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ABSTRACT

Engineers are challenged to produce better designsin less time and for less cost.
Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity
data must be assimilated rapidly into the design, analysis and simulation process. This
data assimilation should consider diverse mathematical modeling and multi-discipline
Interactions necessitated by concepts exploiting advanced materials and structures.
Integrated high-fidelity methods with diverse engineering applications provide the
enabling technologies to assimilate these high-fidelity, multi-disciplinary data rapidly at
an early stage in the design. These integrated methods must be multifunctional,
collaborative and applicable to the genera field of engineering science and mechanics.

Multifunctional methodologies and analysis procedures are formulated for
interfacing diverse domain idealizations including multi-fidelity modeling methods and
multi-discipline analysis methods. These methods, based on the method of weighted
residuals, ensure accurate compatibility of primary and secondary variables across the
domain interfaces. Methods are developed for scalar-field and vector-field problemsin
engineering science with extensions to multidisciplinary problems. Results are presented
for the scalar- and vector-field devel opments using example patch test problems. In
addition, results for torsion, thermal, and potential flow problems are presented to
demonstrate further the effectiveness of the scalar-field development. Resultsfor plane
stress and plane flow problems are presented for the vector-field development. Results
for al problems presented are in overall good agreement with the exact analytical

solution or the reference numerical solution.



The multifunctional methodology presented provides an effective mechanism by
which domains with diverse idealizations are interfaced. This capability rapidly provides
the high-fidelity data needed in the early design phase. Moreover, the capability is
applicable to the general field of engineering science and mechanics. Hence, it provides
a collaborative capability that accounts for interactions among engineering analysis

methods.
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CHAPTER |

INTRODUCTION

1.1. MOTIVATION

The analysis of revolutionary aerospace and ground vehicles relies heavily on
accurate, efficient and robust computational methodol ogies such as the finite element and
finite difference methods. To investigate novel and revolutionary design concepts,
accurate, high-fidelity data must be assimilated rapidly into the design, analysis and
simulation process. This data assimilation should consider mathematical modeling
approximations ranging from simple handbook equations, empirically derived relations,
spreadsheets, and design charts to complex continuous and discrete simulation models.
In addition, the data assimilation needs to consider associated multi-discipline
interactions necessitated by advanced design concepts exploiting multifunctional
materials and leading to multifunctional structures. Rapid discipline-centric modeling
techniques alow high-fidelity design trades between cost and performance, and based on
the insight provided by these simulations, design uncertainties and risk assessment may
be evaluated. Integrated multi-discipline analyses allow the assessment of the effects of
multidisciplinary coupling on the system response. New computing systems and
alternative computing strategies have presented new opportunities for optimal design,
analysis, and simulation of aerospace systems. However, integrated high-fidelity
methods with diverse engineering applications provide the enabling technologiesto

assimilate high-fidelity, multi-disciplinary datarapidly at an early stage in the design.

The journal model for this dissertation is the AIAA Journal.



These integrated methods must be multifunctional, collaborative and applicable to the
genera field of engineering science and mechanics.

To understand the impact of these integrated methods, the three concomitant
attributes, namely, multifunctional, collaborative, and engineering science and
mechanics, must be described. In the context of this work, multifunctional
characterization has been adopted from the description of new and innovative materials
and structures with multiple capabilities. These systems, referred to as multifunctional
materials and structures, respectively, have several desirable simultaneous properties and
many diverse disciplinary applications. The systems will adapt, react and evolvein
changing environments, and their use will result in a combined system with enhanced
capabilities at less cost and weight. Likewise, multifunctional methods refer to
computational methodol ogies that have multiple capabilities such as multiple fidelity
modeling, multiple approximation analysis and multidisciplinary analysis. The methods
are computationally efficient while preserving solution accuracy and are applicableto a
wide range of applicationsin engineering science. Their use in the combined analysis of
complex configurations promises to provide enhanced computational and engineering
capability at less cost and in lesstime. With these attributes, a multifunctional method
may address the diverse modeling and analysis needs of evolving systems perhaps using
ahierarchical approach including error analysis and risk assessment.

The collaborative aspect of the computational methods provides a mechanism by
which two or more physical domains are integrated or interfaced and by which two or
more methods or algorithms are shared or interfaced. It isthrough this interfacing that

the diverse attributes create a unified framework that far exceeds the capability of an



individual method. Collaborative methods may integrate domains of different
discretization fidelity, analysis approximations, or disciplines. An example of a
collaborative method is adaptive dynamic relaxation. Explicit direct time integration
algorithms are well-known for their computational efficient, low-memory requirements,
low computational cost per solution step and direct mapping to massively paralel
processing (MPP) systems. Adaptive dynamic relaxation techniques exploit these
features to determine the quasi-static or steady-state response of a structure without
relying on traditional methods requiring the solution of the large sparse matrices.
Collaborative methods provide a mechanism by which the aggregate cost savings related
to computational and modeling requirements are reduced, and analyses, previously
intractable, may be performed. Asin the case of the multifunctional materials or
structures, these methods adapt, react and evolve in the changing environments of
engineering science. Engineering science covers the broad perspective of engineering
and includes the integrated application of engineering principles, science, mathematics,
numerical analysis and non-deterministic methods. Problemsin fluid flow, solid
mechanics, thermal analysis, and constitutive modeling are representative of those in
engineering science. Engineering science has a multidisciplinary emphasis, and future
methods applicable to the field should possess multifunctional characteristics and a
collaborative nature to further enhance their analysis capabilities and to advance the state-
of-the-art in engineering design.

Multifunctional collaborative methods should address four typical steps of
analysis and design, namely, (1) representation or modeling of the geometry, (2)

knowledge-based selection and development of appropriate mathematical models (i.e.,



Idealization/discretization), (3) solution of the mathematical model (continuous and/or
discrete), and (4) interrogation/assessment of the results. These steps are briefly outlined
in Appendix A. Methodology and analysis procedures that address these basic steps
provide the foundation for enhanced integrated design and analysis tools within the realm
of engineering science. Such multifunctional methodology should allow interaction
between and collaboration with the analyst and designer, among different mathematical
modeling approximations of the physical phenomena, and among multiple engineering
disciplines. A major feature of the methodology is the transfer of data across the
respective interface, whether the interface is one among diverse mathematical
approximations or among diverse disciplines. Computational issues associated with
individual modeling approaches and disciplines are magnified in number and significance
due to the intricate couplings manifesting themselves as a by-product of their interfacing.

Multi-fidelity modeling approaches provide benefitsin al of the magjor steps of
analysis and simulation. These approaches are often characterized by the use of different
approximations among multiple domains of the same continua and multiple domains
involving different continua (e.g., fluid-structure interaction). Analytical and closed-
form solutions for specific geometries and configurations are often used to eliminate
constraints placed on the analysis due to geometry considerations. Rapid modeling
approaches facilitate the discretization of geometry by providing a capability to model
regions of interest, independently, increasing the discretization fidelity or enhancing the
mathematical approximation only in the desired domains. Thus, for multi-fidelity finite
element modeling approaches, complex and often unsuitable mesh transitioning,

generated manually or using automatic mesh generators, islimited. In addition, multi-



fidelity approaches have been developed that allow for the discretization of parts or
components across geographically dispersed locations with minimal concern for the
discretization of the parts along common boundaries or interfaces. Additional research
has provided for accommodation of slight anomalies in the geometric representation
provided by the independently discretized parts as well as parametric definition of the
interface geometry between parts. Multi-fidelity modeling approaches benefit the
solution of the discretized system in that the system size using a multi-domain approach
for global/local modeling may be smaller for agiven level of solution accuracy than the
system obtained by standard practices. In addition, in component modeling, the
associated matrices may be reduced by static condensation, which reduces the size and
subsequent solution time of the overall system of equations. Multi-fidelity modeling
approaches allow for the visualization and interrogation of the results only in regions of
interest. Post-processing of secondary results such as stresses and failure parameters may
be isolated to these regions and dynamically computed as the need arises. By reducing
the modeling, computational and visualization time of simulations of aerospace
structures, multi-fidelity modeling approaches promise to enhance the viability of high-
fidelity analyses early in the design process.

Multidisciplinary coupling approaches involve the interfacing of different
disciplines to account for their interactions and impact on the overall system response.
There are myriad approaches, for example, any combination of approaches that couple
the fluids, thermal, structures, and acoustic disciplines. The traditional independent
approach for multidisciplinary analysisinvolves |oosely coupling the disciplines through

sequential execution of single discipline analyses. Typically this approach requires



several iterations among the different analysis methods and analysts and isrelatively
inefficient because the discipline specific models are generally incompatible and require
extensive post-processing after each single discipline analysis to transfer (or interface)
data to the next analysismodel. Aeroelastic analysis as an interdisciplinary problem,
requires the coupling of the aerodynamic and structural responses. The use of different
spatial discretization procedures and potentially different mathematical modeling
approximations for the aerodynamic model and the structures model givesriseto the
interfacing problem of transferring computed data between the two grid systems.
Moreover, the same issues are prevalent in fluid-thermal-structural analyses and
structural -acoustic analyses. Suitable methodology for addressing these types of
interfacing problems has been developed by many researchers.

The overarching purpose of thisresearch is to investigate multifunctional
collaborative methods, as described herein, that address the engineering design and
analysis needs of multidisciplinary problemsin engineering science. Thisresearch
focuses on the fundamental rel ationships among underlying engineering science and
mechanics principles, computational methods and multi-fidelity models, and methods
using basic problems from continuum mechanics. Given its broad applicability with
respect to the field of engineering science, continuum mechanics forms the foundation for
the multifunctional collaborative methods developed in thiswork. Hence, for
completeness and to establish notation, basic concepts of continuum mechanics are

presented briefly in the next section.



1.2. CONTINUUM MECHANICS FOUNDATIONS

Continuum mechanics is the branch of physical sciences concerned with the
deformations and motions of continuous material media under the influence of external
effects'. The effects that influence the bodies appear in the form of forces,
displacements, and velocities which arise from contact with other bodies, gravitational
forces, thermal changes, chemical interactions, electromagnetic effects, and other
environmental changes. In thiswork, bodies subject to forces of mechanical origin
and/or thermal changes are of primary concern. Genera principlesin the form of integral
or differential equations govern the deformation and motion of the continuum. Hence,
approximation methods and associated concepts are introduced in addition to the basic
concepts of continuum mechanics.

1.2.1. Genera Principles of Continuous Media

A medium can be generally categorized as afluid or asolid. A fluid can be
loosealy defined as a continuum that does not require external forces to maintain its
deformed shape. When highly compressibleit is called a gas and when essentially
incompressible, itiscalled aliquid. A solid can be loosely defined as a continuum that
requires external forcesto maintain its deformed shape. According to its behavior, a
solid may be called e astic, plastic, viscoelastic, thermoelastic, etc. Usually it is assumed
to have a uniform density®. When a medium deforms, the small volumetric elements
change position by moving along space curves. Their positions as functions of time can
be specified either by the Lagrangian ( X; = X; (xi ,t) fori=1, 2, 3) or Eulerian
description (X = X (Xi ,t)). In the Lagrangian description, each particleistracked in

terms of itsinitial position with respect to afixed reference system, X;, and time. In the



Eulerian description, the motion is expressed in terms of the instantaneous position vector
with respect to a moving reference system, x;, and time.
Classical continuum mechanics rests upon equations expressing the balances of

mass, linear momentum, angular momentum, energy, and entropy in a moving body?>.
These balance laws apply to all material bodies, whether fluid or solid in composition,
and each givesriseto afield equation. These balance laws are as follows:

I.  Principle of conservation of mass

ii.  Principle of conservation of linear momentum

lii.  Principle of conservation of angular momentum

iv. Principle of conservation of energy

v. Principle of entropy
The principle of conservation of mass states that when the total mass of the body is
unchanged for an arbitrarily small neighborhood of each materia point, the massis
considered to be conserved locally. The conservation of linear momentum represents
Newton’s second law and governs the motion of the continuum under the influence of the
external effects. The principle of conservation of angular momentum is used to show
symmetry of the stress tensor for many engineering materials, and the stress tensor
describes the state of stress of the continuum. The principle of conservation of energy,
also called the first law of thermodynamics, states that energy is conserved if the time
rate of change of the kinetic and internal energy is equal to the sum of the rate of work of
the external forces and all the other energies entering or leaving the body. The second

law of thermodynamics is automatically satisfied and includes the change in entropy of



the continuum. More detailed descriptions of these balance laws are presented in Chapter
[1.

In deriving the governing equations, the starting point is a statement of the
conservation principle applied to a “control volume” to develop the integral form of the
equation and extract the differential form by using the divergence theorem. A control
volume has a fixed volume in space; its boundary does not deform but allows mass
transfer through it. In contrast, a material volume contains the same quantity of material
at all times; its boundary can deform, and it does not allow mass transfer.

As the continuum moves, in general, properties change with time and space. The
material derivative (substantial or total) must account for these changes depending on the
method of description used. Consider the scalar propemyfasthe Lagrangian

description, the material derivative is:

X;.t)_og, op dx; _op
dt ot oX; dt ot

For the Eulerian description, the material derivative is:

d¢(Xj ,t):a_¢+ dp dxq . 0 dxy 09 dx3
dt ot aXl dt 6x2 dt 6x3 dt

:a_(0+vi %

ot aXi

The general conservation equation may be written in integral form or differential
form in conservative or divergence form. However, when considering the differential
form, an equivalent representation is often obtained by working out the divergence

operator and introducing the material derivative. This leads to a non-conservative form
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of the differential equation. Although the conservative and non-conservative forms of the
differential equations of the conservation principles are equivalent from a mathematical
point of view, they will not necessarily remain so when anumerical discretization is
performed. The general form of the conservation law is said to be written in conservative
or divergence form. Theimportance of the conservative form in a numerical scheme lies
in the fact that, if not properly taken into account, a discretization of the differential
equations will lead to anumerical scheme in which all the mass fluxes through the mesh -
cell boundaries will not cancel; hence, the numerical scheme will not keep the total mass
constant,

1.2.2. Mathematical Approximations

Mathematical problems frequently encountered in engineering science may be
classified as boundary-value and initial-val ue problems based upon the existence of one
or more supplementary conditions. The differential equation describes a boundary-value
problem if the dependent variable and possibly its derivative are required to have
specified values on the domain boundary. The differential equation describes an initial-
value problem if the dependent variable and possibly its derivative are specified initially
(i.e, t=0). Initial-value problems are generally time dependent.

Partial differential equations governing the motion of general continua are often

of the canonical form Auy, + Bu,y, +Cuy, =0 wherethe coefficients A, B, and C are

real constants, u represents afield variable, and the subscripts, x and y, denote partial
differentiation with respect to the independent variables, x and y. The character of this

quasi-linear, second-order, partial differential equation is determined by the sign of the

discriminant, B> —4AC . The partial differential equationis



11

dliptic for B2 -4AC <0
hyperbolic for B2 -4AC >0
parabolic for B2 -4AC =0

The full significance of the classification of quasi-linear, second-order partial differential
equations as elliptic, hyperbolic, or parabolic is beyond the scope of thiswork. However,
this classification has proved important for an understanding of the kinds of initial and
boundary conditions one must furnish along with the partial differential equation in order
to determine a unique solution. Moreover, solution methods differ markedly from one
classification to another, which is of particular importancein the field of fluid
mechanics’. For example, boundary conditions are generally imposed al the way around
arectangular domain (the x-y region) of atwo-dimensional flow when the equation is
elliptic, and the solution must have no discontinuities in the second derivatives, except
possibly at singular points where the differential equation is not applicable. Hyperbolic
and parabolic equations, by contrast, have at |east one open boundary; thus, boundary
conditions are not usually imposed all around the domain under consideration. The
boundary conditions for at |east one variable, usually time, are specified at one end, and
the system is integrated indefinitely. Certain kinds of discontinuitiesin the second
derivatives are admissible across certain curvesin such away that the differential
equation continues to be applicable in those regions.

Approximate solutions of differential equations (e.g., Ritz, Galerkin, least-
squares, collocation or in general weighted-residual methods) satisfy only part of the
conditions of the problem. For example, either the governing equation or the boundary

conditions may be satisfied only at afew positions rather than at each point. The
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approximate solution is expanded in a set of known functions with arbitrary parameters.
Two ways to determine the parameters are the method of weighted residuals (MWR) and
the variational method. While the MWR and variational methods are only briefly
discussed here, a more complete discussion of the approaches is given in the literature by
Finlayson’. In MWR, one works directly with the differential equation and boundary
conditions, whereas in the variational method one tries to satisfy the governing
differential equation in an average sense using a functional related to the differential
equations and/or the boundary conditions. MWR encompasses severa methods
(collocation, Galerkin, integral, etc.) and provides a framework to compare and contrast
methods. Variational methods are not applicable to al problems, and thus suffer alack
of generality. MWR is easy to apply whereas variational methods require manipulation
that can be more complex.

Variational methods provide a means for the determination of the governing
equations. In solid mechanics, the principles of virtual work and stationary potential
energy can be used to derive the governing equations and boundary conditions. The
principle of virtual work demands that for the state of equilibrium, the work of the
impressed forcesis zero for any infinitesimal variation of the configuration of the system
that isin harmony with the kinematic constraints. Hence, the variational statement
implicitly imposes the natural boundary conditions. All work statements are derived
from classical laws pertaining to the equilibrium of the particle. Moreover, the virtual
work statement is simply the weak form of the equilibrium equations. For monogenic
forces, this statement |eads to the condition that for equilibrium, the potential energy shall

be stationary with respect to all kinematically permissible variations.
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The original differential equation is said to be the strong form of the problem
while the integral form istypically referred to as the weak form. However, in the strict
sense, particularly for approximation methods such as the Galerkin method, the weak
form is obtained by transferring the differentiation from the dependent variable to the test
functions, which includes the identification of the type of boundary conditions that the
weak form can admit. The purpose of the transfer of differentiation is to equalize the
continuity requirements on the dependent variable and the test function. Thisresultsina
weaker continuity requirement on the solution in the weak form than in the original
equation. In the process of transferring the differentiation, boundary terms that determine
the nature of the natural or essential boundary conditionsin the solution are obtai ned.

The classification of boundary conditions as natural and essential boundary
conditions plays a crucial role in the derivation of the approximate functions. From

variational calculus, consider a partial differential equation in the form,

oF _ 9 HoF 0 HBFH :
ou 6X@UX%6y@uyH 0 in®

where F = F(X,y,u,uxuy) , Uy =0u/ox and uy =0du/dy. Transferring the

differentiation from the dependent variable, u, to the test function, v, yields the weak

form of the differential equationsin the form

0
oF , v OF , ov oF U OF ey - fv@au aF . %S:O
X

g;g ou &aux 6y ouy F
It isat this point that the natural and essential boundary conditions are readily identified.
Generally, specifying coefficients of v and its derivative in the boundary integral

constitute the natural boundary condition. That is,
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oF oF n
—nNy+—n,=q onl
OUuy duy,

is the natural boundary condition. Specification of the dependent variable in the same
form as the arbitrary test function constitutes the essential boundary condition. Inthe
case presented above, only v appears in the boundary integral. Hence, specifyinguon
Is the essential boundary condition. The variables involved in the essential boundary
conditions of the problem are identified as primary variables and those in the natural
boundary conditions as the secondary variablesin the formulation. The primary variables
are required to be continuous, whereas the secondary variables may be discontinuousin a
problem.

The differential equation is said to describe a scalar-field problem if the
dependent variable is a scalar and requires only the specification of magnitude for a
complete description. A vector-field problem is one that requires the specification of
magnitude and direction. The Poisson equation is an example of a differential equation
describing a scalar-field problem that arises in many fields of engineering science such as
elasticity, heat transfer, fluid mechanics, and electrostatics. The equation of motion is an
example of adifferential equation describing the vector-field problem that governs the
motion of general continua. Each of these categories of differential equationswill be
discussed in more detail and the concomitant formulations presented in Chapters Il and
[1.

The basic concepts of continuum mechanics and the ancillary fundamental
concepts of mathematical approximation methods outlined in this section form the basis

for the methodologies developed in thiswork. In subsequent chapters, the concepts are
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described further as they relate to the development of multifunctional approaches for

scalar-field and vector-field problems in engineering science.

1.3. LITERATURE REVIEW FOR COLLABORATIVE METHODS

This section includes a literature review of topics related to collaborative methods
for multi-fidelity modeling and analysis. Review of approaches for collaborative
modeling of multiple domainsis presented. Thisreview is not intended to be an
exhaustive review of the subject matter but rather to provide sufficient background of the
fundamental concepts applicable to collaborative methods for engineering science. For
more detailed discussions on any of the topics reviewed, the reader is directed to the
referenced reports.

Multi-fidelity modeling, as referred to herein, entails the use of diverse
approximations among multiple domains. Numerous approaches for multi-fidelity
modeling have been developed over the last several decades. Many of these approaches
are commonplace in the analysis and design of aerospace structures. Generally, these
methods focus on modeling to obtain accurate stress data, and they have been used
primarily in an analysis framework rather than as an integral part of the design process.
With the development of rapid equation solvers and fast computer systems with
enormous storage capacities, these methods have the potential for impacting the
preliminary design stage. Research directly applicable to multi-fidelity modeling based
upon the finite element method continues to flourish. Developments pertinent to this
research include substructuring, global/local methods, model synthesis methods (i.e.,

multiple method approaches), submodeling, and finite element interface methods. While
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all of these methods can be used in a global/local analysis, in general, they provide a
diverse capability for modeling multiple subdomains.

Substructuring, submodeling, and general global/local methods have been
highlighted, for example, by Ransom® and Ransom and Knight® and have been further
elaborated on by Rose™. One notable application of substructuring related to recent
advances in computational strategies isthe use of neural networks to synthesize or
combine substructures™. In reference 11, substructures are modeled individually with
computational neural networks, and the response of the assembled substructureis
predicted by synthesizing the neural networks. Statically determinant substructures and
statically indeterminate substructures were assembled using a superposition approach and
adisplacement collocation approach. Typically, substructuring and submodeling
approaches either require that the finite element nodes along the interdomain boundaries
coincide or make use of restrictive interpolations of displacements to the boundaries of
the local models. The global/local method proposed in reference 8 alleviates the
requirement for nodal compatibility along the local model boundary by introducing a
surface spline interpolation of the displacements from an independent global model to the
boundary of amore refined local model. This uncoupled approach was further extended
to provide global/local model interaction in an iterative approach proposed by Whitcomb
et al.>* In addition, global/local methodology for two- and three-dimensional stress
analysis of composite structures has been devel oped within a common framework by
Knight et al.**

In the context of thiswork, model synthesis refersto collaborative methodology

that couples or synthesizes two or more dissimilar mathematical models of multiple



17

subdomains. Myriad methods fall into this category. Examples of these methods and
representative references include, but are not limited to, synthesis of finite element and
boundary element methods™*®*’, finite element and Rayleigh-Ritz approximations',
finite element and finite difference methods'®?, finite element and analytical solutions?,
and finite element and equivalent plate solutions”®. Furthermore, an extensive review of
coupling the finite element method and boundary solution procedures has been given by
Zienkiewicz?. In reference 23, the finite element method is generalized to encompass
both the finite difference and the finite volume approaches.

A new era of multi-fidelity modeling was introduced through the devel opment of
an alternative approach for combining finite element models with different levels of
fidelity, which isreferred to in the literature as interface technology. The concept of
Interface technology is the genesis for the multifunctional capability presented in this
work. Assuch, amore extensive review of the literature is presented and the notable
contributions are outlined. The basic concept of the interface technology was discussed
by Housner and Aminpour?. In thiswork, the fundamental approaches were discussed
for mathematically coupling multiple subdomains whose grid points along common
boundaries did not coincide. Subsequent developments performed by Aminpour et a .
implemented the basic concepts, extended the work to alternative approximations, and
compared the results for representative benchmark applications. Ransom et al .
advanced further the technology by recasting the interface technology in the form of an
element, thus facilitating the use of the method for more than two subdomains.
Moreover, the implementation of the method as an element facilitated the inclusion of the

technology into standard commercially available finite element software codes®”. Davila
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et al.?® extended further the capability for coupling not only along finite element edges as
originally implemented but across finite element faces aswell. Rose'® extended the
concept of interface technology to include geometric incompatibility as well as nodal
incompatibility. In thiswork, the geometry of the subdomains is automatically adjusted
to account for an inaccurate geometry description along the common subdomain
boundaries and for gaps in the boundary definition, which allows for enhanced modeling
flexibility. In addition, extensions have been developed to include geometrically
nonlinear analysis®®. The technology has been developed to provide dimensionality
reduction for integrating three-dimensional finite element models within two-dimensional
finite element models®. All of the aforementioned interface technology developments
have focused on a one-dimensional interface along a curve or line. Aminpour et al.*® and
Schiermeier et al.*" have extended the work to atwo-dimensional surface interface for
coupling three-dimensional finite element models.

1.4. OBJECTIVES AND SCOPE

The overall objective of thisresearch is to formulate multifunctional methodologies and
analysis procedures for interfacing diverse domain idealizations including multi-fidelity
modeling methods and multi-discipline analysis methods. Specific goals of this research
include:

1. Toformulate general methodology providing capability for multifunctional

modeling, analysis, and solution.
2. Toidentify computational aspects and related al gorithms for this methodol ogy.
3. To apply the formulation to scalar- and vector-field applications in engineering

science.
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The scope of the present work includes the multi-fidelity modeling and analysis of
interfaced domains within the same discipline as well as among multiple disciplines. The
analysis capabilities are limited to scalar- and vector-field problems using both single and
multiple approximation methods within a given domain. The capabilities are devel oped
considering discrete changes in domain characteristics across the interfaced boundaries,
compatibility with general-purpose finite element codes, applicability for awide range of
discretization methods and engineering disciplines, and cost-effectiveness related to both
modeling and analysistime. To accomplish the objectives of the present work, numerical
studies are performed to gain insight into the interactions among the interfaced domains
and the computational strategies for the modeling and analysis. Prior to applying the
method to vector-field problems, the proposed method is evaluated with regard to
accuracy and computational implications on representative scalar-field problems.

The organization of the remainder of the dissertation isasfollows. A
multifunctional approach for scalar-field problemsis presented in Chapter 11. Single- and
multiple-domain formulations are presented in the chapter along with a discussion of the
spatial modeling and the computational implications, and numerical results for a
verification test case are presented. The multifunctional approach for vector-field
problemsis presented in Chapter I11. Single- and multiple-domain formulations are
presented in this chapter along with a discussion of the spatial modeling and the
computational implications, and numerical results for a verification test case are
presented. Numerical results for representative scal ar-field problems in engineering
science are presented in Chapter IV, while results for vector-field problems are presented

in Chapter V. Inaddition, adiscussion of extensions of the methodology to multiple
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discipline coupling is given in Chapter V. Conclusions and recommendations are
presented in Chapter VI. An overview of the stepsin analysis and simulation isgivenin
Appendix A. A derivation of the cubic spline interpolation matrices used in the
multifunctional approach is presented in Appendix B. Details of the geometry

representation along the subdomain interface are given in Appendix C.
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CHAPTER I

MULTIFUNCTIONAL APPROACH FOR SCALAR-FIELD

PROBLEMS

2.1. GENERAL

The motivation for the consideration of multifunctional approaches for scalar-
field problems comes from the fact that methods of approximation such as Ritz, Galerkin,
and other weighted residual methods are based on weak statements of the differential
eguations governing the system response. The differential equation is said to describe a
scalar-field problem if the dependent variable is a scalar and requires only the
specification of magnitude for a complete description. The scalar-field problem isabasic
form of the governing differential equations and thus lends itself to forming the
mathematical foundation for the general methodology developed herein. Representative
examples of the scalar-field differential equationsin two dimensions are considered
herein, and the mathematical statement isformulated. The concepts developed here are
directly applicable to one-dimensional scalar-field problems; however, the development
isnot included in the interest of brevity. The general form of the differential equation
describing a scalar-field problem for domain  (see Figure 2.1) is given by the Poisson
equation, which is of the form

-0dkOu)=Q inQ (2.1)
subject to the natural boundary condition, k% +h(u-Ug )= qon T, and essential

boundary condition, u=U on I The normal derivative,% = @nx +@ ny, and ny
dn 0x y
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and ny are the components of the outward normal vector, n, to the bounding surface, I', of
domain, Q. In Eq. (2.1), the variables k and Q are known coefficients, and the primary
variable or dependent variable is u, which is afunction of the independent variables x and
y. Inthe natural boundary condition, the variables, h and u.,, are the convection
coefficient, and the far-field value of the primary variable, respectively. Theterms, q,

k% , and k@ are the secondary variables that may be described on a portion of the

ox ay

boundary, ", The primary variable, u, is specified on the boundary, Fp, and its

prescription to the boundary value, u , constitutes the essential boundary condition. The

complete boundary isdefinedas ' =P +13.

yL’
X
Figure2.1. Geometric Representation of Two-Dimensional Domain.

2.2. DISCIPLINE SPECIFICS

Equations of the type of EqQ. (2.1) arisein many fields of engineering science such
as elasticity, heat transfer, fluid mechanics, and electrostatics. Reddy™ has tabulated
several examples. In thiswork, the Poisson equation is applied to problemsin the solid

mechanics and fluid mechanics disciplines.
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2.2.1. Solid Mechanics

For applicability of the Eg. (2.1) in solid mechanics, consider a prismatic bar of
constant cross section subjected to equal and opposite twisting moments at the ends as

shown in Figure 2.2(a).

() Geometry (b) Partial End View

Figure 2.2. Geometric Configuration of Prismatic Bar.

In general, the cross sections normal to the axis of the bar warp. As a fundamental
assumption, the warping deformation is taken to be independent of the axial location and
iIsgiven by
w=w(x, y)

Assuming that that no rotation occurs at the end z=0 and that the angle of rotation, 6, is
small, the displacement components, u and v, in the x and y coordinate directions, of an
arbitrary point, P, P(X, y), in aplane for constant z, are respectively,

u=-(réz)sna =-yoz

v = (r8z)cosa = x0z (2.2
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where the angular displacement of aline segment, OP, from the origin, O, to an arbitrary

point, P, isBz and a is the angle between OP and the x axis (See Figure 2.2(b)). By

substituting Eq. (2.2) into the strain-displacement relations, the following are obtained
Ex =Yy =€y =€7=0

ow ow
Y o y Yzy dy (2.3)

The three-dimensional stress-strain relations given in terms of Lame’s constants for a

linear isotropic solid are given by

Ox =2Gey +Ae | Ty =Gpyy
oy=2Gey+Ae | Ty, =Gy,
0,=2Ge,+Ae ; Ty, =Gyy,
wheree=¢&y +&y +&,, A :L, andG:L.
(1+ v)(l— 2v) 2(1+ V)

The shear modulu§;, and the quantityy, are referred to as the Lame’s constants, and

the modulus of elasticityg, and the Poisson’s ratio, are material properties.

Substituting the strain-displacement relations of Egs. (2.3) into the stress-strain relations
gives

Oy =Txy =0y =0,=0

W
T~ =G -vyo D T =G + x6 2.4
%050 e S, e

Then, the three-dimensional equations of equilibrium,
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00y , 0Tyy , 97x

+F, =0
ox oy 0z
or do, O0r
W Yy T Y2 LF, =0 (2.5)
0x ay 0z y

or
arxz+ yz+aaZ+FZ:0
ox ay 0z

with negligible body forces, ssmplify to the following equations:

or or
0T _ . Y- aT_ZX+_Zy:o (2.6)
0z 0x ay

0z
First, note that the stressesin Eq. (2.4) satisfy exactly the first two equilibrium equations
above (see EQ. (2.5)). Next, Eg. (2.4) can be combined into a single equation by
differentiating the expressions for 1 and 1, by y and x, respectively, and subtracting the

resulting equations. These operations yield the compatibility equation given by

or
T Ty - _pgg. 2.7)
oy 0x

The stressin a bar of arbitrary cross section may thus be determined by solving the third
equation of equilibrium given in EqQ. (2.6) along with the equations of compatibility given
in EqQ. (2.7) and the given boundary conditions.

Thistorsion problem is commonly solved by introducing a single stress function.
If such afunction, @, y), the so-called Prandtl stress function, is assumed to exist, such
that

0 . _ g

ay ¥ o’
then, the equations of equilibrium are automatically satisfied. The equation of

compatibility becomes, upon substituting these expressions for the shear stress,
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2 2
a_2¢+a_2¢ =-2G@
()4 X

(3]

Therefore, if the compatibility requirement isto be satisfied, the stress function, ¢, must
satisfy Poisson’s equation, Eq. (2.1). The primary variablie constank, and the
source variableQ, are represented by the stress funcimpihe inverse of the shear
modulus,G, and twice the angle of twist per unit lenddhrespectively. Moreover, the
stress functiong=constant on the surface of the bar.

