United States Environmental Protection Agency

EPA-600/R-01-039 June 2001

Research and Development

Application of Pollution Prevention Techniques to Reduce Indoor Air Emissions From Aerosol Consumer Products

Prepared for

Office of Prevention, Pesticides, and Toxic Substances

And

Office of Radiation and Indoor Air

Prepared by

National Risk Management Research Laboratory Research Triangle Park, NC 27711

FOREWORD

The U. S. Environmental Protection Agency is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA's research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future.

The National Risk Management Research Laboratory is the Agency's center for investigation of technological and management approaches for reducing risks from threats to human health and the environment. The focus of the Laboratory's research program is on methods for the prevention and control of pollution to air, land, water, and subsurface resources, protection of water quality in public water systems; remediation of contaminated sites and-groundwater; and prevention and control of indoor air pollution. The goal of this research effort is to catalyze development and implementation of innovative, cost-effective environmental technologies; develop scientific and engineering information needed by EPA to support regulatory and policy decisions; and provide technical support and information transfer to ensure effective implementation of environmental regulations and strategies.

This publication has been produced as part of the Laboratory's strategic longterm research plan. It is published and made available by EPA's Office of Research and Development to assist the user community and to link researchers with their clients.

> E. Timothy Oppelt, Director National Risk Management Research Laboratory

EPA REVIEW NOTICE

This report has been peer and administratively reviewed by the U.S. Environmental Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

APPLICATION OF POLLUTION PREVENTION TECHNIQUES TO REDUCE INDOOR AIR EMISSIONS FROM AEROSOL CONSUMER PRODUCTS

By

Charlene W. Bayer Electro-Optics, Environment & Materials Laboratory Georgia Tech Research Institute Atlanta, Georgia 30332-0820

> Richard A. Browner and Stacy Ho School of Chemistry & Biochemistry Georgia Institute of Technology Atlanta, Georgia 30332-0400

Leslie L. Christianson, Ling Ying Zhao, Per Heiselberg, Mike E. Tumbleson, and Michael M. Cui Biochemical Engineering Research Laboratory University of Illinois at Urbana-Champaign 1304 W. Pennsylvania Avenue Urbana, Illinois 61801

EPA Cooperative Agreement Number: CR 822007

EPA Project Officer: Kelly W. Leovic National Risk Management Research Laboratory Research Triangle Park, North Carolina 27711

Prepared for

U.S. Environmental Protection Agency Office of Research and Development Washington, DC 20460

Abstract

Aerosol consumer products potentially are amenable to pollution prevention strategies that reformulate or redesign products, substitute raw materials, or improve consumer use procedures. A basic understanding of the behavior of aerosol consumer products is essential in the development of pollution prevention strategies, which may reduce occupant exposures and guide manufacturers in the development of more efficacious, less toxic products. This research project was undertaken to develop tools and methodologies to measure aerosol chemical and particle dispersion through space. EPA's National Risk Management Research Laboratory sponsored a cooperative agreement with the Georgia Tech Research Institute (GTRI), and the University of Illinois (UI) to develop tools and methodologies to measure aerosol chemical composition and particle dispersion through space. These tools can be used to devise pollution prevention strategies that could reduce occupant chemical exposures and guide manufacturers in formulating more efficacious products. The GTRI researchers built an Aerosol Mass Spectral Interface (AMSI), which is interfaced with a mass spectrometer (MS), that chemically characterizes aerosol consumer products through space. The UI researchers developed techniques for measuring aerosol movement indoors by tracking particle size changes via particle velocity measurements using particle image velocimetry (PIV). A group of Industry Partners participated in this research project to ensure that the technologies developed would be useful to industry.

The AMSI was designed, constructed, and optimized to transfer a focused beam of aerosol particles into a mass spectrometer for chemical analysis. It was shown experimentally during this project that the AMSI can quantitatively detect compositional changes as the aerosol travels through space. These data provide important information for the formulating of aerosol consumer products for pollution prevention strategies. The PIV system demonstrated a correlation between the material properties of the aerosol components and the spray pattern. These data were used to develop a model for prediction of the major characteristics of aerosol spray patterns. The model can be a useful guide for developing pollution prevention strategies.

This report was submitted in fulfillment of grant number CR822007 under the sponsorship of US EPA. This report covers a period from July 1994 to September 1997, and was completed as of December 31, 1997.

Table of Contents

Abstractii		
List of Tablesv		
List of Figures vi		
Acknowledgments ix		
1.0 Introduction		
1.1 Background1		
1.2 Traditional Aerosol Analysis2		
2.0 Conclusions		
2.1 Chemical Composition		
2.2 Particulate Behavior5		
3.0 Recommendations 6		
3.1 Technology Costs		
3.2 Technology Limitations		
4.0 Technical Approach		
5.0 Methods, Results, and Discussion		
5.1 Surrogate Aerosols		
5.2 Chemical Composition115.2.1 Aerosol Mass Spectral Interface115.2.2 Generation of Standard Aerosols135.2.3 Total Aerosol Consumer Product Analysis135.2.4 Optimization of AMSI17		
5.2.4 Optimization of American 17 5.2.4.1 Vacuum Applied to AMSI 17 5.2.4.2 5.2.4.2 Reproducibility 18 5.2.4.3 5.2.4.3 Skimmer Design 19 5.2.5 AMSI/MS Analysis 23 5.2.5.1 Particle Beam Mass Spectrometer (PBMS)		

Contents (Cont.)

