United States Office of Research and EPA/600/R-99/028

Environmental Protection Development June 1999
Agency Washington DC 20460

wEPA Reliability-Based
Uncertainty Analysis of
Groundwater Contaminant
Transport and Remediation



EPA/600/R-99/028
June 1999

Reliability-Based Uncertainty Analysis of
Groundwater Contaminant Transport and
Remediation

by
Maged M. Hamed
Philip B. Bedient
RiceUniversity
Houston, Texas 77005-1892

Cooperative Agreement CR-821906

Project Officer
Mary E. Gonsoulin
Subsurface Protection and Remediation Division
National Risk Management Research L aboratory
Ada, Oklahoma 74820

National Risk Management Research L aboratory
Office of Research and Devel opment
U.S. Environmental Protection Agency
Cincinnati, OH 45268



Notice

The U.S. Environmental Protection Agency through its Office of Research and Development partially
funded and collaborated in the research described here under Cooperative Agreement No. CR-821906 to
Rice University. It has been subjected to the Agency’s peer and administrative review and has been approved
for publication as an EPA document. The document contains copyrighted material on pages: 22, 23, 29, 30,
31, 32, 33, 34, 35, 36, 40, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, and
65. Mention of trade names or commercial products does not constitute endorsement or recommendation for
use.

All research projects making conclusions or recommendations based on environmentally related mea
surements and funded by the Environmental Protection Agency are required to participate in the Agency
Quality Assurance Program. This project was conducted under an approved Quality Assurance Project Plan.
The procedures specified in this plan were used without exception. Information on the plan and documenta-
tion of the quality assurance activities and results are available from the Principal Investigator.



Foreword

The U.S. Environmental Protection Agency is charged by Congress to protect the Nation's land, air, and
water resources. Under a mandate of national environmental laws, the Agency strives to formulate and
implement actions leading to a compatible balance between human activities and the ability of natural
systems to support and nurture life. To meet these mandates, EPA’s research program is providing data and
technical support for solving environmental problems of today and building a science knowledge base
necessary to manage our ecological resources wisely, understand how pollutants affect our health, and
prevent or reduce environmental risks in the future.

The National Risk Management Research Laboratory is the Agency’s center for investigation of techno-
logical and management approaches for reducing risks from threats to human health and the environment.
The focus of the laboratory’s research program is on methods for the prevention and control of pollution to
air, land, water, and subsurface resources; protection of water quality in public water systems; remediation of
contaminated sites and ground water; and prevention and control of indoor air pollution. The goa of this
research effort is to catalyze development and implementation of innovative, cost-effective environmental
technologies, develop scientific and engineering information needed by EPA to support regulatory and policy
decisions; and provide technical support and information transfer to ensure effective implementation of
environmental regulations and strategies.

This report presents a discussion of the application of the first- and second-order reliability methods
(FORM and SORM, respectively) to groundwater transport and remediation, and to public health risk
assessment. Using FORM and SORM allows the formal incorporation of parameter uncertainty in the analysis
of such applications. The report shows the advantages of the reliability methods over currently available
simulation methods, such as the Monte Carlo Simulation method.  Specia attention is also given to the
stochastic sensitivity results obtained as an integral part from the reliability analysis. Numerous examples and
case studies are given to illustrate the method's application. The report concludes with an outlook of possible
future efforts needed in this research area. It is published and made available by EPA's Office of Research
and Development to assist the user community.

Clinton W. Hall, Director
Subsurface Protection and Remediation Division
National Risk Management Research Laboratory



Abstract

Failure to rigorously accommodate physical parameter uncertainty in groundwater transport models casts
serious doubts on our ability to accurately delineate the contaminant plume at a given site. This failure could
also considerably reduce the possibility of success of the remediation scheme intended to clean up a plume
within the specified time.

In this research, the probability that a contaminant leaking from a waste source will exceed some
predetermined target level at a downgradient well is estimated, along with the sensitivity of this probability to
the basic uncertainty in input parameters. The relevant parameters are assumed random with prescribed
probability distributions.

We present a probabilistic modeling tool based on first- and second-order reliability methods (FORM and
SORM) to account for parameter uncertainty in groundwater contaminant transport and remediation. The
methodology is applied to analytical groundwater models to provide a simple screening tool for the
assessment of contamination and remediation. In addition, numerical-based reliability models are developed
to account for aguifer spatial heterogeneity and correlation structure in more complex systems.

In the analytical phase, the program PROBAN was used for the probabilistic analysis. Results indicate that
the greatest impact on the probabilistic event is due to basic uncertainty in seepage velocity. However,
chemical-related and source-related parameter uncertainty were also found to be very important factors to
consider. In the numerical phase, the finite-element code FLOTRAN was linked to the reliability shell
CALREL. Hydraulic conductivity was treated as a spatia random field. Considerable saving in computa
tional time was achieved by using a coarse random variables mesh with a finer numerical mesh. Series system
reliability was used to anayze failure at several wells. Probabilistic assessment of plume containment was
also provided.

FORM and SORM are powerful tools for the probabilistic analysis of groundwater contaminant transport
and remediation. Examples given in this work are only samples of the variety of applications that FORM and
SORM can address. Their use in areas such as probabilistic risk assessment should be of great potentia and
interest to regulatory agencies and groundwater professionals aike.

This report was submitted in fulfillment of Cooperative Agreement No. CR-821906 by Rice University
under the sponsorship of the United States Environmental Protection Agency. This report covers a period
from 10/01/93 to 03/31/97, and work was completed as of 11/03/98.



Contents

01 €= LYo o PSSP iii
N 1 =X USSR URPRSTRN iv
01 =S vii
= =TSP iX
Acknowledgments / Copyright SEEEEMENT ..o n s X
1SS oo 0 A T (oo [0 (oo OSSPSR 1
1.1 Uncertainty in Contaminant Transport MOdeling ........ccccvvvvieieiieieeie e 1

D2 o (Y= o [T RPPTSTRSURPRPR 1

1.3 RESEAICN ODJECLIVES ... .oiuiiei ettt ettt ee sttt e st e et e e tesbeeaeeneeseeeaeemeentesaeeneesesaeeneesensenns 2

R = o A O T 1= S 3
Section 2 TheoretiCal BaCKgrOUNG ..........coiieieiiieiieie e see ettt eseesee e eseeseesseeneeseesneeneeneessesneenseseeses 5
2280 R 11T LB Tox 1 oo P 5

2.2 Basics of Component Reliability CONCEPLS ....ocviieiiiiiiee e 5

2.3 Component Versus System ReET@bility ......cccooiiieiiiiiice e 6

2.4 The Probability Of FailUrE .......cceiiiie e sttt st re s reennennenre s 6

2.5 FORM and SORM as Approximation MethOds............cccoviieeieiii i 7

25.1 Transformation to the Standard Normal SPace.........cccoceviiiierieiie i 7

25.1.1 The Hasofer-Lind TransfOrmMation ...........ccccceeeveeienieneereene e see e 7

25.1.2 The Diagonal Transformation ............cccocieeeeeniieeiene e 7

25.1.3 The Nataf TransforMalion ..........ccoooieeeierene et e e see e 8

2.5.1.4 The Rosenblatt Transformation ...........cocoirereirinenineeeesese e 8

2.5.2 Design Point DEterMINGLION ........cccoiieieeriisieieeie e seeeestesreseesestesseeseesresressaessesresseensessesseeneenes 9

2.5.3 Limit-state Surface APProXimation ..........c.ccccveiieieeeeiesiseesee e sre e se e re st eeee e e eeesees 10

2.5.4 Computation of the Failure Probability ...........ccooiiiioieie e 11

2.6 SENSILIVITY IMBASUIES......oeiieieie ittt e e te et e ee s tesae et e besse e e e seesaeeneeaeeseeeseensensesneeneensensenns 12

2.7 Uncertainty ImpPOrtanCe FaCIOrS........ooooieriieeiee ettt e e s eeeseese e sreeneeneesee e 14

2.8 SYStEM REITADIHTTY 1.veveeeeeeeeiciereeeee ettt e s e re st et e e e seese s enenneerenaensenens 15

2.9 Monte Carlo SImulation MENOUS .........ceveiriiiee e 16
Section 3 Anaytical Probabilistic Groundwater MOdeling .........ccoeeeiririinieiniseseeses e 19
3.1 Assessment of Groundwater CONtAMINGLION .........cocervereeirirereseeeese e see e 19

3.2 MOGEIS ULHIZED ...ttt bbb e st na e 19

3.2.1 Horizontal Plane Source MOE ...t 19

I (O |2 7 S 21

3.2.3 HPS-PROBAN MOGE .....cooiiiiiieieieesisie ettt sttt nse e e 21

3.3 NON-reactive SOIULE TIANSPOIT ......ccviieeeeirieeeee et eee et e et e e et ee e e seeseeeseesesaesreeneeneeneeens 23

3.3.1 Limit-state FUNCLiON FOMUIGLION .......ccciiiiieiriirieseeeeecse s 23

3.3.2 Inputs to the Case of Non-reactive SolUtE (CaSE 1) ..cccevvveeeeieii e 24

3.3.3 Results of the Case of Non-reactive Solute (Case 1) ....ccccccvveeieereiisieere e 24

3.3.4 Inputs to the Case of Non-reactive SolUte (CaSe 2) ....ccceveveeeeciene e se e 28

3.3.5 Results of the Case of Non-reactive Solute (CaSe 2) ....ccccvvceereeriersin e see e eee e 30

3.4 ReaCtiVe SOIULE TIaNSPOIT .......oiieeeeeeeieeeeeesie ettt e et eeseesae e e seeseesseeneeseesresseensesnesneeneenes 32

3.4.1 Limit-state FUNCLiON FOrMUIBLHION .........cooiiiiiiee et 33

3.4.2 Inputs to the Case 0f REACHIVE SOIULE ........ccoouiiuiiiee e 33

3.4.3 Results of the Case of REBCHIVE SOIULE ........c.ecueeieiicieceee e eneas 34



Section 4 Numerical Probabliistic Groundwater MOEIING ........ccccviiiiiieiiniereee e 37

R T 1 - ST 37

4.2 Selection of Numerical Transport MOGE .........coooiiiiiiee e 37

4.3 Selection of Reliability SNl ..o s 38

4.4 FLOTRAN-CALREL INEITACE ....oitiieiiieiesie ettt st 39

4.5 Spatial RANAOM FIEIUS ......oiieceee ettt et s re st a e b s re e e e eenre e 39

R o] o] 1o (o] RSSO 41

4.6.1 Symmetric and Asymmetric Target WEIS. ..o 41

4.6.2 Effect of Material HEterogeneity ..........coooerieiireeiere et 46

4.6.2.1 €S2 MH-1 ..ottt sttt e nennen 46

4.6.2.2 CASE MH-2 ...ttt ettt te e e nennen 49

4.6.3 Effect of Mesh Overlay and DiSCretiZation ...........cccecevieeeeveiesiese e 49

4.6.4 System Reliability ANAIYSIS ....c.coiiiieieie et 56

4.6.5 Remediation/Containment under UNCEMaINLY ........ccceveeiieriiiee it 58

Section 5 SUMMary @and CONCIUSIONS ........cooiiiriiriiieieene sttt e b 67
5.1 Probabilistic Analytical Transport MOGEl ..........cooeiiiiiieeee e 67

5.2 Probabilistic Numerical Transport MOGE ..o 67

5.3 Recommendations for FUuture RESEarCh ..o 68

=TT o]0 =T o 0| 69

vi



Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4

Figure 3.5
Figure 3.6

Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 4.1
Figure 4.2

Figure 4.3

Figure 4.4

Figures

Mapping of the physical space into the standard normal SPace. ..........ccoceeveveeceerieneceevee e 8
Region of major contribution to the failure probability (after Madsen et al., 1986). ........... 11
FORM and SORM approximations to the failure surface in the standard normal space. .... 12
Flow chart of the combined HPS-PROBAN analytical probabilistic screening model. ....... 22
Schematic oOf the Case StUAY SBLUP. ....ooi i 23
Probability of failure at a location 100 m downgradient from the leaking source. .............. 25
Failure probability surface at various well locations for different normalized target
CONCENLIALION TEVEIS. ...ttt e e e e ne e e e seeseeens 25
Contours of equal failure probabilities for case 1. ... 26
The effect of the mean value of the longitudina dispersivity \alpha on the

probability of failure at different downgradient 10Cations. ..........cccceeevevieiviece v s 27

The effect of the mean vaue of the longitudina dispersivity a _on the

importance factors (upper surface represents seepage velocity, lower one

FEPrESENES AISPEISIVITY). oeeueeieeeie ettt e e et e e seeene e eeeneesteeneeseeenseseeensensenneas 27
Importance of source strength, seepage velocity, and dispersivity on the

reliability estimate (upper surface: source strength, middle: seepage velocity,

Lo TV oo (1 o 1= £ LY/ 1Y) RSSO 28
Importance factors at a location 60.0 m downgradient from the leaking source. ................ 29
Effect of normalized target concentration levels on the probability of

failure for the NON-FEACHIVE CBSE 2. ......ooi ettt s 30
Effect of normalized target concentration levels on the reliability index for

thE NON-TEACLIVE CBSE 2. ..ottt ettt et e ne et e s tesbeeneenbesaeeneensenne e 31
Percent difference between FORM and SORM failure probabilities results for

the NONFTEACLIVE CASE 2. ....eiiiiiiieieie sttt bbbt nn et 32
Effect of normalized target concentration on importance factors in

NON-TEACTIVE CASE 2. ...veiuiiiirieieieiieie sttt ettt sttt b e b et et b et e b e b e e e st e b e s b et e e et e bt et e b et e e enes 32
Effect of o-xylene target concentration levels on the probability of failure. ........................ 34
Effect of o-xylene target concentration levels on the reliability index. ........cccccoevvvveeeinnene 35
Effect of o-xylene target concentration on importance factors. .......ccccceevevevceeceninniceceneene 35
Comparison of FORM, SORM, and MCS estimate of the probability of

failure for the 0-XYIeNne CaSE SHUAY. .....ooi it 36
Flow chart of the numerical probabilistic transport model. ...........cccceeivviveeicneccceceee, 40
Setup of the NUMENCAl CaSE STUAY ......ccecueeiiece e 42
Results for the symmetric well: (a) design point, (b) gamma sensitivity,

(C) dEItA SENSITIVILY. ...ecviieeceece sttt s e et e s teereeaeseesreeaeennenrenreas 43
Results for the asymmetric well: (a) design point, (b) gamma sensitivity,

(C) dEItA SENSITIVITY. ..eoeiieeeeeeese ettt et e e eesteene e e e seeseeeneeneeneennens 44

Vii



Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16

Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20

Figure 4.21
Figure 4.22

Figure 4.23
Figure 4.24
Figure 4.25
Figure 4.26

Figure 4.27
Figure 4.28

Effect of correlation scale on the first-order probability of failure (C=2.0 mg/L) ............... 46

SELUP OF CBSE IMTH-1L. .ottt n e 47
Design point for Case MH-1 (CIM/SEC). ..c..cvriiirieieieieniese e e 47
Gamma sensitivities for Case MH-L. ... e 48
Delta sensitivities fOr Case MH-L. ... 48
Contaminant plume for case MH-1 (IMQ/L). ccveoerieiiieeeee e e 49
SELUP OF CBSE MH-2. ... ettt b e e e e enen 50
Design point for case MH-2 (CIM/SEC). ...cceeviiiiiiieiesie s se et 50
Gamma sensitivities fOr CaSe MH-2 ..o e 51
Delta sengitivities fOr Case MH-2. ..o e 51
Setup of the mesh refinement Case StUAY. ......ocooieiiiiiee e 52
Design point hydraulic conductivity field for 144 random variables case study (cm/sec).
Source area is shown by X's and monitoring well is shown with a circle. ...........cccoeeee. 53
Gamma sensitivities for 144 random variables case StUdy. .......ccceeveveieeieseseeceere e 53
Delta sensitivities for 144 variables case StUdY. .......ccccceveieieeie i 54
Effect of number of random variables on the probabilistic event...........cccovvveevevieveceenns 55
Design point hydraulic conductivity field for 144 random variables

case study (cm/sec) for a target concentration = 1.0 MQ/L. ..ccoiviieeeniieeee e 55
Setup of the system reliability Case StUAY. .......ocoeeriiiiee e 57

Sensitivity of the upper bi-moda bound on the system failure probability
to the local mean hydraulic conductivity: (a) for the 3-well case, (b) for the 2-well case,

(c) for 2-well with lower condUCLIVILY TENS. ....c.ccvivieeiiiiicec e 59
Setup of the system reliability case with a lower conductivity lens..........ccccceeeveveiceevevienne. 60
Setup of the plume containment Case StUAY. .......ccooeeeie e 61
Initial contaminant PluME (IMGIL). ..ooieee e et 62
Results for the plume containment case study for pumping rate= 2.52 L/s (40.0 gpm):

(a) Design point, (b) Gamma sensitivity, (C) Delta SEeNSItiVIty. ......cocereieiieierrreeeee e 63
Setup of the plume containment case study with a lower conductivity lens. ........cccccoc....... 64
Results for the plume containment with a lower conductivity lens case study:

(a) Design point, (b) Gamma sensitivity, (C) Delta SensitiVity. ......cccccevvvieieeceve s 65

viii



Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9

Table 4.10

Tables

Deterministic Input Parameters for the Non-reactive Case (1) .....coecveeevievececieesese e 24
Random Input Variables for the Non-reactive Case (1) .....ccccceeveveveeeesie e 24
Deterministic Input Parameters for the Non-reactive Case (2) .....ccccoveveevievevecieenene s, 29
Random Input Variables for the Non-reactive Case (2) .....cccceeveveveeeesie v 29
Deterministic Input Parameters for the Case of o-xylene Transport ..........ccceevervveeceeneenene 33
Random Input Variables to the Case of o-xylene Transport ........ccceeeeiereveeienienc e 33
Input Parameters for the NUMErical Case ........oocvoiiiieere e 42
Comparison between the Analysis Methods .........cocooeeeiriiieiee e 45
Input Parameters for the Mesh Discretization Case Study .......ccceveeeeiesie e ceesece e 52
Comparison between the Analysis MethodsS .........cccocveieveiecicce e 56
Input Parameters for the System Reliability Case Study .......ccceocvvvveevesie v 57
Results of the System Reliability Analysis for the 3-Well Case Study .........ccccceevvveeennenene. 58
Results of the System Reliability Analysis for the 2-Well Case Study .........cccccevvreeieenennnee 60
Input parameters for the Plume Containment Case StUAY .......ccccevvveeeeriene e 61
Failure Probabilities for the Remediation Case Study for

Pumping Rate = 2.52 L/S (40.0 gPM) .eoeiiiiieeese et nee e e e e e sne e 62
FORM Failure Probabilities for Different Pumping Rates for the

ReMEAIiation Case SHUAY ......ccceceeeeiieii ettt sttt st te b s re e e besaeeneeneenre e 64



Acknowledgments/ Copyright Statement

Section 3 contains materia reprinted from Journal of Environmental Engineering, Vol. 121, No. 11,
Hamed, Conte, and Bedient, Probabilistic screening tool for groundwater contamination assessment,
pp 767-775, 1995, with kind permission from the American Society of Civil Engineers.

