEZOID RULE. THE METHODS MAKES MAXIMAL USE
C OF THE VALUES ALREADY COMPUTED.

10 J=2**(I-1)
DEL=DEL/2.
I=I+1
Z(I,1)=.5*Z(I-l,l)
DO 1 K=1,J
X=A+(2.*K-1)*DEL
Z(I,1)=Z(I,1)+DEL*FUN(X,C)

1 CONTINUE
C NOW WE DO THE RICHARDSION EXTRAPOLATION

DO 2 K=2,I
Z(I,K)=(4.**(K-1)*Z(I,K-1)-Z(I-1,K-1))/(4.**(K-1)-1.)

2 CONTINUE
C ERROR CONTROL

DIFF=ABS(Z(I,I)-Z(I,I-1))
PRINT 108, DIFF,Z(I,I)

108 FORMAT(5X,2E15.5)
IF(DIFF.LT.ERR) GO TO 20

C THE MAXIMUM NUMBER OF ITERATIONS ALLOWED IS 10.
IF(I.LT.10) GO TO 10
PRINT 100

100 FORMAT(‘ MORE THAN lO ITERATIONS REQUIRED, CHECK
PARAMETERS.’)
STOP
20 RES=Z(I,I)

RETURN
END

Function FUN(T,Z)
FUNCTION FUN(T,Z)

C THIS FUNCTION CONTAINS THE INTEGRAND OF THE I2 PARAMETER.
A=0.135
B=0.161
C=-0.0555
PVFE=9.077
PVFH=9.077
EPS=5.E-5
PL=1000.
FRD=100.
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CE=7.E-5
CH=3.4E-5
AEDA=0.9
TSD=120.
TRD=60.
CALL  WTRTBL(TRD,PRD,RHORD,RHD,RMUD)
CALL  WTRTBL(TSD,PSD,RHOSD,SHD,SMUD)
RHOD=(RHOSD+RHORD)/2.
TS=120.
TA=20.
A12=A*PVFE*PL*(EPS**B)*(1.273240**(2+C))
QF=(0.425*COS(6.283*T/8760.))+0.575
CALL CLMTD(TS,TA,QF,FRF,TR,TRG,FRFG)
FT=FRF

C CALCULATE QUANITIES WHICH MAY BE A FUNCTIONS OF TIME.
CALL WTRTBL(TS,PS,RHOS,SH,SMU)
CALL WTRTBL(TR,PR,RHOR,RH,RMU)
A7=(((1./(SMU**C))/(RHOS*RHOS))+((1./(RMU**C))/(RHOR*RHOR)))/2.
RHOA=(RHOS+RHOR)/2.
FUN=A7*((((CE*RHOA)/(AEDA*RHOD))*(FT* *(2+C)))-((PVFH/PVFE)
&*CH*(FT**(3+C))))
FUN=FUN*A12*(FRD**(3+C))
PRINT 102, T,FT,FUN

102 FORMAT(5X,3E 15.4)
RETURN
END

Program I2
PROGRAM I2
EXTERNAL FUN
CALL ROMBRG(FUN,0.,4380.,0.,1.E-7,PI2)
PRINT 101,PI2+2.

101 FORMAT(l0X,F15.5)
STOP
END

Program I2-C-GMT
PROGRAM I2-C-GMT

SUBROUTINE ROMBRG(FUN,A,B,C,ERR,RES)
C THIS SUBROUTINE COMPUTES INTEGRALS OF A USER SUPPLIED
FUNCTION
C USING ROMBERG’S METHOD. THIS SUBROUTINE IS FROM
“NUMERICAL
C METHODS FOR ENGINEERING APPLICATION”,J.H. FERZIGER, JOHN
WILEY
C AND SONS, 1981. THE ARGUMENTS ARE:
C FUN = THE FUNCTION TO BE INTEGRATED
C A = LOWER LIMIT

88



C B = UPPER LIMIT
C C = ARRAY OF FUNCTION DEFINITION PARAMETERS IF REQUIRED
C ERR = THE DESIRED ACCURACY
C RES = THE RESULTING VALUE FOR THE INTEGRAL

EXTERNAL FUN
C Z IS THE ARRAY OF APPROXIMATIONS

DIMENSION Z(10,10)
C INITIALIZE AND COMPUTE THE FIRST APPROXIMATION.

