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ABSTRACT
A design optimization method for turbopumps of
cryogenic rocket engines has been developed.
Multiobjective Evolutionary Algorithm (MOEA) is
used for multiobjective pump design optimizations.
Performances of design candidates are evaluated by
using the meanline pump flow modeling method based
on the Euler turbine equation coupled with empirical
correlations for rotor efficiency.
To demonstrate the feasibility of the present approach,
a single stage centrifugal pump design and multistage
pump design optimizations are presented. In both
cases, the present method obtains very reasonable
Pareto-optimal solutions that include some designs
outperforming the original design in total head while
reducing input power by 1%. Detailed observation of
the design results also reveals some important design
criteria for turbopumps in cryogenic rocket engines.
These results demonstrate the feasibility of the EA-
based design optimization method in this field.

INTRODUCTION
While the budget for space development programs has
drastically shrunk in most countries, recent and future
space missions increasingly demand high performance
and reliable rocket engine systems and components,
such as turbopumps. Progress in computational fluid
dynamics (CFD) methods and development of
powerful computational facilities have contributed to
the reduction in required cost and time to develop
advanced turbopump designs. The design process still
largely depends on experienced designers. Therefore,
numerical design methods coupled with CFD, which
are capable of efficiently developing advanced
turbopump designs, can greatly reduce such
dependency.

Among numerical optimization algorithms, gradient-
based methods are long-standing and most widely used
approaches1-3. These methods use the gradient of an
objective function with respect to changes in design
variables to calculate a search direction using steepest
descent, conjugate gradient, quasi Newton techniques,
or adjoint formulations. The solution obtained by these
methods will be a global optimum, only if the objective
and constraints are differentiable and convex4.
Unfortunately, the distribution of an objective function
of real-world design problems is usually multimodal
and one could only hope for a local optimum
neighboring the initial design point. Therefore, to
determine the global optimum, one must optimize from
a number of initial points and check for consistency in
the optima obtained. In this sense, the gradient-based
methods are not robust.
Evolutionary Algorithms (EAs, for example, see [5])
are emerging design optimization algorithms modeled
on the mechanism of natural evolution. EAs search
from multiple points, instead of moving from a single
point. In addition, they require no derivatives or
gradients of the objective function. These features lead
to robustness and simplicity in coupling with any
evaluation codes. Parallel efficiency also becomes very
high by using a simple master-slave concept for
function evaluations, if such evaluations consume most
of CPU time. Design optimization using CFD is a
typical case. Application of EAs to multiobjective
design problems is also straightforward because EAs
maintain a population of design candidates in parallel.
Due to these advantages, EAs are unique and attractive
approach to real-world design optimization problems.
Recently, EAs have been successfully applied to
aerospace design optimization problems5-9.
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The objective of the present study is to develop and
demonstrate a design optimization method for
turbopumps used in the cryogenic rocket engines. The
Multiobjective Evolutionary Algorithm (MOEA) will
be used for multiobjective optimization of pump
designs. Performances of design candidates will be
evaluated by using the meanline pump flow modeling
method based on the Euler turbine equation coupled
with empirical correlations for rotor efficiency. Present
approach will be applied to centrifugal and multistage
turbopump design optimization problems.

EVOLUTIONARY ALGORITHMS
EAs mimic mechanism of natural evolution, where a
biological population evolves over generations to adapt
to an environment by selection according to fitness,
recombination and mutation of genes (Fig.1). When
EAs are applied to optimization problems, individual,
fitness, and genes usually correspond to a design
candidate, an objective function value, and design
variables, respectively. One of the key features of EAs
is that it searches from multiple points in the design
space, instead of moving from a single point like
gradient-based methods do. Furthermore, these
methods work on function evaluations alone and do not
require derivatives or gradients of the objective
function. These features lead to the following
advantages:
1) Robustness: EAs have capability of finding a

global optimum, because they don’t use function
gradients that direct the search toward a local
optimum. In addition, EAs have capability to
handle any design problems that may involve non-
differentiable objective function and/or a mix of
continuous, discrete, and integer design
parameters.