2.2.2.Fluid Mechanics

For a two-dimensional incompressible irrotational flow, expressions are given for
the velocity componentsy andvy, in terms of thex andy coordinate directions,

respectively. The velocity components should satisfy the continuity condition

ov
D= _g (2.8)
ox oy

and the irrotational flow condition

ov
Oxvy=——-—=2=0. (2.9)
ox oy

In terms of the stream functiog), the components are given by

oV oV
Vy =— and vy, = — 2.10
-y A (2.10)
and in terms of the velocity potentidl, the components are
Vy = _o® and vy = 9@ (2.112)
ox ay

Substituting the velocity componentg andvy, from Eqg. (2.10) into the irrotational flow

condition Eg. (2.9), one obtains
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02w 92y
+

=0. (2.12)
x> 6y2

Note that the velocity components in terms of the stream function given in Eqg. (2.10)
satisfy the continuity condition, Eq. (2.8) identically. Hence, Eq. (2.12) governsthe flow
in terms of the stream function, Y, and isin the form of the Poisson Equation, Eq. (2.1)
where the primary variable, u, the constant, k, and the source variable, Q, are represented
by the stream function, ), the density, p, and the mass production, o (normally zero),
respectively.

Substituting the velocity components, vy and vy, from Eq. (2.11) into the

continuity equation, one obtains

2 2
07 0%® (2.13)
x> 6y2

Note that the velocity components in terms of the velocity potential given in Eqg. (2.11)
satisfy the irrotational flow condition, Eq. (2.9), identically. EQ. (2.13) governs the flow
in terms of the velocity potential, @, and isin the form of the Poisson Equation, EQ. (2.1),
where the primary variable, u, the material constant, k, and the source variable, Q, are
represented by the velocity potential, ®, the density, p, and the mass production, o
(normally zero), respectively.

2.3. SINGLE-DOMAIN FORMULATION

In this section, multifunctional methodology for a scalar-field problem over a
single domain is presented in terms of weighted residuals. The method of weighted
residuals is used extensively in fluid mechanics and thus the potentia problemis

formulated from this perspective. While the intent of thiswork is to develop general
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methodology for multiple domains, the salient features of the weighted residual method
formulation may be investigated and discussed using the single domain. Consider the

general Poisson equation for atwo-dimensional domain for field variable, u
-kO%u=Q (2.14)
inadomain, Q, bounded by I". In genera, the boundary, I, can have mixed boundary
conditions with the primary variable, u, prescribed on " and the secondary variable, the

flux, q, prescribed on the remaining part of the boundary, r° (see Figure 2.1).

In the method of weighted residuals, an approximate solution, U , isused in

expressing [ 2u, then the differential equation, Eqg. (2.14), will no longer be satisfied,
and thislack of equality is a measure of the departure of U from the exact solution. The

lack of equality is called the residual, R, and is written as
R=-k0%u-Q#0.
Theresidua is orthogonalized by a set of weight functions, ®; and averaged over the

domain. Thisresidual may be written as

I(‘ kDZU—Q)CDi dQ =0. (2.15)
Q

n
The solution for Uissoughtintheform U = Y aW; +Wy. The functions, 'V, are usually
i=1

called trial functions, and & are arbitrary constants. The trial functions satisfy the
homogeneous boundary conditions, while ¥y satisfies the nonhomogeneous boundary
conditions. Posing the problem to be solved in a generalized weighted residual form®*

and relaxing the requirement for the approximate solution to satisfy all boundary

conditions, the weighted residual statement may be written in the form
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[®A(U)dQ + §®B(T)dr =0
Q r

where the residual in the satisfaction of the boundary conditions is orthogonalized by a

secondary set of weight functions, @ , and the differential equation set is represented by

DAi(u)D
Alu)= DAZ(U)E: 0

H

in the domain, Q, together with the boundary conditions

on the boundary, I, of the domain. Asimplied by the matrix notation used previoudly,
the solution sought may represent a scalar quantity or a vector of several variables.
Similarly, the differential equation may be a single equation or a set of simultaneous
equations. For the system at hand, a scalar quantity is sought and the differential
equation isasingle equation. Here, A(u) =-D%- Q=0, and the essential and natural

boundary conditions, respectively, are represented by

and

Therefore, considering the approximate solution, U, we may write the general integral

form of the differential equation governing the potential flow as

[ol-k02T-QJaa+ [@y(G-a)drP + | szLd“ —Edrs—o (2.16)
Q re
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Note that the trial function may be selected so as to satisfy the essential and the natural
boundary conditions; thus, the boundary integralsin Eq. (2.16) areidentically zero. In
this formulation, only the essential boundary conditions, i.e.,

Gg-u=0 onrP
are assumed to be automatically satisfied by the choice of thetrial functions. Therefore,

Eq. (2.16) isrewritten as

J’(I)(—kDZU—Q)dQ+ @Ekd—”—qﬁjrszo (2.17)
) ps 0dn 0
or
ka H—QDolQ+ @Ekd—“—thrS:o
Q Hox?  ay? 0dn 0
where d_u:a_unx +6_uny and @, =@.
dn 0x ay

In general, the method of weighted residuals does not strictly require the
incorporation of natural boundary conditions into the weak formulation, asin the Ritz
method. However, if the operator permits the weak formulation, continuity requirements
on the primary variable and its derivatives may berelaxed. Moreover, if integration by
partsis possible, one may reduce the order of the highest derivative in the integral form
to eliminate the difficulty of selecting the appropriate weight functions. Thus, in the
formulation herein, the order of differentiation on the primary variable in the integral
equation, EqQ. (2.17), isreduced to obtain the weak formulation. In addition,
acknowledging that the primary variable, u, is approximated by U, for simplicity, the
subsequent development is presented in terms of u. Application of the divergence

theorem to Eq. (2.17) yields
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uoe au oP u ou
Ik Q- fkig—ny +—ny P dl
X X ay 6y r 00X ay
du

(2.18)
~ [QddQ + I M- %drszo
0 s0 D

dn
Note that the boundary is presumed to consist of boundaries on which the primary
variable is specified and boundaries on which the secondary variable is specified, and

=P +r3. Therefore, the boundary integral on I, may be expressed as

u ou _ u ou u ou s
;k%nx +a—yny%>dr = J’pk%nx +a—yny %)dr P +rI k%nX +a—yny %)dr
r S

Noting that, in the method of weighted residuals, the weight function, ®, satisfies the
homogeneous boundary conditions for the primary variable (i.e., essential boundary
conditions). Thus, ®=0 on ", Therefore, the boundary integral on s identically zero

and Eq. (2.18) may be rewritten as

uod® oJuodP S _ S
fg x6x+6y6y Q- fk%q)dr IQ(I)dQ+fH<—— %dr =0

Since the weight functions, ® and @, are arbitrary, they may be chosen, without |oss of

generality, such that, ® = @ . Therefore,

Ik oD  udPpy, [Q®dQ - fg@drS =0
X X ay ay 0 S
or
UOP  0UOPH _ opd + §gq drS (2.19)
| | f
0 X OX ay ay 0 rs

The integral form of Eq. (2.19) forms the basis of finite element approximations, which is

summarized in a subsequent section.
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24. MULTIPLE-DOMAIN FORMULATION

In the multiple domain method, the domain of the problem is subdivided into a
number of smaller subdomains. The method is quite similar to the subdomain collocation
method, which is another weighted residual method. 1n the subdomain collocation
approach, the domain is divided into as many subdomains as there are adjustable
parameters. These parameters are then determined by making the residual orthogonal to
aweight function in an integral sense over each subdomain. Here, asin the single-
domain formulation, methodology is presented formulating the general method of
weighted residuals for multiple domains by considering the Poisson equation for atwo-

dimensional domain for afield variable, u. Then,

-kO%u=Q (2.20)
in the entire domain, Q, bounded by I'. For simplicity, the multiple-domain formulation
is presented for two subdomains, Q; and Q, (see Figure 2.3). Independent
approximations and weight functions are assumed in each of the subdomains and
continuity conditions are used to provide for a continuous sol ution across the subdomain
interfaces. Thus, Eq. (2.20) is satisfied in each subdomain, independently, i.e.,

~kyD%u, =Q, inQ; and -ky,0%u,=Q, in Q,
subject to the boundary conditions on the subdomain boundaries, I'; and I',. Although
Eq. (2.20) is assumed for uniform constant, k, throughout the domain, it is permitted to be
different in each subdomain. That is, constants, k; and k, are used for subdomains Q;

and Q,, respectively, to allow for the general case of nonhomogeneous material.
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At this point, differences between the single- and multiple-domain approaches
become evident. First, thedomain, Q, is now represented by the union of ns subdomains,

Q;, such that

ns
Q= ZQi .
i=1

Second, the bounding surface, I, of the domain, Q, isthe union of the exterior surfaces,

FiE , of the ns subdomains, Q;, such that

ns
r=syrf
i=1

In general, these exterior surfaces, rE, may involve mixed boundary conditions with the
primary variable, u, prescribed on T; P and the secondary variable, the flux, g, prescribed
on I®such that

rE=rP+rs.
Finaly, as a result of the subdomain modeling, the collaborative effort to solve the

problem involves an interior surface interface boundary, I'i' , and the information transfer

across the boundary. Hence, the boundary surface for the i subdomain is given by
M=rP+r+r

The boundary conditions may be written as
-0 =0 onl and kl%—ﬁl =0 onr}
n

and



U2—U2 =0 on sz and kz——C_]z =0 on FZS

Figure 2.3. Boundary Definitions for Two-Dimensional Subdomains.

Theresidual for each domain is orthogonalized by a set of weight functions, ®; and is

written as

I(‘ k(020 —Ql)(I)l dQ; =0
Q0

and

I(— k2D2U2 —Qz)(l)z dQ, =0
Q;
- n
where the approximate solution is sought in theform u; = 3 a; ¥y + W and
1

n
Uy = 5 ag Wy + Wo;. The functions, Woi ,'Wai, and Wz, are tria functions, and ay; and ay
1

34
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are sets of arbitrary constants. Using the general form outlined in the single-domain
formulation (i.e., [®A(0)dQ + §®B(T)dr =0), for each subdomain, one may write
Q r
[®@A(T;)dQ + §®;B({; )dr; =0 fori=12
Qj 0
where the residual in the satisfaction of the boundary conditions is orthogonalized by a

secondary set of weight functions, ®; , for subdomaini. Therefore, considering the

approximate solution, t;and U, , we may write the generad integral form of the
differential equation governing the potential flow for subdomain 1 as

o —qlghrf =0 (2.21)

I‘I’l(— kg 0% —Q.L)dQl + [ @y -0y )dr P + [ @ E(l o

p s
Q r r

and for subdomain 2 as

- — — du, _
J"I’z(— ko021, —Qz)dﬁz + [ @ (Tp-Up)dr) + I(DZZE‘Z_nZ_QZ Edrf =0 (222

Q, ry rs d
Again, we will presume that the essential boundary conditions, i.e.,
G-0y=0 onlf
and
Up-U,=0 onTl)
are automatically satisfied by the choice of the functions, ujand u,. Therefore, for

subdomain 1, Eq. (2.21) is rewritten as

Iq>1(— k020, - Ql)dQl + [ By o U g, Fhrs =0 (2.23)
1

or in its expanded form
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. 20, 0%G [
1 1
I¢1Gk1%g—+ 52 0 Q1EUQl+ I q>1H< E—qlghrS_o (2.24)

where %i:aainxi +aaﬂnyi and 612 :61 and 622 :62. Slmllarly, thewaghted
n X y

residual form for subdomain 2,

0 0
Imzﬁrkzgpa—z E— Edc22+ [ @2& d(;‘nz—qudrzszo (2.25)
g

The order of differentiation on the primary variable in the integral equations, Eq.

(2.24) and (2.25), is reduced to obtain the weak formulation. In addition, acknowledging
that the primary variables, u; and u,, are approximated by u; and U5, for simplicity, the
subsequent development is presented in terms of u; and u,. Utilizing the divergence

theorem, Eqg. (2.24), can be rewritten, for subdomain 1, yields,

u16(I)1 6u16(1)1 o] aul
k Q- fk ny, +——n dry - ®,dQ
Q[ E@X ox dy oy 1 él ox L gy N 1 A’lg A

L (2.26)
+ [ Og—2 -y [ydry =0
rIsD an Cl1D 1dl

and similarly, for subdomain 2,

Up 0Py  Oup 0P Up duy
k Qo - §k Ny, +—=nN dr- — D-dQ
I Epax ox ay oy H 2 f 255x X2 gy Y22 2 JQP2dQ,
Q o,

B( —_qZ%zdrz =0

Fzs
(2.27)
Note that the domain boundary is presumed to consist of boundaries on which the

primary variable is specified, boundaries on which the secondary variable is specified,
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and boundaries at the subdomain interface. Thus, for subdomaini, I; = rip +I5 + ri' .

Here, the boundary on the interface is assumed to be conforming (i.e., represents same

geometry) and I'iI =r'. Therefore, the boundary integral on I';, may be expressed as

Notethat ®; =0on I'ip. Eq. (2.27) can be rewritten, for subdomain 1, as

[l K FPUL 0Py auﬁ%% J'kldiq)ldrl Ikl%q,ldrl
o Hax ox oy oy dn b dn

I Q( - = q]_ ﬁldrl QI.(I)ldQl O
S

Since the weight functions, ®4 and @4, are arbitrary, they may be chosen, such that,

@, = ®;. Therefore,

Ul 6(1)1 6u1 6(1)1
k k —(I) dI’ - ()] dl'
| %B;ax i _[ 1 1 _[Oa 1

oy 0 dn
= ) e (2.28)
- IQ_I.(I)ldQl =0
Q
Similarly, for subdomain, Q,,
I k U2 6(1)2 6u2 6(1)2 Q - I k2 2 dl' - IqZ(Dzdrz
Q, ox ox oy oy
2 (2.29)

- IQZ(I)ZdQZ =0
Qp
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In general, for the multiple domain case, the approximation for the primary
variable (e.g., the potential field) must satisfy the following conditions:
I. The primary variable must be continuous and single valued in the subdomain.
Ii. The primary variable must be continuous across the interdomain boundary.
1ii. The primary variable on the subdomain boundary must satisfy the boundary
conditions.
If the requirement to satisfy interdomain continuity is relaxed, an additional boundary

condition is used, namely,
u—-up, =0 on r'.
This constraint can be satisfied in the integral sense as

fMu -up)dr=0 on T (2.30)
T

where A is a Lagrange multiplier associated with the secondary variable along the
common subdomain boundary. Therefore, combining Egs. (2.28) and (2.29) for the
entire domain, and including the continuity integral at the interdomain boundary yields

J_ kl u16(1)1+0u16(1)1 Ql+ J_ k2 us 6<I>2+6u2 6(132 %92_ IQl_(I)ldQl
o oX 0x 0y oy o ox 0X ay oy o

[Q®AQ, — foyy dIf — [Gpodr5 — [y dr' — [Goodr (2.31)
s r! r!

Q S
2 7 rs

+ IA(Ul—Uz)drl =0
rl

where for subdomain, i, §; , are the secondary variables along the interdomain

boundary, §; =% :%n : +%n . . Note that the normals on the interdomain
'dn ox gy i



39

boundary are equal and opposite (see Figure 2.3). Thatis,ny = —n,where

nj =nyi+ny j,anditfollowsthat, §; =-G, =@ . Therefore,

J_ k%a(l)l 0u16(1)1%191+ J_ K EPUZ 0(1)2 6u2 6(132 %92_ IQl_(I)ldQl
o oX 0x 0y oy o ox 0X ay oy
= [Q®ydQ, - [GPydIT - IOI2‘I’2dr2 IOI(‘I’l ‘Dz)drl
Q3 e rs r!

or rearranging

D
V] 6(1)1 aul 6(1)1 |
DI 1 OX OX + ay ay Ql qu)l ar' - IQI.(I)ldQl IC]]_(I)]_ dF
§21 rS E
|I|6u 0P,  0up 0D O
DI 2 6)(2 0x2 62 a 2%1Q2+ §aP, dr! - [Qu,dQ, - (@, dsE  (232)

tl 0
+0(A(u -uy)dr'O=0.
7 ]

Note that Eq. (2.32) is written as a single equation for convenience and represents the
sum of termsrelated to the residual in the governing differential equation within each
subdomain and the continuity constraint for the primary variables along the common
subdomain boundary. However, each of the bracketed termsin Eqg. (2.32) must equal
zeroindividually. These bracketed terms are identical to Egs. (2.28), (2.29), and (2.30)
which must be satisfied independently.

In this formulation, the two primary field variables, u; and u, are approximated
independently, and continuity requirements between these two approximations are

satisfied along the subdomain interface boundary. The use of these approximations and
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the associated continuity requirements gives rise to the classification of the formulation
as a two-approximation approach.

Now consider a configuration that makes use of athird approximation for the
primary variable along the subdomain interface boundary in addition to the
approximations given along the boundary of each of the subdomains. This primary
variable, v, long the interface is assumed to be independent of the primary variables, u;
and uy, of the subdomainsto which it is attached. These independent approximations

give rise to continuity requirements aong the interface of the form
v-uy=0 on T !
v-u, =0 on T !

These constraints can be satisfied in the integral sense as

[Mv-u)dr'=0 on T (2.33)
r!
[A2(v-up)dr' =0 on T (2.34)
r!

where A;and A, are Lagrange multipliers or weight functions in the form of the
secondary variable along the interface. An additional continuity requirement in terms of
the secondary variable along the common subdomain boundary is required. These
secondary variables, ¢;and §,, are assumed to be independent of each other. These
Independent approximations give rise to continuity requirements along the interface of
the form

G +6,=0 on T

These constraints can be satisfied in the integral sense as
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[AG+8p)dr' =0 on T (2.35)
r!
where 1 isa Lagrange multiplier or weight function of the form of the primary variable
along the interface. Combining Egs. (2.28) and (2.29) for the entire domain and

including the three continuity integrals along the interdomain boundary, Egs. (2.33),

(2.34), and (2.35), yields

J, k %a@l +0U1 6(1)1 Qj_"' J, k EPUZ 0(1)2 6u2 0(1)2 %Qz_
o ox 0x oy oy Q, ox ox oy oy

IQJ_(Dldr - IqZ(I)Z dF + J’/\l(V Ul)dr + J’Az(V Uz)dr + J’/\( + 2)drl

r! r! r! r!
= J-Q.(I)ldgl + J'ql(I)l drl + IQZ(I)ZdQZ + J'qz(l)z drz
O e Q; rs

or rearranging

D
up 6(1)1 6u1 6(1)1 B
5{ 1500 ax oy oy AT qud)ldr lecl)ldQl J’qltl)ldrlm
1 I_l E
W
u, 0®, du, 0@ . B
I 2 2 2 4 U2 2 Q- — IqZ(I)Z dl_I — J’QZ(I)ZdQZ _ IqZ(I)Z dI';‘D(236)
0 ox ox dy dy | 0
EQZ I QZ r23 E

H 0 d g o . U
+0 /\l(v U )dr ' ow O /\2(\/ u, )dr' o+ O /\(q1 +d,)dr' =0
Again, note that Eq. (2.36) is written as a single equation for convenience and represents
the sum of termsrelated to the residual in the governing differentia equation within each
subdomain and the continuity constraints for the primary and secondary variables along
the common subdomain boundary. Each of the bracketed termsin Eq. (2.36) must equal
zeroindividually. These bracketed terms are identical to Egs. (2.28), (2.29), (2.33),

(2.34), and (2.35), which must be satisfied independently.
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Theintegral form of Egs. (2.32) and (2.36) forms the basis for the subsequent
spatia modeling approximations. The spatial modeling approximations are discussed in
detail in the next section. Egs. (2.32) and (2.36) may be generalized for more than two

subdomains and for multiple interfaces by

> E E’Um 0P, + Oupy, 0P, Ejg E
m—1 I MHox ox  dy ay mE
: 0
N n. ()] N
t2 gi % . J+1Hj Ajug drij = § Gy drj il z [Qm®mdQm + [Gn®m dryE
=1 =L ﬁul i % m= %}m = E
(2.37)
and
Ng U 0
ZSDI - Um 0@ , O aq)m%ijD
m=L ox  0x dy ady u
Nj nss(') O B 0
i=1 j=1 lj]_il | []
Ng U 0
[ Qm®mdQpy + [Gm®Pm drﬁ,%
m=1 m rr?’] 0

where Ngis the number of subdomainsin which the entire domain is subdivided, N is
the number of interfaces connecting the N subdomains and ng(i) are the number of

subdomains attached to interfacei. For example, for one interface connecting two

subdomains, Eq. (2.38) yieldsin its expanded form



OJ OJ
0f klg%ul 021)1 + ‘?3“1 0;I>1 Eﬁgl * [ kg 0“2 03)2 + 66“2 O;DZ Eﬁgzm
521 X OX y oy Q, X OX y oy E
+ Il Ma(vg = ugg)dry - Ilqllq)ll dry + J’I MoV —upp)drq - Ilaaz‘l)lz dry +

i i i M
[ ] + Ao drf = [Q1dQ; + [Gq dI + [Qu®,0Q, + [Gp®, drS
r r Q rs Q; rs
1 1 1 2

which isidentical to Eqg. (2.36).

2.5. SPATIAL MODELING FOR MULTIPLE DOMAINS

Although this section is focused on spatial modeling of multiple domains using a
multifunctional development, a brief discussion of spatial modeling for asingle domainis
given first, followed by a more detailed discussion for multiple domains. Thusfar, a
multifunctional approach based on weighted residuals has been formulated. This
approximation technique provides a mechanism for finding approximate solutions to
problems in mathematical physics and engineering science such as those represented by
the Poisson problem. Selection of the approximating and weighting functions for
complex geometrical shapes and boundary conditions poses a major difficulty for
weighted residual methods. In addition, the methods were generally not regarded as
being computationally competitive compared to the traditional finite difference method.
However, weighted residual methods offer a versatile means by which to formulate finite
element equations where no functional isavailable. Hence, many of the difficulties
associated with this class of methods are alleviated. The derivation of discrete equations
is an essential component of the approximation technique. Thus, severa discretization

approaches are outlined in the next section.



2.5.1. Overview of Discretization Methods

Various forms of spatial modeling or discretization of the continuum problem
defined by the differential equations can be used. These formsinclude, but are not
limited to, the finite difference method, the finite volume method, the finite el ement
method, and the boundary element method. In such spatial modeling, the infinite set of
numbers, representing the unknown function or functionsis replaced by a finite number
of unknown parameters. A brief discussion of each of the aforementioned modeling
methods is given here to provide the foundation for discussion of interfacing such diverse
methods, which is presented in subsequent subsections.

Thefinite difference method

Of the various forms of spatial modeling, one of the simplest is the finite
difference method. The finite difference method gives a pointwise approximation to the
governing equations. In the finite difference approximation of adifferential equation, the
derivativesin the equation are replaced by differential quotients that involve the values of
the solution at discrete mesh points of the domain. The resulting discrete equations are
solved for values of the solution at the mesh points, after imposing the boundary
conditions. While finite difference techniques are widely used in fluid dynamics and heat
transfer and can treat fairly difficult problems, they become hard to use when irregular
geometrical shapes or unusua boundary conditions are encountered. In addition, because
itisdifficult to vary the size of different cellsin particular regions, the method is not
suitable for problems of rapidly changing variables, such as stress concentration

problems. These adverse attributes are particularly significant in structural analysis.
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The finite volume method

The finite volume method evolved in the early seventies via the finite difference
approximations and has many proponents in the field of fluid mechanics. The method
takes as its starting point the physical conservation laws in integral form written for small
control volumes around every discrete point. Modifying the shape and location of the
control volumes associated with a given discrete point, as well as varying the rules and
accuracy for the evaluation of the fluxes through the control volume, gives the method
considerable flexibility. Unlike the finite difference method, the finite volume method
can readily handle arbitrary mesh orientation thus making it more amenabl e to problems
of rapidly changing variables. In addition, by direct discretization of the integral form of
the conservation laws, the basic quantities (e.g., mass, momentum, and energy) will be
conserved at the discrete level. Like the finite difference method, the finite volume
method has been shown to be a special case of the finite element method with non-
Galerkin weight functions™.

The finite element method

The finite element method consists of representing a given domain by an
assembly of smaller, geometrically simple subdomains or elements over which the
approximation functions are systematically derived. Then, Ritz-Galerkin approximations
of the governing equations are developed over each element. Finally, the equations over
all elements of the collection are connected by continuity of the primary variables. Inthe
mathematical literature, the names Petrov-Galerkin are often associated with the use of
weighting functions such that @ # N, and the names Bubnov-Galerkin are often

associated with the use of weighting functions such that ® = N, wherein the finite
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element method N are the element shape functions. The latter method is often referred to
asthe Galerkin method. The resulting system of equations is sparse, banded, symmetric,
and positive definite. The finite element method is especially well suited for handling
arbitrary shapes or domains. To obtain good accuracy in regions of rapidly changing
variables alarge number of small elements must be used. Furthermore, the method is
widely used for the analysis of many engineering problemsinvolving static, dynamic, and
thermal stresses of structures.

The boundary e ement method

The boundary element method is an alternative to the finite element method.
Like the finite element method, the boundary element method uses nodes and elements to
discretize the boundary of the domain. Thus, compared to the finite element method, the
dimensionality is reduced by one. The governing differential equations are transformed
into integral identities, which are applicable over a surface or boundary. Theseintegrals
are numerically integrated over the boundary, which is divided into small boundary
segments. The method may be used to model accurately the response in the domain
bounded by its mesh. The method can easily accommodate geometrically complex
boundaries. Furthermore, since all the approximations are restricted to the surface, the
method can be used to model regions with rapidly changing variables with better
accuracy than the finite element method. Complex kernel routines are required to
determine the response for the interior of the domain. Hence, the computational expense
increases quickly if the response at several interior locationsis needed. In addition, for

nonlinear problems, the interior must be modeled; thus losing the advantage of reduction
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in dimensionality. Unlike the finite element system matrix, the analogous boundary
element matrix issmall, fully populated, and unsymmetric.

Each of the aforementioned discretization approaches has advantages and
disadvantages specific to the domain of the physical problem or the discipline within
which itisapplied. To overcome the disadvantages of the individual methods, coupled or
collaborative methods have been developed. Collaborative methods couple two or more
discretization approaches and make use of a given approach when and where it is best
suited. The interaction between the methods is an essential feature related to the
robustness and accuracy of the combined methods and is a subject of discussion herein.
Moreover, this work focuses on the application of the multifunctional method devel oped
here to the finite difference and finite element methods and their coupling.
Computational methods using finite-differences for fluids experiencing field
discontinuities such as shock-waves and flow separations have been proven to be
efficient solution techniques. The finite element method has proven to be efficient in
solving for the response of complex aerospace structures, which may contain internal
discontinuous members such as spars, ribs, and bulkheads found in fuselage and wing
structures. In addition, coupled finite difference/finite el ement methods have been
proposed that make use of the strengths of the each of the modeling methods in the
solution of the aeroelastic problem and elasticity problemsin references 36 and 19,
respectively. Thus, both spatial modeling approaches and their coupling will be

discussed in turn.
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2.5.2. Overview of Single-Domain Spatial Modeling

Finite element discretization

For asingle domain, the finite element equations may be obtained by rewriting

Eqg. (2.19) over an element domain as

uo® oJuoid e _ e s€
—+— Q° = (QPAQ™ + (qddl 2.39
X OX oy ay I Q I . (2:39)

Qe r s®
where superscripts on the domain, Q, and boundary surface, FS, integrals denote
integration over the element. In later sections, numeric subscripts will be used to denote
element integration within the specified subdomain. The primary variableis

approximated over the element domain by u = Nug, and using the Galerkin method, the

vector of weight functionsisgiven by @ = N . Substituting approximations into the
integral equation given in Eq. (2.39) yields

.
EL@N N Ny IN TQda® + INquFS

Hax ox 9y ody a e

or

keue =fe
where k¢ is the element stiffness matrix, ue is the vector containing the generalized
primary variables, and f¢ is the element force vector containing the generalized secondary
variables. The element field quantities, k, u, and f, are denoted by a subscript, e.
Assembling these element equations over the entire domain and enforcing continuity of
the primary variable at the interelement boundaries yields the system of equations given
by

Ku=F
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nelem T T
where K = % i kHaN—a—l\I +6L6—N Q€ : uisthe assembly of all of the nodal
61 e Hox ox oay oy

degrees of freedom associated with the primary variables; and

nnodes
F= > [NTQdQ®+ [NTqdrs
1

Qe rse

Finite difference discretization

In the finite difference methods, derivatives are approximated by difference
expressions that transform the derivatives appearing in the partial differential equationsto
algebraic equations. For an eliptic partial differential equation, usually time-
independent, the methods result in a system of algebraic equations that are solved using a
direct or iterative solution technique. For hyperbolic and parabolic partial differential
equations, a set of algebraic equationsis obtained. These equations are solved either
explicitly or implicitly. For the explicit solution, each equation will yield one unknown.
The matrix of unknown variablesis adiagonal matrix and the right-hand-side vector of
the system is dependent on the variables at previoustimes. For the implicit solution, the
equations are coupled and must be solved simultaneously. Since the system equations are
coupled and more than one set of variablesis unknown at the same level, the matrix to be
inverted is non-diagonal. In most cases, however, the structure of the matrix will be
rather ssmple, such as a block pentadiagonal, block tridiagonal, or block bidiagonal. The
truncation errors, stability and consistency of the numerical scheme are aspects that must
be considered in the devel opment of the methods. The difference expressions are
obtained by Taylor series expansion, using forward, backward or central expansions.

Zienkiewicz and Morgan®” have shown that the finite difference method of approximation
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Isaparticular case of collocation with locally defined basis functions. In the collocation
method, the unknown weight function parameters are determined by forcing the residual
in the approximation to vanish at N selected pointsin the domain. Upon substitution of
the approximation function into the differential equation, the equations can be recast in

weighted residual form by selecting ®@; = 5(x = Xj ) The weighted form of the residual

reduces to the evaluation of the partial differential equations using the approximate
solution evaluated at the N selected mesh points. For a second-order ordinary
differential equation, the approximate solution, U, may be given as a function of the

solution at neighboring points (see Figure 2.4) as
0 =uUitNZ; +UNF + U4 NSy
where NFarelocally defined quadratic basis functions represented by

X -x). e (B-(+x) e _X(h®+X)

NE, = , NS, =227,
i-1 Z(he)Z | (hE)Z i+1 2(he)2
X
| >

element e
i< >
I A I

Q Q Q

i-1 i i+1

i< he i he g

Figure 2.4. One-Dimensional Finite Difference Element Configuration.
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The locally defined quadratic basis functions, N¥, given here in the Cartesian coordinate

system, may be written in the element natural coordinate system, &, as
Ney=-Le-8): ne=h-g2) Ngg=leed)

where €=x/h°. Notethat -1< & < 1. These basis functions are the standard Lagrangian
shape functions for three-node one-dimensional finite elements. This derivation for one-
dimensional problems may be extended to two- and three-dimensional problems. The
derivation is given for two-dimensional problems considering the bi-quadratic shape
functions for a nine-node two-dimensional finite element. A schematic of the finite
difference template and the associated finite element are shown in Figure 2.5 where the
open circles represent grid pointsin the five-point finite difference template used to
represent second-order derivatives.

