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AUTOMATED PARALLELIZATION OF DISCRETE STATE-SPACE GENERATION�

DAVID M. NICOLy AND GIANFRANCO CIARDOz

Abstract. We consider the problem of generating a large state-space in a distributed fashion. Unlike

previously proposed solutions that partition the set of reachable states according to a hashing function

provided by the user, we explore heuristic methods that completely automate the process. The �rst step

is an initial random walk through the state space to initialize a search tree, duplicated in each processor.

Then, the reachability graph is built in a distributed way, using the search tree to assign each newly found

state to classes assigned to the available processors. Furthermore, we explore two remapping criteria that

attempt to balance memory usage or future workload, respectively. We show how the cost of computing the

global snapshot required for remapping will scale up for system sizes in the foreseeable future. An extensive

set of results is presented to support our conclusions that remapping is extremely bene�cial.

Key words. Markov chain, dynamic remapping, state-space, breadth-�rst-search

Subject classi�cation. Computer Science

1. Introduction. Discrete systems are frequently analyzed by generating and examining their under-

lying state-space. While a valuable technique, its most serious weakness is that large complex systems may

require the generation and analysis of tremendously large state-spaces. There is relatively little locality of

reference in the generation process, which means that ordinary virtual memory systems thrash once the gener-

ated state-space exceeds the available main memory. We are interested in extending the size of state-spaces

amenable to generation by exploiting the aggregate memory available in a distributed-memory computer

system. In earlier work we showed how this could be accomplished using a user-de�ned hash-function that

statically partitions the graph among processors [2]. Given a generated state (typically a vector of integers),

the hash-function identi�ed the processor to which the state was statically assigned. While we showed that

a well-tuned hash-function can e�ectively balance the workload partition and achieve reasonable execution

time e�ciencies as well, the method su�ers from some obvious drawbacks. The user must have a thorough

understanding of how the state-space will develop in order to craft a hash-function that both balances the

graph partition, and keeps the number of graph edges that cross processor boundaries low. If ever in the

course of generation just one processor is so burdened with states that it exhausts its available memory, the

whole computation fails. If in the course of generating the graph it transpires that the generation process

is not exploiting much parallelism, nothing can be done. Finally, the requirement of a user-de�ned func-

tion for every di�erent modeled system makes development of a general distributed graph generation tool

problematic.

In this paper we develop techniques that automate parallelization of state-space generation. Our methods

include innovations in the mapping of states to processors, and policies for remapping workload. Our methods

have been embedded in a general distributed state-space generation tool which itself has been integrated as
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the back-end of a stochastic Petri net modeling tool, spnp [4]. We examine the utility and costs of dynamic

remapping for the tool executing on an IBM SP-2, considering e�ectiveness in both memory balancing and

run-time parallelism. We �nd that our automated methods are much better than optimally hand-tuned

static methods with respect to both memory balance and speedup.

The remainder of this paper is organized as follows. Section 2 provides background information on the

mechanics of state-space generation and its distributed implementation, and sketches related work. Section 3

describes our method for automatically assigning states to processors. Section 4 then focuses on remapping.

Section 5 describes some essential details regarding message-passing in our implementation. Section 6 reports

on experiments we conducted, Section 7 develops some analytic results related to this work, and Section 8

gives our conclusions.

2. Background. Many discrete systems are analyzed formally by considering their full underlying

state-space. Typically a \state" of the system is a vector of integers. For instance, in a queueing network

the state is a vector of the queue lengths, one component per queue; in a Petri net the state is a vector of

token counts, one component per place in the Petri net; in a system of communicating �nite state machines

the vector contains components describing the internal states of those machines. From a state, it is usually

possible to transition to other states. A transition may be caused by an external arrival to the system, or by

the internal stochastic evolution rules of the model. In both queueing networks and Petri nets, for instance,

the system remains in a state s for a random period of time and then chooses some new state s0 that is

reachable from s; a job moving from one server to another changes the vector of queue lengths describing a

queueing network, a transition �ring changes the marking of a Petri net. In the following, by \state-space" we

mean the directed graph whose nodes are the reachable states and whose edges describe transitions between

states, the edge being directed towards the state resulting from the transition represented by the edge.

The state space for a system may be in�nite|a single queue with in�nite bu�ering can conceivably build

up beyond any pre-speci�ed queue length given a rapid enough set of arrivals. We concern ourselves here

with the problem of generating �nite state-spaces, although the methods will work equally well for in�nite

spaces if one includes a rule for terminating their expansion.

State spaces are typically built using breadth-�rst generation. Initially, some starting state is placed

on the list of \unexplored states". The starting state is also used to initialize a tree that will organize the

\found (up to that point) states" for an e�cient search. The generation process then enters a loop that

terminates only when the list of unexplored states is empty. At each loop iteration, the �rst unexplored state

is removed and added to the list of \explored states", and (using rules speci�c to the problem domain) all

states reachable from it in one transition (i.e., children) are generated. Each of them is then searched in the

tree; if a child is found to have been generated already, then only a new graph edge is introduced, rooted in

the child's parent and directed towards the existing node. If a child is not found in the tree, then it is �rst

inserted into the tree, before adding a state-space edge directed to it from its parent, and the child is placed

at the end of the list of unexplored states. Figure 2.1 illustrates the relationship between explored states, the

next state to explore, and the next location to place a newly generated state. The search tree is extended

and balanced through manipulation of pointers, the states themselves do not move within the illustrated

layout. We stress that the order in which states are found is in no way related to the lexicographic order

used in the search tree.

