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Abstract

Algorithms are developed to extract atmospheric boundary layer pro�les for turbulence

kinetic energy (TKE) and energy dissipation rate (EDR), with data from a meteorological

tower as input. The pro�les are based on similarity theory and scalings for the atmospheric

boundary layer. The calculated pro�les of EDR and TKE are required to match the observed

values at 5 and 40m. The algorithms are coded for operational use and yield plausible pro�les

over the diurnal variation of the atmospheric boundary layer.
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Nomenclature

e = turbulence kinetic energy
f = Coriolis parameter
g = gravitational acceleration
h = height of atmospheric boundary layer
L = Obukhov length
k = von Karman constant, 0.4
Ri = gradient Richardson number
T0 = reference temperature
�u = mean velocity in the direction of the wind
u� = friction velocity
u0; v0 = horizontal velocity uctuations
w� = convective velocity scale
w0 = vertical velocity uctuation
z = elevation above the ground
� = turbulent kinetic energy dissipation rate
� = Monin-Obukhov stability parameter, z=L
��v = mean virtual potential temperature
�v

0 = virtual potential temperature uctuation
�h = dimensionless potential temperature gradient in the surface layer
�m = dimensionless wind shear in the surface layer
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1 Introduction

To safely reduce aircraft spacing and increase airport capacity, NASA is developing a

predictor system, called the Aircraft VOrtex Spacing System (AVOSS: Hinton, 1995; Hinton

et al., 1999; Perry et al., 1997). This system includes prediction algorithms for aircraft

wake vortex transport and decay. Semi-empirical vortex prediction algorithms have been

developed and incorporated within the AVOSS (Robins et al., 1998; Sarpkaya et al., 2000).

One of the key input elements for the AVOSS prediction algorithms is the atmospheric

boundary layer (ABL) turbulence of which the intensity can be represented by turbulent

kinetic energy (TKE) or eddy energy dissipation rate (EDR). While the prediction algorithms

require the vertical pro�les for the TKE and EDR at least up to the vortex generation height,

the observational data for the TKE and EDR are available only from a meteorological tower

at the heights of 5 and 40m above the ground.

In supporting the NASA AVOSS project, the wake vortex research group at North Car-

olina State University (NCSU) has developed algorithms and software which can generate

the vertical pro�les of TKE and EDR. These algorithms are based on the ABL similarity

relations (Arya, 1988, 1995, 2000; Caughey et al., 1979; Rao and Nappo, 1998; Sorbjan,

1989; Stull, 1988) and available experimental data.

Section 2 describes the ABL similarity relations with respect to the vertical pro�les of

the TKE and EDR that are dependent upon the ABL stability. Section 3 contains a detailed

description of the software. In Section 4, estimates from the similarity relations are compared

with the observed data. Section 5 provides information on running the software. Finally,

the summary of this study is given in Section 6.
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2 Similarity Relations for the TKE and EDR Pro�les

ABL observations frequently show consistent and repeatable characteristics from which

empirical similarity relationships have been obtained for the variables of interest such as

TKE and EDR. Similarity theory is based on the organization of variables into dimensionless

groups that come out of the dimensional analysis. The dimensional analysis is a technique

used in science and engineering to establish a relationship between di�erent quantities. The

functional relationships between dimensionless groups are referred to as similarity relations,

because they express the conditions under which two or more ow regimes would be similar.

Similarity relationships that have certain universal properties are usually designed to apply

to equilibrium (steady-state) situations. One of the well-known similarity relations is the

logarithmic velocity pro�le law observed in surface or wall layers under neutral strati�cation.

The proposed similarity relationships for TKE and EDR are fundamentally based on the

Monin-Obukhov similarity (Monin and Obukhov, 1954) and mixed-layer similarity (Dear-

dor�, 1972) theories. The former is applied to a strati�ed surface layer and is sometimes

called the surface-layer similarity theory, whereas the latter is applied to mixed layers that

often develops during daytime convective conditions. These similarity theories have provided

the most suitable and acceptable framework for organizing and presenting the ABL data, as

well as for extrapolating and predicting certain ABL information where direct measurements

of the same are not available.

