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ABSTRACT

A user®s guide for the computer program SKETCH is presented on this disk.
SKETCH solves a popular problem in computer graphics-the removal of hidden lines
from images of solid objects. Examples and illustrations are included in
the guide. Also included is the SKETCH program, so a user can incorporate the
information into a particular software system.

README :

This file (readme) addresses the functions of all the files on this
disk. The files are listed below with a description of each one.
(€@D) The "readme"™ file describes other files on the disk and contains
the abstract.
(2) The "uguide™ file describes how to implement the SKETCH program.

(3) The "sample'™ file contains an example of this FORTRAN program using a
hexagonal cylinder as an illustration.

(4) The "SKETCH™ file is a FORTRAN subroutine that is called by the user.

(5) A pdf file of A General Solution to the Hidden-Line Problem, by David R.
Hedgley, Jr., NASA Reference Publication 1085, March 1982.

Some of this user information was also published in February 1982 as a written
document, NASA Technical Memorandum 81369, User®s Guide for SKETCH, by David R.
Hedgley, Jr.

To make these files available to the largest number of computer users, some
files appear in two formats, as a pdf file and as a Microsoft Word text
file.

Note: Adobe Acrobat Reader, required for viewing pdf files, can be
downloaded free of charge at www.adobe.com.

NOTICE: The use of trade names or names of manufacturers does not constitute an
official endorsement of such products or manufacturers, either expressed or
implied, by the National Aeronautics and Space Administration.



INTRODUCTION

This software package solves the hidden line problem, that problem in computer graphics which
addresses the removal of hidden parts from images of solid objects. Hidden line removal is necessary to
create a redlistic image. As an illustration, compare figure 1 (before solution) with figure 2 (after
solution).
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Figure 1. Before solution.

000113

Figure 2. After solution.

This guide discusses the topics of:

1. How to decompose figures into appropriate input elements.
2. How to“feed” these elements to the hidden line package.
3. How toincorporate the package into aFORTRAN program.



INPUT ELEMENTSAND HOW TO “FEED” THEM TO THE
HIDDEN LINE PACKAGE

The input elements to the hidden line package are either line segments or planar polygons. The
polygons can be n-sided concave or convex and can have concave or convex holes.

The input elements are described in terms of their endpoints (in the case of line segments) or vertices
(in the case of polygons). It isthese endpoints or vertices, in the form of (X, y, z) triplets, that are input to
the hidden line package.

As an example, note the following pentagon:

0,0,0) (1,00

-1,0

@-30
©,-30)
000114

Figure 3. Pentagon example.

The triplets may be input to the package in either a clockwise (A) or counter-clockwise (B) manner:
(A) (0,00 (1,0,0) (2-1,0) (23,0
(03,00 (0,0,0
or
B) (2-30 (2-10 (1,00 (0,0,0)
(03,00 (23,0
In agiven plot, composed of many such figures, any combination of clockwise and counter-clockwise

may be used. It is not necessary that all figures be either clockwise or counter-clockwise.

Note in the above examples that the last point and the first point are the same. Thisis done to remove
the difficulty that arises when the polygon has severa holes.



Consider the next example, a square with atriangular hole:

0,1,0 (1,10

(3,7.0

(5,.4,0)
(-2,.4,0)

00,0 (1,0.0)
000115

Figure 4. Square with triangular hole.

Thisis apolygon of seven edges and isinput in the following

(0,1,0 (0,0,0) (1,0,0) (1,1,0)
(0,1,0 (2,400 (540 (.3.7,0
(.2,.4,0)

Nineinput triplets are required to “close-up” each sub-figure.

The actual method for inputting the triplets to the hidden line package is by means of subroutine
SKETCH. The calling sequence for SKETCH is as follows:

CALL SKETCH (x,y,zNTRP,NC)

where
X,Y,Z are dimensioned arraysto hold the triplets
NTRP is the number of tripletsin agiven call to SKETCH

NCisaflag: must be setto 1 for the last call to SKETCH for a given plot
must be set to O in al other cases



As an example, consider figure 4, the square with atriangular hole. Thisfigure will require one call to
SKETCH. Thex, y, and z arrays must be dimensioned at least nine each, and will appear as follows:

x(1) =0 y() =1 z()=0
X(2)=0 y(2)=0 z(2)=0
x(3) =1 y(3) =0 z(3)=0
xX(4)=1 y4) =1 z(4)=0
x(5) =0 y() =1 z(5)=0
X(6) = .2 y(6) = .4 z(6) =0
x(7)=.5 y(7)=.4 z2(7)=0
X(8) =.3 y(8) =.7 z(8 =0
x(9)=.2 y(9 =4 z2(9=0

NTRP, the number of triplets for this call to SKETCH, is nine. Since this is the only and last call to
SKETCH, NC is set equal to 1.

Therefore:
CALL SKETCH (x,y,z,9,1)

Now consider the ssmple box in figure 5.

©1,-1 -1

0,1,0

(1,10

A N

—————— P - = = = (10,-1)

(0,0,0) (1,00
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Figure 5. Simple box.

Thisfigure will require six callsto SKETCH, one for each face of the box.
The front face is composed of the following triplets:

(0,1,0) (0,0,0) (1,0,0) (1,1,0)
(0, 1,0



The arrays x, y, and z must be each dimensioned at |least five will appear as follows:

x()=0 y()=1 z(N=0
x(2)=0 y(2) =0 z(2)=0
x(3)=1 y(3)=0 z(3)=0
X(4)=1 y4) =1 z(4)=0
x(5) =0 y5) =1 z(5) =0

NTRP, the number of triplets for this call to SKETCH, is five and since this is not the last call to
SKETCH, NCis set equal to 0. So:

CALL SKETCH (x,y,z,5,0)

Each of the remaining five faces will be input in a similar way. On the sixth and final cal to
SKETCH, NC will be set to 1.

Thisfigure can also be referred to as afigure containing six input elements.

Figure 6, abox with ahole cut in the front face, is also afigure of six input elements.

1,1,-1)

010 (1,1,0

1
1
§
370 !
|
|
1

©0,0,-1)
—_———_— - —t = = - = 1,0,-1)

(.2,.4,0) (.5,.4,0)

0,0,0)
(1,00
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Figure 6. Box with ahole cut in the front face.

The front face would contain nine input triplets (as described in a previous example) and therefore the
X, Y, and z arrays would each be dimensioned at least nine. NTRP, the number of Points in the call to
SKETCH for the front face, would be nine. For each of the other faces, NTRP would be five.



Now consider a transparent box, figure 7.

(0,1,-1)

11,-1

©.1,0 110

0,0,-1)

(1.0,-1)

(0,0,0) (1,00
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Figure 7. Transparent box.
Thisfigureisacomposite of 12 input elements, 12 line segments. It will require 12 callsto SKETCH,
with the X, y, and z arrays each dimensioned at least 2 and NTRP equal to 2. For the bottom front edge:
x(1) =0 y(1) =0 z(1)=0
X(2) =1 y(2) =0 z(1)=0
CALL SKETCH (x,y,z,2,0)
In asimilar manner all 12 of the edges will be input to SKETCH.
Note that on the 12th call to SKETCH, NC must be set equal to 1.

In the appendix, a sample figure is decomposed into input elements and “fed” to SKETCH by a
sample user program. The resulting plots are also shown.

INCORPORATING THE HIDDEN LINE PACKAGE INTO THE USER'S
FORTRAN PROGRAM

The programmer writing the FORTRAN code that calls the hidden line package must be aware of
certain information needed by the package and must also provide information to the plot output device.

The hidden line package requires three named common blocks that must be set up in the calling
program. Thefirstis:

COMMON/GO/WORK (ICORE)



where;
ICORE =(25+5* MNE + 4* MNP)* NELEM.

MNE = Maximum number of edges that any one polygon has.

MNP = MNE + 2 + 2 * n, where n is the number of holes, if any.

NELEM = Total number of elementsin one entire plot.

The second common block is:;
COMMON/SCALAR/SCF, PSI, PHI, THETA, MNE, DV, MNP, ICORE

where;

SCF = Scaling factor (units/inch) for Plot Output Device.
Note: if SCF is negative, a transparent plot with no hidden lines

will be produced.

PSI, PHI, THETA = The Eulerian angles (degrees) about the x-, y-, and z-axes.
(Seefig. 8.) The order of rotationisy -f -q.

MNE = (INTEGER) Defined above.

DV = A positive number that represents the distance of the
viewer from the plane of the plot.

MNP = (INTEGER) Defined above.

ICORE = (INTEGER) The total core needed by the hidden line
package for data.



"\ 1 ¥ =Pps|
\ ¢ = PHI
\ © = THETA xi
* »
\ Id
\ P I
\ L
\ N . P4
\\ ¢ v .
\\ pd d - \IJ \ — X
/
I'4
e
/
/
I - . - N
z. s Think of unscrewing a nut. Keep it consistent with this idea for
/ direction of axis and sign of angle.
l, - 000119
¥z

Figure 8. Axis system convention and Eulerian angles definition.

The third common block is:
COMMON/DRH/ISILH (NELEM) where:
ISILH(J) contains an integer which identifies the Jth element as a member of afamily of elements.

ISILH(J) = O for all elements will render the picture as a typical hidden-line solution. However, if
ISILH(1) = 1, ISILH(2) = 1, ISILH(3) = 2, ISILH(4) = 2, ISILH(5) = 2...etc. then a silhouette of the
elements 1 and 2 will be drawn and a different silhouette of the elements 3, 4 and 5 will be drawn. In
other words, many different silhouettes each comprised of a family of elements can be rendered
depending on their designation. This is quite useful if the polygons are many sided and very warped. A
simple subdivision of a warped polygon into its many constituent triangles can lend itself to a very
attractive rendering when these triangles are designated to belong to the same family.

ISLILH(J) = a constant non-zero integer for all the elements will render a silhouette of the entire
scene, sincein this case, there would be only one family.

The package does not assume any environmental coherence, so, in the interest of efficiency, it might
be a good idea in some cases to use a preprocessor. This preprocessor should eliminate whole planes by
looking at the normals to the planes, in the case of closed polyhedra or any combination of closed
polyhedra.

The hidden-line software is not output specific, but may need a few small modifications which are
consistent with the user’ s environment. All of these possible changes can be made in the subroutine PLT
and are all quitetrivial.



The user must take responsibility for opening and closing the plot device. The device must be opened
before the first call to SKETCH and closed after the last call to SKETCH.

Using the standard CAL COM P commands as an exampl e there would be:
CALL PLOTS(0,0,1)
and
CALL PLOT (0,0,999)
respectively.
Requirements will, of course, vary from installation to installation.

Note: If the polygons are very warped, then errors could occur. Also, the algorithm assumes at least 32-
bit integers and floating-point words.

ERROR CODES

The hidden line package returns error codes after the final call to SKETCH. The codes are found in
NC of the SKETCH calling sequence and have the following definitions:

0 = Normal return

—1 = Incorrect storage alocation in the array work. The correct storage allocation is placed in
ICORE by SKETCH.

—2 = DV (distance from viewer) in common scalar is incorrect. SKETCH places the correct
valuein DV.

-3 = Both DV and storage alocation are in error. SKETCH places the correct values in
ICORE and DV.



A WORKED EXAMPLE

In this example, a hexagona cylinder is decomposed into input elements and relayed, via a
FORTRAN calling program, to the hidden line package. The resulting plot is also shown. The originisat
the center of the figure.

The hexagonal cylinder, without its X, y, z coordinates, is shown in figure A-1. It is made up of six
four-sided polygons and two six-sided polygons (the top and bottom), for atotal of eight faces.

//

000111

Figure A-1. Hexagonal cylinder.

Theinput X, y, and z coordinates for each face are as follows:

FACE 1 FACE 2 FACE 3
X y z X y z X y z
-5 0 -3 2 -3 3 2 -3
-3 2 3 -3 2 3 5 0 -3
-3 2 -3 3 2 3 5 0 3
-5 0 -3 3 2 -3 3 2 3
-5 0 3 -3 2 -3 3 2 -3

FACE 4 FACE 5 FACE 6
X y z X y z X y z
5 0 -3 3 —2 3 -5 0 -3
5 0 3 3 —2 -3 -5 0 3
3 -2 3 -3 —2 -3 -3 -2 3
3 -2 -3 -3 —2 3 -3 -2 -3
5 0 -3 3 —2 3 -5 0 -3



FACE 7 (Front) FACE 8 (Back)

X y z X y z
-5 0 3 -5 0o -3
-3 2 3 -3 2 -3
3 2 3 3 2 -3
5 0 3 5 0 -3
3 =2 3 3 =2 -3
-3 22 3 -3 =2 -3
-5 0 3 -5 0 -3

In the FORTRAN calling program (your program), these coordinates are read into dimensioned
arrays x, y and z or any three arrays whose names are of the user’ s choosing.

