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ABSTRACT 

A subscale aerodynamic model of the GTX air-breathing launch vehicle was tested at NASA Glenn Research 
Center's 10- by 1 O-Foot Supersonic Wind Tunnel from Mach 2.0 to 3.5 at various angles-of-attack. The objective of the 
test was to investigate the effect of angle-of-attack on inlet mass capture, inlet diverter effectiveness, and the flowfield 
at the cowl lip plane. The flow-through inlets were tested with and without boundary-layer diverters. Quantitative 
measurements such as inlet mass flow rates and pitot-pressure distributions in the cowl lip plane are presented. At a 
30 angle-of-attack, the flow rates for the top and side inlets were within 8 percent of the zero angle-of-attack value, and 
little distortion was evident at the cowl lip plane. Surface oil flow patterns showing the shock/boundary-layer interaction 
caused by the inlet spikes are shown. In addition to inlet data, vehicle forebody static pressure distributions, boundary­
layer profiles, and temperature-sensitive paint images to evaluate the boundary-layer transition are presented. Three­
dimensional parabolized Navier-Stokes computational fluid dynamics calculations of the forebody flowfield are presented 
and show good agreement with the experimental static pressure distributions and boundary-layer profiles. With the 
boundary-layer diverters installed, no adverse aerodynamic phenomena were found that would prevent the inlets from 
operating at the required angles-of-attack. We recommend that phase 2 of the test program be initiated, where inlet 
contraction ratio and diverter geometry variations will be tested. 

INTRODUCTION 

The GTX (formerly Trailblazer') is a highly reusable Single-Stage-to-Orbit vehicle concept that uses air-breathing 
propulsion (Fig. 1 (a)). The concept is based on a Rocket Based Combined Cycle (RBCC) engine (Fig. 1 (b)) , which is 
designed to operate from lift-off to orbital insertion in four modes, (1) air-augmented rocket at lift-off, (2) ramjet at 
supersonic acceleration, (3) scramjet at hypersonic speeds to about Mach 10, and (4) all rocket to orbit. The vehicle 
design philosophy is to take advantage of air-breathing propulsion performance while maintaining a robust structural 
efficiency, leading to three semi-axisymmetric engine pods equally spaced at 1200 intervals around the aft section of 
the vehicle. This configuration provides good structural efficiency and a total thrust vector directed along the vehicle 
axis. In addition , three separate propulsion pods allow forebody boundary-layer flow diversion and enable each inlet 
to have a simple translating centerbody with minimum mechanical support. Toward the aft portion of the vehicle, it 
also allows the nozzles to be integrated with the vehicle base. 

The performance of the GTX-RBCC engine depends strongly on the inlet mass capture and on the compression 
generated by the translating centerbody. The vehicle forebody also provides some compression at supersonic 
speeds and a significant amount of compression at hypersonic speeds. The inlets must have acceptable flow quality 
during all air-breathing modes of operation at the required vehicle angles-of-attack, CJ.. 

The objective of this experiment was to determine the effect of CJ. on inlet mass capture from Mach 2.0 to 3.5, to 
examine pod-to-pod and forebody-to-inlet flow interactions, and to study inlet diverter and diverterless configurations. 
In addition, the test was to help validate computational fluid dynamics (CFD) calculations regarding the forebody 
flowfield obtained with a three-dimensional parabolized Navier-Stokes code. 

APPARATUS AND PROCEDURE 

MODEL GEOMETRY 

The GTX reference vehicle model was tested at the NASA Glenn Research Center's 10- by 1 O-Foot Supersonic 
Wind Tunnel2 in early 2000 and it was modeled from the forebody tip to the cowl lip plane as shown in Figs. 2 and 3. 
It consisted of a vehicle forebody and three sets of an inlet, a cold-pipe, and an ASME flowmeter nozzle. The bottom of 
the model vehicle was attached to the tunnel ceiling strut, as if the vehicle were flying upside down, to simplify the model 
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installation in the tunnel test section. For the remainder of the report, we assume that all circumferential angles around the 
forebody are clockwise direction from the top of the vehicle and are looking upstream. Also, we assume that the angle-of­
attack is with respect to the vehicle , not the model. 