The application-speci�c part of state-space generation can be separated from the common aspects

through a well-de�ned interface, such as that we describe in [2]. One bene�t is the immunization of the

system modeler from details concerning parallelization. The techniques we describe in this paper follow in a
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Fig. 2.1. Organization of explored, unexplored, and found states.

similar vein and have been implemented in a manner that supports integration with any modeling front-end

that correctly uses the interface.

Di�erent analyses are conducted once the graph is generated, depending on the application. In models of

communication protocols one looks to see whether any of the reachable states represents deadlock. Livelock

is also possible and is detected by identifying transient states (ones that may become unreachable once left).

Resource requirements can be extracted from an understanding of the relationship between state expression

and resources. Parallel algorithms for performing these types of analyses are discussed in our earlier paper [2].

When the state-space represents an ergodic continuous-time Markov chain one typically solves a set of linear

equations (the global 
ow-balance equations [22]) that associate a stationary probability with each node in

the graph. Methods for solving linear equations in parallel are standard and will not be discussed here except

to say that good performance can be expected if the graph clusters well and the states are evenly balanced

among processors. Indeed, we anticipate that Markov analysis will be one of the principle applications for our

methods; our emphasis on balancing memory utilization derives in part from our recognition that balanced

memory is required to balance the workload of the linear system solution phase.

One aspect of distributed state-space generation sets it apart from other types of computations that are

usually distributed|the need to determine whether a newly generated state has been generated before. For,

discovery that state B is a child of state A establishes a unique and previously unknown link between A

and B, but state B may also be a child of state C, and so may already be represented somewhere in the

system. This is one of the key di�erences between serial and distributed state-space generation; a newly

generated state must be sent to some processor responsible for that state, to determine whether this is a

new or repeated instance of the state. Maintaining a global directory of states is not practical, instead we

must use the state description itself to determine its location. Our previous approach was to hash the state

vector into the range of integer processor identi�ers, using a user-de�ned hash function. When a generated

state maps to a di�erent processor, the state and edge information is sent to the correct location.

As automatic parallelization cannot depend on a user de�ned hash function, a di�erent approach is

needed. We see two requirements. First, the location of any state must be determined quickly, without

interprocessor communication. Furthermore, we must map states so that a child state is likely to be mapped

to the same processor as its parent, otherwise we will be overwhelmed by inter-processor communication.

Second, we need to support dynamic remapping of workload, and descriptions of known states. The remap-

ping problem is hampered by the fact that future execution requirements are unknown, and unknowable,

because the structure of the as-yet-undiscovered portion of the state-space is not known.

Another dimension of the remapping problem is to determine what to remap, how to remap, and when

to remap. These issues are developed in the following sections, after we discuss related work.
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Early work on load-sharing had a world view of independent jobs in a distributed system. The main

interest was in job migration policies [23, 6, 13] that best utilized system resources. The algorithms were

asynchronous, workload moved without global synchronization and without a global view of the system; key

issues were how transfers are initiated, and what information is used to govern those initiations. More recent

work has a di�erent view of workload, but has continued in the asynchronous vein [24, 12]. A synchronous

view of remapping was taken in work on decision policies that focus on when to remap [18, 19, 20]; balancing

the delay cost of remapping against the anticipated performance gain is the essence of these policies. Globally

synchronous remapping techniques are developed in [5, 25]. These methods iterate; at each iteration, pairs of

processors balance workload between them, and ultimately some global sense of balance is achieved without

any of the processors ever having had a global view of the system.

Our application and parallelized branch-and-bound computations share the problem that at a point

when one remaps, future workload is unknown. Various methods for approaching parallel branch-and-bound

have been studied [11, 10, 14, 21]. A critical di�erence between our application and branch-and-bound is

that we must store the state-space we explore, that is not typically done in branch-and-bound. A branch-

and-bound algorithm may generate a given subproblem (and then all of its descendents) multiple times; we

do not. Unlike branch-and-bound, when we generate a state, we must determine whether that state has

been generated before. We have semantic reasons for achieving some level of locality between our states,

branch-and-bound is not so constrained.

Our approach is to exploit the high connectivity that modern interconnection networks provide, and

compute remappings synchronously, and directly. Each processor has a picture of the global load distribution,

and when implementing a remapping, a piece of workload or data goes directly from its source processor to

its target processor. Direct methods have been considered in the context of large scale parallel processing

systems [7, 1, 15], but these do not take a global view. While our approach is pragmatic and driven by

available technology, we will argue, at the end of Section 7, that it scales up to moderately large parallel

systems and so has some future value as well.

3. Automated State Mapping. To help understand the intuition behind our methods we �rst brie
y

review the mechanics of balanced trees. As our implementation uses AVL trees [9], our description applies

speci�cally to these, as well as certain other commonly used search trees. One uses an application-speci�c

comparison operator such that for any state vectors A and B, either A < B, A > B, or A = B. Given a

tree and some state vector C, we determine whether C is in the tree by comparing it with the tree's root,

R. If C = R we are done, otherwise we recursively search the left subtree of R if C < R, and the right

subtree otherwise. If we �nd that C is not in the tree, it is inserted into the tree at the \exit point" of the

last comparison. That is, if state vector B was the tree member against which C was last compared, then

B becomes C's parent in the tree; C is B's left child if C < B and is its right child otherwise. The tree may

balance itself following the insertion. We will say that a state in the tree has a left exit point if it has no left

child; a right exit point is similarly de�ned.