The shape functions for a nine-node quadrilateral® are given in Table 2.1. For

example, the shape function at point i,j-1 is given by

Ni,j-1 =%(1-52X1-0)—%@—52Xl-f72)-

N =50 -2 0-2f-n2).
N = 3 0-efoen) 222
Nt =5 0-8-n2)-20-2f-n?),

Nij ={i-2Ji-n?)
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Then,

62Ni—1,j 1 62Ni—1,j _ 1 4 2)‘ 0o 1 _52Ni+1,j
ox2 ( e)z 552 ( )2 n B
h 4 he

ol [ef 8l

2 2
0°Njj 1 0°Nj; 1 O 2(1_,72)‘ 0_ -2
n=oH (R’

ox2 _(he)Z 9&2 _(he)ZH (he)

aZNi,j_l _ 1 62Ni,j_1 _ 1 2 D_ 1 _ aZNi'j_‘_l
- - —¢ ‘ = = . (240)

and

-2

; %2(1_52)‘&0@:@'

azNi,j _ 1 62Ni,j _ 1
dy? (he)2 on? (he

The standard finite difference representation follows by direct substitution. This

specialization of the finite difference method as a form of the generalized method of

weighted residuals forms the basis for itsinclusion in this multifunctional derivation.

i-1j+1 ij+1 i+1,j+1
J ® 1 ° J

i-1j | o 1—< i+1]
(4 O ®
i-1,j-1 ij-1 i+1j-1

Figure 2.5. Two-Dimensional Finite Difference Element Configuration.
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For asingle domain, asin the finite element method, the finite difference
equations may be obtained by interrogating the weighted residual equations over an
element domain where the element, e, surrounds node i (see Figure 2.5). The

approximate solution for the primary variable is given by

where M is the number of shape functions over the element, and the weight function, ®;,
is given by the Dirac deltafunction, 5(x =X,Y Vi ) = 5(xi i ) Note that the subscript
i on the weight function is used to denote the subdomain, while the subscript i on the

coordinate values, x and y, is used to represent the point in the physical domain at which

the Dirac deltafunction isevaluated. Therefore, Eq. (2.39) becomes

[l X X, Yi =
D_[ k? ad(alx’ i ) %_s ad(aly’ ’ )% EJ IQa—(Xl »Yi )dQe + .[ qJ(X, i )dl_s
rs®

Using the identities of f (x)3(x = x; Jox = () and }, f (x) dd()(;; Xi )dx = d;E(X)I

—00 —00 X=X
(See Bracewel1*®), the element equation reduces to
[l ) ) 0
(B-N 0°N 0
_kEl_z 5 We:Q(Xi1yi)+Q(X|’Y|)
00X~ [x=X; 0y~ [x=Xi []
[l [ Yi

For the second derivative difference approximation, the number of shape functions of an

dement, M=3and ul ={ui_; U; Uj,,}. Therefore, asin the finite element method,
the resulting finite difference equations may be written in matrix form as

keUe =fe
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where ke is the finite difference “element stiffness” matrix,is the vector of generalized
primary variables anfi is the finite difference generalized force vector. Assembling the
element equations yields

Ku=F

whereu contains all of the nodal degrees of freedom associated with the primary

variables,
Nel = 2 2 2
em [§“N 0°N U
K= 2 ko T2l D
1 00X~ |x=Xi 0y~ X=X []
[l =VYi i g
and

F= Nn%d[é(xi i)+l vl
While a single spatial modeling approack.(the finite element method or the
finite difference method) is used for the single domain formulation, subdomain modeling
permits multiple discretization strategies to be used in a collaborative manner. These
discretization strategies include homogeneous approaches in which the same
discretization method is used in each subdomain and heterogeneous approaches in which
different discretization methods are used amongst the subdomains. Each of these

discretization strategies is discussed in the following sections.



Table 2.1. Shape Functions for a Nine-Node Quadrilateral Finite Element.
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Primary Terms

Secondary Terms of Shape Functions

Nigja =+(1-¢&)a-n)

Nisyj1 =2(+&)1-n)

L+ £)a+n)

N

Njt+gj+1 =

Nigje =1(1-&)L+n)

Ni,j-1 :%(1-52X1-'7)

(+é)a-n?)

N

Nit1,j =

1
—5Nij1

1
—5Nij-1

1
~5 Nig,j
=5 Nisg,j
1
_§Ni,j+1

1
=5 Nisa,j

1 1
“5Nija  —5Niaj

+
NI

+
N~

+
N

+
N

+
N

=

=

Z

Z

Z

2.5.3. Multiple-Domain Modeling - Homogeneous Discretization

In this context, homogeneous discretization approaches are applicable to multiple

subdomain discretization. These approaches make use of a single discretization method

among all subdomains in which the domain is subdivided. Of the many spatial modeling

approaches, thiswork will focus on the finite element and the finite difference methods.
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Two-approximation interface modeling

For homogeneous domain discretization devel oped herein, Eq. (2.32) isused to
provide the mathematical basis. The two-approximation formulation, for both the finite
element (FE) and finite difference (FD) methods, may be obtained by rewriting Eq. (2.32)
over an element domain as

I klgﬁul 6(1)1 + aUl 6(1)1 EjQ]e_ + I kzguz 6(1)2 + 6u2 6(1)2 %Qg
o8 oXx 0x o0y oy i oxX O0x oy oy

1

R e e _ e
- [4(@1-@5)dr" + (AU -up)dr = [QugdQS + [ drY (242
|e |e Qe Se
r r 1 Fl

+ [Qu®,dQS + [Gppdrs”
Q3 r2se
Note that the integration over the common subdomain boundary, "', is considered only
for element edges along that boundary.
The form of Eq. (2.41) for the two (FE and FD) methods differs by the form of
the element shape functions and the approximation selected for the weight functions, ®.
For the generalized element expansion of subdomain i, the independent approximations
for the element generalized primary variables, (i.e., displacements or velocities), interface
secondary variables (i.e., tractions or fluxes), and the weight functions associated with the
secondary variables, are, respectively

UizNiUe, ; qZRi(I and hi =R;
wherea. isavector of unknown coefficients associated with secondary variable, g, and

N and R are matrices of interpolation functions for the element primary and secondary
variables, respectively. The interpolation functionsin the matrix R are assumed to be

constants for linear finite elements and linear functions for quadratic finite elements.
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Substituting these approximations into Eq. (2.41) yields an integral equation in terms of

the weight function, ®, which is given by

O T T T T
Ok, N, 00, , ON; 00, @Qe% Ky N, a‘1)2 LN 00, @Qe
DI Oox  ox ay ay E DI 2
B O B a

O
Dax dy dy %Jez
B
D D O
T 1€ T 1€ 1€ 1€
D_[(I)Rdr B; _[(I)R dr Bl J’R Ny dr Eﬁel DJ’R INzdr Hig,
e B E' B @' B 7° B
e
= I(I)lQldQl+ I‘I’ qldrlS + IcngZdQe I<I>zq2 drs
Qe r1 Q3 r2

where for i=1,2

and

e
= [0 Qdof + J’(I)I g dr®
Qe rIS

Assembling the element equations over the entire domain, enforcing continuity of the

primary variable only within each subdomain and assembling the contributions along the

element edges on the common subdomain boundary, and noting that Ue, and ug ) and

fel and fez are completely uncoupled, yields the system of equations given by
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BK]_ 0 K Eﬂ:ul f1 0
00 Kz Kg 2D %2D (2.42)

Kp, Kop, 0%“5 o

The system of equations given in Eq. (2.42) is obtained based on the initial development

of the weighted residual statement, from Egs. (2.28) and (2.29),

J’kiEBui 0P; , Oui 0P; Eﬁgl _[kl d“' L dr' = IQ.<I> dQ; + [Gd;dry
of oxX ox ody oay rs

subject to the constraint equation, Eq. (2.30),

Alug —uy da'=0 on r'.
]
;

Here, the first two matrix equationsin Eq. (2.42) are obtained from the weighted residual
statement for each subdomain, Egs. (2.28) and (2.29), and the third matrix equation is
obtained from the constraint on the primary variables along the common subdomain
boundary, Eq. (2.30).

For the finite element modeling, the weight functions are taken to be the finite
element shape functions. That is, ®; = N; , and thus, for i=1,2

N{ oN; 6N-T ON:
EP [ [ %Qle’

G I Hax ax dy oy

k

kp, =(=2)"* [RIN;ar'™,
r1°
ke = (-0 [NTRydr'”, (2.43)
e
!

and
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e
fe = [N QdQf+ [Ng dr
Qle riSe

Here, note that at the element level, k P = k; , and consequently, at the global system

level, K, =K,
i 5

For the finite difference modeling, the weight functions are taken to be the Dirac

deltafunction. Thatis, ®; =& (x-x,y-v;)=3 (x.y;),and thus, for i=1,2

H H
o = [ kPN 08 05.) , N, adi(xi’yi)@m:k.zﬁz'\'i LN g
€ o6 IEOX 0x oy oy 0 i 'Dax2 x=x 6y2 Yox |
| H y=Yi y=y

kp, = (-0 [RIN;ar'™,

rl°
Ks =(-1) 161 (%, yi)R; dr'” = (-2 R (x,v) . (2.44)
rl°

and

fei = [1(x,yi)QdQf + [ (x. i) dr® = Qi(x, i) +a (%, vi)-
QF rs°

Three-approximation interface modeling

For the three-approximation formulation, Eq. (2.36) is used to provide the
mathematical basis for the development. In previous work by Aminpour et a.?, a
similar formulation based on the principle of minimum potentia energy isimplemented
in the form of an element. In that work asisthe case in this study, the interdomain

interface boundary is discretized with a mesh of evenly-spaced pseudo-nodes (open
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circlesin Figure 2.6) that need not be coincident with any of the interface nodes (filled

circlesin thefigure) of any of the subdomains.

nodes

I nterface

Figure 2.6. Interface Definition.

The generalized element equations may be obtained by introducing the continuity
regquirements into the weighted residual statement. Eq. (2.36) can be rewritten over an

element domain as

I ke Uq 6(1)1 + aul 6(1)1 Eij + J, kZEpUZ 0(1)2 + aU2 a(I)Z %Qg _ Iqlq)l dI_|€‘
ge Oox ox  dy dy ge Oox ox  dy 0y rle

~ [G@odr” + [h(v-u)drT 4 [Aplv-up)dr'T + [A(G +ap)drT  (245)

1© 1® 1© 1©
r r r r
_ e _ e
= [Q@1dQf + [Py Ay + [Q®,dQf + [Go®,dly .
Q¢ rse Q¢ rse
1 1 2 2

Note that in the potential energy formulation®, the continuity of the secondary variables
was satisfied through the subsidiary conditions obtained through the minimization of the

potential energy. In thisweighted residual formulation, the continuity of the secondary
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variablesis satisfied in aweighted residual sense and the Lagrange multipliers, A; and A,

are represented by weight functionsin the form of the secondary and primary variables,
respectively.

The form of the equations for the finite element and finite difference applications
differs by the form of the element shape functions and the approximation selected for the
weight functions, ® . For the generalized element expansion of subdomain i, the
independent approximations for the element generalized primary variables, (i.e.,
displacements or velocities), interface secondary variables (i.e., tractions or fluxes), the
weight functions associated with the secondary and primary variables, and the interface
variables, are, respectively

ui =Njue ; Gi =Rje; ; X =Ry ; A=T and v=Tu,
wheree, isavector of unknown coefficients associated with the secondary variables, q,
and N, R, and T are matrices of interpolation functions for the element primary and
secondary variables, and primary variables along the interface, respectively. The
interpolation functions in the matrix R are assumed to be constants for linear elements
and linear functions for quadratic elements. The interpolation functions in the matrix T
are cubic spline functions. The derivation of this interpolation matrix isgivenin
Appendix B, and the derivation of the geometry representation, I, is given in Appendix
C. Substituting these approximationsinto Eq. (2.45) yields an integral equation in terms

of the weight function, @, which is given by



U]
T T T T O
IkHaN 1 oy ONJ acplgmf% Ik PN o0, | ON; 0, @Q‘;Ehez
D ax ox oy oy Tl "0 Tox ay dy
Bll H 5 O U8
0 U] 0 D
DI(DTRldrl Bll DI(I)TRZ dI" 812"‘ IT R dI" Bll"' IT R2 dl' Sl
e 8 @° g Tl g ° |
0 O O O O U o
EJ’R]_TTCH_I gﬂ _EIRlTNldrl %Je_l. + SJ’RZTT dI" %ﬂ _SJ’RZTNZ dr %1
F'° ST g " ST g
= (@] QAQS + [@] g drS + [®1Q,dQS + [®Lg, drs
J®q f 1@ JP2Q2 f 202915
Qr rs Q3 rs
1 2

where, for i=1,2

I " PN 9@, oNT 0 ] e
Hax ox oy oy !

_ T 1€
Kp, == [RiNidr'

r°

kg == [®]R;dr'",
|e
A

ki, = [TTRr"
ri

and

e
= [@] QdOf + j<1>| g dr
Qe rIS

where integration over the common subdomain boundary, "', is considered only for

element edges along that boundary.
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Note that all of the element submatrices in the three-approximation formulation

except for the k I matrix are identical to those obtained in the two-approximation
formulation. The submatrix, k,i , does not exist in the two-approximation formul ation

but isincluded in the three-field formulation. This submatrix is associated with the
coupling of the primary variables along the subdomain interface boundaries to those
along the interface.

Assembling the element equations over the entire domain, enforcing continuity of
the primary and secondary variables only within each subdomain and assembling the
contributions along the element edges on the common subdomain boundary, and noting

that ue, and ue, , and fe and fe, , anda; and a., are completely uncoupled, yields the

system of equations given by

0 K, 0 0 K 0 G O

0 (g gog

B 0 0 OT Kip Ki, (O0=000 (2.46)
Ko O KL O O oo

O T

50 Kp, Ki, 0 0 ffH B

or in asymbolic manner

EK 0 Ks%u
0 K||]DJ
0

0o
Kp K, He

where K, u, and f are the assembled stiffness matrix, displacement vector and force

IZD%IZII:I
I N
o oo

vector for the entire structure, and Kp, K, Kj, U, and a arethe assembled Ky, K, Ky,

u;, and a; for all interfaces.



Whileit is convenient to represent the weighted residual form over the domain
using a single equation, the system of equations, Eq. (2.46) is obtained from the
individual weighted residual expressions over each of the subdomains and the constraint
integrals. Thefirst two matrix equations of the system of equations, Eq. (2.46) are

derived from the weighted residual statement for subdomaini. That is,

I Ki Ui 0P +aui 0P; Qq - J' Ki —aui D; ar' = IQi(I)iin + Iqi(l)i dris
o ox 0x ody oy oy on aQ, rs
[

The third matrix equation of the system results from the reciprocity statement of the

secondary variables. That is,

[AG +8p)ar' =0 on '
oy

The fourth and fifth matrix equations result from the continuity requirement for the

primary variables, which is given by

I)ll(u|—u1)dr':o on T
r!

J’I
r

For the finite element development, the weight functions are taken to be the finite
element shape functions (i.e., ®; = N; ). For the finite difference development, the
weight functions are taken to be the Dirac deltafunction (i.e.,

D; =9 (x =X,YYi ): i (xi Vi )). Thus, for i=1,2, the finite element and finite
difference stiffness matrices and force vector, k¢, , k. , kg , andfe, , for thethree-

approximation formulation are identical to those obtained for the two-approximation

formulation for the respective discretization approaches.
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Note that, for both of the discretization methods, the form of the coupling element
matrices that are not in terms of the weight functions are independent of the method of
discretization. That is,

_ T 1€
Kp, == [RiINjdr',
Ie
r
and
ki = [TTR;dr'"
Ie
r
are of the same form for the finite element and finite difference discretizations.
However, since the element shape functions, N;, differ for the two methods, the interface

matrices, k. , in general, are not identical. Moreover, in the finite element devel opment,
the weight functions, @; , are taken to be the finite element shape functions, N;; thus, at
the element level kg, = k;_ , and at the global system level K, = KZ_ :

| |

The three-approximation derivation is more general asit alows for the coupling
of the primary variables to an independent approximation. This attribute is particularly
important in the heterogeneous discretization approach described in the next section.

2.5.4. Multiple-Domain Modedling - Heterogeneous Discretization

Heterogeneous discretization approaches make use of different discretization
methods for at least two of the subdomains in which the domain is subdivided. There are
many combinations of spatial modeling approaches; however, this work will focus on the
coupling of the finite element and finite difference methods.

Both the two- or three-approximation multifunctional formulations, discussed for

the homogeneous discretization approach, are applicable to heterogeneous discretization.
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However, as noted earlier, the three-approximation approach provides additional
flexibility for the interface definition. Thus, only the three-approximation approach is
presented. Hence, the multifunctional weighted residual formulation of Eq. (2.46) is
used. Considering the two domains, upon which this discussion is based, one subdomain
is discretized using the finite element method, and the other subdomain is discretized
using the finite difference method. As before, for the finite element development, the

weight functions are taken to be the finite element shape functions (i.e., ®; = N; ), and for

the finite difference devel opment, the weight functions are taken to be the Dirac delta
function (i.e, ®; =3J (x=x,y-V;)=3(x.y;)). Asexpected, the set of element
matrices becomes a hybrid of the matrices from the finite e ement method and the finite
difference method. For completeness, these matrices are repeated here considering
subdomain 1 as the finite element subdomain and subdomain 2 as the finite difference

subdomain, and

NT GNT H 2NT aZNT
PN Ny , Ny aNl@j()fand Ke, :k2ELZ +—2

k. = [k
a-Jk
ae %ax ox dy 9y g ﬁaXZ o dy> o
e
ke == [NTRydr'" and ke, =-Ra(x,vi), (2.47)

rl°
and
e —
fe = [N{QuQS + [Nfgdr® and fep =Qa(x,yi)+02(x,¥i),
Q_‘? rlSe

and for the two domains, i=1,2,
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and

2.6. COMPUTATIONAL IMPLICATIONS

The two- and three-approximation multifunctional modeling approaches have
been generalized such that they are applicable to both homogeneous and heterogeneous
discretization approaches. Computational implications are presented in this section for
the generalized system of equations, Egs. (2.42) and (2.46). Implications specific to a
discretization approach are highlighted, where appropriate.

The assembled stiffness matrix K isablock diagonal matrix containing the
stiffness matrices K; of each of the subdomains along its block diagonal. Theinterface
“stiffness” matrix thus contains coupling terms that augment the stiffness matrices of the
subdomains along the interface. The two- and three-approximation approaches yield
systems of equations (see Egs. (2.42) and (2.46)) of similar form and with the same
attributes. Due to the use of Lagrange multipliers in the constraint conditions, the
systems are neither banded nor positive definite. Therefore, standard Cholesky solvers
can not be used, unless full pivoting is performed to obtain the solution. In addition, due
to the generalization for the finite difference approximations, the system of equations is
not necessarily symmetric due to different off-diagonal submatigeandKs. The

system unknowns in Eq. (2.46) consist of both primary and secondary variables given by
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the potential function, u, and the secondary variable coefficients, a, respectively.

Generally, the coupling matrices, K 5 ae of the order of the length of the interdomain

boundary, which resultsin a marked difference in the magnitude of the off-diagonal
terms of the system matrix compared to its diagonal terms. This characteristic produces
an ill-conditioned matrix whose solution can cause difficulties for some general-purpose
solvers. Hence, the coupling matrix should be scaled such that it is of the same order as
the subdomain stiffness. The upper diagonal submatrix blocks contain uncoupled
subdomain stiffness matrices. The symmetry of the subdomain matrix is determined by
the choice of the weight function, ®. For the finite element discretization, the subdomain
matrices are symmetric. However, due to the elimination of fictitious nodes for the
imposition of boundary conditions and loads in the finite difference discretization, the
subdomain stiffness matrices, K;, generally are not symmetric, but they are positive
definite and sparse. The coupling is accomplished through the introduction of the

coupling termsin the matrices, K P and K , for both approaches. The three-

approximation approach requires an additional matrix, K. For the three-approximation

approach, the number of additional degrees of freedom associated with the interface is
generaly small in comparison with the total number of degrees of freedom in the
subdomains. Thus, modeling flexibility is provided at arelatively small computational
expense. The computational expense in this study may be reduced additionally as the
efficiency of new solution algorithms for the system of equationsin Egs. (2.42) and
(2.46) isincreased.

The load transfer mechanism for finite element multiple-domain discretizations

presented by Aminpour et a.? is generalized for the multifunctional approach, herein.
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Thisload transfer mechanism may be interrogated for the two- and three-approximation
formulations by considering the first and second rows of Egs. (2.42) and (2.46),
respectively. For the three-approximation approach, the matrix equations of interest are
given by

Kug +Kg e =f;
Kauz +Kg,ap =f;
These equations can be partitioned such that they correspond only to the primary
variables, U; ontheinterdomain boundaries. That is, U; represents a subset of u;;
hence,
K1y +Kg a1 =0

_ (2.48)
K2U2 +K32(12 =0

whereK ; denotes interdomain boundary stiffness terms related to; , and there are no

forces on the interdomain boundary. The expressions given by the product term, K T;

represent the internal fluxes at thei™ interdomain boundary, and thus Eq. (2.48) may be

written as
fi=-Kgay and fy=-Kg ay. (2.49)
For homogeneous discretization using the finite element method, substituting for

Ks from Eq. (2.43) into Eq. (2.49) gives

—— (NTR dl—le _ Ta N

1=~ [N1Rg 013== [NjQpdr (2.50)
e e

r r!

f,=— (NIR,dr'" ap=— (NJgpdr'
2=~ [N2R> ap == [Naqodl
e e
r! r!
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Examining Eqg. (2.50) indicates that the evaluation of the internal fluxesis consistent with
the evaluation of equivalent nodal fluxesin the presence of applied fluxes on the
boundary. In addition, Eq. (2.50) substantiates that the secondary variables along the
interface are represented by distributed fluxes for each of the subdomains.

For homogeneous discretization using the finite difference method, substituting

for K 5 from Eq. (2.44) into Eq. (2.49) gives

1=-Ryaq =03 (2.51)

Examining Eqg. (2.51) indicates that the evaluation of the internal fluxesis consistent with
nodal fluxes evaluated at points in the presence of applied fluxes on the boundary. In
addition, Eqg. (2.50) substantiates that the secondary variables along the interface for this
approach are represented by nodal fluxes for each of the subdomains.
For heterogeneous discretization using the combined finite e ement and finite
difference methods, substituting for K 5 from Eq. (2.47) into Eq. (2.49) gives
fi=- (NIRydr' oy == [NJgpar'” (2.52)
r' r'
f2 =-Rpuz=-0>
Examining Eq. (2.52) indicates for subdomain 1 (the finite element subdomain), that the
evaluation of the internal fluxesis consistent with the evaluation of equivalent nodal
fluxesin the presence of applied fluxes on the boundary. Meanwhile, for subdomain 2
(the finite difference subdomain), the evaluation of the internal fluxesis consistent with
nodal fluxes evaluated at points. This revealsthat for this multiple-domain approach, the

secondary variables along the interface for subdomain 1 are represented by distributed
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fluxes, while for subdomain 2 the secondary variables along the interface are represented
by nodal fluxes. Thus, for this heterogeneous modeling approach, it is required to
transform the interface secondary variables into equivalent quantities.

2.7. VERIFICATION TEST CASE

In this section, the multifunctional methodology for the scalar-field problem is
demonstrated on a verification test case. The application is described, and the associated
results and salient features are discussed. This application is considered a patch test for
the formulation and verifies the applicability of the method for a configuration for which
the solutions are known. Finite difference and finite element solutions for single- and
multiple-domain configurations are presented to provide benchmark solutions for the
multifunctional approach using homogeneous and heterogeneous discretization.
Representative applications from the field of engineering science are presented in
Chapter V.

2.7.1. Patch Test Problems

The patch test has proven to be a useful discriminator of the convergence
properties of finite elements and other discretization approaches. A patch test refersto
any problem with an exact solution as a constant state for which the approximating
primary variable is capable of reproducing. The fundamental concept of the patch test for
the scalar-field problem herein is to subject adomain to boundary conditions that
engender alinear or quadratic primary variable field and a constant or linear secondary
variable field throughout the domain. For the governing differential equation of the form

of Eg. (2.1), boundary conditions that serve this purpose are:

i. Specified primary variable onT P which emanate from alinear field as
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U=aX+ay+ag
or quadratic field as
u= al(Xz - y2)+a2x+ azy+ag

wherea,, a,, a;,and a, are arbitrary constants.

ii. Constant or linear secondary variable on IS
q=byx+byy+bg
Given these boundary conditions, a solution is sought to the Laplace’s equation. This
governing equation is applicable to a variety of problems in engineering science. For
example, consider the solution for the primary varialipey), in a rectangular domain
(see Figure 2.7) with boundary conditions of the forms indicated which yield the exact

solution.

yA
a=e(x.y) @.b)
u=f(xy) u= gixy)
G=h0cy) >

Figure 2.7. Two-Dimensional Rectangular Domain.

The problem is given by

Z 24+ =0, 0<x<a, 0<y<b
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which is known as Laplace’s equation for a planar domain.

Results of the analyses performed have been compared to appropriate reference
solutions and are summarized in Table 2.2 using normalized values. A value of unity
implies perfect agreement with the reference solution. Specified boundary conditions
representing linear, bilinear, and quadratic potential functions are applied to the square
domain. For all cases, the reference solution is the exact solution. For the linear case, a
specified boundary condition of the form

u(0,y)=2, u(a,y)=a+2, and gn(x0) = gn(x,b) =0
has been imposed. For the bilinear case, a specified boundary condition of the form
u@©,y)=y, u(ay)=a+y, and qn(x,0)=-1and, g,(x,b) =1
has been imposed. For the quadratic case, a specified boundary condition of the form
u0,y) = —y2, and u(a,y)= a® - y2, gn(x,0) =0, and g,(x,b) =-2b
has been imposed. Several analyses have been performed namely, (1) two single-domain
analyses with individual finite element and finite difference discretizations, respectively,
(2) two multiple-domain analyses with homogeneous modeling with individual finite
element and finite difference discretizations, respectively, and (3) one multiple-domain
analysis with heterogeneous modeling with combined finite element and finite difference
discretizations. Results from these analyses are summarized in Table 2.2. In this work, a
five-node central difference template and four-node quadrilateral finite elements are used
to form the models. Spatial modeling is used consistent with single-domain modeling
approaches with a 5) mesh and a (9 9) mesh. The coarse and fine models, shown
in Figure 2.8, are used in the finite element homogeneous modeling. For the finite

difference homogeneous modeling and the heterogeneous modeling, a finite difference
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mesh is used that has the same number of mesh points as the finite element mesh in the

respective domain.

Figure 2.8. Spatial Discretization for Two-Dimensional Rectangular Domain.

For boundary conditions consistent with linear and bilinear potential functions,
the computed potential and flux results are exact for all analysistypes. For boundary
conditions consistent with a quadratic potential function, the error in the computed
potential and flux is approximately 3% for the multiple-domain homogeneous finite
element (MDFE) spatial modeling, and the error is approximately 1% for the multiple-
domain heterogeneous modeling (MD/HM) with finite difference and finite element
discretization. For the given boundary conditions and element configuration (i.e., square
or rectangular el ements), the single-domain finite el ement (SD/FE) model reproduces the
exact solution using the bilinear finite element. However, for a general element
orientation (i.e., quadrilateral elements), the bilinear element used does not reproduce the
exact solution. Moreover, for the multiple-domain analysis, error is introduced when
combining finite element models of different discretization along the boundary. This
error is due to the use of a higher-order interpolation function (i.e., cubic spline) on the

interface than that used to represent the potential on the finite element edges. The error



obtained using the heterogeneous model is smaller than that obtained for the
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homogeneous finite element model. This attribute is due to the ability of the finite

difference model to represent accurately the potential function on the interface based on

the higher-order shape function used in the generalization of the finite difference method.

Table2.2. Results of the Multifunctional Approach for the Patch Test Problems.

Normalized Potential Function, u Normalized Flux, ox
Analysis Order of Potential function Order of Potential Function
Type Linear Bilinear | Quadratic | Linear | Bilinear | Quadratic
SD/FE 1.0 1.0 1.0 1.0 1.0 1.0
SD/FD 1.0 1.0 1.0 1.0 1.0 1.0
MD/FE 1.0 1.0 1.03125 1.0 1.0 1.03125
MD/FD 1.0 1.0 1.0 1.0 1.0 1.0
MD/HM 1.0 1.0 .98958 1.0 1.0 .98958
" SD/FE: Single-Domain with Finite Element discretization
SD/FD: Single-Domain with Finite Difference discretization
MD/FE: Multiple-Domain with Finite Element discretization
MD/FD: Multiple-Domain with Finite Difference discretization
MD/HM:  Multiple-Domain with Heterogeneous M odeling (combined finite

difference and finite element discretizations)
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CHAPTER 11

MULTIFUNCTIONAL APPROACH FOR VECTOR-FIELD

PROBLEMS

3.1. GENERAL

While a scalar-field problem is one in which the dependent variableis a scalar and
requires only the specification of magnitude for a complete description, a vector-field
problem is one in which the dependent variable is a vector of components and requires
the specification of magnitude and direction. Many of the concepts outlined for the
scalar-field problem in the previous chapter are readily extendable to the vector-field
problem, which allows further generalization of the multifunctional approach developed
herein. A representative example of the vector-field differential equation in two
dimensionsis considered, and the mathematical statement isformulated. The concepts
developed here are directly applicable to one-, two-, and three-dimensional vector-field
problems; however, only the two-dimensional development isincluded in the interest of
brevity. The general form of the differential equation describing the vector-field problem

governing the motion of a continuum is given by the equilibrium equation

m+mnz¥ (3.1)

wherethe variables p, b, T and v are the material mass density, the body force per unit
volume, the stress tensor and the velocity vector, respectively. Eq. (3.1) is subject to the

natural boundary condition, t =T [h =t on I'®, and essential boundary conditions,

u =1, on P where the normal vector to the boundary I"is given by n = nXiA + nyi , and
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ny and ny are direction cosines of the unit normals, i and j. Inaddition, t,and Tare

applied tractions, and prescribed displacements, respectively, andVv istheinitia velocity
vector. The equilibrium equations must be satisfied within the domain. Note that instead
of prescribing the tractions on the boundary, boundary conditions may be given in terms
of displacement or velocity components. Furthermore, boundary conditionson I may be
mixed (i.e., surface forces, t, may be prescribed on one part of the boundary and
displacements or velocities may be prescribed on another). The equilibrium equation and
other governing equations of continuum mechanics are discussed in more detail in the
following section.

3.2. CONTINUUM MECHANICS FOUNDATIONS

The conservation of mass, linear momentum, angular momentum, energy, and
entropy giveriseto field equations that govern the deformation and motion of a
continuum, and these equations are given in the form of integral or differential equations.
In deriving the governing equations, the starting point is a statement of the conservation
principle applied to a “control volume” to develop the integral form of the equation and
extract the differential form by using the divergence theorem.

3.2.1.Principle of Conservation of Mass

The principle of conservation of mass states that when the total mass of the body
is unchanged for an arbitrarily small neighborhood of each material point, the mass is
considered to be conserved locally. Hence, the rate of increase of the mass inside the
control volume is equal to the net inflow of mass through the control surface.

Mathematically, this principle is given by
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y oot 0
Sincetheintegral isequal to zero for arbitrary respective volumes, V, the integrand must
be equal to identically zero everywhere in the domain. The resulting equation, known as
the continuity equation, iswell known in fluid dynamics and is given in a conservative

form by

9p _ a9p (pv;) _
at+D[ﬂpv)_o or =+ o =0 (3.2)

The differential equation takes on a dightly different form when the derivatives of
products are expanded and the definition of the material derivativeisconsidered. The

resulting non-conservative form is given by

do do v
L +p0=0 or E+p—=
dt P dt 'Oaxi

If the material isincompressible so that the density in the neighborhood of each material

particle remains constant as it moves, the continuity equation takes the simpler form

Dw=o0 o M=o (33)
aXi

Thisis known as the condition of incompressibility, which isimportant in classical
hydrodynamics and plasticity theories. The continuity equation is an important partial
differential equation in al branches of continuum mechanics and the discipline-specific
aspects are discussed in the next section.

3.2.2. Conservation of Linear Momentum

The equations of motion, valid in all branches of mechanics, are partia

differential equations derived from the momentum principles of a collection of particles.
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In this case, it iseasier to use integrals over a given mass of materia (the material
volume, V") rather than over a given spatial volume (the control volume, V). The
Reynolds transport theorem is used to replace the material volume with the control

volume. The conservative form of thistheorem is given by

d ,_ 0
a\_/[’(/pdv -E\J;quv+£¢pvﬁhds

where @is the continuum property per unit mass and fov [h dS is recognized as the mass
S

flux. The conservation of linear momentum represents Newton’s second law and governs
the motion of the continuum under the influence of the external effects. This principle

states that the time rate of change of momentum is equal to the resultarf fateg

on the body. Thus; =C;—|; whereF is the resultant of all external forces and is given

acting on a material volume &s= Ipb dv'+ ft dS', andL is the linear momentum
A s

vector on a material volume given hy= fvp dV'. First, expressing the conservation
V!

of linear momentum over the material volume and then using the Reynolds transport
theorem to express the equation in terms of the control volume yields the integral

conservative momentum equation given by
_a
\{pbdv +£t dS—E\{vpdV +£vpv (h dS

Using the divergence theorem and Cauchy’s formula, the conservative differential form

may be obtained as

pbmzr:%mcqu)
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The non-conservative form of the differential equations is obtained by expanding the
divergence operator, [] [ﬂpvv) and making use of the continuity equation, Eq. (3.3),

yielding

3.2.3. Conservation of Angular Momentum

The principle of conservation of angular momentum is used to show symmetry of
the stress tensor, which is used to describe the state of stress of the continuum. Ina
collection of particles whose interactions are equal, opposite and collinear forces, the
time rate of change of the total moment of momentum for the given collection of particles
Is equal to the vector sum of the moments of the external forces acting on the system. In
the absence of distributed couples, the same principle for a continuum is postul ated.