Using the framework of these similarity theories, a variety of similarity relationships have

been suggested to describe the vertical pro�les of mean and turbulence �elds as functions of

the dimensionless groups z=L and/or z=h, covering whole ABL including the surface layer

(Arya, 1988, 1995, 2000; Caughey et al., 1979; Hogstrom, 1996; Rao and Nappo, 1998;

Sorbjan, 1989; Stull, 1988). Occasionally, various investigators have suggested di�erent

values for the empirical coe�cients. Based on the similarity scaling in the atmospheric

surface layer and boundary layer under di�erent stability conditions, the expressions and

parameterizations for the vertical pro�les of TKE and EDR and related characteristic scales
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are suggested in the following subsections; some of the expressions are adopted directly

from those references, whereas the others are derived using the similarity relationships of

turbulence variables other than TKE and EDR.

2.1 Neutral and Stable Boundary Layers (z=L � 0)

The boundary layer may be subdivided into a surface layer (in which stress is nearly

constant with height) and an outer layer. A separate set of algorithms is assigned to each

sublayer as follows.

2.1.1 Surface Layer (z � 0:1h)

In the surface layer, the TKE (e) and EDR (�) are given by (Hogstrom, 1996; Rao and

Nappo, 1998)

e = 6u2
�
; (1)

� =
u3
�

kz

�
1:24 + 4:3

z

L

�
; (2)

where k ' 0:4 is von Karman constant. The friction velocity, u�, is de�ned as

u2
�
=
h
(u0w0)

2

s + (v0w0)
2

s

i1=2
; (3)

where the right hand side of Eq: (3) represents the total vertical momentum ux near the

surface (the subscript s denotes the ground surface). The Obukhov length L depends on

both the momentum and heat uxes near the surface and is de�ned later; the ratio z=L is

the fundamental similarity parameter of the Monin-Obukhov similarity theory.

2.1.2 Outer Layer (z > 0:1h)

Expressions for the outer layer can be assigned according to the level of strati�cation.

(1) Neutral and Stable Boundary Layer

In the neutral and moderately stable boundary layer, the TKE and EDR are given by

(Hogstrom, 1996; Rao and Nappo, 1998)

e = 6u2
�

�
1�

z

h

�1:75

; (4)
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� =
u3
�

kz

�
1:24 + 4:3

z

L

��
1� 0:85

z

h

�
1:5

: (5)

Alternatively, Eqs:(4) and (5) may also be used for the entire boundary layer, including the

surface layer.

(2) Very Stable and Decoupled Layers

In the very stable boundary layer and decoupled layers, the TKE and EDR can be

expressed by extension of Eqs:(1) and (2) as

e = 6u2L; (6)

� = 4:3
u3L
kLL

; (7)

where uL is the local (friction) velocity scale and LL is the local buoyancy length scale. Under

very stable conditions, the elevated layers of turbulence are decoupled from the surface and

the local uxes and scales cannot be reliably estimated. Perhaps, an empirical relationship

between the overall turbulence intensity (e1=2=�u) and Richardson number should be explored.

It is worthwhile to note that some experimental results show that Eq:(5) can be still used

to estimate � even in a very stable boundary layer.

2.2 Unstable Boundary Layer (z=L < 0)

The unstable ABL such as during daytime surface heating can be divided into three

regimes depending upon the stability parameter, z=L or h=L.

2.2.1 Strongly Unstable (Convective) Regime (jz=Lj > 0:5)

The structure of the convective regime is dominated by buoyancy. The mean wind

velocity and potential temperature pro�les are nearly uniform with height. For this reason,

the convective outer layer is called the \mixed layer." The mixed layer is topped by an

inversion layer in which temperature increases with height. A broad maximum of TKE is

usually found in the middle of the mixed layer, while EDR decreases slightly with height.