For state-space generation with vector-valued states, it is typical to use lexicographical ordering to

compare two states. If A = (a1; a2; � � � ; an) and B = (b1; b2; � � � ; bn), then one determines the ordering

exactly as one would if A and B were n-digit numbers, scanning from left to right looking for the �rst

coordinate position in which A and B di�er, using the comparison of the values in that position to determine

the vector ordering.

We replace the hash function of our earlier work with a classi�er based on balanced tree mechanics.

We will map (and remap) classes, not individual states. Classes are de�ned with respect to a control set of
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states organized as a search tree. The same control set is built by each processor during an initialization

phase, and does not change throughout the subsequent graph generation phase. The exit points of its tree

are enumerated. Any state found during the breadth-�rst exploration is classi�ed by searching for it in the

control set's tree. If found in the control set, it is considered to be in class 0. Otherwise, the identity of

its exit point de�nes its class, and its current processor is retrieved from a class-to-processor lookup table.

Figure 3.1 illustrates a control set tree with four nodes and the induced �ve class de�nitions.

class 1

(3,1,0,0)

(4,0,0,0)(3,0,1,0)

(3,0,0,1)

class 2

class 3 class 4 class 5

Fig. 3.1. Balanced tree and de�nition of classes via exit points

To keep communication costs down, it is desirable that a child and parent frequently map to the same

class. At the same time, we need states to be spread among classes to give us 
exibility in remapping. Our

choice of control set and its organization attempts to achieve these con
icting goals. A poor choice for the

control set might map nearly all states into a very small number of classes (a fact we discovered the hard

way); observe that, in Figure 3.1, any state with a 0, 1, or 2 as its �rst component is mapped into class 1.

Understanding the tree search as being nearly equivalent to a hashing function, we see that the control set

needs to capture characteristics of the whole state-space in the same way as a hashing function does. To

acquire these characteristics we create the control set from random walks.

At initialization, each processor generates a number of random walks though the state-space. States hit

by a random walk are saved. Each random walk begins at the initial state; given the last state visited by the

walk, its children are generated. One of the children is selected uniformly at random to be the next state in

the random walk and its siblings are discarded1.

To further avoid any systematic over-clustering of states, we randomize the lexicographical ordering.

Using synchronized random number generator seeds, each processor generates the same permutation vector

idx[] to randomize the ordering of state components. Thus, idx[0] holds the index of the �rst state com-

ponent examined in the lexicographical comparison, idx[1] holds the second index examined, and so on.

We found this a valuable tool to protect us from the potential problems arising from correlation of states'

components (consider|hashing on a vector of components whose values are highly correlated e�ectively

diminishes the \spreading" of the hashing function. Lexicographical ordering is like hashing in this regard.)

Indeed, the \natural order" in which they would be considered if we were not permuting them (e.g., the

order in which the places are speci�ed in a Petri net model), often re
ects the modeler's thinking of the

system, and it is not likely to be truly \random". This is a case where a truly uninformed decision is instead

desirable. Indeed, experiments where we generated orderings that encourage locality by placing components

likely to change in a transition at the end of the lexicographical ordering were too successful, in that they

created classes too large to move. Until our mechanism can dynamically split classes (which we discuss later)

it seems that randomization is the most sensible approach.

1We stress that if the graph represents a Markov chain, this di�ers from the probability that a given child is actually

reached: we are now interested in strictly structural properties of the state-space, not in the stochastic and timing behavior of

the graph.
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Despite the extensive randomization, this method of class de�nition will induce a certain level of locality

among states in a common class. For a moderately sized control class, class de�nition is likely to be entirely

determined by comparison with indices early in the comparison sequence. There is a reasonable chance that

a child will reside in the same class as its parent for the simple reason that the di�erence between the parent

and child vectors is usually restricted to a few state components, and if classes are determined by entirely

di�erent state components, the child and parent will be in the same class. We formalize this intuition in

Section 7 where we derive a lower bound on the probability that a child resides in the same class as its

parent.

The processors collectively merge all saved states on all processors to de�ne the control set, and build a

tree over this set using the randomized lexicographical comparison function. Each processor then traverses

the tree, evenly partitioning the member states among processors for exploration and evenly partitioning

the classes among processors to build the �rst class-to-processor mapping table. No communication is

involved: each processor has the same control set organized the same way, it executes the same algorithm

as all the others to determine which states seed its exploration list, as a function of its processor identi�er.

The processors synchronize globally to terminate the initialization phase, and then begin the distributed

generation.

A class-based mapping approach requires modifying the internal organization. A single tree per processor

is inadequate, since it makes it ine�cient to identify members of a remapped class and remove them. Instead

we use an independent search tree for each class. We cannot pre-allocate memory for classes, so we partition

memory into blocks of contiguous states that are allocated individually to processors.

explored
states in
class 1

unexplored
states in
class 1

explored
states in
class 2

unexplored
states in
class 2

list of found states in class 1 list of found states in class 2

list of
blocks
with
unexplored
states

unused

unused

Fig. 3.2. Block-oriented organization of class-grouped states in a given processor, assuming that it is assigned classes 1

and 2.

The overall approach to distributed generation di�ers slightly from the hash-function based approach.