In this example MNE (maximum number of edges) is six and NELEM (total number of elementsin
entire plot) iseight. Therefore, ICORE is calculated as follows:

ICORE = (25 + 5* MNE + 4* MNP)* NELEM
=(25+5*6+4* 8)* 8

= 696



SUBROUTINE STATUM(0J,TMJ,XXX,TGM,RV,RVI,TGI ,ZM,NNO, 11,
1H, IM,JIXT,ZJ,NC,ZMI1,CCC,LZ)
DIMENSION X(50),Y(50)
DIMENSION CCC(1),XXX(1),zZM1(1),TGM(1),RV(1),RVI(1),TGI(L),
INNO(1),H(1)
COMMON/GO3/LO,L1,L00,LO01,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13
COMMON/DRH/ZISILH(1)
DATA GGK,F,EI/.005, .045, .2/
0J1=0J
T™MI1=TMJ
IM=0
J=1
T=2_*F/J
Y(1)=TMI+F
X(1)=0J-F
DO 97 1=1,3
X(1+1)=X(D+T
Y(1+1)=TMI+F
97 CONTINUE
DO 98 1=1,J
X(J+1+1)=0J+F
Y(3+1+1)=Y(J+1+1-1)-T
98 CONTINUE
N=2*J+1
DO 99 1=1,3
Y(N+D)=Y(N)
X(N+D)=X(N+1-1)-T
99 CONTINUE
N=3*J+1
DO 100 1=1,J
X(N+1D)=X(N)
Y(N+D)=Y(N+1-1)-T
100 CONTINUE
KS=4*J
9 CONTINUE
C CHING
KXX=0
DO 80 L=1,KS
0J=X(L)
T™MI=Y (L)
12 CONTINUE
D=EI1*0J-TMJ
DO 65 JO=1,11
JG=NNO(L4+J0)
IFCISILH(IXT) .NE. ISILH(JG))GO TO 60
IF((TMJ.GE.RV(L7+JG)) .OR. (TMJ.LE.RVI(L8+JG)))GO TO 60
IF((0J.GE.TGI(L6+JG)) .0OR. (0J.LE.TGM(L5+JG)))GO TO 60
JS=L13+(J3G-1)*LZ
JT=L12+(J3G-1)*5
JN=0
IF(JG.EQ.JIXT)IN=H(6)
NS=XXX(5+JT)-JIN
IB=NS*5
DO 20 J=1,1B,5
JJ=J+JS
IF(CCC(JJ)-NE.O)GO TO 15
S=TMJ-CCC(II+3)



15

16

20

34

30

40

S1=TMJ-CCC(JJI+4)

DY=(-CCC(JJ+2)/CCC(II+1))-0J

GO TO 16
CONTINUE

S=0J-CCC(JJI+3)
S1=0J-CCC(JJ+4)

DY=(-CCC(JJ+2)-CCC(II+1)*0I)-TMJ

CONT INUE

IF((ABS(DY) .GE.GGK) .OR. (S*S1.GT.0.))GO TO 20

GO TO 80
CONT INUE

1=0

DO 40 J=1,1B,5

JJ=J+JS
R=E1*CCC(JJ)+CCC(II+1)
IF(R.EQ.0.)GO TO 40
T=(~CCC(JJ+2)+CCC(II)*D)/R
IF(T.LT.0J)GO TO 40

CONT INUE
IF(CCC(JJ).NE.0.)GO TO 30
T=EI*T-D

CONTINUE

IF((T-CCC(JII+3))*(T-CCC(JI+4)).GT.0.)GO TO 40

1=1+1
CONT INUE
IF(1-(1/2)*2.EQ.0)GO TO 60

C CHING

60
65

800
80

IF(IG.NE.JIXTYKXX=JG
IM=1

GO TO 80

CONTINUE

CONTINUE

IM=0

GO TO 90

CONTINUE

CONTINUE

IM=1

C CHING

OO0OO0O000

90

IF(KXX.EQ.0) IM=0
CONTINUE
TMI=TMJI1

0J=0J1

RETURN

END

SUBROUTINE SKETCH(X,Y,Z,NP,NC)

THIS SUBROUTINE SETS UP PEN MOTION

DIMENSION X(1),Y(1),Z(1)

DIMENSION X1(160),Y1(160),Z1(160)

INDICATORS.

COMMON/SCALAR/SCX, YAW,ROL,PIT,LZ,VP,J33J, 1CORE

L=NP
LI=NP
IF(L.LE.2)GO TO 50



OO0O0O000

OO0O0O0

20

LX=1
NPX=NP

NPX=NPX-1

1=LX

DO 8 M=1I,NPX

RX=0

A=X(M+1) =X (M)
B=Y(M+1)-Y (M)
c=z(M+1)-z(M)
IF(A.NE.0.)GO TO 8
IF(B.NE.0.)GO TO 8
IF(C.NE.0.)GO TO 8
IX=M

IX1=NPX

DO 4 MX=IX,I1X1
X(MX)=X (MX+1)

Y(MX)=Y (MX+1)
Z(MX)=Z(MX+1)

CONT INUE

RX=1

LX=M

IF(LX.EQ.NPX)GO TO 10
GO TO 1

CONT INUE

CONT INUE
IF(RX.EQ.1.)NPX=NPX-1
NP=NPX+1

LI=NP

IF(NP.LE.2)GO TO 50
I1X=0

M1=0

M=1

1S=NP-1

CONT INUE

M=M+1X

M1=M1+1X+1
IF(M-1.EQ.L1)GO TO 70

SEARCH FOR MATCHING COORDINATES.

DO 40 J=M, IS
T=X(3+1)-X(M)
U=2(3+1)-z(M)

W=Y (3+1)-Y (M)
IF(T.NE.0.)GO TO 40
IF(W.NE_.0.)GO TO 40
IF(U.NE.0.)GO TO 40
NP=NP+1

MATCH FOUND..... STORE COORDINATES AND SET SWITCH TO LIFT PEN

AND/OR END SET.

IX=J+2-M
1X1=J-1S+1



OO0O0O0O0O0O0

OO0O0O0

OO0O0O0

30

40
50

60

70

10

12=M1-1
13=M-1

DO 30 IK=1, IX
X1(12+1K)=X(13+1K)
Y1(12+1K)=Y(13+1K)
Z1(12+1K)=Z2(13+1K)
CONTINUE
Z1(ML+1X)=-1SIGN(1, 1X1)*9999._
GO TO 20

CONT INUE

CONT INUE

DO 60 J=1,LI

X1(3)=X(J)

Y1(I)=Y(J)

71(3)=2(J)

CONT INUE

NP=NP+1

Z1(NP)=-9999.

CONT INUE

CALL LIN(X1,Y1,Z1,NP,NC)
NP=L

RESET VALUE FOR MAXIMUM NUMBER OF EDGES IF ARGUMENT 1S
COMPLETED.

IF(VP.GT.0.)LZ=L2/5

RETURN

END

SUBROUTINE COEF(X,Y,Z,XXX,JXX,NC,NS,CCC,LZ)

THIS SUBROUTINE DETERMINES EQUATION OF LINES AND PLANES.

DIMENSION CCC(1),XXX(1),X(1),Y(1),Z(1)
DIMENSION ZZ(30),27Z(30)

DIMENSION 1B(5)

DOUBLE PRECISION T,T1,E,F,Al1,B1,C1,A2,B2,C2,COE(8)
COMMON/GO3/L0,L1,L00,L01,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13
COMMON/DRH/ISILH(1)

DATA EPSS/.001/

J1=JXX-1

LE=0

JA=L13+J1*LZ

JF=L12+J1*5

1=0

J=1

CONTINUE

SEARCH FOR MATCHING COORDINATES.

I=1+1
IN=1+1



O0O0O0O0

OO0O0O00

[eXeNe]

IF(X(IN)-X(1) -NE.0.)GO TO 20
IFCY(IN)-Y(1) .NE.0.)GO TO 20
IF(Z(IN)-Z(1) .NE.0.)GO TO 20

MATCH FOUND..... PROCEED IF LIST 1S NOT EXHAUSTED.

1=1+2
20 CONTINUE
IF(1.GT.NS)GO TO 70

DETERMINE EQUATION OF LINE-SEGMENTS.

T=X(1+1)-X(1)
T1=Y(1+1)-Y(I)
IF((T.EQ.0.).AND.(T1.EQ.0.))GO TO 10
IF(T.NE.O0.)GO TO 30

29 CONTINUE
CCC(J+JA)=0
CCCI+1+JA)=1
CCC(I+2+IA)=-X(D)
GO TO 40

30 CONTINUE
Cccc@d+in)=1
E=T1/T
F=E*X(1)-Y(I)
IF(DABS(E) -GE.10000.)GO TO 29
IF(DABS(E).LT.100.)GO TO 220
YO=E*X(1+1)-F
G=ABS(Y(1+1)-Y0)
IF(G.GT.EPSS)GO TO 29

220 CONTINUE
CCC(JI+1+JA)=-E
CCC(I+2+JA)=F

40 CONTINUE
IF(CCC(J+JA).NE.0.)GO TO 50
CCC(I+3+JA)=Y(I)
CCC(I+4+IJA)=Y(1+1)
GO TO 60

50 CONTINUE
CCC(I+3+JA)=X(1)
CCC(I+4+IA)=X(1+1)

60 CONTINUE
J=J+5
LE=LE+1
ZZ(LE)=Z(1)
ZZZ(LE)=Z(1+1)
IF(LE.GT.3)GO TO 10
IB(LE)=I
GO TO 10

70 CONTINUE

DETERMINE EQUATION OF PLANE.



OO0O0O0O0

110

25

26

120

130

140

J=J3-1)/5

XXX(JIF+5)=J
IF(NS.LE.3)GO TO 120
A1=X(3)-X(1)
B1=Y(3)-Y(1)
C1=2(3)-z(1)
A2=X(2)-X(1)
B2=Y(2)-Y(1)
C2=2(2)-2(1)
COE(1)=B1*C2-B2*C1
COE(2)=C1*A2-C2*Al
COE(3)=A1*B2-A2*B1
COE(4)=COE(1)*X(1)+COE(2)*Y(1)+COE(3)*Z(1)
COE(4)=-COE(4)

DO 110 J=1,4

XXX (JIF+J)=COE(J)
IF(COE(3).NE.0.)GO TO 140
J=1

DO 25 K=1,LE
CCC(IA+I)=2Z(K)
CCC(IA+I+1)=27Z(K)
J=J+5

CONTINUE
IF(COE(1).NE.0.)I=1
IF(COE(2) .NE.0.)1=2
P=COE(I)

DO 26 K=1,4

XXX (IF+K)=XXX (IF+K) /P
GO TO 140

CONTINUE

XXX (JIF+5)=1

DO 130 IX=1,2
XXX(IF+1X)=Z(1X)
XXX(JIF+3)=0

CONT INUE

RETURN

END

SUBROUTINE LIN(X,Y,Z,NP,NC)

THIS SUBROUTINE 1S THE EXECUTIVE.

INTEGER XIND(1),RCT(200)

DIMENSION RRX(20)

DIMENSION XXX(1),CCC(1)

DIMENSION TGM(1), IN(L),ZM(1),ZMI(1),
1TGMT(L1), TG (1) ,NNO(1),RV(1) ,RVI(1),NOCT(1)
DIMENSION NGX(15), IADR(200)

DIMENSION X21(500),Y21(500),221(500), I 1A(500)
DIMENSION X1(1000),Y1(1000),Z1(1000),DI(1000)
DIMENSION U(6),V(6),W(6),X(1),Y(1),Z(1),X1(10),Y1(10),Z1(10),H(15)
DIMENSION ZMIN(1),YMIN(L), INL(1), IN2(1), ICOUNT(150)
DIMENSION XE(150),YE(150),XU(150),YU(150)

DIMENSION 12(2),13(2)
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DIMENSION COORD(1)

DIMENSION SNDT(1)

DIMENSION IND(1)

DIMENSION REX(20)

DIMENSION NEH(1),KEEP(1)

DIMENSION IBEG(200), IEND(200), ICT(200), ICCT(200)
DIMENSION XB(70),YB(70),ZB(70)

DIMENSION YSUM(3),SUM1(3,3)

COMMON/GO/WORK (1)
COMMON/G0O3/L0,L1,L00,L01,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13
COMMON/SCALAR/SCX, YAW,ROLL ,,PI1T,LZ, VP,JJJ, ICORE
COMMON/HEDG/JAT ,ME,,JT,D4,D2,D1,D3,NS

COMMON/DRH/ ISILH(1)

COMMON/ISIL/ZISIL

COMMON/ INDX/JT1,J0

EQUIVALENCE (WORK (1) , XXX (1) ,CCC(1), IN(1),TGMT (1))
EQUIVALENCE (WORK (1) ,ZM(1) ,ZMI (1) ,NNO(1),
1TGM(1) , TGI (1) ,RV(1),RVI(1) ,NOCT(1))
EQUIVALENCE(WORK(1), IN1(1), IN2(1),YMIN(L) ,ZMIN(1))
EQUIVALENCE (WORK (1) , COORD(1))

EQUIVALENCE (WORK(1) , SNDT (1))

EQUIVALENCE (WORK(1), IND(1),XIND(1))
EQUIVALENCE (WORK (1) , KEEP(1) ,NEH(1))
IF(VP.LT.0.)GO TO 20

HXX=.005

AVA=0

I1SIL=0

HX1=_.001

LC=10**6

IXXX=0

IF(SCX.LT.0.) IXXX=1

SCX=ABS(SCX)

INITIALIZE VARIABLES.

LZ=LZ*5
AXMIN=10.**6
AXMAX=-10.**6
SW1=0
VTX=VP+10
SW=0

1DAV=0

CALCULATE MAXIMUM ALLOWABLE ELEMENTS.

