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Cover: Schematic depictions of unstable (or convective) and stable atmo-
spheric boundary layers. The unstable boundary layer is characterized
by large eddies, convective plumes, a capping version, and well mixed
(i.e., constant) profiles of wind speed and potential temperature. The
stable boundary layer is shallower and has smaller eddies and steeper
vertical gradients in wind speed and potential temperature. The density
gradient through the inversion may allow gravity waves to exist at the
top of the boundary layer; there also may be a low-level jet resulting from
inertial oscillations and intermittent turbulence near the inversion. [Both
figures adapted from Wyngaard (1992).]

Abstract
The Atmospheric Boundary Layer (ABL) over polar marine surfaces is, in ways,
simpler and, in other ways, more complex than ABLs in other environments. It
is simpler because topographic effects are rarely a concern, the surface is fairly
homogeneous, and roughness lengths over sea ice and the ocean are much
smaller than they are over land. It is complex because the stratification is usually
stable, and stable ABLs have not yielded to quantification as readily as
convective ABLs have. This report reviews some of these characteristics of ABLs
over polar marine surfaces. The ABL, by definition, is the turbulent layer between
the Earth’s surface and the (generally) nonturbulent free atmosphere. Hence, the
emphasis is on turbulence processes—in particular, the turbulent transfer of
momentum and sensible and latent heat over sea ice. As such, this report
reviews both the theoretical and observational bases for our understanding of
the mean structure of the ABL. Understanding this structure then allows
predicting the turbulent surface fluxes of momentum and sensible and latent
heat.
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INTRODUCTION

The Atmospheric Boundary Layer (ABL) is the low-
est few hundred meters of the atmosphere, where the
Earth’s surface most directly influences atmospheric
processes. The vast majority of Earth’s human inhabit-
ants are never outside the ABL.

I cannot hope, in a few pages here, to compete with
the many good books recently published on the ABL
(Arya 1988, Stull 1988, Sorbjan 1989, Garratt 1992,
Kaimal and Finnigan 1994)—nor do I need to. My pur-
pose here is to present some of the basic concepts of
boundary-layer meteorology, to define some of the jar-
gon a relative novice might encounter in the above (and
other) texts, and to describe a few of the unique prob-
lems associated with the ABL over polar marine sur-
faces.

This report divides into two logical parts. In the first
part, I focus on microscale processes in the so-called
Atmospheric Surface Layer (ASL). The height scale
relevant in the ASL is generally 10–30 m; relevant hori-
zontal scales are a few hundred meters. In the second
part, I tie surface-layer processes to the structure of the
entire ABL. Here, the relevant height scale is the height
of the ABL—typically a few hundred meters over po-
lar marine surfaces. The relevant horizontal scale is on
the order of kilometers.

BASIC EQUATIONS OF AN ICE FLOE

The momentum balance of a floating ice floe is (e.g.,
Hibler 1979)

  
m

D

Dt
mf mg H

v
v v v v r vu

k u – I .w= − + × ∇ +τ τ (1)

Here, m is the mass of the floe;   
v
u is the velocity vector

of the floe; D/Dt is the material derivative

  

D

Dt t
= + ⋅ ∇∂

∂
v v
u (2)

where  
v
τ = vectoral stress exerted on the top of the floe

by the wind

  
v
τw = vectoral stress exerted on the underside of

the floe by the water
f = Coriolis parameter

  
v
k = vertical unit vector

  
v
∇H = gradient in sea surface height

  
v
I = internal ice forces vector.

  
v
τ  and   

v
τw are the only turbulence terms in eq 1. Thus,

the main concern boundary-layer meteorologists have
with eq 1 is evaluating   

v
τ , the surface stress on the top

side of the ice. The desire to know   
v
τ motivates much of

what I will write in this monograph.
The energy budget at the surface of an ice floe is

(e.g., Maykut 1978, Parkinson and Washington 1979,
Makshtas 1991)

B Q Q Q Q H H C= − + − − − +↓ ↑s s s L L s Lα (3a)

   = melting/freezing + storage/release . (3b)

Here Qs = incoming shortwave radiation
αs = shortwave albedo

αsQs = reflected shortwave radiation
QL↓  = incoming longwave radiation
QL↑ = emitted longwave radiation

C = conduction to the ice surface from below
Hs = turbulent sensible heat flux (the flux driven

by a difference in temperature between the
ice surface and the air)

HL = turbulent latent heat flux (the flux driven
by a difference in water vapor density be-
tween the surface and the air).

In eq 3, my convention is that positive terms add heat
to the ice surface; negative terms carry heat away. Thus,
for example, when Hs and HL are positive, turbulence
is carrying heat from the surface into the air.

If the seven terms on the right-hand side of eq 3a do
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not add to zero, the energy balance B is nonzero. As
a result, this energy imbalance must reflect phase
changes (freezing or melting) or warming or cooling
(storage or release of heat) of the ice within the floe.

As a boundary-layer meteorologist, I could justifi-
ably study any but the C term on the right-hand side of
eq 3a. But since my main interest is turbulence in the
ABL, I will confine my attention here to Hs and HL.
These are the only two turbulence terms in eq 3. As I
said for   

v
τ , the desire to know Hs and HL is the basis for

most of what I will write here.

THE NAVIER-STOKES EQUATION

All geophysical fluid dynamics starts with the
Navier-Stokes equation (e.g., Busch 1973, Businger
1982)

(4)

In my notation, a wavy overbar indicates an instanta-
neous value;     ̃ui , for example, is the ith component of
the instantaneous fluid velocity vector. Thus, eq 4 shows
the processes that affect this component.

In eq 4, term I is the time rate of change (the accel-
eration) of the ith component. Term II really contains
three terms since the repeated j index indicates a sum.
It shows the advective effects on the ith velocity com-
ponent. In term III,   ̃ρ  is fluid density and ̃p  is the pres-
sure. Term III, thus, shows the effects of a pressure gra-
dient on the fluid—fluid tends to accelerate down the
gradient. In term IV, g is the acceleration of gravity,
and δij is the Kronecker delta, where δij = 1 if i = j, and
δij = 0 if i ≠ j. Term IV therefore represents the gravita-
tional force and affects only the     ̃u3  component of the
velocity (the vertical component). Term V shows the
Coriolis effects on the fluid motion. Here Ω is the Earth’s
rotation rate, 2π radians per day (7.27×10–5 s–1), and ηj
is the unit vector of the Earth’s rotational axis

  
v
η λ λ= ( , cos , sin )0 (5)

where λ is the latitude. Notice, the quantity f in eq 1 is

f = 2Ω sinλ . (6)

Finally, term VI quantifies viscous effects on the flow,
where ν is the kinematic viscosity of the fluid.

We can write an equation analogous to eq 4 for the
conservation of any conservative scalar—potential tem-
perature   ̃θ , for example (Busch 1973, Businger 1982)

Here, term I is the time rate of change of the instanta-
neous temperature. Term II quantifies advective effects
on the temperature. Term III contains the molecular ef-
fects on the temperature, where D is the thermal diffu-
sivity of heat in the fluid.

In the atmosphere, the instantaneous specific humid-
ity q̃  is usually another conservative scalar. We can write
an equation for it with exactly the same form as eq 7

∂
∂

∂
∂

∂
∂ ∂

˜
˜

˜ ˜q

t
u

q

x
D

q

x x
+ =j

j
w

j j

2

(8)

where Dw is the molecular diffusivity of water vapor in
air.

Equation 4, especially, is too complex to treat as it
stands; we need to simplify it. Our first simplification is
to recognize that each instantaneous quantity in eq 4, 7
and 8 can be decomposed into an average and a turbu-
lent fluctuation about that average. That is,

ũ U ui i i= + (9a)

  ̃θ θ= +Θ (9b)

q̃ Q q= + (9c)

  ̃ρ ρ ρ= +0 (9d)

˜ .p P p= + (9e)

In eq 9, a capital letter indicates an averaged quantity,
except in eq 9d where ρ0 indicates the average air den-
sity. A lower case letter without the wavy overbar is a
zero-mean turbulent fluctuation about that average.

Let me demonstrate how to manipulate these decom-
posed quantities. Let a straight overbar indicate averag-
ing. Then, with ̃ui  for example

 ũ Ui i≡ (10)

since the average of ui is zero by definition (̃ui ≡ 0 ). Simi-
larly

˜ ˜ ( ) ( )u u U u U ui j i i j j= + + (11a)

       = + + +U U u U u U u ui j i j j i i j (11b)

       = +U U u ui j i j (11c)

since Ui and Uj are already averaged quantities.

2

∂θ
∂

∂θ
∂

∂ θ
∂ ∂

˜
˜

˜ ˜
.

t
u

x
D

x x
+ =j

j j j

  I          II               III

2

(7)

∂
∂

∂
∂ ρ

∂
∂

δ ε η ν ∂
∂ ∂

˜
˜

˜
˜

˜
˜

˜
.

u

t
u

u

x

p

x
g u

u

x x
i

j
i

j i
i3 ijk j k

i

j j
= –

1
– – 2

I II             III         IV              V                 VI

+ +Ω
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I could digress here and spend 10–20 pages discuss-
ing what the averaging denoted by that straight over-
bar means. Ideally, it denotes an ensemble average
(Lumley and Panofsky 1964, p. 6)—the average formed
from data collected during repeated, identical experi-
ments. In the atmospheric sciences, however, we do
not have the luxury of ensemble averaging. To create
averages, we must make an ergodic hypothesis (Lum-
ley and Panofsky 1964, p. 35)—that conditions are near
enough to steady state that a time average is equivalent
to an ensemble average. Lumley and Panofsky (1964,
p. 35 ff.), Haugen et al. (1971), Wyngaard (1973) and
Andreas (1988), among others, have considered what
the appropriate averaging time is for ABL statistics. In
light of these studies, henceforth in this report I will
use upper-case variables to mean averages obtained
from an hour’s worth of instantaneous values. Like-
wise, the straight overbar, in u ui j  for example, will
mean a turbulence statistic obtained by averaging for 1
hour. Notice that, because these are time averages not
volume averages, an averaged quantity may still de-
pend on position within the fluid.

To write eq 4, 7 and 8, we have already made some
approximations. To simplify these further, we will make
additional approximations. These are the Boussinesq
approximations (Busch 1973; Businger 1982; Garratt
1992, p. 20 f.), which I summarize here.

Now back to the Navier-Stokes equation, eq 4. Sub-
stitute in it eq 9a, 9d and 9e, then average. The result is

The second and third terms on the left-hand side derive
from the assumption that the atmosphere is incompress-
ible

3

The Boussinesq Approximations

1. The dynamic viscosity, µ = ρ0ν; the thermal conductivity of air, kT = ρ0cpD, where
cp is the specific heat of air at constant pressure; and Dw are constants through-
out the fluid.

2. The flow speeds are low enough that the air behaves as an incompressible fluid.
3. Turbulent fluctuations in fluid properties are much smaller than the corresponding

averages; that is θ/Θ<<1, q/Q<<1, ρ/ρ0<<1 and p/P<<1.
4. p/P can be neglected in comparison to θ/Θ, q/Q and ρ/ρ0.
5. The heat generated by viscous stresses can be neglected. In other words, term VI

in eq 4 does not need to appear as a source term in eq 7.
6. Turbulent density fluctuations, ρ, are significant only when they multiply g.

(12)

∂
∂
U

x
j

j
= 0 (13a)

∂
∂
u

x
j

j
= 0. (13b)

The first term on the right-hand side of eq 12 is a con-
sequence of another of the Boussinesq approxi-
mations—that fluctuations in fluid density are much
less than the mean density and, therefore, only impor-
tant when they multiply g.

In horizontally homogeneous conditions, the x (or x1)
and y (or x2) derivatives in eq 12 produce zeroes, except
in ∂P/∂x and ∂P/∂y, which are imposed synoptic-scale
forcings. Near an impermeable surface, such as sea ice
or the ocean, the average vertical velocity, W (or U3),
must be zero. Lastly, the viscous term in eq 12 is
always small except within a few millimeters of the
surface. Hence, in an ABL above a horizontally homo-
geneous surface, the three equations implicit in eq 12
become

U equation

∂
∂

∂
∂ ρ

∂
∂

U

t

uw

z

P

x
f V= − − +1

0
(14a)

V equation

∂
∂

∂
∂ ρ

∂
∂

V

t

vw

z

P

y
f U= − − −1

0
(14b)

W equation

g
P

z
= − 1

0ρ
∂
∂

. (14c)

The W equation, which results from the assumption that
vertical accelerations are much less than pressure gra-
dient forces (Pielke 1984, p. 30 ff.), shows that, on
average, the ABL is in hydrostatic balance.