First, the mechanism for identifying a state's location is di�erent, as we have described. Second, our internal

method for uniquely identifying a state (for the purposes of edge description) is di�erent. Earlier, the source

of an edge was described by a counter-processor pair (e.g., the 12664th state on processor 23); since states

remap, we now use a counter-class pair. A third di�erence is management of state exploration. Despite

the partitioning into state-blocks, the states associated with a class can still be viewed as being ordered

(logically) contiguously with a pointer to the next state to explore and a pointer to the next place to insert

a new state. When new memory is assigned to a class, an entire new block is assigned, and the block is �lled

sequentially. All state blocks of all classes holding unexplored states are on a singly linked list; whenever

a new state block is allocated it is attached to the end of this list. The state expansion loop works o� the

linked list, exploring each state in the head block until exhausted, after which the head block is removed,

and processing is applied to the new head block.
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When a processor exhausts its list of explorable states it engages in distributed termination logic. Of

course, it may be that there is still ample workload elsewhere in the system, some of which will be remapped

at the next remapping epoch. There are a variety of methods one might use to detect termination; as long

as its cost is not intrusive, the choice matters little. We use the non-committal barrier synchronization [16]

as that was easy to integrate into the distributed generation logic.

The state-classi�cation method may be extended to allow the control set to grow dynamically, an exten-

sion we hope to investigate in the near future. If it transpires that too many states are mapped to a class,

one can \split" the class in an intuitive way. Since the class is organized as a balanced tree; the root of that

tree is promoted to the control class, and the left and right subtrees of that root de�ne new classes. The two

new classes have nearly equal sizes since the tree is balanced. The promotion may cause the control set to

be rebalanced, but such a balancing (at least with tree semantics) does not change any previously de�ned

classes, and one is assured that the newly promoted state remains a leaf node in the control set.

4. Remapping. Remapping requires policies governingwhen to map, how to remap, and what to remap.

The latter consideration depends on one's objectives: a policy optimized to balance memory utilization is

di�erent from one optimized to reduce execution time, which is di�erent from one optimized to remap only

when one processor is in danger of exhausting its memory space. We will consider remapping all classes,

based on known size (to balance memory utilization), and remapping only classes with unexplored states

(to balance anticipated future execution costs); in the following discussion we simply speak of a processor's

\load" with the understanding that either notion applies.

A variety of remapping problems have been explored in the literature, see [26] for a survey. One important

characteristic is whether the method is synchronous or asynchronous. We are driven towards a synchronous

approach because of the overwhelming problem of keeping state location information up-to-date. At any

time, any processor might generate any state, and need to send it anywhere. We did not wish to deal with

the problems an asynchronous method would present with respect to mapping information. We are also

driven towards a \direct" approach to remapping, where a source processor directly sends workload to the

processor that ultimately receives it, without consideration of the communication network topology. This

stands in contrast to iterative approaches where a piece of load may migrate several times in the course of

a remapping. We are pragmatists; the machines we have available to us are moderately sized, and some

of them have very high-bandwidth networks. Furthermore, on shared multiprocessors the subset of nodes

(and the communication topology induced by the subset) upon which the program is executed varies from

run to run. In this context it makes sense to directly compute remappings using globally disseminated load

information, and to eschew any dependence on underlying communication topology. The mechanisms we use

to accomplish the global dissemination are standard vector-valued reduction primitives that have long been

found in message-passing libraries such as the Intel nx library, and MPI [8]. Only experimentation on very

large parallel computers will de�nitively answer whether such methods are appropriate on such machines.

We formerly investigated two styles of remapping decision policies. Papers [19] and [20] balance the delay

cost of remapping against the performance degradation due to load imbalance and global blocking at the

problem's natural synchronization points. This policy focuses entirely on minimizing execution time, and we

saw no clean way of extending it to encompass memory balance. Policies that weigh the cost of remapping

against the anticipated bene�t of remapping over the remaining lifetime of the computation are investigated in

[18]. These policies principally account for the error that is natural in statistical measurements. On re
ection

we realized that the decision of whether to remap is fundamentally a choice of remapping frequency. Graph

generation can be a long-lived computation with load constantly drifting out of balance. The question is not
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whether to remap, but how often to remap. Before inventing a policy for automating the remapping frequency

we will experimentally vary it to determine how performance depends upon it. When we do balance, we

attempt to balance nearly perfectly. There is compelling theoretical evidence that in a computation of this

sort we should attempt to redress any rebalance; the model studied in [17] shows that under workload growth

not dissimilar to ours, the maximum memory use by any processor is stochastically smaller the closer to

perfect balance we can achieve with a remapping. However, as a means of controlling remapping overhead,

we will provide mechanisms that back away from this most aggressive form of balancing, if needed.

Our �rst problem is to get processors coordinated so that they periodically remap. This application has

no natural synchronization points, unlike many synchronous numerical methods (e.g. convergence checking).

We create synchronization points with real-time clocks. We initially synchronize processors' clocks and have

each processor establish a Unix signal generator that causes a timer interrupt every � units of real time.

The interrupt handler merely increments a counter; the graph generation code tests for changes in this

counter before processing any new state (and in other critical places), and upon detecting a change engages

immediately in a parallel reduction that serves both to synchronize the processors and to distribute load

information. � is obviously a key variable; excessive overhead results from too small a value, while processor

idleness may result from too large a value. Our experiments look at the e�ects of changing �.

We use a global vector OR reduction to synchronize processors. Each processor o�ers a vector with one

component per processor, zero-�lled except for the processor's load value placed in its own component. All

processors gain the complete load vector and then exercise the same logic to determine what to do: send

load, receive load, or do nothing. Each processor begins by computing the average load �. Next it rescans

the load vector and de�nes the on-load group of processors whose loads are less than �; the o�-load group is

formed by processors with load greater than �.