2) Capability of sampling various Pareto-optimal
solutions in parallel: Real-world design
optimization problems typically involve multiple
and often competing objectives. The solution to
such problem is not a unique optimal solution, but
a set of compromised solutions, largely known as
Pareto-optimal solutions. Each of those solutions is
optimal in the sense that no improvement can be
achieved in one objective component that does not
lead to degradation in at least one of the remaining
components. Therefore, primary goal of a
multiobjective optimization problem is, unlike that
of a single objective optimization, to find various
Pareto-optimal solutions to show the precise
tradeoff information among the completing
objectives. By maintaining a population of
solutions and introducing the concept of Pareto-
optimality, EAs can uniformly sample various
Pareto-optimal solutions in parallel.

3) Suitability to parallel computing: Since EAs are
population-based search algorithms, all design
candidates in each generation can be evaluated in
parallel by using the simple master-slave concept.
Parallel efficiency is also very high, if objective
function evaluations consume most of CPU time.

4) Simplicity in coupling evaluation codes: As these
methods use only objective function values of
design candidates, EAs do not need substantial
modification or sophisticated interface to
evaluation codes. If an all-out re-coding were
required to every optimization problem like the
adjoint methods, extensive validation of the new
code would be necessary every time. EAs can save
such troubles.

The present MOEA uses floating-point representation,
where an individual is characterized by a vector of real
numbers. It is natural to use the floating-point
representation for real parameter optimization
problems instead of binary representation because it is
conceptually closest to the real design space, and
moreover, the string length is reduced to the number of
design variables. Fonseca’s Pareto-based ranking
method10 is used for fitness assignment where an
individual’s rank corresponds to the number of
individuals in the current population that are better than
the corresponding individual in every objective
function. To maintain diversity in the population, a
standard sharing function10 is incorporated. As the
elitism, the best-N selection1 1  is incorporated, where
the best N individuals are selected for the next
generation among N parents and N children based on
Pareto-optimality5 so that the Pareto-optimal solutions
will be kept once they are formed. Parents are selected
from the best N individuals randomly. To generate new
design candidates from these parents, the blended
crossover (BLX-a) is used, which is the most common

approach for recombination of two parents represented
by a vector of real numbers proposed by Eshelman and
Schaffer12. In this approach, children are generated on a
segment defined by two parents, but the segment may
be extended equally on both sides determined by a user
specified parameter a. Thus, a child solution is

expressed as:

2)1(11 ParentParentChild ◊-+◊= gg (1)

21)1(2 ParentParentChild ◊+◊-= gg (2)
where

g = ( 1 + 2a ) u - a (3)
Child1, Child2 and Parent1, Parent2 denote design
parameters of the children and parents, respectively. u
is uniform random number in [0,1]. Schematic view of
BLX-a is shown in Fig. 2. When an EA is applied to a

design optimization problem, what is important is
balance of two conflicting goals: exploiting good



NASA/TM—2001-211082 3

solutions and exploring the search space13. Thus, BLX-
0.5 is used in which both exploration and exploitation
are carried out equally. Since the strong elitism is used,
high mutation rate of 0.2 is applied and a random
disturbance is added to the parameter in the amount up
to ± 20% of the design space. Population size and
maximum number of generations are set to 100 and 90
for the centrifugal pump design, 100 and 120 for the
multistage pump design.  Unbiased initial population is
generated by randomly spreading solutions over the
entire design space in consideration.

PUMP PERFORMANCE EVALUATION
Total head and required input power of pump design
candidates are evaluated by using a one-dimensional
meanline pump flow modeling method14, which
provides a fast capability for modeling turbopumps
within rocket engines. The components of the inlet and
exit fluid velocity triangles are calculated at the hub,
mean and tip locations along the rotor blades. The
meridional velocity of the fluid at the rotor leading
edge root-mean-square diameter CM1 [ft/sec] is defined
by equation (4).

11

1
144

A
m

=CM r
(4)

where
m:  Mass flow [lbs/sec]
r1:  Fluid density at leading edge [lbs/ft3]

A1:  Flow area at leading edge [inch2]
Flow area is calculated from the input flow path
dimensions.

