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Abstract

Data parallel languages, such as High Performance Fortran, can be successfully applied to a wide

range of numerical applications. However, many advanced scienti�c and engineering applications

are multidisciplinary and heterogeneous in nature, and thus do not �t well into the data parallel

paradigm. In this paper we present Opus, a language designed to �ll this gap. The central concept

of Opus is a mechanism called ShareD Abstractions (SDA). An SDA can be used as a computation

server, i.e., a locus of computational activity, or as a data repository for sharing data between

asynchronous tasks. SDAs can be internally data parallel, providing support for the integration

of data and task parallelism as well as nested task parallelism. They can thus be used to express

multidisciplinary applications in a natural and e�cient way. In this paper we describe the features

of the language through a series of examples and give an overview of the runtime support required

to implement these concepts in parallel and distributed environments.

�This research was supported by the National Aeronautics and Space Administration under NASA Contract No.

NAS1-19480, while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681.

i



1 Introduction

With the arrival of tera
op architectures, the complexity of simulations being tackled by scientists

and engineers is increasing exponentially. Many of these simulations are of a complex, \multi-

disciplinary" nature, constructed by pasting together modules from a variety of related scienti�c

disciplines. This raises a host of new software integration issues. While data parallel languages,

like HPF [21], are well-suited to exploiting the parallelism in each module [10], they o�er little

support for integration and also do not exploit the coarse grained parallelism that multidisciplinary

applications frequently provide.

One example of a multidisciplinary application is environmental simulation. One might, for

example, have a sequence of models, such as a) a swamp biology model for the Everglades, b) a

hydrothermal model for the Gulf stream, c) a mesoscale climate model and d) a solar radiation

model. The goal is then to interconnect these models into a multidisciplinary model subsuming the

original models together with their various couplings.

Another example is multidisciplinary optimization (MDO). Designing a modern aircraft, for

example, requires a wide variety of interacting disciplines: aerodynamics, propulsion, structural

analysis, controls, and so forth. An optimal engineering design is necessarily an admixture of

suboptimal designs in each discipline. The essential goal is to correctly couple a set of complex

scienti�c and engineering programs from di�erent disciplines, into a coherent whole capable of

e�ective multidisciplinary optimization.

Implementing multidisciplinary applications raises a number of complex programming issues.

One is that the constituent programs being glued together are typically written by di�erent groups,

using di�erent data structures and approaches. Moreover, the mix of programs involved typically

changes over time. In the environmental simulation, for example, one might �nd it necessary to

add a model of airborne particle transport to correctly predict solar heating. Similarly, in MDO of

an aircraft, one might need to replace a simple linear 
ow solver by a more sophisticated Euler or

Navier-Stokes code.

In such large-scale programming projects, statically forming a \task graph" and coupling tasks

via \message plumbing" is virtually unworkable. A much more 
exible software environment ap-

pears to be critical. At the same time, one wants to e�ectively exploit the parallelism both within

and across the separate discipline models. Exploiting the coarse-grained parallelism in multidisci-

plinary applications requires facilities for spawning and synchronizing collections of tasks, each of

which might contain internal data parallelism.

We have recently designed a coordination language, called Opus, targeted towards such appli-

cations. It provides a software layer on top of data parallel languages, such as HPF, designed to

address both the \programming in the large" issues and the parallel performance issues arising in

complex multidisciplinary applications.

The heart of Opus is a new mechanism, called ShareD Abstraction (SDA). SDAs borrow from

object-oriented systems in that they encapsulate data and the methods that act on the data, and

from monitors in shared memory languages in that an active method has exclusive access to the

data of an SDA.

Tasks, i.e., asynchronously executing autonomous activities, are instantiated in Opus by cre-

ating instances of SDAs and invoking the associated methods. Di�erent SDAs represent distinct
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address spaces, hence Opus tasks do not directly share data. Instead, interaction between tasks is

accomplished by invoking methods in other SDAs. Thus, a set of tasks may share a pool of common

data by creating an SDA of the appropriate type and making the data SDA available to all tasks

in the set. Using SDAs and their associated synchronization facilities also allows the formulation of

a range of coordination strategies for these tasks. This set of concepts forms a powerful tool which

can be used for the hierarchical structuring of a complex body of code and a concise formulation

of the associated coordination and control mechanisms.

The runtime system supporting Opus utilizes lightweight, user-level threads that are capable of

supporting both intra- and inter-processor communication primitives in the form of shared memory,

message-passing, and remote service requests [20]. This allows the independently executing SDA

tasks to freely share the underlying parallel resources.

The remainder of the paper is organized as follows: The next section discusses the language

extensions de�ned in Opus and their use. Section 3 presents a couple of multidisciplinary applica-

tions, using the concepts introduced in Section 2. Section 4 outlines the runtime support necessary

for implementing these extensions. This is followed by a section on related work and a brief set of

conclusions.

2 The Opus Language

There are a number of constraints which must be satis�ed by any general framework which supports

the coupling of multiple programs into complex multidisciplinary codes. In particular, we have

identi�ed the following requirements:

� The separate programs should be \encapsulated" into modules in a way that respects their

separate name spaces.

� Coupling between modules should be at the highest level (as opposed to having message-

passing constructs throughout the code).

� Both task-level parallelism between modules, and data parallelism within each module should

be expressible.

� Flexible and general synchronization mechanisms should be provided to allow the programmer

maximal freedom in exploitation of task-level parallelism.

The �rst two of these requirements are motivated by software-engineering considerations. Their

purpose is to simplify the combination of component modules, enable the de�nition of clear inter-

faces between modules, and allow modules to be intermixed without rewriting their internal code.

This is in contrast to message-passing models, which combine modules with no clear interface

de�nition.

The other two requirements are needed for performance. Multidisciplinary codes are among

the largest and most computationally intensive codes, so that any language designed for such

applications must have the potential to fully exploit highly parallel architectures.