∂
∂

∂
∂

∂
∂ ρ

∂
∂

δ ε η ν ∂
∂ ∂

U

t
U

U

x x
u u

P

x

g U
U

x x

i
j

i

j j
i j

0 i

i3 ijk j k
i

j j

+ + =

− − +

1

2
2

Ω .



In eq 14a and b, it is common to substitute the geo-
strophic wind components Ug and Vg, defined as

fV
P

xg ≡ 1

0ρ
∂
∂

(15a)

− ≡fU
P

yg
1

0ρ
∂
∂

. (15b)

Thus, eq 14a and b become

∂
∂

∂
∂

U

t

uw

z
f V V= − + −( )g (16a)

∂
∂

∂
∂

V

t

vw

z
f U U= − − −( )g . (16b)

The ∂ ∂uw vwand  terms in eq 16 really contain the
essence of what we mean by an atmospheric boundary
layer. Without these terms, and assuming for the mo-
ment steady-state conditions, eq 16 would reduce to a
simple geostrophic balance characterized by two-
dimensional flow. Such conditions are common in the
free atmosphere, but the ABL is by definition a turbu-
lent layer, and turbulence by definition is three-
dimensional. The ∂ ∂uw vwand  terms in eq 16, thus,
give the ABL its character.

For the atmosphere, the ideal gas law is the appro-
priate equation of state (Lumley and Panofsky 1964, p.
214)

˜ ˜ ˜ .p R t= ρ v (17)

Here R (= 287.056 J kg–1 K–1) is the universal gas con-
stant for dry air, and t̃v  is the instantaneous virtual tem-
perature, a temperature that reflects the fact that the
presence of water vapor affects air density.

As usual

˜ .t T tv v v= + (18)

Lumley and Panofsky (1964, p. 213 f.) showed that

˜ ˜ ˜t t
M

M
qv a

a

w
= + −



















1 1 (19a)

    = +( )˜ . ˜t qa 1 0 61 (19b)

where Ma (= 28.9644 × 10–3 kg/mol) is the molecular
weight of dry air, and Mw (= 18.0160 × 10–3 kg/mol) is
the molecular weight of water. Here, also, t̃a  is the in-
stantaneous air temperature

t̃ Ta = + θ (20)

where T is the average air temperature. In eq 20, we
also use the fact that the turbulent fluctuations in po-
tential temperature and in air temperature are virtually
identical. From eq 19b, 18, 9c and 20, we see that, to a
good approximation

T T Qv = +( )1 0 61. (21a)

t Q T qv = +( ) +θ 1 0 61 0 61. . . (21b)

Expanding eq 17, we get

P p R T
t

T

t

T
+ = + + +







ρ ρ
ρ

ρ
ρ0

0 0
1v

v

v

v

v
. (22)

On ignoring the fourth term on the right-hand side of
eq 22, because it is much smaller than the other terms,
then averaging, we get the mean equation of state

P R T= ρ0 v. (23)

On subtracting this from eq 22, we find

p

R T

p

P

t

Tρ
ρ

ρ0 0v

v

v
= = + . (24)

According to the Boussinesq approximations, however,
the left side of this equation is negligible in compari-
son to the right side. Consequently, the equation of state
for the fluctuating quantities is

ρ
ρ0

= − t

T
v

v
. (25)

In eq 4, let us look at term III with this equation of
state in mind. We have

    

1 1

0˜
˜

.
ρ

∂
∂ ρ ρ

∂
∂

p
x

P p

xi i
=

+
+( )

(26)

After some simple manipulations, this becomes

1 1 1

0 0 0
2

0
2˜

˜
.

ρ
∂
∂ ρ

∂
∂ ρ

∂
∂

ρ
ρ

∂
∂

ρ
ρ

∂
∂

p

x

P

x

p

x

P

x

p

xi i i i i
= + − − (27)

Again, the fourth term on the right is much smaller than
the others; we ignore it. According to the Boussinesq
approximation, the density fluctuation in the third term
on the right is important only when it multiplies the
acceleration of gravity. Thus, from eq 14c and 25, this
term is

− = = −ρ
ρ

∂
∂

ρ
ρ

δ δ
0
2

0

P

x

g t g

Ti
i3

v

v
i3. (28)
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Consequently, term III in eq 4 is

1 1 1

0 0˜
˜

.
ρ

∂
∂ ρ

∂
∂ ρ

∂
∂

δp

x

P

x

p

x

t g

Ti i i

v

v
i3= + − (29)

With eq 29 substituted into eq 4, we subtract eq 12 to
get an equation for the turbulent velocity component ui

∂
∂

∂
∂

ρ
∂
∂

δ ε η ν ∂
∂ ∂

u

t x
U u u U u u u u

p

x

t g

T
u

u

x x

i

i
i j i j i j i j

i

v

v
i3 ijk j k

i

j j

+ + + −( )

= − + − +1
2

0

2

Ω .

Multiply this equation by ui, then average. After some
manipulations, we get

Here

e u u u v w2 2 2 21

2

1

2
≡ = + +( )i i (32)

and e2  is the average Turbulent Kinetic Energy (TKE).
In eq 31, we henceforth ignore the last term on the

right-hand side, the viscous transport term, because it is
small except very near the surface. The Coriolis term in
eq 31 is identically zero because εijkuiuk = uiuk – ukui
for all j.

Again invoking horizontal homogeneity in an atmo-
spheric surface layer (where W = 0) and assuming that
the mean wind is in the x direction (i.e., V = 0), we fi-
nally derive the turbulent kinetic energy equation from
eq 31

∂
∂

∂
∂

∂
∂ ρ

εe

t
uw

U

T
wt

z
we

wp2
2

0
= − +







−
z

+
g

–

I II III IVa IVb V

v
v .

Here, term I is the time rate of change of TKE. Term II
represents mechanical production of TKE; the Reynolds
stresses (e.g., uw ) extract energy from the mean wind
speed gradient. Term III is the buoyancy production of
TKE. Term IV shows that TKE changes because of tur-
bulent transport. Term IVa represents the vertical turbu-
lent advection of TKE; term IVb represents a transport
resulting from a correlation between the vertical veloc-

ity fluctuations and the pressure fluctuations. Term V,
which is

ε ν ∂
∂

∂
∂

≡ u

x

u

x
i

j

i

j
(34)

is called the dissipation rate of TKE. Because in eq 34
∂ui/∂xj is a squared quantity, ε is always positive. But
since ε appears with a minus sign in eq 33, term V is
always a sink for TKE. It represents the dissipation of
the turbulence to heat because of viscous effects.

In summary, eq 33 shows the processes that are im-
portant in maintaining the turbulence in an atmospheric
surface layer. For example, for steady-state conditions,
the turbulent transport terms in eq 33 (IV) are often small.
Consequently, mechanical (II) and buoyant (III) produc-
tion nearly balance viscous dissipation (V). Production
equals dissipation (Panofsky and Dutton 1984, p. 92 ff.;
Fairall and Larsen 1986).

Starting with the scalar conservation equations, eq 7
and 8, we can follow a procedure similar to that above to
derive equations for scalar means and variances. With
potential temperature as an example, insert eq 9a and b
into eq 7 and average. The result is

∂
∂

∂
∂

∂ θ
∂

∂
∂ ∂

Θ Θ Θ
t

U
x

u

x
D

x x
+ + =j

j

j

j j j

2
. (35)

Now subtract eq 35 from eq 7 to get a conservation
equation for the turbulent temperature fluctuations

∂θ
∂

∂
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Multiply this equation by θ and average
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∂
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. (37)

As in eq 31, we can ignore the molecular transport term,
the last term in eq 37. Again assume horizontal homo-
geneity, that we are within a few tens of meters of the sur-
face (so W = 0), and that x is in the direction of the mean
wind vector (i.e., V = 0). With these simplifications, the
mean equation for potential temperature becomes

∂
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∂
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z
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z
+ =

2

2 (38)

and the conservation equation for temperature variance
is

5

(30)

(33)
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∂θ
∂

θ ∂
∂

∂ θ
∂ θ

2 2
2

t
w

z

w

z
N= − − −Θ

.

I              II            III        IV
(39)

In eq 39, term I is the time rate of change of temper-
ature variance. Term II is the production of temperature
variance through the interaction of the vertical temper-
ature flux (wθ ) with the mean temperature gradient.
Term III is the turbulent transport of temperature vari-
ance by the vertical velocity fluctuations. Term IV, which
by definition is

N D
x xθ

∂θ
∂

∂θ
∂

≡ 2
j j

(40)

is always positive. Since it appears with a minus sign in
eq 39, in analogy with ε, it represents the rate at which
molecular processes dissipate the temperature variance.

From the conservation equation for specific humid-
ity, eq 8, we can follow exactly the same procedure as
above for potential temperature to derive conservation
equations for the mean specific humidity

∂
∂

∂
∂

∂
∂

Q
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wq

z
D

Q

z
+ = w

2

2 (41)

and for the humidity variance

∂
∂

∂
∂

∂
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2 2

2= − − − q (42)

where

N D
q

x

q

xq w
j j

≡ 2
∂
∂

∂
∂

(43)

is the dissipation rate of specific humidity variance.
As in the TKE equation, eq 33, it is common in eq 39

and 42 to assume steady state and that the turbulent trans-
port terms are small. Production then again equals dis-
sipation (Large and Pond 1982; Panofsky and Dutton
1984, p. 94).

MONIN-OBUKHOV SIMILARITY

The equations for the mean velocity components, eq
16, the mean potential temperature, eq 38, and the mean
specific humidity, eq 41, provide some important insights
into processes in the atmospheric surface layer.

Let me define nondimensional versions (denoted by
+) of the variables in eq 16 that are appropriate in an
ASL

U U G+ = / (44a)

V V G+ = / (44b)

U U Gg g+ = / (44c)

V V Gg g+ = / (44d)

t f t+ = (44e)

z z z+ = / .0 (44f)

Here

G U V= +( )g
2

g
2 1 2/

(45)

is the magnitude of the geostrophic wind, and z0 is the
aerodynamic roughness length of the surface. In addi-
tion, I will make uw  and vw  nondimensional by divid-
ing by u*

2, where u* is the friction velocity, a scale I
will say much more about later.

Following Tennekes and Lumley (1972, p. 168 ff.),
I make eq 16 nondimensional

1 1
2

C Ro

U

t

uw u

z C Ro
V V

g g
g

*

/ *

*

∂
∂

∂

∂
+
+ +

+ += −
( )

+ −( )
(46a)

1 1
2

C Ro

V

t

vw u

z C Ro
U V

g g
g

*

/ *

*
.

∂
∂

∂

∂
+
+ +

+ += −
( )

− −( )
(46b)

Here

C
u

Gg ≡ * (47)

is the geostrophic drag coefficient, which, as I will show
later, is typically 0.03. And

Ro
u

f z* ≡ *
0

(48)

called the friction Rossby number (Tennekes and Lum-
ley 1972, p. 170), is typically of order 106 over sea ice.

If our scaling is accurate in eq 46, the terms contain-
ing the nondimensional variables should all be of order
one. When the first and last terms in each of these two
equations, however, are divided by C Rog *

, terms of
order 10–4 result. Consequently, in the ASL, all that
remains of eq 46 are

∂

∂

uw u

z

/ *
2

0
( )

≅
+

(49a)

∂

∂

vw u

z

/
.*

2

0
( )

≅
+

(49b)
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Thus, uw  and vw  are basically constant with height in
the ASL. We usually align the x axis with the mean wind
so vw  = 0 and then define

u uw
*

.2 = − (50)

Thus, u*  is a fundamental velocity scale in the surface
layer because it is constant with height.

We can apply the same scaling procedure to eq 38.
Here, in addition to eq 44, however, we also need

 Θ Θ+ = / t
*

(51)

where t* is a temperature scale that I will explain shortly.
In eq 38, I make wθ nondimensional with u t* *. The non-
dimensional form of eq 38 is thus

1 1 2

Ro t

w u t

z PrR z+ +

* *

+ *

+

+
2

∂
∂

∂ θ
∂

∂
∂

Θ Θ+
( )

=
/

(52)

where Pr (≡ ν/D) is the Prandtl number and

R
u z

*
* 0≡
ν

(53)

is the roughness Reynolds number.
Again, as with eq 46, ∂ ∂Θ+ +/ t  should be of order

one if our scaling is accurate. But in eq 52, ∂ ∂Θ+ +/ t  is
divided by 106. In the atmosphere, Pr is about 0.7; and
over sea ice R* is rarely smaller than 10, except in very
light winds (Andreas and Claffey 1995). Thus, the third
term in eq 52 is also small. Consequently, again the tur-
bulence term is all that remains of eq 52 in the ASL

∂ θ

∂

w u t

z

/
.* *

+

( )
≅ 0 (54)

As a result, wθ, the kinematic sensible heat flux, is basi-
cally constant with height in the ASL. We define its val-
ue as

u t w* * ≡ − θ. (55)

Thus, because it is independent of height, t* is the fun-
damental surface-layer temperature scale.