I=1
DEL=B-A
Z(1,1)=.5*DEL*(FUN(A,C)+FUN(B,C))

C THE MAIN LOOP. THE FIRST PART COMPUTES THE INTEGRAL USING A
C 2J+1 POINT TRAPEZOID RULE. THE METHODS MAKES MAXIMAL USE
OF THE
C VALUES ALREADY COMPUTED.

10 J=2**(I-1)
DEL=DEL/2.
I=I+1
Z(I,1)=.5*Z(I-l,l)
DO 1 K=1,J
X=A+(2.*K-1)*DEL
Z(I,l)=Z(I,l)+DEL*FUN(X,C)

1 CONTINUE
C NOW WE DO THE RICHARDSION EXTRAPOLATION

DO 2 K=2,I
Z(I,K)=(4.**(K-1)*Z(I,K-l)-Z(I-l,K-1))/(4.**(K-1)-1.)

2 CONTINUE
C ERROR CONTROL

DIFF=ABS(Z(I,I)-Z(I,I-1))
PRINT 108, DIFF,Z(I,I)

108 FORMAT(5X,2E15.5)
IF(DIFF.LT.ERR) GO TO 20

C THE MAXIMUM NUMBER OF ITERATIONS ALLOWED IS 10.
IF(I.LT.10) GO TO 10
PRINT 100

100 FORMAT(‘ MORE THAN 10 ITERATIONS REQUIRED, CHECK
PARAMETERS.’)

STOP
20 RES=Z(I,I)

RETURN
END

Function FUN(T,C)
FUNCTION FUN(T,C)

C THIS FUNCTION CONTAINS THE INTEGRAND OF THE I2 PARAMETER.
C It has been modified to include the effect of the consumers model
C using the GMTD model. See EQ. 3.25 for explanation of symbols
C used in flow rate equation.
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TSD=120.
TRD=55.
TA=20.
TS=120.
TGMTD=59.1608
RN1=1.3
A13=1.0
PL=1000.
DMF=4.
TF=(0.425*COS(6.283 *T/8760.))+0.575
TOP=(TSD-TRD)*TF
BOTTOM=TS-TA-((1/(TS-TA))*(TGMTD*TGMTD)*((TF/A13)**(2/RN1)))
A=TOP/BOTTOM

C “A” is the normalized mass flow rate, m/md.
FUN=(2.043E-8*DMF*((DMF*A)**1.9432))-(8.924E-9*((A*DMF)**2.9432))
FUN=FUN*PL/1000
PRINT 102, T,A,FUN

102 FORMAT(5X,3E15.4)
RETURN
END

Program I2
PROGRAM I2
EXTERNAL FUN
CALL ROMBRG(FUN,0.,4380.,0.,1.E-9,PI2)
PRINT 101,PI2*2.

101 FORMAT(l0X,E15.5)
STOP
END

Program I1EQ3-26
PROGRAM I1EQ3-26

FUNCTION FUN1(T,Z)
C THIS FUNCTION CONTAINS THE INTEGRAND OF THE I1 PARAMETER.
C It uses equation 3.26 which was derived using the GMTD appx.
C Modified from “IlFT.for” on 1/12/94.

RN1=1.3
A14=0.575
A15=0.425
A13=1.0
FUN1=(((A15*COS(6.283*T/8760.))+A14)/A13)**(2/RN1)
PRINT 102, T,FUN1

102 FORMAT(5X,2E15.4)
RETURN
END
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Program I1
PROGRAM I1
EXTERNAL FUN1
CALL ROMBRG(FUN1,0.,4380.,0.,1.E-7,PI1)
PVFH=9.077
PL=1000.
CH=3.4E-5
TS=120.
TM=6.4
TA=20.
TCINS=0.030
AT=8760
TGMTD=59.1608
A16=PVFH*PL*12.56637*TCINS*CH
RI1=A16*(((PI1*2.)*(TGMTD *2/(2*(TS-TA))))+((((TS+TA)/2)-TM)*AT))
PRINT 101,RI1

101 FORMAT(10X,E15.7)
STOP
END
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