To ful�ll these requirements, Opus introduces a new construct called a ShareD Abstraction

(SDA). This concept supports the development of MDO codes by providing data and method
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encapsulation. SDAs can be used as computation servers as well as shared data repositories. We

use the well-developed HPF facilities for data parallelism within each SDA, while borrowing ideas

from operating systems for inter-module communication and task-level parallelism.

In this section, we describe the most important constructs of Opus and illustrate them by

applying them to the standard producer-consumer problem. A simple meteorological coordination

problem and a more challenging example { taken from the domain of aircraft design { will be

discussed in the next section.

2.1 The Features of Opus

Opus introduces a small set of features for de�ning and using SDA objects and accessing SDA

data. It provides language constructs to de�ne SDA types, declare SDA variables, create, initial-

ize, terminate, and save SDA objects, as well as activate SDA methods both synchronously and

asynchronously. The syntax borrows heavily from Fortran 90.

We summarize the way in which these features are used to build an Opus application below.

A full description of the language features can be found in [24]. An SDA type in Opus speci�es

an object structure, containing data along with the methods (procedures) which manipulate this

data. An SDA object (which we usually simply refer to as an SDA) is generated by creating an

instance of an SDA type. The creation of an SDA involves allocation of resources on which the SDA

will execute, the allocation of data structures in memory and any initializations that are necessary

to establish a well-de�ned initial state. The lifetime of an SDA is the time interval between its

creation and its termination. During this interval, the SDA exists and can be accessed via method

calls. SDA variables are handles through which SDAs are accessed from within a program.

There are two ways of invoking a method of an SDA: synchronously, where the caller is

blocked until control returns, or asynchronously, by a non-blocking call. An asynchronous method

execution may be associated with an event, which can be used for status inquiries and synchro-

nization. No two method executions belonging to the same SDA can execute in parallel; as a

consequence each method has exclusive access to the data of its SDA. A method may have an asso-

ciated condition clause, specifying a logical expression, which guards the method's activations.

An SDA can be saved by copying it to external storage, thus generating an external SDA,

which is identi�ed by a unique external name. External SDAs are persistent, having an a priori

unlimited lifetime. Saving an SDA thus makes it accessible for later reuse, by loading an external

SDA into memory.

Each SDA is associated with a unique (SDA) task, which is the locus of all control activity

related to the SDA. The SDA task operates on the resources allocated to the SDA, provides an

address space for the SDA's data, and manages the execution of calls to the SDA's methods. The

execution of an Opus program can be thought of as a system of SDA tasks in which a task executes

a method of its SDA in response to a request from another SDA.

2.2 The Producer-Consumer Problem

We introduce the syntax and semantics of the Opus language by developing an Opus solution

to the standard producer-consumer problem. This simple problem, in which a set of producers

generate data which are processed by a set of consumers, is also the basis for a number of real-
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world applications. Our version creates a system in which each individual producer and consumer

operates independently. Synchronization between them is provided by controlling their access to a

bounded FIFO bu�er.

To do this, the �rst step is to de�ne an SDA type which encapsulates the data structures

required to implement the bounded bu�er along with the access methods which permit producers

to write to the bu�er and consumers to read from it.

SDA TYPE bu�er type(size)

INTEGER :: size

REAL :: �fo(0:size-1)

INTEGER, READ ONLY :: count = 0 ! number of full elements in FIFO

INTEGER :: px=0 ! producer index

INTEGER :: cx=0 ! consumer index

� � �

CONTAINS

! method part

END bu�er type

The above fragment shows the data structure created to de�ne a bu�er which may hold up to size

data items of type REAL. Speci�cation of the value of size is deferred until the actual creation of an

SDA (see below). The variable count keeps track of the current number of elements in the bu�er,

while px and cx point to the current index positions for producers and consumers respectively.

In contrast to Fortran modules, the internal variables of an SDA type are by default private,

i.e., are accessible only from the methods associated with the SDA. The keyword PUBLIC can be

used to change this default for the whole SDA or to control the accessibility of individual variables.

Opus extends Fortran by supporting the attribute READ ONLY, which allows SDA variables, such

as count above, to be accessed but not modi�ed from outside.

Next, access methods for reading from and writing to the bu�er have to be de�ned. The

producers may write data to the bu�er only if the bu�er is not full, while consumers may read data

only if the bu�er is not empty. Opus enables conditional execution of a method by permitting a

condition clause, containing a side-e�ect free logical expression, to be associated with a method.

The condition is evaluated when the method is invoked, and the method can only be activated

if the result is true. If it is false, the method activation request is enqueued until the condition

evaluates to true. This can happen as a result of another method call that changes variables on

which the condition depends.

Our formulation de�nes two methods: subroutines get and put for reading from and writing to

the bu�er respectively. These are shown below:

SUBROUTINE put(x)WHEN (count .LT. size) ! condition tests assertion: bu�er not full

REAL, INTENT(IN) :: x

�fo(px) = x ! Put x into �rst empty bu�er element

px = MOD(px+1,size)

count = count + 1

END
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SUBROUTINE get(x)WHEN (count .GT. 0) ! condition tests assertion: bu�er not empty

REAL, INTENT(OUT) :: x

x = �fo(cx) ! Read next full bu�er element

cx = MOD(cx+1,size)

count = count - 1

END

The condition clauses control access to the bu�er, allowing put methods to be executed only

when the bu�er is not full and get methods to executed only when the bu�er is not empty. If

we combine these methods with the data declarations de�ned above, the interface between the

producer and consumer tasks is fully speci�ed.

One of the critical features of SDAs is the atomicity of method executions. In order to avoid

incoherent states of the data associated with any given SDA, methods are executed as atomic

operations. That is, any executing method has complete and sole access to all the internal data

structures of the SDA. Thus, the get and put methods above can access and modify shared variables,

e.g., �fo and count, without interference from other activations of the methods.

The dummy arguments of an SDA type speci�cation are all of intent IN and therefore passed

in by value. Methods are arbitrary procedures, and may have arguments of any intent, which are

passed with copy-in/copy-out semantics.