Thus,
[ xt)ds+ [{r x pb)av :%J'(r x ov) dV
S V \/

where x denotes the vector cross-product operation. Upon expressing the cross products
inindicial notation, transforming the surface integral to avolume integral (using the
divergence theorem), and using the expression for the material derivative of avolume
integral, the moment of momentum equation is reduced to

€rslyr =0

at each point where g is the permutation operator. Thisyields

Forr=1 Tz - Tz = 0
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For r=2 Tz1-T13=0

For r=3 Tiz2-Tn=0
establishing the symmetry of the stress tensor in general without any assumption of
equilibrium or of uniformity of the stress distribution. However, the balance of the
couple stressesis assumed. In reference 39, a proof is given for symmetry of the stress
tensor involving the condition that the rates of change of the components of stress remain
finite.

3.2.4. Conservation of Enerqy

The principle of conservation of energy states that energy is conserved if the time
rate of change of the kinetic and internal energy is equal to the sum of the rate of work of
the external forces and all the other energies that enter or leave the body per unit time.
Such energies supplied may include thermal energy, chemical energy, or electromagnetic
energy. Herein, only mechanical and thermal energies are considered, and the energy
principle takes the form of the well-known first law of thermodynamics. Since the
energy equation involves an additional unknown quantity, the internal energy, the
equation is auseful addition to the equations of continuum mechanics only whenitis
possible to relate the internal energy to the other state variables; in traditional
thermodynamics an equation of state furnishes the required relation. Thefirst law of
thermodynamics applied to amaterial volume may be written as

K+U=W+Q
where the superscripted dot, () represents the derivative with respect to time, andK is

the rate of increase of the kinetic energy of the material volume ,U is the rate of increase

of the internal energy of the material volume, W is the rate of work done by the external
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forces on the material volume, and Q is the rate of heat added to the material volume.
The individual variables are defined as follows:

d 1
-4 Lywav
ad. 2

-_d
a e
W= [povdV'+ [TvhdS
V' S
Q:—Iqmd8'+jprdV'
S V'

where U isthe specific internal energy, q is the heat flux vector and r is the radiative heat
transfer per unit mass. Upon using Reynolds transport theorem to convert the material
volume to the control volume and the divergence theorem to convert the surface integrals
to volume integrals, and performing further algebraic manipulation, the energy takes the

form

J’,o—dV ——J’DEI}dV+J’pr v + [T:DadV
V V

where the stress power, T:D, isthe scalar product of the stresstensor, T, and the rate of
deformation tensor, D. The differential forms are given by

p%——mﬁq+pr+T D

or

di Jq
=+ or +T:: D;:
a ax T
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If only mechanical quantities are considered, the principle of conservation of
energy for the continuum may be derived directly from the equation of motion. This
equation, referred to as the conservation of mechanical energy, states that the rate of
increase of the internal energy equals the heat added per unit time plus the stress power
that is not contributing to the kinetic energy. The equation is given by

pcclj—l::—Dm+pr+T:D (3.4

3.2.5. Second Law of Thermodynamics

The second law of thermodynamics is automatically satisfied and includes the
changein entropy of the continuum. The entropy is regarded as a measure of change of
energy dissipation with respect to temperature. The relationship expressing conversion of
heat and work into kinetic and internal energies during athermodynamic processis set
forth in the energy equation. Thefirst law, however, leaves unanswered the question of
the extent to which the conversion process is reversible or irreversible. The basic
criterion for irreversibility is given by the second law of thermodynamics through the
statement on the limitations of entropy production. For a general process, the energy

equation and the second law of thermodynamics are combined yielding

@ _1dg, Q
d Tdt pT

wheredsis the change in the entropy per unit mass, T is the absolute temperature, % IS

the heat transferred per unit time per unit mass, Q is the dissipative function obtained
from Q =T; jD Djj using the dissipative or deviatoric stress tensor TP, and the notation d

is used to indicate that the quantity is not an exact differential. The deviatoric stress
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tensor is defined by T, J-D =Tjj — pgjj where - pisthe hydrostatic pressure. For ageneral

process, Q=0
ds,1dq
d T dt
and for an adiabatic process,
S50
dt

where in each of the above equations, the equality condition holds for areversible
process and the inequality condition holds for an irreversible process.

The general principles of continuum mechanics have been outlined in this section
to provide afoundation for the basic equations governing the motion of general continua.
In the derivation of the balance laws, no differentiation has been made between various
types of substances. The character of the material is brought into the formulation through
appropriate constitutive equations for each material with the constitutive variables being
restricted in their regions of definitions. These and other discipline-specific attributes are
outlined in the following section.

3.3. DISCIPLINE SPECIFICS

The constitutive equations characterize the individual material and its reactions to
applied loads. Hence, in the following section, the discipline-specific attributes of solid
and fluid continua and their impact on the general principles of continuum mechanics are
reviewed. In addition, other salient characteristics of the governing equations for solids
and fluids are discussed.

All constitutive equations must be consistent with the general principles of

continuum mechanics. While impact of the constitution of the continuais discussed for
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all of the balance laws, emphasisis placed on the principle of conservation of linear
momentum. This principleisthe basis for the governing equations of the multifunctional
approach presented herein. This law states that the sum of the body forces together with
the sum of the contact forcesis equal to the change of the linear momentum of the
material. The law isused asthe basis for describing the motion in both solid mechanics

and fluid mechanics.

3.3.1. Solid Mechanics

The field of solid mechanics has traditionally been characterized by well-
formulated analysis of mechanical phenomena occurring in engineering systems,
combined with experiments that explore the basic concepts™. Herein, elasticity theory is
the primary field of solid mechanics discussed. In classical linear elasticity theory, it is
assumed that displacements and displacement gradients are sufficiently small such that
no distinction need be made between the Lagrangian and Eulerian descriptions. Itis
further assumed that the deformation processes are adiabatic (no heat loss or gain) and
isothermal (constant temperature). The conservation of mass states that the mass of a
deformed piece of material is the same as the mass of the undeformed material. In

elasticity, based on the small strain assumption, the density, p, in the deformed state may
be approximated by the density, p,, in the undeformed state, and the conservation of mass
isidenticaly satisfied.

Moreover, it is convenient to identify a material particle of the continuous body
by giving itsinitial coordinates. The position coordinates, X, y, z appearing in the partial
derivatives and the integrals in the foregoing derivatives are, however, the instantaneous

positions. For an elastic body in equilibrium, they represent the coordinates of a particle
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in its new position in the deformed body. When the strains and displacements are small,
it may be possible that the equilibrium conditions are satisfied in the undeformed
configuration of the body. The equilibrium differential equations are strictly applicable
and the stress tensor is strictly symmetric for the nonpolar case only when defined in the
Instantaneous deformed position. Even in small strain theory of elasticity, it is necessary
to take account of this attribute in applications where the instability may occur, asin the
buckling of acolumn or ashell. Asymmetry of the stress tensor also occurs when thereis
distributed couple stress.

Inideal elasticity, heat transfer is considered insignificant, and al of the input
work is assumed to be converted into internal energy in the form of recoverable stored
elastic strain energy, which can be recovered as work when the body is unloaded. In
general, however, the mgjor part of the input work into a deforming material is not
recoverable energy stored, but dissipated by the deformation process, causing an increase
in the body’s temperature and eventually being conducted away as heat. When thermal
effects are neglected, the energy balance equation may be written as

di _ 1 1
o o i P =i
p p

The internal energyi, in this case is purely mechanical and is called the strain energy

density (per unit mass)

da = Tijdgij

1
P
A material body issaid to be ideally elastic when the body recovers (under

isothermal conditions) its original form completely upon removal of the forces causing

deformation, and there is a one-to-one relationship between the state of stress and state of



87

strain. The generalized Hooke’s law relates the nine components of stress to the nine
components of strain

ij = Ciju €u
Symmetry of stress and strain reduces the number of material constants in the fourth-

order tensorCj;y , from 81 to 36. The existence of the strain energy density functional

further reduces the number of constants to 21. The existence of three mutually
orthogonal planes of symmetry reduces the number of constants to nine. Isotropy reduces
the number of constants to two.

For this special case, Hooke’s law reduces to

aij =|A%jdn + Gk + 319k lew (3.5)
where
_~_ E . _ VE
=G0y - T nviea)

Fori=j=1, the second and third terms of Eq. (3.5) are nonzé&rd.indi=1. Thus,
Oy1 = Ae+2ueyy
wheree= &1 + £x + £33. Fori=1 andj=2, the second term of Eq. (3.5) is nonzero if
k=1 andl=2 and the third term is nonzerck#2 andli=1. Thus,
O12 = M€ + UEY = 2[UEq;.
Similarly, other components of stress may be defined.

Noting that the linear strain-displacement relationship is given by

ij :%(Ui,j +Uj,i)
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One method of solution of the problems of elasticity is to eliminate the stress components
in the equilibrium equations given in indicial notation as

aij,j + plo -v)=0,
and using Hooke’s law to express the strain components in terms of the displacements.
Eq. (3.5) may be written, with no loss of generality, as

gij = A& jj + 2ue;
Solving the boundary-value problem involving 15 equations for 15 unknowns is a
formidable task. There are several ways of formulating the problem in terms of fewer
unknowns and fewer equations. The most straightforward method is to obtain the
stresses in terms of displacement gradients, and then substitute into the equilibrium
equations to obtain three second-order partial differential equations for the three
displacement components. Therefore, in terms of displacements,

gy = My 8 +plui j +uj)

and

vi = _o%
i =l =—-
ot2

Substituting these expressions into the equilibrium equation yields
Auy 3 + i gy +uj i )+ ploy ) =0
or
Aup i+l +ug )+ plb -6 ) =0
Noting thatl is a dummy index in the term;;. The equation may be written as

Auj i+ lai i +uj i )+ plb - ;) =0
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This leads to the field equations of Navier
(A +puj i+ + plb - 0;)=0
or
p0?u; +(A+ puj i+ plbr -6 ) =0 (3.6)

The conditions for the static equilibrium of an elastic body are described by an elliptic

system of nine partial differential equations for the displacements and stresses.

3.3.2. Fluid Mechanics

Fluids whose constitution is described by linear constitutive relations are called
Newtonian fluids. The subject of Newtonian fluidsis generally referred to asfluid
mechanics, which encompasses widely diverse topics including, but not limited to,
motion of airplanes and missiles through the atmosphere, the flow of liquids and gases
through ducts, and the transfer of heat and mass by fluid motion. The constitutive
equations for these fluids are given by

oij = —PJjj; +Ciji Dy
where P is the thermodynamic pressure and Dy are the components of the rate of

deformation tensor
Dy :%(Vk,l +V|,k)
For isotropic fluids, the last term in the constitutive equations may be written as
Ciji D = ADy 9jj + 21D
or
Cij D = A|dij0u + 10k + 313k )|Dw

Therefore,
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—P3;j + |60 + 1Bk + 31k P

and by evaluating the Kronecka delta parameters,

0ij =—PJj + ADyJjj + 2D (3.7)
Thisisthe Navier-Poisson law for a Newtonian fluid.

Asin linear elasticity, substituting the constitutive equation into the equation of
motion yields
=P Gij + AV i & + i jj +Vii )+ o =) =0
expanding gives
=P +(A+puvj i +mvi g + ol -v)=0
or
o = =Py + A+ pvy i+ g+ b

or in vector form

pfj—\t’ ==0P+ (A + )00 W)+ uD?v + pb

Using the Stokes condition, A = —% U , the equations reduce to the Navier-Stokes

equations and are given by

i =—P; +%Vj,ji v i+ b (38)
or
p%:—DP+%D(D V) + p0?v + pb (3.9)

In this form, the difference between the Navier equations of solid mechanics, Eq. (3.6)

and the Navier-Stokes equations of fluid mechanics, Eq. (3.8) or (3.9), can be readily
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considered. In Navier-Stokes equations, there is not only an additional pressure term but
also the equations are nonlinear; this can be seen by examining the acceleration,

= C:jlt' = aaltl +V; jVj, and from the products of the density, p, and the acceleration, v,

present in the equation. Additional nonlinearities are evident in the continuity equation
given by v, =0 (ON=0). Inthelinear theory of elasticity, this situation does not occur

2

since v; = 6_; and p istaken as aconstant. The Navier-Stokes equations together with
ot

the continuity equation form a complete set of four equations and four unknowns: the
pressure, P, and the three velocity components, V.

For steady and low-speed flow of an incompressible fluid (OM=D«=0), for
constant p and by making use of the divergence-free condition in Eq. (3.8) or (3.9), the
governing equations take the form

Dy =0
= Pj+ v jj + o0 =0
However, these equations, often referred to as Stokes equations, may be written for two-
dimensionsin the most general form without using the divergence-free condition to
simplify the equations. In so doing, the physical form of the natural boundary conditions
ispreserved. The form of these equationsis given by

0 (3.10)
aXl aXZ
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Fluids often behave as though they are inviscid or frictionless. Therefore, itis
useful to investigate the dynamics of an ideal fluid that isincompressible and has zero
viscosity. For frictionless flow of an incompressible fluid, the equations, called Euler’s
equations, may be obtained from the general Navier-Stokes equations. Since in a
frictionless flow, there can be no shear stress present and the normal stress is the negative

of the thermodynamic pressure, the equations of motion are

P = —Pj + by
or
ov
—=-0P+
,0at Jo,8)

For a general fluid, the charactery, elliptic, hyperbolic, or parabolic) of these
equations of motion is determined by the sign of the discriminant. The Navier-Stokes
system of equations, in general, is considered as mixed elliptic, parabolic and hyperbolic
equations. The system of time-dependent Navier-Stokes equations is essentially
parabolic in time and space, although the continuity equation has a hyperbolic structure.
Therefore, they are considered a parabolic hyperbolic system. For the same reason, the
steady-state form of the Navier-Stokes equations leads to elliptic-hyperbolic properties.

In addition, the classification of the differential equation changes with the flow
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characteristics (i.e., subsonic, supersonic, or transonic), which may create great
difficultiesin solution where part of the flow is supersonic and part of it is subsonic.

3.4. SINGLE-DOMAIN FORMULATION

Asin the scalar-field problem, methodology for the vector-field problemis
presented formulating the general method of weighted residuals for a single domain.

Consider the equilibrium equation governing the motion, u, of a continuum

ov
+00 = p—
Jo8 P

or inindicial notation

Uij,j +,0(b| —\'/i):O in Q for i,j =123 (3.11)

inadomain, Q, bounded by I". In thiswork, the equilibrium equations of Eqg. (3.11)
describe the motion of athree-dimensional continuum. Hence, theindices, i and j range
from the value of unity to three (i.e., i,j = 1,2,3). Thisrange will apply throughout this

development unless otherwise specified. In general, the boundary, I', can have mixed
boundary conditions with the primary variables, u, prescribed on " and the secondary

variable, the traction, t, prescribed on the remaining part of the boundary, r° Insolid
mechanics, the six stress components will be some general functions of the components
of the generalized displacement

uT =[u v w Oy 6y 6,

where u, v, and w are translational components and 6y, ¢y and 9, are rotational
components. In fluid mechanics, the stress components will be functions of the velocity

vector

ut =f vo v,
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which has similar components to those of the displacement vector. Thus, Eg. (3.11) can
be considered as a general equation of the form of A(u) =0.

The method of weighted residualsis applied to the vector-field problem in this
chapter in the same way as for the scalar-field problem of Chapter 1I. Hence, an
approximate solution, U, isused in expressing oj;j through the use of stress-strain and
strain-displacement (or stress-rate of strain) relations, then the differential equation, Eq.
(3.11), will no longer be satisfied, and this lack of equality is a measure of the departure
of U from the exact solution. The lack of equality is called theresidual, R, and iswritten
as

R =0jj,j +p(by—-v;) 20 forij =1,2,3.

Theresidual is orthogonalized by a set of weight functions, ®; and may be written as

[R®;dQ = I(Uij,j +p(by —v;))d; dQ =0 (3.12)
Q Q

n
where the approximate solution isgiven by u = W + Y amWn - Asdefined before, the
m=1

functions, ¥, aretria functions, and a_ are arbitrary coefficients. Thetria functions
satisfy the homogeneous part of the essential boundary conditions, while ¥ satisfies the
nonhomogeneous part. Using the general weighted residual form outlined in Chapter |1,

[PA(T)dQ + f®B(T)dr =0.
Q r

where the residual in the satisfaction of the boundary conditions is orthogonalized by a
secondary weight function, ® . For the system at hand, a vector quantity is sought and

the differential equation is a simultaneous system of equations. Here,
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A(u) =0jj,j + p(by —vj) =0, and the essential and natural boundary conditions are
represented by

Bi(u)=u-u=0oru-05;=0 onrP
and

Bo(u)=t-t=0ort-f=0 onTl*,
respectively. Therefore, considering the approximate solution, U, we may write the
genera integral form of the differential equation governing the continuum motion as

Iq’i(aij,j + p(b _Vi))dQ"' [P (-G )dr P+ [Di,(t -f)dr®=0 (313
Q rP rs

Note that the approximate solution may be selected to satisfy the essential and the natural
boundary conditions and thus the boundary integral equationsin Eq. (3.13) areidentically

zero. Inthisformulation, we will presume that the essential boundary conditions, i.e.,
U-u=0or -0 =0 onrlP
are automatically satisfied by the choice of the function, u. Therefore, Eq. (3.13) is

rewritten as

Iq’i(o’ij,j + ok v ))dQ+ [®i(t -§)drs=0 (3.14)
Q rs

where ®;, = ®;

In the formulation herein, the order of differentiation on the stress term in the
integral equation, EQ. (3.14), isreduced to obtain the weak formulation. Recognizing that
the stress components are functions of the primary variable, u, which is approximated by
u. For simplicity, the subsequent development is presented in terms of u. Application

of the divergence theorem to Eq. (3.14) yields
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= JOi P d9+f(0unj)¢i dr +[ (b =¥ )®; dQ + [(t ~§)P;dr® =0. (3.15)
Q r Q rS
Note that the domain boundary is presumed to consist of boundaries on which the

primary variable is specified and boundaries on which the secondary variable is specified,
and I =T P +T 3. Therefore, the boundary integral on I, may be expressed as

f(aij“j)q’i dr = I(aijnj)q)i dr P+ J’(Jijnj)dbi drs.
r re rs

In the method of weighted residuals, the weight functions, @, satisfy the homogeneous

boundary conditions for the primary variable, and thus, ®=0 on ", Therefore, the

boundary integral on " isident cally zero and Eq. (3.15) may be rewritten as

~ i ®inj A+ I(Uijnj)q’i dre+ [ —v)®; dQ+ [(t ~§)®idre=o0.
Q rs Q rs

Since the weight functions, ® and @, are arbitrary, they may be chosen, without |oss of
generality, such that, ® = -®, and using the Cauchy formula, t; = g; inj,
= [0 @i, dQ + [ p(by -V )®; dQ + [f; ®;dr® =0 (3.16)
Q Q rs
or

JOi®i,j dQ = [p(V; ~b)®; dQ + [f; Pidr®.
Q Q rS

The integral form of Eq. (3.16) is given for agenera continuum. If the weight functions,

®; , are selected to be virtual displacements or velocities, au; , then Eq. (3.16) is given by

_Iaijd'li’j dQ+J',0(bi -V )y dQ + J’ﬂ d,lidrs =0. (3.17)
Q Q rs

Theterm du;,j can be expanded to
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a5 = O, B ole + )
where g and ,; are symmetric and skew-symmetric tensors, respectively. These tensors

are given by
ij =%(Ui,j ruji) ad w =%(Ui,j -uj)

In solid mechanics, these tensors represent the linear infinitesimal strain-displacement
and linear infinitesimal rotation tensors, respectively. In fluid mechanics, the tensors
represent the linear infinitesimal strain-rate of deformation and vorticity tensors,

respectively. Noting that S} isasymmetric tensor and that the product of a symmetric

tensor and a skew-symmetric tensor is zero, EQ. (3.17) may be rewritten as

_Iaij 55” dQ+J',0(b| —-V;)dy; dQ + J’f' d]idrs =0 (3.18)
Q Q rs

Eq. (3.18) represents the principle of virtual work where the first integral term represents
the internal virtual work, the second and third terms represents the external virtual work
due to body forces, inertial forces and surface tractions.

In the virtual work development, the term virtual work isloosely used for fluid
mechani cs and has been included here to highlight the similarities between solid and fluid
mechanics. Variational techniques for perfect fluids, non-Newtonian fluids and general
Navier-Stokes equations are discussed in Finlayson’. In thiswork, concentration is given
to the general weighted residual equations, Eg. (3.16), and these equations form the basis
of finite element approximations, which will be presented briefly in a subsequent section.

Thus far, the single domain formulation has been developed for the vector-field

problem focussing on the momentum equation, which is applicable to general continua.
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However, the motion of afluid is governed by the conservation laws of mass, momenta,
and energy. In general, these equations consist of a set of coupled nonlinear, partial
differential equationsin terms of the velocity components, temperature, and pressure.
When the Reynolds number for the flow is very low, the nonlinear terms due to inertial
effects can be neglected, resulting in alinear boundary value problem. Such aflow is
called Stokes flow*! (see Eq. (3.10)). When temperature effects are not important, the
energy equations are uncoupled from the momentum (i.e., Navier-Stokes) equations.

Thus, for isothermal flows, only the Navier-Stokes, Eqg. (3.8), and continuity, Eq.
(3.2), need to be solved. Hence, an additional equation expressing the continuity
condition isincluded in the weighted residual formulation. In the interest of
completeness, the formulation herein is described using a Newtonian fluid. The laws
governing the flow of Newtonian fluids were reviewed in Section 3.3.2 in which the
equations were specialized to viscous fluids that are subject to the assumption of
incompressibility. Under these conditions, the weighted residual statement of the
equation of continuity, Eq. (3.3), isgiven by

fui ;®dQ =0 (3.19)

the weighted residual statements required to approximate the continuum motion. While
for solid mechanics, since the continuity condition, Eq. (3.3) and likewise Eq. (3.19) are
automatically satisfied, EQ. (3.16) isthe only weighted residual statement required to

approximate the continuum motion.
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3.5. MULTIPLE-DOMAIN FORMULATION

Asin the case of the scalar-field problem of Chapter 11, the domain of the problem
is subdivided into smaller subdomains. Consider the equilibrium equation governing the
motion, u, of acontinuum

gij,j P -vi)=0in Q for i, j=123 (3.20)
in the entire domain, Q, bounded by I'. For simplicity, the multiple-domain formulation
Is presented for only two subdomains, Q; and Q, (see Figure 2.3) with asingle interface
boundary. Independent approximations and weight functions are assumed in each of the

subdomains and continuity conditions are used to provide for a continuous solution

across the domain. Thus, Eq. (3.20) is satisfied in each subdomain, independently, i.e.,

o + o0 —vhy=0in o, ad ol + o - =0in q,

subject to the boundary conditions on the subdomain boundaries, I'; and I',, and the

superscripted numbers enclosed by parentheses denote the subdomain. In general, the

boundaries can have mixed boundary conditions with the primary variable, u, prescribed

on " and the secondary variable, the traction, t, prescribed on . These boundary

conditions may be written as
uy—u; =0 or ui(l) —Ui(l) =0 on” and t-t;=0or ti(l) —t'i(l) =0 on T}
and

Up =T, =0 or ui(z) —Ui(z) =0 onT}) and t-t,=0or ti(z) —t'i(z) =0 onT3;.
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For the multiple domain case, the boundary at the interface between the two subdomains
isdenoted "', Hence, the subdomain boundaries, 'y, are presumed to include three
boundary types, and these boundaries are given by

Me=rP+rg+r, for k=12
Here, the boundary on the subdomain common boundary is assumed to represent the

same geometry and thus, Fli =r'. Theresidual for each domain is orthogonalized by a
set of weight functions, CDi(k) and iswritten as

/ (‘7 i(Jl,)j + oy (00 ‘Vi(l)))q’i(l) dQ; =0
Q

and

2 + oy 61 ~v?h )o@ a2, =0
Qy

n n
where the approximate solution isgiven by U = 5 aj,\Wyy, and Up = Y apyWor,. The
m=1 m=1

functions, ¥, and ¥, ,are the trial functions, and a,. and a, are sets of arbitrary
coefficients. Using the general form outlined previoudly, (i.e.,

[®A(T)dQ + §®B(U)dr = 0), for each subdomain, one may write
Q r

jokalik)ao + fa®alEh)ar, =0 fork=12
Q Mk

Therefore, considering the approximate solutions, G(l) and G(Z) , the generd integral form

of the differential equation governing the motion for subdomain 1 is given by



101

J ‘Di(l)(a iﬂl,)j + P.L(Q(l) _Vi(l)))dQl +f Ei(%)(ai(l)'r‘i(l) )drlp

7] rlp
e (3.21)
+ [ BOFEU0)ars =0
rS
1
and for subdomain 2 as
2)| (2 2) _ (2 =(2)(~(2) (2
[oPlot + 0,0 —v?h)ag, + [ 3R GA-g@)arp
Q) rb
5 (3.22)
v sQ) (2)-t'i(2))dl’§ 0
>
Again, the essential boundary conditions, i.e.,
0-1,=0 or GY-g%=0 onrp
and
U,-Up =0 or Ui(z) —Ui(z) =0 onry}
areidentically satisfied by the choice of the functions, uj;and U,. Therefore, for
subdomain 1, Eqg. (3.21) is rewritten as
J'CDi(l) (ai(le)j + pl(bi(l) _\-,i(l)))dQl + J- Ei(l)(ti(l) _fi(l))drls =0 (3.23)

Q re
where ®) =& . similarly, for subdomain 2,

j0of?) + 20 i)} + B -(Pors =0 @29
Q2 rs

Whereﬁi(g) = 5-(2).



102

The order of differentiation on the primary variable in the integral equations, Eq.
(3.23) and (3.24), is reduced to obtain the weak formulation. Using the divergence

theorem Eq. (3.23) can be rewritten, for subdomain 1, as

- ool a0, + oWl )o@ ar; + 10,00 —v¥) ol gy
Q0 1 Q

v [ o0 -®)ars =0 (325)

and similarly, for subdomain 2,
- [ o aiﬁz) dQ, + f(aigz)ngz))cbi(z) drp+ [ p>6@ vy 0@ ga,
Q

2 M2 Q»
v [ 3@ -¢@)ars =0 (3.26)

Recall that the boundary I is presumed to consist of boundaries on which the primary

variable is specified and of boundaries on which the secondary variable is specified, and

boundaries at the subdomain interface, and for subdomain k, ', = rf + rkS +r!,

Therefore, the boundary integral on 'y may be expressed as

rf(“igk)”gk))q’i(k) dry = Ip (Uigk)”gk))q’i(k) dre + (Uigk)”gk))q’i(k) dry
k r re

+ (aigk)ngk))dbi(k) dr'
ri

Noting that, d)‘i( =0on I’kp. Therefore, the boundary integral on I’kIO isidentically zero,

and Eq. (3.25) can be rewritten, for subdomain 1, as
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S Q
Fl 1

Since the weight functions, CDi(l) and Ei(l) , are arbitrary, they may chosen such that

Ei(l) = <D(1) and using the Cauchy formula, t() I(Jl) 51),

- ool ao, + [ (oWn®)oBar' + [ {Wol drs
Q

r! rs

(3.27)
+ 1o - oM ao, =0
Q
Similarly, for subdomain, Q,,
- olfan,+ bPlofar + o

Q) r! rs

(3.28)

In the two-approximation formulation for the scalar-field problem, the two
primary field variables, u; and u, are approximated independently, and continuity
reguirements between these two fields are satisfied at the subdomain interface boundary.
The three-approximation approach, which makes use of athird approximation field for
the primary variables along the subdomain interface boundary in addition to the
approximations given along the boundary of the subdomains, is most general. Hence,
only the three-approximation approach will be discussed for the vector-field problem.

This primary variable, v, along the interface is assumed to be independent of the primary
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variables, u; and uy, of the subdomains to which it is attached. These independent

approximations give rise to continuity requirements along the interface of the form
v—-u; =0 orvi—ui(l)zo on T
V-u, =0 or vi—ui(z):o on T

These constraints can be satisfied in the integral sense as

falv-u)ar' =0 or (A0 -u®)ar' =0 on ! (3.29)
M M

fralv-up)ar' =0 or (Al ~y@)ar'=0 on T (3.30)
M M

where /\i(l) and Ai(z) are Lagrange multipliers or weight functions in the form of the

secondary variable along the interface. An additional continuity requirement in terms of

the secondary variable along the common subdomain boundary isrequired. These
secondary variables, fi(l) and fi(z), are assumed to be independent of each other. These

independent approximations give rise to continuity requirements along the interface of

the form
(W+t@=0 on r!
These constraints can be satisfied in the integral sense as

(A9 +i@)ar =0 on ! (3.31)
rl

where ji IsaLagrange multiplier or weight function of the form of the primary variable

along the interface. Combining Egs. (3.27) and (3.28) for the entire domain, including
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the three continuity integrals at the interdomain boundary, Egs. (3.29), (3.30), and (3.31),

and recognizing that fi(l) = (aigl)ngl)) and t( ) = ( Sz)ngz)) yields

- g‘zrl(¢i(’1}0i(11) )dQl— ( 20 )sz _[t W gr! - rft )o@ gr!
+ 0 —ui(l))dl’ v (O -l ))dl' v A9 +£@)ar
| ke e

:
(3.32)

= (o0 vy ol da; + gtPel ars +

J’pz (b(z) _\‘/,(2)) cp.(z) dQZ + j;t

In addition, for fluid mechanics, the continuity equation is given and satisfied

independently over each domain as

|(1}=0|n91 and uz) 0inQ,

The weighted residual statements over the domains are given by

Iui(}}&:i()dgl 0 and [uf 2)qa()leZ:o. (3.33)
Q1 Q3

Here, note that no integration by parts is used on the continuity equations, and no
relaxation of the differentiability on u can be accomplished since the resulting boundary

conditions would not be physical. Combining Egs. (3.33) yields

jui(,l}éi(l) dQ, + J’ui(,zj)&ni(z) dQ, =0. (3.34)
Qo

The integral form of Eq. (3.32) forms the basis of finite element approximations for solid
mechanics, and both Egs. (3.32) and (3.34) form the basis for fluid mechanics. These
finite element approximations as well as other approximations will be discussed in more

detail in the next section.



106

3.6. SPATIAL MODELING FOR MULTIPLE DOMAINS

Spatial modeling for multiple domains using the finite element and finite
difference methods for the approximation of the vector-field problem isoutlined in this
section. A brief overview of discretization methods is given followed by spatial
modeling for solid and fluid mechanics domains.

3.6.1. Overview of Discretization Methods

Finite e ement and finite difference discretization methods for the vector-field
problem are outlined in this subsection. For a more detailed discussion the reader should
consult the literature.

The finite element method

The finite element method for the vector-field problem is developed in the same
manner as for the scalar-field problem. In the vector-field problem, the dependent
variable in the integral equationsis avector of components. In general, the inplane
vector components (e.g., displacements parallel to the x and y axes) are approximated by
the same shape functions. For isoparametric elements, this approximation is the same as
that taken for the shape. For the elasticity problem, the consideration for the strain-
displacement relation, the Jacobian transformation, and the displacement gradient
interpolation results in a more complex (the product of three matrices) set of equations
than for the scalar field.

Thefinite difference method

The finite difference method isideal for solving the governing partial differential

equations of a continuum. It represents a variety of equations in engineering science;
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however, the method has not been used in solid mechanics to the same degree as the
finite element method™. The decline in the use of the finite difference method in solid
mechanicsis largely due to the limited flexibility of its trestment of boundary conditions.
Most finite difference developments avoid the general problem of boundary conditionsin
one of the following ways:. (1) a scalar problem, such as those of the previous chapter, is
solved as an example and the boundary conditions are incorporated in the analysis using
arguments based on symmetry of the independent variablesin the derivative
approximations or (2) an example is chosen with fixed boundaries to eliminate the
presence of fictitious points. The lack of an intuitive procedure for elimination of the
fictitious or external grid points introduced when a central difference operator is applied
to aboundary point is one cause of the deficiency in the method. For the vector-field
problem discussed herein, a 3x3 central difference template is used to evaluate the
momentum equation, Eq. (3.20). An approach for eliminating the fictitious points based
on physical argumentsiis presented in reference 43. The fictitious nodes are replaced by
boundary tractions using a set of constitutive equations and the primary variablesin the
continuum. These points can then be eliminated, and the boundary tractions are
introduced into the finite difference model. An alternative approach is to construct
special forms of the difference equations for grid points at or near the boundaries™.
These forms make use of forward or backward difference operators to express differential
forms. In general, standard forward or backward difference operators have higher-order
truncation error than the central difference operators used for the differential equation.
Hence, special forms using additional interior grid points are constructed such that the

operators have the same order of truncation error as those operators used for the
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differential equation. The latter approach is used in thiswork and will be discussed in
some detail in the discussions of the patch test application given in this chapter.