5.2	 5.2.5.2 Atmospheric Triple Quadrupole Mass Spectrometer (API) 2.6 Surrogate Aerosols Analysis 2.7 Chemical Composition Change Through Space 2.8 Particle Size Distribution Selection for Analysis via Steering Gas 	26 35
5.3 5.3	 Particulate Spatial Dispersion	40 47
6.0	Technology Costs to Industry or Other Researchers	66
6.1	AMSI	66
6.2	Aerosol Spray Pattern Characterization	66
7.0.	Quality Assurance	70
	Project Description	
7.1 7.2 7.2		70 70 71
7.1 7.2 7.2 7.2	Project Description AMSI Development 2.1 OCN Calibration	70 70 71 71
7.1 7.2 7.2 7.2 7.3	Project Description AMSI Development 2.1 OCN Calibration 2.2 MS Calibration	70 70 71 71 71
7.1 7.2 7.2 7.3 7.3	Project Description AMSI Development 2.1 OCN Calibration 2.2 MS Calibration PIV Analyses	70 70 71 71 71 71 72

List of Tables

1.	Description of surrogate aerosols10
2.	Peak assignments for SWP and SWA analyzed by PBMS without the AMSI16
3.	Results of AMSI skimmer optimization22
4.	Peak assignments for API spectra of SLS27
5.	Peak assignments for APCI spectra of Butyl Cellosolve®28
6.	Peak assignments for SWP and SWA analyzed by PBEI without the AMSI./30
7.	Peak assignments for SWA analyzed by positive API with the AMSI30
8.	Peak assignments for silicone-ethanol adducts
9.	Range of particle sizes of surrogate aerosols measured with Malvern particle sizer41
10.	PIV determined concentration distribution of surrogate aerosol particles at a distance from the spray nozzle
11.	Aerosol particle concentration and size distribution in spray jets—PIV system costs
12.	Aerosol particle velocity distribution in spray jets – PIV system costs67
13.	Aerosol particle concentration distribution in environmental chambers—PIV system costs
14.	Aerosol particle velocity distribution in environmental chambers—PIV system costs
15.	New PIV system costs for aerosol particle distribution measurement in an environmental chamber
16.	Summary of PIV system capability and accuracy73

List of Figures

1.	Detailed schematic of AMSI	12
2.	PBMS of AA1	15
3.	PBMS of SWA	16
4.	PBMS of SWP	17
5.	Comparison of PBCI response of SWP with and without vacuum pump connected to AMSI.	18
6.	Reproducibility of mass spectral response with skimmer added (AMSI Model B)	19
7.	Different types of skimmers	20
8.	Comparison of SWP response with nozzle angles of 60° and 160°	21
9.	Optimum skimmer design schematic	23
10.	Schematic of AMSI coupled to PBMS	24
11.	Schematic of AMSI coupled to API	25
12.	Interface coupling AMSI to heated nebulizer assembly	26
13.	PBMS in CI mode spectrum of SWA	29
14.	API in positive mode spectrum of BC	29
15.	API in positive mode spectrum of SLS	31
16.	AMSI/PBMS in EI mode of SNW1	32
17.	AMSI/PBMS in EI spectrum of SNW2	32
18.	AMSI/PBMS in EI mode spectrum of SNWP	33
19.	Product A spectrum by AMSI/API in positive mode	34
20.	Product B spectrum by AMSI/API in positive mode	34
21.	SLS spectrum by AMSI/API in positive mode	35
22.	Detection of m/z 119 ion for SWA by AMSI/MS with increasing distance fron AMSI entrance nozzle	
23.	Depiction of signal intensity of m/z 119 with increasing SWA percentage	36

Figures (Cont.)

24.	Depiction of particle size selection via increasing steering gas flow
25.	Distance in still air penetrated by particles with an initial velocity of 2 m/s and 10 m/s
26.	Settling velocities for particles suspended in air
27.	Steady state velocities of particles affected by gravity and different air velocities opposite to the direction of gravitational field (upward velocity is positive)39
28.	Schematic of Malvern Particle Sizer for droplet size measurement41
29.	Particle size distribution measured with Malvern analyzer for surrogate air aerosols
30.	Particle size distributions measured with Malvern analyzer for surrogate surface non-wipe aerosols42
31.	Drop size distributions for SWA and SWP measured with Malvern system43
32.	Depiction of spray cone particle-size distribution measurement scheme43
33.	Particle size distribution for AA1 at increasing distance from laser beam45
34.	Particle size distribution for SWA at increasing distance from the laser beam46
35.	Velocity decay of surrogate aerosol particles along the jet centerline47
36.	Sauter Mean Diameters correlated with distance from the spray48
37.	Particle size distribution related to can-fullness49
38.	PIV measurement system50
39.	Schematic of beam sweeping over aerosol particles50
40.	Particle size distribution small view field schematic51
41.	Particle size distribution large view field schematic51
42.	Contour plots of aerosol particle concentrations
43.	Surrogate aerosol particle concentration profiles along the radius of the spray cone
44.	Velocity measurement interrogation system hardware schematic55
45.	Surrogate aerosol particle velocity distributions along the axis of the spray nozzle

Figures (Cont.)

46.	Test room for ventilation simulator60
47.	PIV/environmental chamber system schematic61
48.	PIV/environmental chamber measurement system schematic63
49.	Vector map of instantaneous room air velocities at an air change rate of 5 ACH63
50.	Contour plot of instantaneous particle concentration at an air change rate of 5 ACH64
51.	Normalized particle concentration in environmental chamber with a circular diffuser distributing the air

Acknowledgments

This work was supported by the U.S. Environmental Protection Agency's National Risk Management Research Laboratory under Cooperative Agreement CR 822007. The authors are grateful for the expertise, guidance, and efforts of the Industry Partners, chaired by Dr. Armin Clobes of SC Johnson Wax. We are especially grateful to the Industry Partners for designing, preparing, and supplying the Surrogate Aerosols, test aerosols representative of the "World of Consumer Aerosol Products," used for methodology and instrument development during this research project. The Industry Partners are listed in Appendix 1.