The producer and consumer tasks must now be asynchronously activated and linked with the

SDA in such a way that they are able to write and read the bu�er, respectively. This is implemented

as follows. First, an SDA variable, bu�er, of the SDA type bu�er type is declared as shown below:

INTEGER bu�ersize

SDA(bu�er type) bu�er

READ *, bu�ersize

CALL bu�er%CREATE(bu�ersize)

CREATE is an implicit method which is called to create the SDA object to be associated with

the variable bu�er. The variable bu�ersize is passed in as the actual argument which is associated

with the formal argument size and is used to allocate the internal data structures of the SDA.

CREATE allocates and initializes the SDA object. The user may augment the system initialization

by de�ning an INIT method which is implicitly called after the call to CREATE. Opus provides

other methods which are implicitly declared for all SDA types: SAVE, LOAD, and TERMINATE.

SAVE permits the saving of the internal state of an SDA to a named external object, while

LOAD allows the creation of an SDA object based on an external object. SAVE and LOAD provide

the minimum language support required for dealing with persistent SDAs. For convenient use of

this mechanism in real applications several extensions are desirable. We are currently studying

additional language features focusing on partial saving, the relaxation of the type conformity re-

quirements in LOAD, and input/output, in particular using smart �les [18] for external storage of

the data.

In general, the lifetime of an SDA object extends from the time it is created to the time that

the execution leaves the scoping unit in which the SDA declaration was originally processed. At
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this time the SDA is implicitly terminated. The TERMINATE method can be called to explicitly

terminate an SDA and free its associated storage.

Note also that the language provides facilities to specify system resources at the time of ini-

tialization of the object either through the CREATE or LOAD methods (see next section for some

examples).

Once the SDA object has been created, its public data can be accessed and the associated

methods called using a syntax similar to that used for derived types in Fortran. Thus, for example,

the consumers can invoke the get method for the SDA bu�er as follows to access the next data

element.

CALL bu�er%get(A)

The above statement designates a synchronous method activation which will block the

caller until the method call returns.

In order to support concurrent activity, Opus also provides asynchronous method activation

in which the caller is not blocked by the method call. For example, in the code below, a spawn

statement is used to invoke the method get asynchronously.

EVENT E

� � �

E = SPAWN bu�er%get(A)

! Do other work.

WAIT(E)

The spawn statement returns an event which is assigned to the event variable E. The calling unit can

continue its computation and use the event variable in a wait statement, as shown above, to wait

for the completion of the associated method call. This allows the caller and the invoked method

to execute in parallel, in this case overlapping computation with \getting" data elements from the

bu�er.

A nonblocking alternative to the wait statement, TEST (E), allows the caller to test for the

completion of an asynchronous method invocation. It returns the current completion state.

As with SDA methods, the spawn statement can also be used with generic Fortran subroutines

to generate concurrent activity. Thus, in the full producer-consumer code, as shown in Figure 1,

np copies of the subroutine produce and nc copies of the subroutine consume are spawned as

asynchronously executing tasks. Each is passed the SDA variable bu�er which they use as a shared

resource for communicating values. Note that we have omitted the code for terminating these tasks.

3 Multidisciplinary Applications Using Opus

Multidisciplinary applications, including the important subclass of multidisciplinary optimization

(MDO) problems, are commonly formed by combining data parallel units from various disciplines

to create a single application. With the increase in the size of computing systems available and

the improved access to them, development of such applications, and the complexity of the coupling

between the individual components is steadily increasing. Below we introduce two examples. The
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PROGRAM Consumer Producer

INTEGER np, nc, bu�ersize

SDA(bu�er type) bu�er

READ(np,nc,bu�ersize)

CALL bu�er%CREATE(bu�ersize)

DO i= 1, np !Spawn producers

SPAWN produce(bu�er, ...)

END DO

DO i= 1, nc !Spawn consumers

SPAWN consume(bu�er, ...)

END DO

� � �

END

SDA TYPE bu�er type(size)

INTEGER :: size

REAL :: �fo(0:size-1)

INTEGER, READ ONLY :: count=0

INTEGER :: px=0, cx=0

CONTAINS

SUBROUTINE put(x) WHEN (count .LT. size)

REAL, INTENT(IN) :: x

�fo(px) = x; px = MOD(px+1,size); count = count + 1

END

SUBROUTINE get(x) WHEN (count .GT. 0)

REAL, INTENT(OUT) :: x

x = �fo(cx); cx = MOD(cx+1,size); count = count - 1

END

END bu�er type

SUBROUTINE produce(b, ...)

SDA(bu�er type) b

� � �

DO WHILE (.TRUE.)

! produce a data item A

CALL b%put(A)

END DO

END produce

SUBROUTINE consume(b, ...)

SDA(bu�er type) b

� � �

DO WHILE (.TRUE.)

CALL b%get(A)

! consume A

END DO

END consume

Figure 1: Producer/Consumer Problem Using Opus
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�rst of these, taken from meteorology, has a simple and well-de�ned interaction between its two

component modules. The next example is a simpli�cation of an MDO application for aircraft design

with rather more complex interaction patterns.

3.1 Opus for Data Parallel Applications

One situation in which the kind of interaction described in the producer-consumer program might

occur in practice is the coupling of a global numerical weather prediction (NWP) model with a

limited area forecast model. In this case, the boundary areas of the limited area model are refreshed

by the interpolation of results from the global model at time steps corresponding to �xed intervals

over the time period of the prediction. We use this very simple coupling example to consider the

data parallel requirements of an Opus application.

We assume that the global NWP program global and the local NWP program local have been

independently developed and that they are available as distinct HPF applications. A simple data

interface is required for their coupling.

The program global will write the data set corresponding to the boundary areas of the limited

area model to an SDA at the appropriate intervals, from which it will be read in by local. In order

to maintain accuracy in the limited area computation, it is important that local receives the data

sets from global in their chronological order and that all of them be processed. The amount of data

being transferred dictates that only a small number of data sets be stored at any time; here, we

assume that only one such data set is to be saved in the SDA for reading by local.