Section 4 contains material reprinted from Journal of Contaminant Hydrology, Vol 24, No. 1, Hamed,
Bedient, and Conte, Numerical stochastic analysis of groundwater contaminant transport and plume contain-
ment, pp 1-24, 1996, with kind permission from Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV,

Amsterdam, The Netherlands.

Section 4 contains material reprinted from Advances in Water Resources, Vol. 19, No. 5, Hamed, Bedient,
and Dawson, Probabilistic modeling of aquifer heterogeneity using reliability methods, pp 277-295, 1996,
with kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK.



Section 1
Introduction

1.1 Uncertainty in Contaminant Transport Modeling

The uncertainty of the physical parameters in subsurface contaminant transport problems is ubiquitous. This is
manifested in the basic heterogeneity of the aquifer formation and the uncertainty related to the chemical, physical
and biological properties of the contaminant being released and transported. Furthermore, there is a great deal o
uncertainty regarding the leaking source dimensions, concentration, leaking rate and duration. These parameters
vary largely from one site to another and also exhibit great spatial variability within the same site.

In many applications, consideration of the uncertainty constitutes an integral part of the modeling process. The most
evident example is the regulatory requirements established by the U.S. Nuclear Regulatory Commission (NRC), the
U.S. Environmental Protection Agency (EPA), and the U.S. Department of Energy (DOE) to conduct performance
assessment analyses in order to consider the uncertainty associated with the predictions of the performance of «
geologic repository for a high-level nuclear waste (Eisenberg et al., 1987). In exposure risk assessment problems,
the probabilistic approach is equally appealing, because it makes little sense to give a deterministic value for the
risk associated with a given receptor due to the large uncertainty in exposure point concentration.

There are different sources of uncertainty that the hydrogeologist has to account for. Some of these are summarizec
in the following.Modeling uncertainty arises due to using a simplistic relationship to describe the actual behavior

of a physical system and the idealization down to operational mathematical expressions. This can be quantified
either by comparisons with other, more involved models that provide a more accurate representation of reality, or
by comparisons with collected data from the field. Modeling uncertainty can be formally treated in a reliability
context by introducing a random variable that describes the ratio between the actual and predicted model response
or output.

Prediction uncertainty means that the reliability estimate depends on the state of knowledge that is available to the
engineer at the time of analysis. Various factors could affect the model response which are not included in the
analysis simply due to lack of knowledge. As the state of knowledge increases, our assessment of the reliability is
refined, usually combined with an increased reliability index (Melchers, 198ifjan factors are the collection of

errors that arise during data collection, recording, and analysis.

At field sites, data are collected, and statistical estimators (mean and higher order moments) are obtained, and &
probability density function (PDF) is chosen to represent the distribution of each input random variable. Since
collected data are usually inadequate and noisy, those PDFs are bound to be biased. This is ofttatitticaked

or information uncertainty (Dettinger and Wilson, 1981). One way of alleviating this problem is to consider the
parameters such as the mean and variance themselves as random variables to estimate how uncertainty of th
statistical parameters propagate to the model response. Another solution is to collect more data and use a Bayesia
approach to update the inferred statistics (Melchers, 1987).

The last type of uncertainty is that resulting from the inherent randomness of the medium variables under
consideration. This is quite evident in the soil formations, for which properties such as hydraulic conductivity can
span many orders of magnitude at the same site (Freeze and Cherry, 1979; Bakr et al., 1978). This type of
uncertainty is irreducible, and is often referred to asnerent, intrinsic, or physical uncertainty (Melchers, 1987,
Dettinger and Wilson, 1981). Although the current research focuses on addressing the physical uncertainty, the
approach is equally applicable to other types of uncertainty with the necessary modifications of the formulation.

1.2 Motivation

The aforementioned sources of uncertainty greatly affect the predictive ability of groundwater flow and contami-
nant transport models. Failure to rigorously accommodate physical parameter uncertainty in transport models casts



serious doubts on our ability to accurately delineate the contaminant plume at a given site on the one hand. On the
other hand, it could also considerably reduce the possibility of success of the remediation scheme intended to clear
up a plume within the specified time, simply because of the uncertainty related to the plume delineation.

Although a fair amount of research has been done in the area of uncertainty analysis of subsurface contaminant
transport, many of the proposed methods are either of low applicability to actual field conditions, or computationally
very intensive. For example, the classic Monte Carlo simulation method (MCS) is considered to be a very popular
tool for the stochastic risk assessment procedure. MCS is general, its accuracy increases as the sample siz
increases and the results converge to the exact one. However, in cases where events are characterized by very lo
probability of occurrence, or when applied to a complex groundwater flow and transport model with large number
of input random variables, MCS becomes computationally expensive. The number of samples required to estimate
an event probability is in the order of 100/to get a coefficient of variation of the estimate of 0.10 (Bjerager,
1990). This means that in order to have a good estimate of a probability of 1 \timesntOMCS, roughly 1XT0

Monte Carlo simulations are needed, which constitutes such a computational burden that might hinder the use of the
methodology on the day-to-day tasks, especially for large scale field problems characterized by large number of
input random variables with complex correlation structure. Note that very low probability events are not uncommon
in contaminant transport problems, especially if the chemical is highly reactive, or if the soil is very tight or if it
contains tight lenses in an otherwise permeable soil.

Moreover, other methods such as perturbation and spectral methods usually involve making restrictive assumptions
about the problem domain (e.g., assuming infinite extent, or setting an upper limit on parameters variability), that
may not be applicable when the random variables have large variances; which is usually the case in aquifer
parameters (e.g., hydraulic conductivity). More discussions on the different stochastic analysis methods are given
in Section 2. It is thus evident that there is a need for developing a computationally efficient, yet simple,
methodology for the probabilistic analysis of contaminant transport in groundwater.

Furthermore, little work has been done in the area of aquifer remediation under uncertainty. The work that is most

relevant is that of Wagner and Gorelick (1987) which addresses the optimal management policy for ground water

under parameter uncertainty. With the very large spending on pump-and-treat remediation schemes in Superfund
sites, and with frequent failure to meet cleanup levels, the issue of assessing the performance of a given remediatior
scheme under parameter uncertainty stands out as a topic that deserves utmost attention, since this will be of gree
help in designing aquifer restoration schemes, and analyzing their performance in light of the relevant parameters
uncertainty.

1.3 Research Objectives
The objectives of this work can be summarized in the following:

1. Develop a computationally efficient, yet simple, probabilistic screening tool for the analysis of
groundwater contamination that can take into account aquifer-related, source-related, and chemical-
related parameter uncertainty.

2. Analyze the impact of physical parameters uncertainty in a framework that would not force us to make
unrealistic and restrictive assumptions about the problem geometry and boundary conditions, or about
the variability of the relevant parameters.

3. Identify the parameters and the associated variability that have the greatest effect on the probabilistic
outcome. Some of the methodologies available to date can provide such information but only after an
extensive amount of additional calculations. It is our objective to obtain such sensitivity measures at no
additional computational cost.

4. Develop a rigorous numerical probabilistic model for the assessment of groundwater contamination.
This would enable us to take into account more realistic case studies, where spatial variability of the
aquifer parameters, material heterogeneity, and stresses on the aquifer in the form of pumping and/or
injection can be considered.

5. Assess the impact of some numerical issues on the resulting probabilistic outcome. Issues such as the
effect of correlation scale of the random field, the relationship between the correlation scale and the
discretization level, the impact of material heterogeneity such as the presence of lower permeability
regions, are a few of many important issues that one has to understand in order to fully, and properly,
account for aquifer parameter uncertainty.



6. Analyze the probability of exceeding pre-determined target concentration levels at more than one
location in the aquifer. This is needed in many case studies, where the plume should not escape beyond
a site boundary, or when assessing the regulatory compliance at more than one well in the aquifer. In this
instance, compliance at each point along the site boundary becomes necessary.

7. Develop a probabilistic tool to enable the rigorous assessment of the efficiency of containment/
remediation schemes under parameter uncertainty, using a numerical transport model.

1.4 Report Outline

The report is composed of five sections, including this one. Section 2 presents the mathematical basics of the first-
and second-order reliability methods (FORM, and SORM). Since the methods were originally developed in the field
of structural engineering, the section attempts to present the theory in a groundwater contamination framework.

Section 3 illustrates the application of reliability methods in the development of an analytical probabilistic screening
tool for groundwater contamination. Examples of the probabilistic analysis to conservative, as well as reactive, solutes
are given. The performance of FORM and SORM is tested with comparison to that of the Monte Carlo simulation
method.

Section 4, on the other hand, addresses more complex case studies. A numerical transport model based on the finit
element method is utilized in developing the probabilistic model. The probabilistic model allows us to take into
account spatial variability of the hydraulic conductivity, and test the effect of correlation scale, discretization level,
and the presence of tight lenses on the probabilistic outcome. System reliability was also used to show the joint
failure event when looking at more than one receptor well in the aquifer. An example of the analysis of plume
containment efficiency under the effect of spatially variable hydraulic conductivity is also given.

Section 5 concludes this report with a summary of the results obtained in previous sections, along with
recommendations for future research.






Section 2
Theoretical Background

2.1 Introduction

The first- and second-order reliability methods (FORM and SORM, respectively) were originally developed in the
past 10-15 years to assess the safety of structural components and structural systems and are now widely used in tt
study of structural reliability problems. This section presents a brief review of the mathematical basis of the
reliability analysis methods to the extent necessary to understand the subsequent formulation of the methodology.
A full account of the reliability methods development and evolution can be found in Madsen et al., (1986), Der
Kiureghian and Liu (1986), Melchers (1987), and Ditlevsen and Madsen (1996).

2.2 Basics of Component Reliability Concepts

In component reliability formulation the uncertain parameters involved in the problem describing the component of
interest are represented by a sengindom variablesX = (X,X,,....X ). These are termed thmsic random
variables or uncertain variables. Thelimit-state function (also termegberformance function) is a scalar function of

the input random variables X)( IR" —.IR. When the vector of random variab}$as the realizatiox=(x,,X,....X ),
then the value g(x,,...,x ) determines thetate of the component for that particular realization.

Theg-function is formulated with the convention that ikgX,,....x ) > O, the component haarvived, whereas if
g(x,.x,,....x )<0, then the component hésled. Consequently, the space”I&f the physical random variables is
divided into two domains:

S={x;g(x) > 0)} denotestheafe domain,and

F={x;9(x) <0)} denotesthdailure domain (2.1)

Then-dimensional hypersurface {x;g(x)=0} is the limiting condition between failure and survival, and is termed the
limit-state surface.

Note that the terngomponent in this context means that there is a single mode of failure. To state it simply, the
component of interest would either fail or survive. This is different fromsysem reliability formulation,
however, where the system has more than one failure mode. This concept will be explained shortly.

The classic example of limit-state function definition in structural reliability is'libed-resistanceproblem. In
such a problem, the resistance of a given structural compéhésssumed random, for example due to material
imperfections. The load applied on the structural componheris, also assumed random. Wind and earthquake
loads are examples of such random loading. Now the limit-state function is typically formulated as follows:

g(RL)=R-L (2.2)
Therefore, realizations that cause ghinction to be negative indicate that the structural componeritithedsto
withstand the applied load. On the other hand, realizations resulting in positive valueg-hfrtbion indicate a
condition where the structure hasvived in withholding the applied random load.

In groundwater contamination problems, on the other hand, the uncertain variables of interest can be categorized
into aquifer-, source-, and chemical-related parameters. Aquifer-related parameters can include seepage velocity (ol
hydraulic conductivity), dispersivities in tikxe y-, andz-directions, soil porosity, soil bulk density, and fraction of
organic carbon. Source-related parameters include source dimensions and concentration. Chemical-related param
eters may include the characteristics of the chefsicalrption and biodegradation. For example, the distribution
coefficient, and the parameters describing the kinetics of biodegradation can be considered uncertain.

If the interest is in assessing the potential of groundwater contamination risk due to a leaking source, the limit-state
function is formulated as follows:



9(X) = Cargee ~C(X) (2.3)
where G, is the pre-specified threshold target concentration level at the receptor well )gnrid (bg simulated
value of the contaminant concentration at the well, taking into account parameters variability.

It is obvious that the events described byXg€ 0} and {CXX) > Ctarge} are equivalent. In other words, tFelure

state in this case means failure to meet regulatory standards regarding the contaminant of interest at the well within
the required simulation time. Note that for a continuously leaking source, the contaminant breakthrough at the
receptor well increases monotonically with time. Therefore once the target concentration at the receptor well is
exceeded (anthilure occurs), the concentration at the well will always be greater than the target value as time
progresses and failure conditions will persist.

On the other hand, if the interest is in assessing the remediation efficiency of a certain remediation alterpative, C

is taken to be the pre-determined target cleanup goal that is required at a given water supply we), isrteC(
simulated value of the contaminant concentration at the well, after the remediation operation. In other words, the
failure state in this case means failure to meet the required target cleanup goals at the given well location, using the
proposed remediation technology (e.g., pump-and-treat) within the operation time available for site restoration.

2.3 ComponentVersus System Reliability

In component reliability problems, situations with a single failure mode are analyzed. Asindicated earlier, examples
include failure to meet regulatory concentration levels at a single receptor well in the vicinity of a hazardous waste
site, or failure to meet the target remediation cleanup levels for a specific well at a contaminated site.

In systemreliability problems, however, we consider the problem of evaluating the reliability of a system where the
state is described by more than one limit-state function. This is important in exposure assessment situations where
the interest is on more than one water supply well, or when assessing the performance of a remediation scheme
based on the success to meet the target cleanup levels at a few points in the aquifer. In this case, the state of th
system is described by the states of its components,

6 (X) =Crarga =G (X) (2.4)

where limit-state function (X), i = 1,...n, defines whether the target concentrati%%e@as been exceeded by the
simulated concentration at any paipnt= 1,...n, in the solution domain. The problem physics imply taitre of
the system occurs &t least one of its components fails, that is, the system can be modelesdrgss aystem. More
discussion on the system reliability estimation is presented in Section 2.8.

2.4 The Probability of Failure
In our “load-resistanceexample probability of failure is defined as follows:

P.=P[g(R L)< 0]=P[R<L] (2.5)

Whereas in the groundwater contamination/remediation situations, the probability of failure is given-byldhe
integral,

P =P[g(X)< 0] =P| Cige SCX)] =], o Fx (X)X (2.6)

where {(x) is the joint probability density function of and the integration is carried out over the failure domain.
In other words, the failure probability is the probability of being in the domain efdirmensional space bounded

by g(X)<0.

A variety of factors complicate the direct estimation of thield integral and prevent the use of the standard
methods of integration. The first problem stems from the fact that for large problems, the integration is performed
in a high-dimensional space, which makes the numerical integration very time consuming or even intractable.
Hohenbichler et al. (1987) point out that forradimensional integral, ifn is the number of calls of the integrand

per dimension, the computation time growsras

Another factor that complicates the estimation of the aforementioned probability integral is that in many cases the
absolute value of the integrand is very small and therefore the effect of numerical inaccuracies can be considerably
magnified (Breitung, 1991). Furthermore, problems arise due to the complex and algorithmic formulation of the



integration domain boundaries given by thnction. This is the case when numerical solutions of the transport
equation are obtained using the finite element or finite difference methods, such that a sequence of solutions of a
large numerical transport problem is required to find a single point on the limit-state surface. In addition, problems
arise due to the lack of information concerning the multivariate joint probability density function in many practical
situations.

In addition to FORM and SORM, other methods exist for the approximation of the above integral. These include
simulation methods (Bjerager, 1988), and hybrid methods combing simulations with FORM/SORM (Lin and Der
Kiureghian, 1987).

2.5 FORM and SORM as Approximation Methods

The primary objective of the reliability methods is to overcome the aforementioned difficulties and to evaluate the
multidimensional integral in (2.6). FORM and SORM are analytical schemes used to approximate the probability
integral when the basic variables have strictly increasing continuous joint cumulative distribution functions.

FORM and SORM consist of a number of steps (Bjerager, 1990): (1) transformation of the basic vAriatites,

the standardized and uncorrelated normal varidle§) determination of the most likely failure point in the
standard space, (3) approximation of the limit-state surface in the standard space at the design point, and (4)
computation of the probability of failure in accordance with the approximation surface selected in step (3).

2.5.1 Transformation to the Standard Normal Space

The first step in the reliability approach is to transfom the random veGtimto the standard normal vectdiwith
zero mean, unit variance and zero correlation using a non-linear one-to-one mdppi*9, This means that the
original joint probability density function (x) is mapped into the standard normal density function

2

Such a transformation always exists for random variables having strictly increasing continuous joint cumulative
distribution functions. The space of the basic random varixblesften termed the-space or physical space. The
transformed space is often termed $taadard normal space or theu-space.

fy (U)=,(u) 7211% ex;{ -2 UTU) (2.7)

Jang et al. (1990) lists the advantages of the transformation into the standard normal space:

1. Probability density in the standard space is rotationally symmetric, that is, for all hyperplanes of equal
distance from the origin, the probability contprif the half space away from the origin, is constant.

2. Since the probability density decays exponentially with square of the distance from the origin,
integration at a linearization point in a standard space can approximate the probability of failure with
good accuracy.

3. Closed form solutions for estimating the probability contents for simple sets in the standard normal
space are readily available.

Figure 2.1 illustrates the transformation from the physical to the standard normal space for a simple two-dimensional
case. The choice of transformation is dependent on: (1) the available level of statistical information, (2) whether the
random variableX are normal, and (3) wheth&ris statistically independent. This is explained in the following.

2.5.1.1 The Hasofer-Lind Transformation

The simplest case is when the basic random variablase uncorrelated and normally distributed. Here, the
nonlinear transformation reduces to the affine Hasofer-Lind transformation of the form

u=L7"D7H(x-py) (2.8)
can be used, whel2= diagfo], ando, is the standard deviation of, X is a lower triangular matrix resulting from
the Cholesky decomposition of the correlation maRix [pij], such thaR = LLT", andy, is the mean vector of.

2.5.1.2 The Diagonal Transformation

In case of statistically independent non-normal random variables, the non-linear mapping is reduced to the
following diagonal transformation:



X- space u u- space

Joint PDF in 2A

Failure Domain, g(x) <0 Physical Space

1 Failure Domain, G(u) <0
N ) \

Gu)=0

Joint Normal PDF

Safe Domain, g(x) > 0 ~~a-

Non-Linear One-to-One Mapping, U=T(X)
> Safe Domain, G(u) >0

Figure 2.1 Mapping of the physical space into the standard normal space.

R (x)] i=L.n (2.9)

whered®[ ] is the standard normal cumulative distribution &gk ) is the cumulative distribution function Xf. This
transformation is termetidiagonal because each random varialfeis transformed separately from the other
variables.