To determine how to remap each processor sorts the o�-load group into decreasing load order, and sorts

the on-load group into increasing load order. Thus the o�-load group is arranged with the most able to

contribute load at the front, while the on-load group is arranged with those most needing of states at the

front. The ith member of the sorted on-load group is paired with the ith member of the sorted o�-load group;

if the on-load group is larger, we repeat the o�-load group as needed. This is illustrated in Figure 4.1, an

o�-load processor may need to distribute load to more than one other processor.

5Off-load group Processor:

Load: 210

2

150

6

122

0On-load group
60

1

73

7

85

4

98

3

102

decreasing load

increasing load

5

210

2

150

Processor:

Load:

repeat...

Fig. 4.1. Pairing of source and destination processors

Each o�-load processor attempts to bring every one of its assigned processors up to (but not beyond)

load � without causing its own load to drop below � or without spending too much time in transferring

remapped classes. The latter constraint is enforced by computing at initialization the maximum number

of states that a processor may send within a time-period equal to 0:1 ��. This calculation requires some

parametric description of message sending costs (and 10% is admittedly arbitrary), but experience with this

check has proven its utility in backing away from performance crippling remapping schedules.
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More speci�cally, an o�-load processor creates a list of classes available to move, in decreasing sorted

order of load. It then enters a loop within which, at each iteration, attempts to assign one class to each of

its on-load assignments, scanning those on-load assignments in most-needy-�rst ordering. Each assignment

attempt scans the list of available classes from front to back, choosing the largest as-yet-unassigned class

that neither brings the target processor's load above �, decreases the source processor's load below �, nor

increases the source processor's estimated remapping overhead beyond the limiting threshold. The loop is

left once no further assignments are possible.

This method is purely heuristic. Since the classes have arbitrary sizes and are indivisible, the problem

of �nding any assignment that minimizes the makespan is intractable, let alone an optimal assignment that

minimizes communication. We deliberately make no attempt to maximize on-processor graph edges, say, by

considering inter-class connectivity. Our experience with mapping has always been that simple techniques

usually provide most of the bene�t possible, and we saw that measuring inter-class arcs would impose

potentially large additional execution and storage costs. Very little can be said formally about this method;

what can be said is that the method is fast, and makes every e�ort to redress imbalance in those processors

that most sorely need more load.

Further communication is needed to prepare for the class transfers. The number of classes each o�-load

group processor will send to each of its targets is established with another vector OR reduction, where o�-load

processors (possibly repeated as illustrated earlier) �ll in their components of a zero-�lled vector with these

counts. All processors participate in the reduction, and take note of these counts as a means of interpreting

the next communication, where identities of classes being transferred are communicated through another

vector OR reduction. The length of this second vector is the total number of classes being transferred; each

o�-load processor writes into a zero �lled vector the identities of the classes it is about to transfer. Indexing

is supported by the earlier reduction that established transferred class counts, as shown in Figure 4.2, which

assumes the pairing described in Figure 4.1. Following the reduction, every processor has the information

needed to appropriately modify the class-to-processor mapping table, and does so. Each o�-load processor

then packages the the classes scheduled for transfer, sends them to their scheduled recipients, and enters a

barrier. The recipients accept all scheduled classes, unpack them and create their data structures, and then

enter a barrier. Any other processor simply enters the barrier. Emerging from the barrier the processors

continue their state-generation activity until the next remapping check.

3

OR-reduced vector describing
the number of classes between
each (Off-load,On-load) pair.

5→0

1

2→1

2

6→7

2

5→4

1

2→3

19 111 46 2 18 79 39 21 8

5→0 2→1 6→7 5→4 2→3

OR-reduced vector describing
the identity of each class that
will be remapped.

Fig. 4.2. Global communication of remapping speci�cs. Example assumes the pairing of processor illustrated in Figure 4.1.

5. Message-passing Details. Our application's performance is a�ected signi�cantly by how certain

message-passing details are handled; because of this dependence we describe those details.

It is still the case on most message-passing systems that the startup cost of sending a message is large

compared with the per-byte transfer cost. State vector lengths tend to be small (< 100 components), at least

for systems one can exhaustively analyze. A processor therefore dedicates an output bu�er for each other

processor. As states are generated and \sent", they are in fact just bu�ered until the bu�er becomes full, at

9



which point the set of states is �nally sent. A processor with no further states to explore will preemptively


ush its bu�ers. We use 3000 byte message bu�ers.

Our application runs under MPI, which takes care of all low-level message-passing logic. When a

message arrives o� the network, MPI either routes it to a memory block that an application declared for

it, or stores it internally until the message is sought. Deadlock can result if messages are received faster

than the application consumes them. It is necessary to implement 
ow control at the application level, and

to be sure that the application looks for new messages su�ciently often. Our code implements 
ow-control

with acknowledgements. It allows a processor to send up to U unacknowledged state messages to each

target processor; if it reaches this threshold, the application will not continue processing workload until an

appropriate acknowledgement comes in. A state message is acknowledged as soon as it is received. The

experiments we report use U = 10.

A counter is kept in the state exploration loop, enumerating the explored states. Every fourth state,

the application calls a routine that probes MPI for any messages, and processes all messages so identi�ed.

Relatively frequent absorption of MPI-bu�ered messages is needed to keep senders from stalling at the


ow-control threshold.