The following code fragment shows part of the de�nition of the SDA type shared metdata which

is used with a series of methods to read and write a number of di�erent �elds of meteorological

data. We show just a few variables here: in practice, there are likely to be on the order of half

a dozen di�erent quantities. HPF directives are used to distribute the arrays by blocks to the

processors on which the SDA is executed.

SDA TYPE shared metdata(size)

!HPF$ PROCESSORS P(number of processors()) !HPF directive speci�ng the processor set

INTEGER :: size

! data �elds used to save boundary values:

REAL :: temp(size)

REAL :: xvelo (size)

� � �

!HPF$ DISTRIBUTE (BLOCK) ONTO P:: temp, xvelo ! HPF directive to distribute

! data by blocks across the processors

LOGICAL :: tempmarker = .FALSE. ! variable used to indicate whether unread

! data is stored in the SDA

� � �

CONTAINS

SUBROUTINE puttemp(restemp) WHEN (tempmarker .EQ. .FALSE.)

! puttemp stores global temperatures in the SDA array temp

REAL, INTENT(IN) :: restemp(size)

!HPF$ DISTRIBUTE (BLOCK) :: restemp
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temp = restemp

tempmarker = .TRUE.

END

� � �

SUBROUTINE gettemp(boundtemp) WHEN (tempmarker .EQ. .TRUE.)

! gettemp reads global temperatures from the SDA array temp

REAL, INTENT(OUT) :: boundtemp(size)

!HPF$ DISTRIBUTE (BLOCK) :: boundtemp

boundtemp = temp

tempmarker = .FALSE.

END

END shared metdata

The next step is to create an SDA of the above type and spawn the local and global codes which

would use the SDA to transfer data. This is shown in the code fragment below:

!HPF$ PROCESSORS R(32)

SDA(shared metdata) boundary

� � �

CALL boundary%CREATE(insize) ON (PROCESSORS R(1:16) )

SPAWN global(boundary, ...) ON (PROCESSORS R(17:32) )

SPAWN local(boundary, ...) ON (PROCESSORS R(1:16) )

� � �

In this coordination application, the two methods are asynchronously invoked on two distinct

sets of processors of the available computing system to run the weather codes (these may well be

on di�erent computers in practice). An HPF directive has been used to declare the processors

involved; it speci�es both the number of processors and gives them a global name. This is then

referred to in the method calls which create the SDA and asynchronously spawn the global and

local codes. Thus the user can ensure that the two applications run on di�erent sets of processors

and that an appropriate set of processors is allocated for each code. In the above code, a decision

has been made to locate the data produced by global on the same processors as the code, local,

which will read them. HPF notation has also been used to distribute the data associated with the

SDA. We may assume that the speci�cation of this distribution enables the reading of data to be

performed locally when the method gettemp is invoked.

In practice, a non-trivial �lter will be required to transfer data between two such models: not

only will the grid points have di�erent distances, the models may well use di�erent coordinate

systems. We do not consider this aspect here.

3.2 MDO for Aircraft Design

In this subsection we present a short description of the multidisciplinary design of an aircraft and

then discuss how one version could be encoded using the Opus language constructs. The overall

goal of the application is to optimize the design of an aircraft relative to some goal or \objective
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function," such as minimization of gross weight. This is done subject to constraints such as speci�ed

range and payload. The design cycle starts with these constraints and goals, a base geometry and

initial values for a set of design variables, such as sweep angle of the wing and thrust of the engines.

Then, in each cycle, an analysis phase analyzes the current con�guration of the aircraft, as speci�ed

by the design variables, to produce a set of output variables, such as lift and drag. The optimizer

then evaluates the objective function for this con�guration to produce new values of the design

variables. E�ective optimizers are Newton-like methods which require \sensitivity derivatives," the

derivatives of the output variables with respect to the design variables. This optimization cycle

continues until the process converges to a �nal \optimized" con�guration of the aircraft.

The analysis phase consists of the various discipline codes, such as aerodynamic analysis, struc-

tural analysis, controls, etc., interacting with each other to analyze the current de�nition of the

aircraft. Some disciplines, such as aerodynamic or structural analysis, exhibit a large degree of

internal parallelism and thus require substantial physical resources for execution. However, other

disciplines are generally simpler and should most likely be executed sequentially. The amount of

data exchanged during the analysis phase is dependent on the disciplines involved and ranges from

a few bytes to millions of bytes. Sometimes, this data needs to be \massaged," or �ltered, before it

can be used. For example, pressures produced at the aerodynamic grid points by the 
ow analysis

code have to be integrated to produce forces at the structural grid points for structural analysis.

The interactions between the discipline codes can take di�erent forms depending on the problem

at hand and the target environment. In a sequential environment, the various discipline codes are

generally executed as a pipeline. In a simple parallel variant, multiple versions of the analysis

pipeline can be executed on slightly perturbed values of the design variables in order to obtain the

required derivatives using �nite-di�erences. In more complex parallel versions, such as the one we

describe here, the discipline codes execute asynchronously, with data being exchanged at various

points in the code, such as at the boundaries of the internal optimization cycles. For this latter

approach, the data exchanges must be synchronized to ensure that consistency is maintained.

3.2.1 Opus Code

We now describe a version of the above application using Opus in which the codes in the analysis

phase execute in parallel. The analysis phase has been simpli�ed to the simultaneous optimization

of the aerodynamic and structural design of an aircraft con�guration. Though a realistic multi-

disciplinary optimization of a full aircraft con�guration would require a number of other discipline

codes, such as controls, performance analysis, propulsion, etc., we present this version for the sake

of brevity.

The structure of the program, as expressed in Opus, is shown in Figure 2, where the SDAs

representing computational activities are represented by rectangles and the SDAs representing

data repositories are represented by ovals. The Optimizer is the main task and coordinates the

execution of the entire MDO application.