( )[ ]blockRRBA tiphub -+= pl (5)

where
l:  Boundary layer blockage factor

B:  Blade span from hub to tip [inch]
Rhub: Radial distance from pump centerline

at hub [inch]
Rtip: Radial distance from pump centerline

at tip [inch]
The metal blockage of the rotor block is calculated by
eq. (6).

bsin

ZBthk
block

◊◊= (6)

where
thk: Normal blade thickness [inch]
Z:  Blade number
b: Relative angle from tangential [degree]

The tangential component of velocity entering the rotor
is calculated in terms of the swirl angle of the flow a1

by equation (7).
)tan(/ 111 aMU CC = (7)

The meridional and tangential components of absolute
fluid velocity at the rotor trailing edge are calculated by
equations (8) and (9).

MC =
m

A
2

2 2

144
r (8)

U UC = U +W2 2 2 (9)
where

r2:  Fluid density at trailing edge [lbs/ft3]

A2:  Flow area at trailing edge [inch2]
U2:  Blade tangential velocity at trailing edge

[ft/sec]
WU2: Tangential component of relative fluid velocity

at trailing edge [ft/sec]
Flow area at trailing edge is calculated by eq. (5). The
blade tangential velocity U and tangential component
of the fluid relative velocity WU2 are given by equations
(10) and (11), respectively.

720
2 NR

=U
◊◊p

(10)

)-(1U+C=W 2MU sb 222 tan◊ (11)

where
R:  Radial distance from pump centerline [inch]
N:  Shaft rotative speed [rpm]
b2:  Relative angle from tangential at trailing edge

[degree]
The slip factor s  is defined by

s = -
slip

U 2
1 (12)

The slip is the difference between the theoretical and
absolute fluid tangential velocities. For centrifugal
impellers, Pfleiderer correlation to geometry15 is used
to calculate the slip factor s . A default slip factor of

0.95 is used for inducers.
The head rise through the rotor is calculated iteratively
from the Euler turbine equation coupled with empirical
correlations for rotor efficiency

( )
hyd

c

UU

g

CUCU
H h◊◊-◊= 1122

2 (13)

where
H2:  Head rise through the rotor [ft]
hhyd: Rotor hydraulic efficiency

gc:  Gravitational constant, 32.174[lbm-ft/lbf-sec2]
The rotor hydraulic efficiency is obtained from
empirical correlations to rotor-specific speed17. The
total pressure and static pressure at the rotor exit are
estimated from the rotor head rise by equations (14)
and (15).

P+
144

H=P t1
2

t2
21-◊ r

(14)
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g1442

C
-P=P

c

ts ◊◊
◊ 2

2
2

22
r

(15)

where
Pt1:  Total pressure at the leading edge [psia]
Pt2:  Total pressure at the trailing edge [psia]
r1-2: Average density of the fluid from the leading

edge to the trailing edge [lbs/ft3]
Ps2:  Static pressure at the trailing edge [psia]

Fluid absolute velocity at trailing edge C2 [ft/sec] is
defined by

2
2

2
22 UM CCC += (16)

Total pressure at the discharge of the last stage Pt4

[psia] is given by the following equation

)( 224224 sttt PPPP -◊-= -w (17)

where the design point total pressure loss coefficient of
the diffusion system is assumed to be known and is
input in terms of a normalized loss coefficient w2-4. The

total head rise through pump is calculated by

41

14
4

)(144

-

-◊
=

r
tt PP

H (18)

where
H4: Total head rise through pump[ft]
Pt4: Total pressure at the pump exit [psia]
r1-4: Average density of the fluid from the inlet

to the discharge [lbs/ft3]

The input power required to drive the rotor is
calculated from the head rise through the rotor, mass
flow, rotor hydraulic efficiency, mechanical efficiency,
volumetric efficiency and disk pumping loss as

mech
disk

volhyd

PL
Hm

input
hhh

12 ◊˜
˜
¯

ˆ
Á
Á
Ë

Ê
+

◊
◊= (19)

where
input: Input power [hp]
hmech:  Mechanical efficiency

hvol  :  Volumetric efficiency

PLdisk: Disk Pumping loss [hp]

The mechanical efficiency is assumed to be 0.98 and
the volumetric efficiency is based on internal leakages
and is expressed as the ratio of leakage to the inlet
flow. The disk pumping loss is calculated from
empirical correlations to geometry, fluid density at
rotor trailing edge, and the shaft rotative speed16.
During the calculation, local static pressure at the rotor
tip is compared to the local vapor pressure to check for
the cavitation inception point.
To estimate off-design total head and required input
power, the empirically derived variation of slip factor
and rotor efficiency as a function of flow-speed ratio F
is used. Correction factor is also applied to the total
pressure loss coefficient of the diffusion system as a
function of loading parameter L.