IABC=1CORE/ (25+LZ+4*1JJ)
ISAVE=NC
NC=1ABC
L5=0
L6=NC
L7=2*NC
L8=3*NC
L2=4*NC
L3=5*NC
L4=6*NC
LOO=7*NC
LO1=8*NC
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10

20

30

L1=9*NC

LO=10*NC

L9=11*NC

L10=12*NC

L11=13*NC

L15=14*NC

L16=15*NC

L17=16*NC

L18=19*NC

L12=20*NC

L13=25*NC
L14=L13+LZ*NC

DO 10 J=1,NC
RVI(L8+J)=10**6
TGM(L5+J)=10**6
RV(L7+J)=-RVI(L8+J)
TGI(L6+J)=-TGM(L5+J)
NOCT(L9+J)=0
ZM(L2+J)=RV(L7+J)
ZMI(L3+J)=RVI(L8+J)
XIND(L16+J)=0
IND(L15+J)=J
KEEP(L18+J)=0
CONTINUE

NC=1SAVE

1K=0

IKT=0
P1=3.1416/180.
1JBB=0

VP=-VP

STORE EULERIAN ANGLES.

XX=YAW*P1I
YY=ROLL*PI
ZZ=PIT*PI
COSY=COS(YY)
SINY=SIN(YY)
C0SZ=C0S(ZZ)
SINZ=SIN(ZZ)
COSX=COS(XX)
SINX=SIN(XX)
CONTINUE
NT=NP-1
IKK=1K+1
IK=1K+1

SET ERROR CODES, IF NECESSARY.

IF(IKK.LE.IABC)GO TO 30

Sw=1
CONT INUE
IF(NC.EQ.0)GO TO 40
IDAV=1

NC=-SW1
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40
50

60

70

IF(SW.EQ.0.)GO TO 50
ICORE=(25+LZ+4*3JJ)* IKK
NC=- (SW+SW1)
CONTINUE

CONT INUE

DO 60 J=1,NP
X21(3)=X(JI)
Y21(D=Y(I)
721(D=2(I)

11A(J)=0

CONT INUE

STORE COORDINATES AND SET PEN POSITION WHENEVER ABS(Z)=9999.

DO 70 J=1,NT
IF(Z21(J) .NE.9999.)GO TO 70
11A(J)=1

IXU=J-2

I1BB=J-ISIGN(1, IXU)
X21(J)=X21(1BB)
Y21(3)=Y21(1BB)
721(3)=221(1BB)

CONTINUE

1IA(NP)=1

Z21(NP)=Z21(NT)

Y21 (NP)=Y21(NT)
X21(NP)=X21(NT)

JIXX=1KK

1=1

VL=ABS(VP)

LOOP THAT DOES THE THREE DIMENSIONAL TRANSFORMATION ON THE
COORDINATES.

IV=L14+(1KK-1)*4*3JJ

JT=1

IX2=IXX+L2

JIX3=IXX+L3

IX4=IXX+L4

IX5=JXX+L5

IX6=IXX+L6

IXT=IXX+L7

JIX8=IXX+L8

IV1=JV+1

IV2=JV+2

JV3=JV+3

DO 90 J=1,NP

XJ=X21(J)

YJ=Y21(J)

23=721(J)
X21(J3)=23*(COSY*SINX)+XJ* (COSY*COSX)-YI*SINY
TW=YJ*COSY*C0SZ

TZ=XJ*(SINZ*S INX+SINY*COSZ*COSX)
TY=23*(-SINZ*COSX+SINY*COSZ*SINX)
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Y21(JI)=TZ+TW+TY
PT=YJ*COSY*SINZ
PK=ZJ*(COSZ*COSX+SINY*SINZ*SINX)
PS=XJ*(-COSZ*SINX+SINY*SINZ*COSX)
221 (J3)=PK+PS+PT
RV(JIX7)=AMAX1(RV(JIX7),Y21(J))
RVI(JIX8)=AMINL(RVI(JIX8),Y21(J))
TGI(IX6)=AMAXL(TGI (IX6),X21(J))
TGM(JIX5)=AMINL(TGM(IX5),X21(J))
ZM(JIX2)=AMAXL(ZM(IX2) ,Z21(J))
ZM1 (IX3)=AMINL(ZMI (IX3) ,Z21(J))
COORD(JIV+IT)=X21(J)
COORD(JIV1+JIT)=Y21(J)
COORD(JIV2+JT)=221(J)
COORD(JIV3+IT)=I1A(J)
JT=JT+4

90 CONTINUE
NOCT (L9+1KK)=NOCT (L9+1KK)+NP
NS=NP
AVA=AVA+(TG I (IX6)-TGM(JIX5))*(RV(IX7)-RVI (IX8))
IF(IXXX.EQ-1)GO TO 95

CALL SUBROUTINE WHICH CALCULATES BOTH THE EQUATIONS OF THE LINE
SEGMENTS AND POLYGONS.

CALL COEF(X21,Y21,721,XXX,JXX,NC,NS,CCC,LZ)
CHECKS TO SEE IF ALL ELEMENTS(SETS) HAVE BEEN PASSED.

95 CONTINUE
IF(IDAV.EQ.1)GO TO 100
GO TO 400
100 CONTINUE
AVA=AVA/ IKK
DO 1301 J=1,200
ICCT(J)=0
ICT(J)=0
RCT(J)=J-1
IBEG(J)=1
IEND(J)=0
1301 CONTINUE
AMAXX=-999999 .
AMAXY=-999999 .
AMINX=999999 .
AMINY=999999 .
DO 1400 J=1, IKK
AMAXX=AMAXL(AMAXX , TG1 (L6+J))
AMAXY=AMAX1(AMAXY ,RV(L7+J))
AMINX=AMINL(AMINX, TGM(L5+J))
AMINY=AMINL(AMINY ,RVI(L8+J))
1400 CONTINUE
1AUG=50+( (1KK/10000)*2)
TMAX=(AMAXX-AMINX)* (AMAXY-AMINY)
IBL=TMAX/AVA
IBL=1BL/4
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DETERMINES THE NUMBER OF GRID POINTS IN THE GRID.

IF(IXXX.EQ.1)GO TO 19990
EN=1KK
K=(ALOG(EN)/ALOG(2.))+.01
K=K+ 1AUG

K=MINO(K, IBL)
IF(K.LE.1)K=1
IF(K.GE.199)K=199
K=MAXO(K ,4)

T=K

R=(T**.5)

KS=R+.5

S=T/KS

MS=S+.5

N=KS*MS

MND=N+1

XMD=MND

T=3./(MND-1)
IGY=T*IKK

K=KS

K1=MS
CRX=(AMAXX-AMINX) /K
CRY=(AMAXY-AMINY)/K1

DETERMINES THE RELEVANT ELEMENTS VIA THE GRID BLOCKS.

DO 93 J=1, IKK
1A=0
XMAT=TGI(L6+J)
XMIT=TGM(L5+J)
YMAT=RV(L7+J)
YMIT=RVI(L8+J)
M=0
DO 91 I=1,K1
A1=YMAT - (1*CRY+AMINY)
A=A1+CRY
B1=YMIT-(I1*CRY+AMINY)
B=B1+CRY
A2=A*A1
B2=B*B1
DO 92 L=1,K
M=M+1
S1=XMAT-(L*CRX+AMINX)
S=S1+CRX
R1=XMIT-(L*CRX+AMINX)
R=R1+CRX
IF((S.LT.0.).0R.(R1.GT.0.))GO TO 92
IF((A.LT.0.).0R.(B1.GT.0.))GO TO 92
IF((S*S1.GT.0.).0R.(R*R1.GT.0.))GO TO 94
IF((A2.GT.0.).0R.(B2.GT.0.))GO TO 94
GO TO 93
94 CONTINUE
ICCT(M)=1CCT(M)+1
92 CONTINUE



91 CONTINUE
93 CONTINUE
IADR(1)=0
MM=K*K1
18=3*IKK
DO 8977 1=2,MM
IADR(1)=1CCT(1-1)+IADR(1-1)
IF(IADR(1)+I1CCT(1).LE.18)GO TO 8977
DO 6666 K9=I,MM
1ICCT(K9)=-1
6666 CONTINUE
GO TO 5555
8977 CONTINUE
5555 CONTINUE
DO 191 J=1,MM
IF(ICCT(J).GE.0) ICCT(JI)=0
191 CONTINUE
DO 3 J=1, IKK
1A=0
XMAT=TGI(L6+J)
XMIT=TGM(L5+J)
YMAT=RV(L7+J)
YMIT=RVI (L8+J)
J16=L16+J
M=0
DO 1 1=1,K1
A1=YMAT-(1*CRY+AMINY)
A=A1+CRY
B1=YMIT-(I*CRY+AMINY)
B=B1+CRY
A2=A*A1
B2=B*B1
DO 2 L=1,K
M=M+1
S1=XMAT-(L*CRX+AMINX)
S=S1+CRX
R1=XM1T-(L*CRX+AMINX)
R=R1+CRX
IF((S.LT.0.).0R.(R1.GT.0.))GO TO 2
IF((A.LT.0.).0R.(B1.GT.0.))GO TO 2
IF((S*S1.GT.0.).0R.(R*R1.GT.0.))GO TO 4
IF((A2.GT.0.).0R.(B2.GT.0.))GO TO 4
XIND(J16)=M
GO TO 3
4 CONTINUE
IA=1A+1
IF(IA.LE.4)GO TO 8000
XIND(J16)=0
GO TO 8001
8000 CONTINUE
XIND(J16)=XIND(J16)+M*(MND**(1A-1))
8001 CONTINUE
IF(ICCT(M).LT.0)GO TO 2
ICCT(M)=1CCT(M)+1
JK=1ADR(M)+ICCT(M)+L17
NEH(JK)=J
2 CONTINUE



WP

11

2110

2111

105
19990

115
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18880

CONT INUE
CONT INUE

CALL VSRTL(XIND(L16+1),IK, IND(L15+1))
SW=0

L=1

DO 5 I=1, IKK

CONTINUE

IF(XIND(L16+1) .NE.RCT(L))GO TO 6
SW=SW+1

IF(SW.EQ.1.)LT=I

ICT(L)=ICT(L)+1

GO TO 5

CONTINUE

IF(SW.NE.0.)GO TO 8

L=L+1

GO TO 11

CONTINUE

IBEG(L)=LT

IEND(L)=LT+ICT(L)-1

SW=0

IF(XIND(L16+1) .GE.MND)GO TO 2110
L=L+1

GO TO 11

CONTINUE

IBEG(L)=LT

IEND(L)=LT+ICT(L)-1

CONT INUE

DO 2111 J=1, IKK
SNDT(L4+J)=IND(L15+J)

CONT INUE

CALL VSRTR(SNDT(L4+1), IK,XIND(L16+1))
EN=1KK
1GX=(ALOG(EN)/ALOG(2.))+1.

DO 105 J=1, IGX

RRX(J)=2**(1GX-J)

CONT INUE

CONT INUE

1J=0

X1(3)=(AMAXX+AMINX) /2
Y1(3)=(AMAXY+AMINY)/2

X1(4)=SCX

Y1(4)=SCX

IF(IXXX.EQ.1)GO TO 18880

DO 115 J=1, IKK

IN(L11+J)=J

INL(LO+J)=J
TGMT(L10+J)=TGM(L5+J)
YMIN(L1+J)=RVI(L8+J)

CONT INUE

CALL SUBROUTINE WHICH WILL SORT ON X,Y AND Z.

CALL VSRTR(TGMT(L10+1),IK, IN(L11+1))
CALL VSRTR(YMIN(L1+1), 1K, IN1(LO+1))
H(8)=0

CONTINUE

L10W=L10-1
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1910

108

121
122

LiW=L1-1
LO1W=L01-1
TZQ=.05*1KK

DO 395 J=1, IKK

N9=0

IF(ISILH(J) .NE.O)N9=2
IF((1JBB.EQ.0) .AND. (J.GE.TZQ))N9=0
N7=J-1

IXT=J

KS=1KK
JI=L14+N7*4*33J

JH=1

11=0

IXR=NOCT(L9+J)

NIT=0

JT=L12+5*N7

JT1=JT

JO=L13+LZ*N7
IF(IXXX.EQ.1)GO TO 200
NS=XXX(5+JT)

DO 1910 IC=1,NS
11A(400+1C)=0
D1=XXX(JIT+1)
D2=XXX(JT+2)
D3=XXX(JT+3)
DA=XXX(JT+4)
IF(D3.EQ.0.)GO TO 108
Q1=D1/D3

Q2=D2/D3

Q4=D4/D3

CONTINUE

19=0

NG=NS*5

1=0

Jp=1

IW=JJ+1

IW1=3J+2

DO 121 I=1,NS
XE(1)=COORD(JJ+JID)
YE(1)=COORD(JW+JD)

DI (1)=COORD(JW1+JD)
JD=JD+4

CONTINUE

CONTINUE

THOSE OTHER ELEMENTS WHICH COULD POSSIBLY HIDE SOME PORTION
OF THE GIVEN ELEMENT.

K=2**1GX
K1=K
K2=K

DO LOGARITHMIC SEARCH TO DETERMINE RELEVANT ELEMENTS.