2.5.1.3The Nataf Transformation

In the special case of incomplete statistical information, where the marginal distributions and the covariances are
known, the transformation into the standard normal space proceeds in two stages, following the Nataf model (Der
Kuireghian and Liu, 1986). First, the basic random varialleate transformed into a space of correlated standard
normal variatesZ, such thatZ, =CD_1[FXI (X )] The variateZ have a correlation matriR. The second step

consists of transforming the vectdiinto the space of uncorrelated standard normal variates as follows:

Uu=r,z (2.10)
whererl is a lower triangular matrix resulting from the Cholesky decomposition of the correlation matyixeof
F=_L,"inwhichR=L L~ Elements of the matriR  are the correlation coefficients, .. These, in turn, are

related to the correlatlon coefﬁmenp;,X of the basic random variables§, through the following implicit integral
relationship (Der Kuireghian and Liu, 1986)

u = f:f:[xi;ui }{onju }(pz(;, 2,0 ) 2.12)

I
whereg(z, z, pZIZ) is the bivariate normal density function of normal variates with zero means, unit variances, and
correlation coefﬂuenp .,» 4 andg denote the mean and standard deviatioX ofespectively. For each pair of
marginal dlstrlbutlonsF {(x) andF (x) and for a given correlation coefﬂmepg the above equation can be
iteratively solved to obtalp z Lit and Der Kiureghian (1986a), however, prowded a set of empirical formulae

relatingp,, 4100, for some khown marginal distributions. This greatly simplifies the calculations and overcomes the
tedious process of iterative solution.



2.5.1.4The Rosenblatt Transformation

When complete statistical information, in the form of full joint probability distributio, @ known, the Rosenblatt
transformation (Rosenblatt, 1952) is used. This makes use of the successive conditioning (Melchers, 1987):

u = ‘D_l[Fxl(Xl)]

u, = <D‘1[sz|x1(x2|x1)]
2.12)

u, = ¢‘1[FXn|xl...xn_l(xn|x1...xn_l)]

whereF, | X ...X (X |X, ...X ,)isthe conditional cumulative distributionXfgivenX ... X_, and all conditional
distribution functions are assumed continuous. The transformation first transfpints theu-space. Then all
conditional variables of X |X, are transformed into thespace, and so on (Madsen et al., 1986). It should be noted
that the Rosenblatt transformation is reduced to that in (2.9) when the basic random variables are mutually
statistically independent. When the basic random variables are also jointly normal, the transformation reduces to
the linear Hasofer-Lind given in (2.8).

2.5.2 Design Point Determination

The second step in the reliability approach (and a major task) is to determine the design point, which is a point on
the limit-state surface in thespace closest to the origin. The design paint,is of practical significance. In
standard normal space, the contours of probability density are concentric spheres and the probability density decays
with distance from the origin. Thereforg, which is the nearest point to the origin in the failure region, has the
highest likelihood among all failure points. Hence, the design point is considereadsttigely failure point in the

standard normal space (Cawlfield and Sitar, 1987).

The design point, however, may not necessarily be the most likely failure point, if the underlying probability density
functions of the basic random variables are unknown, and only incomplete statistical information is available. It
should be noted that the design point in the standard normal epacan be inversely mapped into its counterpart

in the physical space?, to give a more physically meaningful interpretation. The design pgdinis the solution

of the following non-linear constrained optimization problem:

Minimize |ul

subject to G(u)=0
The above optimization problem consists of finding the point that lies on the limit-state surface and has a minimum
distance from the origin in the standard normal space. Several algorithms have been proposed for the solution of this
problem. These include the HL-RF method, which was originally developed by Hasofer and Lind (1974) in second
moment reliability analysis, and later extended by Rackwitz and Fiessler (1978) to include distribution information;

the gradient projection method, the Sequential Quadratic Programming (SQP) method, and the modified HL-RF
method (Liu and Der Kiureghian, 1986b).

For example, the HL-RF method is based on constructing a sequence of jngints , whereu, is an initial
guess. The HL-RF method follows the procedure (Madsen et al., 1986):

(2.13)

u.,.=| .U +Lui) (XT
i+1 (R} |DUiG(Ui)| | (214)

such that

(2.15)

0 G(ur (ae(u) aG(u))

du, 7 au

n

is the gradient vector, and



__ 0,G(w)
|DUG(ui )|

is a unit vector pointing in the negative gradient direction.

(2.16)

The gradient vector can be estimated in terms of the gradient vector in the physicaligyakeas follows:

0.G6(ur £ .60} (2.17)

where]J  is the Jacobian of the transformation from the physical-to the standard-normal space. The HL-RF method
starts from an arbitrary initial point, and the sequence usually convergesuta a* in a few iterations.

Liu and Der Kiureghian (1991) list the criteria for comparing and assessing the different optimization algorithms for
reliability analysis. These criteria are:

1. Generality: which refers to the different types of problems that the optimization method can solve.
2. Robustness:which refers to the power of a given optimization method to solve problems with the
required accuracy.
3. Efficiency: which is measured by the effort required to solve a problem. This, in turn, is a function of
the convergence rate of the optimization methodology.
4. Capacity: measured by the maximum number of variables that can be handled by the method. This is
a direct function of the demand and supply of computer storage.
Liu and Der Kiureghian (1991) compared several optimization algorithms for reliability analysis. They concluded
that the HL-RF method required the least amount of storage and computation in each iteration, and it converged
within a few cycles. However, they reported some situations where the method can fail, and that introducing a merit
functionm(u) to monitor the convergence of the sequence improved the robustness of the method.

From the previous discussion, we presented the solution of a non-linear constrained optimization problem to be an
essential step in the reliability methods. Therefore, difficulties encountered in optimization problems would also
prove problematic in the reliability analysis. Examples of situations giving rise to problems in the reliability
analysis are when the limit-state surface is extremely complex; whegrfuhetion is ill-posed; or if the limit-state

surface contains many local minima. In such cases, the constrained optimization routine may conveogé to a
minimum instead of reaching tigtobal one. Furthermore, if the finite difference method is used to approximate

the gradient of a noisy limit-state surface, the optimization routine may fluctuate between a few points, and
convergence may never be achieved.

In such cases, a number of procedures can be used to improve the optimization potential of reaching the global
minimum. Using different starting points, the optimization method would be considered to have achieved the global
minimum if it converges to the same point in every case. A noisy limit-state surface can be better handled by using
a smoothing algorithm, or by using higher-order finite difference approximation to the gradients. If all fails, a non-
gradient search procedure, such as the Nelder-Mead method, may be able to circumvent the problem of noisy
gradients, although an extensive amount of additional function evaluations should be expected.

2.5.3 Limit-state Surface Approximation

The third step is the approximation of the non-linear limit-state surface indpace by an appropriate tangent
surface at the point of smallest distance to the origin. This smallest digharceermed thedliability index and
is a measure of the reliability of the component under consideration.

In the first-order reliability method (FORM), the limit-state surface in the standard normal space is approximated by
the tangent hyperplane at the design point.

Since the probability density in thiespace decays exponentially with the square of the distance from the origin, the
primary contribution to the probability integral in (2.6) comes from the part of the failure region closest to the origin
(see Figure 2.2). Therefore, the design potris an optimum point at which to approximate the limit-state surface
G(U)=0.

Although the first-order reliability method provides the results using a very small computational effort, the results
can significantly depart from th&ru€’ solution. This is usually the case when the limit-state surface has a
significant curvature around the design point. Such cases occur when the basic random variables are of large scattel
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Figure 2.2 Region of major contribution to the failure probability (after Madsen et al., 1986).

or when the limit-state function is highly non-linear (categories in which most subsurface contamination problems
fall). In such instances, the second-order reliability method (SORM) can be more effective, since it can account for
the limit-state surface curvature in the standard normal space.

Bjerager (1990) reports that the first thorough study of SORM was done by Fiessler et al. (1979). They obtained the
failure probability by approximating the failure surface at the design point in the standard normal space by a
second-order surface. Both second-order Taylor expansion as well as curvature-fitted paraboloid approximation
surfaces were analyzed.

Bjerager (1990) identifies the second-order Taylor expansion as more general than the paraboloid approximation
method. However, due to the fact that it is not based on the geometrical properties of the failure surface, it lacks
invariance with respect to the choice of the limit-state function. This is not the case for the geometrically-based
paraboloid approximation method, which is invariant to the choice of the limit-state function. Consequently, the
parabolic SORM is usually the preferred analysis method. There exists two paraboloid approximations in the
literature, namely the curvature-fitted (Breitung, 1984; Tvedt, 1988), and the point-fitted (Der Kiureghian and Lin,
1987).

2.5.4 Computation of the Failure Probability

The final step in the FORM/SORM estimation of théld probability integral given in (2.6) is to compute the
failure probability corresponding to the approximating failure surface. It should be emphasized that FORM and
SORM are full distribution methods, meaning that the full marginal and joint probability density functions can be
incorporated, and the transformation from ¥gpace to the-space is exact. Other methods often cited in the
literature include FOSM, which refers t&econd Momeritmethods, which can only incorporate the first two
moments. Nevertheless, FORM and SORM can still be defined in a second moment context (Bjerager, 1990).

The first-order reliability index is given by the inner product
B:a*u* (218)

wherea* is the unit normal at the design point directed toward the failure region (Figure 2.3). The first-order
approximation of the probability of failure is given by

11
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Figure 2.3 FORM and SORM approximations to the failure surface in the standard normal space.

P. =P =p(-B) (2.19)
where®() is the standard cumulative normal probability.

The estimation of the probability content of parabolic limit-state surface is an equally important step in the SORM
analysis. The asymptotically exact result developed by Breitung (1984) had an appreciable impact on making SORM
a practical method (Bjerager, 1990). The formula for second-order failure probability is given by:

-1 -%
PFSE’;xptotlc = CD(_B)h (1 + BKj ) (220)

where K aretheg-1 principal curvatures at the most likely failure p0| nt, u*, in u-space, with the sign convention that
curvatures are negative when the surface curves towards the origin. A numerical procedure to evaluate the integral
was suggested by Tvedt (1988). This formulais asymptotically exact as 3 approaches infinity and the term 3 k.
remains fixed.

Tvedt (1988) provided an exact and numerically feasible result for SORM, thus making SORM a powerful tool for
reliability estimates. His result is given for a parabolic approximation by:

%o exp (t+[3)2/2 q-1 R
PEORM:@(B)R{(%) Jt:()#{l]l(l‘“‘j) }dt} (2.22)

where ¢ ) denotes the standard normal probability density, K are defined as before, and i is the imaginary number
(V-1)
2.6 Sensitivity Measures

As an integral part of the first-order reliability method, the user is provided with measures of sensitivity of the
reliability index and the first-order estimate of the failure probability with respect to the basic random variables, as
well asto the parameters defining the probability distribution and the limit-state function. These sensitivity measures

12



identify the random variables or the deterministic parameters which have the greatest impact on the failure
probability.

The simplest measure of sensitivity isthe partial derivative of thereliability index, 3, with respect to the coordinates of
the design point in the standard normal space. Thisisgiven by:

0.F o (2.22)
where
. 0,6
a |DTu) (2.23)
and
0B 0B 9P
i [aul ou, ’auj (2.24)

Thea* vector, hence, givesameasure of the changein 3 when agiven basic random variableis perturbed. Sincethe
partial derivativesin (2.22) are estimated at the design point, they reflect only the sensitivity with respect to small
changesin the random variables at that particular point. 1n other words, this vector gives an indication to measure
relative importance of the standard variates u. Since a* is necessary for obtaining the design point, the aforemen-
tioned sensitivity measureis obtained with no additional computational effort.

Although a* is useful, the sensitivity of 3 with respect to the coordinates of the design point in the physical space
would be more physically meaningful. Sensitivities with respect to changesin the coordinates of the design point in
the physical space are obtained by the chain rules:

0.8 *)Jif ad; . (2.25)

whereJ , . isthe Jacobian of the transformation from x to u eval uaIed at the design point. Since the values of U, 3
are dependent on the units of x*, Der Kiureghian and Ke (1985) scaled the gradient vector by the matrix of standard
deviations, providing the unit gamma sensitivity vector:

(0B

Y=
Bz

(2.26)

where D is the diagona matrix of standard deviations X. Thus, the unit vector y at the design point measures the
scaled and normalized sensitivities of 3 with respect to the variation in the coordinates of x*. In other words, this
vector provides ameasure of relative importance of the equally likely changes of the basic random variable X onthe
reliability estimate.

Sensitivity vectors with respect to deterministic parameters in the limit-state function can also be obtained. Let
a(x) = g(x,n), where n is a vector of deterministic parameters, Madsen et a. (1986) have shown that
1

b 0, 6(u")

RGNl (227)

In this work, the target concentration level at the well, whether in a risk assessment scenario or during the
assessment of remediation efficiency, would be a deterministic parameter. Hence the n sensitivity in that context
would provide the sensitivity of the reliability index with respect to variations in the chosen target concentration.
Hence, if the sensitivity with respect to target concentration is sought, and with the limit-state function formulation
givenin (2.3), it can be easily shown that:
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|Du* G(u')
since the term 4, g(x*,n) in this case which is equal to UC g g(x*) reduces to 1.0.

DCtarget & (228)

The choice of distribution parameters of each basic random variable can have a profound impact on the reliability
estimate of the component of interest. For example, when considering the first-order decay coefficient describing
the biodegradation of an organic chemical to be uniformly distributed, the choice of the upper and lower limits
would have a significant impact on the probability of such a chemical to exceed the regulatory standards at a
receptor well downgradient from a leaking source.

Such sensitivities can also be obtained during areliability analysis. Let the joint probability density function of the
basic random variables f,(x) = f (x,0), where © is a vector of the distribution parameters describing the basic
random variables. The vector © could, for example, include the mean, standard deviation, and correlation
coefficients of the random variables. Madsen et a. (1986) have shown that:

Do o'J;,0 (2.29)

where J_ ,0 isthe matrix containing the partial derivatives of the transformation T with respect to the parameters
O, evaluated at the design point.

Cawlfield and Sitar (1987) indicate that the evaluation of (2.29) is cumbersome in general. This is because the
partial derivatives of the transformation T with respect to the distribution parameters, ©, are sometimes difficult to
obtain.

The sensitivities of the first-order probability of failure are obtained by applying the chain rule to (2.19).

[ REOM- o ANAB (2.30)

and

DOPFFORM:‘ (Pe B(@)m eB (2.31)
2.7 Uncertainty Importance Factors
Additional valuable information to the parametric sensitivity factors is provided by the uncertainty importance

factors of the reliability index. This indicates the importance of modeling the random variable X as a distributed
variable rather than as a fixed valued variable, the median of the distribution being the fixed value.

For statistically independent variables, it has been shown (Madsen, 1988) that omission sensitivity factors (defined
astherelative error in the first-order reliability index when abasic variable X; is replaced by a deterministic number
equal to its median X, ) are given by:

B( X = Xi,m) 1
B . \/ Y (2.32)
Itistherefore observed that the uncertainty importance factors, 100 X a,? as printed by PROBAN (Veritas Research,

1992b), give ameasure of the relative importance of modeling the uncertainty of a basic random variable, X, with
respect to the final probability outcome.

This concept naturally extends to higher dimensions. The relative error in the first-order reliability index of
representing a group of m mutually dependent variables, X,i=1,...,m, by their respective medians is given by
(Veritas Research, 1992a):

B(X =X i =1,...,m) _ 1
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Therefore, the uncertainty importance factors associated with a group of mutually dependent variables can be

expressed by the quantity 1002": laiz. In case m=1, the results of (2.33) reduce to that of (2.32).

Importance factors allow for the identification of the random variables which have the least impact on the final
reliability outcome. Each of these variables can then be replaced, for all practical purposes, by adeterministic value,
its median for example. Therefore, the importance factors are very useful in reducing the number of basic random
variablesin large sizereliability models. Importance factors are further explored in Section 3.

2.8 System Reliability

In the preceding section, we have looked at cases where the state of the system is described by a single limit-state
function, i.e., having a single “mode of failure’. However, a situation can arise that necessitates the simultaneous
consideration of several limit-state functions; for example, if we consider the probability that the contaminant
concentrations at any of severa points exceed a predetermined critical value. This is important in exposure
assessment situations where the interest is on more than one point of human exposure in the aquifer, or when
assessing the performance of a remediation scheme based on the likelihood of success to meet the target cleanup
levels at every point in the aguifer. In this case, the state of the system is described by the states of its components:

g (X)=C -G(X) (2.34)

where each limit-state function g.(X), i=1,...,m, defines whether the target concentration C, has been exceeded by
the simulated concentration at point i,i=1,...,m, in the solution domain.

By definition of the problem, failure of the system occursif at least one of its componentsfails, that is, the system
under consideration is a series system. Hence, the system failure probability can be expressed as

m m
RS = P[Ulgi (x) < 0} =1- P[ﬂl gi(x) > 0} (2.35)
The calculation of P_¥¥*"is complicated due to the fact that the components g,(x) are usually statistically dependent
since they share some of the same basic random variables. Upper and lower bounds on the probahility of failure of
a series system can be obtained from the individua component failure probabilities, P, and the joint failure
probabilities in any two modes, P_.. The uni-modal bounds make use of the P_ terms only, and are given by
(Madsen et ., 1986):

FiFj"

m em m
max P < PSS By (2.36)
i= i=1

The bi-modal Ditlevsen bounds (Ditlevsen, 1979) make use of the individual modal failure probabilities and the
joint failure probabilities in any two modes:

P —max Feigy }

m i-1 m
R, + gz max{ P ,Zl P s ,0} s sh +i { j<i (2.37)

=2

The Ditlevsen bounds depend on the ordering of the failure modes (or components), F,, F,, ..., F_, and different
orderings may correspond to the largest lower bound and the smallest upper bound. Practical experience suggests
that the failure modes (i.e., g-functions) be numbered in a decreasing order of P (Madsen et al., 1986).

The modal and joint modal failure probabilities P, and P, respectively, used in formulating the above uni- and
bi-modal bounds were assumed to be exact failure probabilities. A first-order (FORM) approximation of these
modal and joint modal failure probabilities are given by (Madsen et al., 1986).
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P|:||:J PFIT'(:)JRM - q)( FORM ) CD( | FORM )

+J-PIJ (Pz( FORM,_ FORM, p)dp

Inwhich p; denotesthe correlation coefficient between thefailure modesi and j linearized at their design point. This
modal correlation coefficient is obtained astheinner product of the two unit normal vectorsat the modal design points

(2.38)

P = (xi* [d ].*T (239)
The integral in (2.38) must be evaluated numerically. To avoid this numerical integration, Ditlevsen (1979) has
proposed the following simple bounds on PE™:
ax(py, P )< PR <pt py if py; >0
(2.40)

0<RiE™ <min(p,,p,) if p;<0

where

FORM FORM
— B

\ll_pij

BEORM _EORM (2.41)
\/ 1- pij
pFORM

By substituting the above bounds on B;r™ in (2.37), the relaxed bi-modal bounds on P¥5°™ are obtained:

py=0(-BE™) -

P, =0(-BE™ ) -

i-1 m m
P + z max{ - z PFIF] ur }< P':S’Stem < z PFi - z I’IJEJ\X{P,:,,:] ,I} (242)
i=1 i=2 I
inwhich P and P, denote upper and lower bounds on P, respectively.