3.6.2. Overview of Single-Domain Spatial Modeling

For asingle domain, the finite element equations may be obtained by rewriting
and manipulating slightly Eq. (3.16) over an element domain as
[®i.j 0ij dRC - [®;p(by —v;)dQ® -~ [&;f drS =0 (3.35)
0e 0e e
where o, are the approximate stress fields produced by the stress-strain and strain-
displacement (or rate of deformation) relations and approximating the primary variable

over the element domain by u = Nu,.

Generadl finite element development

Using the Galerkin method, the weight function isgiven by @ = N. Substituting these
approximations into the integral equation given in Eq. (3.35) and writing in matrix form

yields

[oNTedQ® - [NTp(b-v)dR®- [NTtdrs =0 (3.36)
Qe Qe rse

whered isthe operator matrix defined, in general, by
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[0 0O O B
IR
0
oo — oo
o oy O
O o
00 0 —

0=0, 245)
= = oU
By 0Ox [
U 0 oUu
00 — —0O
0 0z dy[
(o 0 iD
Bz oxH

and the stress vector ¢ is given by

_ T
6—[011 Oy 033 012 023 013]

Generadl finite difference development

Recall that in the finite difference methods, derivatives are approximated by
difference expressions that transform the derivatives and consequently the partial
differential equation to algebraic expressions and equations, respectively. Upon
substitution of the approximation function into the differential equation, the equations can

be recast in weighted residual form by selecting ®; = 5(x— X, Y~ Vi ) Note that the

subscript i on the weight function is used to denote the subdomain, while the subscript i
on the coordinate values, x and y, is used to represent the point in the physical domain at
which the Dirac delta function is evaluated. This nomenclature is used throughout the
mathematical formulation presented here. The weighted form of the residual reducesto
the evaluation of the partial differential equations using the approximate solution
evaluated at the N selected mesh points

For asingle domain, asin the finite element method, the finite difference

eguations may be obtained by interrogating the weighted residual equations over an
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element domain where the element, e, surrounds grid point i (see Figure 2.5). The

approximate solution for the primary variable is given by

M
U= Y Npup or u=Nug
m=1

where M is the number of shape functions over the element. The weight function, @, is
given by the Dirac delta function, 5(x =X,Y Vi ) = 5(xi i ) Therefore, Eq. (3.35)

becomes

I5(Xi Yi)j oij dQ° - 15(Xi i )o(by —v;) dQ°

and upon making use of properties of the Dirac delta function,

Uij,j‘);;)}(} - plb (% yi) i (6 v )] =T (. vi ) = 0. (3.37)

This equation and the equations related to the finite difference formulation that follow are
evaluated at point (x;,y;) where i denotes a point in the physical domain, and no
summation isimplied over the x; terms. Egs. (3.36) and (3.37) are applicable to a general
continuum irrespective of its physical constitution. Discipline-specific constitutive
relations are considered at this point to continue with the finite element and finite
difference developments specific to solid and fluid mechanics. Each of these
developments will be discussed in turn.

Solid mechanics - finite el ement discretization

For solid mechanics, the constitutive relation relating stress and strain is given by

6 =E(s—¢qg)+og
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where the strain vector

e=len £ £33 2e1p 2653 26p3],
E isamatrix of material stiffnesses, and 6, and ¢, are initial stress and strain quantities,
respectively. The strain-displacement relation is given by
£ =0u =0Nug =Bug.
Implicit in the definition of B is the use of the Jacobian matrix to transform from
Cartesian coordinates to element natural coordinates used in the shape function

development. In addition, in solid mechanics, the acceleration of the continuum is given

2

by v=10-= a—; . Moreover, the second time derivative of the primary variable over the
ot

element domain is approximated by U = Niig. Substituting the stress-strain, strain-

displacement relations and the acceleration into Eq. (3.36) yields

HJ’BTEB dQe@e + HJ’pNTN dgegje = [B'EzodQ®~ [BToqdQ°
0

Ene Ene 0 Q¢ Q¢
(3.38)
_ e
+ [NTpbdQ®+ [NTTdr®
Qe rse

or
KeUeg +mglig =fg

where K. is the element stiffness matrix, me is the element mass matrix, ue is the vector

containing the generalized primary variables, U isthe vector containing the second time

derivative of the generalized primary variables, and f is the element force vector

containing the generalized secondary variables. Note that the acceleration term can be

considered as an inertial force and included as part of the element force vector.
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Assembling these element equations over the entire domain and enforcing continuity of

the primary variable at the interelement boundaries yields the system of equations given

by
Mi+Ku=F
nelem T nelem T )
where K = 'y [B'EBdQ®; M= 5 [poN'NdQ®; uistheassembly of al of the
1 ok 1 Q¢

nodal degrees of freedom associated with the primary variables; U isthe assembly of al
of the nodal degrees of freedom associated with time derivative of the primary variables,
nnodes T e T e T e Tr s
andF= 3% [B EgodQ"~ [B'egdQ™+ [N p(b-u)dQ"+ [N tdl
1 Q¢ e Q¢ I_Se

Solid mechanics - finite difference discretization

For solid mechanics, making use of the stress-strain and strain-displacement
relations, and substitution of the primary variable approximationsinto Eq. (3.37), the

element equation becomes

L B 0 _
9'EB x=x e+ [PN|x=x [llg = 0" Eeqlx=x —9" 6glx=x + pb(x,yi)+T(%.v)
H y=yyH O vy=v[O y=Y, y=Y,

For the second derivative difference approximation, the number of shape functions, M=3
andug ={uig U Ui},
Therefore, asin the finite element method the difference equations may be written in the
form

Mglie +Kele =fg
where ke and me are the finite difference “element mass and stiffness” matticés the

vector of generalized primary variablég, is the vector of time derivatives of the
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generdized primary variables, and f. is the finite difference generalized force vector.

Assembling the element equations yields

Mi+Ku=F
where
Nelem U Nelem ] [l
T N .
K=y B EBl,., d M= Y [pN[x=x 7 uand ligcontainall of the nodal
I y=y; J T 0O vy=v0O

degrees of freedom associated with the primary variables and its time derivative, and
Nnodes _ U
F= 3 %TESO|X=Xi -9 glx=x + pb(x,¥i)+ (%, v )0
1 0O Y=Yi Y=Yi N

Fluid mechanics- finite element discretization

For fluid mechanics, the constitutive relation relating stress and the rate of
deformation, Eq. (3.7), for an incompressible fluid is given by
c=1-Pl
where the viscous stress vector, T, is given by
T= [T11 T2 T33 T12 I3 T13]T ’
u denotes the velocity vector, P isthe pressure, and | isthe identity matrix. The viscous
stressisgiven by t = 2uD where i isthe shear viscosity of the fluid and D is the rate of

deformation tensor whose components are given by
1
Dij =5(ui,j +uj,) (3.39)

Hence, the rate of deformation is related to the deformation and may be expressed in the

same form as the strain-displacement relation as
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D :afu :afNUe :Bfue
where 0¢ isadifferential operator defined by 0y =T0 and Bf =TAN. The

transformation matrix, T, isused to introduce the scalar multiple of the shear components

of the rate of deformation (see Eq. (3.39)) and is symbolically defined as

00
0

NP o
i

O ONFFO O O
o

O O O O Fr o
O O O Fr OO
oNkr O O OO
N[ o
I:II:II:II:II:IIIFIEII:II:I
1l

_|
1
wis[wiuiriu}={riale

In addition, in fluid mechanics, the acceleration of the continuum is given by

V= 2—\: = g—\t/ + v v . Moreover, the time derivative of the primary variable over the

element domain is approximated by v =0 =Nug and P = NPe. Substituting the
constitutive and rate of deformation relations along with the acceleration into Eqg. (3.36)

and rearranging yields

EJ’pNTNdQnge+EJ’pNT(Nu NdQe@e J'Z,uB By dQe@ue
0 0 0

me me
(3.40)
—EJ’BTNI dQeEDez [NTpbdae+ [NTTars
I:t)e |:| Qe rse

or
Mellg +Celg +Kelg —QePe =f¢
where the element matrices k. and m. and the element force vector, f., are of similar form

as those obtained in the solid mechanics development, ce, isanonlinear element matrix
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resulting from the total derivative of the velocity, ue is the vector containing the
generdized primary variables, Pe is the vector containing the element pressure variables,

and U isthe vector containing the time derivative of the generalized primary variables.

Hence, in the fluid mechanics development, the rate of change of the velocity - u is
analogous to the second derivative with respect to time of the displacement (U in the
solid mechanics development). Moreover, thefirst integral term of Eq. (3.40) can be
thought of as an inertial force. Assembling these element equations over the entire
domain and enforcing continuity of the primary variable at the interelement boundaries

yields the system of equations given by

Mu+C(u)u+Ku-QP=F (3.41)
nelem T nelem T
where K = 'y [24B'BfdQ®;M = 5 [oN'NdQ®;
1 Qe 1 Qe
nelem T nelem To )
C=3 [PN (NugNdQ®; Q=3 [B'NI dQ®; u isthe assembled vector
1 Q¢ 1 Q¢

of all nodal degrees of freedom associated with the primary variables; P is the assembled
vector of all nodal degrees of freedom associated with the pressure, u isthe assembled
vector of all nodal degrees of freedom associated with the time derivative of the primary

nnodes

vaicblesand F= 5 [NTpbdQ®+ [NTEdrs".
1

Qe r Se
In addition to the element equations for momentum, Eq. (3.40), the element
equations for continuity must also be developed from Eq. (3.19). Using the Galerkin

method, the weight function corresponding to the continuity equation is given by d=N.
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Substituting the approximation for the weight function and the primary variable into Eq.
(3.19) and writing the equation over the element yields
BTNdQe@ =0
0J e
Mok 0
or
q -(Ia— Ue =0
Assembling these element equations yields

-Q'u=0 (3.42)
Equations (3.41) and (3.42) can be combined into one system of equations and written in
matrix form as

M 000, [CW)+K -QULY_[FL ca3)
0 0 = -
B oftPH H-o o HPH BH

or in amore symbolic form as

MU+KU=F
where U={u; u, uj P}T. Hence, the equations for fluid mechanics may be

expressed in the same form as the equations for solid mechanics. Note that the system of
equations, Eq. (3.43), isreferred to as the primitive-variable model, the pressure-velocity
model, or the mixed model®. This mixed model resultsin a system that is nonpositive
definite because of the zeros appearing on the main diagonal. 1n addition, the
interpolation used for the pressure should be one order less than those that appear for the
velocity field*. Furthermore, the pressure approximation may be discontinuous across
interelement boundaries. In addition, because different orders of approximation are

typically used for the velocity and pressure fields, the pressure may not appear at every
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node of an element, which can complicate the assembly process. An alternative

%241 circumvents this situation by

formulation, called the penalty function formulation
treating the continuity equation as a constraint among the velocity components. This
formulation is developed here for finite element discretization.

From the weak formin Eq. (3.16), afunctional describing the continuum motion
can be obtained. Thelinear and bilinear forms of the functional over an e ement when

the two-dimensional velocity field, (v, v2), satisfies the continuity constraint, Eq. (3.19),
IS given by
e e, s®
L(®q,®5)= [p(o —vy)d; dQ° + I,O(bz V2)®o dQ™ + [ty ®pdl
Qe I_Se

€
+ Itz dbzdl'
rs°

e Haxl 6x1 aXZ aXZ

+u J_ FPCD1+OCD2 |:H:|6V1 +6V2 Qe
Qe Haxz 0Xq MPX2 0%

B((®1, ). (. v2))= 1t | o P®P1 0v1 , 0P3 OV %Qe
Q

Note that the pressure does not appear explicitly in the bilinear form. The quadratic

functional is given by

1
|(V1,V2)——B vi,V2), (v, Vo)) - L(v,vz)

B i

(3.44)
e
= [p(by —V1)v dQ® = [p(by —Vp)vp dQ® = [t wydr®
Q° Q° rs®
= Itz VzdrS
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The equations governing the flow of viscous incompressible fluids, Egs. (3.16), and

(3.19), are equivalent to minimizing of Eq. (3.44) subject to the constraint

In the penalty function method, the constrained problem is reformulated as an

unconstrained problem by minimizing the modified functional

mlv2)= 1 (.v2) +2 e flola,voPJaa®
Qe

where the penalty parameter, Ve, can be chosen for each element. The necessary

conditions for the minimum of Iis &y, =0 ord,, Iy =0 and J,, 1, =0.

where dv; and dv, denote the first variation with respect to the velocity components, v,

and v,, respectively. Therefore,

Oy Im =0y ! tVe IG(Vl'VZ)Jvle(Vl’VZ)dQe
Qe

- %Z,U 65\/1 6V1 + 05/1 HaVl + 6v2 ¢
0e 0 6x1 6x1 6x2 Esz aXl

(3.45)

e

- I,O(bl - \71)5/1 dQ® - Itldlldr S
Qe r Se

e I 65\/1 l:le + 6V2 %Q -0
0e aXl bel 6x2

and
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Oy, Im =0y, | +Ve IG(Vl'VZ)JVZG(Vl'VZ)dQe
Qe

y ) 000, 0vy | 08 (v v [ e
0e 0 6x2 6x2 6x1 EbXZ 6x1

(3.46)

e

- I,O(bz —\72)5\/2 dQe - Itzd/zdrs
Qe I_Se

e I 65/2 l:le + 6V2 %Q -0
0e 6x2 bel 6x2

These two statements, Egs. (3.45) and (3.46), provide the weak forms for the penalty
finite element model. While, the pressure does not appear in the weak forms explicitly, it
Is part of the boundary tractions, t; and t,. The penalty finite element model is obtained
using Egs. (3.45) and (3.46), the approximations for the primary variable and the time
rate of change of the primary variable, v =u = Nug and v = U = Nuy, respectively, and
by choosing dv; = dvo = N. Assembling these element equations over the entire domain
and enforcing continuity of the primary variable at the interelement boundaries yields the

system of equations given by

Mu+C(uu+Ku+Su=F (3.47)
nelem T e nelem T o
where K =y [2uB BfdQ™; M= % JPN NdQ*~ ;
1 Qe 1 Qe
nelem T nelem T _
C=3 [PN (Nug)NdQ®; s='5 Y [Ny, Ny, dQ; uisthe assembled
1 Qe 1 Qe

vector of all nodal degrees of freedom associated with the primary variables; u isthe

assembled vector of all nodal degrees of freedom associated with the time derivative of
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nnodes

the primary variables, F = Z N T oo dQ® + _[N TEdrs® , and N, denotes
Q¢ rs

differentiation with respect to the independent variable, x;, i=1, 2.
Eq. (3.47) may be represented in amore symbolic form as
MU+KU=F
where K = C(u)u+K +S. Note that this penalty finite element method yields a system

of equations in terms of the primary variables, u, and does not include the pressures, P.

The pressures may be obtained from the computed velocity field by

Py = }’G(Vly'VZy) EL ey f

Eaxl 6x1 H
where (Vly’v2y ) Is the finite element solution of Eq. (3.47).

Fluid mechanics - finite difference discretization

For fluid mechanics, making use of the stress-rate of deformation constitutive
relation, and substitution of the primary variable approximations along with the

acceleration into Eq. (3.37), the element equation becomes

O

(]
 Pe

WN|X X We"’ W(N“e)N|X X We
O y=viQd y=Yi

= po(x,yi)+1 (>q,yi)

(|

Also, considering continuity,

O

.

The difference equations may be written in the form

0
, Wig=0
i H

Melg +Celle +Kele —(ePe =f¢
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and

Qele =0
where ke, Ce, e, and Mg are finite difference “element” matricas, is the vector of
generalized primary variablesiy is the vector of time derivatives of the generalized

primary variables, anfi is the finite difference generalized force vector. Assembling the

element equations yields

Mu+Clu)u+Ku-QP=F (3.48)
—QTu=0 (3.49)
where
nelem ] 0 nelem 0 nelem[] 0
K='% D, M = Z PN[x=x 0, C= ¥ g)(Nue)N|x:xi 0
1 _y. B 1 y=¥i O 1 0 y=Yi [
nelemU] O

Q= z D N‘ [, u and ugare vectors that contain all nodal degrees of freedom

B YY|E

associated with the primary variables and its time derivative, and

nnod
ﬁ)b xl,yI +t x,,yI ] Asin the finite element method, Eq. (3.48) and (3.49)

can be combined into one system of equations and written in matrix form as

DM OO0 [C(u)+K -QOuO C[FO

B ofPH H-o7 o HPH BE

or in amore symbolic form as

where U={u; u, uz P}
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Asin the case for the scalar-field formulation, the shape functions for a nine-node
quadrilateral finite element are used (see Table 2.1). The shape function at point i-1,j-1is

given by

Nitja =5 0-8t-n)- 2= a-n)- 20 fp-n)e 2o-e2fi-n?).

Similarly,

N|+11—1—£:|-"'<r 1 ’7 (1 Xl ’7 1+f@ )"‘%@_fle_ﬂz)’

Nea o = 20 8 n) -2 v Do) L0-e2ae n) o 222 fen?)

and

N_1,+1—11 &)L+n)- (1 )(1+,7)_%(1_5)(1_,72)+%(1-52X1—/72),

Then, for a square element

Nicaja_ 1 ONija 1 %—if—ifﬂfn% L
oxdy (he)2 oéon (he)2@]4 2° 2 £=0.7=0H 4(he)2
:0 Ni+1,j+1
ox?
92Ny i 0%Nisy j- .
xdy (he) aéon (he) D4 27 2 r=0,7=0 4(he)
:02Ni—1,j+1
ox?

(3.50)

The standard finite difference representation follows by direct substitution of Egs. (3.50)

for the cross-derivative terms of the momentum equation along with Egs. (2.40) for the
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second-order terms. As noted previously, asingle spatial modeling approach (i.e., the
finite element method or the finite difference method) is used for the single-domain
formulation. While for multiple domains, homogeneous approaches and heterogeneous
approaches are available. That is, the same method in each domain (homogeneous
approach) or different methods in different domains (heterogeneous approach) are
possible combinations of spatial modeling.

3.6.3. Multiple-Domain Modeling - Homogeneous Discretization

These homogeneous approaches make use of a single discretization method
among all subdomains in which the domain is subdivided. The focus of thiswork ison
the finite element and the finite difference methods as the spatial discretization methods.
For homogeneous domain discretization developed herein, Eq. (3.32) is used to provide
the mathematical basis for the three-approximation formulation. The generalized element
equations, for both the finite element and finite difference methods, may be obtained by

rewriting Eq. (3.32) over an element domain as

i, 9]
e
Q Q35

| (qn-(l)-a-(l))de— J’( I(Zj)a( )dQe It W) gr® - J’t )o@ gr'®
e
* Vi(l)("i ‘Ui(l))drle * I/‘i(z)("i ~uf? ))drl + [ (fi(l) +fi(2))d'_le
i rl° r'e
= jpl(bi() W) old dog + ft W grs°
QF s

(3.51)

+ I’OZ (bi(z) _\',_(2)) ( ) dQe ft—l(z)q)l(z) drge

i
Q¢ K=
2 I'2

Note that in the potential energy formulation®, the continuity of the secondary variables

was satisfied through the subsidiary conditions obtained through the minimization of the
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potential energy. In thisweighted residual formulation, the continuity of the secondary

variablesis satisfied in aweighted residual sense and the Lagrange multipliers, /\i(k)and

~

Aj , are represented by weight functionsin the form of the secondary and primary
variables, respectively.

The form of the equations for the finite element and finite difference applications
differs by the form of the element shape functions and the approximation selected for the
weight functions, ®. The formulation for solid mechanics and fluid mechanics differs by
the constitutive relations. For the generalized element expansion of subdomain i, the
independent approximations for the element generalized primary variables, (i.e.,
displacements or velocities), interface secondary variables (i.e., tractions or fluxes), the
weight functions associated with the secondary and primary variables, and the interface
variables, are, respectively

ug =Ny, ; Tk =Rgax ; b =Ry; A=T and v=Tu, (3.52)
Both the solid and fluid mechanics derivations may be developed from Eq. (3.51), given
the approximations of Eq. (3.52), the appropriate constitutive relation, and the choice of
weight function. Each derivation is presented in turn in the following work.

Solid M echanics- finite element discretization

Substituting the approximations of Eq. (3.52) into Eqg. (3.51) along with the

constitutive equations and using the Galerkin method in which @ =N, yields
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0 0O 0O O 0 0O O 0
T T T : T :
BIE®1d0f g + B3B8, A0S e, + (f NTN1 dOF g + 1 NI, 03t

Ry 5 5 B g5 &
0 0 0O 0 0O 0 0O 0
O NTRydr " Hy - B NIR o By + B TRy dr " Hy + B TTR ar e +

1€ 1€ 1€ 1€
) B & B & B & =
0 0 O 0 O 0 O 0
[l T | _Q T | O T | _ G T |
DJ’eRleI' o DIeRlNldI' Sjel+DJ’eRszl' o DfeR2N2dr e,
b 5 & g & B & B
= [B{Ex§) dOf - [B]6l’ dof + [N] pbydQf + J’NleldI’f‘e
Q7 Q7 Q7 rlse
_ e
+ [BIEx{) dQ§ - [Bleld dQ§+ [N]obodQS + [Nt drS
S S S ¥
(3.53)
where By =N for k=1,2 and for the k™ subdomain, the element matrices are
— T e. — T e
kek— IBkEkBde ,mek— J’,DNkako
Qf QF
k k
Kp, == [RKNgdr',
r©
(3.54)

and

fo = [BRER(O dOf - [BIol) df + [NF pbydQf + [NFEy dre.

e e e (S
Q Q Q r
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Solid Mechanics- finite difference discretization

Substituting the approximations of Eq. (3.52) into Eqg. (3.51) along with the

constitutive equations and using the Dirac delta function as the weight function,
Dy = o(x=x,y=yi)=3(x. i),

O

0O 0 O
wTElaNl X=X mel + wTEZONZ X=X EU + DON1|X % @J + WN2|X % @Jez
yv=vH H —H 20 ot O Tyl
O 0O O O
0 0O 0O O T r . e
By -y e ST e e
=Ji =Y e e
b 8 &' B
O 0 O 0
g T | 0 T |
+ o RITAr" iy - fRINydr' g
&' g &° g
U 0 0
e e
+gRITAr! %,—@R}der' e,
F1° g ' H
_aTES X=% +pb1|x X; +t1‘x X;
y:yi y:yi Y=Yi Y=Y
.
+0 Eog” y=y X=X +,0b2|x %; +t2‘x %
N X 3.
y:yi y:yi y= yl y= yl ( 55)

where, for k=1,2 and for the K" subdomai n, the element matrices are

—_ T .
k K- J' 0 EkaNi X=X dQE, mek I ,ONk|X X dQe

Qﬁ y=Yi k Y=Y

Ko =- (RINpdr'®
Pk I k'Vk '
|e
-
ks =~Ri(xi, i), (3.56)

= [TTRdr',
rl°
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and

fo =0 Eyel)

T (k =
X=X _a 6(() ) X=X + mk|xixl + ptk‘xixl )
y:yi y:yi y_yl y_yl

For both the finite element and the finite difference discretization strategies,
assembling the element equations over the entire domain, enforcing continuity of the
primary and secondary variables only within each subdomain and assembling the
contributions along the element edges on the common subdomain boundary, and noting

that ue and Ue, , Ug and Ue, , fe and fe, , and @y and apare completely uncoupled,

yields the system of equations given by

™; 0 0 0 omyp K1 0 0 Kg 0Ly g mp
o My 00 o0 00 Ko O 0 Kgpm ézm
‘B Oo o0 0 K, K, H_B- 8
BO 0 0 0 o4m O+ . 1 2 0=000 (3.57)
70 0 00 0" Kp, 0K, 0 0 Dgmp gop
Ho 0 0 0 OoH¥,[H 00 Kp, K0 0 d¥#H HOB

or

B o ofyHrgo o

9 0 OofHed kp, K 0fHen

where K, M, u, and f are the assembled stiffness matrix, mass matrix displacement

™ 0 Oomig UK 0 KgOu
K|

vector, and force vector for the entire structure, and K, Ks, K, u;, ande. arethe
assembled K, K, Ky, Ui, anday for al interfaces. The assembled stiffness and mass
matrices, K and M, are block diagonal matrices containing the stiffness and mass
matrices, Ky and My, of each of the subdomains along its block diagonal. The interface

“stiffness” matrix thus contains coupling terms that augment the stiffness matrices of the
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subdomains along the interface. All of the interface “stiffness” terms appear in the
stiffness matrix with none in the mass matrix. Similar results may be obtained when
damping is included. As for the scalar-field problem, the three-approximation approach
for vector-field problems yields systems of equations (see Egs. (3.57)) of similar form
and with the same attributes. Again, due to the generalization for the finite difference
approximations, the system of equations is not necessarily symmetric due to the off-
diagonal submatrice, andKs, nor are they banded or positive definite. Therefore,
standard Cholesky solvers may not be used, unless full pivoting is performed to obtain
the solution. The upper diagonal submatrix blocks contain uncoupled stiffness matrices.
The symmetry of the matrix is determined by the choice of the weight fungtiom

general, due to the introduction of fictitious nodes for the imposition of boundary
conditions and loads in the finite difference discretization, the stiffness matrices are not
symmetric but are positive definite and sparse. The coupling is accomplished through the

introduction of the coupling terms in the matridé§k and K Sk for both approaches.

The number of additional degrees of freedom associated with the interface element is
generally small in comparison with the total number of degrees of freedom in the
subdomains. Thus, modeling flexibility is provided at a relatively small computational
expense. The computational expense in this study may be reduced additionally as the
efficiency of new solution algorithms for the system of equations in Eq. (3.57) is
increased.

While it is convenient to represent the weighted residual form over the domain
using a single equation, the system of equations, Eq. (3.57) is obtained from the

individual weighted residual expressions over each of the subdomains and the constraint
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integrals. Thefirst two matrix equations of the system of equations, Eqg. (3.57) are

derived from the weighted residual statement for subdomain k. That is,

‘Di(l,(JUiSk) dQ® - I‘Di/)(bi(k) ~y)dqe - I‘Difi(k) dre" =0
Qe Q¢ I_Se

The third matrix equation of the system results from the reciprocity statement of the

secondary variables. That is,

(Al +6@)ar' =0 on 1.
Fl

The fourth and fifth matrix equations result from the continuity requirement for the

primary variables, which is given by

I)li(k)(vi—ui(k))dr' =0 on TI!

J’/\-(z)(vi—ui(z))dl" =0 on T

Note that the forms of the coupling element matrices that are not in terms of the

weight functions are independent of the method of discretization. That is,

Ko =- (RINpdr'°
Pk I k'YK '

r°

and
T N
Ki, = [T Rydr
|e

r
are of the same form for the finite element and finite difference discretizations.
However, since the element shape functions, Ny, differ for the two methods, the interface

matrices, k ,, , in genera, are not identical.

Pk ’
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Fluid Mechanics- finite element discretization

Substituting the approximations of Eq. (3.52) into Eqg. (3.51) along with the

constitutive equations and using the Galerkin method in which @ =N, yields

O O O O O O
] T e [ T e L] T e
Dfele N7 dQ; S’el + DfepNzNZ sz%’ez + Dfele (Nl“el)Nl dQ; %Jel
B B £ B B2 B

O O O O O 0
T T T
* B N3 (Naue, N2 005 B, + Ef 24878y, 007 Rig + B 248787, 408 e,
95 5 BN 8 @ 5
0 O 0O 0
Orp TR e OraTR e
-g/Bi N dQla:’el—DJ’eBzNzl d$ P,
B2 | B2 B
O 0 O 0 O 0 O O
_ T | _ T | [l T | [l T |
DJ’eNlRldl' o DJ’eNszdl' B‘2+DIJ Ry dr B‘“Dg Rpdr! s
G g8 & g G 8 & B
O 0 D 0 O 0 D O
[l T | _ T | [l T | _ T |
+D_I[eR1TdI' g” D_I[eRlNldl' gjel+D{eR2TdF g” D{eRZNZdI’ %Jez
& g ) g ) g ) B
_ e _ e
= J’Nlprlde+ INthldrlS + Ingbde§+ INgtzdFZS
Q7 s Q3 rs°

(3.58)

where By, =dN and By; =0¢ Ny for k=1,2 and the elemental matrices are

Ke, = [2uByBy, dQf; mg = [ oNENy dQF;
Qp oy

- T . — TR .
Cop = [ AT (NiUo N dOE; dg, = [ BTN, dOE;
Qyp o}y
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_ T 1€
Kp, == [RNidr

and

— e
fex = [ NgobydQf + [ Npfdry .
Q¢ s©
k M
In addition to the element equations for momentum, Eq. (3.58), the element

equations for continuity must be considered. Eqg. (3.34) is used to provide the

mathematical basis for the continuity equation for multiple domains. Using the Galerkin

method, the weight function corresponding to the continuity equation is given by d=N.
Substituting the approximation for the weight function and the primary variable into Eq.

(3.34) yields

]

0 [B{ Ny dQ
e

1

= @
(IO gl
P

Fluid M echanics- finite difference discretization

Substituting the approximations of Eq. (3.52) into Eq. (3.51) along with the

constitutive equations and using the Dirac delta function as the weight function,

Dy =0 (x=x,y—Yi )=k (X, i),
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SON | %J + SON | %J + BO(N u )N ‘ Eu
1X=X 2| X=X 1! 1{X=X;
O Y=y A O y=%0O %2 H A y=yi H A
0 0 [l

0 0 0
¥ go(Nzuez)N olxex, i, + 20T TONY g + (210 T TON|c, e,

y=yi B H Y y=Yi

—%TIN EP %TIN EP
i ONHT B SSE
O 0 O 0
‘[Rl(xi,M)]‘ll‘[Rz()ﬁ,Yi)]‘lz+BITTRldrleBll’fBITTderleBlz
&'° g &° &
0 O 0 0 O 0 0 0
+ O RITAr Wy -0 RINdr Taig + B pRITar * By, - B pRIN, dr B,
G° 5 &° 5 @° 5 @° g
= ooy (%, v )+ 0%, i)+ o02(%, i) + Ta %, i) (3.59)

where, for k=1,2 and the elemental matrices are

Ke, =20  TON

—x + Mg, = PNy|x=x ;
X=X € — v
y:yi y_yl

Cey :p(Nkue)Nk|§z>§ii » ey =9TINy x=x

Y=Yi

_ T 1€
Kp, == [RNidr

r1°
ks, =R (X, i),
T 1©
K, = [TTRydr",
|e
-
and

fer = PO (%, ¥i) + T (4. ¥1).-



Considering continuity, and using the Dirac delta function as the weight function,

@, =0 (x=%,y-Vi)=3k (X, Vi), the continuity equation is given by

0_ .
@TIN;

.

H
—y g +@'IN
X=X —~ € 2|x
=g~ B

For both the finite element and the finite difference discretization strategies,

y=

H
e, =0
X=X €2
i H
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assembling the element momentum equations, Egs. (3.58) and (3.59) over the entire

domain, enforcing continuity of the primary variable only within each subdomain, and

noting that Uug and ue, ,

completely uncoupled, yields the system of equations given by

M1

0
g0
0o
)
Uo
O

Ho

0 000

M, 0 0 0

0 000

0 000

0 000

0 000

0 000

1)

p

T)

0

0

DKl 0

50 K

Eo 0

,00 0

Uo 0
O

E?pl 0
O

J0 Kp,

O O O O o o o

O O O O O O O

oMo €y 0 0 0 0 0O Omup O
0
Offizg HO C2 0 0 0 0 OHig
oyd Do 0 000 0 0L
OPO+rp0 O 0000 0@3le+
05, o o 000000 20
Offiyd 00 0 0 0 0 O OfilyD
o0 Ho o 0 0 0 0 ofHiof
0 Q O 0 0Tul
0 0 Q2 0 Oflapg
0 0 0 0 OLuL
0 0 0 0 OfPLO
0
00 0 O o%}@m
0 0 0 0 OfwD
0 0 0 0 oFHn
K
0 00Kg O 1D 0
0 00 Ks, 0 00
0 00 0 D 0B
0 00 o H'g o
P =01
0 0 0 Ky, Ky, 0 Op0
T 0 0°0
Ky 00 0 Chy0 Dom
5o
KT 00 0 Gwon 0O

Ug and Ue, , Pe and Pe, , fe and fe, , anday andeare

(3.60)
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along with
;0 M0 o0
D -—
00 Qzv20 %)D
or symbolically
™M 0 0 OmuOd [CU+K 0 -Q K¢uo 0O
S 00 ofH = o 0 0 Kygug_ A
0 +2 g 0= 0.0
o 00 0Py 0-QT 0 0 0GP Py
o 00 ofeH g K, Kl 0 O0fuE HH

where K, M, C, Q are the assembled coefficient matrices for momentum and continuity,
u and f are the displacement vector and force vector for the entire structure, and K, K,
Ky, u;, anda arethe assembled Ky, K, Ky, Uj, and a for al interfaces.