TGIHI=TGI(L6+J)
RVV=RV(L7+J)
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132

133

134

8181

1800

4001

ZMI1=2ZM1 (L3+J)
TGMM=TGM(L5+J)
RVII=RVI (L8+J)

S=-1

DO 131 I=1, IGX
K=K+SI1GN(RRX(1),S)
IF(K.GT. IKK)K=1KK
S=TGI1-TGMT(L10+K)
IF(S*(TGII-TGMT(L10W+K)) .LT.0.)GO TO 132
CONT INUE

K=1KK

CONT INUE

S=-1

DO 133 I=1, IGX
K1=K1+SIGN(RRX(1),S)
IF(K1.GT. IKK)K1=1KK
S=RW-YMIN(L1+K1)
IF(S*(RVV-YMIN(LIW+K1)) .LT.0.)GO TO 134
CONT INUE

K1=1KK

CONT INUE

RETRIEVE THE RELEVANT ELEMENTS DETERMINED FROM SCHEME 1.

CONTINUE
IR=XIND(L16+J)
IF(IR.EQ.0)GO TO 1270
VX=IR

T=ALOG(VX)
IF(IR.LE.LC)GO TO 1800
E=LC

LG=IR/LC

MU=MOD(IR, LC)
UX=LG+(MU/E)
T=ALOG(UX)+ALOG(E)
CONTINUE

IXT=0
IEXP=(T/ALOG(XMD))+1
DO 8004 L=1,lEXP
JCZ=MND** (1EXP-L)
1V=IR/JCZ

IR=IR-1V*JCZ

IV=1V+1

IVi=1v-1
IF(ICCT(IV1).EQ.0)GO TO 4000
IF(ICCT(IV1).GT.0)GO TO 4001
GO TO 1270

CONT INUE

KE=1CCT(1V1)

IL=0

JTT=1ADR(IV1)+L17
JIG=LA+IXT

DO 4003 I=1,KE
KV=NEH(1+JTT)
IF(KEEP(L18+KV) .EQ.J)GO TO 4003
IL=1L+1

NNO(JJIG+IL)=KV
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4000

1170

8004

1270

OO0

1003

1001

1004

1002

1006
129

265

2399

KEEP(L18+KV)=J
CONT INUE
IXT=IXT+IL
CONTINUE
IX=1BEG(1V)
IX1=1END(IV)
LI=L4+IXT-1X+1
DO 1170 I=IX,IX1
NNO(LJ+1)=IND(L15+1)
IXT=IXT+IX1-1X+1
CONT INUE

KS=IXT

CONTINUE
IM=MINO(K, K1)

PICK MINIMUM COUNT FROM BOTH SCHEMES.

IF(KS.LT.IM)GO TO 129

IF(IM.EQ.K)GO TO 1001

IF(IM.EQ.K1)GO TO 1002

KS=11

1J1=L00+I1KK+1

DO 1003 1=1,KS

NNO(L4+1)=IN2(1J1-1)

GO TO 129

CONTINUE

KS=K

DO 1004 I=1,KS

NNO(L4+1)=IN(L11+1)

GO TO 129

CONTINUE

KS=K1

DO 1006 1=1,KS

NNO(L4+1)=IN1(LO+1)

CONT INUE

DO 170 1=1,KS

JB=NNO(L4+1)

IF(ISILH(JI)-.EQ.0)GO TO 265

IF(ISILH(I) -NE. ISILH(JIB))GO TO 265
IF((RVV.LT.RVI(L8+JB)).OR.(RVII_GT.RV(L7+JB)))GO TO 170
IF((TGMM.GT.TGI(L6+JB)).OR. (TGI1.LT.TGM(L5+JB)))GO TO 170
JS=L12+(JB-1)*5

IF(XXX(3+JS).EQ.0)GO TO 170

IF(J.EQ.JB)GO TO 166

GO TO 2399

CONT INUE
IF((TGMM.GE.TGI(L6+JB)).OR. (TGI I .LE.TGM(L5+JB)))GO TO 170
IF((RVV.LE.RVI(L8+JB)).OR. (RVII.GE.RV(L7+JB)))GO TO 170
IF(ZMI1 .GE.ZM(L2+JB))GO TO 170

IF(J.EQ.JB)GO TO 170

JS=L12+(JIB-1)*5

IF(XXX(3+JS).EQ.0.)GO TO 170

CONTINUE

IF(D3.EQ.0.)GO TO 166

NV=XXX(5+JS)

TEST TO SEE IF ALL VERTICES LIE EITHER BEHIND OR IN FRONT OF
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THE GIVEN POLYGON.

1T=0
Jb=1
J1=L14+(IB-1)*4*JJJ
J11=J1+1
J12=J1+2
DO 145 M=1,NV
XU(M)=COORD(J 1+JD)
YU(M)=COORD(J11+JD)
X1 (M)=COORD(J12+JD)
JD=JD+4
ZS1=-(Q4+Q2*YU(M)+Q1*XU(M))
IF(ABS(X1(M)-ZS1) .LT.HXX)GO TO 145
IT=1T+1
ICOUNT(IT)=0
IFCXT (M) .GT.ZS1) ICOUNT(IT)=1
145 CONTINUE

TESTS FOR SEMI-RELEVANT PLANES. THAT 1S, NEGATIVE INDEXES
INDICATE ELEMENT 1S TO BE USED FOR VISIBILITY TEST, BUT NOT FOR
INTERSECTION LINE DETERMINATION.

IF ALL EDGES HAVE ALREADY BEEN DRAWN,THEN DISREGARD THE FOLLOWING C

IFC(ISILH(I) -NE. ISILH(JIB)) .AND. (ISILH(J) .NE.0))GO TO 1212
IF(J.LT.JB)GO TO 1650
IF(19.EQ.NS)GO TO 1650
MG=0
NV1=NV-1
NS1=NS-1
DO 1630 L=1,NS
DO 1580 IX=1,NV
IF(ABS(XI(1X)-DI(L)).GT.HXX)GO TO 1580
IF((ABS(YU(IX)-YE(L)).GT.HXX) .OR. (ABS(XU(I1X)-XE(L)) .GT.
1HXX))GO TO 1580
IF(MG.EQ.2)GO TO 1640
MG=MG+1
12(MG)=L
13(MG)=1X
GO TO 1630
1580 CONTINUE
1630 CONTINUE
1640 CONTINUE
IF(MG.NE.2)GO TO 1650
IR=1ABS(13(2)-13(1))
IR1=1ABS(12(2)-12(1))
IF((IR.NE.1) .AND. (IR.NE.NV1))GO TO 1650
IF((IR1.NE.1) .AND. (IR1.NE_NS1))GO TO 1650
IX=MAX0(12(1),12(2))
IF(IR1.EQ.1) IX=1X-1
11AC400+1X)=1
19=19+1
1650 CONTINUE
1212 CONTINUE
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150

151

152

153

154

155

L=0

DO 150 M=1,IT

L=L+1COUNT (M)

IF((I1SILH(JI) -NE.0) .AND. (I1SILH(JIB) .EQ. ISILH(J)))GO TO 165
IF(L.EQ.0)GO TO 170

IF(I1.GT.N9)GO TO 165

INTERROGATE THE RELATIONSHIP OF THE CANDIDATE POLYGON TO THE
GIVEN POLYGON BY DETERMINING IF THE PROJECTION OF ONE POLYGON
CAN BE SEPARATED BY AN EDGE FROM THE OTHERS PROJECTION

JK=L13+(JIB-1)*LZ
E3=XXX(3+JS)
E1=XXX(1+JS)
E4=XXX(4+JS)
E2=XXX(2+JS)
SD=0

13(1)=JK
13(2)=J0
12(1)=NV*5
12(2)=NS*5

DO 164 KuU=1,2
1S=13(KU)
1B=12(KU)

DO 163 LL=1,1B,5
CONTINUE
IF(SD.EQ.1.)GO TO 152
A=D2*E3-E2*D3
B=D1*E3-E1*D3
C=D4*E3-E4*D3

GO TO 153

CONT INUE
A=CCC(LL+1S)
B=CCC(LL+IS+1)
C=CCC(LL+IS+2)
CONTINUE
IFC(A.EQ.0.).AND.(B.EQ.0.))GO TO 162
IF(A_.NE.0.)GO TO 154
A=0

C=C/B

B=1

GO TO 155

CONT INUE

B=B/A

C=C/A

A=1

CONTINUE

M=0

R1=0

DO 158 IX=1,NV
M=M+1

YG=YU(M)
IF(A.NE.0.)GO TO 156
DY=-C/B

YG=XU(M)
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159

160

161

162

163
164
165

166

170

GO TO 157

CONTINUE

DY=-C-B*XU(M)
IF(ABS(DY-YG) .LT.HXX)GO TO 158
R=YG-DY

IF(R*R1.LT.0.)GO TO 162
R1=R

CONTINUE

M=0

R2=0

DO 161 1X=1,NS

M=M+1

YG=YE(M)

IFCA.NE.O0.)GO TO 159
DY=-C/B

YG=XE(M)

GO TO 160

CONTINUE

DY=-C-B*XE(M)
IF(ABS(DY-YG) .LT_.HXX)GO TO 161
R=YG-DY

IF(R*R2.LT.0.)GO TO 162
R2=R

CONTINUE
IF(R1*R2.LT.0.)GO TO 170
CONTINUE

IF(SD.NE.0.)GO TO 163
SD=1

GO TO 151

CONTINUE

CONTINUE

CONTINUE
IF((L.EQ.I1T).0OR.(L.EQ.0))JB=-JB
CONTINUE

1=11+1

NNO(L4+11)=JB

CONTINUE
IF(11.LE.2)1JBB=1

JAT=-4

C CHING

C

OO0O0O0O0

190
200

IF(IXR.LE.3)GO TO 200
IF(11.EQ.0)GO TO 190

CALL SUBROUTINE WHICH SOLVES FOR THE LINES OF INTERSECTION, IF ANY,
OF THE JTH ELEMENT WITH OTHER ELEMENTS.

CALL SOLVE(IXR,J,XXX,CCC,11,NNO,NIT,X21,Y21,721, 11A,NC,ZM,ZMI,LZ)
CONT INUE

CONT INUE

1J1=3J+1

1J2=33+2

1J3=3J+3

DO 210 JM=1, IXR

X21(IM)=COORD (JH+JJ)

Y21 (IM)=COORD(JH+1J1)
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721 (IM)=COORD(JH+1J2)
1 1A(IM)=COORD(JIH+1J3)
JH=JH+4
210 CONTINUE
IXR=IXR+3*NIT
IF(11.EQ.0)GO TO 220
IF(IXXX.NE.1)GO TO 240
220 CONTINUE
DO 230 JM=1, IXR
IF(IXXX.EQ.1)GO TO 1993
IF(IM.GE. IXR-1)GO TO 1993
IF(1IAC400+IM) . EQ. 1) 1 A(IM+1)=1
1993 CONTINUE
X1(2)=X21(IM)
Y1(2)=Y21(IM)
IM=1ABS(1HTA(IM))
CALL PLT(X1,Y1,1J,1M)
IF((IM.NE. IXR) .AND. (1 IA(IM+1) .EQ.0))CALL PLT(X1,Y1,1J,0)
230 CONTINUE
GO TO 390
240 CONTINUE
JxX=1
250 CONTINUE

PLOTS IF 11A(JX+1) 1S EQUAL TO 1.

IFC(11AQIX) .EQ.0) .AND. (1 1A(JX+1) .EQ.0))GO TO 260
IF(11A(IX+1) .NE.-1)GO TO 251
1IA(IX+1)=0
IM=1
JAT=JAT+5
IX=JX-1
GO TO 252
251 CONTINUE
IM=1T1A(IX+1)
252 CONTINUE
X1(2)=X21(IX+1)
Y1(2)=Y21(IX+1)
CALL PLT(X1,Y1,1J,1IM)
IX=IX+2
IF(JIX.GE. IXR)GO TO 390
GO TO 250
260 CONTINUE
1J=0
JAT=JAT+5
ME=0
IF(JIX.GT.NS)GO TO 255
IF(11A(400+JX) .EQ.1)GO TO 381
255 CONTINUE

CALL SUBROUTINE WHICH DETERMINES THE POINTS OF INTERSECTIONS
OF THE LINES OF THE JTH SET WITH THE RELEVANT LINES AND PLANES
OF OTHER ELEMENTS.