The mean humidity equation, eq 41, yields to the same
scaling arguments that the mean temperature equation
did. We thus see that wq , the kinematic latent heat flux,
is also independent of height in the ASL. We define its
value as

u q wq* * ≡ − (56)

which therefore introduces the fundamental surface-layer

humidity scale q
*

, another quantity that is constant with
height.

Following arguments similar to these, Monin and
Obukhov (1954) recognized u t

*
and

* as fundamental
flux scales in the ASL. In light of eq 33, they also took
g/Tv to be an important parameter. Lastly, they knew
that the height of the observation, z, was a fundamental
length scale in the surface layer. Consequently, they
hypothesized that all surface-layer statistics should scale
with combinations of these four quantities.

We now know, however, that for scaling properties
that depend on air density, rather than t

* alone, we need
a scale that also includes q

* (Zilitinkevich 1966, Busch
1973). This is the virtual temperature flux scale, tv* ,
defined from eq 21b as

t t Q T q
v* * *

= +( ) +1 0 61 0 61. . (57)

where Q Tand  must be layer-averaged mean values.
Because t* and q* are constant with height in the sur-
face layer, tv*  is too.

From u t g T
* *v and v, / , it is possible to define a fun-

damental length scale L that is also a constant in the
ASL

1 0 61

1 0 612 2L

k g t

T u

k g

Tu
t

T

Q
q≡ = +

+






v

v

*

* *
* *

.

.
(58)

where k (= 0.4) is the von Kármán constant. Many call
L the Monin-Obukhov length. I prefer, however, to call
it the Obukhov length, since Obukhov defined it in print
eight years before the Monin-Obukhov (1954) paper
appeared (Businger and Yaglom 1971, Obukhov 1971).

On recognizing the dynamical significance of the sur-
face layer scales u t* *, ,  z and L (we have since added
tv*and q

*
), Monin and Obukhov (1954) speculated that

all surface-layer turbulence statistics should behave
similarly when properly expressed in terms of these
scales (see also Businger 1973, Wyngaard 1973). In par-
ticular, Monin-Obukhov similarity quantifies stability
effects in the ASL with the nondimensional parameter
z/L ≡ ζ .  Shortly, when we see that ∂ ∂U z u kz/ /≅ * , it
will be evident that ζ is the ratio of the buoyant produc-
tion to the mechanical production (term III to term II) in
the turbulent kinetic energy equation, eq 33. Thus, roughly
when ζ > 1, buoyancy effects dominate mechanical pro-
cesses in the surface layer; when ζ < 1, mechanical ef-
fects dominate. When ζ < 0, the surface is heating and,
thus, destabilizing the air in the ASL through the turbu-
lent exchange of sensible and latent heat. This process
creates unstable stratification. When ζ > 0, the surface
is extracting heat from the surface layer and thereby
cooling it from below. This results in a stably stratified
surface layer.
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As a demonstration of the power of Monin-Obukhov
Similarity Theory (MOST), let me consider the variances
of vertical velocity, w2 2≡ σw , and temperature, θ σ2 2≡ t .
Theory predicts that when these statistics are properly
scaled, they can be functions only of ζ. That is

σw

*u
f z L= ( / ) (59)

σ t

*t
g z L= ( / ) (60)

since u* is our primary velocity scale in the ASL and t*
is our primary temperature scale.

While MOST predicts that f(ζ) and g(ζ) should exist,
it does not predict their functional forms. Ultimately,
these must be evaluated experimentally. MOST does,
however, provide some guidance as to the asymptotic
behavior of f(ζ) and g(ζ). Let me elaborate.

In the so-called free-convection limit, the buoyancy
production term in eq 33 swamps the mechanical pro-
duction term; thus, u* loses its significance as the fun-
damental velocity scale. From the remaining fundamen-
tal parameters, wt t g Tv v vor

*
( ), /  and z, however, it is

possible to define a new velocity scale appropriate for
the free-convection limit (e.g., Hess 1992)

u
z g wt

Tf
v

v
≡







1 3/

. (61)

As in eq 55, we can, in turn, define a new temperature
scale for the free-convection limit

t
wt

u

T wt

z g wtf
f

v

v
≡ =











3 1 3/

. (62)

If these are the proper scales in the free-convection
limit, making σw and σt nondimensional with them
should yield universal functions. But now, without u*,
we have used all the scales available to us. In other words,
without u*, L cannot be defined; therefore, σw⁄uf and
σt/tf can depend on no other variables. The only conclu-
sion is that they are constants in the free-convection limit

σf

f
constant

u
= (63)

σ t

f
constant.

t
= (64)

Since u* must lose its dynamical significance gradu-
ally as ζ decreases, a matching region must exist where
both eq 59 and 63 and where both eq 60 and 64 are ap-
proximately true. Using the definitions eq 58, 61 and 62

thus implies that asymptotically in the free-convection
limit

σ ζw

*u
∝ −( )1 3/

(65)

and

σ ζt

*t
∝ −( )1 3/ . (66)

Again, although MOST was the basis for our deriving
these asymptotic expressions, it tells us nothing about
the values of the implied proportionality constants. These
must be found experimentally.

The opposite extreme from free convection is very
stable stratification—in which the vertical density gra-
dient is actually steep enough to suppress vertical ex-
change. Thus, the eddies reaching a sensor placed at
height z are compacted in their vertical dimension and
may never have been in contact with the surface. In other
words, contrary to near-neutral or unstable conditions, in
very stable conditions, z is no longer a meaningful scale;
a turbulence sensor placed at height z can make no meas-
urement that tells it where the surface is. Thus, z drops
out of our list of surface-layer scales.

Without z, we cannot form the stability parameter
z/L. Therefore, the nondimensional standard deviations
in vertical velocity and temperature must be indepen-
dent of stability in very stable conditions

(67)

(68)

As usual, MOST does not tell us what these constants
should be—only that they should exist.

Figure 1 demonstrates the veracity of MOST. Figure
1a shows σw */ u  as a function of stability from meas-
urements I made with three-axis and vertical sonic an-
emometers at the Sevilleta Long-Term Ecological Ref-
uge near Socorro, New Mexico, in August 1991. Figure
1b shows σ σt q* *

and/ /t q , where σq is the standard
deviation in specific humidity, measured during the same
experiment. Some of the σt values came from the tem-
perature fluctuations measured by the three-axis sonic
anemometer–thermometer; some came from a 76-µm
chromel-constantan thermocouple. The humidity data
came from a krypton hygrometer.

In Figure 1a, σw *
/ u  goes as (–ζ)1/3 for ζ < –0.4, as

eq 65 predicts. For ζ > 0, σw *
/ u  is almost independent

of ζ, as eq 67 suggests.
The data in Figure 1b are more scattered than those

in Figure 1a because t
*  and q* also reflect the uncer-
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Figure 1. Demonstration of Monin-Obukhov similarity theory using
data collected over a semi-arid grassland in New Mexico in August
1991. One anemometer was a three-axis sonic anemometer–thermometer;
the other was a single-axis sonic that was part of an eddy-correlation sys-
tem manufactured by Campbell Scientific. The three-axis sonic yielded u*
for nondimensionalizing both sets of σw measurements. Questionable data
were collected in a directionally variable wind.

  σ
σ

t
q

t *
q *

/
,

/

a. Standard deviation of vertical velocity, σw. The line is σw/u*  =
1.20(0.70 – 3.0ζ)1/3 for –4 < ζ ≤ –0.1, 1.20 for –0.1 ≤ ζ ≤ 0, and
1.20(1 + 0.2ζ) for 0 ≤ ζ < 1.

b. Nondimensional standard deviations of the scalars temperature
(σt) and humidity (σq). The line is σ ζs *

/ . ( . ) /s = − −3 4 1 28 4 1 3 for
–4 < ζ ≤ 0, and 3.4 for 0 ≤ ζ < 1.

tainty in the u*  measurement (see eq 55 and 56). Never-
theless, both the temperature and the humidity data do
seem to collapse to a single functional form and, thus,
to confirm the predictions of MOST. In particular, for
ζ < –0.1, σ t *

/ t  and σq/q*  go as (–ζ)–1/3, as eq 66 pre-
dicts. And for ζ > 0, the nondimensional standard devi-

ations seem to be independent of ζ.
There have been many other confirmations of

Monin-Obukhov similarity theory in the last 30 years
(see Haugen [1973] and Panofsky and Dutton [1984] for
reviews), and it is now the foundation for our understand-
ing of processes in the atmospheric boundary layer.



SURFACE-LAYER PROFILES

Neutral stratification
Long before the advent of Monin-Obukhov similar-

ity theory, turbulence researchers used scaling arguments
to model the wind speed profile in neutral stratification.
As I explained, u*  is the fundamental velocity scale in
the ASL, and z is a fundamental length scale. In neutral
stratification (i.e., when L is infinite or wtv  is zero), these
are the only scales available to us. Consequently, the
vertical gradient in wind speed must obey

dU

dz

u

k z
= * (69)

where k, the von Kármán constant, assures the equality.
The no-slip boundary condition means that U(z) is

zero at the surface. Hence, we can integrate eq 69 easily
to obtain

U z
u

z
z b( ) ln= +* (70)

where b is an integration constant. Because of the
logarithm on the right side of eq 70, we cannot write
U(z = 0) = 0. Rather, we define a new length scale, the
roughness length z0, where U(z = z0) = 0. Thus

b
u

k
z= − * ln .0 (71)

Consequently

U z
u

k
z z( ) ln /= ( )*

0 (72)

the familiar semi-logarithmic form of the wind speed
profile in neutral stratification.

Figure 2 is a schematic interpretation of eq 72. If we
measure U at several heights and plot these data in a
coordinate system that is logarithmic in z, the data
should lie on a straight line. The slope of this line is
u k* / ; it intersects the U = 0 axis at ln z0.

Equation 72, however, is not just a theoretical con-
struct. Semi-logarithmic wind speed profiles are fairly
common in nature. Figure 3 shows 10 of the 197 such
profiles that Andreas and Claffey (1995) observed over
sea ice in the western Weddell Sea.

If wtv  is small enough that conditions are still near
neutral though t* (i.e., the sensible heat flux) is non-
zero, the potential temperature profile obeys the same
scaling as in eq 69. Because t* is the appropriate tem-
perature scale

d

dz

t

k z

Θ = * . (73)

There is no reason to assume a priori that the same
multiplicative coefficient k–1 should appear in both eq
69 and 73. In fact, the Kansas results (Businger et al.
1971) showed not only that k = 0.35—rather than the
more common value of 0.40—but also that there should
be an additional multiplicative constant of value 0.74
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Figure 2. Schematic representation of the semi-
logarithmic wind speed profile.
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Figure 3. Hourly averaged, semi-logarithmic wind speed pro-
files observed on Ice Station Weddell (Andreas and Claffey
1995). The lowest level of the left-most profile is assigned a value
of 2 m/s; subsequent lowest levels are offset by 2 m/s. Thus, these
profiles reflect relative rather than absolute values. The lines
are least-squares fits according to eq 72. Under each profile, the
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on the right side of eq 73. Wieringa (1980), however,
reexamined the Kansas data, concluded that k = 0.41,
nearly the traditional value of 0.40, and found no need
for an additional multiplicative constant in eq 73.
Högström’s (1988) review suggested k = 0.40 ±0.01
and, again, that eq 69 and 73 represent correct scaling
in neutral stratification. Henceforth, I eschew the pop-
ular Kansas results and take the more traditional but
observationally defensible position that k = 0.40 and
that the von Kármán constant is the only factor neces-
sary in both eq 69 and 73.

As we did with eq 69, we can integrate eq 73 from
the surface to height z. The result is

Θ( ) lnz T
t

k
z c= + +s

* (74)

where Ts is the surface temperature, and c is a constant
of integration. As in eq 71, we find c by requiring Θ to
be Ts at the surface; thus

Θ( ) ln /z T
t

k
z z= + ( )s T

* (75)

where zT is a new length scale, the roughness length
for temperature.

Exactly the same arguments that we used to predict
the potential temperature gradient also apply to spe-
cific humidity. Thus, in near-neutral stratification

dQ

dz

q

k z
= * . (76)

Integrating this yields

Q z Q
q

k
z z( ) ln( / )= +s Q

* (77)

where Qs is the surface value of the specific humidity,
and zQ is yet another length scale, the roughness length
for humidity. z0, zT and zQ are not necessarily equal, as
I will explain later.