Finally, a measure of the “system” reliability can be presented by reporting the system reliability index, given by

By = 71— pYM) (2.43)
2.9 Monte Carlo Simulation Methods

In this work, verification of the first- and second-order reliability results is accomplished by comparing the
reliability results to that obtained by the Monte Carlo Simulation method. The zero-one indicator-based Monte
Carlo simulation method is used for that purpose. The method works as follows:

First, we define an indicator function, 1(x) such that:

(%)= 1 if g(x)<0
o if g(x)>0 (2.44)
Next, the Monte Carlo simulation estimates the probability of failure according to the following expression:
PF - J’g(X)so fx (X)dX = JXDIR" I(X)fX(X)dX :E[I (X)] (2.45)

where E[ ] is the expectation operator. By performing N Monte Carlo simulations by random selection of the
prescribed joint probability density of the vector X, the probability of failureisestimated asfollows:
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. 1N
E[PF]zﬁilen

6°[R.] = ﬁ i(p' - E[PF])

(2.46)

(2.47)

where p=1(x) and x. denotes the i simulation. The stopping criterion for most Monte Carlo simulation procedures
is when a threshold for the coefficient of variation of the estimate of P_ is reached. The coefficient of variation is

given by:
6| P,
c.o.v.=(f[ -]
B[R]
It can be easily shown that:
R P-(1-R
5[ ]= F<N )
i if B- issmall
N

(2.48)

(2.49)

which means that for small P_, and for a stopping criteria of coefficient of variation of 0.1, the number of Monte

Carlo simulations needed is about 100/P,..
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Section 3
Analytical Probabilistic Groundwater Modeling

Inthis section, thefirst- and second-order reliability methods are applied to an analytical contaminant transport code.
This phase of thework isintended as afirst step in which the use of the reliability methods istested on some simple
case studies, such that the different aspects of the methodology are investigated, and the limitations are assessed. In
this section, we areinterested in the assessment of groundwater contamination risk dueto the leaking of contaminants
from a waste source, where the Horizontal Plane Source model of Galya (1987) is utilized to solve cases of non-
reactive and reactive contaminant migration.

The use of the analytical transport code in this stage precludes the consideration of the spatial variability and
correlation structure of the aguifer properties (e.g., hydraulic conductivity). This is because analytical models are
usually simplistic models that cannot accommodate spatial variability in input parameters. Nevertheless, the
intention in thispart istwofold: (1) to perform aproof-of-concept type of study for illustrating the potential power of
thereliability methodswhen applied to groundwater contamination problems; and (2) to devel op a probabilistic tool
that can provide general indication of contamination risk, along with sensitivity of the results with respect to the
various basic sources of uncertainty, in a framework that can explicitly account for aquifer-related, source-related,
and, in the case of reactive solutes, chemical-related parameter uncertainty. Spatial variability of aquifer properties
isconsidered in Section 4.

3.1 Assessment of Groundwater Contamination

In order to assessthe potential of groundwater contamination, the probability that acontaminant leaking from awaste
sourcewill exceed athreshold level at awell downgradient from the sourceis estimated, along with the sensitivity of
this probability to the input random variables. The relevant parameters are assumed uncertain with prescribed
probability distributions. These parameters can be grouped into the following three categories:

1. Aquifer-related parameters, such as:

* hydraulic conductivity,

» soil porosity,

» soil bulk density,

» fraction of organic carbon, and

» longitudinal and transverse dispersivities.
2. Source-related parameters, which include:

e sourcedimensions, and

*  sourceconcentration.

3. Chemical-related parameters (in case of a reactive solute). For example, the organic carbon partitioning
coefficient can be assumed uncertain. Furthermore, uncertainty in the reaction kinetics of the chemical can also
be considered. For exampleif the biodegradation of the chemical under consideration is assumed to follow first-
order kinetics, then first-order decay coefficient may be assumed uncertain.

3.2 Models Utilized

The uncertainty analysis of groundwater contaminant transport is developed by extending a deterministic semi-
analytical contaminant transport model (Galya, 1987) to include the effect of parameter uncertainty, through linking
it with the general purpose probabilistic analysis program PROBAN (Veritas Research, 1992b). A brief description
of each model follows.

3.2.1 Horizontal Plane Source Model

The proposed methodol ogy istested using the Horizontal Plane Source model developed by (Galya, 1987), whichis
athree-dimensional, semi-analytical model that uses Green’ sfunction solutions, along with numerical integration to
simulate uniform one-dimensional advective transport in the x-direction with three-dimensional dispersioninthex-,
y-, and zdirections. It can incorporate retardation and first-order decay. The advection-dispersion equation of
transport assuming a homogeneous and isotropic aquifer is given by
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where

= concentration of contaminant [L3/T]
= seepage velocity in the x-direction [L/T]
=time[T]
= dispersion coefficient in x-direction [L%T]
o, u
dispersivity in x-direction [L]
= dispersion coefficient in y-direction [L%T]
=au
= dispersivity in y-direction [L]
dispersion coefficient in z-direction [L%/T]
o u
= dispersivity in z-direction [L]
mass source flux [M]
porosity of soil matrix in aguifer
first-order decay coefficient [T]
retardation factor

= 1+p K /6
p, = bulk density [M/L?]
K, = distribution coefficient [L%M]

O~<0

0.2

x NU~<Q
I

%]

>0

Initial condition applied to solve the transport equation is given by

C=0 at t=0 (3.2
and the boundary conditions are given by

C=0 a y=xow (3.3
oC

,—=0 at z=0 34
37 (34)
oC

,—=0 at z=H 3.5
37 (3.5
C=0 a z=ow (3.6)

where H isthe aquifer thickness. The three-dimensional analytical solution which gives the contaminant concentra-
tion at any point in space for an instantaneous release of a unit mass of contaminant is given by (Galya, 1987)

C= - XX % (LD Zo (20T (37)

where
T = degradation function
= exp(-At) for first-order degradation and A includes the effect of hydrolysis, biodegradation, and
chemical reactions
Xy Y,and Z, = Green'sfunctions for the transport in the x-, y-, and z-directions, respectively.

Green’s functions for a source extending from -L/2 to L/2 in the x-direction and from -B/2 to B/2 in the y-direction
are given by Galya (1987) as:

A G ) (BoXX %)
2L J4D,t/R J4D,t/R

Xo= (3.8)
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where

L = width of sourcein x-direction
X = distance in x-direction to cal culation point
X,  =distancein x-direction to center of source

af =error function

and
B4y-— B_v+
oot GrYoY) o (Boy+y) 9
2B \/4Dyt/R \/4Dyt/R '

where

B = length of sourcein y-direction

y = distancein y-direction to cal culation point

y,  =distancein y-direction to center of source

For a source located at the top of an aquifer of infinite thickness:

Z,=exp(-2°/(4Dt/R))/JTDt/R (3.10)

whereas for a source located at the top of an aquifer having a thickness H:

m1°D,t

z, :ﬁ(l +2 nilexp[ —H—ZRZJ cogmmz/H )j (3.11)

Galya (1987) indicatesthat applying aconvolution integral with respect to time providesfor the concentration dueto
acontinuous release at arate M(1) for any time, 1, following the beginning of release:

1
C= oR JoM(T) Xo (6t =T) Yo(y,t =) Zo(z,t =1) T(t -1 )t (3.12)
where M = Mass released per unit time.

The aforementioned integration is carried out numerically, thus obtai ning the concentration at any point downgradient
from the source. Input to the model includes the seepage velocity, dispersivitiesin the x-, y-, and z-directions, soil
porosity, aquifer thickness, first-order decay coefficient, organic carbon partitioning coefficient, soil bulk density,
fraction of organic carbon, receptor location, along with the source location, dimensions, concentration and
infiltration rate. The model can accommodate any number of sources with varying concentrations, and any number
of receptor locations.

3.2.2 PROBAN

Physical parameter uncertainty is considered by linking the transport model to the general purpose probability
analysis program PROBAN (Veritas Research, 1992b). PROBAN is a software package that is designed for
sophisticated probabilistic analysis. It has aflexible input module, allowing for the definition of ssmple models as
well as sophisticated modelswith complicated dependencies. It providesfor avariety of methods aimed at different
types of probability and distribution analyses, along with sensitivity measures. PROBAN comes equipped with a
distribution library that contains more than twenty probability distributions. Thus the user can create any marginal
probability distribution or joint density of the input random variables, by assigning the required distribution to the
respectivevariables.

3.2.3 HPS-PROBAN Model

Figure 3.1 isaschematic presentation of the various elementsinvolved in the combined HPS-PROBAN model. The
probabilistic transport model can be applied asa“black box” without necessitating agreat deal of knowledge of the
reliability theory on the user’s part. Input to the model include physical parameters uncertainty as well as
deterministic parameters.
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Figure 3.1 Flow chart of the combined HPS-PROBAN analytical probabilistic screening model. (Reprinted from Probabi-
listic screening tool for groundwater contamination assessment, 1995, by M. M. Hamed, J. P. Conte, and P.B.
Bedient with permission of Journal of Environmental Engineering, ASCE.)

Various levels of satistical information can be accommodated by the model. When only incomplete statistical
information is available, the first two moments of each random variable are specified, without providing a specific
probability distribution. If some, or all, of the random variables are correlated, this information can be readily
incorporated into the model through correl ation coefficients. When thereisincomplete statistical information, only an
“ad-hoc” estimate of the probability of failure can be obtained. On the other hand, if complete probability information
isavailable, the input random variables are defined by their full joint density function.

The user is aso prompted to formulate the limit-state function for the site-specific conditions, which identifies the
performance criteria of the component being considered. It should be noted that the formulation is different in the case
of continuous and instantaneous leaking sources, and differs depending on whether groundwater flow or contaminant
transport is the primary focus of the study.

Once the limit-state function is formulated and the input variables are provided, the model applies the first- and
second-order reliability methodsto provide the user with the probability of failure at the receptor well, the reliability
index characterizing the transport scenario, and the sensitivity of the reliability index (or the failure probability) to
uncertaintiesin the basic random variables. The decision regarding the assessment of groundwater contamination risk
can be made with the probabilistic outcome available. The sensitivity information can help the user assess the worth
of available data and guide in future data collection protocols. Monte Carlo simulations of the failure probability, or

22



of the concentration at the receptor well, can be readily provided by the HPS-PROBAN model with minor
modificationsto the input file.

The interface between PROBAN and HPS is done using FORTRAN 77 user-defined subroutines, and the HPS-
PROBAN is run on a SUN SPARCstation 2. In the FORM/SORM analysis, HPS is used at each iteration in the
constrained optimization routine used to obtain the design point (as discussed in Section 2) to provide an estimate of
the limit-state function for the current realization, x, of the vector of random variables, X. The search algorithm
usualy convergesto aminimum in lessthan 20 iterations. To ensurethat aglobal minimum isobtained, the user may
chooseto run the probabilistic model with different starting points, and check whether the algorithm convergesto the
same solution at each time.

3.3 Non-reactive Solute Transport

First, the methodology is demonstrated on a couple of cases of transport of a conservative (non-reactive) solute in
groundwater. This meansthat the only mechanismsinvolved in the solute transport are advection and dispersion. The
soluteisassumed to undergo no chemical transformations, biological degradation, or sorption to the soil matrix. The
sourceisassumed continuous. In thefirst of those two cases, afewer number of random variablesisconsidered. This
will allow us to look into a number of parametric sensitivity analyses, and present them in a way that would be
difficult with casesinvolving alarger number of random variables.

3.3.1 Limit-state Function Formulation

The problem of interest in this phaseisto study the probability that the concentration of agiven contaminant leaking
continuously from a source exceeds a pre-determined target level at a downgradient water supply well during the
simulation time of interest. Figure 3.2 shows a schematic of the case study setup. The formulation follows that of
Cawlfield and Sitar (1988).

In the case of non-reactive solute, we look at the normalized target concentration at the receptor well, (C(X)/C),
where C is the source concentration and C(X) is the simulated concentration when parameter uncertainty is taken
into account. Hence the limit-state function is formulated as follows:

9(X)=(C/Co) o ~C(X)/Co (3.13)
where (C/C)),, .. Is the pre-specified normalized target concentration at the well.

Gas-Food
y =
« |l | receptor
| unsaturated zone well
water table

saturated zone
contaminant plume

groundwater flow

4

Figure 3.2 Schematic of the case study setup. (Reprinted from Probabilistic screening tool for groundwater
contamination assessment, 1995, by M. M. Hamed, J. P. Conte, and P.B. Bedient with permission of
Journal of Environmental Engineering, ASCE.)
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Component failure occurs when g(x) (for a given redlization x, of the random variables) is less than zero; that is,
when the normalized target concentration at the receptor well isexceeded. Notethat thisformulation isintended for
a continuous source transport problem, in which case the concentration at the receptor well increases withtimein a
monotonic fashion. This implies that once the target concentration at the receptor well is exceeded (and failure
occurs), the concentration at the well will always be greater than the target value as time continues to increase, and
failure conditions will continueto prevail.

3.3.2 Inputsto the Case of Non-reactive Solute (Case 1)

The probability of failure at areceptor well that is 100 m downgradient from the source was studied, considering the
seepage velocity, along with the dispersion characteristics of the aguifer as random variables. Input to the model
includes deterministic parameters (Table 3.1) as well as random variables (Table 3.2). For the case of shifted-
lognormally distributed variables, the mean, standard deviation, and the minimum values are given. Mean and
standard deviation are given for the normally distributed variables.

Table 3.1 Deterministic Input Parameters for the Non-reactive Case (1)

Variable Units Value
source length, B m 80.0
source width, L m 20.0
aquifer thickness, H m 60.0
aquifer porosity, 0 - 0.35
simulation time, t year 20.0
source concentration, C; mg/L 1.0
infiltration rate, Q m/year 1.0
retardation factor, R -- 1.0
1% -order decay coefficient, A year? 0

Table 3.2 Random Input Variables for the Non-reactive Case (1)

Variable Units Distribution
seepage velocity, u m/year SLN(10.0,3.0,1.0)
longitudinal dispersity,a, m N(5.0,1.5)
horizontal dispersivity, a, m 0.20f a
vertical dispersity, a, m 0.050f O

S_N(mean, std. dev., lower limit): Shifted Lognormal N(mean, std. dev.): Normal

3.3.3 Results of the Case of Non-reactive Solute (Case 1)

Instead of performing the analysis for a single normalized target concentration, a set of such target concentrations
was considered. In other words, the reliability problem is solved a number of times, varying the term (C/Co)targ ., that
appearsin Equation 3.13 at each time. Note that the probability distribution of the failure event under consideration
can be obtained by varying the target concentration values and using the parametric sensitivity resultswith respect to
limit-state function parameters. This gives amore flexible way of assessing the groundwater contamination risk at

the receptor well for any selected target concentration value.

The analysis was done using both FORM and parabolic SORM as the probability analysis options. The results are
shown in Figure 3.3. The decrease in failure probability as the target (C/C)) increases is expected, since the
probability of exceeding a high concentration value downgradient is usually less than that of exceeding a smaller
value for a continuous source.

The deviation between FORM and SORM failure probabilities indicates the nonlinear nature of the limit-state
function, and thus a second-order surface is expected to provide a better approximation of the failure surface at the
design point in the standard normal space.

To generalizethe analysis even more, thelocation of the receptor well wasvaried, in order to study the effect of both
distance from the leaking source as well as the specified target concentration level (C/C) on the failure probability.
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Figure 3.3 Probability of failure at alocation 100 m downgradient from the leaking source.

Figure 3.4 illustrates the failure probability “surface” as a function of both the distance from the source and the
normalized target concentration. Figure 3.5 shows horizontal “slices’ in that surface, thus producing contours of
equal failure probabilities, for the range of distances from source, and target concentration values of interest. The
figuresindicate that for agiven target (C/C ), the probability of failure decreases asthe well distance increases, and
that for agiven well location, the probability of failure decreases with increasing the normalized target concentration.
Although the results are qualitatively intuitive, the quantitative aspects could not have been obtained without the
formal probabilistic computations described in the above formulation.

Various parametric studies can al so be performed using the probabilistic program, to study the effect that the various
distribution parameters of theinput random variables have on the probabilistic outcome. An exampleis given below,

Probability of Failure

150

05 50 Distance from source (m)

Target (C/Co)
Figure 3.4 Failure probability surface at various well locations for different normalized target concentration levels.
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Figure 3.5 Contours of equal failure probabilities for case 1.

where the mean value of the longitudinal dispersivity a, isalowed to take on valuesintherange of 1.0to 5.0 meters.
The effect on the probability of failure at different downgradient locationsis shown in Figure 3.6. The decreaseinthe
probability of failure with theincrease in the mean value of a, isintuitive, since the higher the dispersivity in the x-
direction, the higher the dispersivitiesin the y- and z-directions will become (because we considered a, and a, to be
fully correlated to a). Therefore, the mass of contaminant will be dispersed on a larger volume, and the
concentration at the well will decrease, thus reducing the probability of failure. Besides, the figure shows that the
probability of failure decreases with distance from the source for the same value of mean longitudinal dispersivity.
Thisisdueto thefact that for larger distances from the leaking source, the spread of contaminant is greater than that
at closer distances, and the probability of exceeding the designated normalized target concentration will be smaller.

Additional valuable information to the failure probability and the parametric sensitivity factorsis provided by the
importance factors. Those were explained in Section 2 and they indicate the rel ative importance of the uncertainty in
each basic random variable.

Figure 3.7 shows the change in importance factors with changing the mean value of a, along with the downgradient
distance from the source. It is clear that in this case the probabilistic outcomeis more sensitive to the uncertainty in
the seepage velocity than the uncertainty in the dispersivity for the most part, and only when the mean value of the
longitudinal dispersivity exceeds avalue of about 4.0 m, and for distances greater than about 90.0 m from the source,
the sensitivity to the uncertainty in the longitudinal dispersivity becomes significant. This result shows that for
receptor |ocations away from the source, the effect of dispersion becomes noticeable, since at large distancesfrom the
source larger dispersivities would cause the contaminant to spread over alarger volume, reducing the concentration
at the receptor location, hence decreasing the probability of failure. Theresultsof the sensitivity analysisin thiscase
are not intended to be general and will vary with the choice of problem configuration, prescribed probability
distributions, and other pertinent factors. However, the methodology is applicable to al cases.