(1) Surface Layer (z � 0:1h)
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In the surface layer, the TKE and EDR are given by (Arya, 2000)

e = 0:36w2

�
+ 0:85u2

�

�
1� 3

z

L

�
2=3

; (8)

� =
u3
�

kz

 
1 + 0:5

���� zL
����2=3

!
3=2

: (9)

(2) Mixed Layer

In the mixed layer, the TKE is given by (Arya, 2000)

e =

 
0:36 + 0:9

�
z

h

� 2

3

�
1� 0:8

z

h

�
2
!
w2

�
; (10)

or, for most practical purposes,

e = 0:54w2

�
: (11)

The EDR decreases slowly with height at a linear rate (Sorbjan, 1989), i.e.,

� =
w3

�

h

�
0:8� 0:3

z

h

�
; (12)

where the convective velocity scale w� is de�ned as

w� =
�
g

T0

(w0�v
0)sh

�1=3

: (13)

Here g is the gravitational acceleration, T0 is the reference temperature, and (w0�v
0)s is the

mean surface heat ux.

2.2.2 Moderately Unstable Regime (0:02 < jz=Lj � 0:5)

In this regime, the mechanical production of TKE is comparable with buoyancy pro-

duction of TKE, i.e., turbulence generation from vertical wind shear is comparable to that

generated from surface heating. The TKE in this regime is more or less uniform over the

boundary layer or may decrease slightly with height, and the boundary layer structure may

be more uncertain.

2.2.3 Weakly Unstable (Near-Neutral) Regime (jz=Lj � 0:02 or jh=Lj � 1:5)

This regime often occurs during the transition period of early morning and late afternoon

or during overcast days with strong winds. The lapse rate for temperature tends to be near-

neutral. In this regime, mechanical (shear) production dominates the TKE budget.
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3 Software Description

In order to generate vertical pro�les of TKE and EDR for operational applications,

software is written which utilizes the algorithms in the previous section with observations

measured at 5 and 40m above the ground. With the determination of the characteristic

similarity scales (such as L, u�, w�, and h), the computation of the TKE and EDR pro�les

is straightforward. The characteristic similarity scales can be estimated from the winds and

virtual potential temperatures measured at two levels near the ground.

Since the atmospheric similarity relationships are based on the mean quantities of the

observed wind, temperature, and turbulence, the required time averaging interval for EDR

and TKE pro�les should be at least 30 minutes (Stull, 1988). Hence, with the exception of

TKE, all measured variables are 30-minute averaged. For the measured TKE, a 30-minute

median value is used, since sporadic measurements of exceptionally large TKE can cause an

unrealistic TKE average.

The vertical pro�les generated from similarity theory are additionally required to match

the measured values at z = 5 and 40m as closely as possible. Often the pro�les generated

from similarity expressions do not exactly match the observed values at z = 5 and 40m

simultaneously. Therefore, the TKE and EDR pro�les between z = 5 and 40m are assumed

to be linear and independent of the similarity relationships. In addition, upper and lower

bounds for the values of TKE and EDR at z = 5m are speci�ed to prevent unrealistically

large or small values compared with those at z = 40m. Above 40m, the similarity pro�les

are used, but are adjusted to match the observed TKE and EDR at z = 40m.

3.1 Determination of Surface Layer Similarity Scales

According to algorithms in the previous section, software requires to �rst determine

surface layer similarity scales L and u�.

The Obukhov length is de�ned as

L = �
u3
�

k(g=T0)(w0�v
0)s

; (14)
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in which friction velocity and the surface heat ux can be estimated from measurements of

the mean di�erences or gradients of velocity and temperature between any two heights z1

and z2 within the surface layer, but well above the tops of roughness elements.

Letting ��u = �u2 � �u1 and ���v = ��v2 � ��v1 be the di�erence in mean velocities and

virtual potential temperatures across the height interval �z = z2 � z1, one can determine

the gradient Richardson number (Ri) at the geometric height zm = (z1z2)
1=2 by

Ri(zm) =
g

T0

zm

�
ln
z2
z1

�
���v

(��u)2
: (15)

The corresponding value of the Monin-Obukhov stability parameter �m = zm=L can be

determined from the relations given by (Arya, 1988)

�m = Ri(zm); for Ri < 0; (16)

�m =
Ri(zm)

1� 5Ri(zm)
; for 0 � Ri < 0:2: (17)

Then, the basic universal similarity functions �m and �h are directly related to �m, i.e.,

�h = �m
2 = (1� 15�m)

�1=2; for �m < 0 (18)

�h = �m = (1 + 5�m); for �m � 0 (19)

The similarity relations of Eqs:(17) and (19) are not valid for Ri � 0:2 and �m > 1.