H(6)=NIT
CALL CHECK(XXX,CCC,NNO,J, 11,NC,XI,Yl ,NGX,ZM,ZMI ,RV,RVI,TGM,TGI,
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1Z1,L2)
NG=NGX(1)+2
IMB=JX+1
X1(1)=X21(JIX)
Y1(1)=Y21(IX)
Z1(1)=221(3X)
X1 (NG)=X21(IMB)
Y1 (NG)=Y21(IMB)
Z1(NG)=z21(IMB)

880 CONTINUE

1101 CONTINUE

THE FOLLOWING CODE SORTS THE INTERSECTION POINTS IN ASCENDING
ORDER OF OCCURRENCE AND THEN SHRINKS THE LIST IF REDUNDANCY EXISTS.
IF(NG.LE.3)GO TO 340

NI=NG-2

NII=NI

DO 270 M=1,NG
DI =(XT(M)=XT (1)) **2+(YT(M)=Y 1 (1))**2
270 CONTINUE
DO 290 M=2,NI
DO 280 MX=2,NII
IF(DI(MX) .LE.DI(MX+1))GO TO 280
IW=MX+1
HOLD=D1 (MX)
HOLD1=X1(MX)
HOLD2=Y I (MX)
HOLD3=Z1(MX)
XTQMX)=XT (1W)
YIQMX)=YT(IW)
ZIMX)=Z1(IW)
DI(MX)=DI(IW)
DI (1W)=HOLD
X1 (1W)=HOLD1
Y1 (1W)=HOLD2
Z1(1W)=HOLD3
280 CONTINUE
NII=NI1-1
290 CONTINUE
LX=1
NPX=NG
300 NPX=NPX-1
1=LX
DO 320 M=1I,NPX
RX=0
T=SQRT ((XE (M) -XT (M+1))**2+ (Y 1 (M)-Y I (M+1))**2)
IF(T.GT.HX1)GO TO 320
IX=M
I1X1=NPX
DO 310 MX=IX, IX1
IW=MX+1
XEMX)=X1(IW)
YL =YT(IW)
ZIMX)=Z1(IW)
310 CONTINUE
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320
330

340

350

360

370

379

RX=1
LX=M

IF(LX.EQ.NPX)GO TO 330
GO TO 300

CONT INUE

CONT INUE
IF(RX.EQ.1.)NPX=NPX-1
NG=NPX+1

CONT INUE

THIS CODE DETERMINES THE STATUS(VISIBILITY) OF EVERY OTHER POINT
AS SUGGESTED BY THE THEOREM IN TECHNICAL REPORT, NASA/RP-1085.

DO 350 L=1,NG,2
0J=X1(L)
TMI=Y I (L)
ZJ=Z1(L)
CALL STATUS(OJ,TMJ,XXX,TGM,RV,RVI,TGI,ZM,NNO, I'1,H, IM,JXT,

1zJ3,NC,2ZM1,CCC,LZ)

DI(L)=1IM

CONT INUE

JII=NG-1

DO 370 L=1,NG,2

IF(L.EQ.NG)GO TO 370
IF(L.EQ.JI1)GO TO 360
IF(DI(L)+DI(L+2).NE.2.)GO TO 360
DI(L+1)=DI(L)

GO TO 370

CONT INUE

MN=L+1

0J=X1(MN)

TMI=Y 1 (MN)

ZJ=Z1(MN)

CALL STATUS(OJ,TMJ,XXX,TGM,RV,RVI,TGI,ZM,NNO, 11 ,H, IM,

1JXT,ZJ3,NC,zZMI,CCC,LZ)

DI(MN)=IM
CONTINUE

THE FOLLOWING CODE ACTUALLY PLOTS THE POINTS ON A GIVEN LINE
GOVERNED BY THE VALUE(IM) RETURNED BY STATUS SUBROUTINE.
1 MEANS INVISIBLE,...O0O MEANS VISIBLE.

CONT INUE
DO 380 L=1,NG

X1(2)=X1(L)

Y1(2)=Y1(L)

IM=DI(L)

CALL PLT(X1,Y1,1J,1IM)
IF(L.EQ.NG)GO TO 380
IF(DI(L)+DI(L+1).GT.0.)GO TO 380
H(8)=1

MN=L+1

0J=(X1 (L)+X1 (MN)) /2
TMI=CY T (L) +Y T (MN)) /2
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380
381

390

395
400

ZI=(Z1 (L)+Z1 (MN)) /2
CALL STATUS(OJ,TMJ,XXX,TGM,RV,RVI,TGI,ZM,NNO, 11 ,H, IM,JXT,ZJ,NC,
1ZM1,CCC, LZ)

H(8)=0

IF(IM.EQ.0)GO TO 380
X1(2)=0J

Y1(2)=TMJ

CALL PLT(X1,Y1,1J,IM)
CONTINUE

CONT INUE

IX=IX+1

GO TO 250

CONTINUE

DECREMENTS THE COUNT OF THE NUMBER OF LINES IN THE JTH SET
SINCE THE LINES OF INTERSECTIONS WERE ADDED TO THIS ELEMENT
BY THE SUBROUTINE SOLVE.

XXX (5+IT)=XXX(5+IT)-NIT

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE STATUS(0J,TMJ,XXX,TGM,RV,RVI,
1TGI,ZM,NNO, 11 ,H, IM,JXT,ZJ,NC,ZMI1,CCC,LZ)

THIS SUBROUTINE DETERMINES THE VISIBILITY OF AN ARBITRARY POINT
BY DRAWING A LINE FROM THE POINT IN QUESTION TO INFINITY AND
COUNTING THE NUMBER OF TIMES IT CROSSES THE BOUNDARIES OF A
RELEVANT ELEMENT.

DIMENSION CCC(1),XXX(1)
DIMENSION ZMI(1),TGM(1),RV(1),RVI(1),

1TGI(L1),ZM(1),NNO(L) ,H(1)

COMMON/GO3/L0,L1,L00,L01,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13
COMMON/DRH/ ISILH(1)

DATA GGK,GGJ,EI/.005,.015, .2/

IM=0

D=E1*0J-TMJ

DO 60 JO=1,11

JG=NNO(L4+J0)

PRELIMINARY CHECK TO SEE IF THE POINT IS OUTSIDE THE BOUNDARY
BOXES IN THE X,Y,Z DIMENSIONS.

IF((TMJ.GE.RV(L7+JG)) .OR. (TMJ.LE.RVI(L8+JG)))GO TO 60
IF((0J.GE.TGI(L6+JG)).OR.(0J.LE.TGM(L5+JG)))GO TO 60

IF(ZJ.GE.ZM(L2+JG))GO TO 60

JT=L12+(JG-1)*5

ZS=— (XXX (4+ITY+XXX(2+IT)*TMI+XXX (1+IT)*0I) /XXX (IT+3)

IF(ABS(ZJ-ZS) .LT.GGJ)GO TO 60

IF((ZJ.GT.ZS).0R. (JXT.EQ.JG))GO TO 60

IB=XXX(5+JT)*5
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JS=L13+(JIG-1)*LZ

DO 20 J=1,1B,5

JJ=JS+J

IF(CCC(JJ).EQ.0)GO TO 15
S=0J-CCC(JJI+3)

S1=0J-CCC(JJ+4)
DY=(-CCC(JJI+2)-CCC(II+1)*0I)-TMJ
GO TO 16

CONTINUE
DY=(-CCC(JJ+2)/CCC(II+1))-0J
S=TMJ-CCC(JI+3)

S1=TMJ-CCC(JJI+4)

CONTINUE
IF((ABS(DY) .LT.GGK) .AND. (S*S1.LE.0.))GO TO 61
CONTINUE

THE FOLLOWING CODE COUNTS THE INTERSECTIONS OF BOUNDARIES

OF A GIVEN ELEMENT WITH THE INFINITE LINE AND CHECKS, IF INSIDE
OF THE BOUNDARY, WHETHER OR NOT THE POINT IS BEHIND OR IN FRONT
OF THE ELEMENT.

1=0

DO 40 J=1,1B,5

JJ=Js+J

R=E1*CCC(JJ)+CCC(II+1)

IF(R.EQ.0.)GO TO 40
T=(~CCC(JJI+2)+CCC(II)*D)/R

IF(T.LT.0J)GO TO 40

IF(CCC(JJ).NE.0.)GO TO 30

T=EI*T-D

CONT INUE
IF((T-CCC(JII+3))*(T-CCC(JII+4)).GT.0.)GO TO 40
CONT INUE

1=1+1

CONT INUE

IF(1-(1/2)*2_EQ.0)GO TO 60

CONT INUE

IM=1

GO TO 70

CONT INUE

IF(H(8) .NE.1)GO TO 60
IF((ISILH(IXT) -EQ. ISILH(JG)) .AND. (ISILH(JXT) .NE.0))GO TO 60
IF(ZJ.LT.ZMI(L3+JG))GO TO 50

CONT INUE
IF((ISILH(IXT) .EQ.0) .OR. (H(8) .NE.1.))GO TO 70
CALL STATUM(OJ,TMJ,XXX,TGM,RV,RVI,TGI,ZM,NNO, 11 ,H, IM,JIXT,
123 ,NC,ZM1,CCC,LZ)

CONT INUE

RETURN

END

SUBROUTINE PLT(X1,Y1,1J,IM)

PLOTS POINTS GOVERNED BY THE VALUE OF IM.
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NOTE THAT CALL PLOT(X,Y,2) MEANS MOVE PEN FROM THE CURRENT
POSITION TO THE POINT, (X,Y),WITH THE PEN DOWN.

CALL PLOT(X,Y,3) MEANS MOVE THE PEN FROM THE CURRENT POSITION
TO THE POINT,(X,Y), WITH THE PEN UP.

DIMENSION X1(1),Y1(1)
IF(IM.EQ.1)GO TO 20
IF(1J.EQ.0)GO TO 10

HERE 1S WHERE THE POINTS ARE DRAWN. YOU MUST ALSO CHECK TO BE
SURE THAT THE POINT AT "10 CONTINUE® IS INCLUDED WHENEVER
POINTS ARE DRAWN; IT WILL BE THE FIRST IN THE SEQUENCE.

CALL PLOT((X1(2)-X1(3))/X1(4),(Y1(2)-Y1(3))/Y1(4).2)
GO TO 30

CONT INUE

CALL PLOT((X1(2)-X1(3))/X1(4),(Y1(2)-Y1(3))/Y1(4),3)
1J=1

GO TO 30

CONTINUE

1J=0

CONTINUE

RETURN

END

SUBROUTINE CHECK(XXX,CCC,NNO,J, 11,NC,XI,YI,

INGX,ZM,ZMI ,RV,RVI,TGM,TGI,Z1,LZ)

THIS SUBROUTINE SOLVES FOR THE POINTS OF INTERSECTION ON THE
LINES OF THE JTH ELEMENT WITH OTHER LINES AND PLANES(RELEVANT).

DIMENSION CCC(1),XXX(1)
DIMENSION RV(1),RVI(1),TGM(1),TGI(1),ZM(1),ZMI(L),

INNO(1) ,NGX(15) ,X1(1),Y1(1).ZI1(1)

DOUBLE PRECISION T8
COMMON/DAVE/XCC(800)

COMMON/HEDG/JS, M, JT,VX,VX1,VX2,VX3,NN
COMMON/G03/L0,L1,L00,L01,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13
COMMON/DRH/ ISILH(1)

DATA EEX,EXP/.015,.005/

NGX(1)=0

XCC3=XCC(JS+3)

XCC4=XCC(JS+4)

XCC1=XCC(JS+1)

XCC2=XCC(JS+2)

IF(NN.EQ.1)GO TO 5

IF(VX3.NE.0.)GO TO 5

A=XXX(IT+2)

B=XXX(JT+1)

C=XXX(IT+4)

Z1=XCC(JS)
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Z2=XCC1
IF(A.EQ.0.)GO TO 1
Y1=-XCC3*B-C
Y2=-XCC4*B-C
X1=XCC3
X2=XCC4

GO TO 15
CONTINUE
Y1=XCC3
Y2=XCC4
X1=-C

X2=X1

GO TO 15
CONTINUE
A=XCC(JS)
B=XCC1
C=XCC2
IF(A.EQ.0.)GO TO 20
Y1=-XCC3*B-C
Y2=-XCC4*B-C
X1=XCC3
X2=XCC4

GO TO 30
CONTINUE
Y1=XCC3
Y2=XCC4
X1=-XCC2
X2=X1

CONT INUE
IF(NN.NE.1)GO TO 40
Z1=XXX(1+JT)
Z2=XXX(2+JT)
GO TO 50
CONTINUE

Z1=- (VX+VX1*Y1+VX2*X1)/VX3
Z2=- (VX+VX1*Y2+VX2*X2) /VX3

CONTINUE
CONT INUE

AL=X2-X1

BL=Y2-Y1

CL=z2-71
EG=AMIN1(Z1,Z2)
EGX=AMAX1(X1,X2)
EGX1=AMIN1(X1,X2)
EGY=AMAX1(Y1,Y2)
EGY1=AMIN1(Y1,Y2)
EGZ=AMAX1(Z1,Z2)
IF(AL.EQ.0.)GO TO 51
BLA=BL/AL
BLAX=(BLA)*X1
CLA=CL/AL
CLAX=(CLA)*X1

GO TO 52

CONT INUE
IF(BL.EQ.0.)GO TO 52
ALB=AL/BL
ALBY=(ALB)*Y1
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CLB=CL/BL
CLBY=(CLB)™*Y1
52 CONTINUE

THIS CODE DETERMINES THE POINTS OF INTERSECTIONS ON THE LINES OF
JTH ELEMENT RESULTING FROM THE INTERSECTION OF THE PLANES WITH
THESE LINES.

