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ABSTRACT 

In this paper, we analyze the performance of TCP in a 
network that consists of both satellite and terrestrial com-
ponents.  One method, proposed by outside research, to 
improve the performance of data transfers over satellites is 
to use a performance enhancing proxy often dubbed 
“spoofing”.  Spoofing involves the transparent splitting of 
a TCP connection between the source and destination by 
some entity within the network path.  In order to analyze 
the impact of spoofing, we constructed a simulation suite 
based around the network simulator ns-2.  The simulation 
reflects a host with a satellite connection to the Internet 
and allows the option to spoof connections just prior to the 
satellite.  The methodology used in our simulation allows 
us to analyze spoofing over a large range of file sizes and 
under various congested conditions, while prior work on 
this topic has primarily focused on bulk transfers with no 
congestion.  As a result of these simulations, we find that 
the performance of spoofing is dependent upon a number 
of conditions. 
 

1 INTRODUCTION 

A growing area of interest is that of hybrid networks, or 
networks that contain both terrestrial and wireless links.  
While there are many forms of hybrid networks, the work 
presented in this paper focuses on the use of a geosynchro-
nous satellite within a network path.  More specifically, 
the satellite link is located just prior to the user, as is found 
in a number of real-world situations. For instance, satellite 
companies are providing Internet services to consumers 
using direct-broadcast satellites.  In addition, NASA is 
interested in delivering data collected by its space assets to 
investigators at various locations around the world via sat-
ellite.  Finally, satellite transmission is a good match for 
communication between military troops in the field and 

military commanders.  One of the main disadvantages of 
using a GEO satellite in network communication that has 
been outlined in previous literature is that current inter-
networking protocols do not quickly adapt to the available 
bandwidth when traversing a network with a long delay. 
 The Transmission Control Protocol (TCP) [RFC793] is 
the most widely used transport protocol for Internet traffic.  
One TCP feature in particular, congestion control, incorpo-
rates the slow-start algorithm, which may cause perform-
ance degradation on high delay links [AKO00]. The end 
result is a decrease in initial performance, since it takes 
longer to build up the sending rate over a long-delay net-
work path than a short-delay path. Spoofing, which is dis-
cussed in more detail in Section 2, has been proposed 
mainly for solving the problem with TCP's startup speed 
over networks with high delays.  However, prior work on 
spoofing has focused on simulations of bulk transfers 
without competing traffic, and has thus left an incomplete 
picture of spoofing's overall performance.  The project dis-
cussed in this paper focuses on creating a simple yet versa-
tile simulation environment, in which the performance of 
spoofing can be assessed across a large range of file sizes, 
while under congested conditions. 
 We also note that this paper only presents investiga-
tions into the performance of TCP spoofing.  While the 
performance of such a mechanism is an important point 
when deciding whether or not to use a spoofer, it is not the 
only consideration.  We encourage network operators to 
read [RFC3135] to gain a better understanding of some  
of the non-performance based considerations involved in 
deciding whether or not to use a spoofer.  
 The remainder of the paper includes Section 2, which 
discusses spoofing in greater depth, and Section 3, which 
outlines the actual simulation mechanics and details.  Sec-
tion 4 presents the results of those simulations.  Finally, 
Section 5 summarizes the conclusions and lists possible 
areas for future work on this subject. 
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2 BACKGROUND 

In an attempt to mitigate the disadvantages of TCP over 
long-latency links, researchers have been introducing per-
formance-enhancing proxies (PEPs) into networks.  One 
such PEP that is currently being used in satellite networks 
is TCP spoofing [RFC3135, BB95, ASBD96].  The objec-
tive of spoofing involves isolating the long-latency link by 
introducing a middle agent which splits the TCP connec-
tion (see Figure 1).  However, unlike a proxy cache, spoof-
ing is transparent to both the sender and receiver.  Thus, 
the middle agent, or “spoofer”, takes on the personality of 
both parties.  The responsibility of the spoofer is to inter-
cept, cache, and acknowledge data received by the sender 
and then forward that data to the receiver.  As a result, 
spoofing breaks the end-to-end semantic of TCP.  While 
this raises several philosophical issues [RFC3135], those 
issues are not the focus of this paper.  Finally, it is worth 
noting that in our model data segments and connection 
teardowns are spoofed, while connection setup remains 
end-to-end. 