Finally, the friction velocity and the surface heat ux can be obtained from the following

relations

u� =
k��u

�m(�m)ln(z2=z1)
; (20)

(w0�v
0)s = �

2
64 k2��u���v

�m(�m)�h(�m)
�
ln z2

z1

�2
3
75 : (21)

The parameters Ri(zm) and zm=L are used to determine the stability criteria discussed

in the previous section, while the friction velocity u� is used to estimate the ABL height h

in the neutral and stable boundary layer.
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3.2 TKE and EDR Pro�les in Neutral and Stable Boundary Layer
(zm=L � 0)

The boundary layer height can be estimated as the minimum of those given by the

following diagnostic relations (Arya, 1995):

h = 0:3
u�
f
; (22)

h = 0:4

 
u�L

f

!
1=2

; (23)

where f is the Coriolis parameter. Note that Eq:(22) is valid only for a stationary neutral

boundary layer, but it gives an upper bound for h in slightly stable or near-neutral conditions

when L becomes too large and Eq:(23) overestimates h.

Then, Eqs:(4) and (5) are applied to obtain TKE and EDR pro�les above z = 40m

height. The friction velocity in Eqs:(4) and (5) is adjusted so that the pro�les are continuous

at z = 40m, and might be slightly di�erent from that given by Eq:(20).

3.3 TKE and EDR Pro�les in Unstable Boundary Layer (zm=L < 0)

3.3.1 Strongly Unstable (Convective) Regime (jzm=Lj > 0:5)

In this regime, the ABL height is usually estimated from the height of the inversion base,

which can be determined from the vertical temperature sounding. However, it is di�cult to

obtain the temperature inversion base from the existing sounding data from the Dallas/Ft.

Worth (DFW) and Memphis �eld experiments. This is because the soundings often do not

extend above a height of 1 km, whereas the ABL height in this regime can easily reach a

height of 2� 3 km. Alternatively, we estimate the boundary layer height from Eqs:(11) and

(12), using the measured TKE and EDR at z = 40m, i.e.,

h =
0:4 +

q
0:16 + 0:3 z40 �40=(e40=0:54)

1:5

�40=(e40=0:54)
1:5 ; (24)

where subscript 40 represents z = 40m. Although the height of z = 40m is within the

surface layer (z � 0:1h) in most of cases of this regime, the observations indicate that the

8



mixed layer similarity may also be used for the entire boundary layer except for the layer

very close to the surface.

Then, Eqs:(10) and (12) are applied to obtain TKE and EDR pro�les above z = 40m

height, respectively. The convective velocity scale in Eq:(10) is adjusted for the TKE pro�le

to be continuous at z = 40m, and will be slightly di�erent from that estimated from Eq:(11).

3.3.2 Moderately Unstable Regime (0:02 < jzm=Lj � 0:5)

This regime also includes the cases of e5 > e40 but jzm=Lj > 0:5, since TKE (i.e., e)

usually increases with height near the surface in the convective regime. The pro�les are

obtained in the same way as in the convective regime except that Eq:(11) is used for TKE

pro�le rather than Eq:(10).

3.3.3 Weakly Unstable (Near-Neutral) Regime (jzm=Lj � 0:02 or jh=Lj � 1:5)

In this regime, the formulations for the neutral boundary layer are applied for the pro�les.
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4 Comparisons with Observed Data

The friction velocity and TKE and EDR at z = 5m and 40m estimated from the simi-

larity relations in the previous sections have been compared to measurement data from the

Dallas/Ft. Worth (DFW) Airport Field Experiment (Dasey et al., 1998) during the period

of September 15 - October 3, 1997. The height of z = 5m is essentially assumed to be within

the surface layer. The measured u� and EDR are 30-minute averaged, while the measured

TKE is a median value over 30-minutes. The frequency for each stability regime is shown in

Table 1, indicating that most of data belong to stable and moderately unstable regimes. In

the following, the comparisons are performed in two stability groups, that is, neutral and sta-

ble regime including the weakly unstable regime and unstable regime including moderately

unstable and convective regimes.