6. Experiments. These experiments are designed to reveal how well our automated state-to-processor

mapping performs relative to our previous hand-tuned hash-function, and to determine how various aspects

of the new method contribute to the overall performance. The experiments were conducted on the IBM

SP-2, at NASA Langley Research Center. This is a shared multiprocessor where, to run a job, one submits a

request for a dedicated subset of nodes with a speci�ed size. The processors of the subset are dedicated to the

application while it runs, but application communication tra�c may contend with that of other applications.

For the purposes of comparison with our earlier approach, we will study a model of a Flexible Manu-

facturing System, illustrated in Figure 6.1, originally discussed in [3]. A key parameter to this model is the

number of tokens k initially placed in places P1, P2, and P3; increasingly larger state-spaces are generated

by increasing k. This Petri net has \timed" transitions (white boxes) and \immediate" transitions (black

boxes). The state-space generator eliminates all vanishing markings, those with one or more immediate

transitions enabled. When generating children caused by a timed transition �ring, one or more immediate

transitions may be enabled, and these will be �red (and any further immediate transitions then enabled will

be �red, as so on) until all non-vanishing descendents are discovered.

The performance we report is speedup, relative to a speci�cally serial version. For k = 5, there are

152,712 states generated, with 1,111,483 edges between them in the state-space. A highly optimized serial

code requires 381 seconds of processing time on one SP-2 node.

One point of interest is a comparison between the optimized serial version and the new code running on

one processor. We �nd that the new code runs at 85% the speed of the serial code. In modifying the code

to support remapping, we had to change the serial's code techniques for minimizing malloc overhead. The

code currently is unoptimized with respect to dynamic memory overhead, we suspect this is the principal

cause of the di�erence in performance. Whatever the cause, an implication is that our 16 and 8 processor

runs can achieve speedups of at best 13.6, and 6.8, respectively.

The control classes sampled ranged from 800 to 900 states, around one half of one percent of the total

state-space size. Less than a second was required to sample and combine this set of states. We also measured

locality among states within a class; slightly over 50% of all edges in the state space are between states in the

same class. An analytic explanation for locality is given in Section 7. The code we run is non-deterministic,

as its behavior depends on system snapshots measured at intervals induced by the interrupt timers, as well

10
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Fig. 6.1. Petri Net Model of a Flexible Manufacturing System. White transitions are timed, black transitions are imme-

diate. Expressions in places denote the number of tokens in the initial marking, labels on places and transitions are used for

description, and labels on arcs describe the number of tokens transferred by the �ring of the connected transition.

as randomization. We have found that variance due to randomization is surprising small (in cases where

no remapping occurs), but that variance due to di�erent system states when remapping occurs have a more

pronounced a�ect on performance. The data we present for any set of parameters is based on �ve runs, reset

with the same random number generator seed. Di�erent means of reporting on those runs will be described

when we look at di�erent experiments.

We wished �rst to determine how well the automated state mapping works compared with the previous

hash-function approach. On the best of the hash functions we previously investigated, the new method (with

no remapping) is signi�cantly faster (as much as 20%) than the old method. On another of the previously

studied hash functions (not a strawman, it seemed plausible that it would be good) the new method is over

�ve times faster on 16 processors. Thus it seems that the randomized class generation method coupled with

a cyclic mapping of classes to processors is every bit as e�ective as a smart hash function. But, as the

speedup achieved is only 7 (out of 16) there is clearly room for much improvement2. We hope to recover

that potential using dynamic remapping.

We are interested in the characteristics of classes formed by randomization. Figure 6.2 plots the cumu-

lative distribution function of class size (in numbers of states). There are 789 non-empty classes overall. For

clarity, we present the data in two sections, the �rst for class sizes 1-100, the second for all sizes. We see

signi�cant variation: 70% of classes have sizes smaller than 100 states, 10% of them have sizes greater than

1000.

The dynamic remapping experiments involve two notions of load. \Active" load measures the number

of unexplored states, which represent future execution workload. \Memory" load measures the number of

all extant states. We will balance active load in attempts to minimize execution time at the possible expense

of memory balance. We will balance memory load in attempts to evenly balance memory utilization at the

possible expense of computational balance. Figure 6.3 presents the speedup curves for both load de�nitions,

as a function of remapping \period" (time between remappings), expressed as a percentage of the execution

2The speedup of the implementation based on a hash-function is somewhat smaller than reported in our previous work,

owing to new optimizations in the serial version that signi�cantly reduced its cost.

11



0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100Fr
ac

tio
n 

of
 c

la
ss

es
 w

ith
 s

m
al

le
r 

si
ze

# States in Class

CDF of Class Size (in States), Sizes 1-100

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000Fr
ac

tio
n 

of
 c

la
ss

es
 w

ith
 s

m
al

le
r 

si
ze

# States in Class

CDF of Class Size (in States)

Fig. 6.2. Cumulative distribution function of class size

time without remapping. Hence, the rightmost endpoints represent the case with no remapping. In real time

units, the remapping periods sampled were 1; 3; 5; 9; 11; 13; 21; 31, and 1 seconds. The error bars illustrate

the highest and lowest speedups measured among all 5 samples; the lines pass through the averages. The

span of the error bars illustrate the variability between runs with identical parameters. First we look at

performance when balancing is performed on the memory load. We see that

� performance at the highest remapping frequency is worse than less aggressive remapping frequencies.

This is due to shorter periods of execution time over which the remapping overhead is amortized,

and may also be due to whatever synchronization \skew" exists by synchronization on distributed

real-time clocks.

� There is a signi�cant range of frequencies over which performance is relatively constant.

� For 16 processors, performance drops o� when there are fewer than 3 remappings.