Including stratification effects
Because atmospheric stratification is rarely near

neutral, it often affects the shape of surface-layer pro-
files. Thus, eq 69, 73 and 76 are not strictly accurate in
diabatic conditions. We can extend these, however, on
the basis of Monin-Obukhov similarity theory. These
diabatic profile corrections, in fact, are at the core of
Monin and Obukhov’s (1954) work. They simply tried
to retain the basic form of eq 69, 73 and 76 by multi-
plying these by functions that depend only on z/L

dU

dz

u

k z
= ( )*

mφ ζ (78a)

d

dz

t

k z

Θ = ( )*
hφ ζ (78b)

dQ

dz

q

k z
= ( )*

hφ ζ . (78c)

As in our earlier discussion, these φ functions—
though presumably universal—are empirical: They
must be found experimentally. Notice, I use the same φ
function in both the temperature and humidity equa-
tions because there is no good theoretical reason why
these should be different (Hill 1989). A definitive ex-
periment that verifies this assumption, however, has not
been done, though several experiments support it (e.g.,
Dyer 1974, Dyer and Bradley 1982).

For unstable conditions, φm and φh are fairly well
known (e.g., Paulson 1970)

φ ζ ζm ( ) = −( )−1 16 1 4/ (79a)

φ ζ ζh ( ) = −( )−1 16 1 2/ . (79b)

These are commonly called the Businger-Dyer relations
because Joost Businger (1966) and Arch Dyer derived
them independently in the mid-1960s (Businger 1988).
Though the constant multiplying ζ in eq 79 may vary
somewhat among the various experimental evaluations
of φm and φh (e.g., Dyer and Hicks 1970, Businger et
al. 1971, Wieringa 1980, Dyer and Bradley 1982,
Högström 1988), the same basic functional form comes
through.

Figure 4 shows eq 79 as functions of stability.
Notice in the figure and in eq 79, φm = φh = 1 at ζ = 0
(i.e., for neutral stratification) as eq 69, 73, and 76 re-
quire. Figure 4 also shows that as –ζ gets larger—as
conditions become more unstable—both φm and φh
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Figure 4. Nondimensional wind speed and scalar gra-
dients, φm and φh, as functions of stability for unstable
conditions.



decrease monotonically. This means, according to eq
78, that the vertical gradients of wind speed, tempera-
ture and humidity get weaker as the instability
increases. The vertical exchange that the increasing
buoyancy fosters homogenizes the profiles.

In contrast to the situation for unstable stratification,
for an ASL that is stably stratified there are a host of
suggestions as to the forms of φm and φh. Figure 5 shows
some of these functions.

Often the wind speed and scalar profiles are assumed
to be log-linear in stable conditions (Webb 1970). That

is, the profiles are basically semi-logarithmic as in eq
72, 75 and 77, but each has an additional additive term
that depends on ζ. φm and φh would, thus, have the form

φ ζ φ ζ γ ζm h s( ) = ( ) = +1 . (80)

The constant γs is generally reported to be in the range
from 5 (Webb 1970, Dyer 1974, Large and Pond 1981)
to 7 (Wieringa 1980, Large and Pond 1982, Högström
1988).

From wind speed and temperature profiles at the South
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Figure 5. Various suggestions for the functional form
of the nondimensional wind speed (φm) and scalar (φh)
gradients for stable conditions.



Pole, Lettau (1979) deduced the nondimensional gradi-
ent functions

φ ζ ζm ( ) = +( . ) /1 4 5 3 4 (81)

and

φ ζ φ ζ ζh m( ) = = +( ) ( . ) /2 3 21 4 5 (82)

which are also depicted in Figure 5. Lettau’s φh func-
tion predicts a very steep scalar gradient with increas-
ing ζ that has not been confirmed by independent ob-
servations.

Although Lettau (1979) developed his functions es-
pecially to treat very stable conditions, the log-linear
form (eq 80) is also often applied in very stable condi-
tions, though it has been tested only for 0 ≤ ζ < 1 (e.g.,
Dyer 1974, Hicks 1976, Yaglom 1977). As an alterna-
tive to the log-linear form for 0 ≤ ζ ≤ 10, Holtslag and
de Bruin (1988) and Beljaars and Holtslag (1991) pro-
posed the function

φ ζ φ ζ

ζ ζ ζ ζ

m h( ) =

= + + − −

( )

. . ( . ) exp( . ).1 0 7 0 75 6 0 35 0 35
(83)

I will refer to this as the Dutch formulation.
In Figure 5, we see that there is little difference

among the four functions suggested for φm and φh when
0 ≤ ζ  ≤ 0.5. Thus, because the log-linear form is much
simpler mathematically than Lettau’s (1979) or the
Dutch formulation, it might be preferable for weakly
stable conditions. Some other considerations, however,
might help us decide which of the four formulations is
best in more stable conditions.

The gradient Richardson number is

Ri
g

T

dz

U dz
=

( )v

∂
∂

Θ /

/
.2 (84)

From eq 78 and the definition of ζ (eq 58) we can write
this as
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=
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h
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2
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*
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φ ζ

φ ζ

ζ φ ζ
φ ζ2 (85)

In stable conditions, turbulence ceases when the
Richardson number exceeds a critical value, Ricr. Thus,
we should expect accurate profile functions to yield this
critical value through eq 85; that is

lim .
ζ→∞

=Ri Ricr (86)

Traditionally, Ricr is assumed to be 0.20–0.25 (Busch
1973, Businger 1973). But Mahrt (1981) and Heine-
mann and Rose (1990) have reported that a larger value
is sometimes indicated. Woods (1969) may have ex-
plained this range of values by demonstrating that there
is a hysteresis in Ricr. He concluded that a turbulent
flow becomes laminar when Ri exceeds 1, but a lami-
nar flow does not become turbulent until Ri falls below
0.25 (see also Plate 1971, p. 76). In his observations at
South Pole, however, Lettau (1979) frequently found
turbulence to exist even when Ri exceeded unity; he
thus concluded that, in stable conditions, there was no
critical Richardson number. Monin and Yaglom (1971,
p. 440 f.) also argued that there seems to be no critical
Richardson number in stable conditions. In light of this
controversy, I show in Table 1 what the four formula-
tions for φm and φh depicted in Figure 5 predict as the
behavior of Ri in very stable conditions.

Lettau (1979; see also Viswanadham [1979, 1982])
described two other parameters that characterize
surface-layer profiles, the Deacon numbers for wind
speed and potential temperature, Dm and Dh, respec-
tively. These quantify profile curvature. For wind speed

D
z d U dz

dU dzm ≡ − ( / )

/
.

2 2

(87)

With eq 78a, it is easy to show that

D
d

dm
m

m( )
( )

( )
.ζ ζ

φ ζ
φ ζ

ζ
= −1 (88)

Similarly, for potential temperature

D
z d dz

d dzh ≡ − ( / )

/

2 2Θ
Θ

(89)

which, with eq 78b, becomes

D
d

dh
h

h( )
( )

( )
.ζ ζ

φ ζ
φ ζ

ζ
= −1 (90)
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Table 1. Predicted behavior of the Deacon and
Richardson numbers in very stable conditions accord-
ing to the four gradient formulation shown in Figures
4 and 5.

limit ζ →  ∞
φm, φh Dm Dh Ri

1 + 5ζ 0 0 1/5 = 0.20

1 + 7ζ 0 0 1/7 = 0.14

φm = (1 + 4.5ζ)3/4

φh = (1 + 4.5ζ)3/2

1 + 0.7 ζ + 0.75ζ(6 – 0.35ζ) exp(–0.35ζ) 0 0 1.4

1/4 –1/2 ζ



Table 1 also shows the Deacon numbers that the four
φm and φh formulations in Figure 5 predict in very
stable conditions.

Table 1 yields contradictory suggestions as to which
of the φm and φh formulations is best in stable condi-
tions. The Webb (1970) and Wieringa (1980) functions
predict that Ricr is 0.20 and 0.14, respectively—roughly
the traditional range for Ricr (Lumley and Panofsky 1964,
p. 117). The Dutch formulation predicts Ricr = 1.4, a
value in line with more recent appraisals. The critical
Richardson number based on Lettau’s (1979) formula-
tion is unbounded, a result that Monin and Yaglom
(1971, p. 441) defended theoretically and that Lettau
believed was possible in light of his South Pole obser-
vations.

In very stable conditions, turbulence is suppressed;
the vertical exchange of heat and momentum must thus
be by molecular processes alone. In such conditions, the
vertical profiles of wind speed and temperature depend
linearly on height, and their vertical gradients are, thus,
constants with height; Dm and Dh would then be zero.
Viswanadham’s (1982) analysis also suggested that zero
is the limiting value, at least for Dm, in very stable con-
ditions. (He did not consider Dh.) In Table 1, three of
the formulations predict that zero is the limit for the
Deacon numbers in strong stability. But, again from his
measurements at South Pole, Lettau (1979) found that
Dm = 1/4 and Dh = –1/2 in very stable conditions and,
therefore, tuned his φm and φh functions to produce these
limits.

In stable stratification, wave phenomena can supplant
forced convection and molecular diffusion as the domi-
nant mechanisms for transferring heat and momentum.
These processes are necessarily intermittent. The strati-
fication builds and builds, until a wave breaks and in-
troduces new turbulence that episodically homogenizes
the wind speed and temperature profiles. The overrid-
ing stratification eventually damps this turbulence until
the cycle repeats. Thus, it seems that all the limiting
Deacon and Richardson numbers listed in Table 1 may
be appropriate at times. The very steep temperature gra-
dient that Lettau (1979) reported would be consistent
with a relatively quiet, strongly stratified surface layer.
But the weaker gradient of the Dutch formulation seems
plausible, too, in a surface layer frequently mixed by
breaking gravity waves. Thus, the stable atmospheric
surface layer is still rife with interesting questions about
turbulence processes.

BULK TRANSFER COEFFICIENTS FOR HEAT
AND MOMENTUM OVER SEA ICE

Mathematical background
For estimating turbulent surface fluxes from field

data, in computer models, and for some analytical stud-
ies, it is often convenient to know the so-called bulk
transfer coefficients. These relate a turbulent flux to
more readily available quantities.

Here, I will discuss the bulk transfer coefficients for
momentum (usually called the drag coefficient) and
for sensible and latent heat. These are defined, respec-
tively, as

τ ρ ρ ρ= − = =uw u C U
* Dr r
2 2 (91)

H c wt c u t C c U Ts p p * * Hr p r s r= = − = −ρ ρ ρ ( )Θ (92)

H L wq L u q C L U Q QL v v * * Er v r s r= = − = −ρ ρ ρ ( ). (93)

In thesecp = specific heat of air at constant pressure
Lv = latent heat of vaporization or sublimation

Ts, Qs = surface values
Ur, Θr, Qr = values at some reference height, usually

10 m
CDr, CHr = bulk transfer coefficients. Since these are
and CEr height dependent, I explicitly include a

height subscript in their symbols.

In the last section, I introduced the gradient func-
tions φm(ζ) and φh(ζ) in eq 78. These let us quantify Ur,
Ts – Θr and Qs – Qr in eq 91–93 and thereby provide a
mathematical framework for handling the bulk trans-
fer coefficients. Take wind speed as an example. From
eq 78a

dU

dz

u

k z
z L= *

mφ ( / ). (94)

Panofsky (1963) and Paulson (1970) showed how to
integrate this. The trick is to write

dU

dz

u

k z
= − +[ ]*

m1 1 φ ζ( ) (95)

then the integration becomes
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(96)

Hence, because U(z0) = 0

U z
u

k
z z( ) ln( / ) ) .= −[ ]*

m (0 ψ ζ (97)

Thus, the trick in eq 95 leads again to a semi-
logarithmic profile with an additive stability correction.
That stability correction in eq 97, ψm, is defined as
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m
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′
′∫ 1

0

d (98)

We can follow exactly the same procedure with the
potential temperature and specific humidity gradients
in eq 78b and 78c to obtain the profiles of these vari-
ables

Θ( ) ln( / ) )z T
t

k
z z= + −[ ]s T h

* (ψ ζ (99)

Q z Q
q

k
z z( ) ln( / ) )= + −[ ]s Q h

* (ψ ζ (100)

where

ψ ζ φ ζ
ζ

ζ
ζ

h
h( )

( )
.= − ′

′
′∫ 1

0

d (101)

To see the ψm and ψh functions that result from inte-
grating the φm and φh functions that I described in the
last sections, see Paulson (1970), Lettau (1979),
Holtslag and de Bruin (1988), Arya (1988, p. 166 f.),
or Launiainen and Vihma (1990).

Figures 6 and 7 show sample wind speed and poten-
tial temperature profiles computed from eq 97 and eq 99.
Note the curvature of the unstable wind speed and tem-
perature profiles. The vertical exchange characteristic

of unstable stratification tends to homogenize the pro-
files; both wind speed and temperature bend more to-
wards the vertical with increasing height. In stable con-
ditions, on the other hand, the stratification suppresses
vertical exchange. Consequently, steeper gradients are
possible.