The fore body extended from the tip to about 3.112 in . (7.904 cm) downstream of the inlet centerbody tips (96.446 in. 
(244.973 cm) long), and smoothly transitioned into a constant-diameter cyl indrical section. The forebody geometry was 
defined by the following parabolic equation : 

R (in.) = - 0.001161 x2 + 0.223958 x 

where R is the radius of forebody at each axial location, x. 

This equation gives a 12.6° nose half-cone angle, which is slightly different from the reference vehicle's angle, 10.0°. This 
arrangement was made to make the inlet centerbody nose tips coincide with the forebody surface for the diverterless 
configuration. Toward the end of testing, 0.50-in.- (1 .27-cm-) wide grit was applied around the forebody at x = 3.000 in. 
(7.620 cm) to trip the boundary layer. 

For the configuration with diverters, each inlet, as shown in Fig. 2(b), consisted of a single fixed 12° half-angle spike 
tip centerbody without any internal contraction, a cowl lip of 6.622-in. (16.820-cm) radius at X = 118.274 in. (300.416 cm) 
with an inlet capture area of 77.388 in.2 (196.566 cm2

) and a 12° half-angle diverter pylon with the edges of the 
centerbody spike overhanging. The inlet centerbodies were positioned for the Mach 2.5 flight condition simulating up to 
0.250-in. (0.635-cm) downstream of the cowl lip plane, although the reference vehicle has translating centerbodies. 

For the diverterless configuration, the centerbodies were directly attached to the forebody cylindrical surface where 
the diverters had been positioned. In addition, three new cowl lips were installed with the same inlet captured area. 

Three cold-pipes with an internal diameter of 13.250 in . (33.655 cm) and a length-to-diameter ratio of 7 were 
constructed and attached to the cowl structures so that the mass flow rate captured by each inlet could be accurately 
measured with ASME flowmeter nozzles, as shown in Fig. 2(c). The ASME flow nozzle contour was designed, per the 
guidelines of the ASME Standard,3 such that the nozzles were choked and did not affect inlet mass capture at all test 
conditions. 

INSTRUMENTATION 

The model was instrumented with pressure probes and thermocouples. Using vehic le symmetry, much of the 
instrumentation was located on the vehicle port side to minimize the amount of instrumentation. 

The forebody had a total of 68 steady-state surface static pressure taps and they were in three rows at e = 0°, 
60°, and 90°. Six boundary-layer rakes were placed along the forebody at various circumferential angles and used in 
a combination of 2 or 3 rakes to avoid flow interactions between the rakes (see Table 1). In addition , four flowfield 
rakes were arranged at 2.500-in. (6.350-cm) downstream of the end of the parabolic forebody end and away from any 
inlet centerbody influence (see Table 2). 

The instrumentation for the vehicle top inlet consisted of 32 steady-state surface static pressure taps on the fixed 
centerbody and along the diverter. Also, three pitot pressure probe rakes were mounted at <P = 0°, 45°, and 90° on the 
centerbody at the cowl lip plane to obtain inlet cowl lip plane flowfield data, where <p is also in the circumferential 
direction clockwise looking upstream from the inlet apex. Because of symmetry, only one side of the top inlet was 
instrumented. The vehicle's lower right inlet was equipped with 52 steady-state surface static pressure taps on the 
fixed centerbody and along the diverter. For this inlet, five pitot pressure probe rakes were mounted at <p = -90°, -45°, 
0°, 45°, 90° on the centerbody at the cowl lip plane. For measuring inlet mass flow rates , the cold-pipes and ASME 
nozzles were instrumented according to the ASME standard and provided an uncertainty of less than 2.15 percent. 

To locate boundary layer transition on the forebody, temperature-sensitive paint (TSP) was applied to the 
forebody from the nose tip to the end of the parabolic forebody for a = 0° cases, and images were taken through a 
tunnel floor window and a schlieren window. 