32 0571508.0077472.06681688.0534988.1 FFF
design

◊+◊+◊-=
s

s
(20)

32

,

029265.014086.03096.086387.0 FFF
designhyd

hyd ◊-◊-◊+=
h

h
(21)

32 18765.08798.083527.18151.1 LLL
design

◊+◊+◊-=
w

w
(22)

The loading parameter is defined in terms of the velocities
at the vaneless diffuser exit and the velocity at the
diffusion system throat.

2
3

2
3 MU

throat

CC

C
L

+
= (23)

where
Cthroat: Fluid absolute velocity at the diffusion system

throat [ft/sec]
CU3: Tangential component of fluid absolute velocity

at vaneless diffuser exit [ft/sec]
CM3: Meridional component of fluid absolute

velocity at vaneless diffuser exit [ft/sec]

The velocity at the diffusion system throat is defined by
the equations (24) and (25).

A

m
=CM

33

3
144

r (24)

3
2

)1( 2323 R
R

CC UU ◊◊-= -v (25)

where the pressure loss coefficient at the diffuser exit w2-3

is assumed to be 0.1. Fluid velocity at the throat is given
by the equation (26).

A

m
=C

throat3

throat
144

r (26)
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CENTRIFUGAL PUMP DESIGN
First, redesign of a single-stage centrifugal pump, M-1
oxygen scaled tester is demonstrated. Objectives of the
present design problem are maximization of total head and
minimization of input power at a design point. These
objectives are competing and therefore the solution to this
optimization problem is Pareto-optimal solutions.
The design point is shaft rotative speed of 5,416.7[rpm],
total temperature of the fluid entering the pump of 545
[Rankine], total pressure of the fluid entering the pump of
50.0 [psia], and mass flow into the pump of 188.7
[lbm/sec].
Design parameters are rotor leading edge tip radius (Rtip1),
rotor trailing edge radius (R2), volute tongue radius (R3),
blade span at trailing edge (B2), blade span at volute
tongue (B3), axial length of the blade at the root-mean-
square diameter (S), number of blades (Zn), blade thickness
(thk), blade trailing edge angle at the hub, root-mean-
square radius, and tip (bhub , bmid , b tip) as shown in Fig. 3.

Table 1 presents present design spaces.
Total head and input power of Pareto-optimal designs,
original design, and all other design candidates are
illustrated in Fig. 4. Designs that have cavitation are
eliminated from the figure. Present Pareto-optimal
solutions successfully displays tradeoff information
between maximization of the total head and minimization
of the input power. Such tradeoff information is very
helpful to a higher-level decision-maker in selecting a
design with other considerations. Among the Pareto-
optimal solutions, some designs outperform the original
design in the total head while reducing the input power by
1%.
Figure 5 compares overall performance maps of the
original design, the highest total head design, the lowest
input power design, and a compromised design that
overcomes the original design in both objectives.
Moreover, the compromised design is seen to improve the
exit pressure in all off-design conditions. The design
parameters of these designs are shown in Table 2.
The absolute flow velocity at rotor exit hub is shown in
Fig. 6. This figure indicates the optimum designs have
small exit flow velocity, which contributes to minimizing
the total pressure loss in the diffusion system. By
minimizing the total pressure loss in the diffusion system,
designs can improve their total head rise. To minimize the
exit flow velocity, the optimum designs have small slip
factor values, i.e., large slip than others. Actually, all three
optimum designs in Table 2 have small axial length, while
the high head design and the compromised design
maximize R2 to increase slip due to the inertial effect (Low
input design minimize R2 to minimize input power). The
low input design and the compromised design also
minimize their blade angle at hub and tip to reduce
absolute fluid velocity at rotor exit (the high head design
maximize blade trailing edge angles to improve its total
head). However, it is known that non-uniform radial