As shown in Figure 3, the Optimizer creates the following SDAs: the data repositories Surface-

Geom for sharing geometry and 
ow data between the two computational tasks, and Sensitivities

for storing the sensitivity derivatives, and the computational tasks FeSolver for structural analysis

of the aircraft con�guration, and FlowSolver for aerodynamic analysis. Since the tasks FeSolver

and FlowSolver use the other two SDAs to transfer data, the latter are passed in as arguments
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Sensitivities

SurfaceGeom

Optimizer

FeSolver FlowSolver

Control Flow
Data Flow
Processor

Figure 2: Data 
ow in a simple MDO application for aircraft design

PROGRAM Optimizer

SDA(FeSolverSDA) FeSolver

SDA(FlowSolverSDA) FlowSolver

SDA(SGeomSDA) SurfaceGeom

SDA(SensSDA) Sensitivities

...

EVENT e

TYPE(surface) geom

! { read input arguments and create SDAs

CALL SurfaceGeom%CREATE(...) ON(MACHINE=\ABC", PROCESSORS=4)

CALL Sensitivities%CREATE(...) ON(MACHINE=\ABC", PROCESSORS=4)

CALL FeSolver%CREATE(SurfaceGeom, Sensitivities, ) &

ON(MACHINE=\XYZ", PROCESSORS=4)

CALL FlowSolver%CREATE(SurfaceGeom, Sensitivities, ) &

ON(MACHINE=\XYZ", PROCESSORS=8)

! { initialize geometry

geom = GenBaseGeom(...)

! { optimization loop

converged = .FALSE.

DO WHILE (.NOT converged)

SPAWN SurfaceGeom%PutBase(geom)

e = SPAWN FeSolver%Analyze(...)

CALL FlowSolver%Analyze(...)

WAIT(e)

e = SPAWN FeSolver%Gradient(...)

CALL FlowSolver%Gradient(...)

WAIT(e)

converged = Sensitivities%converged(...)

IF ( .NOT converged) geom = ImproveGeom(geom)

END DO

! { save SDAs if necessary

! { kill all SDAs

END

Figure 3: Main program: Optimizer
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as the former are being created. The on clauses associated with the create statements specify the

resources to be used for the SDAs as shown in the code fragment from Figure 3 reproduced below:

! { read input arguments and create SDAs

CALL SurfaceGeom%CREATE(...) ON (MACHINE=\ABC", PROCESSORS = 4)

CALL Sensitivities%CREATE(...) ON (MACHINE=\ABC", PROCESSORS = 4)

CALL FeSolver%CREATE(...) ON (MACHINE=\XYZ", PROCESSORS = 4)

CALL FlowSolver%CREATE(...) ON (MACHINE=\XYZ", PROCESSORS = 8)

All four SDAs are internally data parallel and use multiple processors for their executions. The

two computation SDAs, FeSolver and FlowSolver are allocated on the machine \XYZ" and use

four and eight processors respectively. On the other hand, the machine \ABC" is designated as

the data server and the two SDAs SurfaceGeom and Sensitivities use four processors each on it.

These processor allocations match up with HPF processor and distribution directives speci�ed in

the respective SDA type de�nitions. For example, since the SDA SurfaceGeom is allocated on

four processors, the processor array P declared in its type de�nition (see SDA type SGeomSDA as

shown in Figure 4) will be instantiated as an array of four processors. That is, for the SDA instance

SurfaceGeom, the HPF function number of processors() will return four. As indicated before, the

data within the SDA can now be distributed using the full power of the HPF mapping directives.

The Optimizer controls the outer optimization loop while the FlowSolver and FeSolver handle

the inner optimization cycle for a combined aeroelastic analysis of a given geometry. The Optimizer

initiates execution of the inner cycle by storing the initial geometry in the SurfaceGeom SDA using

the PutBase method. PutBase, as shown in Figure 4, stores the geometry in the variable base,

initializes the variable de
ected, and sets the logical variable De
ectFull to true. Based on this

geometry, it also generates a �nite element model, FeModel, to be used by the FeSolver task and

an initial 
ow solution, FlowSoln, for the FlowSolver task. The Optimizer then calls the analysis

methods in the FlowSolver and FeSolver tasks. Note since the former is activated asynchronously,

the two analysis routines are executed in parallel.

The Analyze method of the FeSolver task, shown in Figure 5, uses the GetFeModel method to

obtain the �nite element model generated on the basis of the current geometry. Similarly, it uses the

GetSurfForces method to obtain the surface forces generated from the current 
ow solution. These

two data items are used to compute the de
ection of the aircraft con�guration. The new de
ected

geometry is then put back into SurfaceGeom. Similarly, the FlowSolver task (not shown here)

acquires the current geometry (using the GetDe
ected method) and an initial 
ow solution (using

the GetFlowSoln method) and produces a new 
ow solution which it puts back into SurfaceGeom.

The inner aeroelastic optimization cycle continues until the de
ections are within a speci�ed

tolerance limit. At each step of the cycle, the FeSolver uses forces based on the current 
ow solution

to produce new deformations, while the FlowSolver uses the de
ected geometry and the previous


ow solution to produce a new solution. Note that the logical variables and the condition clauses

in the SurfaceGeom SDA are set up to synchronize the parallel tasks. For example, the logical

variable De
ectFull is used so that the old de
ected geometry cannot be replaced by a new one

until the old one has been accessed.

After the inner cycle has converged, the Optimizer activates the Gradient methods of the dis-

cipline tasks to generate the sensitivity derivatives with respect to the di�erent design variables.
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This data is stored in the Sensitivities SDA, not shown here, by the discipline tasks. Based on this

data and the objective function, the Optimizer decides whether to terminate the program or to

produce a new base geometry which is then put in SurfaceGeom to start a new round of the inner

cycle. Once an optimal con�guration of the aircraft has been achieved, the SDA data can be saved

and the SDAs terminated.

4 Opus Runtime Support

In the previous two sections we have presented features of Opus and examples showing how these

features can be used to encode interacting asynchronous data parallel tasks. In this section we

describe the runtime system required to support these features.

The Opus runtime system consist of two layers ( see Figure 6):

� a language-speci�c layer, providing the functionality for managing SDAs and their interaction

via method calls, and

� a language-independent layer, which provides support for thread-based data parallelism in

parallel distributed environments.