DO 170 JR=1,11
KM=L4+JR
LG=NNO(KM)
NNO(KM)=1ABS(LG)
LE=NNO(KM)
IF(J.EQ.LE)GO TO 170
IF(EGX.LT.TGM(LE+L5))GO TO 170
IF(EGX1.GT.TGI(LE+L6))GO TO 170
IF(EGY.LT.RVI(LE+L8))GO TO 170
IF(EGY1.GT.RV(LE+L7))GO TO 170
IF((I1SILH(J) -EQ. ISILH(LE)) -AND. (I1SILH(J) .NE.0))GO TO 1172
IF(EG.GT.ZM(L2+LE))GO TO 170
1172 CONTINUE

JE=L13+LZ*(LE-1)
JU=L12+5*(LE-1)
AC=XXX(1+JU)
BC=XXX(2+JU)
CC=XXX(3+JU)
D=XXX(4+JU)
G=1./CC
NK=XXX (5+JU)*5
IF((LG.LT.0).0R.(EGZ.LE.ZMI(L3+LE)))GO TO 80
IF((AL.EQ.0) .AND. (BL.EQ.0))GO TO 80
IF(AL.EQ.0)GO TO 60
VU=AC+BC*BLA+CC*CLA
IF(VU.EQ.0.)GO TO 80
XP=BC*BLAX+CC*CLAX-D
XP=XP-BC*Y1-CC*Z1
XP=XP/VU
T1=(XP-X1)/AL
YP=T1*BL+Y1
GO TO 70

60 CONTINUE
VU=BC+AC*ALB+CC*CLB
IF(VU.EQ.0.)GO TO 80
YP=AC*ALBY+CC*CLBY-D
YP=YP-CC*Z1-AC*X1
YP=YP/VU
T1=(YP-Y1)/BL
XP=T1*AL+X1

70 CONTINUE
IF((XP-TGM(LE+L5))*(XP-TGI (LE+L6)).GT.0.)GO TO 80
IF((YP-RV(LE+L7))*(YP-RVI(LE+L8)).GT.0.)GO TO 80
T=XP
IF(A.EQ.0.)T=YP
IF((T-XCC3)*(T-XCC4).GE.0.)GO TO 80
ZP=T1*CL+Z1
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S=ZP-ZM(L2+LE)
S1=7P-ZM1 (L3+LE)
IF((ABS(S) .LT.EEX) .OR. (ABS(S1).LT.EEX))GO TO 56
IF(S*S1.GT.0.)GO TO 80
56 CONTINUE

STORES INTERSECTIONS.

M=M+1
NQ=M+1
XI(NQ)=XP
YI(NQ)=YP
ZI(NQ)=zP
80 CONTINUE

THIS CODE DETERMINES INTERSECTION POINTS OF LINES WITH LINES.

JE1=JE+1
JE2=JE+2
JE3=JE+3
JEA=JE+4
DO 160 JV=1,NK,5
B1=CCC(JV+JE1)
A1=CCC(JV+JE)
T8=A1*B-B1*A
IF(T8.EQ.0.)GO TO 160
C1=CCC(IV+JIE2)
X0=(C1*A-C*A1)/T8
IF(A.NE.0.)GO TO 90
YO=-C1-B1*X0
GO TO 100

90 CONTINUE
YO=-C-B*X0

100 CONTINUE
T=X0
IF(A.EQ.0.)T=YO
IF((T-XCC3)*(T-XCC4) .GE.0.)GO TO 160
T=X0
IF(A1.EQ.0.)T=YO
S1=T-CCC(JV+JIE4)
S=T-CCC(JIV+JIE3)
IF((ABS(S) .LE.EXP) .OR. (ABS(S1).LE.EXP))GO TO 110
IF(S*S1.GT.0.)GO TO 160

110 CONTINUE
IF(VX3.NE.0.)GO TO 130
TSZ=CL
TSX=AL
VT=X0-X1
IF(TSX.NE.0.)GO TO 120
VT=YO-Y1
TSX=BL

120 CONTINUE
ZX1=(TSZ/TSX)*VT+Z1
GO TO 140

130 CONTINUE
ZX1=- (VX+VX1*YO+VX2*X0)/VX3

140 CONTINUE
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IF(I1SILH(J) .EQ.0)GO TO 148
IF(1SILH(J) .EQ. ISILH(LE))GO TO 150

148 CONTINUE

ZX=-(AC*X0+BC*YO+D)*G
IF(ABS(ZX-ZX1) .LT.EXP)GO TO 150
IF(ZX1.GT.ZX)GO TO 160

150 CONTINUE
M=M+1
NQ=M+1

STORES INTERSECTIONS.

X1(NQ)=X0

Y1(NQ)=YO

Z1(NQ)=zX1
160 CONTINUE
170 CONTINUE

NGX(1)=M
190 RETURN
END
SUBROUTINE VSRTR(A, LA, IR)
IMSL ROUTINE NAME - VSRTR
COMPUTER ~ CDC/SINGLE
LATEST REVISION - JANUARY 1, 1978
PURPOSE - SORTING OF ARRAYS BY ALGEBRAIC VALUE -
PERMUTATIONS RETURNED
USAGE - CALL VSRTR (A,LA,IR)
ARGUMENTS A - ON INPUT, A CONTAINS THE ARRAY TO BE SORTED.
ON OUTPUT, A CONTAINS THE SORTED ARRAY.
LA — INPUT VARIABLE CONTAINING THE NUMBER OF
ELEMENTS IN THE ARRAY TO BE SORTED.
IR - VECTOR OF LENGTH LA.
ON INPUT, IR CONTAINS THE INTEGER VALUES
1,2,...,LA. SEE REMARKS.

PRECISION/HARDWARE

REQD. IMSL ROUTINES

REMARKS

ON OUTPUT, IR CONTAINS A RECORD OF THE
PERMUTATIONS MADE ON THE VECTOR A.

SINGLE/ZALL

NONE REQUIRED

CONVENTIONS 1S AVAILABLE IN THE MANUAL
INTRODUCTION OR THROUGH IMSL ROUTINE UHELP

THE VECTOR IR MUST BE INITIALIZED BEFORE ENTERING
VSRTR. ORDINARILY, IR(1)=1, IR(2)=2, ...,
IR(LA)=LA. FOR WIDER APPLICABILITY, ANY INTEGER
THAT IS TO BE ASSOCIATED WITH A(1) FOR 1=1,2,...,LA
MAY BE ENTERED INTO IR(I).
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COPYRIGHT - 1978 BY IMSL, INC. ALL RIGHTS RESERVED.

WARRANTY - IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN
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APPLIED TO THIS CODE. NO OTHER WARRANTY,
EXPRESSED OR IMPLIED, 1S APPLICABLE.

DIMENSION A(1),IR(1)
SPECIFICATIONS FOR ARGUMENTS
SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER 1UC21),1L(21),1,M,3,K, 13, 1T,L,ITT
REAL T,TT,R
FIRST EXECUTABLE STATEMENT
IF (LA.LE.O) RETURN
M=1
1 =1
J =LA
R = .375
IF (1.EQ.J) GO TO 45
IF (R.GT..5898437) GO TO 10
R = R+3.90625E-2
GO TO 15
R-.21875
I

A~

SELECT A CENTRAL ELEMENT OF THE
ARRAY AND SAVE IT IN LOCATION T

1J = 1+@J-1*R

T = A(1D)

IT = IR(1D)
IF FIRST ELEMENT OF ARRAY IS GREATER
THAN T, INTERCHANGE WITH T

IF (A(1).LE.T) GO TO 20

AC(1Y) = A(D)

A =T

T = A1)

IR(1J) = IR(I)

IR(I) = IT

IT = IR(1J)

L=J
IF LAST ELEMENT OF ARRAY IS LESS THAN
T, INTERCHANGE WITH T

IF (A(J).GE.T) GO TO 30

A(1Y) = AQD)

AQ) =T

T = A(1D)

IR(1J) = IRQ)

IRQJ) = IT

IT = IR(1J)
IF FIRST ELEMENT OF ARRAY IS GREATER
THAN T, INTERCHANGE WITH T

IF (A(1).LE.T) GO TO 30

A1) = A(D)

A(D =T

T = A(1D)

IR(1J) = IR(I)

IR(I) = IT



25

30

35

40

45

50

55

60

IT = IR(1J)

GO TO 30

IF (A(L).EQ.ACK)) GO TO 30
= A(L)

AL = A(K)

AK) =

ITT = IR(L)

IR(L) = IR(K)

IR(K) = ITT

FIND AN ELEMENT IN THE SECOND HALF OF
THE ARRAY WHICH IS SMALLER THAN T
L =1L-1
IF (A(L).GT.T) GO TO 30
FIND AN ELEMENT IN THE FIRST HALF OF
THE ARRAY WHICH IS GREATER THAN T
K = K+1
IF (A(K).LT.T) GO TO 35
INTERCHANGE THESE ELEMENTS
IF (K.LE.L) GO TO 25
SAVE UPPER AND LOWER SUBSCRIPTS OF
THE ARRAY YET TO BE SORTED
IF (L-1. LE-J—K) GO TO 40
IL(M) =
Ium) =
1 =K
M = M+1
GO TO 50
IL(M) =
IU(M) =
J
M = M+1
GO TO 50
BEGIN AGAIN ON ANOTHER PORTION OF
THE UNSORTED ARRAY
= M-1
(M_EQ.0) RETURN
IL(M)
VD)
(J-1.GE.11) GO TO 15
F (1.EQ.1) GO TO 5
1-1
1+1
(1.EQ.J) GO TO 45
A(1+1)
IT = IR(1+1)
IF (A(1).LE.T) GO TO 55
K=1
A(K+1) = AK)
IR(K+1) = IR(K)
K = K-1
IF (T.LT.A(K)) GO TO 60
A(K+1) =
IR(K+1) =
GO TO 55
END
SUBROUTINE SOLVE(IXR,J,XXX,CCC, Il ,NNO,NIT,
1X21,Y21,721,11A,NC,ZM,ZMI,LZ)

M
IF
I
J
IF
I
1
1
IF
T =
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10

20

THIS SUBROUTINE SOLVES FOR THE LINES OF INTERSECTION RESULTING
FROM THE INTERSECTIONS OF THE JTH ELEMENT WITH THE OTHER
RELEVANT ELEMENTS.

DIMENSION XXX(1),CCC(1),NNO(1),
1ZM(L) ,ZMI (1) ,X21(1),Y21(1),Z21(1), 11A(L), 1V(2)
DIMENSION XA(50),YA(50),ZA(50)
COMMON/DAVE/XCC (800)
COMMON/G03/L0,L1,L00,L01,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13
COMMON/DRHZISILH(1)

COMMON/ INDX/JT, JB

DATA EXX,ERS/.001,.015/

C3=XXX(3+JT)

IF(C3.EQ.0.)GO TO 80

A3=XXX(1+JT)

B3=XXX(2+JT)

D3=XXX(4+JT)

ZQ=ZM(L2+J)

DO 70 L=1,11

K=NNO(L4+L)

CHECKS TO SEE IF THIS RELEVANT ELEMENT IS TO BE CONSIDERED FOR
INTERSECTION

IF((K.LT.0).0R.(K.LT.J))GO TO 70

IF(ZQ.LT.ZMI(L3+K))GO TO 70

IF((ISILH(I) -EQ.- ISTLH(K)) -AND. (ISILH(J) -NE.0))GO TO 70
IX=L12+(K-1)*5

MT=0

A4=XXX(1+IX)

B4=XXX(2+JX)

CA=XXX(3+IX)

DA=XXX (4+JX)

DETERMINES THE EQUATION OF LINE OF INTERSECTION.

B=A3*C4-A4*C3
A=B3*C4-B4*C3

C=D3*C4-D4*C3

IF((A.EQ.0.).AND. (B.EQ.0.))GO TO 70
IF(A.NE.0.)GO TO 10

A=0

c=C/B

B=1

GO TO 20

CONT INUE

B=B/A

C=C/A

A=1

CONTINUE

1V(1)=J

IV(2)=K

S3=2*A+2*B+C

DO 60 M=1,2
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1=1V(M)
JJ=L13+(1-1)*LZ
1G=5+L12+(1-1)*5
NK=XXX(1G)*5
JJ1=33+1
JJ2=33+2
JJ3=3J+3
JJ4=3J+4

DO 50 JV=1,NK,5
A1=CCC(JIV+JJ)
B1=CCC(JV+JJ1)
C1=CCC(IV+II2)

CHECK TO BE SURE LINE OF INTERSECTION 1S NOT BOUNDARY LINE
OF THE JTH SET.

S2=A1*2_+B1*2.+C1
IF(ABS(S2-S3) .LT.EXX)GO TO 70

DETERMINES THE POINTS OF INTERSECTIONS OF THE LINE OF INTERSECTION
WITH OTHER LINES OF RELEVANT ELEMENTS.

T8=A1*B-B1*A
IF(ABS(T8).LE.ERS)GO TO 50
X0=(C1*A-C*A1)/T8
IF(A-NE.0.)GO TO 30
YO=-C1-B1*X0
GO TO 40

30 CONTINUE
YO=-C-B*X0

40 CONTINUE
T=X0
IF(A1.EQ.0.)T=YO
IF((T-CCC(IV+II4))*(T-CCC(IV+II3)).GT.0.)GO TO 50
MT=MT+1

STORE THE PTS OF INTERSECTIONS.