From eq 91–93, 97, 99 and 100, we see that the bulk
transfer coefficients are clearly stability dependent (e.g.,
Andreas and Murphy 1986)

C
k

r z r L
Dr

m

=
−

2

0
2[ln( / ) ( / )]ψ

(102)

C
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m T h

=
− −

2
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(103)

C
k

r z r L r z r LEr
m Q h

=
− −

2

0[ln( / ) ( / )] [ln( / ) ( / )]
.

ψ ψ

(104)

At neutral stability (r/L = 0) both ψm and ψh are zero
by definition. Such conditions define the neutral-
stability bulk transfer coefficients. From eq 102–104,
these are

C
k

r z
DNr =

2

0
2[ln( / )]

(105)

(106)
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Figure 6. Sample wind speed profiles. Condi-
tions are as labeled. The ψm in eq 97 is based
on the Businger-Dyer form (eq 79 and Figure
4) for the unstable case and on the Dutch for-
mulation (eq 83 and Figure 5) for the stable case.

Figure 7. Sample potential temperature profiles. Conditions are
as labeled. The ψm in eq 97 is based on the Businger-Dyer form
(eq 79 and Figure 4) for the unstable case and on the Dutch formula-
tion (eq 83 and Figure 5) for the stable case.
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(107)

Thus, knowing z0, zT and zQ is equivalent to knowing
the neutral-stability bulk transfer coefficients for any
reference height r.

We also see from eq 106 and 107 that equality of z0,
zT and zQ implies that CDNr = CHNr = CENr. Although
some measurements have suggested that CHNr = CENr,
none have confirmed that CDNr is, in general, equal to
either of these, as I will explain shortly. Thus, equality
between z0 and zT or zQ is not true either.

From eq 102–104, it is clear that if we know the
neutral-stability transfer coefficients or z0 and zT and
zQ, we know the stability-dependent transfer coefficients
needed in eq 91–93 to compute the turbulent fluxes of
interest. Deardorff (1968) was one of the first to show
plots of the bulk transfer coefficients as functions of sta-
bility. More recently, Smith (1988) presented updated
plots using modern expressions for the necessary simi-
larity functions. In a nutshell, for constant wind speed,
CD, CH and CE all increase as conditions become more
unstable; and, again for a constant wind speed, all de-
crease as stability increases. These results follow intui-
tively from our discussion of how vertical exchange
is enhanced in unstable conditions and suppressed in
stable conditions.

Since we can obtain the bulk transfer coefficients at
any height and for any stratification from the roughness
lengths or from the neutral-stability coefficients, we can
confine the rest of our discussion to the values of these
neutral-stability coefficients. I will also settle on the stan-
dard reference height of 10 m and, henceforth, confine
my discussion to the neutral-stability transfer coefficients
at 10 m, CDN10, CHN10 and CEN10. For completeness,
the following equations show how to compute CDr, CHr
and CEr from these neutral-stability values (Andreas and
Murphy 1986)
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where r must be expressed in meters.

Drag coefficient
Overland (1985) reviewed 45 evaluations of the drag

coefficient over sea ice published through 1984. Since
then, Anderson (1987), Fairall and Markson (1987),
Guest and Davidson (1987, 1991), Martinson and
Wamser (1990), Wamser and Martinson (1993),
Andreas et al. (1993b), and Andreas and Claffey (1995)
have added to this information pool.

But I still feel that one of the most important works
on this subject is that by Banke et al. (1980). They
showed that CDN10 is related to a measurable surface
roughness parameter ξ through (Fig. 8)

10 1 10 0 0723 CDN10 = +. . ξ (111)

where ξ must be in centimeters. Here, ξ obtains from an
integration under the snow-surface roughness spectrum,
Φs

ξ κ κ
κ

2

0

=
∞

∫ Φs ( )d (112)

where κ is the wavenumber and κ0 = 0.5 rad/m, which
corresponds to a maximum wavelength of about 13 m.

In turn, the snow-surface roughness spectrum, Φs(κ),
is the spectral density (Andreas et al. 1993b) obtained
from a Fourier analysis of a snow-surface elevation pro-
file. Figure 9 shows such a snow-surface elevation pro-
file and the actual ice-surface elevation profile measured
on Ice Station Weddell (ISW) in 1992 (Anonymous 1992,
ISW Group 1993). Figure 10 shows the resulting (non-
dimensional) snow-surface (Φs) and ice-surface (Φi)
roughness spectra implied by these profiles (see Andreas
et al. [1993b] for computational guidelines). According
to eq 112, ξ is obtained from the Φs line in Figure 10
by integrating from κ = 0.5 rad/m to infinity. That upper
integration limit, however, is not actually infinity but rather
the Nyquist wavenumber 2π/2∆, where ∆ is the sampling
interval. Since Banke et al. (1980) used a sampling inter-
val of 1 m, for their ξ values the upper integration limit
was π rad/m. Because the sampling interval for the ISW
profiles was 0.5 m, however, the Nyquist wavenumber for
these is 2π rad/m (Fig. 10).

Figure 8 and eq 111 suggest that form drag is impor-
tant in fostering momentum exchange. As the sur-
face gets measurably rougher, there are more vertical
surfaces for the wind to push against; CDN10 conse-
quently increases. Measurements in the 1980s in the
marginal ice zone—arguably the roughest oceanic sur-
face—corroborated this hypothesis that as the surface
gets visibly rougher the drag coefficient increases
(Andreas et al. 1984; Brown 1986, 1990; Anderson 1987;
Guest and Davidson 1987, 1991).
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Figure 9. A 300-m-long snow-surface and ice-surface elevation pro-
file measured on Ice Station Weddell.

Figure 8. The 10-m, neutral-stability drag coefficient (CDN10) over
Arctic sea ice is related to a parameter that characterizes surface
roughness (ξ) (after Banke et al. 1980).
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Figure 10. Snow-surface and ice-surface roughness spectra computed
for the profiles in Figure 9. For the snow-surface spectrum, ξ = 3.7 cm.



The power of eq 111 is its implicit suggestion that it
may be possible to determine the drag coefficient re-
motely from instruments sensitive to surface roughness.
In this light, eq 111 warranted further investigation. The
Winter Weddell Gyre Study (WWGS; Augstein et al.
1991) on the Polarstern gave us an opportunity to try
this inverse use of eq 111. During a 1989 transect of
the Weddell Sea, WWGS scientists collected 47 snow-
surface profiles like that in Figure 9, except most were
only about 100 m long. We computed Φs from these,
then ξ from eq 112, and finally CDN10 from eq 111 (An-
dreas et al. 1993b). Figure 11 shows a histogram of the
resulting values.

Lange and Eichen (1991) had developed a classifi-
cation scheme for sea ice in the Weddell Sea. They iden-
tified four ice classes, as follows:

Class I: deformed first-year ice
Class II: undeformed first-year ice
Class III: undeformed second-year (multiyear) ice
Class IV: deformed second-year (multiyear) ice

In Figure 11, I distinguish the drag coefficients com-
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Figure 11. Neutral-stability, 10-m air–
ice drag coefficients computed from
eq 111 using snow-surface elevation
profiles collected during the Winter
Weddell Gyre Study (Andreas et al.
1993b).
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Figure 12. Time series of the neutral-stability, 10-m
drag coefficient measured on a fixed mast on Ice
Station Weddell (see Andreas and Claffey [1995] or
Andreas [1995a]).

puted for each ice class. Because WWGS scientists had
little opportunity to sample second-year floes, the sta-
tistics on classes III and IV in the figure are uncertain.
But for classes I and II, where the sample size is larger,
Figure 11 corroborates our earlier speculation: When
the ice is identifiably rougher (i.e., deformed), the drag
coefficient is generally larger.

Much of the appeal of eq 111 is the unification it
provides; it confirms our intuition about the importance
of roughness on drag with hard data. Unfortunately, no
one has found independent confirmation of eq 111 (e.g.,
Shirasawa 1981). The actual form of eq 111 may be a
moot point, however. Our recent observations on Ice
Station Weddell in the western Weddell Sea imply that
eq 111 oversimplifies air–ice coupling.

Figure 12 is a time series of ISW CDN10 values that
Andreas and Claffey (1995) deduced from four-level
wind speed profiles, including those in Figure 3. Though



these data came from a single mast that did not move
with respect to the surrounding ice for the duration of the
experiment, the CDN10 values range from 1.27× 10–3 to
2.54 × 10–3. And these values are not randomly scat-
tered but rather behave coherently with time. Figure 13
shows two long storm events extract-
ed from Figure 12. In each case, CDN10
decreased as the wind persisted from a
fairly constant direction and blew with
speeds of about 8 m/s or higher.

19

140

160

180

6

8

10

12

2.5

2.0

1.5

120

140

160

6

8

10

12

2.5

2.0

1.5

64 65 66 79 80 81

0

Julian Day

10
3
 C

D
N

10
W

in
d 

D
ire

ct
io

n 
(°

)
U

5
 (

m
/s

)

Figure 13. Two long events on Ice Station Weddell
that were characterized by a relatively constant wind
direction (hourly average). U5 is the hourly averaged
wind speed at a height of 5 m; the CDN10 values came
from Figure 12.
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Figure 14. Ice Station Weddell ob-
servations showing the percentage
of the time with wind-driven snow
for a given 5-m wind speed. The
terminology follows National
Weather Service (1991) guidelines.
Above each histogram bar is the
number of hourly averaged wind
speeds within the indicated range.

On ISW we observed that snow generally began
drifting when the wind at 5 m reached 6 m/s. When the
wind reached 8–10 m/s, blowing and drifting snow were
virtually guaranteed. Figure 14 summarizes these ob-
servations.



We thus inferred that, for most of the hourly values
depicted in Figure 13, wind-driven snow was present
(Andreas and Claffey 1995). As a result, the decrease in
the CDN10 values during the two events suggests that
snowdrifts perpendicular to the wind were eroding, and
this snow was depositing in drifts that tended to stream-
line the surface in the mean wind direction. This stream-
lining lowered the aerodynamic roughness and therefore
the drag coefficient.

Visual inspection of Figure 13 may suggest that the
behavior of CDN10 is simply a wind speed effect: Lower
CDN10 values seem to be associated with lower wind
speeds. But looking at the entire ISW set of drag coeffi-
cients (Fig. 15) does not corroborate this speculation.
CDN10 does not have any obvious dependence on the
wind speed for speeds between 4 and 14 m/s. Likewise,
Shirasawa (1981) found no wind speed dependence in
drag coefficients measured over snow-covered lake ice
for winds up to 11 m/s, and Inoue (1989) also found no
wind speed dependence at Mizuho Station on the Ant-
arctic continent for winds up to about 15 m/s.

To investigate further this hypothesis that streamlining
of the surface by wind-driven snow has a major effect
on the air–ice drag coefficient, I (Andreas 1995a, 1995b)
developed a physically based form drag model follow-
ing Raupach’s (1992) guidelines. Figure 16 depicts the

rudimentary sastrugi-like roughness elements that I treat
with the model. Although we made no formal observa-
tions of sastrugi or surface texture on ISW, we often
saw that high wind sculpted the snow surface into linear
drifts that looked like Figure 16. Figure 9 supports these
casual observations; it shows that the snow collected
around protrusions in the sea ice surface but that the re-
sulting drifts were generally small. Hence, I assume that
the typical sastrugi height, h in Figure 16, was roughly
10–15 cm on ISW.

Figure 17 shows model predictions of how CDN10
depends on the wind’s orientation with respect to the
long axis of the sastrugi (Φ in Fig. 16). In the figure, γ is
the fractional surface coverage of the roughness elements
depicted in Figure 16. Notice, because of the geometry
of the modeled sastrugi, the maximum possible value of
γ is 0.50.

Figure 17 reproduces some of the observations that I
have been describing. When the wind is well aligned
(within ±15°) with the sastrugi, CDN10 has a minimum.
As the wind turns to blow more perpendicularly to the
sastrugi (without being high enough to erode them),
CDN10 increases. For h = 15 cm and γ = 0.15, the model
predicts CDN10 values in line with what we observed on
ISW. The model yields CDN10= 1.43× 10–3 when the
wind is within ±12° of head-on to the sastrugi, while on
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Figure 15. CDN10 values in Figure 12, averaged
over 1-m/s bins of the 10-m wind speed; the filled
circle denotes this average. Next to each circle is
the number of CDN10 values in each bin. The verti-
cal bar indicates the 90% confidence interval for
the population within each bin, assuming a beta
distribution with lower limit 1.2 × 10–3 and upper
limit 2.60 × 10–3 (Harr 1977, p. 495 f.).
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Figure 16. Geometry of the sastrugi-like roughness elements
envisioned to dictate the drag coefficient over snow-covered
sea ice. If the wind has been blowing above 6–8 m/s for
10–12 hours, the sastrugi will be aligned with the mean
wind direction; Φ will then be 0°.