velocity around the periphery of the impeller due to large
slip degrades its head rise. Therefore, this effect should be
counted in the future study.
Figure 7 shows the total pressure loss coefficient of the
diffusion system of the designs. Pareto-optimal solutions
successfully minimize it to increase their total head rise.
According to these detailed observations of the results,
present MOEA obtained reasonable Pareto-optimal
solutions, which ensure the feasibility of the present design
optimization approach in rocket engine pump designs.

MULTISTAGE PUMP DESIGN
Next, present design optimization method is applied to the
redesign of RL10A-3-3A liquid oxygen pump consisting
of one inducer and a single centrifugal impeller, followed
by a vaneless diffuser and conical exit volute. The
objectives are maximization of total head and
minimization of input power at the design point, which is
shaft rotative speed of 12,900[rpm], total temperature of
the fluid entering the pump of 175 [Rankine], total
pressure of the fluid entering the pump of 40.0 [psia], and
mass flow into the pump of 40.0 [lbm/sec]. Design
parameters and the corresponding parameter ranges are
shown in Fig. 8 and Table 3, respectively.
Figure 9 shows total head and input power of Pareto-
optimal designs, original design, and all other design
candidates that have no cavitation. Though this design
optimization problem involves two stages and a large
number of design parameters, the present MOEA finds
reasonable Pareto-optimal solutions including some
designs that improve both total head and input power by as
much as 1%.
Figure 10 shows overall performance maps of the original
design and optimized designs. The compromised design
improves the exit pressure in all off-design conditions. The
design parameters of these designs are shown in Table 4.
Figures 11 and 12 illustrate the head rise and the required
input power of the first and the second stages. Because the
exit of the first stage connects with the inlet of the second
stage directly, the relation between the head rise and input
power becomes linear. The optimum designs increase their
head rise through the first stage because the slope of the
curve consisting of Pareto-optimal solutions in Fig. 12 is
steeper than that of the line in Fig. 11. To increase the head
rise through the first stage, the highest head design and the
compromised design increase Rtip, b 2hub, b2rms, and b2tip.

Another interesting thing is that the second stages of the
Pareto-optimal designs are not optimal by themselves,
especially in the high head region. This is due to the
nonlinear interactions between the first and the second
stages, which make a multistage pump design very
difficult.
Figure 13 shows fluid velocity at rotor exit hub. The
Pareto-optimal designs have a small fluid velocity at exit
like the single stage pump design. However, the optimum
designs that have the total head of 950-1200 inches do not



NASA/TM—2001-211082 6

minimize their total head. This is probably due to
complicated interactions between the first and second
stages.
Figure 14 is the total pressure loss coefficient of the
designs. This figure is also interesting because the optimal
designs in low total head region minimize their total
pressure loss coefficient but the optimal designs in the high
total head region maximize it. More work is necessary to
understand the multistage pump designs.

SUMMARY
In the present study, a design optimization method for
cryogenic rocket engine turbopumps has been developed.
Multiobjective Evolutionary Algorithm is used for the
multiobjective optimization of pump designs.
Performances of design candidates are evaluated by using
the meanline pump flow modeling method, which is based
on the Euler turbine equation coupled with empirical
correlations for rotor efficiency.
To demonstrate the feasibility of the present approach,
single stage centrifugal pump design and multistage pump
design optimizations are presented. In both cases, present
method obtains reasonable Pareto-optimal solutions that
include designs outperforming the original design in total
head as well as input power by 1%. Detailed observation
of the design results also reveals some important design
policies in turbopump design of cryogenic rocket engines.
These results ensure the feasibility of EA-based design
optimization method in this field.
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Figure 1. Flowchart of the present evolutionary 

algorithm. 
 

Parent2Parent1

α⋅d d α⋅d

Possible sampling region  
Figure 2. Blended crossover. 

 

R2
R3

R1tip
S

B2

B3

thkββββtip

ββββhub

ββββrms

Zn : number of blades
 

Figure 3. Design parameters of the centrifugal pump 
design problem. 