TEST PROCEDURE 

Discrete free-stream Mach numbers of 2.0, 2.5, 3.0, and 3.5 were tested at the maximum available Reynolds 
number. During the test, the model was pitched in 3° increments from ex = _9° to +9° to study angle-of-attack effects 
on the forebody and inlet flowfield . Table 3 shows the test conditions for each test case. 
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During the first portion of the testing. forebody boundary-layer profiles were obtained at each Mach number and 
a. A number of tunnel runs were required. since two or three rakes were installed at a time. Then. pitot pressure data 
were obtained with flowfield rakes at x = 98.950 in. (251 .333 cm) for the same conditions. 

After removing all the forebody rakes. inlet mass flow rate and forebody surface static pressure measurements 
were made at each Mach number and a. During the test. the pressures inside each cold-pipe and around the nozzle 
base were monitored to ensure that the ASME nozzles were choked. 

Following the completion of the forebody boundary-layer survey. the flowfield measurements. and the inlet mass 
flow measurements. the surface oil flow was visualized between the vehicle top inlet and the lower right inlet. For 
th is study. th ree rows of 0.12S-in.- (0.318-cm-) diameter oil injection ports at x = 89.S00. 103.000. and 112.000 in . 
(227.330.261.620.284.480 cm) were used. During the flow visualization test. oi l was injected until the flow pattern 
reached steady state. and then pictures were taken through a schlieren window. The model was reconfigured to the 
next test condition while the tunnel was still running. and the previous procedure was repeated. 

Toward the end of the test. TSP was applied to the forebody. and images were taken for each Mach number at 
a = 0° to evaluate boundary-layer transition. 

RESULTS AND DISCUSSION 

The following experimental data and results are for the cases without the grit applied to the forebody except 
where it is specifically noted. 

INLET MASS FLOW RATES 

Figs. 4(a) and (b) show the mass flow ratios (m1/mc) as a function of a for each test condition. For the lower right 
inlet at all Mach numbers. the ratios were almost constant at positive a and decreased with increasing negative a . 
The severity of this reduction increased with Mach numbers. For the top inlet. the ratios varied almost linearly with a.. 
and the sensitivity of the ratios to a increased with Mach number. At a = 3°. the flow rates for the top inlet were within 
8 percent of the a = 0° cases for all Mach numbers tested. The angle-of-attack between Mach 2 and 3.S for the full­
scale reference vehicle trajectory ranged from -1 .S0 to 3.6°.4 The figure also compares the experiments with the 
theoretical Taylor-Maccoll solutions based on isolated inlet and free-stream conditions at a = 0°. The differences in 
the mass flow ratios between the experiment and theory may be attributed to (1) the forebody flowfield. (2) the inlet 
boundary-layer diverter. (3) the unsymmetrical inlet endwall between the end of the cowl lip and the centerbody. and 
(4) the centerbody boundary-layer effects. 

With the inlets mounted directly on the forebody cylindrical surface. the mass flow rates were measured at a. = 0° 
and compared with diverter-on cases and Taylor-Maccoll solutions in Fig. 4(c) . It is clear from the figure that the 
diverterless in let captures the least amount of airflow for all Mach numbers. On the basis of this and other 
observations. it is recommended that the diverterless inlet configuration should not be pursued for the GTX vehicle. 

COWL LIP PLANE PITOT PRESSURE DISTRIBUTION 

Figs. Sand 6 show cowl lip plane pitot pressure profiles for the vehicle's top and lower right inlets at M = 2.S and 
various a. As seen in both figures at a = 0°. the profiles between the top and lower right inlet are very similar and 
symmetric. However. as a. deviates more from a. = 0°. the profiles suggest a higher degree of flow distortion. Trends 
at other Mach numbers were similar. Fig. 7 shows the distortion coefficients at the cowl lip plane for all test 
conditions. The distortion coefficient is defined as follows: 

Dc = (1/S) { L [ (max(P2) - min(P2)) 1 avg(P2) Ji for i = 1 •... S } 

where the index "i " represents each circumferential "ring" of probes. 