We discuss �rst the thread-based layer and then describe the implementation of method invo-

cation, including the handling of distributed arguments in the Opus runtime system.

4.1 Lightweight Threads

As described in the previous sections, SDAs can be con�gured either as computation servers or as

data servers. In general, the computation server tasks and the data servers will utilize the same

(or overlapping) physical resources. Thus, any given processor in the system might be responsible

for the simultaneous execution of multiple, independent SDAs. Execution of these SDAs could be

implemented on Unix-based systems by mapping each unit to a process. However, this process-

based approach has several drawbacks, including the inability to control scheduling decisions for the

SDA methods, the inability to share addressing spaces between SDAs, and costly context switching

between SDAs. In light of these disadvantages, our runtime system utilizes lightweight, user-level

threads to represent the parallelism within and among SDAs. This decision is consistent with most

other runtime systems supporting parallel or concurrent programming languages [4, 7, 14].

A lightweight, user-level thread is a unit of computation with minimal context that executes

within the domain of a kernel-level entity, such as a Unix process or Mach kernel thread. Lightweight

threads are becoming increasingly useful in supporting language implementations for both parallel

and sequential machines by providing a level of concurrency within a kernel-level process.

The language-independent layer of the OPUS runtime system is based on Chant. Chant provides

both a standardized interface for thread operations (as speci�ed by the POSIX thread standard [25])

and communication among threads using either point-to-point primitives (such as those de�ned in

the MPI standard [23]) or remote service requests. Chant also supports data parallel groups of

threads (called ropes) for executing collective operations, such as broadcast and reductions. A

description of Chant, and its current status, can be found in [17, 19].
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The Opus runtime system is primarily concerned with the management of SDAs and their

interaction via method calls. The underlying HPF runtime system will deal with issues of data

parallelism and distribution. In the initial design, we have concentrated on the interaction of

SDAs through method calls (namely method invocation and argument handling), and have taken

a simpli�ed approach to resource management. We presume that all the required resources are

statically allocated and the appropriate code is invoked where necessary. We will later extend the

design of the runtime system to support dynamic acquisition of new resources.

The interaction between SDAs requires runtime support for both method invocation and method

argument handling. We now explore these issues in further detail.

4.2 SDA Method Invocation

The semantics of SDAs places two restrictions on method invocation:

� each method invocation has exclusive access to the SDA data (i.e., only one method for a

given SDA can be active at any one time), and

� execution of each method is guarded by a condition clause, which must evaluate to true before

the method code can be executed.

An SDA method call can be either synchronous or asynchronous. A synchronous method call

will suspend the calling program until the SDA method returns; an asynchronous method invocation

will allow the caller to continue execution and test for method termination with an event variable.

We can view an SDA as being comprised of two components: a control structure which executes

the SDA methods in accordance with the stated restrictions, and a set of SDA data structures. To

enable proper execution of SDAs, each SDA method is compiled into three functions:

1. The method code. This function embodies the method code as speci�ed by the programmer.

It uses a generic method call interface that permits the invocation of all SDA method calls

in a uniform manner.

2. The condition function. This is a boolean function that evaluates the condition clause that

may be associated with an SDA method. The condition clause must be locally evaluated to

ensure that race conditions do not occur.

3. The method interface. This is a stub function that provides the method's public interface to

the calling units and is used to access the SDA method code from another program unit.

Since all SDAs are servers, either for data or computation, each instance of an SDA is represented

by a server loop (as depicted in Figure 7) which waits for messages from the method interfaces of

other units and takes appropriate action as speci�ed by the message. The SDA instance incorporates

a data structure that includes pointers to the condition and method functions for each method along

with a queue of outstanding method invocation requests.

The algorithm in Figure 7 depicts the main loop of an SDA server. On receiving a message from a

method interface routine, the SDA creates a new execution record including a unique identi�cation

for the request. This record is sent back to the caller as acknowledgment. The SDA gathers

any input arguments using non-blocking receives (so as not to impose an arti�cial ordering on the
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incoming messages) and enqueues the execution record in the appropriate list. The SDA then selects

the next method request which is ready for execution. A method request is ready for execution if

all its arguments have been received and the associated condition is true. After execution of this

method request, the results, if any, are sent back to the caller. A completion signal is also sent back

to the caller and the execution record is dequeued from the method request list. This reevaluation

of condition functions is repeated until no further methods can be executed, at which time the SDA

continues waiting for further method requests.

Figure 8 shows a generic method interface routine used by the calling task to invoke a method.

After the method request is sent, the caller waits for an acknowledgment and then sends the values of

the input arguments to the callee. If the method activation was synchronous, the caller waits for the

results and for the completion signal before returning. If the method activation was asynchronous,

it posts non-blocking receives for the results and the completion signal. The execution record is

returned to be stored as the event associated with the method activation. This allows the caller

to continue execution without the completion of the method call. The event (i.e., the execution

record) can be used later in a wait or test statement to test for the completion of the method call.

4.3 Distributed Argument Handling

In the previous subsection, we described the protocol for invoking methods under the implicit

assumption that both the calling SDA and the called SDA run on a single processor. However,

the language allows both to be distributed; furthermore, the distributions of the actual and the

formal arguments of method calls may not match. Thus, the Opus runtime system must have

a mechanism for redistributing data at method invocation time. To examine the details of our

prototype implementation, let us consider what happens when a distributed task calls a method in

a distributed SDA, referring to the pictorial representation in Figure 9.

If an SDA type is internally distributed, an SDA instance of this type is represented by a rope,

which is a data parallel group of threads spread across the set of processors. One of the threads

is designated the leader thread while the other threads are worker threads. Method invocation

between distributed SDAs then works as follows (the pseudocode for the main loop of the SDA

leader and the workers of a distributed SDA is shown in Figure 10):

1. The leader thread of the rope associated with the caller (the caller rope) sends a method

request message to the leader thread of the rope associated with the called SDA (the callee

rope) (Figure 9.1). Along with other information, this message also contains the distribution

speci�cations for the actual method arguments.