To study the effect of source strength, further analysis was performed considering the source initial concentration
(C,) to bearandom variable, having anormal distribution, with amean of 1.0 mg/L, and acoefficient of variation of
0.3, and still assuming the seepage velocity along with the longitudinal, transverse horizontal and vertical
dispersivities to be random variables with the distributions given in Table 3.2. The analysis was carried out by
estimating theimportance factors of these random variables, for arange of normalized target concentrations, and for
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Figure 3.6 The effect of the mean value of the longitudinal dispersivity a on the probability of failure at different
downgradient locations.
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Figure 3.7 The effect of the mean value of the longitudinal dispersivity o, on the importance factors (upper surface
represents seepage velocity, lower one represents dispersivity).
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varying receptor well locations downgradient from the source. In this case, by target (C/C) we mean the
concentration normalized with respect to the mean source concentration (which isequal to 1.0 mg/L).

Results are shown as a three-dimensional plot in Figure 3.8, indicating the paramount importance that the source
strength uncertainty has on the reliability measure. It is clear from this plot that, for the range of distances studied,
the source strength has such asignificant impact on the reliability estimates, regardless of the location of the receptor
well from the source. This is not the case for the importance of the seepage velocity and dispersivity, which are
affected by the distance from the source. A vertical section of thisfigure at adistance of 60 m downgradient from the
source is shown in Figure 3.9, which shows the greater sensitivity of the reliability index to the source strength
uncertainties than to the uncertainty of the dispersivity or seepage velocity.

3.3.4 Inputsto the Case of Non-reactive Solute (Case 2)

The deterministic parameters to this case study are listed in Table 3.3. The probability of failure at a receptor well
downgradient from the waste sourceis studied. Thewell isassumed to be screened from the water table to a depth of
2.0 m below the water table, hence the observation point is taken to be 1.0 m below the water table.

Input random variables to the case study are categorized into aquifer-related and source-related parameters and are
listed in Table 3.4. Aquifer-related parametersinclude seepage velocity, dispersivitiesin the x-, y-, and z-directions,
and soil porosity. Source-related parametersinclude the source dimensions parallel to the x- and y-axes. Probability
density functions and relevant parameters for the aquifer-related parameters were obtained from the nationwide
survey conducted by the EPA in 1988 (U.S. EPA, 1988), along with the 400-site survey conducted by Newell et al.
(1990). The selection of the uniform probability distribution for the source dimensions is arbitrary. Since there is
usually limited information on the extent of the source area, the uniform distribution, which impliesequal likelihood
of occurrence, isbelieved to conveniently describethelevel of uncertainty related to the source dimensions. Thebasic
random variables are assumed to be mutually statistically independent.

Importance factors (%)
&
L

0
100

Target (C/Co)

Distance from source (m)

Figure 3.8 Importance of source strength, seepage velocity, and dispersivity on the reliability estimate (upper surface:
source strength, middle: seepage velocity, lower: dispersivity).
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Figure 3.9 Importance factors at alocation 60.0 m downgradient from the leaking source.

Table 3.3 Deterministic Input Parameters for the Non-reactive Case (2) (Reprinted from Probabilistic screening tool for
groundwater contamination assessment, 1995, by M. M. Hamed, J. P. Conte, and P.B. Bedient with permis-
sion of Journal of Environmental Engineering, ASCE.)

Variable Units Value
Aquifer thickness, H m 30.0
simulation time, t year 20.0
x-distance to the well m variable
y-distanceto thewell m 10.0
z-distance to the well m 1.0
infiltration rate, Q m/year 1.0
retardation factor, R -- 1.0

1% -order decay coefficient, | year! 0.0

Note: z-distance is measured from the water table

Table 3.4 Random Input Variables for the Non-reactive Case (2) (Reprinted from Probabilistic screening tool for
groundwater contamination assessment, 1995, by M. M. Hamed, J. P. Conte, and P.B. Bedient with permis-
sion of Journal of Environmental Engineering, ASCE.)

Variable Units Distribution
Aquifer-related Parameters

seepage velocity, u m/year LN(126.7, 227.37)

x-dispersivity, o m SLN(10, 4, 0.01)
y-dispersivity, a, m SLN(1, 0.4, 0.001)
z-dispersivity, a, m SLN(0.1, 0.04, 0.0001)
soil porosity, 6 —— U(0.3,0.5)

Sour ce-related Parameters
source length, L m U(50,100)
source width, Ly m U(50,100)

LN(mean, std. dev.):Lognormal  SLN(mean, std. dev., lower limit):
Shifted Lognormal ~ U(lower limit, upper limit): Uniform
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For the case of lognormally distributed variables, the mean and standard deviation are given, whereas for shifted
lognormal variables, the mean, standard deviation, and the minimum values are given. Lower and upper limits are
provided for the case of uniformly distributed variables.

3.3.5 Resultsof the Case of Non-reactive Solute (Case 2)

The probability of failure at receptor wells at distances of 200 m and 400 m downgradient for arange of normalized
target concentration levels are shown in Figure 3.10. First-order and curvature-fitted second-order reliability
methodswere used. The decreasein failure probability with target concentration increaseisintuitive, sinceit isless
probable for the solute concentration to exceed a high value at the downgradient well than a smaller value for a
continuous source.

FORM and SORM failure probabilitieswere found to bein good agreement for low target concentration values (and
hence for higher failure probabilities). However, FORM and SORM results depart from each other for large target
concentration values (and lower failure probabilities), which indicates the appreciable non-linearity of the limit-state
surface at the design point. In this case, a second-order method is expected to provide a better approximation of the
failure surface at the design point sinceit accountsfor the principal curvature of the limit-state surfacein the standard
normal space.

Figure 3.11 illustrates the effect of changing the normalized target concentration levels at the receptor well on the
FORM and SORM réliability index for the 200 m and 400 m cases. Since there is a monotonic one-to-one
relationship between the probability of failure and reliability index, the same trend of agreement at low normalized
target concentration levelsand discrepancy at large normalized target concentration levelsis observed for the FORM
and SORM results. The reliability index is a measure of the component reliability, such that it increases for
decreasing probability of failure.

The discrepancy between the FORM and SORM results are further investigated by estimating the percent difference
between the resultsfor varying normalized target concentrations and distances from the source. The absol ute val ue of
the percent difference was estimated as follows:

Probability of failure

-5 — FORM failure probability e
10 f - - SORM failure probability %
10_6 1 1 1 1 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Normalized target concentration

Figure 3.10 Effect of normalized target concentration levels on the probability of failure for the non-reactive case 2.
(Reprinted from Probabilistic screening tool for groundwater contamination assessment, 1995, by M. M.
Hamed, J. P. Conte, and P.B. Bedient with permission of Journal of Environmental Engineering, ASCE.)
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Figure 3.11 Effect of normalized target concentration levels on the reliability index for the non-reactive case 2. (Reprinted
from Probabilistic screening tool for groundwater contamination assessment, 1995, by M. M. Hamed, J. P.
Conte, and P.B. Bedient with permission of Journal of Environmental Engineering, ASCE.)

PFORM _ PS)RM
absolute percent difference = absol ute{FPTRMFj x100 (3.14)
F

Thisis shown in Figure 3.12. FORM and SORM failure probabilities were found to be in good agreement for low
target concentration values, or for high target concentration values at closer distances to the source. In other words,
the agreement between the FORM and SORM resultsis good for cases with high probability of failures (above 10*
for this particular case study and for the prescribed probability distributions). FORM and SORM results depart
significantly from each other, however, for large target concentration values, or for small target concentrations at
larger distances from the source, which indicates the appreciable non-linearity of the limit-state surface at the design
point, in which case the use of SORM is warranted.

The previous discussion draws attention to an important issue regarding the choice of SORM versus FORM as the
reliability analysis option. In many practical situations, FORM and SORM results would be in good agreement,
provided that the limit-state surface at the design point in the standard normal spaceis nearly flat. On the other hand,
when the limit-state function contains highly non-linear terms, or when the input random variables have an
accentuated non-normal character, SORM can produce more accurate results than FORM. However, it should be
recognized that SORM requires more computational effort than FORM. Asdiscussed, in component reliability, the
run time required for a FORM analysis grows proportionally with the problem dimensionality, n, whereas the
additional computational effort needed for a SORM analysis grows with n%2. Consequently, the selection of the
reliability method should be based on problem dimensionality, available computer resources, and the required level of
accuracy. In other words, one should always conduct a careful trade-off analysis between computational and
accuracy requirements. In this case study, the CPU times (user + system times) for FORM and SORM were on the
order of one minute and two and a half minutes, respectively.

The change of the importance factors with changing normalized target concentration levelsis shownin Figure 3.13.
It is evident that over the range of target concentrations selected, and for the probability distributions prescribed for
this case study, the probability of failure at the receptor well is most sensitive to the basic variabilitiesin the seepage
velocity. Sensitivities with respect to z-dispersivity and source length, L , come next. Theimportance factorsfor the
remaining variableswerelessthan 1.0% and were not plotted. Hence, although theimpact of seepage vel ocity on the
probabilistic outcomeis evident, the significance of the source-related uncertainty should also be recognized. When
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Figure 3.12 Percent difference between FORM and SORM failure probabilities results for the non-reactive case 2. (Re-
printed from Probabilistic screening tool for groundwater contamination assessment, 1995, by M. M. Hamed,
J. P. Conte, and P.B. Bedient with permission of Journal of Environmental Engineering, ASCE.)
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Figure 3.13 Effect of normalized target concentration on importance factors in non-reactive case 2. (Reprinted from
Probabilistic screening tool for groundwater contamination assessment, 1995, by M. M. Hamed, J. P. Conte,
and P.B. Bedient with permission of Journal of Environmental Engineering, ASCE.)

correlation between some of the input random variables was included, the resulting probability of failure waswithin
about 3% of the uncorrelated case.

3.4 Reactive Solute Transport

Asan example of transport of areactive solute in the subsurface, the proposed methodol ogy is applied to the case of
transport of o-xylene. A continuous leaking source is also used in this case. The concentration at a well 100.0 m
downgradient, and 1.0 m off the centerline (x-axis) is studied.
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3.4.1 Limit-state Function Formulation

Inthis case study, welook at actual (as opposed to normalized) o-xylene concentration at the receptor well, resulting
from the continuous leaking source. Note that 0-xylene undergoes adsorption to the soil matrix and biodegradation
in addition to advection and dispersion, hence the actual concentration of o-xylene at the receptor well will be much
smaller than that of a similar leak of a non-reactive solute. The limit-state function for this case is formulated as
follows:

g(X) = Ctarget _C(X)
isthe non-normalized o-xylene target concentration at the well.

(3.15)

whereC,_

3.4.2 Inputs to the Case of Reactive Solute

The deterministic parameters used in the case study are listed in Table 3.5 and the input random variables to the
model arelisted in Table 3.6.

Theinput random variables are classified into three categories: aquifer-related, source-related, and chemical-related
parameters. Basic random variables are assumed mutually statistically independent.

Table 3.5 Deterministic Input Parameters for the Case of o-xylene Transport (Reprinted from Probabilistic screening
tool for groundwater contamination assessment, 1995, by M. M. Hamed, J. P. Conte, and P.B. Bedient with
permission of Journal of Environmental Engineering, ASCE.)

Variable Units Value
simulation time, t _ year 20.0
x-distance to the well location m 100.0
y-distance to the well |ocation m 10
z-distance to the well location m 10
infiltration rate, Q m/year 1.0
sourc concentration, C, mg/L 200.0
contaminant type - o-xylene

Note: z-distance is measured from the water table

Table 3.6 Random Input Variables to the Case of o-xylene Transport (Reprinted from Probabilistic screening tool for

groundwater contamination assessment, 1995, by M. M. Hamed, J. P. Conte, and P.B. Bedient with permis-
sion of Journal of Environmental Engineering, ASCE.)

Variable

Units Distribution

Aquifer-related Parameters

seepage velocity, u m/year LN(126.7, 227.37)
dispersivity (x-direction), a, m SLN(10, 4, 0.01)
y-dispersivity (y-direction), o m SLN(1, 0.4, 0.001)
z-dispersivity (z-direction), o m SLN(0.1, 0.04, 0.0001)

soil porosity, 6 - U(0.3,0.5)

soil bulk density, p, glem?® U(1.2, 1.8)

fraction of organic carbon f. % weight SLN(0.0031, 0.0003, 0.001)

Source-related Parameters

source length, L
source width, L

m U(50,100)
m U(50,100)

Chemical-related Parameters

organic carbon partition coefficient,K __
1st -order decay coefficient, A

cmilg UEZO0.0, 900.0)
yeart U(1.456, 5.72)

LN(mean, std. dev.):Lognormal  SLN(mean, std. dev., lower limit): Shifted Lognormal

U(lower limit, upper limit): Uniform
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First-order kinetics have been extensively used to describe processes like natural biodegradation, chemical reactions,
and radioactive decay. For the purpose of this work, it is assumed that o-xylene undergoes natural anaerobic
bi odegradation by indigenous microorganismsfollowing first-order kinetics. Dueto changing depths of groundwater
elevation and fluctuation in levels of nutrients and electron acceptors, there is uncertainty in the value of the first-
order decay coefficient for the contaminant. This is taken into account by assuming the decay coefficient to be
random. The choice of the range of equally likely values of the first-order decay coefficient used in this work takes
into account actual ratesfor natural biodegradation reported by Wilson et al. (1993) for o-xylene. Asfor the organic
carbon partition coefficient, K_, the range of values were obtained from the listed values given by Fetter (1993).

3.4.3 Results of the Case of Reactive Solute

The effect of changing the target concentration levels at the receptor well location on the probability of failureis
illustrated in Figure 3.14. Both FORM and SORM (curvature-fitted) were used for the component reliability
analysis. As was observed and explained in the non-reactive case there is a similar trend in decreasing the failure
probability with increasing target concentration. For this application, FORM and SORM results agree reasonably
well for thewholerange. A similar trend was also noted in good agreement between FORM and SORM reliability
index for the whole range of target concentration levels. Thisis shown in Figure 3.15. The effect of correlation
between some of theinput random variablesin this case was similar to that of the non-reactive case, and theresulting
difference in the probability of failure was within about 5% of the uncorrelated case.

Theimportancefactorsfor arange of o-xylenetarget concentration levelsisshown in Figure 3.16. It isclear that over
the range of target concentration selected, and for the probability distributions prescribed for this case study, the
probability of failure at the receptor well is most sensitive to the basic uncertainty in the seepage velocity, the first-
order decay coefficient, the organic carbon partition coefficient, and, to a lesser extent, the source length L.
Therefore, although theimpact of seepage vel ocity on the probabilistic outcomeis pronounced, the significance of the
chemical-related and source-related uncertainty should be recognized and failure to account for these uncertainties
would cast shadows of doubt over the risk assessment results. The importance factors for other variables were
negligible (below 1.0%) hence they were not plotted. The apparent oscillation in the results are spurious numerical
artifacts due to the fact that the level of accuracy of the reliability algorithm varies dightly with the level of target
concentration levels resulting from the non-linear nature of the limit-state surface at the design point in the standard
normal space. Thetrend of the true behavior of the solution, however, remains clear.
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Figure 3.14 Effect of o-xylene target concentration levels on the probability of failure. (Reprinted from Probabilistic
screening tool for groundwater contamination assessment, 1995, by M. M. Hamed, J. P. Conte, and P.B.
Bedient with permission of Journal of Environmental Engineering, ASCE.)
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Figure 3.15 Effect of o-xylene target concentration levels on the reliability index.
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Figure 3.16 Effect of o-xylene target concentration on importance factors. (Reprinted from Probabilistic screening tool for
groundwater contamination assessment, 1995, by M. M. Hamed, J. P. Conte, and P.B. Bedient with permis-
sion of Journal of Environmental Engineering, ASCE.)

In Figure 3.17, the failure probabilities obtained by FORM, curvature-fitted SORM, and the classic Monte Carlo
simulation (MCS) are plotted for the well location described before, and for an o-xylene target concentration of 0.75
mg/L. The MCS and SORM results seem to be in good agreement. FORM results, however, depart from the “true”
solution predicted by the ensemble mean of the large number of Monte Carlo simulations.. It should be emphasized
that 10,000 Monte Carlo simulations were required to get a reliable estimate of the probability of failure (i.e., a
coefficient of variation of the estimate within the permissible limits, 0.02 in this case). FORM and SORM results
were obtained in less than 20 iterations, and the required CPU time on a SUN SPARCstation 2 was on the order of
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Figure 3.17 Comparison of FORM, SORM, and MCS estimate of the probability of failure for the o-xylene case study.
(Reprinted from Praobabilistic screening tool for groundwater contamination assessment, 1995, by M. M.
Hamed, J. P. Conte, and P.B. Bedient with permission of Journal of Environmental Engineering, ASCE.)

two minutes and three minutes, respectively. The 10,000 Monte Carlo results, on the other hand, were obtained in
about 60 minutes of CPU time on the same machine.

Thisclearly illustrates the power and computational efficiency of SORM through which the results can be obtained
at asmall fraction of the computational cost required for the classic Monte Carlo simulation results. Thefigureaso
indicatestheinaccuracy of the FORM resultsin thiscase. Nevertheless, FORM resultswere obtained in avery short
run time, hence it could be used to provide afirst estimate of the failure probability. Alternatively, the FORM design
point can then be used as the initial guess for the optimization routine used in SORM runs. The asymptotic
convergence of the classic MCSis evident by the way the MCS estimate converges to the failure probability which
is predicted by SORM.
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Section 4
Numerical Probabilistic Groundwater Modeling

41 General

In this Section, we devel op a probabilistic transport model based on anumerical groundwater contaminant transport
code. Theimpetusfor using the numerical transport code in this phase can be summarized in the following:

1. Numerical models alow for the consideration of more redlistic problems, with complex boundary
conditions and geometry.

2. They alow for the consideration of the spatial variability of the aquifer properties. In this case, the
formulation is done in terms of spatial random fields as opposed to random variables. Spatial random
fields describe variahility in the parametersin addition to correl ation structure between any two pointsin
space.

3. Itispossible, using numerical models, to examine a number of critical issuesin modeling groundwater
flow and transport problems. Examplesinclude:

(a) the effect of the discretization level of the solution domain on the accuracy of the results.

(b) the effect of the ratio of the discretization scale to the integral scale of the aguifer on the solution
accuracy.

(c) the effect of material heterogeneity on thereliability of the groundwater system considered.

4. Numerical models allow for the analysis of problems where the aquifer is stressed by pumping and/or
injection.

4.2  Selection of Numerical Transport Model

The selection of the numerical contaminant transport model, along with the reliability model should be carefully done
in order to assure robustness and efficiency of the resulting probabilistic transport algorithm. The transport model
chosen for this phase of the work is FLOTRAN developed by Clint Dawson at the Computational and Applied
M athematics Department (CAAM) at Rice University. The code iswrittenin FORTRAN 77. The underlying theory
of the solution is explained in Bell et al. (1988), and Dawson (1990, 1991, and 1993).