4.1 Friction Velocity (u�)

Figure 1 shows that the estimated u� from mean velocity measurements with Eq: (20)

agrees well with the measured u� from the momentum ux at z = 5m, but the data scatter

becomes larger for weaker u�. In particular, for very small values of u�, which are often

obtained during very stable conditions, the estimated u� tends to be signi�cantly smaller

than the measured u�. This is because the Monin-Obukhov similarity theory on which u�

estimates are based, is not applicable under very stable conditions (Nappo and Johansson,

1999).

4.2 TKE at z = 5m and 40m

As formulated in sections 2 and 3, the estimated TKE at z = 5m in neutral and stable

conditions is given as a function of only u�, while in unstable conditions, it is given as a

function of u�, w�, L and z. As shown in Fig. 2, the estimated TKE appears to agree with

the measured, although data scatter becomes larger for smaller values. This is especially

true in neutral and stable conditions. For very small values of TKE, most of the estimated

10



TKE values are signi�cantly lower than the measured TKE. The agreement between the

estimated and measured TKE is much better for the unstable conditions.

At z = 40m, only a comparison for the neutral and stable conditions is conducted.

In unstable conditions, the w� and h are calculated from the measured EDR and TKE at

z = 40m and thus, the estimated TKE and EDR at z = 40m will match their measured

values at z = 40m, exactly. Figure 3 shows that similar to TKE at z = 5m, the estimated

TKE in neutral and stable conditions agrees reasonably well with the measured TKE, but

data scatter at z = 40m is larger than that at z = 5m, especially for smaller TKE values.

4.3 EDR at z = 5m and 40m

Using the estimated values of u� and L, EDR at z = 5m is calculated from Eqs: (2) and

(9). Its `measured' values were obtained from the power spectrum of the observed wind data

using the theoretical Kolmogorov relations of the spectra in the inertial subrange.

Figure 4 shows that at z = 5m, the estimated EDR appears to increase linearly with

increasing measured EDR, but is considerably overestimated in both stability regimes. Data

scatter is somewhat larger compared to that of TKE. Similar to that of TKE, however, the

data scatter increases with decreasing values of EDR and is larger in neutral and stable

conditions than in unstable conditions. As explained in section 4.2, the comparison for EDR

at z = 40m is conducted only for the neutral and stable conditions. Figure 5 shows that

agreement and data scatter between estimated and measured EDR at z = 40m are similar

to those at z = 5m, but with smaller overestimation.

4.4 Adjustments in TKE and EDR Pro�les

As shown in the above comparison plots, the ABL similarity theory appears to represent

the measured u� and TKE at z = 5m and z = 40m reasonably well, but with increasing data

scatter for decreasing values of u� and TKE. On the other hand, the estimated EDR consid-

erably overestimates the measured EDR, although estimated and measured values appear to

11



be strongly correlated with a linear relationship between the two. As described in section 3,

therefore, we require that the generated pro�les for TKE and EDR match the measured val-

ues at z = 5 and 40m while maintaining the pro�le shape from the similarity theory above

z = 40m. Otherwise, the estimated pro�les for TKE and EDR may signi�cantly deviate

from those `measured', especially for small values of TKE and EDR.
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5 Procedure of Running Software

The software is coded in FORTRAN and is designed for operational use. The code is

composed of one main program and two subroutines. As input the main program reads data

�les containing TKE and EDR at z = 5m and z = 40m, as well as mean winds and virtual

potential temperatures at two levels near the surface. The subroutine \EDRTKE STABLE"

computes TKE and EDR pro�les under neutral and stable conditions. The other subroutine

\EDRTKE UNSTABLE" computes TKE and EDR pro�les under unstable conditions. On

output, vertical pro�les of TKE and EDR are generated from the main program.

In executing the code, one needs to enter the following:

� latitude (degree) of the airport, which is used to calculate the Coriolis parameter f .

� one-minute averaged tower data �le for wind and virtual potential temperature at two

levels near the surface.

� measured 30-minute averaged EDR data �le at z = 5m.