The first two matrix equations of the system of equations, Eq. (3.60) are derived

from the weighted residual statement for subdomain k. That is,

q:i('f)aig") do® - [, o) —ulk)y aqe - chit_i(k) dars” =o
Qe Qe I_Se

The third matrix equation of the system results from the reciprocity statement of the

secondary variables. That is,

Iﬁi(di(1)+di(2))dr':0 on ',
oy

The fourth and fifth matrix equations result from the continuity requirement for the

primary variables, which is given by

I)li(l)(vi—ui(l))dr' =0 on T
r!

J’/\i(z)(vi—ui(z))dl" =0 on T
r
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Note that the forms of the coupling element matrices that are not in terms of the
weight functions are independent of the method of discretization. That is,
_ T 1€
Kp, == [RNidr
|e
r
and
_ T 1€
ki, = [T Rydr
|e
r
are of the same form for the finite element and finite difference discretizations.
However, since the element shape functions, Ny, differ for the two methods, the interface
matrices, k P’ in general, are not identical.
In addition, for the penalty finite element model, the system of equationsis of the

same form as given in Eq. (3.60), except that penalty terms are included rather than the

pressure terms. The resulting system of equationsis given by

™M, 0 OO0 Oy €y, O O O OduiO

0 My 00 0%25 0 cy 00 O%ZE

SO 0O 0O |D+DO 0 0 O oL, O+

00 0 00 %alm 0 00 O%&lg

Ho o0 0 0 OH#,§ HO 0 0 0 OHu,{

(3.61)

K 00 Ky Obhps; 0 00 oo tho
00 Kz 0 0 Kyl 00y s, o o os,0 éZD
0o 0 0 K, K, H, o H E°H
0 . 1 ZEII:UIB“L 0 0 0 0O IB_BOB
Kp, 0 KlTl 0 0D 0 o0 0o O%&lm Jo
0 Kp, K 0 0 >H HO 0 0 0 OH:,H HOH

or symbolically
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MM O ODDUE gj(u)+K+S 0 KS%UE D‘E
0 0 oHW+g O 0 K, 0=m0
B o offed H K, KI ofHed B
where K, M, C, S are the assembled coefficient, mass, momentum, and penalty matrices,

u and f are the displacement vector and force vector for the entire structure, and K, K,

Ky, u, andae are the assembled Ky, Ky, K, Ui, anday for al interfaces. Recall that the

element penalty matrix for the K" subdomain is given by

— T
o= J N, (), 05
k

3.6.4. Multiple-Domain Modeling - Heterogeneous Di screti zation

The multifunctional weighted residual formulation of Egs. (3.57) and (3.60) are
used as the mathematical basis for multiple-domain modeling using heterogeneous
discretization. Considering the two domains upon which this discussion is based, one
subdomain is discretized using the finite element method, and the other subdomain is
discretized using the finite difference method. Again, for the finite element development,

the weight functions for the primary variables, u and P, are taken to be the finite element
shape functions (i.e., ®, = Ny and (i)k = Nk), and for the finite difference development,
the weight functions are taken to be the Dirac delta function (i.e.,

@, =3 (x—x,y-y;)=0k(x,yi)). Asexpected, the set of element matrices becomes

ahybrid of the matrices from the finite element method and the finite difference method.
For completeness, these matrices are repeated here for the finite element and finite

difference subdomains for solid mechanics as



ke = [BfEqB;dQf and kg, =9 Ep0N5|yoy
Qf Y=Y
1 i

Mg, = J’leTNl de and Mg, = ,0N2|x:xi ,
Qs Y=Yi

and foy = [BIER dof - [Blel dof+ [N] poyd0§+ (NIt dre” and
e

e e e
Ql Ql Ql rls

2 2 T
fer = GTEZS(() ) —GTG(() ) + pb2|x:>q +t2‘x:xi .
Y=Yi Y=Yi

For fluid mechanics the e ement matrices are given by

ke, = [2uB]By, dQfand ke, =240 'TIN| o, |
Q7 Y=Y

Mg = I,oNlTNl dQle and Me, = ,0N2|x:xi ,
Qf Y=Yi

Ce1 = J' 'ONI(N]-UQL)N]- dQ]e_ and Ce2 = p(Nzuez)NZ‘XiXi
Qf Y=Y

— T — A~
de, = [Bf Nyl dQf and ge, =9 |N2‘XI)q ,
Qf Y=Yi

_ e _
and fq = [N{ pbydQF + [NJTidr and fo, = poa(x,¥i)+ 204, %)
Qje_ I—lse
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The coupling matrices at the element level are of the same form for both solid and fluid

mechanics and these matrices are given by

=- [NJRdr'" and kg, =-R(x,vi) ,
e
Iy

Ky

and for the two domains, k=1,2,
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_ T 1©
Koy = IeRkadF :
rl

and

ki = (T'R.dr'
Ik_.[ k .
r°

3.7. COMPUTATIONAL IMPLICATIONS

The multifunctional modeling approach for the vector field problem has been
generalized such that it is applicable to solid and fluid mechanics as well as both
homogeneous and heterogeneous discretization approaches. As such the computational
implications are presented in this section for the generalized system of equations, Egs.
(3.57) and (3.60). Implications specific to adiscipline or a discretization approach are
highlighted, where appropriate.

The assembled coefficient matrices, K, M, C, and Q, are block diagonal matrices
containing the matrices, Ky, My, Ci, and Qi of each of the subdomains along its block
diagonal. The interface coupling matrix thus contains terms that augment the coefficient
matrices of the subdomains along the interface. All of the interface coupling terms
appear in the coefficient matrix associated with the primary variables with nonein the
matrix associated with the time derivative. Again, due to the generalization for the finite
difference approximations, the system of equations is not necessarily symmetric due to
the off-diagonal submatrices, K, and K, nor are they banded or positive definite. Note
that, even for a single domain model, the mixed formulation results in a nonpositive
definite matrix. Therefore, standard Cholesky solvers may not be used, unless full

pivoting is performed to obtain the solution. The upper diagonal blocks contain
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uncoupled fluid flow coefficient matrices. The symmetry of the matrix is determined by
the choice of the weight function, ®. For the finite element discretization, the subdomain
matrices are symmetric. In general, due the imposition of boundary conditions and loads
in the finite difference discretization, the coefficient matrices, Ky, are not symmetric but
are positive definite and sparse. The coupling is accomplished through the introduction

of the coupling termsin the matrices K 5, and K ¢ for both approaches and each of the

disciplines discussed herein.

In addition, due to the generalization for the finite difference approximations, the
system of equationsis not necessarily symmetric due to the off-diagonal submatrices, K,
and K. The system unknowns in Eqg. (3.57) and (3.60) consist of both primary and
secondary variables given by the displacements or velocities, u, and the traction

coefficients, a, respectively. Generally, the coupling matrices, K 5 A€ of the order of

the length of the interdomain boundary, which results in a marked differencein the
magnitude of the off-diagonal terms of the system matrix compared to its diagonal terms.
This characteristic produces an ill-conditioned matrix whose solution can cause
difficulties for some general -purpose solvers. Hence, the coupling matrix should be
scaled such that it is of the same order as the subdomain stiffness.

The load transfer mechanism of the multifunctional approach may be interrogated
for the vector-field problem by considering the first and second rows of Egs. (3.57) and
(3.60) for solid and fluid mechanics, respectively. In either case the matrix equations of
Interest are given for solid mechanics by

Mjl; +Kqup +Kgag =)

Mol +Koup +Kg,ap =15
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or for fluid mechanics by

Mjug +Kqup +Kgag =)

Malp +Koup +Kg,ap =15
These equations can be partitioned such that they correspond only to the primary

variables, Uy on the interdomain boundary

Kt Koo =0 (3.62)
K2U2+K32(12 =0 .

andK | denotes stiffness terms related tot, and there are no forces (including inertial
forces M U ) on the interdomain boundary and assuming steady fluid flow (i.e.,
MUy =0). Theexpressions given by K T} represent the internal fluxes at the
interdomain boundary, and thus Eq. (3.62) may be written as
fi=-Kgoy and fy=-Kg ay. (3.63)
For homogeneous discretization using the finite element method, substituting for

Ks from Eq. (3.54) into Eq. (3.63) gives

3 T 1€ T2 qr!®
f]_:— INl Rldl’ a1 =— J’Nltldl' (364)
r® r°
r T 1€ Tr !¢
2= INZRZ dr 0o == INztz dr (364)
e e
r r'

Examining Egs. (3.64) indicate that the evaluation of the internal forcesis consistent with
the evaluation of equivalent nodal forces in the presence of applied tractions on the
boundary. In addition, Eq. (3.64) substantiates that the secondary variable along the

interface is represented by distributed forces for each of the subdomains.
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For homogeneous discretization using the finite difference method, substituting

for K 5 from Eq. (3.56) into Eq. (3.63) gives

f_l = —Rl(ll = _fl (365)

A

f_2 =-Rjoy=-t)
Examining Eq. (3.65) indicates that the evaluation of the internal forcesis consistent with
nodal forces evaluated at points in the presence of applied tractions on the boundary. In
addition, Eq. (3.65) substantiates that the secondary variable along the interface for this
approach is represented by nodal forces for each of the subdomains.
For heterogeneous discretization using the combined finite element and finite

difference methods, substituting for K S from Eq. (3.54) into Eq. (3.56) gives

— e A e
fi=- [N{Rydr' oy =~ [N{t;dr! (3.66)

Examining Eq. (3.66)) indicates, for subdomain 1, that the evaluation of the internal
forcesis consistent with the evaluation of equivalent nodal forcesin the presence of
applied tractions on the boundary, while for subdomain 2, the evaluation of the internal
forcesis consistent with nodal forces evaluated at points. This revealsthat for this
multiple domain approach, the secondary variable along the interface for subdomain 1 is
represented by distributed forces, and for subdomain 2, the secondary variable along the
interface is represented by nodal or point forces. Thus for this heterogeneous modeling
approach, it is required to transform the interface secondary variables into equivalent

guantities.
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3.8. VERIFICATION TEST CASE

In this section, the multifunctional methodology for the vector-field problemis
demonstrated on a verification test case. The application is described and the associated
results and salient features are discussed. This application is considered a patch test for
the formulation and verifies the applicability of the method for a configuration for which
the solutions are known. Finite difference and finite element solutions for single- and
multiple-domain configurations are presented to provide benchmark solutions for the
multifunctional approach using heterogeneous discretization. Representative applications
from the field of engineering science are presented in Chapter V.

3.8.1. Patch Test

Asin the scalar-field problem, a patch test is used to determine the effectiveness
of the multifunctional approach applied to avector-field problem. A cantilevered plateis
subjected to uniform inplane loading at the free end that yields a constant state of strain.
In particular, thisloading condition provides verification of the finite difference method
for combinations of displacement and traction boundary conditions, and the method is
validated for both the single- and multiple-domain models.

Problem Statement

The analysis domain and the boundary conditions are shown in Figure 3.1. The
normal and tangential tractions are denoted by T,, and T;, respectively, in thefigure. This
configuration has been used in the combined finite difference and finite element anaysis
reported by Dow et a.%°, and it is used here to provide a point of comparison. The length
of the plate, L, is20in., the width, W, is 8 in., and the thickness, h, is1in. The materia

system is described by a Young’s modulus of 30,000 psi and a Poisson’s ratio of 0.3. An
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applied displacement of 0.3 in. is applied at one end, and the opposite end isfixed. The
other sides are free.

For the finite element method, four-node elements are used to discretize the
domain for all applications. Homogeneous discretizations for single- and multiple-
domain models for the finite element and finite difference methods are presented. For the
finite element discretization of a single domain, afinite element mesh of 20 elements and
4 elements are used in the axial (x-direction) and transverse directions (y-direction) ,
respectively, of the plate. For multiple domains with compatible meshes (i.e., nodal
coincidence is maintained at the interface), two finite element meshes of 10 elements and
4 elements are used in the x- and y-directions, respectively. For the finite difference
discretization of a single domain, afinite difference grid consistent with the finite
element mesh was used. That is, agrid of 21 grid pointsand 5 grid points are used in the
axial (x-direction) and transverse directions (y-direction), respectively, of the plate.
Similarly, for multiple domains with compatible meshes, two finite difference meshes of
11 grid points and 5 grid points are used in the x-and y-directions, respectively. For
multiple domains with incompatible finite el ement meshes, one domain is discretized
with 10 elementsin the x-direction and 4 elements in the y-direction. While the other
domain is discretized with 20 elements in the x-direction and 8 elementsin the y-
direction. The multiple-domain discretization is shown in Figure 3.2. Thefinite

difference discretization is consistent with the finite e ement mesh discretization.
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Figure 3.1. Anaysis Domain and Boundary Conditions of Cantilevered Plate.

Interface

Figure 3.2. Multiple-Domain Discretization of Cantilevered Plate.

Boundary Conditions for Finite Difference Method

The finite difference method is extensively tested for the single- and multiple-
domain configurations to assure that the boundary conditions are being applied correctly.
Generaly, for the vector-field problem, a 3x3 or nine-point central difference templateis
used to evaluate the momentum equation, Eq. (3.20). On the boundary of the domain, the
template introduces fictitious nodes. In reference 43, the fictitious nodes are eliminated
using traction conditions, T, and T;, and the constitutive equations. When the differential
equation is evaluated at the corner of the domain boundary (see point i,j in Figure 3.3), a
fictitious node (point i+ 1,j+1) isintroduced for which there are no additional auxiliary
equations. Thus, to eliminate the degrees of freedom associated with thisfictitious node,
non-physical higher-order derivatives of the constitutive equations are introduced that

further complicate the approach. An aternative approach, used herein, isto apply the
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momentum equation only to the nodes in the interior of the domain, while the differential
equations representing the traction conditions are applied to the boundary nodes. Special
forms™ of the difference equations for grid points at the boundaries are used to avoid the
use of fictitious nodes. These forms make use of higher-order forward or backward
difference operators to express the differential formsin order to maintain the same order
of accuracy asthe central difference operator. For multiple-domain spatial modeling, the
momentum equation is applied to nodes on the subdomain interface boundary. The
higher-order backward or forward difference operators are used to introduce the unknown
traction on the interface. This approach yields equations at the interface in terms of the
unknown tractions at that specified interface node only. If acentral difference scheme
were used for the traction conditions, the equations on the interface would be in terms of
the unknown tractions at the specified interface node and adjacent interface nodes. In the
latter case, the resulting equations can not be derived from the generalized

multifunctiona formulation.

Fictitious Node
X‘ i+1j+1
D, C O

Boundary Node ;
—\‘ T, /—Domam Boundary

Interior Node
Y ]

Figure 3.3. Central Difference Template Applied at a Corner.

O
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Anaysis Results

Severa anayses have been performed: (1) two single-domain analyses, one with
finite element discretization and one with finite difference discretization, respectively, (2)
two multiple-domain analyses with homogeneous modeling, one with finite element
discretization in each domain and one with finite difference discretization in each
domain, and (3) one multiple-domain analysis with heterogeneous modeling with
combined finite element and finite difference discretizations. All of the analyses yielded
the exact solution within machine accuracy. Resultsfor the internal forces or stresses
along the interface for the analysis cases are shown in Table 3.1. Theresultsare given at
the locations along the width of the plate normalized by the plate width.

For the finite element domains, the internal forces, Fy and Fy, obtained from the
multiple-domain analyses are normalized by the value of the force obtained from the
exact solution multiplied by the element length along the edge of the interface. Thus, for
aconsistent load and for the finite elements used in this study, a normalized value of
unity represents complete agreement with the exact solution at the interior nodes (i.e.,
1/8<y/\W\<7/8). At the end nodes (i.e., y/W=0 and y/W=1), a normalized value of one half
represents compl ete agreement with the exact solution.

For the finite difference domains, the stresses, o and 7.y, obtained along the
interface from the multiple-domain analyses are normalized by the value of the normal
stress obtained from the exact solution. Thus, anormalized value of unity represents
complete agreement with the exact solution. Valuesin Table 3.1 for the normalized
distance along the interface, y/W, annotated with a superscript ‘F’ in parentheses denotes

results obtained from the most refined subdomain (see Figure 3.2).
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The single-domain analyses with either finite element discretization or finite
difference discretization are in excellent agreement with the exact solution. Moreover,
the interface force and stress results obtained with multiple-domain analyses using
homogeneous modeling with either finite element discretization or finite difference
discretization are in excellent agreement with the exact solution. For the heterogeneous
modeling, the finite difference method was used in the coarsely discretized domain, and
the finite element method was used in the more refined domain. Note that the stresses are
used to compare the accuracy of the solution in the finite difference domain, and the
internal forces are used to compare the accuracy in the finite element domain. The results
obtained from this heterogeneous modeling approach are in overall good agreement with

the exact solution.

Table3.1. Resultsof the Multifunctional Approach for the Cantilevered Plate.

Analysis Type*
Location
Along SD/FE SD/FD MD/FE MD/FD MD/HM
Interface, YW | F, Fy O Ty Fx Fy Ox Ty Ox Fx
0. 05 | 000|100 | 000 |05 | 0.00]|200 | 0.00 |.999 | .499
1/8P 1.00 | 0.00 | 1.00 | 0.00 | .00 | 0.00 | 1.00 | 0.00 | - |.999
1/4 1.00 | 0.00 | .00 | 0.00 | .00 | 0.00 | 1.00 | 0.00 | .999 | .999
3/8" 1.00 | 0.00 | 1.00 | 0.00 | 1.00 | 0.00 | 1.00 | 0.00 | - |.999
1/2 1.00 | 0.00 | .00 | 0.00 | .00 | 0.00 | 1.00 | 0.00 | .999 | 1.00
5/8" 1.00 | 0.00 [ 1.00 | 0.00 | 2.00 | 0.00 | 1.00 | 0.00 | - |1.00
3/4 1.00 | 0.00 | .00 | 0.00 | .00 | 0.00 | 1.00 | 0.00 | 1.00 | 1.00
7/8P 1.00 | 0.00 | 1.00 | 0.00 | 1.00 | 0.00 | 1.00 | 0.00 | - |1.00
1 05 | 0.00|1.00 | 000 |05 | 000|200 | 0.00 | .00 |.499
"SDI/FE: Single-Domain with Finite Element discretization
SD/FD: Single-Domain with Finite Difference discretization

MD/FE: Multiple-Domain with Finite Element discretization

MD/FD: Multiple-Domain with Finite Difference discretization

MD/HM:  Multiple-Domain with Heterogeneous M odeling (combined finite
difference and finite element discretizations)
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CHAPTER IV

REPRESENTATIVE SCALAR-FIELD APPLICATIONS

4.1. GENERAL

In this chapter, the multifunctional methodology is demonstrated on several
representative scalar-field applications. The governing partial differential equation for
the scalar-field problem is applicable to a variety of problemsin engineering science. A
sampling of these problems include atorsion problem, a heat conduction problem, and a
two-dimensional flow problem. The applications are described, and the associated
multifunctional analysis results and salient features are discussed. Finite difference and
finite element solutions for single- and multiple-domain configurations are presented to
provide benchmark solutions for the multifunctional approach using heterogeneous
spatial discretizations. The finite element models use four-node Lagrange isoparametric
finite elements, and the finite difference model uses afive-point template to approximate
the governing differential equation. Stand-alone finite el ement software is used to
generate the finite element stiffness matrices. The mathematical computing program
MATLAB" isused to generate the finite difference matrices and the interface coupling

matrices and to solve the resulting system of equations.

4.2. TORSION OF PRISMATIC BAR

Thetorsion of a prismatic bar with arectangular cross-section is used to
demonstrate the multifunctional capabilities for the Poisson problem. As mentioned in
Section 2.2.1, the torsion problem reduces to the nonhomogeneous partial differential

eguation
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in which the stress function, ¢, must be constant along the boundary of the cross-section,

0 is the angle of twist per unit length of the bar, and G isthe shear modulus. The
configuration of the bar is shown in Figure 4.1, and the analysis domain and the boundary

conditions, are shown in Figure 4.2.

X,u

M, SaZW

Figure4.1. Prismatic Bar with Rectangular Cross-Section.

For a solid cross-section, the requirement of a stress-free boundary yields the boundary

condition, ¢ =0, on al four bounding surfaces along the bar length. Because of the

symmetries in the problem, only one quadrant of the rectangular cross-section needs to be
considered. Moreover, this symmetric model is useful in verifying the application of
mixed boundary conditions. That is, the application of boundary conditions in terms of
both primary and secondary variables. The quadrant considered in the symmetric model
Isshown in Figure 4.3.

The shear stresses in the cross-section are
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At the ends of the bar, the first moment integrated over the cross-sectional area must

equal the twisting moment. This requirement gives
M =2f @adxdy

and the twisting moment is related to the angle of twist by

Mt =GJo

where Jisthetorsiona constant.

A\

Figure 4.2. Analysis Domain and Boundary Conditions for Prismatic Bar with
Rectangular Cross-Section.

The analytical solution® for the stress function is given by

2 o
= 3208 5 Lgne ﬁ_ cosh(n7y/2a)d  n7x

m n=135..0° cosh(nnb/Za)BC “2a’

and by differentiating
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_0p _16GA = 1, ,(n-1)20_ sinh(n/y/2a)0  nx
R Sz s

o 7% n=13s5,..n° cosh(n7b/ 2a)B: 2a

and

__0¢ _16G6a g i(—l)(”"l)/z %_ cosh(n7y/2a)0] 7

Y o 2 2 cosh(nnb/Za)HSI 2a

T~ n=135,..N
Assuming that b>a, the maximum shearing stress corresponding to the maximum slope,
is at the middle points (y=0) of the long sides x=ta of the rectangular cross-section.

Substituting x=a, y=0 and recognizing that

1 1
1+—+—+...=—
32 52 8
yields
U 16 1 g

Tmax = 2—— LE
g nzn:%,g; n? cosh(n7b/ 2a) [

In addition, the twisting moment, M;, is given by

lo2a ¢ 1. n0by

M :%GQ(Za)B(Zb) P bn:%e,.ﬁ 2a H
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(a) Analysis Domain and Boundary Conditions (b) 6 x 6 Mesh of Grid Points

Figure 4.3. Analysis Domain, Boundary Conditions and Typical Mesh for One Quadrant
of Prismatic Bar with Rectangular Cross-Section.

Spatial Modeling of Prismatic Bar

Analyses are performed for the case of b=2a (i.e., rectangular cross-section),
where a and b are dimensions of the cross-section shown in Figure 4.3(a). Threelevels
of grid refinement are used for the spatial modeling, namely meshes of (6 x 6), (11 x 11),
and (21 x 21) grid points, each applied to one quadrant of the domain shown in Figure
4.3(a). A typical idealization for a (6 x 6) mesh of grid pointsis shown in Figure 4.3(b).
Multiple-domain analyses with the spatial modeling of these three levels of grid
refinement and with coincident nodes along the common subdomain boundary have been
performed for comparison. For the multiple-domain spatial modeling with non-
coincident nodes along the common boundary, the mesh discretization of the most
refined domain is consistent with the discretization used in that same region for the

single-domain analysis. The mesh in the less refined domain has half the “element”
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density of that used in the refined domain. This mesh is referred to by the syntax (11 x
11)/(21 x 21). The coarse and fine finite element models, shown in Figure 4.4, are used
in the finite element homogeneous spatial modeling. For the finite difference
homogeneous modeling and the heterogeneous modeling, afinite difference mesh is used
that has the same number of grid points as the finite element mesh in the respective

domain.

Figure 4.4. Multiple-Domain (11 x 11)/(21 x 21) Idealization.

Twisting Moment for the Prismatic Bar

Having found the values of the stress function, ¢, at the grid points in the solution
domain by the respective spatial discretization approaches, the twisting moment may be
found by repeated application of the trapezoidal rule for numerical integration. The
computed twisting moment is then normalized by the analytical solution. The normalized

twisting moment (M t / M tanalytical ) obtained using the homogeneous and heterogeneous

spatial modeling approaches are givenin Table4.1. A value of unity indicates perfect

agreement with the analytical solution. Resultsin Table 4.1 indicate that all analyses are
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in good agreement with the analytical solution. The maximum error in any of the

computed solutions is less than 6%. The maximum error value for the multiple-domain
analysesis less than 3% and is observed for the multiple-domain heterogeneous modeling
analysis (MD/HM) using combined finite difference and finite element discretizations.

Note that some of the error isintrinsic to the coarse approximation of the integral using

the trapezoidal rule. The integration error decreases as the mesh refinement is increased.

A more accurate integration rule such as Simpson’s rule would produce results that are
more accurate. Independent of the integral approximation, the solution accuracy for each
of the modeling methods increases as the mesh refinement increases. For the same
number of nodes or grid points, the finite element discretization yields more accurate
solutions than the finite difference discretization. The results obtained for the single-
domain modeling€g., SD/FE and SD/FD) and the multiple-domain homogeneous
modeling with coincident nodes along the subdomain boundary are identical or nearly
identical (see the results for ¥66), (11x 11) and (21x 21) meshes in Table 4.1). These
results validate the multifunctional approach for coincident grid points along the
subdomain boundary. The results obtained for the multiple-domain heterogeneous
modeling approach with coincident grid points along the subdomain boundary are less
accurate than corresponding results obtained using homogeneous modeling but are in
overall good agreement. In addition, with the heterogeneous modeling, the accuracy of
the twisting moment increases as the mesh refinement increases. With multiple-domain
modeling using finite element (MD/FE) discretization and with non-coincident nodes,

the accuracy of the twisting moment is bounded by the accuracy of the less refired (11

11) and more refined (22 21) coincident meshes (see the results for thex (I1)/(21x
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21) meshin Table 4.1). For the multiple-domain finite difference (MD/FD)
discretization in both domains with non-coincident nodes, the twisting moment is slightly
less accurate than the results obtained using the (11 x 11) coincident mesh, whichis
indicative of the error introduced by the finite difference interface constraints along the
common boundary. For the heterogeneous modeling approach with coincident nodes
along the interface boundary, the twisting moment is less accurate than the homogeneous
approach with either finite element modeling or finite difference modeling. These results
reveal the error introduced in the heterogeneous modeling approach for this problem due
to the interface constraints. However, recall that the twisting moment is a secondary
result, and the errors obtained are larger than those obtained for the primary variable, ¢,
the stress function. For the heterogeneous modeling approach with non-coincident nodes,
the twisting moment is slightly more accurate than the (11 x 11) coincident mesh, which
isindicative of the benefit gained (i.e., more accurate field approximation and interface

constraint) by the combination of the finite element and finite difference discretizations.

Table4.1. Normalized Twisting Moment for the Prismatic Bar.

Normalized Twisting Moment, Mt/(Mt)analytical

Anaysis .

Tvpe' Mesh Density

ype
(6 % 6) (11 x11) (21 x 21) (11 x11)/(21 x 21)
SD/FE 0.9871 0.9944 0.9976 -
SD/FD 0.9743 0.9897 0.9964 -
MD/FE 0.9871 0.9944 0.9976 0.9959
MD/FD 0.9746 0.9898 0.9964 0.9834
MD/HM 0.9498 0.9738 0.9878 0.9749
" SD/FE: Single-Domain with Finite Element discretization
SD/FD: Single-Domain with Finite Difference discretization

MD/FE: Multiple-Domain with Finite Element discretization

MD/FD: Multiple-Domain with Finite Difference discretization

MD/HM:  Multiple-Domain with Heterogeneous M odeling (combined finite
difference and finite element discretizations)
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Maximum Shear Stress for Prismatic Bar

The maximum shear stress, T max, OCCUrS @ x=a and y=0 and is obtained by
evaluating d¢/dx at that point. For the finite element method, the shear stress may be

obtained from the element shape functions. However, amore general approximation is
used herein to compare the finite element and finite difference computations. Generally,

to determine this partial derivative, d¢/0x , of the stress function, a smooth curve

containing the stress function values at the grid points can be assumed to represent the

function, ¢. Newton’s interpolation formut4 used for fitting such a curve, can be used

to define the function that is differentiated and evaluated ato give the value of
maximum shearHowever, due to errors introduced in the interpolation for large

amounts of data, a simple backward-difference approximation with the error of the order

of Ax?was used such that

1
%Q:M:O :E(@—z,j ~49-1;+30,)

where the subscriptsj, represent the location of the grid point at which the stress

function is sampled €., x=a, y=0 in this case) andx is the distance between tifeand
thei-1™" grid point. The values for the maximum shear stress, Tmax, Obtained using the
multifunctional approach with single-domamd., SD/FE and SD/FD) and multiple-

domain analyses are normalized by the analytical solution, and these normalized values
are given in Table 4.2. A value of unity indicates perfect agreement with the analytical
solution. The results indicate that all of the analyses are in excellent agreement with the
analytical solution. The maximum error in any of the computed solutions is less than 2%.

This maximum error value is obtained for the multiple-domain heterogeneous modeling
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analysis (MD/HM). In genera, the solution accuracy for each of the modeling methods
increases as the mesh refinement increases. An exception to this characteristicis
observed for the finite element discretization (see the results for the (11 x 11) and the (21
x 21) meshesin Table 4.2). In this case, the results are oscillating about the anal ytical
solution. For the same number of nodes or grid points, the finite element discretization
yields more accurate solutions than the finite difference discretization. The results
obtained for the single-domain modeling and the homogeneous modeling with coincident
nodes along the subdomain boundary are identical or nearly identical. Asin the case for
the twisting moment, this characteristic indicates that the multifunctional approach does
not introduce error for the compatible meshes. The results obtained for the multiple-
domain heterogeneous modeling approach with coincident grid points along the
subdomain boundary are less accurate than corresponding results obtained using
homogeneous modeling; however, the results are in overall good agreement. In addition,
with the heterogeneous modeling, the accuracy of maximum shear stress increases as the
mesh refinement increases. With multiple-domain modeling using finite element
discretization and with non-coincident nodes, the accuracy of the twisting moment is
bounded by the accuracy of the less refined (11 x11) and more refined (21 x 21)
coincident meshes (see the results for the (11 x 11)/(21 x 21) meshin Table 4.2). For the
finite difference discretization in both domains with non-coincident nodes, the twisting
moment is slightly less accurate than the (6 x 6) coincident mesh, which is indicative of
the error introduced by the finite difference interface constraints along the common
boundary. However, the error for all of the finite difference homogeneous analysesis

much less than 1%; thus, the difference in the homogeneous modeling is not appreciable.
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For the heterogeneous modeling approach with non-coincident nodes, the twisting
moment is slightly less accurate than the (11 x 11) coincident mesh, which, again, is
indicative of the benefit gained (i.e., more accurate field approximation and interface
constraint) by the combination of the finite element and finite difference discretizations.

Table4.2. Normalized Maximum Shear for the Prismatic Bar.

Normalized Maximum Shear, TmaX/(Tmax)analytical

Analysis .

Tvoe Mesh Density

ype
(6 % 6) (11x11) (21 x 21) (11 x 11)/(21 x 21)
SD/FE 1.009 0.9997 0.9993 -
SD/FD 0.9940 0.9973 0.9986 -
MD/FE 1.009 0.9997 0.9993 0.9995
MD/FD 0.9942 0.9973 0.9986 0.9940
MD/HM 0.9842 0.9904 0.9948 0.9902
" SD/FE: Single-Domain with Finite Element discretization
SD/FD: Single-Domain with Finite Difference discretization

MD/FE: Multiple-Domain with Finite Element discretization

MD/FD: Multiple-Domain with Finite Difference discretization

MD/HM:  Multiple-Domain with Heterogeneous M odeling (combined finite
difference and finite element discretizations)

4.3. HEAT CONDUCTION PROBLEM

In this section, the basic equation of heat conduction is described briefly to
provide a convenient reference for the fundamental concepts and equations governing
conductive heat transfer. The starting point for heat conduction analysis is Fourier’'s law
given in Cartesian vector form for an isotropic medfim
g =-kOT
whereq is a vector whose components are the heat flow per unit area in the respective
Cartesian directiong is the thermal conductivity coefficient that may be a function of

the temperaturd;, and
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In an isotropic solid with temperature-dependent thermal conductivity, the law of
conservation of energy with Fourier’s law yields the thermal energy equation. The law of

conservation of energy is given by

_ an ol
N

whereQ is the internal heat generation rate per unit volyme the mass densitg,is the

specific heat, antis time. For constant thermal properties and steady-state heat transfer,
the heat conduction problem reduces to a nonhomogeneous partial differential equation

of the form of Eq. (2.1) and is given by

T, 9% H
TV
In this work, two-dimensional heat conduction in a square plate (see Figure 4.5) is used

to demonstrate the multifunctional capabilities for thermal analysis. For this problem, the

time-independent, heat conduction equation is

Eﬁ aZTH__m : <X <
o o2k M2 {xy): o<(xy)<3

subject to the boundary conditions

T=0onrP ={lines x=1andy =1}
oT

S _
Sy=oonr ={lines x=0andy =0}
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Figure 4.5. Anaysis Domain and Boundary Conditions for the Steady-State Heat
Conduction in a Square Plate.