Overall . at a near the reference vehicle trajectory angle-of-attack. very little flow distortion is observed for the top 
inlet and somewhat greater distortion is observed for the lower side inlet. 

BOUNDARY-LAYER PROFILES AND COMPARISON WITH CFD CALCULATIONS 

The CFD code (WIND)5 is a general purpose Navier-Stokes solver for structured grids whose three-dimensional 
Parabolized Navier Stokes (PNS) capabilities were used in this study. Both a turbulent (Baldwin-Lomax algebraic 
turbulence model) and a laminar model were implemented in the CFD analysis. The method was validated using the 
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acquired experimental results at all conditions. For the sake of brevity, only Mach 2.5 results are presented since they 
are representative of the other Mach numbers. 

Fig. 8(a) displays the static pressure distributions for the Mach 2.5 test case at a = 0°. The results from the CFD 
analysis are plotted with the corresponding experimental static pressure data. The CFD results are seen to compare well 
with the experimental data. At a = 0°, all static pressures at a given axial station along the circumference (a-direction) 
were approximately equal (i.e ., no pitch or yaw), so only the 90° line of statics was used for the comparison in Fig. 8(a). 

Fig . 8(b) shows TSP data for the Mach 2.5 case at a = 0°. A 0.50-in.- (1.27-cm-) wide grit was applied at x = 3.000 
in. (7.620 cm) to trip the boundary-layer to turbulent flow, and these experimental data were plotted with the no-grit 
data in th is figure. The equilibrium wall surface temperature of these two cases can be inferred by these TSP surface 
profile distributions. These data indicate a transition from a laminar to a turbulent boundary layer occurring along the 
forebody. The no-grit case shows a peak in temperature occurring between x - 20 and 35 in. (50 and 89 cm). The 
sudden increase in temperature is known to correspond to the beginning of transition.6 For the case with grit applied, 
the peak is no longer present and has been replaced by a fairly uniform temperature distribution downstream of x = 
3.000 in. (7 .620 cm), indicating turbulent flow. 

A comparison of CFD with flowfield rake data, obtained at the x = 98.950-in. (251.333-cm) axial location , is 
presented for the Mach 2.5 case at a = 6° in Fig. 9. The CFD solution used in the comparison is that obtained 
assuming a turbulent boundary-layer over the entire forebody. The two left-side contour quadrants (top and bottom) 
represent the experimental data, and they can be compared directly with the CFD results , which are on the right side. 
Refer to the visual aids to the right of the quadrant plots to better understand the figure, where the idea of symmetry 
has been utilized to comprehensively present all the data. As expected, the windward side rakes show higher 
gradients closer to the forebody in comparison to the leeward side rakes. Overall , good qualitative agreement 
between the experiment and the CFD results was found at all test conditions. 

Laminar and turbulent CFD solutions were obtained for all cases investigated. Fig. 10 compares the Mach 2.5 
(a = 0°) case's normalized pitot pressure profiles with the corresponding experimental results . Without grit, the profile 
at x = 32.500 in. (82.550 cm) does not lie exactly atop the turbulent CFD profile, though agreement is much better at 
the three axial stations further downstream. Overall , the experimental profiles obtained can be said to be turbulent. 
With the grit applied, the profiles are slightly thicker. Transition has occurred further upstream than for the case 
without grit. Therefore, agreement with the turbulent CFD profile is much better for the case with grit. In addition , 
these results are consistent with the TSP data, which showed transition had begun just upstream of the x = 32.500-in. 
(82.550-cm) rake position for the case with no grit and much further upstream for the case with grit. 

SURFACE OIL FLOW VISUALIZATION 

Near-surface streamlines between the two inlets were visualized with a silicone-based oil and a powdered 
fluorescent dye. Fig. 11 shows the effect of a on the streamlines between two inlets at Mach 2.5. As seen clearly in 
the pictures, all oil injected just in front of the centerbody tip station followed distinct streamlines and did not get 
ingested by the inlets. In addition , a line of coalescence emanating from each diverter and centerbody tip was evident 
because of shock/boundary-layer interaction. These phenomena were obseNed for all a's and Mach numbers. 