 
Figure 1:  Satellite Spoofing 

 
3 SIMULATION OVERVIEW 

Terminology 
For our simulations we used two metrics to measure the 
performance of a network flow.  The first, throughput, is a 
measure of the time needed to transfer a certain amount of 
data and can be measured from either the sender’s or re-
ceiver’s perspective.  For a sender side analysis, the time 
of completion is marked by the reception of the ACK for 
the final data packet, whereas the time of completion for 
receiver side analysis is marked upon transmission of the 
final ACK.  The second metric used in the simulation was 
a measure of the number of dropped data packets.   
 
Topology 
The test network consists of five hosts and five routers as 
shown in Figure 2.  Each host is connected to its appropri-
ate router via an Ethernet link and runs TCP with selective 
acknowledgements (SACK) [RFC2018, FF96] and delayed 
ACKs [RFC1122, RFC2581].  Routers enforce drop-tail 
queuing on all links.  Finally, segment sizes of 1500 bytes 

were used, as [All00] shows are common for bulk transfers 
on the Internet. 
 The topology is laid out such that there are distinct sat-
ellite and Internet portions.  Delay over the satellite is 
fixed at 250ms, and the download and upload capacity set 
at a T1 rate.  While the upload rate is much higher than 
what is economically feasible for a home user, the effect of 
variances to the transmission capacity was not of interest 
for this set of experiments.  The second major portion of 
the topology, the Internet model, consists of four nodes.  
The two hosts in the model are responsible for generating 
cross traffic over the Internet link.  The link between the 
two routers acts as the “Internet”, whose bandwidth and 
delay are set to 1.5 Mbits per second and 69 milliseconds  

 
Figure 2:  Network Topology 

 
Queue Size 
 Ethernet = ∞ 
 Others = (Bandwidth ·  (2· Delay)) / Segment Size 
 (Only the integer part of the result is taken from all calculations) 
 

Equation Set 1:  Queue Calculations 
 
respectively.  While the Internet has a physically larger 
capacity than the one used, the allocation of bandwidth is 
regulated and so an actual attainable value is less.  The 
delay used was calculated by sampling the delay of several 
sites at various geographical distances and averaging the 
result.  Also, changes to the capacity and delay of the 
Internet link result in predictable effects on the measured 
metrics.  Thus, the bandwidth and delay used are sufficient 
in characterizing a typical Internet path.  The results of the 
varying bandwidth and delay tests were left out due to 
space considerations.  Even though the model for the 
Internet is simple and unrealistic, it is sufficient in captur-
ing the basic characteristics of propagation delay, limiting 
bandwidth, and competing traffic. 
 The remaining hosts are the nodes at which connections 
of interest will take place.  Using these three hosts, any 
combination of the hybrid network can be analyzed.  More 
specifically, h1 represents a pure satellite user, and h5 
represents a server with a high-speed connection to the 
Internet.  Host h2 is at a middle ground with access to both 
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portions of the network.  This property also makes h2  
capable of spoofing connections as shown in Figure 3. 
 Thus, with spoofing enabled, a connection from h5 to 
h1 would be spoofed at h2.  It would cache, with infinite 
capacity, data received from h5 and forward the data to h1. 
 
Traffic 
All transfers used in the simulation make use of the File 
Transfer Protocol (FTP) to transmit data.  No competing 
traffic is present on the satellite link as it represents a dedi-
cated satellite channel.1  However, competing traffic is 
present on the Internet link by using an analytical FTP 
generator which is based on models given in [Pax94] and 
discussed in detail in [Ish01].  Depending on the simula-
tion, the desired number of competing flows is started in 
alternating fashion between h3 and h4.  Start times are 
based on a random Poisson generated mean, which is  
included in the traffic profile.  In order to keep the traffic 
load at a desired level, new competing flows are initiated 
to replace ones that should expire.  The new flows are ini-
tiated using the same random mean in order to avoid syn-
chronization and phase effects.  Finally, the main flow is 
started five seconds into the simulation in order to avoid 
the startup effects of the competing flows. 