� measured 30-minute averaged EDR data �le at z = 40m.

� measured 5-minute averaged TKE data �le at z = 5m.

� measured 5-minute averaged TKE data �le at z = 40m.

Once the input data �les have been successfully entered, the code then generates an

output �le, which contains not only the vertical pro�les of TKE and EDR, but also the

output of similarity scales such as h, L, u�, and w�. Figures 6 and 7 show a diurnal variation

of TKE and EDR pro�les generated by the software for a typical sunny day.
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6 Summary and Discussion

Based on the existing similarity theories in the atmospheric surface layer and bound-

ary layer under di�erent stability conditions, the expressions and parameterizations for the

vertical pro�les of TKE and EDR have been suggested. Compared with observation, theoret-

ically estimated TKE at 5 and 40m heights above ground appears to agree reasonably well

with those observed at the same heights except for the very small values of TKE. However,

theoretically estimated EDR at 5 and 40m heights considerably overestimates the observed

EDR with large data scatter, although estimated and measured values appear to be strongly

correlated with a linear relationship between the two.

From the ABL similarity relationships and their comparisons with the observations, soft-

ware has been developed to generate realistic vertical pro�les of TKE and EDR. The input

parameters for the software are the measured TKE and EDR at the heights of z = 5 and

40m above the ground, and the measured winds and virtual potential temperatures at two

levels near the ground from which characteristic similarity scales, such as L and u�, can be

estimated. In the software, to minimize the di�erence between the similarity relations and

observations it has been required that calculated values match the observed values at the

heights of 5 and 40m while maintaining the pro�le shape from the similarity theory above

40m. Although the software yields very plausible vertical pro�les and their diurnal varia-

tions, statistics for the di�erence between the values estimated from the software and the

measured values of TKE and EDR at the heights other than 5 and 40m has to be obtained

for further improvement of the software.
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Stability Frequency (%)
Stable 54
Weakly Unstable 5
Moderately Unstable 37
Strongly Unstable 4

Table 1: Stability frequency (%) in the Dallas/Ft. Worth (DFW) Airport Field Experiment
during the period of September 15 - October 3, 1997, where data from two rainy days and
one day for which data are partly missing have been omitted from the total data set.
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Figure 2: Same as Fig. 1 but for TKE at z = 5m.
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Figure 3: Same as Fig. 1 but for TKE at z = 40m.
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Figure 4: Same as Fig. 1 but for EDR at z = 5m.
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Figure 5: Same as Fig. 1 but for EDR at z = 40m.
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Figure 6: Diurnal variation of TKE pro�les obtained from the ABL similarity theory and
the observed values of TKE and EDR at z = 5m and 40m.

24



0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

100

200

300

400

500

600
 (a) 00 GMT (DFW 9/28/97)

  EDR (m2/s3)

  
A

lt
it
u

d
e

 (
m

)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

100

200

300

400

500

600
 (b) 03 GMT (DFW 9/28/97)

  EDR (m2/s3)

  
A

lt
it
u

d
e

 (
m

)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

100

200

300

400

500

600
 (c) 06 GMT (DFW 9/28/97)

  EDR (m2/s3)

  
A

lt
it
u

d
e

 (
m

)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

100

200

300

400

500

600
 (d) 09 GMT (DFW 9/28/97)

  EDR (m2/s3)

  
A

lt
it
u

d
e

 (
m

)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

100

200

300

400

500

600
 (e) 12 GMT (DFW 9/28/97)

  EDR (m2/s3)

  
A

lt
it
u

d
e

 (
m

)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

100

200

300

400

500

600
 (f) 15 GMT (DFW 9/28/97)

  EDR (m2/s3)

  
A

lt
it
u

d
e

 (
m

)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

100

200

300

400

500

600
 (g) 18 GMT (DFW 9/28/97)

  EDR (m2/s3)

  
A

lt
it
u

d
e

 (
m

)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

100

200

300

400

500

600
 (h) 21 GMT (DFW 9/28/97)

  EDR (m2/s3)

  
A

lt
it
u

d
e

 (
m

)

Figure 7: Same as Fig. 8 but for EDR pro�les.
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