SUMMARY AND CONCLUSIONS 

The first phase of the GTX forebody and inlet interaction experiment was performed from Mach 2.0 to 3.5 at 
various angles-of-attack. The test demonstrated the impact of forebody flow on the inlets. The results can be 
summarized as follows : 

1. The inlets with diverters have higher mass flow rates than the ones without diverters. At Mach 3.5, the flow 
rate for the diverterless inlet was 7 percent lower than for the inlet with a diverter. 

2. For inlets with diverters at a = 0° between Mach 2.0 and 3.5, the mass flow rates were within 7 percent of the 
theoretical Taylor-Maccoll solutions. 

3. At vehicle trajectory a's between Mach 2.0 and 3.5, the distortions at the cowl lip station for the top and side 
inlets were minimal. 

4. With diverters installed, the boundary-layer flow generated by the forebody did not get ingested by the inlets at 
all a's, which may allow full inlet performance. 

NASAffM- 2001-210565 4 



5. The CFD study accurately predicted experimental data, making it possible for us to obtain external flowfield 
data not supplied by the experiment. 

The plan for the second phase of the test program includes translating inlet centerbodies, where the inlet 
contraction ratio and diverter geometry variations will be studied. 

NOMENCLATURE 

Inlet cowl lip plane distortion coefficient 
Mach number 
Reynolds number 
pitot pressure 
tun nel total pressure 
tunnel total temperature 
inlet mass flow rate 
mass flow rate based on free-stream conditions and cowl lip area 
vehicle angle-of-attack 
ci rcumferential direction, clockwise looking upstream from spike tip 
circumferential direction, clockwise looking upstream from forebody tip 
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T bl 1 F b d b d k I r a e - ore 0 Iy oun ary- ~er ra e oca Ions. 
Rake 1 Rake 2 Rake 3 Rake 4 Rake 5 Rake 6 

Distance, x, in. 32.50 53.94 75.38 100.33 118.27 118.27 
Circumferential direction , e, deg 122 9 267 170 45 75 

T bl 2 F b d fl wf' Id k I r a e - ore 0 J\ 0 Ie ra e oca Ions. 
Rake 1 Rake 2 Rake 3 Rake 4 

Distance, x, in. 98.95 98.95 98.95 98.95 
Circumferential direction, e, deQ 215 205 195 185 

Table 3 -Test conditions 
Mach number Reynolds number, Pressure, Temperature, Angle of attack, 

Re, Pt , Tt, a., 
x106/ft psia oR deg 

2.0 - 3.2 - 13.5 -560 -9, -6, -3, 0, 3, 6, 9 
2.5 - 2.6 - 13.8 -560 -9, -6, -3, 0, 3, 6, 9 
3.0 - 2.4 - 22.2 -680 -9, -6, -3, 0, 3, 6, 9 
3.5 -2.4 - 33.3 -740 -9, -6, -3, 0, 3, 6, 9 
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Translating centerbody Cowl lip Rocket nozzle 

Diverterpylon Ramjet duct and nozzle 

(a) Vehicle (b) Propulsion system 

Figure 1.-Schematic of the GTX reference vehicle. 

ASMEFLOW 
METERNOZLE 

(b) Inlet models 

TUNNEL CEILING STRUT 

(a) Installed model 

(c) ASM E flow meter nozzles (exit diameter = 8.18") 

Figure 2.- The GTX test model. Note the orientation of the vehicle model (the top inlet is at the bottom). 
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Figure 3.-The GTX test model dimensions. 
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Figure 5_- Top inlet cowl lip plane pitot pressure ratio at M=2.5. 
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Figure 11.-Suriace oil flow visualization at free-stream M =2.5 and Re# = 2.6 x 106/ft at vehicle angle-of-attack, u. 
Note that the top inlet is at the bottom. 
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