2. The leader of the callee rope then creates an execution record containing the distribution

speci�cations of the dummy method arguments and sends it back to the leader of the caller

rope. It also noti�es its workers of the method request (Figure 9.2), along with the distribution

speci�cations of the actual arguments.

3. The leader of the caller rope then informs all its workers of the dummy argument distribution

information it has received. At this point, all threads involved in the method invocation

have the distributions of both the dummy and actual arguments, and can create their own

communication schedules as discussed below (Figure 9.3).
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4. Once the communication schedules have been computed, the threads of the caller rope send

data messages directly to the appropriate threads of the callee rope (Figure 9.4). The data

is received by these threads through non-blocking receives.

5. The leader of an SDA rope chooses the next ready method to execute and informs all its

workers. The method is executed and all threads of the callee rope send any return messages

back to the threads of the caller rope using the previously computed communication schedule

(Figure 9.5). The leader of the callee rope then sends a completion signal to the leader of the

caller rope.

The leader of the callee rope controls which method request is to be executed next, and thus

sends to its worker threads messages for new method requests or for execution of already queued

requests. In the former case, as shown in Figure 10, the worker threads independtly compute their

communication schedules and post their receives. In the latter case, they execute the method and

send back the results. We currently assume that the condition code is executed solely by the leader

and only uses information which is replicated across the rope and thus can be accesses locally by

the leader.

Determining the communication schedule, i.e., what elements of an array are to be sent or

received from which thread, is a complex task. Several groups have been studying algorithms and

heuristics to determine the most e�cient schedule [2, 11, 16, 22, 26, 27, 31]. We have adopted (and

augmented) the �nite state machine (FSM) method for local address set calculation developed by

Chatterjee et al. [11] in our current prototype. The FSM method exploits the repeating patterns of

local array indices to determine the elements of a distributed array that each thread owns. Since all

threads can do this calculation simultaneously, there is no gather/scatter operation required. We

have extended this work by creating a second FSM such that, for each local element of the array

yielded by the original FSM, the thread can determine the destination thread it must communicate

with. Each thread in the sender creates a list of elements for each destination thread which is then

aggregated into a single message for each other thread and transmitted. Thus, each destination

thread will receive at most one message from each sending thread. In addition, each receiving thread

can use the same FSM method along with the sender's distribution information to determine from

whom it should receive messages and what the contents will be. Consequently, the messages contain

only raw data, eliminating the overhead of transmitting indices.

We have developed a prototype implementation of the Opus runtime system, which is currently

running on a cluster of workstations using p4 and the Intel Paragon using NX. This implementation

handles distributed arguments in synchronous method calls. A complete description of the system

and some preliminary results can be found in [20].

5 Related Work

Task management has been a topic of research for several decades, particularly in the operating

systems research community. A good survey of the issues can be found in [3]. However, there has

not been much attention given to the mechanisms required for managing control parallel tasks,

which may themselves be data parallel. In this section we discuss some of these approaches.
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Fortran M [13] extends Fortran 77 with a set of features that support message-passing, ac-

cording to a strictly enforced discipline. Processes { program modules encapsulating data and code

that are executed concurrently { can be interact via channels; each channel establishes a one-to-one

connection between typed ports, essentially representing a message queue�. Communication is per-

formed by sending and receiving from ports. Processes are activated by executing a process block {

a PARBEGIN/PAREND like construct { or by creating multiple instances in a process loop. The

language has constructs for controlling the location of process executions and distributing data

in an HPF-like manner. By imposing a FIFO discipline on message queues and guaranteeing a

sequential semantics for output arguments determinism is enforced.

Fortran M can be used to create and coordinate processes in a clean and structured way. How-

ever, the relatively low level of abstraction associated with the message-passing paradigm, together

with the structure imposed on the use of channels and ports for the sake of achieving determin-

ism sometimes leads to di�culties expressing simple and useful communication structures. Such

examples include producer-consumer problems with multiple producers and consumers accessing a

bounded bu�er, or the variants of the readers-writers problem.

Recent work at Argonne and Syracuse [15] integrates HPF with the message passing standard

MPI. In this approach, data parallel HPF tasks may exchange distributed data structures by directly

using calls to MPI communication functions.

The Fx Fortran language extensions developed at CMU [28, 29] include parallel sections that

allow the concurrent activation of subroutines as tasks. Tasks communicate through arguments.

Arguments can be passed to a task at the time of its activation, or received from a task when it

terminates. Each call that activates a task must be accompanied by input and output directives that

specify the shared objects. This provides the compiler with complete information on the required

communication.

Fx is well suited to an environment where tasks need to communicate only at the time of spawn-

ing and termination, and where nested task-parallelism is not required. If tasks must communicate

during their execution, subroutines may have to be split at synchronization points to obtain smaller

program units that �t into this scheme. Moreover, this would clearly induce task-spawning over-

head.

LINDA [1] provides a virtual shared tuple space, to which read and write operations can be

applied. It represents a simple and easily usable parallel programming paradigm. However, LINDA

lacks the modularity that is required for structuring multidisciplinary applications, and does not

allow su�cient control of task execution and resource allocation.

Orca [5] provides an object model similar to SDAs called abstract data types (ADTs). Both

ADTs and SDAs represent abstract data types that can be distributed over a set of processors using

conventional data parallel mapping directives. Both apply operations to their elements using the

owner-computes rule. Aside from implementation issues, the main di�erence between ADTs and

SDAs is in the \server" nature of the SDA. All SDAs run implicit server loops to handle incoming

requests, and SDA methods can be invoked both synchronously and asynchronously, where the

decision can be made at the call site. This allows SDAs to behave as computation servers as well

as data servers. Orca objects deliberately lack such a server, to allow concurrent read operations

on di�erent copies of an object.