ISW the minimum CDN10 value was about 1.5×10–3.
When the wind is roughly at a right angle to the sastrugi,
the model predicts a maximum in CDN10 of 2.70 × 10–3,
while our observed maximum was 2.54 × 10–3.

Our ISW observations and this modeling have, thus,
shown some deficiencies in eq 111. Because drifting
snow makes a sea ice surface anisotropic, eq 111 can be
true only if ξ is obtained from a snow-surface profile
aligned with the mean wind. But our observations and
modeling also reiterate one of the conclusions implicit
in eq 111: Small roughness elements (heights of order
10–15 cm) with fairly short wavelengths (order
of meters) dominate the local form drag over snow-
covered surfaces. Jackson and Carroll (1978) had reached
the same conclusion. Because the horizontal scales in-
volved are much smaller than either Arctic or Ant-
arctic ridge spacings (Lytle and Ackley 1991), pressure
ridges seem to be less important in local processes.
Nevertheless, pressure ridges may still be important in
setting the large-scale roughness and drag coefficient
over sea ice (Arya 1973, 1975).

Scalar bulk transfer coefficients
The Reynolds analogy (Schlichting 1968, p. 268 f.

and 662 f.; Hinze 1975, p. 746) is the hypothesis that
momentum and scalars, such as temperature or humid-
ity, are transferred similarly. An immediate conclusion
of the Reynolds analogy is that CDN10 = CHN10 = CEN10.
In discussing eq 105–107, however, I noted that, in geo-
physical flows at least, CDN10 has never been proven to
equal CHN10 or CEN10. The reason is that, over natural

surfaces, momentum and scalars are transferred by dif-
ferent processes.

Figure 18 is a depiction of the microscale of a natu-
ral surface such as snow. The surface has millimeter-
size roughness elements that sometimes are embedded
in the viscous sublayer and sometimes protrude above
the viscous sublayer. The roughness Reynolds number,
eq 53, parameterizes the aerodynamic character of a
surface. When R*≤ 0.135, the surface is aerodynami-
cally smooth; when R*≥ 2.5, the surface is aerodynami-
cally rough; when 0.135 < R*< 2.5, the surface is in
transition (Businger 1973).
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Figure 17. Model calculations of the neutral-stability, 10-m drag coefficient,
CDN10, as a function of the wind orientation, Φ, with respect to the dominant
axis of the sastrugi depicted in Figure 16 (from Andreas 1995a,b). Here, the
sastrugi height, h, is 15 cm; and γ is the fraction of the surface that the sastrugi
cover. Also, m = 4 and n = 10 (see Fig. 16).
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*

Figure 18. Schematic depiction of the microscale rough-
ness of an aerodynamically smooth and an aerodynami-
cally rough surface. The shading shows the viscous sub-
layer, where momentum transfer to the surface must be by
molecular processes.
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Physically, what these distinctions mean are that
when the surface is aerodynamically smooth, the rough-
ness elements are embedded in the viscous sublayer;
as a result, momentum is transferred to the surface
strictly by molecular processes. When the surface is
aerodynamically rough, the roughness elements pro-
trude through the viscous sublayer; turbulent eddies can
therefore transfer momentum through pressure forces
on the roughness elements as well as through molecu-
lar processes. In eq 33, term IVb reflects this explicit
dependence of the TKE budget on transfers resulting
from the covariance of velocity and pressure fluctua-
tions. We find no similar pressure transport terms
in either the temperature variance budget, eq 39, or the
humidity variance budget, eq 42. Scalars cannot be
transported by pressure forces; scalar transfer at a
surface is always molecular. Consequently, over aero-
dynamically rough surfaces, at least, the Reynolds
analogy is inherently inappropriate (cf., Joffre 1982).

Measurements have not yielded conclusive results
on the behavior of the scalar transfer coefficients over
snow-covered surfaces. Hicks and Martin (1972) and
Thorpe et al. (1973) measured both CHN10 and CEN10
over lake ice and sea ice, respectively. Joffre (1982)
measured CHN10 over snow-covered sea ice. Kondo and
Yamazawa (1986) measured CHN1 (1-m value) and
Barry and Munn (1967) measured CEN0.3 (30-cm
value) over snow-covered ground. The inferred CHN10
and CEN10 values are quite scattered because, over snow,
the potential temperature and humidity gradients nec-
essary to compute the transfer coefficients (see eq 92
and 93) are generally small and, thus, difficult to meas-
ure precisely. The CHN10 values from the measurements
are typically about 1×10–3, but CEN10 measurements
do not suggest a consensus value. Andreas (1987) re-
viewed some of these observations.

In the absence of definitive experimental work, I de-
vised a model to predict CHN10 and CEN10 (Andreas
1987). My work built on Brutsaert’s (1975a, b) surface-
renewal model. Its main result is to predict the scalar
roughness, zs, as a function of z0 and R

*

ln( / ) ln (ln )z z b b R b Rs * *0 0 1 2
2= + + (113)

where Table 2 gives the polynomial coefficients when
zs is zT or zQ. Figure 19 shows this equation.

We see from eq 106 and 107 that knowing zT/z0 and
zQ/z0 is essential for predicting CHNr and CENr. But we
also see from these equations that both scalar transfer
coefficients also depend on CDNr. Hence, to use eq 113
in eq 106 and 107 to predict CHN10 and CEN10, I used
eq 111 to model CDN10 (Andreas 1987). As a result,
both scalar transfer coefficients depend on wind speed
(because zs/z0 depends on R*) and ξ. Figure 20 shows
model predictions of CHN10 and CEN10.

Figure 20 shows not only CHN10 and CEN10 but also
CDN10 computed from eq 111, which is independent of
wind speed. Only at very low wind speeds, when the
flow is aerodynamically smooth or in transition, are
CHN10 and CEN10 near CDN10—the Reynolds analogy.
For higher winds, CHN10 and CEN10 are clearly less
than CDN10. Figure 19 shows the same behavior; zT
and zQ can be orders of magnitude less than z0 as the
flow gets more aerodynamically rough.

Munro (1989) verified some of the predictions of
this model with data collected over a Canadian glacier.
Kondo and Yamazawa’s (1986) data collected over
snow-covered ground provide another test of the
model’s prediction of CHN10 (Fig. 20a). Because Kondo
and Yamazawa reported only CHN1 and CDN1 (both at
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Table 2. Values of the coefficients in the poly-
nomial (eq 113) that predicts zT/z0 and zQ/z0.

R* ≤ 0.135 0.135 < R* < 2.5 2.5  ≤ R* ≤ 1000

Temperature (zT/z0)
b0 1.250 0.149 0.317
b1     — –0.550 –0.565
b2 — — –0.183

Water vapor (zQ/z0)
b0 1.610 0.351 0.396
b1 — –0.628 –0.512
b2 — — –0.180

z s
/z

0

Figure 19. Model predictions of zT/z0 and zQ/z0 over
snow-covered surfaces (from Andreas 1987). The three
regions label where the flow is aerodynamically smooth,
aerodynamically rough, or in transition.



1 m), I had to obtain their raw data* to compute the
points plotted in Figure 20a. In addition, because they
had not measured ξ, I inferred the ξ values associated
with the CHN10 values in Figure 20a by using eq 111 to
estimate ξ from their measured drag coefficients.

Although there are some discrepancies between the
model predictions and the data in Figure 20a, the com-
parison is quite encouraging. The data support the model
prediction that CHN10 increases with increasing CDN10
at a given wind speed and that CHN10 decreases with
increasing wind speed. Unfortunately, no high quality
measurements are yet available for testing the model’s
prediction for CEN10, though several have accepted its
predictions for both CHN10 and CEN10 (Morris 1989,
Munro 1989, Launiainen and Vihma 1990).

THE EKMAN LAYER

Polar meteorology has, of course, relied on the dis-
coveries of meteorologists working at lower latitudes.
But, in turn, meteorologists and oceanographers every-
where owe a debt to a polar scientist, Fridtjof Nansen.
During the drift of the Fram across the Arctic Ocean in
the mid-1890s (Nansen 1897), Nansen noticed that his
ship and the sea ice generally drifted to the right of the
wind. Ekman (1905) developed a mathematical explana-

tion for these observations and thereby provided meteor-
ology and oceanography with the first rigorous planetary
boundary layer model. Though the spiral in the wind
vector that Ekman’s model predicts is rarely seen, his
model is still a basis for current ABL modeling. Hence,
I will describe it in some detail here.

Start with eq 16, which are equations for the mean
horizontal wind vector. Assuming steady-state simpli-
fies these, but the turbulence terms still make analytic
solution difficult. We, thus, need a closure assumption.
The Ekman solution is to assume that the turbulent trans-
port can be modeled as a turbulent diffusion process
with a constant turbulent diffusivity K. That is, the sur-
face stresses in the x and y directions, τx and τy, are
modeled as

τ ρ ∂
∂x / = − =uw K
U

z
(114a)

τ ρ ∂
∂y / .= − =vw K
V

z
(114b)

With these and the assumption of steady-state, eq 16
yield (e.g., Stull 1988, p. 210 f.; Garratt 1992, p. 42)

− − =f V V K
U

z
( )g

∂
∂

2

2 (115a)

f U U K
V

z
( )− =g

∂
∂

2

2 (115b)
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Figure 20. Model predictions (from Andreas 1987) of CHN10 and CEN10 over snow-covered surfaces as a function of
the surface roughness parameter ξ (in cm) and the 10-m wind speed, U10. The arrows on the right show CDN10  for the
indicated ξ value.

a. CHN10. The data points are from measurements by
Kondo and Yamazawa (1986).

b. CEN10.

* Personal communication with J. Kondo, Professor of Meteorol-
ogy, Geophysical Institute, Tohoku University, Sendai, Japan, 1986.
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g∂
∂
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2 (116a)
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z
( )
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−
g
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2

2 (116b)

since Ug and Vg are independent of height.
If we define

S U U i V V≡ − + −( ) ( )g g (117)

we can combine  eq 116 a and b into one equation in S

i f S

K

S

z
= ∂

∂

2

2
. (118)

The solution of this is easiest if we align the x axis with
the geostrophic wind, that is, Vg = 0. Then the bound-
ary conditions at z = 0 are

 U(0) = V(0) = 0 (119)

so

S(0) = – U. (120)

As z approaches infinity, the boundary conditions are

lim ( )
z

U z U
→∞

= g (121a)

lim ( )
z

V z
→∞

= 0 (121b)

so

 lim ( ) .
z

S z
→∞

= 0 (122)

With these boundary conditions, the solution of eq
118 is fairly straightforward. It is (e.g., Businger 1982;
Stull 1988, p. 211; Garratt 1992, p. 42)

U z U z z( ) [ exp( / ) cos( / )]= − −g 1 δ δ (123a)

V z sgnf U z z( ) exp( / )sin( / ).= −g δ δ (123b)

Here, sgnf is the sign of the Coriolis parameter: plus in
the Northern Hemisphere, minus in the Southern Hemi-
sphere. And δ is a height scale

δ =






2

2
K

f
. (124)

Let us look at what eq 123 implies about processes
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at the surface. From eq 114 and 123, we see that

τ ρ
δx

g/ =
K U

(125a)

τ ρ
δy
g/ .=

−K U sgnf
(125b)

That is, the surface stress is to the right of the geo-
strophic wind in the Northern Hemisphere, as Nansen
observed; in the Southern Hemisphere, it is to the left.
Since by definition

τ τ τ ρ= +( ) =x
2

y
2

*
21 2/

u (126)

we also find from eq 125 another relation between the
constants

u
K U

*
2 g=

21 2/

.
δ

(127)

Using this in eq 124, we see that

δ =
21 2/

.
u

f U
*
2

g
(128)

While solving the Ekman equations in the geo-
strophic wind frame is easiest, observers at the surface
know the direction of the surface stress (remember, in
an Ekman layer the surface wind vector is zero) better
than they know the direction of the geostrophic wind.
Hence, for me at least, it is easier to visualize the
Ekman winds in a coordinate system aligned with the
surface stress vector than in a coordinate system aligned
with the geostrophic wind. The following equations
accomplish this transformation of velocity components
in the geostrophic wind frame [denoted as (U,V)] to
components in the surface stress frame [denoted as
(U′,V′)]:

′ = +−U z U z sgnf V z( ) [ ( )/2 1 2 ( )] (129a)

′ = −−V z sgnf U z V z( ) [/2 1 2 ( ) + ( )]. (129b)

Thus, substituting eq 123 into eq 129 yields the
Ekman solution in a reference frame aligned with the
surface stress

′ =

− − −[ ]{ }

−U z G

z z z

( )

exp( / ) cos( / ) sin( / )

/2

1

1 2

δ δ δ
(130a)

    

′ = −

− − +[ ]{ }

−V z G sgnf

z z z

( )

exp( / ) cos( / ) sin( / )

/2

1

1 2

δ δ δ
(130b)
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Figure 21. Hodographs of the wind vector in
Ekman layers in the Northern and Southern Hemi-
spheres. The dots with numbers nearby mark non-
dimensional heights, z/δ. The straight line at 45° in
each hemisphere shows the geostrophic wind.