FLOTRAN is a recently developed finite element ssmulation tool for modeling unsaturated/saturated flow and
contaminant transport in porous media. The code solves Richard’s equation for flow combined with a system of
advection-diffusion-reaction equations describing contaminant transport. It assumes athree-dimensional, logically
rectangular domain, but allows for fairly general geometries by using smooth mappings between the logically
rectangular domain and a rectangular computational domain. Therefore, we describe the algorithms used in the
method in the context of brick-shaped elements.

FLOTRAN solvesthe governing flow equation using the mixed finite element method for spatial discretization and
fully implicit time discretization. The mixed finite element method applied to flow equations has been described in
numerous papers. Theversion employed hereinisdefined in the context of linear elliptic equationsin Arbogast et al.
(1998). In this method, hydraulic head and Darcy velocity are simultaneously approximated, with hydraulic head
approximated using constants in each element. Numerical integration is used to reduce the finite element equations
to a cell-centered finite difference schemein head variablesonly. Theimplicit time discretization leadsto a system
of nonlinear finite difference equations. These equations are solved using a damped Newton method with linesearch
backtracking to guarantee convergence from bad starting guesses (Dennis and Schnabel, 1983). The Jacobian
equations which arise at each Newton step are solved using a preconditioned orthomin iterative procedure.

The Darcy velocities and moisture content computed from the flow are used in the system of transport equationsfor
each contaminant species. These equations model the advection, diffusion, and chemical reactions of speciesin the
system. Each equation is of the form

0
e DI g g (4.1)
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where 8ismoisture content, ¢ isthe contaminant concentration, v isthe Darcy velocity, D isthe diffusion/dispersion
tensor, and g incorporates sources and sinks through wells and chemical reactions; g may be a function of severa
speciesin the system.

Equation (4.1) is solved numerically using atime-splitting approach. Given an approximation C(t) to c at sometime
t, we advanceto timet + ot by advecting and diffusing C(t), which gives an intermediate solution c(t + dt), then
incorporating reactionsusing C (t + dt) asinitial conditions. Thisultimately givesC(t + dt) = c(t + dt). Thistype
of splitting has been analyzed in Wheeler and Dawson (1988), and has been adopted and modified by a number of
other researchers, see, for example, Valocchi and Malstead (1992). The advantages of this approach are that the
advection and diffusion of each component can be performed separately (and in parallel if desired), advection-
diffusion and reactions can be modeled using appropriately-sized time steps, and different reaction models can be
easily incorporated.

Advection and diffusion/dispersion are modeled using the Godunov-Mixed Method, developed and analyzed by
Dawson and described in Dawson (1991, 1993). In this scheme a second-order accurate Godunov procedure (Bell et
al., 1988) is used to approximate the advective flux vc, and amixed finite element method, similar to that used for the
flow equation, is used to incorporate diffusion/dispersion. The resulting scheme is a cell-centered finite difference
method for contaminant concentrations. The advective flux is incorporated explicitly in time, while the diffusion/
dispersion step is implicit. By modeling advection explicitly and diffusion implicitly, a symmetric, diagonally
dominant and positive definite system of equationsis obtained at each time-step. Thissystemiseasily solved using
Jacobi preconditioned conjugate gradient. Although contaminant concentrations are approximated by constantsin
each cell, the Godunov-Mixed M ethod devel oped is second-order accurate in space and first-order accuratein time at
the center of each element. This has been observed both theoretically and computationally.

When nonlinear reactions are present, with reaction terms depending on a number of species, a system of ordinary
differential equations must be solved after each component has been transported. This system is approximated using
asecond-order Runge-Kutta procedure, however, more sophisticated techniques may also easily be incorporated.

4.3 Selection of Reliability Shell

The general purpose reliability shell CALREL (Liu et al., 1989) islinked to the finite element program FLOTRAN.
Experience with the analytical phase of the research showed that although PROBAN is a sophisticated and versatile
probabilistic analysis program, it is better suited for analytical transport problems. Thisismainly dueto the extensive
amount of preparation and interface programs that the user has to provide. Experience with CALREL, on the other
hand, has established the advantages of using it with anumerical scheme, sinceit lendsitself more easily to interface
with numerical models with large numbers of input random variables.

CALREL isageneral purposereliability analysis shell that is designed to compute probability integralsaswell asthe
sensitivities of estimates of the probability of failure with respect to deterministic parameters defining the probability
distribution or the limit-state function. CALREL is modularized into a set of routines to perform:

First-order reliability analysis (FORM),
Second-order reliability analysis (SORM),
First-order sensitivity analysis,

First-order bounds for series systems,
Monte Carlo ssmulation, and

Directional simulation.

oukrwhrE

Input to the CALREL shell includes:

1. Ananaysisflagto determine whether component or system reliability is used.
2. Thechoice of the optimization method used in determining the design point, including:
(a) HL-RF method,
(b) modified HL-RF method,
(c) gradient projection method, and
(d) sequential quadratic programming method.
3. The statistical datafor the random variables, thisin turn includes:
(a) Whether the variables are correlated or independent,
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(b) Whether the variables are described by their marginal distributions and correlation matrix, or by
conditional and marginal distributions and correlation matrix,
(c) The probability distribution of each random variable, and
(d) Deterministic parameters used for defining the limit-state function.
4. Typeof reliability or smulation analysisto be performed.

4.4 FLOTRAN-CALREL Interface

Linking CALREL and FLOTRAN isdone through the use of three user provided routines. Thefirst routine, UGFUN
defines the limit state function(s). In some instances, the user may choose to provide analytical derivatives of the
limit-state function(s) with respect to the basic random variables. Inthat case, these analytical derivatives are coded
in the second routine, UDGX. The third routine, UDD is used to provide for user specified probability distributions
that are not available in the CALREL distribution library. However, since the random variables considered here
follow either normal, lognormal, or uniform distributions, which are already available in the CALREL library, the
UDD routine is not used in this work.

Theinterface between CALREL and FLOTRAN isdone by considering the numerical transport code as a subroutine
that is called using the UGFUN subroutine of CALREL. The combined model is used to calculate the probability of
exceeding a certain target concentration, at the location and time specified by the user. By having arange of target
concentration values, acumulative distribution function (CDF) of the failure probability can be plotted, which shows
the probability of having aconcentration that islessthan or equal to the corresponding target concentration. Using the
finite difference method, one can derive the probability density function (PDF) by differentiating the CDF for the
same range of target concentration values. An alternative way of deriving the PDF isby plotting the sensitivity values
of the probability of failure with respect to the deterministic parameter (which isthetarget concentration in this case)
with an opposite sign, since this is equivalent to the dope of the CDF at that value of the target concentration.

At each iteration in the process of determining the design point, UGFUN calls FLOTRAN to evaluate the limit-state
function g(x) and its gradient for a given realization of the discretized spatial random field x. The gradient whichis
required by the nonlinear optimization schemeis approximated using the central finite difference method. Thus, the
ith element of the gradient matrix is approximated by

0g(X) _ g(x +4%)-g(% —Ax)
oX: 21X

(4.2

in which the step size A x is chosen as a small fraction of the standard deviation of each random variable x. The
combined FLOTRAN-CALREL code provides the probability of failure, reliability index, and sensitivity informa-
tion.

Figure 4.1 illustrates the stepsinvolved in this phase. The general layout of the flow chart is essentially of the same
structure as the HPS-PROBAN flow chart, except for the step where spatial random fields are discretized. Thisis
explained in thefollowing sections.

45 Spatial Random Fields

In the following numerical probabilistic analyses, the hydraulic conductivity is modeled as a spatial random field,
w(s). It is assumed that the statistical information available on the aquifer property consists of pointwise (or
marginal) probability distribution, F,, (w), and the spatia correlation coefficient function, p, (s,;s,) (i-e , second-
order joint moments). Thus, it isastate of incomplete probability information which is made complete by assuming
that the transformed random field, V(s)=®"[F, w(s)], is Gaussian with zero mean, unit variance, and spatial
correlation.

This probabilistic model is the random field version of the Nataf model defined in Section 2 for multiple random
variables. The spatial correlation structure of the hydraulic conductivity is considered to be of the exponential type

pun(h=of | “3)

where [h =10 s,s, [ isthelag (separation) distance, and A denotes the correlation length. This formulation
assumes statistical isotropy, i.e., the correlation coefficient function depends only on the distance between spatial
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Figure4.1 Flow chart of the numerical probabilistic transport model. (Reprinted from Probabilistic modeling of aquifer
heterogeneity using reliability methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson, with
permission of Advancesin Water Resources.)

locations and isindependent of direction. The correlation length is a measure of the rate of random fluctuations of a
random field. It corresponds to the distance over which the correlation coefficient drops from 1 to €'=0.368. The
exponential correlation function isused here since it has been shown to adequately describe the spatial correlation of
the log-conductivity data (Bakr et a., 1978; Jang et al., 1994).

To perform a finite element reliability analysis of a system, it is required to discretize the spatial random field
considered. This means that the spatial random field will be represented by an equivalent set of random variables.
The random field discretization method employed in this study is the midpoint discretization method. Here, the
random field values are defined at afinite set of discrete points, which corresponds to the midpoint (or centroid) of
each finiteelement. Thentherandom field isrepresented intermsof avector of random variables, X, the elements of
which are correlated (Der Kiureghian and Ke, 1988). The correlation coefficient matrix is obtained directly from the
correlation coefficient function p, (h) and the separation distances between the centroids of the finite element.

Other types of correlation functions used in groundwater flow and transport problems are described by Cawlfield and
Sitar (1987). Although only one correlation function is considered in this work, other types of correlation structure
are provided for the sake of completeness. The forms are given for statistically isotropic functions:

e Thelinear correlation functionis given by
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0 for [h[>A
* Thesguared exponentia autocorrelation function is of the form
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* The second-order autoregressive correlation function, on the other hand, is
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* Thespherical correlation function is given by
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4.6 Applications

In Section 3, we presented the application of FORM and SORM to simple analytical probabilistic groundwater
models. The developed models allowed for the assessment of the extent of groundwater contamination from a
continuous leaking source at the screening level, accounting for aguifer-, chemical-, and source-related parameter
uncertainty. Reliability methods were found to be very efficient in these types of analyses.

Jang et al. (1994) applied FORM and SORM methods to probabilistically model contaminant transport in one- and
two-dimensions. They applied their code to estimate the probability of exceeding target concentrations at specific
points, taking into account the spatial random variability of theinput parameters, along with their spatial correlation.
They concluded that the probability of failure increases as the correlation scale increases and approaches that
obtained using the analytical transport model, which represents the transport in a perfectly correlated medium. The
sengitivity analysis showed that the solution ismost sensitive to hydraulic conductivity near both the source and target
regions. They also found that the second-order reliability method, SORM, can handle large variance of the input
parameters; something which is not possible with many of the current available techniques.

Thework presented here extends the work in the sense that the formulation is similar, but more emphasisis given to
issues like the analysis of failure at several wellsin the aquifer, the use of reliability methodsin plume containment
and remediation, and the effect of the presence of alower conductivity lens on the estimated reliability.

4.6.1 Symmetric and Asymmetric Target Wells
Thelimit-state function is given by

9(X)=Ciarge ~C(X) (4.8)
where C, gt is the target concentration at the well and C(X) is the simulated concentration taking into account the
effect of parameters uncertainty. Figure4.2illustratesthe case study setup. A non-reactive chemical leaking from the
waste source is carried downgradient due to advection and dispersion to downgradient observation points, located
symmetrically and asymmetrically as shown. The study areais 66.0 m by 42.0 m. The domain isdivided into 11x7
grid blocks. Input parameters used in this case study are listed in Table 4.1.

The hydraulic conductivity is assumed to follow alognormal distribution, with a mean of 5.0 x 10 cm/sec and a
coefficient of variation of 1.0. The spatial correlation structure is assumed to follow an exponential pattern, with a
correlation length of 18 m. Left and right constant head boundaries are set so that the resulting hydraulic gradient is
0.01.

The midpoint method is used to discretize the spatial random field into random variables. Thelatter are essentially the
grid block hydraulic conductivities. Therefore, the number of random variables to be considered is 11x7=77. The
target concentration level istaken to be 2.0 mg/L.

The design point, which is the realization of hydraulic conductivity at the most likely failure scenario at the
observation well is shown for the symmetric observation well in Figure 4.3(a). It isclear that the grid block hydraulic

41



No-flow boundary

P ]

4 2
e ]
No-flow boundary

Constant head boundary Constant head boundary

. Contaminant Source

®  Symmetric target node

B Asymmetric target node

Figure 4.2 Setup of the numerical case study.

Table 4.1 Input Parameters for the Numerical Case (Reprinted from Numerical stochastic analysis of groundwater
contaminant transport and plume containment, 1996, by M. M. Hamed, P.B. Bedient, and J. P. Conte with
permission of Journal of Contaminant Hydrology.)

Variable Units Value
Deterministic Data

grid dimension, Ax=Ay m 6.0
aquifer thickness, H m 6.0
aquifer cPoros| ty, © m3/m3 04
longitudinal dispersivity,a m 0.2
transverse dispersivity, a, m 0.02
simulation time, t day 350.0
source concentration, G, mg/L 10.0

Random Field Data

hydraulic conductivity, K cm/sec LN(5.0x1073, 5.0x1079)
correlation scale, A m 18.0

LN(mean, standard deviation): Lognormal

conductivities at the design point attain their maximum along the path lines connecting the source to the observation
point.

Gamma sensitivities are shown in Figure 4.3(b) for the symmetric observation well. These show the scaled and
normalized sensitivities of the reliability index with respect to equally likely changes in grid block hydraulic
conductivities at the design point. Sensitivities are higher with respect to the hydraulic conductivity of the grid blocks
at the source, the observation well, and a ong the streamlines connecting thetwo. Symmetry of the design point and
sensitivitiesfor the symmetric case areintuitive.

The design point and gamma sensitivities for the asymmetric observation well are shown in Figure 4.4(a) and Figure
4.4(b), respectively. In this case, the hydraulic conductivity at the design point is also at its maximum aong the
contaminant travel path. Asfor the gamma sensitivities, these are higher at the source, observation well, and along the
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Figure 4.3 Results for the symmetric well: (a) design point, (b) gamma sensitivity, (c) delta sensitivity. (Reprinted from
Numerical stochastic analysis of groundwater contaminant transport and plume containment, 1996, by M. M.
Hamed, P. B. Bedient, and J. P. Conte with permission of Journal of Contaminant Hydrology.)
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Figure4.4 Resultsfor the asymmetric well: (a) design point, (b) gamma sensitivity, (c) delta sensitivity.  (Reprinted
from Numerical stochastic analysis of groundwater contaminant transport and plume containment, 1996, by
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connecting region. Sincethe observation well isasymmetric with the source, the design point and gamma sensitivities
are also asymmetric.

Sensitivity information is very useful in designing future sampling at the site, in the sense that samples should be
collected from spatial |ocationswherethe sensitivity of the probabilistic event isthe highest. Thiswill help reducethe
uncertainty regarding the probability of exceeding the pre-determined concentration levels at the target observation
well.

Note that hydraulic conductivities at the design point in the asymmetric case are higher than that for the symmetric
case. Thisis because in the symmetric case, the target concentration at the observation well is closer to the mean
concentration. The mean contaminant concentration at the asymmetric well is0.17 mg/L, as opposed to 1.93 mg/L
for the symmetric well. Therefore, in order for the contaminant concentration at the well to exceed the target level of
2.0 mg/L, hydraulic conductivities have to be considerably higher than the mean. Thisisshownin Figure4.4(a). The
sign of the gamma sensitivitiesindicates whether the rel ationship between thereliability index and an increasein the
design point is of direct or inverse proportionality. The previousfindings are consistent with that of Jang et al. (1994).

Other valuableinformation that CALREL providesincludesthe delta parametric sensitivity information. Recall that
the delta sengitivities are the scaled and normalized changein the reliability index due to changein the mean values

of the random variables:
9B
o ={0 —
fa2) .
where p, and ¢, are the mean and standard deviation of the basic random variable X, respectively.

Figure 4.3(c) showsthe delta sensitivitiesfor the symmetric case. Negative sensitivities al ong the contaminant travel
path indicate a decrease in the reliability index as the mean value of the hydraulic conductivity in this region
increases. Thisresult isintuitive. An increase in the hydraulic conductivity in the grid blocks that exhibit negative
deltasensitivity will cause more contaminant to reach the target observation well within the specified simulation time.
Therefore, the probability of exceeding the target concentration level will increase, and the reliability index will
decrease. Thereverseisalso true. Delta sensitivitiesfor the asymmetric observation well are shown in Figure 4.4(c).
The same discussion applies to this case.

Table 4.2 presents a comparison between FORM, SORM and Monte Carlo simulation results for the symmetric
observation well for target concentration values of 2.0 and 5.0 mg/L. The stopping criterion for the Monte Carlo
simulation method was a coefficient of variation of 5% of the simulated probability of failure. Thefailure probability
at 2.0 mg/L is greater than that at 5.0 mg/L, as expected. Thisis due to the fact that there is a higher probability of
exceeding a lower target concentration than a greater target concentration at a given point. Note also the inverse
relationship between P_ and . Sincethereliability index isameasure of thereliability of the system, then the higher
the failure probability, the lower the reliability index, and vice versa. Thisis shown in the Table.

The comparison showsthat SORM results better match those of Monte Carlo simulation method than FORM resuilts.
FORM results, however, were obtained with amuch less computational effort. The Monte Carlo simulation method

Table 4.2 Comparison between the Analysis Methods

C =20mglL
Method P, B CPU Time® (min)
FORM 0.274 0.560 7.04
SORM' 0.084 1.380 16.23
MCS 0.168 0.962 30.58

C, =50mg/L
Method P B CPU Time® (min)
FORM 0.164 0.978 9.54
SORM' 1.10 x 102 2.289 21.22
MCS 4.38 x 102 1.708 977.10

§ onaSUN SPARCstation 2
T Improved Breitung
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required agreater number of simulations asthefailure probability decreases, as expected. Thistrend continues asthe
failure event departs from the bulk of the distribution, where an exceedingly larger number of simulations are
required. This illustrates the computational burden one might expect to encounter when using the Monte Carlo
simulation method for simulating very small probability events.

The effect of correlation scale, A, on the probability of failure is shown in Figure 4.5 for the case where target
concentration is 2.0 mg/L. Correlation scalesranging from 5 to 30 meterswere studied, and the effect on the FORM
probability of failureisreported. Thefigure showsthat the probability of exceeding thetarget concentration increases
asthe correlation scaleincreases. Idedlly, the probability of failure would approach that obtained using the analytical
model, where the correl ation scale approaches the problem domain length.

4.6.2 Effect of Material Heterogeneity

The presence of regions with hydraulic conductivities that are orders of magnitude lower than the prevailing
formation is of primeimportance in the analysis of transport through natural porous formations. Many sites exhibit
such localized lenses of amuch different permeability characteristics than the predominant aquifer material.