 
Figure 3:  Spoofing in the Simulator 2 

 
Software 
The simulations in this paper make use of the Network 
Simulator (ns) [NS] version 2.1b8.  Generation of the traf-
fic profile is separated from the simulation so as to facili-
tate reuse and modularization.  The overall layout of 
software structure is shown in Figure 4.  The output from 
ns consists of three trace files which are uniquely named in 
relation to the type of simulation being done.  This allows 
the analyzer to distinguish which traces to analyze and also 
allows for congruent execution of simulations.  The func-

                                                 
1 The satellite in this simulation was based off of the Advanced 
Communications Technology Satellite (ACTS), which supported 
packet switching, spot transmissions, and frequency reuse.  
ACTS also used forward error correction to eliminate nearly all 
corruption at T1 speeds.  Thus, our modeled network does not 
corrupt packets. 
2 Due to simulator restrictions, spoofing could not be done at 
routers, as would likely be the case if it were implemented in a 
real network.  However, moving it to the host adds only the 
Ethernet delay which is negligible and likely much smaller than 
any processing delays that would be present in a real system. 

tion of the controller is to synchronize the spawning and 
execution of both programs.  Finally, a script automates 
the entire process, synchronizing traffic generation with 
the controller and allowing for multiple runs of different 
case scenarios. 
 

4 RESULTS 

The results detailed in this section are based on a 30 run 
simulation with the following characteristics: 

- Transmission of files from the network user (h5) to the 
satellite user (h1) under the following granularity:  0 to 
100 packets by 1 packet, 110 to 500 packets by 10 pack-
ets, 600 to 900 packets by 100 packets, 1000 to 2000 
packets by 1000 packets. 
- Analysis of both end-to-end TCP connections and 
spoofing as well as sender and receiver side analysis. 
- A congestion level of 50 competing flows. 

For the sake of simplicity, end-to-end TCP is referred to as 
“Regular” TCP in any subsequent plots. 

 
Figure 4:  Software Layout 

 
 Figure 5 shows the average throughput of the main 
flow (h5Æh1) from both the receiver and sender side.  
This in combination with spoofing represents the four 
curves on the plot.  For long transfers, the throughput val-
ues are nearly the same for Regular TCP regardless of 
whose viewpoint is taken (as one would expect since the 
sender and receiver are only separated by a short amount 
of time).  Also, the same observation holds for Spoofed 
TCP. 
 Figure 6 shows the percent difference in throughput as 
reported in Figure 5.  The percent difference is calculated 
by taking the throughput difference of spoofing and end-
to-end TCP over the throughput of end-to-end TCP.  Thus, 
the line identified as “Sender Side” in the plot refers to the 
percent difference between “Regular-Sender” and “Spoof-
ing-Sender”.  A positive percent difference indicates that 
the PEP outperformed the base condition, while a negative 
value indicates the exact opposite. 
 

 

R1 R2 R5 h1 

h2 

h5 Internet Model 

Sim ulation  H ierarchy

T raffic  P ro fi le  G en era to r
(C  L an gu a ge)

G en era tes  a  t ra ffic  p ro file
b ased  o n  vario u s  d is tr ib u t io n s

T h e  N etw o rk  S im u la to r
n s

U n ivers ity o f C a li fo rn ia
B erk eley,  C A

A n a lyz er
(C  L an gu a ge)

U sed  to  an a lyze
o u tp u t fro m  n s

C o n tro lle r
(C  L an gu a ge)

S yn ch ro n ize s  ex ecu tio n
A llo w s  fo r s im u ltan eo u s  s im u la tio n s

S crip t



NASA/TM—2001-211151 4 

  
Figure 5:  Throughput vs. Transfer Size 

 

Figure 6:  Percent Difference of Throughput 
 

Also included in the percent difference plot is an 
enlarged view of transfers consisting of 40 packets or less.  
The importance of considering small transfers is shown in 
Figure 7.3  From this plot, we see that transfers consisting 
of ten packets or less account for 90% of all connections.  
Although the data represents only a single network, the 
underlining concept has been generally noted in other net-
works as well. 

Figure 7:  Distribution of Transfer Sizes 
 

                                                 
3 Cumulative Distribution Function (CDF) of transfer sizes in 
packets as seen at the NASA GRC firewall in late 2000 (7 days 
of traffic yielding 8 million connections). 