Here, G is the magnitude of the geostrophic wind; and,
in this frame, the y component of the geostrophic wind
is no longer zero. Thus

G U U V= = ′ + ′( )g g
2

g
2 1 2/

. (131)

Figure 21 shows plots of eq 130 in both the Northern
and Southern Hemispheres. The obvious feature in these
hodographs is the so-called Ekman spiral. The height of
the Ekman layer, hE, is commonly taken as

hE = π δ (132)

since π δ is the lowest height at which the velocity vec-
tor has the same direction as the geostrophic wind (see
Fig. 21). From eq 128, we can estimate that hE is on the
order of 300 m.

We see in Figure 21 that the Ekman winds turn with
increasing height. In a Cartesian coordinate system with

positive angles counterclockwise from the x axis, the
turning angle α between the surface stress and the geo-
strophic wind is given by

tan lim
( )

( )
α = ′

′
= −

→∞z

V z

U z
sgnf (133)

or
 α = –45° sgnf. (134)

The geostrophic wind makes a 45° angle with the sur-
face stress in an Ekman layer.

That 45° turning angle is easy to remember; remem-
bering the direction of the turning, however, is harder
since some of us deal with ABLs in both hemispheres.
Thus, I find it helpful to bring some of the sophistica-
tion of physics to boundary-layer meteorology through
the following right-hand rule.

Figure 22 presents another view of the Ekman solu-
tion. Notice, the longitudinal velocity component is dis-
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A Right-Hand Rule for the Ekman Layer
1. Point the fingers of the right hand in the direction of the surface stress.
2. Curl the fingers in the direction of f. (f is up in the Northern Hemisphere; down

in the Southern Hemisphere.)
3. The right thumb then points in the direction that the wind will turn with increas-

ing height in an Ekman layer.



tinctly supergeostrophic; it has a bulge near z/δ = π/2
where ′ > ′U Ug . The transverse velocity component is
also a bit supergeostrophic just below z/δ = π. Notice,
too, for z > πδ = hE, the wind vectors are approximately
geostrophic.

The question now becomes: How realistic is the
Ekman solution; is the Ekman spiral, for example, ever
observed in nature? We made a lot of radiosounding pro-
files on Ice Station Weddell (Claffey et al. 1994); it would
be reasonable to look through these for evidence of an
Ekman layer. But remember, the Ekman layer is derived
assuming neutral stratification. On ISW, stable stratifica-
tion was the norm. Figure 23 does, however, show one
ISW radiosounding that found a nearly neutral layer
200 m deep. In this layer, the wind clearly turns counter-
clockwise with height, as Figure 21 suggests it should in
the Southern Hemisphere. But since the upper-level wind
components have different magnitudes, the turning
angle is not the 45° predicted for an Ekman layer; it is
actually closer to 30°. Nevertheless, there are enough
similarities between Figure 23 and the Ekman model—
the turning, the height over which the turning occurs—
for us to see that the essence of the model must be cor-
rect. For an even better demonstration of the veracity of
the Ekman solution, see McPhee and Martinson (1994).
They observed a fairly well behaved Ekman spiral in
the oceanic boundary layer under the sea ice at ISW.

THERMAL WIND

Many phenomena are present in the atmosphere that
void the assumptions on which Ekman based his model.
Thus, the paucity of observations of a true atmospheric
Ekman layer is not surprising. The thermal wind is one
such phenomenon that complicates the analytical de-
scription of the ABL.
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Figure 23. The 00 GMT radiosounding from
Ice Station Weddell on 15 May 1992. The coor-
dinate system is such that the surface wind has
no transverse component (i.e., the coordinate
system is aligned with the surface stress).

Remember, eq 15 defined the geostrophic wind com-
ponents. Suppose, rather than being constant as Ekman
assumed, the geostrophic wind varies with height. On
using the ideal gas law, eq 5, and taking the z derivative
in eq 15, we can show (e.g., Arya and Wyngaard 1975;
Sorbjan 1989, p. 177 f.)

∂
∂

∂
∂

∂
∂

U g

f T

T

y

g

f

T

y
g

P Pz
= − = − ln

(135a)

∂
∂

∂
∂

∂
∂

V g

f T

T

x

g

f

T

x
g

P Pz
= = ln

, (135b)

where the subscript P indicates that the derivatives are
along surfaces of constant pressure. If these terms are
not zero, meteorologists say that there is a thermal wind
or geostrophic shear; oceanographers prefer to describe
this effect as baroclinicity. The terms are all equivalent
(Arya and Wyngaard 1975).

For the terms in eq 135 to be nonzero, we see that a
horizontal temperature gradient must exist. In other
words, a surface that is not horizontally homogeneous
in temperature will induce thermal wind effects. How
do these effects manifest?

By integrating eq 135 from the surface to height z,
we get the following

U z U
g

f

T

y
dz

z

g g( ) ( )
ln= − ′∫0

0

∂
∂

(136a)

V z V
g

f

T

x
dz

z

g g( ) ( )
ln= + ′∫0

0

∂
∂

(136b)
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where, for convenience, I have dropped the subscript P
that appeared in eq 135. For illustrative purposes, sup-
pose

∂
∂
ln T

y
m= (137a)

∂
∂
ln T

x
n= (137b)

where m and n are constants (e.g., Sorbjan 1989, p. 179).
Then eq 136 simply become

Ug(z) = Ug(0) – mgz/f (138a)

Vg(z) = Vg(0) + ngz/f . (138b)

That is, in this example, the baroclinicity causes the
geostrophic wind components to increase or decrease
with height depending on the direction of the gradient
in surface temperature.

Again, it is hard for me to remember the direction in
which the geostrophic wind will change in response to
a surface temperature gradient. I, thus, developed an-
other right-hand rule.

For practice with this rule, suppose you are over sea
ice in the Weddell Sea (i.e., in the Southern Hemi-
sphere). There is open water to the east; thus, the posi-
tive temperature gradient points east. Suppose the sur-

face geostrophic wind is blowing due north. According
to the above rule, Vg must increase with height to the
south. That is, Vg(z) will get smaller with height and
may even turn negative (i.e., the wind may blow
toward the south at some height).

Sorbjan (1989, p. 179 f.) showed how to incorpo-
rate simple thermal wind parameterizations like eq 138
into the Ekman solutions. The result is a distorted
Ekman spiral whose shape depends on the relative mag-
nitudes and directions of the surface geostrophic wind
and the horizontal temperature gradient. Figure 24
shows some similarly modified Ekman spirals from
Blackadar (1963). Clearly, the presence of a thermal
wind can hide the Ekman spiral.

ROSSBY NUMBER SIMILARITY

As I have hinted, the Ekman solution has shortcom-
ings. In particular, it predicts a low-speed layer at the
surface that is fairly thick (see Fig. 22). In reality, the
wind speed increases rapidly above the surface; at a
height of only 1 m, it is already an appreciable fraction
of the geostrophic wind speed (e.g., see Fig. 6). Con-
versely, the surface-layer profiles I described in earlier
sections are not accurate for heights above, roughly,
1/10 the height of the ABL. Blackadar and Tennekes
(1968), however, demonstrated that, by matching
surface-layer and Ekman-layer solutions in a region
where they overlap, it is possible to mathematically
describe the entire ABL with an extended Ekman solu-
tion that also treats stability effects.

Figure 24. Northern Hemisphere hodographs of Ekman
spirals in the presence of a constant thermal wind. The
thermal wind effect is modeled as in eq 138; the magnitude
of the plotted thermal wind vector is roughly mgz/f (or
ngz/f) for z of 800–900 m. The surface-level geostrophic
wind is labeled Ug(0). The numbers near the dots indicate
the height in meters (after Blackadar 1963; see also Brown
1974).
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A Right-Hand Rule for the Thermal Wind
1. Point the fingers of the right hand in the direction of f. (f is up in the Northern

Hemisphere; down in the Southern Hemisphere.)
2. Curl the fingers in the direction of the positive temperature gradient.
3. The right thumb then points in the direction in which the geostrophic wind

increases with height.



We can write the surface-layer solutions eq 97, 99
and 100 as

U z

u k
z z

( )
ln /

*
m= ( ) − ( )[ ]1

0 ψ ζ (139a)

 
V z

u

( )

*

= 0 (139b)
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z T

t k
z z

− = ( ) − ( )[ ]s

*
T h

1 ψ ζ (140)

Q z Q

q k
z z

( )
ln / .

− = ( ) − ( )[ ]s

*
Q h

1 ψ ζ (141)

Equation 139b is true because Monin-Obukhov similar-
ity aligns the x axis with the mean wind (the U compo-
nent) and assumes no turning of the wind in the surface
layer.

Likewise, on seeing eq 116 and considering the scales
involved, we can show that the profiles in the Ekman
layer should obey defect laws (Blackadar and Tennekes
1968; Yamada 1976; Tennekes 1982; Brutsaert 1982, p.
72 ff.) such that

U z U

u
F z h h L

( ) ˆ
( / , / )

− =
*

U (142a)

V z V

u
sgnf F z h h L

( ) ˆ
( / , / )

− =
*

V (142b)

Θ Θ
Θ

( ) ˆ
( / , / )

z

t
F z h h L

− =
*

(143)

Q z Q

q
F z h h L

( ) ˆ
( / , / ).

− =
*

Q (144)

In these, ˆ , ˆ, ˆ ˆU V QΘ and  are, respectively, longitudinal
velocity, transverse velocity, potential temperature and
specific humidity scales that I will explain shortly.

If the scaling is accurate, the functions FU, FV, FΘ
and FQ should depend only on the dimensionless ratios
z/h and h/L, where h is now the height of the ABL and L
is again the Obukhov length. In particular, these func-
tions should not depend on the surface Rossby number
G f z/ 0  (Blackadar and Tennekes 1968, Tennekes 1973,
Hess 1992). Thus, these and subsequent arguments
are generally referred to as Rossby number similarity
(Blackadar and Tennekes 1968, Hess 1973, Tennekes
1973).

Although to continue the similarity arguments we do
not need a formal definition of h, this is a good time to
digress on its meaning. As I explained, the presence of

turbulence is essential to the definition of the ABL. Con-
sequently, h should denote the surface that separates the
turbulent ABL from the (generally) nonturbulent upper
air. Rarely, however, do we have profiles of turbulence
intensities through the ABL, let alone into the
upper air. Thus, it is common to use a surrogate, such as
the height of the temperature inversion zi, as an estimate
for h (e.g., Kaimal et al. 1976). While zi is a good esti-
mate for h in the convective boundary layer, in the sta-
ble boundary layer often found over polar marine sur-
faces, zi can overestimate h (e.g., Mahrt et al. 1979).

Hanna (1969) reviewed a host of empirical methods
for estimating h from surrogate information in both
stable and unstable conditions. Mahrt et al. (1979) con-
centrated on estimating h in the stable ABL. Their main
conclusion was that the height of the core of the low-
level jet (zj) that is common in stable boundary layers is
a good estimator of h. In turn, the height of the turbulent
layer predicted by a Richardson number criterion, zRi, is
well correlated with zj. Here, a bulk gradient Richardson
number is computed from

Ri z
g z

z

z T

U V z
(

(z)
s

2
)

( )

( )

( )
= −

+Θ
Θ
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and zRi is defined as the height at which

Ri(zRi) ≥ 0.4 (146)

where 0.4 is the critical Richardson number (see also
Heinemann and Rose 1990).

On Ice Station Weddell, our radiosondes often found
low-level jets (Andreas et al. 1993a, Claffey et al. 1994,
Andreas et al. 1995). If we assume, as Mahrt et al. (1979)
did, that zj is an estimate for h, Figure 25 shows that the
inversion height is usually a poor estimate of h in the
stable ABL. In defining zi in this figure, we used Kahl’s
(1990) definition. As such, zi could be called the top of
the inversion layer. In unstable conditions, on the other
hand, zi is often taken as the base of the inversion (e.g.,
Kaimal et al. 1976). The conflicting definitions arise
because in a stable ABL the inversion base is often at the
surface (Kahl 1990, Serreze et al. 1992, Claffey et al.
1994).