In the following case studies, hydraulic conductivity is assumed to follow alognormal distribution. The mean value
changesfrom one region to the other in the same case study, aswell asfrom one case study to the next. Nevertheless,
the coefficient of variation of the distributionismaintained at 1.0. The cases are numbered MH-1 and MH-2, where
the notation MH standsfor “Material Heterogeneity.” It should be emphasized that in these case studies the location
and extent of the macro-heterogeneity are assumed to be known. Although thisinformation may not be availablewith
certainty at many field sites, the modeling exerciseisuseful inillustrating the importance of gamma sensitivitiesfor
the probabilistic modeling of contaminant transport in the subsurface.

4.6.2.1 Case MH-1

First, we look at the effect of the presence of ablock of lower hydraulic conductivity. Table 4.1 lists input data for
the case study. Figure 4.6 shows this case study, where aregion of 15 grid blocks is assumed to exist with a mean
hydraulic conductivity of 5 x 10*cm/sec, which isan order of magnitude less than that of the remaining grid blocks
(with amean hydraulic conductivity of 5 x 10 cm/sec).

The probability of exceeding a target concentration of 5 x 10“mg/L at the target node is studied. The reason for
choosing such alow target concentration isthe fact that the average concentration when the low conductivity region
is present is much less than the average concentration without it. In fact, the mean concentration at the target node
is2.45 x 10* mg/L. Hence, it ismore convenient to assign atarget concentration in this case that is of the same order
of magnitude as the mean. The FORM prabahility of failure was calculated to be 0.2237, with areliability index of
0.76. The design point, gamma, and delta sensitivities are shown in Figures 4.7, 4.8, and 4.9, respectively.

0.4

o
w

FORM Probability of Failure
o
N

o
[

o0 . . . .
5 10 15 20 25 30
Correlation Scale

Figure4.5 Effect of correlation scale on the first-order probability of failure (C=2.0 mg/L).
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Figure 4.6 Setup of case MH-1. (Reprinted from Probabilistic modeling of aquifer heterogeneity using reliable meth-
ods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission of Advances in water Re-
sources.)
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Figure 4.7 Design point for case MH-1 (cm/sec). (Reprinted from Probabilistic modeling of aquifer heterogeneity using
reliable methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission of Advancesin
Water Resources.)
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Figure4.8 Gammasensitivitiesfor case MH-1. (Reprinted from Probabilistic modeling of aquifer heterogeneity using
reliable methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission of Advancesin
Water Resources.)
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Figure4.9 Deltasensitivitiesfor case MH-1. (Reprinted from Probabilistic modeling of aquifer heterogeneity using
reliable methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission of Advancesin
Water Resources.)
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Figure 4.10 which illustrates the contaminant concentration for this case study emphasizes the preferential
pathways that the contaminant takes in order to circumvent the tight region. In other words, due to the reduction in
the hydraulic conductivity in the indicated region, groundwater sel ectsthe path of least resistance, thus avoiding the
high resistance from the low conductivity region.

Therefore, it isintuitive for gamma sensitivities to attain their maximum value above the lower conductivity region,
as shown in Figure 4.8. The ease at which the contaminant would preferentialy flow around the tight zone is
dependent upon the hydraulic conductivity of the region above it. The negative delta sensitivities in the region
above the tight zone indicate that the higher the hydraulic conductivity, the lower the reliability index, due to the
increased flow.

46.22 CaseMH-2

Next we consider the presence of (elongated) lower conductivity “lenses’ in an otherwise highly permeable
medium. Figure 4.11 shows the configuration considered. Lenses of tight formation (mean hydraulic conductivity
of 5.0 x 10> cm/sec) are considered to exist parallel to the mean flow direction asindicated in the figure. Each lens
is one block wide and three blocks long. Hydraulic conductivity for the remainder of the domain has a mean value
of 5.0 x 10 cm/sec. The coefficient of variation of each random variable is maintained at 1.0. The probability of
exceeding a target concentration of 2.0 mg/L at the observation well is obtained. FORM estimates the failure
probability to be 0.118, with a reliability index of 1.19.

Figure 4.12 illustrates the design point, while Figures 4.13 and 4.14 show the gamma and delta sensitivities,
respectively. In this case too, the contaminant bypasses the lower conductivity regions in an effort to find a more
conductive and less “resistive” pathway. The sensitivities, consequently, illustrate the relative importance of the
conductive regions in this case.

4.6.3 Effect of Mesh Overlay and Discretization

First, we look at the effect of the mesh discretization level on the accuracy of the estimated probability of failure.
There are two meshes that we consider in any numerical reliability problem. The first is the mesh required for the
solution of the transport equation by the finite element model, which we refer to as the numerical mesh. In addition,
we must assign realizations of the random variables (hydraulic conductivity) to the individual grid blocks in the
numerical mesh. This step is achieved by discretizing the spatial random field on a number of grid blocks, which
is done by superimposing another mesh, called the random variables mesh. This concept is illustrated by a
numerical example.
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Figure 4.10 Contaminant plumefor case MH-1 (mg/L). (Reprinted from Probabilistic modeling of aquifer heterogeneity
using reliable methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission of Advances
in Water Resources.)
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Figure4.11 Setup of case MH-2. (Reprinted from Probabilistic modeling of aquifer heterogeneity using reliable methods,
1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission of Advancesin Water Resources.)
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Figure 4.12 Design point for case MH-2 (cm/sec).  (Reprinted from Probabilistic modeling of aquifer heterogeneity using
reliable methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission of Advancesin
Water Resources.)
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Figure4.13 Gammasensitivities for case MH-2. (Reprinted from Probabilistic modeling of aquifer heterogeneity using
reliable methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission of Advancesin

Water Resources.)
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Figure4.14 Deltasensitivitiesfor case MH-2. (Reprinted from Probabilistic modeling of aquifer heterogeneity using
reliable methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission of Advancesin

Water Resources.)

Figure 4.15 illustrates the setup for the case study, where Table 4.3 lists the problem configuration. In this case, we
have a domain of 36.0 m on the side with the indicated boundary conditions. Here, the contaminant behaves
conservatively, athough any chemical reactions can be considered. In order to solve the contaminant transport
equations using FLOTRAN, we discretize the domain into 12 x 12 grid blocks. This numerical grid is shown in
Figure 4.15(a). Now in order to take into account the uncertainty in the aquifer material, we describe the hydraulic
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Figure 4.15 Setup of the mesh refinement case study. (Reprinted from Probabilistic modeling of aquifer heterogeneity
using reliable methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission of Advances
in Water Resources.)

Table4.3  Input Parametersfor the Mesh Discretization Case Study (Reprinted from Probabilistic modeling of aquifer
heter ogeneity using reliable methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission
of Advancesin Water Resources.)

Variable Units Value
Deterministic Data
grid block dimension, Ax=Ay m 30
aquifer thickness, H m 6.0
aquifer porosity, 0 mé/m3 0.35
longitudinal dispersivity,a, m 30
transverse dispersivity,a m 0.6
hydraulicgradient,i =~~~ m/m 0.02
simulationtime, t day 10.0
source concentration, C,  mg/L 100
target concentration, C, mg/L 30
Random Fidd Data

hydraulic conductivity, K~ cm/sec ~ LN(5.0x107% 5.0x107)
correlation scale, A m 18.0

LN(mean, standard deviation): Lognormal
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conductivity by means of aspatial random field, using the exponential correlation function. Wefirst look at the case
where the same mesh is used for finite element and random field discretization (see Figure 4.15(f)).

The design point, gamma sensitivity, and delta sensitivity are shown in Figures 4.16, 4.17, and 4.18, respectively.
The same patterns observed in the case study of Section 4.6.1 were also obtained in this case, where the design point
and the sensitivities are highest along the contaminant travel path.

We next experiment with using two different levels of discretization for the numerical and random variables
meshes. In other words, we use a coarse random variables mesh for the assignment of random variables, and afine
mesh for the solution of the transport equations using the finite element method. Numerous mesh discretization
levels are studied. In all of these cases, the numerical mesh is maintained at 12 x 12.
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Figure 4.16 Design point hydraulic conductivity field for 144 random variables case study (cm/sec). Source areais shown by
X’sand monitoring well is shown with acircle. (Reprinted from Probabilistic modeling of aquifer heterogeneity
using reliable methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission of Advances
in Water Resources.)
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Figure 4.17 Gamma sensitivities for 144 random variables case study. (Reprinted from Probabilistic modeling of aquifer
heterogeneity using reliable methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission
of Advancesin Water Resources.)
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Figure 4.18 Deltasensitivitiesfor 144 variables case study. (Reprinted from Probabilistic modeling of aquifer heterogeneity
using reliable methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission of Advances
in Water Resources.)

Figure 4.15(b) illustrates the case of 4 random variables. This means that each 36 grid blocks contained in asingle
element of the random variables mesh will be assigned the same value of hydraulic conductivity. Figures 4.15(c)
through 4.15(f) show the cases of 9, 16, 36, and 144 random variables, respectively. For the 144 variables case, each
grid block in the numerical mesh is assigned a different, yet correlated, value.

Figures 4.19(a), 4.19(b), and 4.19(c) illustrate the effect of the number of random variables on the failure
probability, reliability index, and the required CPU time on a SUN SPARCstation 2, respectively. It should be noted
that the greater the number of random variables considered, the more accurate the estimate of the failure probability
(and, reliability index estimate). Nevertheless, the resulting computational burden increases considerably. Thisis
indicated by the increase in CPU time about 35 fold when the number of random variables is increased from 4 to
144. The trade-off between computational time and accuracy becomes a crucial issue.

Figure 4.19(d) shows the percent difference between the failure probability estimated at each case as compared to
the “true” solution, assumed to be represented by the solution obtained with 144 random variables. If one considers
the case of 16 random variables, the error in failure probability is only 5% where the saving in CPU time is 88%.
Therefore, it is clear that using a random variables mesh that is coarser than the numerical mesh can result in
considerable savings in computational effort without jeopardizing numerical accuracy. In this specific case study,
fairly accurate results were obtained with 16 random variables, where the dimension of the grid block of the random
variables mesh is 3 cellson the side; i.e. , A x=A y= one-half the correlation scale. Thisfinding is not general, and
it depends on our choice of correlation type and scale, along with problem setup. However, the outlined approach
can be used to identify the level of discretization that combines accuracy with computational efficiency.

Next, we explore the effect that the target concentration has on the probahilistic event. The design point for target
concentrations of 3.0 mg/L was shown in Figure 4.16. The mean concentration at the well is 2.3 mg/L. This occurs
when grid block hydraulic conductivities are at their mean value of 5 x 102 cm/sec. Hence, the figures show the
design point for a case where the target concentration is greater than the mean concentration. The design point for
atarget concentration of 1.0 mg/L, which is less than the mean value, is shown in Figure 4.20.

It is interesting to see the difference in the design point for the two target concentration levels. When the target
concentration is at 1.0 mg/L, which is less than the mean concentration, the realization of hydraulic conductivity
which produces the most likely failure is lower along the stream tubes connecting the source to the well than the
mean hydraulic conductivity. On the other hand, when the target concentration at the observation well is 3.0 mg/L,
which isgreater than the mean concentration, the realization of the hydraulic conductivity producing the most likely
failure is greater along the stream tubes connecting the source to the well than the mean hydraulic conductivity.

Table 4.4 shows a comparison of the results for the two target concentration levels. The Monte Carlo results were
obtained by the following procedure. The prescribed probability density function of the hydraulic conductivity is
randomly sampled, so that the correlation structureis satisfied. With thisrealization, the transport model isrun and

54



0 0.9
o
=20.28
= g 058
% 0.26 2
2 =07
E 0.24 8

Zo6

o x Y
£ 0.22

0.2 0.5

4 9 16 36 144 4 9 16 36 144
Number of Random Variables Number of Random Variables
_ © C)
=1500 < 50
g =
9 5%
O 1000 ©
E(i 230
% 5
Tg’ 500 = 20
= % 10
o 2
(@) 0 )
4 9 16 36 144 4 9 16 36 144
Number of Random Variables Number of Random Variables

Figure 4.19 Effect of number of random variables on the probabilistic event. (Reprinted from Probabilistic modeling of
aquifer heterogeneity using reliable methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with
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Figure 4.20 Design point hydraulic conductivity field for 144 random variables case study (cm/sec) for atarget
concentration = 1.0 mg/L. (Reprinted from Probabilistic modeling of aquifer heterogeneity using reliable
methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission of Advancesin Water

Resources.)
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Table4.4 Comparison between the Analysis Methods (Reprinted from Probabilistic modeling of aquifer heterogeneity
using reliable methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission of Advances
in Water Resources.)

C, =10 mg/L
M ethod P B CPU Time® (min)
FORM 0.473 0.068 19.2
SORM' 0421 0.203 255
MCS 0.412 0.222 28.6
C,=3.0mg/L
M ethod P. B CPU Time® (min)
FORM 0.205 0.826 24.3
SORM' 0.151 1.031 35.0
MCS 0.152 1.029 72.1

§ ona SUN SPARCstation 2
T Improved Breitung

the g-function is obtained. At this point, another random sampling is performed, the transport model is run again,
and another set of results is obtained. Enough Monte Carlo simulations are performed until the coefficient of
variation of the ensemble of failure probability drops below 5%. The Monte Carlo simulations needed for the 1.0
and 3.0 mg/L were 1000 and 2500, respectively.

The comparison indicates that SORM results matched those of the Monte Carlo simulation method very closely,
and bettered the match between FORM and the Monte Carlo results. Nevertheless, FORM results were obtained at
less of a computational effort than that of SORM. The selection of the approximation method, therefore, becomes
an issue of trade-off between computational efficiency and demand. Time saving is not very dramatic in this case,
since thefailure threshold isin the bulk of the distribution. Besides, the saving in computational time increases with
decreasing failure probability. However, the reliability methods presented sensitivity information at no additional
computational burden, which the Monte Carlo simulation cannot provide.

4.6.4 System Reliability Analysis

In many groundwater contamination applications, we are interested in studying the reliability of more than one
component in the solution domain. For example, we may be interested in the probability that the contaminant will
exceed a predetermined level at any point along a property boundary. The compliance with the regulatory standards
at more than one receptor well in the aquifer of interest is another example. In these situations, the problem is
formulated in a system reliability framework, in which several limit-state functions are considered, one for every
component of interest.

As an example, consider the case where a contaminant source leaks chemicals into an underlying groundwater
aquifer. Assume that there exists anumber of downgradient points of human exposure (i.e., wells). In this case, we
have several limit-state functions, one at each well. The formulation is similar to (2.34).

In general, asystem can beidealized asa series system, aparallel system, or acombination of the previoustwo. The
problem of groundwater contamination is posed in a series system format since failure of any of the components
constitutes failure of the system. In other words, in amultiple well compliance example, if the concentration at any
of the wells exceeds the predetermined target value, the system has failed.

As an application example, consider the probability of exceeding 2.0 mg/L at any of the three observation wells
giveninFigure4.21. That is, the probability of failure to meet the 2.0 mg/L threshold after the 350 days simulation
time is required. Table 4.5 lists the input data for this case study. In Table 4.6, the system reliability results are
shown for first-order uni-modal, bi-modal, and relaxed bi-modal bounds. As expected for a series system, the
system failure probability obtained is higher than the largest component failure probability (Pt =0.385,

PR =RIO™=0.224). The bi-modal bounds are narrower than the relaxed bi-modal bounds, which are, in turn,

tighter than the first-order uni-modal bounds.
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The correlation coefficient between the failure event at wells 1 and 2 is the same as that between wells 1 and 3 and
equals 0.726. This meansthat failure to meet the target concentration of 2.0 mg/L at well 1 isclosely related to the
failure at well 2. A careful analysis of the physics of the problem explains this result. In order for the contaminant
to exceed the target concentration at well 1, the grid block hydraulic conductivities at the design point should be
high enough to allow easier and less resistive paths for the contaminant to reach the target well at the designated
threshold value. The high conductivity realizations also allow for more contaminant to reach well 2, hence resulting
in a large correlation coefficient between the probability of exceeding the target level a wells 1 and 2. The
correlation coefficient between the failure events at wells 2 and 3 is 0.217, which is less than the correlation
between wells1 and 2. Thisisexplained by the fact that wells 2 and 3 are separated by a greater distance than wells
1 and 2, hence their failure events are correlated at a smaller value.

Additional information gained from the system reliability analysisisthe sensitivity of the system failure probability
with respect to changes in the distribution parameters of the grid block conductivities. Figure 4.22(a) displays the
sensitivities of the upper bi-modal bound on P_¥%*" with respect to changesin the local mean value of the hydraulic
conductivities. The results indicate that the greater the mean hydraulic conductivity of the region along the flow
paths, the greater the system failure probability, a behavior easily explained by the earlier discussion.

y
|

Contaminant source No~flow boundary

A

Observation wells

No-flow boundary

Constant head boundary Constant head boundary
H=90m H=834m

Figured4.21 Setup of the system reliability case study. (Reprinted from Probabilistic modeling of aquifer heterogeneity
using reliable methods, 1996, by M. M. Hamed, P. B. Bedient, and C. N. Dawson with permission of Advances
in Water Resources.)

Table45 Input Parametersfor the System Reliability Case Study (Reprinted from Numerical stochastic analysis of
groundwater contaminant transport and plume containment, 1996, by M. M. Hamed, P. B. Bedient, and J. P.
Conte with permission of Journal of Contaminant Hydrology.)

Variable Units Value
Deterministic Data
griddimension, Ax=Ay m 6.0
aquifer thickness, H m 6.0
longitudinal dispersivity,a, m 0.2
transverse dispersivi ty,a, m 0.02
simulaiontime, t day 350.0
source concentration, G, mg/L 10.0
target concentration, C_ mg/L 20
Random Fidd Data

hydraulic conductivity, K cm/sec  LN(5.0x103, 5.0x10%)
correlation scale, A m 18.0
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Table4.6  Resultsof the System Reliability Analysisfor the 3-well Case Study (Reprinted from Numerical stochastic
analysis of groundwater contaminant transport and plume containment, 1996, by M. M. Hamed, P. B. Bedient,
and J. P. Conte with permission of Journal of Contaminant Hydrology.)

Method Result Value
First-order Uni-modal Bounds Bounds on P_¥sen 0.385< P_¥"<(.623
Bounds on 3 sem 0.291> (3 ¥sem> -0.331
First-order Relaxed Bi-modal Bounds Bounds on P_¥sen 0.385< P_¥"<(.543
Bounds on 3 sem 0.291> (3 ¥sem> -0.109
First-order Bi-modal Bounds Bounds on P_¥sen 0.428< P_¥"<0.470
Bounds on 3 sem 0.182> 3 ysem> -0.075

Next, welook at the series system reliability in which only wells 2 and 3 areincluded. In this case, the system failure
probability bounds are given in Table 4.7. The system failure probability in this case is less than in the case with
three wells, as expected. Figure 4.22(b) depicts the sensitivities of the upper bi-modal bounds of system failure
probability with respect to changing the mean value of grid block conductivities for the 2-well case. The patternin
which the sensitivities behaveisinteresting. Mean hydraulic conductivities along the branching path leading to both
wells 2 and 3 have the highest impact on the system failure probability. The negative sign indicates an inverse
relationship between local mean conductivity and system failure probability.