�In addition, many-to-one communication can be expressed.
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SVM Fortran [6] is a set of extensions for Fortran 77 intended to program shared virtual

memory systems. Among a large number of features, it provides support for �ne-grained control

parallelism in a shared memory paradigm along with mechanisms to synchronize and coordinate

these tasks.

Other approaches which provide support for managing task parallelism at a high level include

PVM [30], CC++ [8] and Strand [12]. Most of these approaches do not address the issue of

integrating task and data parallelism.

6 Conclusions and Future Research

Complex scienti�c applications, such as multidisciplinary optimization, provide opportunities for

exploiting multiple levels of parallelism, but also raise complex programming issues. The coordi-

nation language Opus, presented in this paper, supports the multiple levels of parallelism arising

in multidisciplinary applications, and also provides support for software engineering issues arising

when integrating codes from individual disciplines into a single working application.

A partial implementation of Opus has been built, using the Chant runtime system. Performance

of a simpli�ed multidisciplinary application code has been studied using this implementation. The

cost of a typical SDA method call with distributed arguments appears to be reasonable and our

design scales with the number of processors. Given these preliminary results, a full prototype im-

plementation of Opus has begun. Since Chant runs on a large number of multiprocessor platforms,

this prototype will be widely portable, and should prove useful in a number of important applica-

tions. We also plan to explore the research issues of supporting parallel method calls within the

same SDA and condition evaluation based on distributed data structures.
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SDA TYPE SGeomSDA(...)

!HPF$ PROCESSORS P(number of processors())

TYPE(surface) base, de
ected

TYPE(
ow) FlowSoln

TYPE(fe) FeModel

!HPF$ DISTRIBUTE base ....

LOGICAL De
ectFull = .FALSE.

LOGICAL FeFull = .FALSE.

CONTAINS

SUBROUTINE PutBase(b)

TYPE(surface), INTENT(IN) :: b

base = b; de
ected = b

FeModel = GenFeModel(b, FeModel)

FlowSoln = InitSoln(b)

De
ectFull = .TRUE.

FeFull = .TRUE.

END

SUBROUTINE PutDe
ected(d) WHEN (De
ectFull .EQ. .FALSE.)

TYPE(surface), INTENT(IN) :: d

de
ected = d

De
ectFull = .TRUE.

END

SUBROUTINE GetDe
ected(d) WHEN (De
ectFull .EQ. .TRUE.)

TYPE(surface), INTENT(OUT) :: d

d = de
ected

De
ectFull = .FALSE.

END

SUBROUTINE GetFeModel(f) WHEN (FeFull .EQ. .TRUE.)

...

SUBROUTINE GetSurfForces(f)

...

SUBROUTINE GetFlow(f)

...

SUBROUTINE PutFlow(f)

...

LOGICAL FUNCTION within tol(...)

...

END SGeomSDA

Figure 4: Surface Geometry SDA
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SDA TYPE FeSolverSDA(Surf, Sens, ...)

SDA(SGeomSDA) Surf

SDA(SensSDA) Sens

!HPF$ PROCESSORS P(number of processors())

...

CONTAINS

SUBROUTINE Analyze(...)

converged = .FALSE.

CALL Surf%GetFeModel(FeModel)

! { discipline optimization loop

DO WHILE (.NOT converged)

CALL Surf%GetSurfForces(forces)

CALL fesolve(forces, FeModel, de
ect, ...)

CALL Surf%PutDe
ected(de
ect)

converged = Surf%within tol(...)

END DO

END

SUBROUTINE Gradient(...)

...

sens = ...

CALL Sens%PutFeSens(sens)

END

END FeSolve

Figure 5: Finite Element Solver

Threaded Runtime (Chant)

Opus Language/Compiler

Opus Runtime

Language-Dependent

Language-Independent

Figure 6: Runtime layers for SDA support
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Do forever {

Wait for method request for method m from caller

Create new execution record X

Send X to caller as acknowledgment

Post receives for input arguments from caller

Enqueue X in queue for method m

Repeat

Select next ready method request Y

Execute method Y

Send results to caller

Send completion signal to caller

Dequeue Y

Until no more method requests are ready

}

Figure 7: Pseudocode for an SDA main loop

Send method request to SDA

Wait for execution record X as acknowledgment

Send actual arguments to callee

If activation_type = asynchronous

Post receives for results

Post receive for completion signal

Return X

else

Wait for results

Wait for completion signal from callee

endif

Figure 8: Pseudocode for a method call interface
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Callee RopeCaller Rope

Opus Program 

Leader

Leader

1. Caller leader thread sends

method request to callee leader

thread with actual argument dis-

tributions.

Callee RopeCaller Rope

Opus Program 

Leader

Leader

2. Callee leader thread noti�es

its workers and ACKs the request

with dummy argument distribu-

tions.

Callee RopeCaller Rope

Opus Program 

Leader

Leader

3. Caller leader sends callee dis-

tribution information to all its

workers. All threads in the caller

and callee ropes compute commu-

nication schedules.

Opus Program 

Leader

Leader

Caller Rope Callee Rope

4. Caller threads send data

messages to appropriate callee

threads directly.

Callee RopeCaller Rope

Opus Program 

Leader

Leader

5. When method execution has

�nished, the callee threads send

any return messages to the caller

threads. This completes the

method call.

Figure 9: Illustration of the method invocation process for distributed SDAs
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SDA leader:

Do forever {

Wait for method request for method m from caller

including distributions of actual arguments

Create new execution record X

including distributions of formal arguments

Send X to leader thread of caller as acknowledgment

Send X to all workers

Compute communication schedule

Post receives for input arguments from caller

Enqueue X in queue for method m

Repeat

Select next ready execution record Y

Send Y to all workers

Execute method Y

Send results to caller

Send completion signal to leader thread of caller

Dequeue Y

Until no more method requests are ready

}

SDA Workers:

Do forever {

Wait for message from leader

If new method execution record X received

Compute communication schedule

Post receives for input arguments from caller

Enqueue X in queue for method m

else

Execute method X

Send results to caller

Dequeue X

endif

}

Figure 10: Main loops for leader and workers in a distributed SDA
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