Figure 26, in contrast, suggests that zRi, which
approximates the height at which turbulence ceases, is a
fair estimate of h—if we assume that h corresponds to
zj, the height of the jet core. Thus, we see that over sea
ice in late fall and winter, the ABL is generally quite
shallow; in Figure 26, zj is usually between 50 and 300 m.
Overland and Guest (1991) and Guest and Davidson (1994)
offered additional insight into how the radiation budget,
especially during the winter, dictates the thermal and tur-
bulent structure of the ABL and, therefore, its height.
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Now back to Rossby number similarity.
Since eq 139–141 and eq 142–144 are two sets of

expressions for the same quantities, there should exist a
height interval in which both sets are true. That is, as
z z/ 0 → ∞  (and z z z z/ , /T Q→ ∞ → ∞ ) and as
z h/ → 0, the two formal descriptions of the atmospheric
profiles should be simultaneously accurate (Blackadar
and Tennekes 1968, Tennekes 1982, Hess 1992). In these
asymptotic limits, eq 139–141 and eq 142–144 require
that
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It is straightforward to rearrange and rewrite eq 147–
149 as
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In each of these, the middle term does not depend
on z; consequently, although there is a z in the right
term, this term must be independent of z also. Like-
wise, because the right term depends explicitly on the
new stability parameter µ = h/L (first introduced by
Kazanski and Monin 1960), the middle term must also.
Therefore, Rossby number similarity lets us define the
new profile functions A, B, C and D that depend only
on µ. These functions are often called resistance laws
because they show how the bulk boundary layer
parameters ̂ , ˆ, ˆ, , ˆ,U V T Q Qθ s s  and h are related to the sur-
face properties u* , t* , q* , z0, zT, zQ and L. In a way, A,
B, C and D are thus comparable to the bulk transfer
coefficients CDr, CHr and CEr.
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Figure 25. Observations of the height of the core of the low-level
jet (zj) and of the corresponding height of the inversion (zi) on Ice
Station Weddell (Claffey et al. 1994, Andreas et al. 1995).
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Figure 27. Evaluations of FU and FV for very unstable (–150 ≤ µ ≤ –120), weakly stable  (0 ≤ µ ≤ 30), and very stable
(180 ≤ µ ≤ 210) conditions (after Yamada 1976).



As with the φm and φh or ψm and ψh functions of
Monin-Obukhov similarity, Rossby number similarity
essentially leads us on a quest to find the nondimen-
sional, universal functions A, B, C and D. Part of this
quest requires defining the scales ˆ , ˆ, ˆ ˆU V QΘ and . In
analogy with the Ekman equations (i.e., eq 116), we
might expect ̂ , ˆ , ˆ ( ) ˆ ( )U U V V h Q Q h= = = =g g andΘ Θ .
But in light of frequent baroclinicity (a thermal wind),
Arya and Wyngaard (1975) found that more robust val-
ues for Û  and V̂  derive from averaging the geostrophic
wind from the surface to h. Likewise, Yamada (1976)
found that ̂Θ is best taken as the height-averaged poten-
tial temperature. By extension, I define Q̂  analogously.
Mathematically, we define

χ χ= ∫1

0
h

z dz
h

( ) (153)

where χ is U(z), V(z), Ug(z), Vg(z), Θ(z) or Q(z). Thus
(Arya and Wyngaard 1975, Yamada 1976)

Û U U= =g (154a)

ˆ *V V V
u

f h
= = −g

2

(154b)

Θ̂ Θ= (155)

ˆ .Q Q= (156)

After defining Û , V̂  and Θ̂  as above, Yamada
(1976) made the classic attempt to find FU, FV and FΘ
and, thus, A, B and C. Figures 27 and 28 show the FU,

FV and FΘ functions that he deduced from plots of data
from the Wangara experiment in Hay, Australia. (Brut-
saert [1982] offered one of the few discussions of FQ
and D.)

Figures 27 and 28 emphasize why it is appropriate
to refer to eq 150–152 as resistance laws. These figures
show that in very unstable conditions FU, FV and FΘ
are all near zero. This means that the ABL is well mixed;
the wind vector and temperature at h are very near the
values at the surface. That is, there is efficient coupling
between the upper air and the surface. In very stable
conditions, in contrast, U(z), V(z) and Θ(z) vary strongly
with height. In other words, in stable conditions the
transfer of properties from the surface to the top of the
ABL, or vice versa, is inefficient.

From his analysis, Yamada (1976) was able to esti-
mate A, B and C. Many others since Yamada have
suggested alternate formulations (e.g., Arya 1977,
Zilitinkevich 1989a, b). I do not have room here to re-
view all of these; thus, since Yamada’s functions are
the most frequently cited, I will base the remainder of
this section on them. He found

A(µ) = 10.0 – 8.145 (1 – 0.008376 µ)–1/3

for µ ≤ 0 (157a)

= 1.855 – 0.380 µ
for 0 ≤ µ ≤ 35 (157b)

= –2.94 (µ – 19.94)1/2

for 35 ≤ µ (157c)

B(µ) = 3.020 (1 – 3.290 µ)–1/3

for µ ≤ 0 (158a)
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Figure 28. Evaluations of FΘ for unstable (–60 ≤ µ ≤ –30), weakly stable (0 ≤ µ ≤ 30),
and moderately stable (60 ≤ µ ≤ 90) conditions (after Yamada 1976).
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= 3.020 + 0.300 µ
for 0 ≤ µ ≤ 35 (158b)

= 2.85 (µ – 12.47)1/2

for 35 ≤ µ (158c)

    C(µ) = 12.0 – 8.335 (1.0 – 0.03106 µ)–1/3

  for µ ≤ 0 (159a)

= 3.665 – 0.829 µ
for 0 ≤ µ ≤ 18 (159b)

= –4.32 (µ – 11.21)1/2

for 18 ≤ µ . (159c)

Figure 29 shows plots of these.

Again, we can interpret the behavior of the curves
in Figure 29 as an indication of the resistance the ABL
offers to the vertical transfer of properties. In unstable
conditions (µ < 0), A, B and C are relatively small. From
eq 150 and 151 we thus infer that the ABL is well mixed.
Equation 150b shows that there is little turning in the
wind between the top of the surface layer and the top
of the ABL. And eq 150a and 151 show a nearly se
mi-logarithmic relationship between height and Û  
nd Θ̂—the same basic relation found in the surface lay
r. Thus, again, conditions extant at the top of the surf
ce layer continue, with little change, high into the ABL.

In the stable half of Figure 29 (µ > 0), however, we
see the opposite behavior. A, B and C deviate increas-
ingly from zero as the stability increases. Equation
150b thus shows that V becomes significant. In

other words, the wind vector turns. Likewise, eq 150a
and 151 suggest that we cannot easily infer the profiles
of U(z) and Θ(z) higher in the ABL from the values at
the top of the surface layer.

Equation 47 defined the geostrophic drag coefficient
Cg as u* /G. To be compatible with the preferred
Ekman-layer scales, rather than defining G as in eq 131,
here I use

G U V= +( )ˆ ˆ .
/2 2 1 2

(160)

Thus, using eq 150, we can express Cg in terms of the A
and B functions
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Likewise, eq 133 defined the turning angle α. Our
Rossby number similarity solutions, however, provide
another definition of α that depends on stability

tan
ˆ

ˆα = V

U
(162)

where α is now the turning angle between the surface-
layer wind and the vertically integrated geostrophic
wind (see  eq 154). Again, from eq 150, we can express
162 as

tan
( )

ln( / ) ( )
.α µ

µ
= −

−
sgnf B

h z A0
(163)

Figure 30 shows plots of Cg and α as functions of
stability when Yamada’s (1976) functions are used for
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A and B. This figure again points out the resistance-law
interpretation of A and B. In unstable conditions, Cg is
large and α is near zero. As a result, the surface stress
responds strongly to geostrophic forcing. And because
of this strong coupling, the ABL is well mixed so the
turning of the wind vector with height is small. On the
other hand, in very stable conditions, Cg is smaller and
α is larger in magnitude. That is, because the stratifica-
tion suppresses the vertical turbulent exchange, the sur-
face stress is less responsive to the geostrophic forcing.
Also with less efficient vertical coupling, the wind vec-
tor can rotate more with height because the upper-level
winds have little opportunity to mix their longitudinal
momentum down into the ABL.

Brown (1981, 1990), Overland and Davidson (1992)
and Overland and Colony (1994) showed some alter-
native formulations for Cg and α over sea ice and also
presented Cg and α data that came from Arctic sea ice
regions. Although their data and the computed param-
eters in Figure 30 may differ in detail, the trends and
the general magnitudes of the quantities agree.

As we did in the atmospheric surface layer, we can
also write an expression for the geostrophic drag coef-
ficient at neutral stability. From eq 161, this is

C
k

h z A B
gN =

( ) − ( )[ ] + ( ){ }ln /

./

0
2 2

1 2
0 0

(164)

Yamada’s (1976) functions (eq 157–158) suggest that
A(0) = 1.855 and B(0) = 3.020. For comparison,
Zilitinkevich (1989b) recommended A(0) = 1.7 and
B(0) = 4.5 after an extensive review.

Earlier, I showed that the surface-layer neutral-
stability drag coefficient at 10 m (CDN10) is mono-
tonically related to z0. We can use that relation, eq 105,
here to relate CgN and CDN10. Equation 164 thus be-
comes

C
k

k C h A B
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=
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ln /

/

10 0 0
2 2

1 2
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where h must be in meters.
We see two effects here. As CDN10 increases, so does

CgN. But as the ABL gets deeper (i.e., as h increases),
CgN decreases if CDN10 remains constant. This latter
effect is analogous to what we see in the surface-layer
bulk-transfer coefficients. Equations 105–107 show that
CDNr, CHNr and CENr all decrease as the reference height
r increases. The reason is that the forcing quantities
Ur – 0, Ts – Θr and Qs – Qr (see eq 91–93) all increase
in magnitude with r; thus, the corresponding transfer
coefficient can decrease proportionately.

From eq 164 we can also solve for z0 in terms of
CgN

z h A k C B0
2 2 1 2

0 0
ef gN= − + −( )







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exp ( ) ( / ) ( ) .
/
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Since this roughness length derives from Ekman layer
parameters, it is the effective roughness length (Fiedler
and Panofsky 1972, Arya 1975, Mason 1988, Claussen
1990) in contrast to the local roughness length, which
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Figure 30. Geostrophic drag coefficient (Cg) and the turning angle (α) as functions of
stability when Yamada’s (1976) A and B functions (eq 157–158) are used in eq 161 and
163, respectively. To make this calculation, I used h/z0 = 5.0 × 105. The α values are for the
Northern Hemisphere; Southern Hemisphere values have the opposite sign.
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is the correct surface-layer interpretation of z0. Thus,
we see that—as in the surface layer—finding the geo-
strophic drag coefficient at neutral stability is tantamount
to finding the effective roughness length, and vice
versa.

SUMMARY
Several good problems in the atmospheric boundary

layer over sea ice still exist. I have highlighted a few of
these. One is to investigate turbulent exchange and the
turbulence statistics in the atmospheric surface layer in
stable conditions. A related study is to narrow the uncer-
tainty in the nondimensional gradient functions, φm and
φh, for stable conditions (see Fig. 5). Efforts here would
benefit not only polar scientists but boundary-layer
meteorologists everywhere. The stable boundary layer
is seldom in quasi-steady-state at lower latitudes; con-
sequently, obtaining robust statistics in stable stratifica-
tion is more difficult here than it is in the polar regions.

Another good problem is to devise a new parameter-
ization for CDN10 in terms of some measurable surface
properties that—preferably—can be sensed remotely.
The relation from Banke et al. (1980) (eq 111) is quite
suggestive but evidently impractical in light of my re-
cent work on how drifting snow can rapidly alter CDN10.

A related issue is obtaining good measurements of
CHN10 and CEN10 over sea ice. These are conspicuous
by their absence from the literature. The primary reason
for the scanty number of observations is that the forcing
terms Ts – Θr and Qs – Qr necessary to compute CHNr
and CENr are small over sea ice and notoriously diffi-
cult to measure. It may, thus, be time to revise our typical
measurement practices or to rethink the entire method of
parameterizing sensible and latent heat fluxes over sea ice
in terms of bulk transfer coefficients.

Because the geostrophic drag coefficient is related
monotonically to the effective roughness length z0ef

, it
should be possible to bootstrap information about geo-
strophic drag from the many observations of z0 and
CDN10 over sea ice. The key step is inferring z0ef

from
z0. Several have thought about this problem, but, to my
knowledge, only Arya (1975) has attempted to include
the unique topographic features of sea ice in the trans-
formation. In light of the recent flurry of papers on area
averaging (e.g., Mason 1988; Claussen 1990, 1991;
Vihma and Savijärvi 1991; Blyth et al. 1993; Moore et
al. 1993), this problem might be ripe for a productive
revisit.
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