XA(MT)=X0
YA(MT)=YO
ZA(MT)=-(D3+A3*X0+B3*Y0)/C3
ZT=-(D4+A4*X0+B4*Y0)/C4
IF(ABS(ZT-ZA(MT)) .GT.EXX)GO TO 70
50 CONTINUE
60 CONTINUE
CALL STAT(MT,NIT,IXR,X21,Y21,221,11A,1V,A,B,
IC,J,XA,YA,ZA,CCC,XXX,NC,LZ)
70 CONTINUE
80 CONTINUE
NR=5*XXX(5+JT)
DO 90 1S=1,NR
XCC(1S)=CCC(1S+JIB)
90 CONTINUE
XXX (5+IT)=XXX(5+IT)+NIT
RETURN
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END
SUBROUTINE STAT(MT,NIT,IXR,X21,Y21,721,
111A,1V,A,B,C,IK,XA,YA,ZA,CCC,XXX,NC,LZ)

THIS SUBROUTINE TAKES THE PTS OF INTERSECTION DETERMINED BY
SUBROUTINE SOLVE AND PICKS THE COORDINATES WITH THE MAX AND
MIN X COORDINATES PROVIDED THEY LIE ON THE INTERIOR/BOUNDARY
OF BOTH ELEMENTS.

DIMENSION XXX(1),CCC(1),X21(1),
1Y21(1),Z21(1), HA(L) , 1IV(1) ,XA(1) ., YA(L) ,ZA(1)
COMMON/DAVE/XCC(800)
COMMON/GO3/L0,L1,L00,L01,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13
DATA EXX/.015/

NX=0

IF(NIT.GE.120)GO TO 160

IF(MT.EQ.0)GO TO 160

DO 50 JX=1,MT

E1=0

10 EI=El+.1

IF(EI.GE..5)GO TO 160

D=E I*XA(JIX)-YA(IX)

DO 40 JO=1,2

M=1V(J0)-1

JC=L13+(M)*LZ

JIXC=L12+(M)*5

NK=XXX(5+JXC)

1=0

IB=NK*5

DETERMINE 1F THE PROJECTION OF THE POINT OF INTERSECTION
BELONGS TO THE INTERIOR OF BOTH PLANES.

DO 30 J=1,1B,5
VE=XA(JIX)
J6=J+JC
IF(CCC(J6) .EQ.0.)VE=YA(IX)
T=CCC(JB)*YA(IX)+CCC(I6+1)*XA(IX)+CCC(I6+2)
IF((ABS(T) .LT-.EXX).AND. ((VE-CCC(J6+3))*(VE-CCC(J6+4)).LE.0.))
1GO TO 40
R=E1*CCC(J6)+CCC(I6+1)
IF(R.EQ.0.)GO TO 30
T=(-CCC(J6+2)+CCC(IB)*D)/R
IF(T.LT-XA(JIX))GO TO 30
IF(CCC(J6).NE.0.)GO TO 20
T=EI*T-D
20 CONTINUE
IF((T.EQ.CCC(J6+3)).0R. (T-EQ.CCC(I6+4)))GO TO 10
IF((T-CCC(JI6+3))*(T-CCC(JI6+4)).GT.0.)GO TO 30
1=1+1
30 CONTINUE
IF(1-(1/2)*2_.EQ.0)GO TO 50
40 CONTINUE
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NX=NX+1
XA(NX)=XA(IX)
YA(NX)=YA(JIX)
ZA(NX)=ZA(JIX)

50 CONTINUE
IF(NX.EQ.0)GO TO 160

THIS CODE FINDS THE MAX/MIN X-COORDINATES(Y-COORDINATES) AND
STORES THEM. FURTHERMORE BOTH THE EQUATION OF LINE AND POINTS(2)
ARE TREATED LIKE ADDITIONAL EDGES. IN THIS WAY, THE ALGORITHM NEED
NOT BE DISTURBED. ESSENTIALLY,THEN,THIS TRICK IS TRANSPARENT TO
THE REST OF THE PROGRAM.

AMAXX=- (10**6)

AMINX=-AMAXX

AMAXY=AMAXX

AMINY=AMINX

1S=5+(1K-1)*5+L12

1S=XXX(1S)

DO 110 JI=1,NX
IF(A.EQ.0.)GO TO 80
IF(XACJI1) .GE.AMINX)GO TO 60
AMINX=XA(J1)

YI=YAQII)
Z1=zA(J1)
60 IF(XA(JI).LE_AMAXX)GO TO 70
AMAXX=XA(J1)
YII=YAQD)
Z11=zA@J1)
70 CONTINUE
GO TO 110
80 CONTINUE
IF(YA(JI) .GE.AMINY)GO TO 90
AMINY=YA(JI)
XI1=XA(I1)
Z1=zA(J1)
90 CONTINUE
IF(YA(JI) .LE.AMAXY)GO TO 100
X11=XA1)
AMAXY=YA(JI)
Z11=ZA@J1)

100 CONTINUE

110 CONTINUE
NIT=NIT+1
K=5*(NIT-1+1S)+1
XCC(K)=A
XCC(K+1)=B
XCC(K+2)=C
IF(A.EQ.0.)GO TO 120
XCC(K+3)=AMINX
XCC(K+4)=AMAXX
AMIN=AM INX
AMAX=AMAXX
YE=YII



120

130

140

150

160

10
15

ZE=Z11

GO TO 130

CONT INUE

XCC(K+3)=AMINY

XCC(K+4)=AMAXY

AMIN=X1

AMAX=X11

Y I=AMINY

YE=AMAXY

ZE=Z11

CONT INUE

IG=IXR+NIT*3

18=1G-2

X21(18)=AMIN

Y21(18)=YI

721(18)=Z1I

DO 140 JK=1,2

IE=1G-JK+1

X21(1E)=AMAX

Y21(1E)=YE

721(1E)=ZE

CONT INUE

DO 150 JK=1,2

1IA(1G-JK)=0

CONT INUE

11A(1G)=1

TX=(AMAX-AMIN)**2

TY=(YE-Y1)**2

DX=(TX+TY)**.5

IF(DX.LT..1)NIT=NIT-1

CONT INUE

IF(EI.GE. .5)NIT=0

RETURN

END

SUBROUTINE VSRT1(A,LA, IR)

INTEGER 1U(21),1L(21),1,M,3,K, 13, 1T, L, ITT

INTEGER A(1),IR(1),T,TT
FIRST EXECUTABLE STATEMENT

IF (LA.LE.O) RETURN

M=1
1 =1
J =LA
R = .375

IF (1.EQ.J) GO TO 45
IF (R.GT..5898437) GO TO 10
R = R+3.90625E-2

GO TO 15
R = R-.21875
K =1
SELECT A CENTRAL ELEMENT OF THE
ARRAY AND SAVE IT IN LOCATION T
1J = 1+@J-1*R
T = A(1D)

IT = IR(1J)
IF FIRST ELEMENT OF ARRAY 1S GREATER
THAN T, INTERCHANGE WITH T

IF (A(1).LE.T) GO TO 20



20

25

30

35

40

AC(1Y) = A(D)
A() = T

T = A1)
IR(1J) = IR(I)
IR(I) = IT

IT = IR(1J)
L=J

IF (A(J).GE.T) GO TO 30
AC1Y) = AQD)

AQ) =T

T = A1)

IR(1J) = IR(I)

IRQI) = IT

IT = IR(1J)

IF (A(1).LE.T) GO TO 30
A(1D) = A(D)

ACD =T

T = A1)

IR(1J) = IR(I)

IR(I) = IT

IT = IR(1J)

GO TO 30

IF (A(L).EQ.A(K)) GO TO 30
TT = A(L)

AL) = AK)

AK) = TT

ITT = IR(L)

IR(L) = IR(K)
IR(K) = ITT

L =L-1
IF (A(L).GT.T) GO TO 30

K = K+1
IF (ACK).LT.T) GO TO 35

IF (K.LE.L) GO TO 25

IF (L-1.LE.J-K) GO TO 40
IL(v) |

1u(v) L

I =K

M= M+1
GO TO 50
IL(v)
(')
J=1L
M = M+1
GO TO 50

K
J

IF LAST ELEMENT OF ARRAY 1S LESS THAN
T, INTERCHANGE WITH T

IF FIRST ELEMENT OF ARRAY 1S GREATER
THAN T, INTERCHANGE WITH T

FIND AN ELEMENT IN THE SECOND HALF OF
THE ARRAY WHICH IS SMALLER THAN T

FIND AN ELEMENT IN THE FIRST HALF OF
THE ARRAY WHICH IS GREATER THAN T

INTERCHANGE THESE ELEMENTS

SAVE UPPER AND LOWER SUBSCRIPTS OF
THE ARRAY YET TO BE SORTED

BEGIN AGAIN ON ANOTHER PORTION OF



45

50

55

60

= M-1
(M.EQ.0) RETURN
IL(v)
Iu(m)
(J-1.GE.11) GO TO 15
F (1.EQ.1) GO TO 5
-1
1+1
(1.EQ.J) GO TO 45
A(1+1)
IT = IR(1+1)
IF (A(1).LE.T) GO TO 55
K=1
AK+1) = AK)
IR(K+1) = IR(K)
K = K-1
IF (T.LT.A(K)) GO TO 60
A(K+1) =
IR(K+1) =
GO TO 55
END

M
IF
I
J
IF
1
1
1
IF
T =

THE UNSORTED ARRAY
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A GENERAL SOLUTION TO THE HIDDEN-LINE PROBLEM

David R. Hedgley, Jr.
Ames Research Center
Dryden Flight Research Facility

INTRODUCTION

The requirement for computer-generated perspective projections of three-
dimensional objects by way of line drawings has escalated in recent years. Pictures
of objects which show visible and hidden lines are relatively easy to present.

Unfortunately, such renderings are often ambiguous and serve as little value to the
engineer or scientist. (See fig. 1.)

Transparent box Is it this? Or this?

Figure 1. Ambiguous case.

Historically, much literature has appeared addressing this problem (ref. 1).
However, prior solutions have exhibited some inherent limitations, one of the most
significant being square-law growth, that is, the tendency of the computer execution
time to grow as the square of the number of elements. Another significant restriction
is the environmental limitations. (See appendix A for a list of typical limitations.)

At NASA Ames Research Center's Dryden Flight Research Facility (DFRF), the
need arose to graphically represent aerodynamic stability derivatives as a funection
of two variables. (See the stability derivative plot in appendix B.) This require-
ment and the potential for further application served as a motivation for developing

a general solution to the hidden-line problem which avoids the undesirable features
of prior solutions.



This paper lays the theoretical foundation for the practical implementation of a
general hidden-line algorithm. A theorem is presented and proved which does not
assume any environmental limitations, unlike prior approaches. Furthermore the
theorem allows the determination of the visibility of an entire line segment by choosing
only a few points on that line, thus providing a basis for a rapid algorithm.

The author wishes to express his appreciation to Mary Bailer, Victor Pestone,
and Paul Redin for their many helpful suggestions and constructive criticisms.

ANALYSIS

This section introduces basic definitions of symbols and terms, develops the
equation of a plane, and discusses both the visibility of an arbitrary point and how
the points are selected. The criteria of these selections and the sufficiency of the
choices are predicated on a theorem which is proved.

Definitions

Let O be any scene or collection of objects which can be represented with straight
lines and/or n-sided convex/concave planar polygons (internal boundaries allowed).
Also, let each polygon be defined in such a way that every point is a boundary point
in the topological sense. For economy of definition, vertices of polygons are sufficient
and, similarly, end points for line segments.

With the admissible elements enunciated in the above paragraph, we need only
discuss the visibility of a point P and its selection. The argument is then easily
extended to the entire scene O.

The Equation of a Plane

The equation of a plane is given by

Ax+By +Cz+D=0,

where
A= blc2 - bzcl
B = 0102 - cza1
C= albz. - azb1

D= —(Axi + Byi + Czi)



where

a.=x,,, — X,
i i+1 i

b =Yy -y G=12)

L =2, .- Z.
i i+1 i

xj, y]., zj (j = 1,3) are three non-collinear points. A, B, and C are the coefficients
of the normal vector to the plane and hence the coefficients of the plane itself.

For consistency with plotter hardware convention, x and y have their standard
directions and z is perpendicular to the plane of the paper. The direction is con-
sistent with a right-handed coordinate system. .

Visibility Criteria

CRITERION 1. Let C be the projection of a planar closed polygon A on the XY-
plane such that every point on C is a boundary point. (See fig. 2.) Let

P(x, y) be the projection of any point (x, y, z). If P lies on the boundary

of C, it is clearly visible with respect to C. And hence (x, y, z) is visible
with respect to A. If P lies outside the boundary of C, then a line drawn from P
in any direction to infinity will intersect the boundary an even number of times.
If P lies inside the boundary of C, then this semi-infinite line drawn from P will
intersect the boundary of C an odd number of times. (See ref. 2.)

XY-plane

/

z
Figure 2. Plane A and its projection, C; point
(x, y, z) and its projection, P(x, y).

Figure 3 illustrates this idea. Note that line 21 , drawn from P1 in the XY-plane

in an arbitrary direction to infinity, intersects the edges of the holes and containing

3



C
P.(x,, v,) 12
373’3
{ 13 / -
/
N
) P.(x,, ¥,)
Pl(xl, yl) 272 72

Figure 3. Polygon C with two holes.

plane, C, four times. Thus, the count is even indicating that P1 is "outside"” C and
hence (.x'l, Y1 zl) is visible with respect to plane A. This is also true for

(ac2 » Yoo zz) . However, for P3 (x3, y3) » the count is odd indicating that the point
lies in the interior of C.