� For 16 processors, there is a signi�cant performance bene�t to remapping.

� Performance for 8 processors is relatively insensitive to the remapping period, and there is small

bene�t to remapping.

� For both 8 and 16 processors, attainable speedup is relatively close to the maximum possible (6.8

and 13.6).

For performance when balancing active load we draw most of the same conclusions, although the range of

frequencies over which performance is relatively constant is smaller. Also, interestingly, we see that there is

little to distinguish between balancing memory or active load; the latter is slightly faster.

Another view of the bene�t of remapping is obtained by considering how computational demands vary

as the computation progresses. A �rst approximation to a processor's computational workload is the number

of states it explores between remappings. \Utilization" is then the ratio of average number of explored states

on a processor between remappings to the maximum number explored in that period. This is admittedly

inexact, as it does not account for time a processor spends searching for and inserting remotely generated

states into its data structures. Figure 6.4 illustrates how utilization varies for the two load de�nitions, for

the original hashing method (on the best hash function), and for our class-based method with remapping

disabled, with sampling every 3 seconds. Here we clearly see that remapping keeps utilizations high, as

long as there is ample workload. Utilizations tail o� as the �nal pieces of the state-space graph are found.

By contrast, utilizations in the static methods degrade gradually, as processors exhaust their unexplored

state lists and must passively await receipt of an unexplored state from another processor before generating
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Fig. 6.4. Processor utilizations, 16 processors, two remapping methods and the original hashing method.

further states. It is interesting to note that the class-based static method tracks the dynamic methods early

in the computation, but then falls away quickly.

A clearer di�erence between balancing active and memory load is seen when we examine variability in

memory usage. Since balancing memory load gives us greater control over memory balance we expect its

memory utilization to be better. Memory balance varies as the computation progresses. While the terminal

memory balance is most important in some contexts, in others we are concerned with dynamics. For instance,

when the problem is very large relative to the number of processors, one or more processors can reach their

memory limitations and so degrade performance until remapping establishes a balance that frees them to

continue processing. Even before this, excessive memory use can force a processor's virtual memory system

to thrash. The better that balance can be maintained while processing, the smaller the risk of pushing a

processor against its memory limits.

Our implementation saves the number of states in a processor at every remapping timer interrupt. For

each such instant we will describe the global memory state with the unitless ratio (smax� smin)=savg, where

smax is the maximum number of states in any processor, smin is the minimum, and savg is the average.

For each time instant we plot the average of this statistic taken over 5 runs. Figure 6.5 displays this data,

comparing balancing memory and active loads for remapping intervals of 1, 3, and 5 seconds. Data for both
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Fig. 6.5. Variation in memory utilization, as a function of time. Variation is measured as average ratio of the di�erence

between maximum and minimum memory usage to average memory usage.

8 and 16 processor runs is given. These plots show a clear distinction between the two notions of load. With

a remapping interval of one second the two methods execute at the same rate, yet the memory balance is

very noticeably di�erent. It is notable that in all plots the variation starts high and is corrected, but then

tends to grow. Balancing memory load the growth is due to the built-in constraint against spending too

much time remapping. Balancing active load it is due to the fact that some imbalance simply cannot be

corrected|any class without unexplored states is ineligible for remapping. The data also suggests that the

methods di�er less as the remapping frequency decreases.

A �nal view of remapping behavior is obtained by looking at statistics gathered at remapping epochs.
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Fig. 6.6. Fraction of execution time spent remapping, and total number of classes remapped. The remapping period is

expressed as a percentage of the overall execution time.

We measure the total amount of time spent synchronizing for, computing, and conducting remapping; we

also measure the total number of classes remapped (counting each move a class makes individually).

Figure 6.6 plots this data for the two load de�nitions, as a function of the remapping period, expressed

as the percentage of total execution time. We see that under the highest frequency of remapping, balancing

unexplored states exacts a very high overhead, 20% of the total execution time (our check against spending

more than 10% time in remapping overhead is both inexact, and applied only to transfer costs). We also see

very clearly that (surprisingly) balancing active load tends to have higher overhead, while balancing memory

load moves far more classes! Two factors may explain these observations. First, this data says nothing

about the sizes of the classes being moved (and we did not measure this). It may be that classes moved

when balancing unexplored states tend to be much larger. A second factor is the cost of computing which

states will be moved. The heart of the mapping algorithm searches through classes looking for the largest

movable ones that satisfy certain constraints. Since the set of classes with unexplored states is smaller, it

may be that much more searching is required. Both factors are mere conjectures.

7. Analysis. In this section we provide a simple analysis that explains locality between states in a

common class, and that looks at the scalability of remapping in the global fashion we have used.

When a state is classi�ed by searching for it in the control class, some random number C of its components

will determine how the state compares with states in the control set. C need not be the depth of the tree;

for example the �rst component tested may indicate that the state is less than the tree root, and the same

component may indicate that it is greater than the tree's left child. So, if we choose a state s from some

class at random, C describes the number of its components that were involved in classifying the state. Now

consider any child of s. The child di�ers from s in some random number of components D. If that set of

components is entirely disjoint from the set of components used to classify the parent, then the child and

parent are assured to be in the same class. Note that the reverse is not true, that is, states might di�er in

some (or even all) of the C components and still be in the same class, as previously observed for class 1 in

Figure 3.1.