 
Table 1. Design parameter ranges of the centrifugal 

pump design problem. 

design variables R1tip R2 R3 B2 B3 S
[inch] [inch] [inch] [inch] [inch] [inch]

Upper boundary 4.00 5.60 6.20 0.85 1.00 4.30

Lower boundary 3.40 5.00 5.60 0.70 0.85 3.70
 

design variables β hub β rms β tip thk Zn
[degs.] [degs.] [degs.] [inch]

Upper boundary 25.0 25.0 25.0 0.03 6

Lower boundary 45.0 45.0 45.0 0.10 18
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Figure 4. Objective function values of the centrifugal  

pump designs. 
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Figure 5. Pump overall performance map. 
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Table 2. Pareto-optimal designs of the centrifugal 
pump design problem. 

design variables R1tip R2 R3 B2 B3 S
[inch] [inch] [inch] [inch] [inch] [inch]

High head design 3.50 5.60 6.05 0.846 0.871 3.74

Low input design 3.71 5.00 6.08 0.701 0.859 3.74

Compromised design 3.92 5.59 5.63 0.730 0.878 3.76

Original design 3.66 5.34 5.91 0.814 0.908 4.00
 

design variables β hub β rms β tip thk Zn
[degs.] [degs.] [degs.] [inch]

High head design 44.9 36.0 44.6 0.100 18

Low input design 25.3 33.2 26.1 0.065 6

Compromised design 26.7 37.2 26.4 0.042 7

Original design 35.0 35.0 35.0 0.050 12
 

Figure 6. Flow velocity at second stage exit hub. 

 

Figure 7. Total pressure loss coefficient of the 
centrifugal pump designs. 
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Figure 8. Design parameters of the multistage pump 
design problem. 

 
Table 3. Design parameter ranges of the multistage 
        pump design problem. 

design variables Rtip R2hub β 2hub β 2rms β 2tip thk2

[inch] [inch] [degs.] [degs.] [degs.] [inch]

Upper boundary 1.18 0.53 50.0 40.0 35.0 0.08

Lower boundary 1.08 0.43 35.0 25.0 20.0 0.03

<1st stage>

 

design variables R2 (R4-R3) B2 B3 thk3 S Zn3 β 3

[inch] [inch] [inch] [inch] [inch] [inch] [degs.]

Upper boundary 2.20 0.15 0.35 0.50 0.08 1.00 16      90.0

Lower boundary 2.00 0.05 0.15 0.30 0.03 0.80 8       60.0

<2nd stage>

 

 

Figure 9. Objective function values of the multistage 
pump designs. 
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Figure 10. Pump overall performance map. 

 

 
Table 4. Pareto-optimal designs of the multistage 
        pump design problem. 

design variables Rtip R2hub β 2hub β 2rms β 2tip thk2

[inch] [inch] [degs.] [degs.] [degs.] [inch]

High head design 1.17 0.517 49.9 38.5 34.9 0.0788

Low input design 1.17 0.525 42.9 37.3 28.0 0.0378

Compromised design 1.17 0.514 48.3 40.0 33.4 0.0520

Original design 1.13 0.480 43.0 27.3 21.6 0.0400

<1st stage>

 

design variables R3 (R4-R3) B3 B4 thk3 S Zn3 β 3
[inch] [inch] [inch] [inch]       [inch] [inch] [degs.]

High head design 2.20 0.1350 0.340 0.301 0.0311 0.855 16     87.4

Low input design 2.00 0.0548 0.152 0.393 0.0798 0.804 8      64.4

Compromised design 2.16 0.0608 0.333 0.370 0.0439 0.812 9      77.8

Original design 2.10 0.0950 0.251 0.400 0.0300 0.878 12     90.0

<2nd stage>

 
 

 
 
 
 
 

Figure 11. First stage performances of the multistage 
pump designs. 

 

 

 

Figure 12. Second stage performances of the 
         multistage pump designs. 
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Figure 13. Flow velocity at second stage exit hub. 

 

Figure 14. Total pressure loss coefficient of the 
multistage pump designs. 
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