If this semi-infinite line should cross a vertex, a line with a different slope
should be selected. It is always possible to find such a line since the number of
combinations of vertices is finite, whereas the number of slopes is infinite. Moreover,
if C should have an arbitrary number of "holes" whose boundaries have the character
of the external boundary of C, then no generality is lost. For if P lies inside C and
outside all "holes," then the count is odd with respect to C as a polygon and even
with respect to all holes. Therefore the total count remains odd. The remaining
cases are argued similarly.

With the preceding observations in combination with the equation of a plane, it
is now possible to determine the visibility of (x, y, z) with respect to plane A if
P is "inside" C.

CRITERIONII. z2-(A x +B y +D _)/C_implies (x, y, z) is visible with
0 o 0" 7o
respect to A.

CRITERION III. z< —(on +Boy + Do)/co implies (x, vy, z) is invisible with
respect to A.

Whether or not P is inside, outside, or on the boundary of C can be determined
from Criterion I. Clearly then, if (x, y, z) is visible with respect to all Ai , it is
visible. Note that if A is a line or if C0 =0, then Criteria II and III do not apply. In

this case, the projection is a line and hence every point is visible with respect to it.

Point Selection Criterion
Having a method for visibility determination is not by itself sufficient for a prac-

tical implementation. That is, hidden-line algorithms typically take huge amounts
of computer time for even moderately simple scenes. The worst case is brute force

4



where every line is quantified into many points and each point is tested. Hence,
economy of points and efficiency of implementation are very important. The following
discussion presents an ordered approach to improve computational efficiency. We
first consider this important definition.

DEFINITION. Let S be a sequence of distinet triplets (x; Y , zi) belonging to

a line determined by (xl, Yy 21) and (xz, Yo 22). Define S to be "ordered" if given

any two triplets, say (xk, Y+ zk) and (xn, Yn' zn) . Then n > k implies that

2 2 . .
(xn - x1)2 + (yn - y1)2 = (xk - xl) + (yk - yl) . Define a primed symbol, such

as £', to mean the projection of that element, £, onto the XY-plane. (Fig. 4 represents
a typical sequence S.)

S=P, Py Py Py Po P Py

Figure 4. Spatial representations of sequence S and points
that comprise set {P.}. Note that here {P.} Pl’ P5, P6’ P7,
which follows from the definition of a valid intersection on !2
along with its end points.

THEOREM. Let Qo be any line segment which belongs to O, any scene. Also, let
S be an ordered sequence {Pi} = {xi, Yir zi} belonging to 20, which includes its
end points along with a subset of the interior points of QO. Let these points of
20 be such that their projections are a subset of all of the intersections, if any,
of Q(; with the interior points of other lines, say 2!, 2!, . . ., 2’;, as well as all
of the intersections of SZO with the boundaries or interiors of planes Aj’ Ce Ak’

if any. Further, let this subset have the property that if (xo, Yor zo)

belongs to QO whose projection is the intersection Qéwith SZr'l, and (JCO, Yor ? )
belongs to Qn’ then z, > z,. (Fig. 4 illustrates a valid selection of points

that comprise the set {Pi}')

Then if Pi and Pi+1 are both visible, the visibility of every interior point of



[P P 1] has the same character. Moreover, lfP or P +1 is invisible, then

every mter'tor point of [Pl P1+1] is also invisible.

PROOF. Let both P and P, j+1 Pe visible. Also, let P be any interior point of

(Pys Piyy
visible. Assume the contrary whereby P is assumed to be invisible. Clearly then,

] and be v1s1ble L If Ps is any other interior pomt, then it must also be

P is hidden by some polygon, say A1 , whlch implies that P' lies in the interior of
Al' and satisfies Criterion III. Since Pm is visible, it is v1s1ble with respect to every
polygon and in particular with respect to A Therefore, P ! either lies outside or

on the boundary of Al’ or P ! lies in the 1nter10r of Ai and P satisfies Criterion II.
(See fig. 5.)

lo passes through plane A

Figure 5. Visibility examples.

Suppose Pn'1 lies outside the boundary of Ai. Since Ai is closed, an edge ofAi
intersects Q(’) between Pr;z and Pé. That is, there is an intersection of projections
1
between P;. and Pi+1 .
A1 whose projection is this intersection must be less than or equal to the z-coordinate

This implies that the z-coordinate of the point on the edge of

of the point on 20 whose projection is this same intersection. This observation

follows from the definition of S.

Thus, there is a point on 2 , say P (xt, Yir 2 ) such that P' lies in the interior
of A' and P satisfies Criterion II or P lies on the boundary of A since P' lies in
the 1nter10r of Ai and P satisfies Cr1ter1on III. Hence, 20 must 1ntersect A1 inside



the boundary between Pi and Pi +1 But this is a contradiction which follows from
the construction of S.

Now if Pr;z lies on the boundary of A!, then the z-coordinate of the point on 20
whose projection is the intersection of 52(') with the projection of an edge of A, must
be greater than or equal to the z-coordinate of a point on the edge of A1 whose

projection is this intersection. Clearly, this again implies there is an intersection
of 20 with the plane A 1 in its interior or boundary between Pi and Pi +1° which is

impossible from the definition of S.

The same contradiction follows if Pr;t lies in the interior of Ai and Pm satisfies
Criterion II.

On the other hand, if Pm is invisible, the proof that every interior point of
[Pi' Pi +1] is also invisible follows immediately by assuming there exists an interior
point, say Ps » that is visible. By letting Pm be the known invisible point in

[Pi’ Pi +1] » the above argument may be employed and the same contradiction reached.

Let us now define Pi or Pi +1 to be invisible. Since, say, Pi is invisible, it lies
in the interior of, say, A1 . Since P; is an interior point of Ai and Pi satisfies
Criterion III, there exists another point Ps such that Pé lies in the interior of A!, and
Ps satisfies Criterion IIl. Now if we assume there exists another interior point,
say Pm belonging to [Pi’ Pi +1] , that is visible, again the above argument may be

used and the same contradiction reached. Q.E.D.
IMPLEMENTATION

An algorithm based on the theory presented in this paper has been implemented
on a CDC-6500 computer at DFRF. This approach represents a significant improve-
ment over existing algorithms in that it minimizes the number of points interrogated
for visibility without assuming any environmental limitations. Although the theorem
provides a formal basis for assuring generality and rapid execution, it does not
address the nuisance of square-law growth. That will now be discussed.

Initially, an m X n grid in the XY-plane is constructed whose size is log2 N+
constant, where again N is the number of elements. If an element Aj is entirely con-
tained in a grid block, Bi » an index i, which represents the grid block, is placed in
E]. . If, however, some part of the element belongs to the boundary boxes of four or

less blocks and is not a proper subset of any block, then i will be



k -1

. _ * s
i E LS base
where

1<k< 4
Ls = the grid block number involved

base = log‘2 N + constant + 1

This value of i is also placed in E].. Thus, Ej will contain up to four of the blocks
involved for the element A].. Additionally, if A]. is inside the boundary box of a ~

grid block but not properly contained in it, then j is stored in the matrix, Mk i

where k is the kth element with this property and i is the grid block number.
If A]. belongs to more than four grid blocks, E]. is zero.

The indices found in E]. are sorted only once. With this arrangement, it is now
possible to assign a unique address, CE » to each sequence of like indices ignoring
i
those values in E]. which represent more than one block involvement (i.e.,
i> log'2 N + constant + 1) (Scheme 1).
Thus, given an element A]. whose Ej is not zero, its relevant elements will be

the elements corresponding to CE and the M k E matrix. The total number of

relevant elements, TN, as they relate to A]. will be

. :
TN= Y C, +M
i=1 i i

where

CL s Mk L= addresses of relevant elements
i ]

T= [logbase Ej] +1
Here, L; are the packed block numbers derived from E].‘
If E]. is zero, then the entire collection represents the relevant elements of A ..

Note that although each CL is mutually exclusive, this is not true for the matrix,
i



may also belong to M R L Thus allowances

k:,Lp w

are made to eliminate redundancies.

Mk L. An element belonging to M
T

A second scheme (Scheme 2) is adopted as follows. The minimum x- and
y-coordinate values along with the maximum z-coordinate value of each element are
sorted once using a method with N log N growth. This results in three lists, each
arranged in ascending order. Then, given an element A, the location of its maxi-
mum x and y and minimum z in each list in turn is found logarithmically, if possible.

i < <
Thus, only that part of each list such that ‘(1) X ax S % 2 Ymax S yj, and
) 2 in = Z;. is retained. The minimum (i, j, n-k) and its corresponding elements
become the smallest relevant set with respect to A with this scheme.

With the number of relevant elements known from both methods, the minimum
count from both schemes is chosen along with the appropriate corresponding elements.

The final relevant set of elements resulting from comparisons of elements within
this relevant set will be smaller yet. However, its computational efficiency is not
salient since the growth pattern is ultimately predicated on the TN value. Clearly,
if only the members of this class are tested against Ai’ then square-law growth is
avoided.

Rigorous testing at DFRF verified that the algorithm enjoys almost linear growth.
It should be noted that this algorithm was benchmarked against the Watkins algorithm
and Loutrel algorithm (refs. 1 and 2) and was found to be superior to both in terms
of speed. This superiority increased with the complexity of the scene.

The computer program developed for the testing has about 1700 statements.
The memory required for data is about 69N decimal words, where N is the number
of elements.

Line drawings presented in appendix B illustrate the generality of the algorithm.
The steps of the algorithm are presented in appendix C.

The program can be obtained from the Computer Software Management and
Information Center (COSMIC), 112 Barrow Hall, the University of Georgia, Athens,
Georgia 30602.

CONCLUDING REMARKS

This paper addresses a classical problem in computer graphics and presents
the theoretical basis for a practical hidden-line algorithm that surmounts all of the
limitations of previous solutions. Furthermore, the efficiency of the algorithm does
not suffer because of its generality. To the author's knowledge, this is the most
robust approach known and represents the first completely general solution to this
most popular and important problem. '

Dryden Flight Research Facility
Ames Research Center
National Aeronautics and Space Administration
Edwards, California, November 16, 1981



APPENDIX A

LIMITATIONS OF OTHER SOLUTIONS

The following is a list of limitations of which at least one applies to all of the

known hidden-line (calligraphic) solutions to date.
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Requires more than one pass.

Does not handle n-sided polygons.

Does not accept both concave and convex polygons as well as line segments.
Does not tolerate faces with internal boundaries (concave or convex).

Requires more topological information than the vertices.

Possesses square-law growth.

Does not accept penetrating polygons complete with lines of intersection.
Execution time grows linearly with the scale factor.

Execution time is excessive for even moderately simple structures (500 lines) .
Makes mistakes frequently.

Does not handle several adjacent faces which are transparent and opaque.
Assumes a certain orientation of vertices (i.e., clockwise or counterclockwise) .
Requires that polygons not be larger than a certain size.

Does not tolerate situations where an edge belongs to an arbitrary number of faces.
Has limited orientations.

Requires that every polygon belong to a polyhedron.



APPENDIX B

COMPUTER-GENERATED LINE DRAWINGS
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APPENDIX C
STEPS OF THE ALGORITHM

The sequence of the programmed algorithm is presented in the following
discussion. All elements have been input in the form of (x, y, z) triplets (end
points of line segments or vertices of polygons) to the hidden-line program.

Step 1. Performs the Eulerian transformations on the (x, y, z) triplets for
each element. Stores all of the computed information. All further computations
will be on the transformed triplets.

Step 2. Determines the equation of each plane and its edges, if applicable.
All information is stored as in Step 1 and is kept in locations which correspond to
that element number.

Step 3. Computes minimum and maximum x and y in the projection plane for
the entire scene.

Step 4. Constructs a grid whose divisions are equal to log‘2 N + constant,

where N is the total number of elements. The area of the grid is predicated on the
minimum and maximum values of Step 3. The divisions are formed with lines
parallel to the x- and y-axes.

Step 5. Determines which elements are properly contained in a grid block
and records which block. Also determines which elements are in the boundary
boxes of the block but not contained in the block. Stores this information in
arrays whose indices are the grid block numbers involved (Scheme 1).

Step 6. Sorts the minimum x and y and maximum z of each element.
Step 7. Begins main loop for point visibility test of each element.

Step 8. Using Scheme 2, selects revelant elements with respect to each element
in turn. (Relevant elements as they relate to a given element are those elements
which could possibly hide some portions of the given element.)

Step 9. Retrieves alternate set of relevant elements from Scheme 1 determined
from Step 5. Chooses minimum count and corresponding elements from both schemes.

Step 10. Reduces the relevant set to a smaller subset by performing boundary
box tests on the x-, y-, and z-dimensions of the given element as that element
relates to its relevant set. Also performs strict overlap tests. This final set is
used in the remaining calculations.

Step 11. Determines the equations of the lines of intersections, if any, between
the given element and its relevant set. These equations are added to the stack of
edges which bound the given element. This augmented count is used only for this
particular element. The count is decremented to its original value when the
algorithm proceeds to the next element.

12



Step 12. For each element Aj , finds_the points on each edge of A]. that intersect

all of the edges of the relevant elements. The actual intersection points chosen are
dictated by the theorem presented.

Step 13. Sorts the intersections from left to right per line segment.

Step 14. Determines the visibility of each intersection point along with the
end points of each line segment. Initially, only every other intersection point need
be examined. This follows from the theorem.

The visibility criteria are described previously in the report.

The process from Step 7 to Step 14 is repeated N times.

13
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