The set of components used to classify s and the set of components in which parent and child di�er are

independent, since the components used in the lexicographical ordering for comparison are randomized. If

the state vector has n components, the probability ps that the child is in the same class as the parent is at
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where the last step follows from another application of Jensen's Inequality. This last expression gives us a

way of considering how problem characteristics n, E[C], and E[D] a�ect locality. For the speci�c problem

used as illustration in this paper, n = 22 and we instrumented the program to estimate E[C] = 4:2 and

E[D] = 5:1. This yields ps > 0:34, as compared with the measured ps � 0:51. The bound evidently is not

tight, but nevertheless is useful in describing the mechanics of locality and bounding locality from below.

We now turn to a simple analysis of the costs of computing a global view of load. Like many before us

we will model the cost of communicating one message as a constant startup cost, plus a length-dependent

transmission cost. The reductions we employ involve logP stages of message-passing, (P is the number

of processors) each stage separated by computation that performs the vector-length reduction locally. The

cost of computing the global reduction is modeled as (logP )(� + (� + 
)P ), where � is the startup cost,

� the per-integer transmission cost, and 
 the per-integer computation cost. We will view these constants

in units of machine cycles. � includes all MPI overhead and messaging protocol logic; a reasonable order

of magnitude is � = 104. On modern high-bandwidth networks � is small, say, � = 1. Computation costs

re
ected by 
 include copying into and out of memory, and comparison. 
 = 10 is reasonable.

The cost of computing a global snapshot increases as a function of P logP , we are interested in deter-

mining for what magnitude of P this cost is excessive. We do this by comparing the length-independent

and length-dependent costs. For a given fraction f we can compute the value of P for which the ratio of

length-independent and length-dependent costs is f :

f =
� logP

(logP )(�+ (� + 
)P )
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To assess the relative cost of computing a global viewpoint, we ask ourselves what degree of dependency

on length we can tolerate. This consideration should include the amortization of the remapping cost over

computational periods between remaps. For instance, if an order of magnitude di�erence is acceptable we

would use f = 0:1. Using the estimates of �, �, and 
 given earlier, on the order of 104 processors could

be tolerated with this approach. Considering today's technology, there is clearly room for two orders of

magnitude reduction in � and still have computation of a global viewpoint make sense. We conclude from

this analysis that remapping based on a global view should scale to machines available in the foreseeable

future, and when tens of thousands of processors are routinely used we can reassess the merits of the approach.

8. Conclusions. The generation of large discrete state-spaces is a computationally intensive activity

with extreme memory demands, highly irregular behavior, and poor locality of reference. As the generation

of large state-spaces causes virtual memory thrashing on single processor systems, we are lead to consider

exploiting the larger memory space available in parallel or distributed systems.

State-space generation is essentially a breadth-�rst generation and traversal of the reachability graph

that is implicit in the model semantics. The critical problem is determining whether a newly generated

state has been generated before. In a serial implementation this question is answered by organizing known

states in a search tree, and looking for the new state in that tree. As this is a centralized activity, any

parallel or distributed solution must �nd an alternative approach. The method we pursue is to assign states

to processors. After a state has been generated, it is sent to its assigned location, where a local search

tree determines whether the state already exists. Our solution entails automated classi�cation of states into

classes, and dynamic mapping and remapping of classes to processors.

Our state classi�cation system is based on randomization: states visited in a set of initial random walks

are organized in a search tree, using a randomized lexicographical comparison function. All states that exit

the search at the same point are in the same class. We provide analysis of the method that lower bounds

the probability that a child is in the same class as its parent, the bound is expressed in terms of easily

understood model characteristics.

Our remapping scheme uses a real-time clock to coordinate all processors periodically. When processes

coordinate, they use a global vector OR reduction to distribute a snapshot of the global load state. Each

processor uses the snap-shot to determine whether to send load, receive load, or do nothing. Further vector

reductions establish the number and identity of the classes involved in the balancing. The processors involved

in the exchange implement it, and all processors modify the global class-to-processor mapping table. We

analyze the cost of a global snapshot to argue that it scales to system sizes much larger than those we

anticipate would be commonly used for years to come.

We report on data collected on solution of a system model discussed earlier in the literature. We

considered two variations that di�er in the notion of \load". One method balances extant classes without

explicit concern for balancing future state generation workload. The other method balances states that have

yet to be explored, without explicit concern for balancing existing states. We �nd that both methods execute

signi�cantly faster and achieve better memory balance than static methods. However, while we �nd that
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the method that balances memory does indeed achieve better memory balance, it runs almost as fast as the

method that balances future workload. For both methods, remapping too often (e.g. every second) degrades

performance due to excessive overhead; backing o� somewhat amortizes remapping overhead but stays

responsive to load variation. Our data suggests that remapping frequently and su�ering greater remapping

overhead is to be preferred to letting the computation get widely out of balance and then attempt to correct it.

To the extent that we can generalize from our experiments, it would seem that we should remap as frequently

as possible, relative to the speed of the communication medium. We expect that a longer remapping period

is needed on an ethernet-connected network of workstations, for instance, to avoid undue communication

overhead.

The fundamental message is that for distributed or parallel discrete state space generation, remapping

is essential. We have demonstrated techniques that prove its feasibility and demonstrate its potential. Key

elements to our success were automated and e�cient state classi�cation, and low-overhead methods for

computing and using global snapshots of load state to compute remappings. Access constraints to the SP-2

forced us to focus on a relatively small model instance when conducting our parametric study. In fact, pilot

runs on larger models demonstrate even more signi�cant performance gains due to remapping, in one case

we observed a factor of 5 di�erence when using 32 processors. The point is clear, remapping is essential, and

is feasible.
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