Spatial Modeling of Square Plate

The spatial discretizations in the analyses were selected to be comparable to those
reported by Reddy® for this problem. Coarse and fine models are used in each of the
subdomains. The coarse model hasa (2 x 3) nodal grid, and the fine model has a (3 x 5)
nodal grid. The syntax (m x n) is used to denote spatial modeling with m grid pointsin
the x-direction and n grid points in the y-direction. The number of grid points, rather than
the number of elements, in the coordinate directions are used to describe the mesh
densities to provide consistency when discussing the finite difference and finite element
discretizations. Combinations of these mesh densities are used for comparative purposes
where the letters C and F are used to denote the coarse and fine models, respectively. A
multiple-domain model with finite element models discretized with afine (3 x 5) nodal
grid and a coarse (2 x 3) nodal gridisshownin Figure 4.6. Curveslabeled C/C or F/F
denote multiple-domain coarse or fine models, respectively, with coincident nodes along

the common subdomain boundary. Multiple-domain analyses with finite element
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discretization or finite difference discretization are denoted by MD/FE and MD/FD,
respectively. Similarly, multiple-domain analyses using heterogeneous modeling with
the combination of finite difference and finite element discretizations are denoted by

MD/HM.

Figure 4.6. Homogeneous (3 x 5)/(2 x 3) Idedization.

Temperature Distribution for Square Plate

The temperature distribution as a function of the distance along they=0lineis
shown in Figure 4.7 for the different spatial discretizations and modeling approaches.

The analytical solution for this problem is given by

(XY)—1 2) ?2

(-2)" cod(2n - 1) 7y, 2] cosh|(2n - 1) 7/ 2] %
(2n-1)3cosh[(2n-1)77/2] g

In addition, a 1-parameter Ritz approximation is given by

)= bk
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Results obtained using the multifunctiona approach are compared to the
analytical solution (solid linein the figure) and a Ritz approximation (dashed line in the
figure). Finite element (see Figure 4.7(a)) and finite difference (see Figure 4.7(b))
solutions were obtained using a multiple-domain analysis with homogeneous spatial
discretization and are in excellent agreement with the analytical solution. These results
illustrate that the temperature at x=y=0 obtained with a coarse finite difference mesh is
more accurate than that obtained with a comparabl e finite element mesh (see curves
labeled MD/FE-C/C and MD/FD-C/C in Figure 4.7(a) and Figure 4.7(b)). This
difference decreases as the meshes are refined, although the finite el ement model
continues to produce a higher temperature value at x=y=0. The multiple-domain
anal yses with non-coincident nodes produce accurate results even at the subdomain
common boundaries. The multiple-domain results for heterogeneous spatial
discretization approaches are shown in Figure 4.7(c) and indicate the effectiveness of the
multifunctional approach. Thefine (3 x 5) nodal grid (see Figure 4.6) is discretized with
the finite difference method, and the coarse (2 x 3) nodal grid is discretized with the
finite element method. These results are in overall agreement with the results obtained
with the homogeneous approaches. The homogeneous and heterogeneous results are
compared in Figure 4.7(d) for models with non-coincident nodes with a fine model in the
left domain and a coarse model in the right (see Figure 4.6). These results indicate that
temperatures obtained with the heterogeneous approach are slightly lower than for the
homogeneous approach with either finite element or finite difference discretizations. In
addition, the results, obtained by using the finite difference discretization in one or both

of the domains, illustrate the dlight difference in the temperature at the interface from the
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left and the right domains. However, note that the uniqueness of the solution along the
interface boundary is satisfied only in an integral sense and this slight difference does not
detract from the overall accuracy and effectiveness of the multifunctional approach for
this Poisson problem.

An additional analysis has been performed to demonstrate the multifunctional
capability for an inclined subdomain boundary (boundary not parallel to the y-axis). In
this analysis, multiple-domain modeling with the finite element method isused. The
finite element model used in the analysis has a (3 x 6) mesh of grid pointsin the left
domain and a (2 x 3) mesh of grid pointsin the right domain as shown in Figure 4.8. The
results for this multiple-domain finite element analysis are shown in Figure 4.9. These
results (open squares) are compared to the analytical solution (solid line), the Ritz
approximation (dashed line) and the multiple-domain finite element analysis (see Figure
4.6 for the model discretization) with a subdomain boundary parallel to the y-axis (open
circles). Theresultsindicate the effectiveness of the multifunctional approach for the

inclined subdomain boundary.
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Figure 4.7. Temperature Distribution Along Insulated Edge of Square Plate.
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Figure 4.8. Spatial Discretization for Inclined Interface for Square Plate.
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Figure 4.9. Temperature Distribution Along Insulated Edge of Square Plate with Inclined
Interface.

4.4. POTENTIAL FLOW PROBLEM

A two-dimensional fluid flow problem is used to demonstrate the multifunctional
capabilities for afluid mechanics problem. As shown in Section 2.2.2, the equation

governing irrotational fluid flow reduces to the Laplace equation
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where u can be either the stream function, v, or the velocity potential, ¢. Inthiswork,
the two-dimensional, steady, inviscid flow between two infinite platesis considered. A
rigid, infinite cylinder or radius, R, with an axis at aright angle to the flow is assumed to
be in the passageway between the plates as shown in Figure 4.10. Far upstream from the
cylinder there isauniform flow field with avelocity of V. Because of the symmetriesin
this problem, only one quadrant of the domain is considered. The analysis domain and

the boundary conditions on the velocity potential, ¢, are shown in Figure 4.11.
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N\
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Figure 4.10. Domain of Flow Around Cylinder.
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Figure 4.11. Analysis Domain of Flow Around Cylinder.

The finite element models used in this problem are shown in Figure 4.12. A reference
solution is obtained using the finite element model shown in Figure 4.12(a). The local
and global finite element models used in the homogeneous and heterogeneous spatial
modeling approaches are shown in Figure 4.12(b). For the heterogeneous modeling, a
finite difference mesh is used in the coarsely refined domain that has the same number of
grid points as the finite element mesh used in the same domain. This discretization
strategy illustrates the use of the finite element method to represent the complex
geometry around the cylinder and the use of the finite difference method away from the

curved boundary where it is most suitable.
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(a) Reference Model (b) Multiple Domain Model

Figure 4.12. Spatial Discretization for One Quadrant of Domain of Flow Around
Cylinder.

Contour plots for the velocity potential, the horizontal velocity component and the
transverse velocity component are shown in Figure 4.13, Figure 4.14, and Figure 4.15,
respectively. In each of these figures, the results using the multifunctional approach are
compared to results obtained from the single-domain analysis using the reference model
(see Figure 4.12(a)). Asshown inthefigures, the velocity potential and the velocity
components obtained using the multifunctional approach are in excellent agreement with
the reference solution. In the multiple-domain analyses, the slight discontinuity in the
horizontal and transverse velocity components at the interface (see Figure 4.14(b) and
Figure 4.15(b)) is duein part to the difference in the computation of the velocity across
theinterface. Unlikein the single-domain analysis (i.e., reference solution), in the

multiple-domain analyses, the velocities are not averaged across the interface.
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(a) Single-Domain Model (b) Multiple-Domain Model

Figure 4.13. Contour Plot of Velocity Potential for Flow Around Cylinder.

(a) Single-Domain Model (b) Multiple-Domain Model

Figure 4.14. Contour Plot of Horizontal Velocity Component for Flow Around Cylinder.
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(a) Single-Domain Model (b) Multiple-Domain Model

Figure 4.15. Contour Plot of Transverse Velocity Component for Flow Around Cylinder.

The analytical potential solution for the tangential velocity around acylinder in an

infinite domain, valid on the cylinder surface, is given by

where the angle, 6, radial distance, r, and the tangential velocity, u;, can be computed

from the relations
6 =tan 1B—H [a X) +y ]]/2, Uy =UySin@ +uy cose.

The tangential velocity as afunction of the angular distance along the cylinder surfaceis
shown in Figure 4.16. Results are shown for the tangential velocity around a cylinder in
an infinite domain for which an analytical solution is known and in afinite domain for
which areference solution is obtained using a refined single-domain finite element

model. For the infinite domain configuration, the plate length to cylinder radius ratio,
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2a/R, and the plate width to cylinder radiusratio, 2b/R, are 40 and 20, respectively, and

the domain can be considered asinfinite. That is, the cylinder radius, R, isvery small
compared to the length, 2a, and the width, 2b. For the finite domain configuration, the
plate length to cylinder radiusratio, 2a/R, and the plate width to cylinder radiusratio,
2b/R, are 4 and 2, respectively, and the domain is considered to be finite. The tangential
velocity obtained for the multifunctional approach isin overall good agreement with the
analytical solution for the infinite domain and with the reference solution (i.e., single-
domain analysis) for the finite domain. Results obtained with homogeneous multiple-
domain analyses with finite element discretization in each domain are denoted by open
circlesin thefigure. Results obtained with heterogeneous multiple-domain analyses with
combined finite difference and finite element discretization are denoted by open squares
in the figure. The tangential velocity obtained with the homogeneous modeling approach
Isin excellent agreement with the analytical and reference solutions for the infinite and
finite domain configurations. The tangential velocity obtained with the heterogeneous
modeling approach is more accurate for the infinite domain configuration than for the
finite domain configuration. This characteristic is indicative of the performance of the

finite difference approach, for this problem, in a gradient region.
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Figure 4.16. Tangential Velocity for Flow Around Cylinder.

4.5. SUMMARY

In this chapter, the multifunctional methodology has been described and
demonstrated for avariety of problemsin engineering science. These selected problems
included second-order problems of solid mechanics, heat transfer, and fluid mechanics
that can be formulated in terms of one dependent variable. The governing equation in

each caseis either the Laplace or the Poisson equation. The analyses performed have



173

demonstrated the effectiveness and accuracy of the solutions obtained for the respective
problems. In all cases, the results obtained using the multifunctional methodology were
in overall good agreement with the reported analytical or reference solution. In the next
chapter, the multifunctional methodology is demonstrated for problems whose motion is
described by coupled partial differential equations expressed in terms of two dependent

variables -- vector-field problems.
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CHAPTER YV

REPRESENTATIVE VECTOR-FIELD APPLICATIONSAND

EXTENSIONS

5.1. GENERAL

In this chapter, the multifunctional methodology is demonstrated on two
representative vector-field applications. The applications are described and the
associated results and salient features are discussed. The applications include a plane
stress problem and a plane flow problem. Finite difference and finite element solutions
for single- and multiple-domain configurations are presented to validate the
multifunctional approach using heterogeneous discretization. The finite element models
use four-node Lagrange isoparametric finite elements, and the finite difference model
uses a nine-point template to approximate the governing differential equation. Stand-
alone finite element software is used to generate the finite element stiffness matrices.
The mathematical computing progran MATLAB" is used to generate the finite
difference matrices and the interface coupling matrices and to solve the resulting system

of equations. In addition, extensions to multiple discipline analyses are discussed.

5.2. PLANE STRESS PROBLEM

A rectangular plate of uniform thickness subjected to a uniform tensile load and
with acentral circular cutout (shown in Figure 5.1) is an ideal example problem with
which to verify the multifunctional approach. The example problem has a variety of
practical applications (i.e., rivet holes, aircraft door and window openings, etc.), and an

exact solution is available®™. The plate has been used by many researchers to verify
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aspects of proposed computational methodologies. For example, the plate problem has
been used by Ransom?® to verify global/local analysis technology, by Aminpour et al.**to
verify multiple-domain homogeneous modeling using the finite element method, and by
Rose' to verify an adaptive geometry generator used with a multiple-domain finite
element model. The plate configuration is such that the state of stressis represented by
the condition of plane stress or plane strain. The membrane displacements, uandv, in
the axial (x-direction) and transverse (y-direction) directions, respectively, represent the
plate configuration in plane stress and plane strain.

Two configurations of this problem have been studied: an infinite plate and a
finite-width plate. Theinfinite plate configuration has a central cutout that is very small
relative to the length and width of the plate, and the exact solution for this problem was
obtained by Timoshenko®. The stress distribution in the neighborhood of the cutout
exhibits a stress concentration, but from Saint-Venant’s principle, the stress distribution
is essentially uniform at distances that are large compared with the radius of the cutout.
The finite-width plate configuration has a larger central cutout relative to the length and
width, and the stress distribution away from the cutout is not uniform. The finite-width
plate with a central circular cutout has been discussed by Holkamd Petersofl

For the infinite plate configuration, herein, the length to radius ragoR, and
the width to radius ratio2b/R, are 40 and 20, respectively, and the plate can be
considered as infinite. That is, the cutout radrjss very small compared to the length,
2a, and the width2b. The material system is aluminum with a Young’s modulus bf 10

psi, and a Poisson’s ratio of 0.3, and the thickness of the Ipjage).1 in. A uniform

running load(Ny)o, is applied to each of its ends, and the other sides are free. The plate
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example problem is used to verify the multifunctional approach for both homogeneous
and heterogeneous spatial modeling. Because of the symmetry that exists, one quadrant
of the domain (see Figure 5.2) ismodeled. In addition, boundary conditions are shown in
Figure 5.2 where T, and T; denote normal and tangential tractions, respectively. For the
multiple-domain analysis, arefined model is used in the near-field subdomain (i.e., the
local region near the cutout), and a coarse, less-refined model is used in the remainder of
the domain. A single-domain analysis using afinite element model that has the same
number of nodes and elementsin the near-field region as the multiple-domain model is
used to obtain a reference solution with which to compare the solution obtained with the
multifunctional approach. The single-domain model and the multiple-domain model
(used in the homogeneous spatial modeling) are shown in Figure 5.3. For the
homogeneous modeling, afinite element (FE) mesh is used in each region. For the
heterogeneous modeling, afinite difference (FD) mesh isused in the far-field region that
has the same number of grid points as the finite element mesh in that region. A finite

element mesh is used in the region near the cutout.
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Figure 5.1. Domain of Plate with Central Circular Cutout.
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Cutout.

(a) Single-Domain Model (b) Multiple-Domain Model

Figure 5.3. Finite Element Models for One Quadrant of Infinite Plate with Central
Circular Cutout.

The exact elasticity solution® for an infinite plate with acircular cutout loaded in
tension indicates that the stress concentration factor, K, is 3.0 at the edge of the cutout
and isgiven by

_ (Nx)9|(R,,,/2)

t (NX)O

The stress concentration factor is defined as the ratio of the maximum stress resultant,

(Nx)max, to the uniform far-field stress resultant, (Ny)o. Stress concentration factors
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obtained using the multifunctional approach with homogeneous and heterogeneous
modeling are 3.08 and 3.10, respectively, which iswithin 2.7% and 3.3% of the elasticity
solution. The stress distributions of the hoop stress resultant (Ny), aong the midwidth,
0=n, (denoted as line AB in Figure 5.2) and midlength, 6=n/2, (denoted as line CD in
Figure 5.2) normalized by the far-field stress resultant (Ny)o, are shown in

Figure 5.4 as afunction of the distance from the plate center normalized by cutout radius,

R. Thedasticity solutionfor the stress distribution is given by

(40 =50l 5 5 e

and is shown by the solid lines in the figure. The stress distributions obtained from the
multifunctional analyses using homogeneous modeling are indicated by the open circles
in the figure. The stress distributions obtained from the multifunctional analyses using
heterogeneous modeling are indicated by the open squaresin the figure. Excellent
correlation is observed for all analyses.

Contour plots of the magnitude, o, of the displacement vector (i.e.,

5 =Ju? +v? ) superimposed on the deformed shape and the longitudinal stress
resultant, Ny, are shown in Figure 5.5 and Figure 5.6, respectively. The multiple-domain
analysis results are shown for homogeneous modeling using finite element discretization
in each of the subdomains. To aid visual comparison, the deformation has been
magnified by 10% of the maximum domain dimension. The displacement contour plots
reveal the nearly linear variation along the plate length in the far-field region of the plate
with only local changes near the cutout. The stress resultant contour plots reveal the

uniform stress state away from the cutout and the peak stress in the neighborhood of the
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cutout. While not shown, the results for the multiple-domain heterogeneous modeling
approach are nearly identical to those shown in Figure 5.5 and Figure 5.6, and thus have
not been included. These contour plotsillustrate further the excellent correlation among
the multifunctional approach using homogeneous and heterogeneous modeling and the

single-domain solution.
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Figure 5.4. Longitudinal Stress Distribution along Midwidth and Midlength for Infinite
Plate with Central Circular Cutout.
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Interface

(a) Single-Domain Model (b) Multiple-Domain Model

Figure 5.5. Displacement Magnitude Distribution for Infinite Plate with Central Cutout.

|

(a) Single-Domain Model (b) Multiple-Domain Model

Figure 5.6. Longitudinal Stress Resultant Distribution for Infinite Plate with Central
Cutout.

While the infinite plate analyzed, herein, is an excellent test of the multifunctional
approach, gradientsin the deformation and the stress resultants, asindicated in Figure 5.5
and Figure 5.6, are well away from the subdomain interface boundary. Thus, to assess
the accuracy of the approach when the subdomain interface is within a high gradient
region, a second configuration is analyzed.

In the finite-width plate configuration, the length to radiusratio, 2a/R, and the

width to radiusratio, 2b/R, are 4 and 2, respectively, and the plate is considered to be
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finite. The auminum material system and the thickness that was used for the infinite
plate is used here for the finite-width plate. The finite-width effects on the stress
concentration factor for isotropic plates with cutouts have been reported by Peterson™.
By including finite-width effects, the stress concentration factor is reduced from the value
of three for an infinite plate. The stress concentration factor should be applied to the
nominal stresses, which are based on the net cross-sectiona area associated with the load
application. For the case of afinite-width plate with a cutout, the net cross-sectional area

corresponds to
R
=(2b-2Ry)h = 2bhd1-—
Anet = ( Ro) El b@

where h is the plate thickness, and the nominal longitudinal stress for an uniaxial load, P,
can be expressed as

P

(ax)nom =—— and (Nx) _(ax) h

nom ~ nom'"*

The geometry definition for the finite-width plate, herein, gives a stress concentration
factor of 2.16 reported by Peterson.

Multiple-domain homogeneous and heterogeneous modeling approaches are used
for the finite-width plate. A refined model is used in the near-field domain, and a less-
refined model is used in the far-field domain. The single-domain model and the multiple-
domain model are shown in Figure 5.7. In the multiple-domain homogeneous modeling
approach, finite element (FE) discretization is used in each domain. In the multiple-
domain heterogeneous modeling approach, finite difference (FD) discretization is used in
the far-field domain, and finite element (FE) discretization is used in the near-field

domain around the cutout.
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(a) Single-Domain Model (b) Multiple-Domain Model
Figure 5.7. Finite Element Models for One Quadrant of Finite-Width Plate with Central
Cutout.

Stress concentration factors obtained using the multifunctiona approach with
homogeneous (multiple-domain FE/FE) and heterogeneous (multiple-domain FD/FE)
modeling are 2.19 and 2.73, respectively. These factors are higher by 1.4% and 26.4%,
respectively, than the values given in Peterson®. Note that the solution obtained using
the heterogeneous modeling approach with finite difference and finite el ement
discretizationsis nearly 30% in error. Thiserror islikely due to the inaccuracy of the
finite difference method in the high gradient region and to the constraint conditions along
the interface.

To delineate this error, additional heterogeneous analyses are performed using
finite difference domains with grid spacing in the transverse direction of one half (i.e.,
9%x9 mesh of grid points) and one fourth (i.e., 17x17 mesh of grid points) the grid
gpacing in theinitial finite difference domain (i.e., 5x5 mesh of grid points) (see Figure
5.7(b)). The stress concentration factors obtained with these more refined finite

difference discretizations are 2.42 and 2.31, which are within 12% and 7% of the
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Peterson’s solutidi. The stress distributions of the hoop stress resulight (
midlength, 6=n/2, (denoted as line CD in Figure 5.2) normalized by the nominal stress
resultant Ny)nom, are shown in Figure 5.8 as a function of the distance from the plate
center normalized by cutout radils, The analytical solution reported by Howlahis
denoted by the thick solid line. The stress distribution obtained uss@% and
17x17 mesh of grid points are denoted by the short dashed line, the thin solid line, and
the dashed and dotted line, respectively. The results shown in Figure 5.8 indicate that the
error decreases as the finite difference grid density increases, and the error decreases
away from the edge of the cutout.

The stress distributions of the hoop stress resulghtdlong the midwidth, 6=m=,
(denoted as line AB in Figure 5.2hd midlength, 6=m/2, (denoted as line CD in Figure
5.2) normalized by the nominal stress resultdik.¢n, are shown in Figure 5.8 as a
function of the distance from the plate center normalized by cutout r&liushe
analytical solution reported by Howlafids denoted by the solid lines. This analytical
solution is valid for distances, away from the cutout of less than the plate half-wiblth,
Thus, for this configuration the solution along the midwidth is valid only foPR. The
stress distribution for the multifunctional analysis using homogeneous modeling with
finite element discretization in each of the domains is denoted by the open circles in the
figure. The stress distribution for the multifunctional analysis using heterogeneous
modeling with combined finite difference and finite element discretizations is denoted by
the open squares in the figure. For the heterogeneous modeling approach, the
distribution is given for the most refined finite difference discretizatien (1717 mesh

of grid points). The stress distributions obtained with the multifunctional approach using
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homogeneous and heterogeneous discretization are in excellent agreement with the
reported solution.

Contour plots of the magnitude of the displacement vector superimposed on the
deformed shape and the longitudinal stress resultant, Ny, are shown in Figure 5.10 and
Figure 5.11, respectively. Results for the multiple-domain homogeneous modeling
approach using finite element discretization in each of the subdomains are shown in the
figures. While not shown, the results for the multiple-domain heterogeneous modeling
approach are nearly identical to those shown in Figure 5.10 and Figure 5.11, and thus
have not been included. Note that the deformation has been magnified by 10% of the
maximum domain dimension. The displacement contour plots revea a deviation from
the nearly linear variation observed in the far-field region of the infinite plate, and the
deformation at the cutout is more pronounced. The contour plots illustrate further the
excellent correlation of the deformation (primary variable) patterns predicted using the
multifunctional approach with the single-domain solution even with the interface
boundary domain in a high-gradient region. The stress resultant (secondary variable)
patterns predicted using the multifunctional approach are also in excellent agreement.
The dslight discontinuity in the stress resultant at the subdomain boundary (i.e., interface)
IS due to the derivation of the nodal stress resultant values from the element quantities.
The stress resultants are recovered at the finite el ement nodes by extrapol ating the
stresses at the integration points to the nodes. A single nodal value of the stress resultant
Is obtained by averaging the stress resultants of the adjacent elements. In the multiple-
domain analyses, the stress is not averaged across the subdomain boundary; thus, any

gradient across the interface is not considered.
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Figure 5.8. Convergence of Longitudinal Stress Distribution along Midlength for Finite-
Width Plate with Central Circular Cutout.
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Figure 5.9. Longitudinal Stress Distribution along Midwidth and Midlength for
Finite- Width Plate with Central Circular Cutout.
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Interface

(a) Single-Domain Model (b) Multiple-Domain Model

Figure 5.10. Displacement Magnitude Distribution for Finite-Width Plate with Central
Circular Cutout.

Interface

(a) Single-Domain Model (b) Multiple-Domain Model

Figure 5.11. Longitudinal Stress Resultant Distribution for Finite-Width Plate with
Central Circular Cutout.

5.3. PLANE FLOW PROBLEM

The flow of aviscousincompressible material squeezed between two long
parallel plates™ is considered to illustrate the applicability and performance of the

multifunctional approach to a representative vector-field problem in fluid mechanics.
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The geometric configuration and the associated boundary conditions of the problem are
indicated in Figure 5.12.

A state of plane flow exists when the length of the bounding platesisvery large
compared to the width of and distance between the plates. Assuming the conditions of
plane flow, the velocity and pressure fields are determined for afixed distance between
the plates. The plates are moving toward each other with avelocity, vo, and the width of
and distance between the two platesis given by 2a and 2b, respectively. For this
configuration, the ratio of the plate width and the distance between the plates, 2a/2b, is 3.
Due to the double symmetry present in the problem, one quadrant of the domain was
analyzed. The viscosity, p, of the fluid is 1 Ib-sec/ifihe penalty finite element
modef? is used in the analysis. The penalty function formulation (see Eq. (3.61))
involves treating the continuity equation as a constraint among velocity components. A
10 x 6 nonuniform mesh (10 elements in #eirection and 6 elements in the
direction) of four-node bilinear elements is used for the single-domain anaklgsis (
reference model in Figure 5.13(a)). The nonuniform mesh, with smaller elements near
the free surface ata, is used to delineate the singularity in the shear stress at the point,
x=a, y=b. This singularity and the associated necessity for nonuniform mesh refinement
make this problem ideal for demonstrating the multifunctional approach with detailed
local modeling. The finite element models for the single- and multiple-domain analyses
are shown in Figure 5.13(a) and Figure 5.13(b), respectively. In the multiple-domain
analysis, homogeneous spatial modeling with finite element discretization is used. In this
analysis, more elements are used in the region¥eary=>b than in the single-domain

analysis (see Figure 5.13). This local modeling yields a more complex configuration of
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the subdomain common boundary. That is, the interface between the subdomains

consists of two non-collateral segments.

A
y
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plate
¥ u=0, v=-vp=-1
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Figure 5.12. Geometric Configuration for Fluid Squeezed Between Parallel Plates.

x=2a/3 x=5a/6 x=a

Y4 | L

(a) Single-Domain Model (b) Multiple-Domain Model

Figure 5.13. Finite Element Models for Fluid Squeezed Between Two Parallel Plates.

An approximate analytical solution to this two-dimensional problem is provided

by Nadai® and is given by
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2
P:i(az—yz—xz), P = BANO;
a 2b
Oy =2 %—P——O(xz—?,yz a2+2b2)
0X a2

and

Note that this approximate solution does not satisfy the traction-free conditions (T,=ox=0
and T; = 7,=0) on the free edge (i.e., x=a). Likewise, these traction-free conditions are
not imposed in the finite element analysis; thus, the conditions are not identically
satisfied. The horizontal velocity, u, as afunction of y, at three representative locations,
x=2al3, x=5a/6 (along the vertical interface), and x=a, is shown in Figure 5.14(a), Figure
5.14(b), and Figure 5.14(c), respectively. The analytical solution of Nadai*is
represented by the solid line in the figure. Finite element solutions obtained using a
single-domain spatial discretization are represented by the dashed linesin the figure. The
multiple-domain results for the homogeneous spatial modeling approach using finite
element discretization in each of the subdomains are also shown in the figures, and these
results are represented by the open circles. The results for the horizontal velocity

component obtained from the single- and multiple-domain analyses are in excellent



190

agreement with each other, and the results are in overall good agreement with the
analytical solution.

The pressure, P, as afunction of x, near the centerline for the flow (i.e., y = b/16 -
the centroids of the first row of finite elementsin Figure 5.13), is shown in Figure 5.15.
The analytical solution is denoted by the solid line. The solutions obtained from the
single- and multiple-domain analyses are denoted by the dashed line and open circles,
respectively. The results obtained from the multiple-domain analysis arein excellent
agreement with those from the single-domain analysis. These finite element results are
also consistent with the results published in the literature®. However, the finite element
models predict a higher pressure in the center of the flow field (i.e., x=0) than predicted
by the analytical solution.

While the velocity components and pressure field characterize the flow through
the plates, the shear stress distribution illustrates the significance of using a graded
single-domain mesh and alocally-refined multiple-domain mesh. The shear stress, r, as
afunction of x, near the upper bounding plate (i.e., y = 15b/16 - the centroids of the last
row of finite elementsin Figure 5.13), is computed at the center of the finite elements and
isshownin Figure 5.16. Again, the single-domain (dashed line in the figure) and
multiple-domain (open circlesin the figure) results are in excellent agreement with the
approximate solution of Nadai** (solid line in the figure) away from the free-edge. In
addition, because of the local refinement at the free edge, the multiple-domain results for
x=5a/6 correspond to the shear stresslocated at y = 31b/32 (the centroids of the last row
of elementsin the refined region). These resultsillustrate the better representation of the

gradient in the shear stress at the free edge than either the single-domain analysis or the
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analytical solution. The approximate nature of the analytical solution is highlighted by
these results since the solution given does not delineate the gradient on the boundary.

For completeness, the longitudinal, ox, and transverse stress, oy, distributions are
shown at y = 15b/16 and y = 31b/32, respectively, in Figure 5.17 and Figure 5.18. In
general, the stresses predicted by the single- and multiple-domain finite element analyses
have alarger vaue than those obtained by the analytical solution. However, the
analytical solution is an approximate solution, and the finite element solutions predict the
same overall trends in the stress distributions. The longitudinal stress distribution, o,
reveals the oscillatory nature of the finite element solution at the free-edge. The
wavelength of the oscillations decreases as the mesh isincreased in the local region at the
free edge as indicated by the results from the multiple-domain analysis. In addition, the
value of the peak stress at the free edge increases as the finite element mesh is refined.

Overall, the results obtained with the multifunctional discretization approach are
in excellent agreement with the single-domain analysis results and with the analytical
solution given in the literature. These successful comparisons indicate the effectiveness
of the method and its applicability to the vector-field problem, specifically that of the

fluid flow problem.
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Figure 5.14. Horizontal Velocity for the Flow Between Two Parallel Plates.
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Figure 5.16. Shear Stress Distribution Near Plate Boundary for the Flow Between Two
Parallel Plates.
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5.4. EXTENSIONS TO MULTIPLE DISCIPLINES

In the present work, the multifunctional capability has been demonstrated on
scalar- and vector-field problems applicable to the general field of engineering science
and mechanics. While the demonstrations have illustrated the capability within different
disciplines (i.e., solid mechanics, fluid mechanics, and heat transfer), the method’s use
has not been demonstrated for multidisciplinary analysis. Extensions to simultaneous
multiple disciplines are discussed here.

The term multidisciplinary or coupled systems refers to two or more systems that
interact with each other, with the independent solution of any one system being
impossible without simultaneous solution of the otffertn general, coupled systems
and formulations, such as the multifunctional methodology presented in this work, are
those applicable to multiple domains and dependent variables which usually describe
different physical phenomena, and in which (1) neither domain can be analyzed
independently; and (2) neither set of dependent variables can be explicitly eliminated at
the differential equation level. The class of coupling problems that are the focus of this
work can be categorized by coupling that occurs on domain interfaces via the boundary
conditions imposed on that interface. Generally, the domains describe different physical
situations, but it is possible to consider coupling between domains that are physically
similar in which different discretization strategies have been used. Fluid-structure and
thermal-structure interaction problems are typical examples that involve different
disciplines in different but adjacent domains. Structure-structure or fluid-fluid interaction
problems are examples where the interface divides arbitrarily chosen regions in which

different mathematical approximations and/or spatial discretization procedures are used.
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Single discipline interaction problems have been demonstrated extensively in this work.
The extension of the multifunctional approach to multiple disciplinesisillustrated using
the fluid-structure interaction problem.

Different methodol ogies have been devel oped for the computational analysis of
the fluid-structure interaction problem, and different terminology has been used to
describe the extent to which the disciplines are coupled. In thiswork, two classes of
coupling are outlined; namely, fully coupled and loosely coupled methods. Fully coupled
methods reformulate the governing equations so both the fluid and structural equations
are combined into one set of equations, coupling the solutions only at the boundary
interfaces between the fluid and the structure®. These new governing equations are
solved and integrated in time simultaneously. Loosely coupled methods make use of
independent computational fluid dynamic (CFD) and computational structural mechanics
(CSM) software modules. The coupling is accounted for by the exchange of data at the
interface between the fluid and the structure. This coupling approach takes full
advantage of the numerical procedures of individual disciplines such asfinite difference
approximations for fluids and finite element approximations for structures. In addition,
software development efforts are smplified and software modularity is preserved. An
alternate to the coupling approaches is to solve both the structures and fluids problemsin
asingle computational domain. The mgjor disadvantage of this methodology istheill-
conditioned matrices associated with the two physical domains. A secondary
disadvantage is the inability to use existing CFD codes because they do not account for
the interaction with the structure. In addition, the codes can not be readily extended to

include thisinteraction. Thus, the method does not take full advantage of these
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specialized and well-trusted programs. The extensions of the multifunctional capability
will focus on the loosely coupled method.