When a lower conductivity lens is considered to exist between the two wells and in an orientation parallel to the
mean groundwater flow direction (Figure 4.23), the first-order bi-modal bounds on system failure probability
changes from 0.377 to 0.369. In other words, the presence of the lower conductivity lens affected the system
reliability only slightly. However, the sensitivity of the system failure probability with respect to the local mean
hydraulic conductivity in this case differs considerably from the case without the lens. This is shown in Figure
4.22(c).

4.6.5 Remediation/Containment under Uncertainty

The impact of parameter uncertainty on achieving remediation/containment goals is important. Failure to account
for such uncertainty can dramatically hinder the efficiency of the remediation/containment scheme, creating
significant economic ramifications. In this section, we present a reliability formulation to study the effect of the
natural variability of the hydraulic conductivity on achieving a plume containment goal. The limit-state functionis
formulated asin (4.8), however, C in this context is the remediation/containment threshold or target concentration
at a specific well. Failurein this case indicates failure to contain the plume from reaching the observation well, or
failure to remediate the plume to the predetermined threshold level.

Figure 4.24 illustrates the problem setup. The aquifer’s extent is 66.0 m on the side. A numerical grid of 11x 11is
used to discretize the solution domain. The random field mesh used to discretize the spatial random field of
hydraulic conductivity is assumed to coincide with the numerical mesh. That is, the number of random variablesis
11 x 11=121, comprising the hydraulic conductivity in the center point of each grid block. Table 4.8 lists the input
parametersfor this case study. It should be noted that the hydraulic gradient is assumed constant throughout the case
studies. Theinitial contaminant plume is shown in Figure 4.25.

It isassumed that a property boundary islocated as shown in Figure 4.24. A pumping schemeisinstalled in such a
manner so as to contain the plume from escaping into the neighboring property beyond the site boundary within the
30 day pumping period. The target concentration at the observation well is chosen, arbitrarily, to be 1.0 mg/L. In
realistic applications, the target concentration and well location are chosen according to: (1) the type of
contaminant, (2) land use at the neighboring property, and (3) risk estimation at the receptor well.

The numerical reliability model is used to estimate the probability of failure of the remediation/containment
scheme. FORM failure probability and reliability index were found to be 0.743 and -0.655, respectively. This
means that if asingle, fully penetrating well at the middle of the domain is pumped at arate of 1.26 L/s (20 gpm)
for 30 days, there will be a 74% probability of failure to contain the plume from reaching the downgradient
observation well at a concentration exceeding the target concentration of 1.0 mg/L. The negative reliability index
simply means that the probability of failure exceeds 0.5. This is clear by an examination of the definition of the
relationship between P_ and b given in (2.19).
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Figure 4.22 Sensitivity of the upper bi-modal bound on the system failure probability to the local mean hydraulic conductiv-
ity: (a) for the 3-well case, (b) for the 2-well case, (c) for 2-well with lower conductivity lens. (Reprinted from
Numerical stochastic analysis of groundwater contaminant transport and plume containment, 1996, by M. M.
Hamed, P. B. Bedient, and J. P. Conte with permission of Journal of Contaminant Hydrology.)
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Next, the pumping rateisincreased to 1.89 and 2.52 L/s (30.0 and 40.0 gpm), and the reliability analysisis repeated
to study the effect of increasing the pumping rate on the failure probability. For the 1.89 L/s (30 gpm) case, FORM
failure probability and reliability index are 0.41 and 0.227, respectively. Table 4.9 listss FORM, SORM, and Monte
Carlo results for the 2.52 L/s (40.0 gpm) scenario. FORM and SORM results were in good agreement with that of
the Monte Carlo simulation method. This good agreement in the reliability to that of the Monte Carlo results was
observed for all of the case studies conducted. Thus, an increase in the pumping rate from 1.26 to 2.52 L/s (20.0 to
40.0 gpm) caused the failure probability at the observation well to drop from 74% to about 33%. The design point,
gamma and delta sensitivities for this case study are shown in Figures 4.26(a), 4.26(b), and 4.26(c), respectively. It
is interesting to see that the probabilistic event is most sensitive to hydraulic conductivities in the region
downgradient from the pumping well. This is due to the fact that the more conductive this region is, the more
“clean” water the pump is able to flush towards the observation well, and the better the containment becomes. This
isindicated by the positive delta sensitivities in that region, which indicates a direct proportionality between the
local mean value of the hydraulic conductivity in that region and the reliability index.

Next, we look at the impact of the presence of alower conductivity lens downgradient from the pumping well, and
upgradient from the observation well, as shown in Figure 4.27. Thelens has a conductivity of 2.0 x 10° cm/s, which

Table4.7 Resultsof the System Reliability Analysisfor the 2-well Case Study (Reprint from Numerical stochastic
analysis of groundwater contaminant transport and plume containment, 1996, by M. M. Hamed, P. B. Bedient,
and J. P. Conte with permission of Journal of Contaminant Hydrology.)

Method Result Value
First-order Uni-modal Bounds Bounds on P_¥ser 0.224< P_¥"<0.398
Bounds on 3 ysem 0.759> 3 ¥sem>(0.259
First-order Relaxed Bi-modal Bounds Bounds on P_¥sen 0.326< P_¥%"<0.387
Bounds on 3 ysem 0.450> 3 ¥sem>(0.287
First-order Bi-modal Bounds Bounds on P_¥sen 0.377< P¥%e"<0.377
Bounds on 3 ysem 0.313> 3 ¥e">0.313
y

. No-flow boundar
Contaminant sour ce y

11 17 1T 1
— L ower conductivity lens

Observation wells

-5
L (K=5.0x10 cm/sec)

’[ No-flow boundary ‘[

Constant head boundary Constant head boundary
H=9.0m H=834m

Figure 4.23 Setup of the system reliability case with alower conductivity lens. (Reprint from Numerical stochastic analysis
of groundwater contaminant transport and plume containment, 1996, by M. M. Hamed, P. B. Bedient, and J. P.
Conte with permission of Journal of Contaminant Hydrology.)
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istwo orders of magnitude less than the prevailing hydraulic conductivity. When the pumping rate of 1.89 L/s(30.0
gpm) was applied to this case, the probability of failure to meet the target concentration of 1.0 mg/L dramatically
increased to 0.985, with a reliability index of -2.12. This illustrates the significant impact that material
heterogeneity and the presence of lenses have on the success of cleanup schemes. Table 4.10 lists FORM failure
probability and reliability index for different pumping rates. For each pumping rate, the original case study, as well
as that with the lower conductivity lens, are analyzed. The table indicates that failure to meet the target cleanup
level increases significantly for the case with the lens. This emphasizes the importance of accounting for the
material variability and heterogeneity when designing aquifer remediation systems. Failure to account for this
y

No-flow boundary

site boundary
observation well

/

contaminant plume

pumping well

No-flow boundary

Constant head boundary Constant head boundary
H=9.0m H=893m

Figure 4.24 Setup of the plume containment case study. (Reprint from Numerical stochastic analysis of groundwater
contaminant transport and plume containment, 1996, by M. M. Hamed, P. B. Bedient, and J. P. Conte with
permission of Journal of Contaminant Hydrology.)

Table4.8  Input Parametersfor the Plume Containment Case Study (Reprint from Numerical stochastic analysis of
groundwater contaminant transport and plume containment, 1996, by M. M. Hamed, P. B. Bedient, and J. P.
Conte with permission of Journal of Contaminant Hydrology.)

Variable Units Value
Deterministic Data

grid block dimension, Ax=Ay m 6.0
aquifer thickness, H m 6.0
aquifer porosity, 6 m3/m? 0.35
longitudinal dispersivity,a, m 30
transversedi aﬁ)erswty o m 0.3
hydraulic gradient, i m/m 0.001
simulaiontime, t day 30.0
pumpingtime, q L/s 1.26

Random Field Data

hydraulic conductivity, K cm/sec LN(2.0x10% 2.0x109)
correlation scale, A m 12.0
LN(mean, standard deviation): Lognormal
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Figure 4.25 Initial contaminant plume (mg/L). (Reprint from Numerical stochastic analysis of groundwater contaminant
transport and plume containment, 1996, by M. M. Hamed, P. B. Bedient, and J. P. Conte with permission of
Journal of Contaminant Hydrology.)

factor will reduce the chances of success to meet the predetermined target cleanup standards within the specified
time.

Figures4.28(a), 4.28(b), and 4.28(c) illustrates the design point, gamma, and delta sensitivities, respectively, for the
case with the lens, and for a pumping rate of 5.68 L/s (90.0 gpm). Comparison of the trends in these figures with
their counterparts for the original case (Figure 4.26) indicates that when the lower conductivity lensis present, the
failure probability is most sensitive to the region downgradient from the pumping well, in addition to the region
around the lens. Thisis another indication of the significance of careful site investigation to delineate the extent of
heterogeneity present at the site before designing a remediation system.

Table4.9 Failure Probabilities for the Remediation Case Study for Pumping Rate = 2.52 L/s (40.0 gpm) (Reprint from
Numerical stochastic analysis of groundwater contaminant transport and plume containment, 1996, by M. M.
Hamed, P. B. Bedient, and J. P. Conte with permission of Journal of Contaminant Hydrology.)

Method Failure Probability Rediabilityl ndex
FORM 0.292 0.547
SORM' 0.343 0.405
SORM* 0.337 0.421
MCS 0.334 0.429

Tt Improved Breitung * Tvedt's Exact Integral
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Figure 4.26 Resultsfor the plume containment case study for pumping rate= 2.52 L/s (40.0 gpm): (&) Design point, (b)
Gamma sensitivity, (c) Delta sensitivity. (Reprint from Numerical stochastic analysis of groundwater contami-
nant transport and plume containment, 1996, by M. M. Hamed, P. B. Bedient, and J. P. Conte with permission
of Journal of Contaminant Hydrology.)
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contaminant plume /
pumping well
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g
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Figure 4.27 Setup of the plume containment case study with alower conductivity lens. (Reprint from Numerical stochastic
analysis of groundwater contaminant transport and plume containment, 1996, by M. M. Hamed, P. B. Bedient,
and J. P. Conte with permission of Journal of Contaminant Hydrology.)

Table4.10 FORM Failure Probabilities for Different Pumping Rates for the Remediation Case Study (Reprint from
Numerical stochastic analysis of groundwater contaminant transport and plume containment, 1996, by M. M.
Hamed, P. B. Bedient, and J. P. Conte with permission of Journal of Contaminant Hydrology.)

Without a lower With a lower
conductivity lens conductivity lens

Pumping Ratein L/s (gpm) P_ B P. B
1.89 (30.0) 0.410 0.227 0.985 -2.121
3.15 (50.0) 0.137 1.095 0.794 -0.821
4.42 (70.0) 0.061 1.556 0.526 -0.066
5.68 (90.0) 0.014 2.189 0.321 0.464
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Figure 4.28 Resultsfor the plume containment with alower conductivity lens case study: (a) Design point, (b) Gamma
sensitivity, (c) Delta sensitivity. (Reprint from Numerical stochastic analysis of groundwater contaminant
transport and plume containment, 1996, by M. M. Hamed, P. B. Bedient, and J. P. Conte with permission of
Journal of Contaminant Hydrology.)
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Section 5
Summary and Conclusions

The uncertainty of the parameters describing the aquifer material, the chemical, and the leaking source have been the
focus of many research efforts. Thisis indicated by the wealth of literature on stochastic hydrology in the past
decade. This was motivated by the recognition of the impact that such uncertainty has on the predictive ability of
groundwater fate and transport models. Most of the work presented so far has been structured around one of three
methods: (1) classic Monte Carlo simulation method (MCS), (2) spectral anaysis, and (3) perturbation theory.
Furthermore, Sitar, Cawlfield, Der Kuireghian, and co-workers have pioneered the application of the first- and
second-order reliability methods (FORM and SORM, respectively) in groundwater contamination problems (Sitar
et al., 1987; Cawlfield and Sitar, 1988; Mok et al., 1993). A brief survey of some of the stochastic hydrogeology
work was presented in Section 2.

In this work, a probabilistic approach for modeling groundwater contaminant transport and remediation has been
presented based on FORM and SORM. The theory of the reliability methods has been reviewed to the extent
necessary to understand the formulation. We looked at the use of analytical and numerical transport and
remediation models for the probabilistic analysis of uncertainty in groundwater. The development of probabilistic
models based on analytical transport codes have proved to be much easier and less computationally intensive than
numerical-based probabilistic models. Numerical models, however, alowed us to look at the effect of spatial
heterogeneity and correlation structure of the hydraulic conductivity, which is not possible with analytical models.
The issue of trade-off between intensive computational effort to account for more complex cases versus lower cost
analytical methodsthat give screening decisionswithin afew minutes becomes of great significance. Inthissection,
we list the general conclusions of the work presented in preceding sections.

5.1 ProbabilisticAnalytical Transport M odel

We have shown that FORM and SORM can be apotential alternativeto the classical Monte Carlo simulation method
when dealing with groundwater contamination events that have very small probability of occurrence, therefore
requiring thousands of Monte Carlo simulations to provide reliable results. FORM and SORM were used to assess
the probability that a given contaminant exceeds a certain target concentration level at a selected point in space and
time in the solution domain and to provide the sensitivity of such aprobabilistic event to the basic uncertainty in the
input variables. Contamination scenarioswith both reactive and non-reactive solutes were presented for demonstra-
tion purposes.

FORM and SORM results were compared and were tested against those obtained using the classical Monte Carlo
simulation method. In selecting the analysis method, it should be emphasized that, in this work, SORM was more
accurate than FORM, but computationally more expensive. The problems analyzed were fairly simple, hence
computer timerequired for SORM was still very low (on the order of afew minutes on a SUN SPARCstation 2) and
the use of SORM was warranted. However, for larger problems, and when using more complex numerical models
(based on finite difference or finite element methods) this becomes a matter of considerable significance, and a
careful trade-off analysis between computational effort and accuracy should be conducted to determine which
approximation method to use. We al so showed that FORM results are sometimes very different from SORM results,
and in such cases, SORM analysis is warranted, in spite of its extra computational effort required.

The impact of the basic uncertainty in seepage velocity was identified. However, chemical-related and source-
related parameter uncertainty are also important factors to consider in the probabilistic analysis of groundwater
transport problems, and their importance should not be overshadowed by the aquifer-related parameter uncertainty.

5.2 Probabilistic Numerical Transport Model

Numerical solution to the transport equations was obtained using a finite-element model. This allows considering
the spatial variability of the aquifer material, as well as more complex geometry and boundary conditions.
Hydraulic conductivity was assumed to be spatially correlated, following an exponential auto-correlation function,
and lognormal distribution.

Failure to meet target concentration level at adowngradient well was analyzed for anumber of cases. Thereliability
analysis provides the design point, as well as gamma and delta sensitivities. The effect of lower conductivity
regions, whether large blocks, a few elongated lenses, or many small scattered lenses, was considered. The
sensitivity, as well as the design point obtained indicate that the flow lines circumvent the lower conductivity
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regions, in an effort to produce the target concentration at the well. Sensitivity of the probabilistic event was highest
with respect to hydraulic conductivities along the tortuous flow path that bypasses the tight lenses.

There are two types of meshes that the numerical probabilistic model utilizes: (1) arandom variables mesh, and (2)
anumerical mesh. The former is used by the mid-point method to discretize the spatial random field (the hydraulic
conductivity). The numerical mesh, on the other hand, is required in the finite-element method to discretize the
transport equation. We used a coarse random variables mesh superimposed on a fine numerical mesh, and found
that considerable savings in computational effort can be obtained in this manner. The choice of the appropriate
stochastic discretization level, however, needs some engineering intuition. In other words, a careful trade-off
analysis between computational effort and numerical accuracy must be conducted in order to determine the spatial
discretization level needed that would capture the stochastic features of the random field without much computa-
tional effort.

When analyzing the failure to meet the target levels at more than one location, system reliability was used. Series
system formulation was used since failure to meet the pre-determined target concentration at any well resultsin the
failure of the system. The joint probahility of failure, as well as the correlation between individual failure
probabilities, was obtained using reliability bounds.

The effect of spatia heterogeneity of the aquifer on containment/remediation was studied. Hydraulic conductivity
was assumed to be represented by a spatial random field, and the probability of the plume escaping the site
boundary was estimated. Furthermore, the relative importance of grid block conductivities was obtained. The use of
analytical gradient is expected to alleviate some convergence problems we faced when looking at stressed aquifer
conditions. Pumping and/or injection apparently causes the limit-state surface to be extremely non-linear and noisy,
and the use of finite-difference to estimate gradients has resulted in failure in many cases to converge to the design
point.

5.3 Recommendationsfor Future Research

Most of the reliability analysis software available to date use gradient-based optimization techniques to determine
the design point. Examples include the HL-RF, SQP, and the gradient projection methods. The reason for using
these methods istheir superior convergence in the neighborhood of the optimum point. Thisis because the methods
use, in the search, information on the gradients of the limit-state function with respect to basic random variables.

In the case of algorithmic formulation of the limit-state function, such as the work presented in Section 4, afinite-
element routine is required to obtain any point on the limit-state surface. Therefore, the calculation of the required
gradients can be very time consuming. Furthermore, numerical noise can render these gradients considerably
inaccurate. If these factors are combined, together with a starting point that may not be in the neighborhood of the
solution, the optimization routine can fail to find the design paint.

Non-gradient search methods may be advantageous in cases where the limit-state function is highly noisy, since
these methods do not use gradient information, but rather rely solely on functional evaluations. Examples of non-
gradient search methods include the Nelder-Mead method (Press et al., 1989), or one of many available non-
classical methods, such as genetic algorithms (GA) (Goldberg, 1989; Davis, 1991), simulated annealing (SA)
(Kirkpatrick et al., 1983; Goffe et al., 1994), and evolution strategies and evolutionary programming (ES and EP)
(Baeck et a., 1991; Baeck et al., 1993; Baeck and Schwefel, 1993).

Hybrid optimization methods that rely on a non-gradient search method to locate the neighborhood of the design
point, combined with a gradient optimization method to accurately and efficiently determine the design point may
also be another valid approach that may prove very useful in cases of noisy limit-state function.

The use of reliability methods in analyzing the effect of pumping on containing a plume within asite boundary was
presented. Due to the fact that convergence to the design point was not always achieved due to noisy gradients, the
estimation of analytical gradients for reliability-based remediation models is highly recommended.

The use of reliability Bayesian updating scheme can also be an important addition to the work presented here, since
it allows updating the reliability estimates as more data becomes available from the site.

Finally, although FORM and SORM required a fraction of the computational effort needed by the Monte Carlo
Simulation method, the CPU time necessary for solving large problems could still be extensive. The use of parallel
computer architecture can be utilized to considerably reduce the computational time required. This will alow for
the consideration of large dimensional problems without necessitating overwhelming CPU time.
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