 From Figure 6 we see that spoofing has different effects 
depending on which vantage point is used.  From the  
receiver’s viewpoint, there is little effect for small trans-
fers - at most a 20% gain for transfers of ten packets or 
less.  However, from the sender’s perspective, the gain is 
much larger for those same small transfers.  The large gain 
in throughput for the senders could be beneficial for busy 
servers.  By freeing resources associated with long-delay 
connections more rapidly, spoofing may allow servers to 
satisfy more requests.  For large transfers, both viewpoints 
show approximately the same performance gain.  Also, the 
percent difference graph contains some fluctuation, which 
refers to the several short and successive increases and 
declines within the plot.  Such fluctuations can be attrib-
uted to the fact that the throughput values are an average 
of 30 runs and that the variance is large.  However, the dip 
in throughput found around 400 packets in Figure 6 is 
rather unusual. 
 To better understand why this dip occurs, we turn to the 
number of drops.  A plot for the number of dropped data 
segments is shown in Figure 8.  This plot follows the gen-
eral principle of that seen with throughput, although 
dropped packets are measured along the entire network 
path.  Figure 8 shows a sharp increase around 400 packets 
when spoofing is used.  Thus, one possible cause of the 
decrease in throughput is that the spoofer receives data 
more quickly, and thus overruns the satellite channel, 
dropping a large number of packets.  This is possible since 
spoofing allows the rate of incoming packets to increase 
over the Internet and accumulate at the spoofer, which  
is still in early slow-start.  Thus, spoofing adds a second 
bottleneck into the network path. 

Figure 8:  Data Loss vs. Transfer Size 
 
 We next turn our attention to how varying the amount 
of congestion on the Internet portion of the network path 
effects TCP spoofing performance.  We varied the number 
of FTP sessions being conducted across the Internet path 
from one to 200 - or from an approximate drop rate of 
0.2% to roughly a drop rate of 9%.  Figure 10 shows the 
percent difference in throughput, from the sender's view-
point, between Regular and Spoofed TCP as a function of 
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transfer size for various levels of cross traffic.  As in all 
other plots in this paper, each point is the mean of 30 
simulations.  From the figure, there does not appear to be a 
clear pattern to the gain spoofing provides to the sender in 
relation to the level of congestion.  However, we note that 
the gain is significant in all cases - at least 150% for trans-
fers of at least 15 packets. 
 Figure 9 shows the same results as illustrated in Figure 
10, except from the receiver's vantage point.  In this case, 
there is a significant difference in the performance seen by 
the user as the level of congestion in the network changes.  
As the number of competing flows increases the perform-
ance gain realized from using TCP spoofing also increases.  
This is explained by TCP's ability to recover from conges-
tion losses in the Internet more rapidly when using spoof-
ing than when using the long-feedback end-to-end TCP.  
We note that small transfers (the predominant kind of 
transfer) still observe only modest increases in perform-
ance.  This is caused by the lack of loss on these connec-
tions (since they are short). 
 

Figure 9:  Effect of competing flows  
on receiver side throughput 

 
 

 

Figure 10:  Effect of competing flows  
on sender side throughput 

 
 

5 CONCLUSIONS AND FUTURE WORK 

The simulations presented in this paper offer a mixed set 
of results on the efficacy of spoofing.  Our key conclusions 
are: 

• We found that spoofing is indeed beneficial for large 
file transfers (confirming previous results in the pres-
ence of network congestion). 

• For small transfer sizes, spoofing increases the 
throughput as observed by the data sender. 

• Spoofing was much less beneficial for throughput ob-
served at the receiver, which is the vantage point per-
ceived by the end-user.  Since a majority of data sent 
across networks is small and sent to the user, spoofing 
will likely not provide a large advantage from the user's 
perspective. 

• Spoofing's benefit to web servers and other content pro-
viders may be significant. 

• Spoofing allows for data to accumulate at the spoofer, 
creating a second bottleneck and increasing the number 
of dropped data packets, which also degrades the re-
ceivers perceived performance.  Future work should in-
clude attempts to mitigate this problem while still 
retaining the performance benefits of spoofing for lar-
ger transfers. 

• The performance benefits of spoofing increase as the 
amount of network congestion grows. 

We realize that the work done in this paper reflects simula-
tions and not actual measurements on real networks.  Thus, 
a natural extension of this work may involve implementing 
these simulations in actual network test beds.  Other exten-
sions involve the inclusion of other types of PEPs as well 
as the effect of changes to the asymmetry of the satellite. 
 Finally, we note that while this paper is only concerned 
with the performance implications of TCP spoofing there 
are several architectural issues that need to be considered 
when deciding whether or not to use TCP spoofing.  We 
suggest that readers look at [RFC3135] for a discussion of 
those topics 
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