The procedure for aloosely coupled method is given by (1) advance the structural
system under the fluid-induced load, (2) transfer the motion on the wet boundary (e.g.,
the fluid-structure interface) of the structure to the fluid system, (3) update the fluid
dynamic mesh accordingly, (4) advance the fluid system and compute new pressure and
fluid stressfields, and (5) convert the pressure and stresses into structural loads. The
multifunctional approach is applicable to steps two and five in the procedure outlined.
These steps are concerned with the transfer of datafrom a CFD grid to aCSM grid. Data
transfer is complicated by the fact that there are basic differences between the nature of
the solution methods. CFD analyses are concerned with the flow field surrounding the
surface exposed to the flow. Thus, a CFD grid is very fine around the exterior of an
airfoil, wherever changesin the flow field characteristics (i.e., boundary layer effects) are
expected to be maximum. Conversely, CSM methods examine airloads on the surface
and how these loads affect the internal structure. CSM grids lie on the surface within the
airfoil and are oriented to the structural components. Thus, CFD and CSM grids differ in
grid density and data transfer requires extrapol ation and interpolation of discipline-
specific field variables.

Smith et al.*® evaluated computational algorithms to interface CFD and CSM
grids. Inthisreference, severa candidate algorithms for passing information from the
fluid regime to the structural regime were evaluated and the disadvantages of each were
discussed. In addition, aload and motion transfer method based on the conservation of

momentum and energy has been developed by Farhat™. In thisreference, a conservative
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algorithm for computing the loads induced by afluid on a structure is discussed. This
algorithm was shown to be accurate, robust and reliable for transferring data from a CFD
grid to a CSM grid not only when the discretization differed, but also when the grids did
not share the same geometry as in beam or wing-box geometric models (see Figure 5.19).
In the figure, the structural surface is denoted by I's and the fluid surface is denoted by
. The beam model is representative of the use of a beam finite element model to
idealize the structural component within the airflow. The wing-box model is
representative of a plate and shell finite element model to idealize the component in the
flow. The multifunctional methodology developed herein provides an alternate
conservative agorithm for transferring data from the CFD grid to aCSM grid. In
general, the methodology can be used to transfer data among many different disciplines.
Further development of the methodol ogy to atwo-dimensional (surface) interfaceis
required. This development follows the approach presented by Aminpour et al.* for

coupling three-dimensional finite element meshes.
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Figure 5.19. Beam and Wing-box Structural Models.

The governing equations for multifunctional analysis of vector-field problems

have been developed in Chapter [11 and are givenin Egs. (3.32) and (3.34). Discretized
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equations are given for solid mechanicsin Eqg. (3.57) and for fluid mechanicsin Egs.
(3.60) and (3.61). Inthese systems of equations, the third equation represents the
subdomain discretization mapping from one subdomain to another subdomain. This
equation is given by

Ouq O
Kia=0 or [K|l K|2]EV1%:0 (5.1)
2

where the variables with a subscript 1 represent a solid subdomain and the variables with
asubscript 2 represent a fluid subdomain. At this point, consider that the loads, a,, on
the CFD grid are known. Eg. (5.1) can be used to solve for the unknown structural loads,
aq, provided that matrix K|, is square and invertible (i.e., the number of pseudo nodes

used to describe the generalized displacement along the interface is equal to the number

of Lagrange multipliers). Therefore,
ay =K [iK 1,02 (5.2)
and

Cotq O -1
! %_KHKIZ%Z:AQZ.
=

Moreover, it can be shown that KA =0 %, That is, the matrix A spansthe null space of
matrix K.

The fourth and fifth partitioned equations of the system of equations, given in
Egs. (3.57), (3.60) and (3.61), may be used to interpolate the structural deformationsto
thefluid grid. Recall that these equations are associated with the generalized
displacements on the interface and thus, the generalized displacement vector may be

partitioned as
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= L= _RS
up=0; Oandsimilarly u, = 0
=gl= B28

where the subscripts, i and o, represent generalized deformations on the interface and
within subdomain 1 or 2 (e.g., not on the interface). As such, the fourth and fifth

equations are given as
Kplui1+K|T1u| =0 and szui2 +K|T2u| =0
or
Kpu' +Ku; =0.
Premultiplying this equation by A" yields
ATK pu' +ATK Uy =0
Since ATK|T =0,
ATKpu' =0 and ATK p uj +ATK ; ub =0
or
Kyuh +Koub =0 (5.3)
The variables, uil, are associated with the known structural deformations from the
structures grid, and the variables, uiz, are associated with the unknown deformations to

be imposed on the fluid grid. Given that the matrix K » issquare and invertible, Eq.

(5.3) can be solved to obtain the unknown deformations. Therefore,

ui2 = —K'ZlKluil (5.4)
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The values, ui2 , can now be used in the CFD code to update the surface deformation and

to calculate a new set of surface loads. With Egs. (5.2) and (5.4), the multifunctional
methodology described herein may be extended to the multiple-domain analyses of
different disciplines.

5.5. SUMMARY

In this chapter, the multifunctional methodology has been described and
demonstrated for vector-field problems in engineering science. The selected problems
included problems of solid mechanics and fluid mechanics. The governing equation in
each case is the equation of linear momentum. In addition, for fluid mechanics,
continuity conditions are required. The analyses performed have demonstrated the
effectiveness and accuracy of the solutions obtained for the respective problems. In all
cases, the results obtained using the multifunctional methodology were in overall good
agreement with the reported analytical or reference solution.

Based on the findings for the vector-field problems, extensions of the
multifunctional collaborative methodology to multiple-domain analyses of different
disciplines have been briefly investigated. An exploratory examination of the extensions
illustrates the applicability of the methodology to loosely coupled multiple-discipline

applications.
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CHAPTER VI

CONCLUSIONSAND RECOMMENDATIONS

6.1. GENERAL

Multifunctional methodologies and analysis procedures have been formulated for
interfacing diverse domain idealizations including multi-fidelity modeling methods and
multiple-discipline analysis methods. The methods, based on the method of weighted
residuals, ensure accurate compatibility of primary and secondary variables across the
domain interfaces. Methods have been developed for scalar-field and vector-field
problems. The methods have been rigorously developed for multiple-domain
applications, and the robustness and accuracy has been illustrated. Multi-fidelity
modeling approaches have been developed that include both homogeneous (i.e., the same
discretization method in each domain) and heterogeneous (i.e., different discretization
methods in each domain) discretization approaches. Results have been presented for the
scalar- and vector-field multifunctional formulation using representative test problems.
Associated computational issues are also discussed. In addition, the extension to

multiple-domain analysis with different disciplines has been discussed.

6.2. CONCLUSIONS

The multi-fidelity modeling of domains has been devel oped for homogeneous and
heterogeneous discretization approaches for both scalar- and vector-field problems. The
finite element and finite difference methods and combinations thereof have been used in

each of the discretization approaches.
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Multi-fidelity modeling

Several general conclusions regarding the multi-fidelity modeling approaches can
be made. First, each of the multiple-domain approaches leads to a non-positive definite
system of equations, which impacts the solution strategy. Second, modeling flexibility in
the multiple-domain method isincreased at the expense of additional degrees of freedom
introduced to the system of equations. However, the modeling advantage gained
outweighs the computational expense due to the additional degrees of freedom, and the
impact of the increased number of degrees of freedom due to the interface constraintsis
reduced as the overall problem sizeisincreased. Third, while the multifunctional method
encompasses heterogeneous discretization approaches using the finite difference method,
the limitations regarding its use in the presence of complex boundary conditions and
configurations restrict the method’s general-purpose use. Fourth, in general, the
homogeneous and heterogeneous multiple-domain approaches using the finite difference
discretization in one or both domains yield systems of equations that are not symmetric.
This lack of symmetry is due to the use of the Dirac delta function as the weight function
in the formulation. This function is introduced in the constraint integral used to form the
coupling matrix in the upper triangular part of the system matrix. The finite difference
“shape function” is used in the corresponding constraint integral used to form the
coupling matrix in the lower triangular part of the system matrix. In fact, in the finite
difference method, there may be a lack of symmetry in each of the independent

subdomain “stiffness” matrices due to the imposition of the boundary conditions.
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Scalar-field problems

Conclusions regarding the multiple-domain modeling approach for the scalar-field
problem include the following statements. First, scalar-field problems introduce many of
the computational issues associated with the multifunctional approach. Second,
satisfaction of the boundary conditions for the scalar-field problem using finite difference
discretization is more straightforward than for the vector-field problem. The five-point
template used to approximate the derivatives does not introduce difficulties at the corners
of the domain, asis the case with the nine-point template used in the vector-field
problem. Third, fictitious nodes are avoided by evaluating the governing equations only
at the interior grid points of the domain. The essential and natural boundary conditions
are applied at the boundary nodes with higher-order forward and backward difference
approximations used for the first derivatives present in the natural boundary condition
equations. Fourth, the governing equation is evaluated at the nodes along the subdomain
common boundary. Straightforward central difference approximations are used at the
Interface to represent the interface tractions, which in turn are used to eliminate the
fictitious nodes at the common boundary.

Vector-field problems

Based on the studies of the multiple-domain modeling approach for the vector-
field problem, the following conclusions are drawn. First, the use of the finite difference
method for the vector-field problem (e.g., plane stress problem) was far more
complicated than for the scalar-field problem. The traction and displacement boundary
conditions and the necessity to introduce and eliminate fictitious nodes outside the

domain boundary greatly complicate the development. Second, the nine-point template
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required in the finite difference approximation of the governing equations of the
continuum introduces the need for aternative higher-order forward and backward
difference approximations of the cross-derivatives present in the equations. Third,
because of the difficulties associated with the first and second conclusions, the
homogeneous and heterogeneous modeling approach using the finite difference method
in one or both subdomainsis not as attractive for vector-field problems as for scalar-field
problems. Fourth, the governing equation is evaluated at the nodes along the subdomain
common boundary. Complex manipulation of the nine-point template is required using
forward and backward difference approximations of the cross-derivativesin order to limit
the introduction of the fictitious nodes to the node along the common boundary at which
the governing equation is being evaluated. This requirement is automatically satisfied in
the scalar-field problem by the five-point template. The interface tractions are used to
eliminate the fictitious nodes at the common boundary.

Limitations

While arigorous multifunctional formulations has been presented, there are

limitations in the implementation. Note that the purpose of the implementation described
herein was to demonstrate the capabilities of the multifunctional approach on a set of
representative benchmark problems. With thisin mind, the limitations of the current
implementation are as follows:
* Thenodes or grid points at the ends of the common subdomain boundary of each of

the subdomains must coincide.
* Inthefinite difference method used, at least three nodes are required in each of the

coordinate directions where traction boundary conditions are imposed.
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» Extreme care must be taken to perform accurate input and output using data-exchange
files (in this work, double-precision floating-point accuracy).

« The development of theinterface routinesin MATLAB" limits the size of problem
that may be analyzed.

* Cubic splines are used on the subdomain common boundary, which requires at |east
four unique nodes along this boundary.

* Theimplementation is limited to one-dimensional straight or curved common
subdomain boundaries.

* The geometry is assumed to be conforming. That is, each of the subdomains describe
the same geometry along the common boundary.

In this work, the benchmark vector-field problemsillustrated require only C°
continuity (continuity of the primary variable). Thus, continuity of the primary variable
is maintained along the subdomain common boundary through the interface constraint.
For plate bending problems using classical plate theory, C* continuity isrequired. In this
case, continuity of the primary variable and its derivative is maintained along the
common subdomain boundary. Here, the derivatives are approximated in the same
manner as the primary variable. That is, cubic spline functions are used to approximate
the generalized variables along the common subdomain boundary. Results for a wider
range of problems including a plate bending problem have been given in reference 25.

Summary of Results

Results were presented for the scalar- and vector-field developments using
example patch test problems. In addition, results for torsion, heat conduction and

potential flow problems have been presented to demonstrate further the effectiveness of
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the scalar-field development. Results for plane stress and plane flow problems have been
presented for the vector-field development. Resultsfor all problems presented arein
overall good agreement with the exact or reference configuration by which they were
evaluated.

The multifunctional methodology presented provides an effective mechanism by
which domains with diverse idealizations can be interfaced. This capability promisesto
provide rapidly the high-fidelity data needed in the early design phase. Moreover, the
capability is applicable to the problemsin the general field of engineering science and
mechanics. Hence, the methodology provides a collaborative capability that accounts for

discipline interactions among many disciplines.

6.3. RECOMMENDATIONS FOR FUTURE WORK

Future studies related to the present work are recommended. The present work

provides a starting point for the following additional studies:

1. Explorethe use of afinite difference energy method, which aleviates many
of the issues associated with the proper identification of boundary conditions
and the use of irregular grids.

2. Evaluate the performance of the methodology for the analysis of more
complex structures and fluid flow problems.

3. Extend and implement the multiple-discipline capability.

4. Develop other analysis capabilities including thermal analysis, modal and
buckling analysis, dynamic analysis, and nonlinear analysis.

5. Develop other heterogeneous multiple-domain discretization approaches such

asthe use of the finite element and boundary element methods.
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6. Develop strategy to exploit massively paralel processing (MPP) computer
systems.
7. Incorporate computationally intelligent strategies to identify where and when

homogeneous or heterogeneous approaches should be used.
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APPENDIX A

OVERVIEW OF STEPSIN ANALYSISAND SIMULATION

Multifunctional collaborative methods should address four typical steps of
analysis and design, namely, (1) representation or modeling of the geometry, (2)
knowledge-based selection and development of appropriate mathematical models (i.e.,
idealization/discretization), (3) solution of the mathematical model (continuous and/or
discrete), and (4) interrogation/assessment of the results. These steps provide the
foundation for enhanced integrated design and analysis tools, and the steps are briefly
outlined in this appendix.

Geometry Modeling

To represent the structural geometry (geometry modeling) a geometric model is
created to represent the size and shape of a system component. In aerodynamic and
structural analyses, a common three-dimensiona parameterized description of the
airframeis shared. Geometry modeling is the starting point of the product design and
manufacture process and is the first step in using a computer-aided design/computer-
aided manufacturing (CAD/CAM) system®” The accuracy of the geometric model and
the way in which it is structured has far-reaching effects on other CAD functions such as
finite element analysis, drafting, and numerical control (NC) part programming.
CAD/CAM systems can be utilized to develop a design and monitor and control the
manufacturing process from start to finish. Numerous CAD software packages® for
defining the geometry of structural systems are commercially available.

Computer-aided engineering (CAE) has facilitated the assimilation of the

engineer/analyst earlier in the design stage as an engineer in-the-loop. Typically, this
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cycle leads from the design engineer to the analyst and back to the designer. A critical

aspect of this cycleisthe time required to generate analysis models, perform the analysis

and decide if changes are needed. However, new trends in modeling and simulation are
redefining the roles of the designer and the analyst. Many companies are now turning
designersinto analysts. The underlying philosophy guiding this paradigm shift is the

desire to give designers the tools needed to predict a design’s performance early in the
process, rather than just to define its geometry. These tools also embody a knowledge
base to guide the designer through various analysis steps. Moreover, this new paradigm
allows the highly specialized analysts to impact the design by performing more complex
analyses to determine the structural integrity, the potential failure mechanisms and the
complex response characteristice.{ material or geometric nonlinearity), and
multidisciplinary characteristics of the design.

This role redefinition can succeed only if enough analyses are performed early in
the design process to identify critical design parameters, evaluate their interactions, and
determine the best overall design. To expedite this process developers of computer-aided
design (CAD) and analysis software have integrated the CAD and analysis functions.
Such software integration and database coupling frequently enables designers to perform
analyses directly on geometry, thus reducing the time required to prepare analysis
models.

Idealization/Discretization

To develop discretized mathematical models of aerospace systems, several
approximate numerical analysis methods have evolved over the years. The most

commonly used discretization methods are the finite difference method and the finite
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element method. The finite difference method of a configuration gives a pointwise
approximation to the governing equations. While finite difference techniques are widely
used in fluid dynamics and can treat fairly complex problems, they become hard to use
when irregular geometrical shapes or unusual boundary conditions are encountered. This
adverse attribute is particularly significant in structural analysis. In contrast, the finite
element method is widely used for the analysis of many engineering problemsinvolving
static, dynamic and thermal stresses of structures. Typica input for afinite element
analysis program consists of the geometric idealization, the material properties, the
loading, and boundary conditions. The area of greater difficulty in the finite element
technique lies in the geometric idealization, that is, representing the geometry of the
structure by a suitable finite element mesh. Element aspect ratio, taper, and skew are
characteristics that adversely affect the performance of many finite elements in use today
and thus are factors in determining the suitability of amesh. Asthe complexity of
structural configurations and material systems being modeled with the finite element
method has increased, manual mesh generation has become extremely tedious, time-
consuming, expensive and consequently, intractable. Thislimitation is alleviated through
the development of automatic mesh generators, which are typically integrated within the
finite element modeling software and often integrated within the CAD system. These
mesh generators are powerful tools for discretizing complex structural configurations.
Issues associated with idealization still arise such as whether to use solid finite elements
or shell finite elements. However, if the CAD and analysis engines are not driven from
the same geometry, the tranglation of geometry may introduce errors in analytical models.

In addition, due to the geometric complexity of such configurations, even the most robust
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automatic mesh generator can often require analyst interaction to establish a suitable
mesh and to provide engineering insight into the proper finite element to be used in the
analysis. For example, some automatic mesh generators place three-dimensional models
where two-dimensional shells should be used, which may distort the results.

Response Prediction

To solve the discrete system of simultaneous equations resulting from the
discretization process and subsequent finite element assembly operations, myriad solution
strategies have been developed for obtaining efficiently the unknown nodal values of the
field variable or the primary unknowns. Two families of methods for solving linear
systems of algebraic equations can be distinguished: direct and iterative equation solvers.
The former can be defined as leading to the solution of alinear system in one step, while
the latter will require many iterative steps. If the equations are linear, a number of
standard solution techniques may be used which generally include either an iterative or
direct solver. If the equations are nonlinear, their solution is more difficult to obtain. All
approaches will necessarily be repeated solution of linearized equations. A common
solution method used to solve nonlinear systems of equations is the Newton-Raphson
incremental -iterative solution procedure, which is accurate and converges for highly
nonlinear behavior. High-performance equation solvers are a key component of solution
strategies for linear and nonlinear structural response calculations for static, dynamic and
eigenvalue problems in finite element analysis. There has been a plethora of researchin
the area of equation solvers for large-scale aerospace structures with only representative
works referenced herein. Matrices resulting from discretization of structural systems are

generdly real, symmetric, positive definite, banded, and sparse. The performance of
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iterative and direct equation solvers has been compared to identify the most appropriate
tool for the solution of equations arising from structures systems™. Thiswork identified
advantages and disadvantages of both types of solvers. The study concluded that the
relative performance of solvers depends on the amount of computations as well as the
rate at which operations can be carried out on a given computer.

Direct sparse solvers were found to be most attractive for models composed of
higher-order finite el ements, where they benefit most from a greatly reduced operation
count. Sparse direct techniques are efficient improvements over first-generation direct
methods that require more operation counts and larger memory capacity®. The number
of operations in a sparse method are significantly reduced through reordering and storage
strategies that effectively compress the global stiffness matrix into aformat that exhibits
agreater degree of nonsparsity prior to factorization and thus substantially reduces the
associated computational costs. Iterative methods require much less memory than direct
solvers, but their effective use depends on afast convergence rate, which has been found
to be best for finite elements with low aspect ratios. Skyline and variable band linear
equation solvers have been developed to exploit the matrix characteristics of structural
systems and to exploit the full capabilities of parallel and vector supercomputers®. More
recently, general-purpose equation solvers have been devel oped for complex,
nonsymmetric, indefinite, and dense matrix characteristics, which are prevaent in
disciplines such as electromagnetic and acoustic analysis®. Over the years, equation
solvers have been devel oped to take advantage of the rapidly increasing computational
power afforded by vector and parallel high-performance computers. These ultra-rapid

equation solvers coupled with the maor advances in computational power now available
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in desktop persona computers and workstations have made it feasible to perform high-
fidelity analyses in the preliminary design stage. However, additional developments are
required to perform real-time large-scal e anal yses within an interactive virtua reality
analysis and design environment. More intensive reviews of equation solvers may be
found in the open literature (e.g., references 63, 64, and 65).

Assessment of Results

The fourth and final step in the analysis and simulation processisthe
interrogation of the results. In years past, the engineer would spend an enormous amount
of time plowing through pages of computer output while waiting for results from
additional analyses. With the increased speed and efficiency of today’s equation solvers,
the rapid interrogation of results becomes decidedly more significant. It is at this step of
interpretation of results that the engineer must be integrally involved. Powerful pre- and
post-processing tools coupled with state-of-the-art computational technology provide the
engineer with a comprehensive tool set for creating and discretizing complex geometries,
performing analyses and visualizing results. Some software provide novel capability to
enhance the designer-computer interaction while interrogating results. Engineers can
view the results of parametric studies in a series of windows to identify or compare
important design parameters. In addition, analysis results from different design
approaches may be viewed in different windows and assessed to determine the most
feasible design. This and other such visualization capabilities facilitate the rapid
interpretation of analysis results, thus improving productivity of higher-order analyses
and providing an opportunity for the engineer/analyst to be an integral part of the design

process from concept to manufacture. Recently, immersive virtual reality environments
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for visualization and interpretation of geographically dispersed results have been
proposed as part of the NASA Intelligent Synthesis Environment (ISE) Initiative that
promises to revol utionize the design process™ ®’. Immersive environments are human-
scale computer-generated projection systems that allow usersto interact directly with
their datain three spatial dimensions. Emerging advanced engineering environments®®
will provide visual, auditory, and haptic feedback to further aid the engineer in detailed

assessment of results.
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APPENDIX B

CUBIC SPLINE INTERPOLATION MATRICES

The interpolation matrices used in the deformation and geometry assumptions of
the multifunctional approach are outlined in this appendix. Given aseries of points X;
(i =0,1...,n) which are generally not evenly spaced, and the corresponding function
values f(x;), the cubic spline function denoted g(x) may be written as

U 3 H
g E(X' LT X (Xaq — X)X 9,041 E(X x) - Ax; (x-x )0
6 H Ax, H 6 SN H

O -x )0
)
O O O

a ﬁﬁ“zi :
(B.1)

where Ax=Xi+1 — % and g,xx denotes differentiation twice with respect to x. This equation

provides the interpolating cubics over each interval for i =0,1,...,n —1 and may be given

in matrix form as

g= 'f'lg,xxﬁ'zf (B.2)
For each of the k values of x at which the spline function isto be evaluated, X< X <Xj+1,
k=12 ... p, and p isthe number of evaluation points. The 'fland %2 matrices may be

written in the form
é(u) ¢ st é((tz )2 ((fz))lnﬂg
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Note that there are, at most, two nonzero coefficientsin each row of the 'f'l and T 2
matrices given above.
Applying additional smoothness conditions (i.e., equating the first and second

derivatives of adjacent interpolating cubics at x;) yields a set of simultaneous equations of

theform
(A _, O [P(x .1 — x )0
mx'—_ltg,xx(m-lﬁBMEQ,XX(&Hl]g,XX(m)
08% 0 O & [

i=12..,n-1  (B.3)

o2 () = F04) _ F(x)=f(x)2
O e )% g

If the x; are evenly separated with spacing Ax, then the Eq. (B.3) becomes
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[1]9’xx (Xi —1) + [4]g1xx (Xi )+ [1]gaxx (Xi +1)

_ GEf (X;.41) - 2f (Xlz) +f(x —1)% : (B.4)
§ (ax) §

Egs. (B.3) and (B.4) may be written as
AQg, y = Pf (B.5)
The coefficients of matrices A and P are dependent upon the end conditions, which are

discussed in the following section.

End Conditions

Whether the equations are of the form of Eq. (B.3) or Eq. (B.4), therearen-1
equations in the n+1 unknowns g, (xo), 0, xx (xl), o O xx (xn). The two necessary
additional equations are obtained by specifying conditions on g,« (Xo) and g,x« (Xn). For a
natural spline, g,x« (X0)= J:x (Xn) =0. However, in thiswork, these second derivatives are
calculated by differentiating (twice) a cubic function which passes through the first four
pseudo-nodes along the interface path and another cubic function that passes through the

last four pseudo-nodes along the interface path. Evaluating this cubic function,

a(X) = g+ X + ax? +agx>, and at the first four points gives

Blo)0 1 % ¢ R0

Hg(xl)H_g, X1 x12 xf’ H or Na=

O \O= 5 gl O a=g  (B.6)
EQ(XZ)D % Xp X3 X200

ﬁJ(Xs)E A X3 x§ xéf’ q=

Solving for the coefficients yields a = N'lg or
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(o [y M M3 My

(Lo
EﬁhH_ %‘21 N2 Mp3 Mpg
|:| =
o sy gy ez Ny
Ul
FesH ar Nz Mgz Nyg

Xo)0
(Xl)H
0 (B.7)

(Xz)m
(x3)B

From the cubic function, J,xx (x) = 2ay + 6agx where ap and ag are determined
from Eqg. (B.7). Equation (B.7) isvalid for evenly spaced as well as arbitrarily spaced
points. Similar expressions are obtained for the cubic function passing through the last
four points where coefficients of the inverted matrix similar to thosein Eq. (B.7) are

denoted Ny for kI =1,...,4. With these end conditions, the matrices of Eq. (B.5) are

given for equally-spaced points as

@1 0 O O

O

% 4 1 0

0 1 4 1 O

A=[ O

O O

O 1 4 10

s 0O 0 1D
g D(n+1x n+1)
Bpl P2 P3 P4 B
06 -2 6 i
LAX AX AX [l
B 6 -12 6 B
and P=0 — — — O
0 AX AX  AX 0
[l [l
O O
O _ I

D pl p2 p3 4Qn+1x n+1)

where py = 2ng, + 6Ny and Py = 2Nz, + 6Ty for k| =1,...,4. For unevenly spaced

points, the tridiagonal A and P matrices may readily be obtained from Eq. (B.3).
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Expressing g(x) in Terms of Functional Values f(x;)

In EQ. (B.2), the spline function g(x) is expressed in terms of the functional values

f(x;) aswell as second derivatives of the spline function, g.x (Xj). However, it isdesirable
to express g(x) in terms of the function values f(x;) only. This manipulation is done by
solving for g,« (Xj) in Eq. (B.5) yielding
Ui = AP (B.9)
Substituting in Eq. (B.2) yields
g(x)= TLATIPf + Tof = (flA ps 'T'z)f =Tf, (B.9)

Derivatives of the spline function are obtained by differentiating Eq. (B.9) yielding

9,x(x)= (%1)»( A7lpf + ('Arz),xf = l(-i-l)’x AP+ ('Arz),x]f =Txf  (B.10)

')1,1 (EAll)Lz (EAll)Ln+1B

mQ
] ':)2,1 (ti:)z,z (t],.)?,nﬂg and('fz),f E(f’:)z,l (f’ :)2 2 (f' ):2,n+1g
i - C 0 n ,\ e 0
t,)p,l (t],.)p,Z (ti)p,n+1g t: )p,l ( , )p 2 (tIZ)p,n+1E

O
O
ED forx <% orxg > X4
£ 3 i B 2 . .
(ti)kJ:%%_ (X|+1 Xk) +A)(i% fOI’XiSXkSXH_l and J:|+]_ ,
N = A
O
v )2
B%M_A)ﬁ% forXiSXkSXH_l andJ:|+2
5E A% g

and
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U
Ep for x <X Or X > %41

~, H-1 L
(tZ)k': A—XiforxiskaXiﬂ and j=i+1 ,

]
O
=1 f dj=i+2
00— for X <X, <X an =1+
i XS X=X+ J

Again, note that there are, at most, two nonzero coefficientsin the (‘i’l),x and (‘i’z),x

matrices. In thisderivation, x has been used as the independent variable. However, in
the context of the interface definition herein, sis the independent variable and is
substituted for x in the derivation in Appendix C. For the displacement assumption, the
matrices developed for equally spaced points were used. For the geometry assumption,

matrices for unequally spaced points were used.
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APPENDIX C

DERIVATION OF INTERFACE GEOMETRY

C.1. GENERAL

In theinitial development outlined in reference 25, the interface path, ' was
defined by piecewise linear segments. For curved interfaces, this definition only
approximates the true curved geometry. The error in this approximation is afunction of
the interface path curvature and the number and location of the subdomain nodes along
the interface. In addition, the interface path was computed along each subdomain
independently, thus producing two different interface geometry definitions. For a
structure with mild curvature, the error in the interface path definition did not influence
the accuracy of the solution obtained in the analysis™. However, for problems with
moderate to large curvature, this error may be large and adversely influence the accuracy
of the interface element analysis.

In the present work, the element interface geometry is determined in one of two
ways. (1) by specifying the function that represents the exact geometry of the interface
(i.e., thelinear interfaceisthetrivial case) or (2) by passing a spline of the desired order
(typically acubic spline) through the specified coordinate data points to determine the
function representing the geometry. In either case, the specified or computed function is
parameterized and its first derivative is used to determine the arc length along the
interface geometry of the subdomains as well as the interface boundary. Thus, in contrast

to the earlier work, the interface geometry definition is a more accurate representation of
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an arbitrarily curved geometry. In addition, only one interface path geometry is defined,
and all the finite element nodes along that interface lie on that geometry.

For a curved geometry, the most general way of determining the interface path of
the two approaches mentioned previously is by using the latter approach (i.e., passing a
cubic spline through the specified coordinates). In this case, a smooth curveisfit to the
set of spatial coordinates by computing three cubic spline functions (one for each
coordinate direction) expressing the coordinates as functions of a chordal distance
parameter. The derivatives of these functions are obtained by differentiating the
interpolating function. These derivatives are used in the parametric definition for the
length of the arc between two points to compute the arc length between each of the
specified coordinates. The spatial coordinates of the finite element nodes along each
subdomain boundary provide the input for the interface geometry definition. These nodal
coordinates are used to construct the function representing the curved geometry and to
determine the arc length of the path. The associated variable, s, is computed aong the
subdomain boundaries. The number of evenly-spaced pseudo-nodes is determined
internally or from the used-specified value after which the path variable, s, is computed
along the interface path. See Appendix B for abrief discussion of the cubic spline used
asthe basis for the geometry representation.

C.2. GEOMETRY REPRESENTATION

The arc length or interface path is derived in this appendix. The spatial

coordinates of finite element node i are given by x;, yi, and z. The curve may be

represented parametrically by
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x =x(r)

y=y(r)
z=2(r)

where r; = \/(xi+1 —% )2+ (yie1- v )* + (@1 -2 ). Smooth cubic splines are fit
through each of these coordinate functions. These coordinate functions are then

expressed as

X(r) = Txg
y(r)=Tys
Ar)="Tzg

where T isamatrix of interpolation functions (see Eq. B.9 in Appendix B) and is
evaluated at the pointsrj. The vectors X, Ys, and zg contain the sorted nodal coordinates,
Xi, ¥i, and z, aong the interface (i.e., the concatenation of the nodes from each of the
subdomains to which the interface element is attached).

The length of the arc between each of the points along the interface may be

calculated immediately as

)= | J@‘DzJ,@DerEEDz

i Yodr B tar & Car U
and

d

d_)r(:X’r(r):Tst

d

d—{:y'r(r):T’rYS

g:Z’r(r):T’rZs

dr
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where T,, isobtained by differentiation of the interpolation matrix T with respect to the
independent variable, r, (see Eq. B.10 in Appendix B) and is evaluated at points, ri. The
variable, s, is called the parameter of the arc length or the path variable herein. This
variable measures the distance along the curve given by the parametric equations above.
Thus, the arc length, s(rj) is obtained by numerical integration using Gaussian quadrature
with four quadrature points. The path variable, as previously defined, is associated with
the coordinates of the finite element nodes along the interface. The path variable, s, for
the pseudo-nodes is computed by dividing the total arc length into equal segments. This
total arc length is determined by summing the arc length between each set of two points,
ri-g and rj, over the total interface path to obtain the total arc length. In addition to the
path variable, s, at the | pseudo-nodes, the coordinate location of these pseudo-nodesis
also desired.

Moreover, in general, acomputational coordinate frame is established along the
interface; thus, the tangent to the interface path isdesired. These calculations are
addressed in the following discussion.

Upon obtaining the path variable at the finite element nodes along the interface,

the coordinate functions may now be expressed as

x = x(s) =Txg

y=y(s) = Tys
z=27(s)=Tzg

Here, the interpolation matrix T is evaluated at the path coordinates, s, of the pseudo-

nodes yielding desired x, y, and z coordinates. The unit tangent vector to the interface



path is obtained by differentiating the coordinate functions with respect to the path
variable, s, and is given by

X’S(S):T’sxs
Yis (S) =T,sYs
Z’s(s) =T,sZs

where T4 isevaluated at the path coordinate, s, of the pseudo-nodes and the finite

element nodes. The tangent vector isthen given by
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