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DISPLACEMENT MODELS FOR THUNDER ACTUATORS HAVING GENERAL LOADS

AND BOUNDARY CONDITIONS

ROBERT WIEMAN�, RALPH C. SMITHy, TYSON KACKLEYz, ZOUBEIDA OUNAIESx , AND JEFF BERND{

Abstract. This paper summarizes techniques for quantifying the displacements generated in THUN-

DER actuators in response to applied voltages for a variety of boundary conditions and exogenous loads.

The PDE models for the actuators are constructed in two steps. In the �rst, previously developed theory

quantifying thermal and electrostatic strains is employed to model the actuator shapes which result from the

manufacturing process and subsequent repoling. Newtonian principles are then employed to develop PDE

models which quantify displacements in the actuator due to voltage inputs to the piezoceramic patch. For

this analysis, drive levels are assumed to be moderate so that linear piezoelectric relations can be employed.

Finite element methods for discretizing the models are developed and the performance of the discretized

models are illustrated through comparison with experimental data.
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1. Introduction. THUNDER actuators o�er the capability for generating large strains and forces due

to a variety of mechanisms including improved robustness through the manufacturing process and increased

electromechanical coupling due to their inherent shape. However, the full capabilities of these actuators

have not yet been completely quanti�ed either experimentally or analytically due to their relatively recent

genesis and the fact that their behavior di�ers quite substantially from standard unimorphs or bimorphs.

In this paper, we discuss modeling techniques for quantifying the displacements generated by THUNDER

actuators in response to applied voltages for a variety of boundary conditions and exogenous loads. The

development of corresponding �nite element techniques is also addressed and the accuracy of the resulting

�nite dimensional models is illustrated through comparison with experimental data.

Model development is considered in two steps: (i) the characterization of the actuator shape as a function

of the manufacturing process and (ii) the development of a PDE model for the actuator behavior based on

Newtonian principles. The �rst component has been addressed in previous investigations [3] and only those

details necessary for the development of the subsequent PDE model will be discussed. As detailed in [3],

the characteristic curved shape of THUNDER actuators is due primarily to di�ering thermal coe�cients

in the constituent materials, which produce thermal stresses in the combined actuator during cooling, and

secondarily to the reorientation of dipoles during repoling. We note that the quanti�cation of strains due to
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thermal gradients has been investigated for a variety of applications (e.g., see [2, 4, 5, 6]) with certain aspects

having been considered for THUNDER actuators [3, 7]. The quanti�cation of stresses and strains due to

repoling is based on domain theory for general ferroelectric materials [8, 9, 12, 13]. Thin shell theory is then

employed to develop PDE models which quantify the stresses and displacements throughout the actuator

when voltage is applied to the piezoceramic patch. For this analysis, it is assumed that the actuators are

operating at low to moderate drive levels for which linear piezoelectric relations are adequate. Techniques

for extending these models to regimes in which the piezoelectric response is nonlinear and hysteretic are

under investigation and will utilize methods outlined in the concluding remarks.

Because the PDE model is in�nite dimensional, approximation techniques must be considered to obtain

a �nite dimensional model which is appropriate for implementation. This is accomplished through a hybrid

�nite element approach utilizing linear and cubic Hermite basis functions. This numerical approach di�ers

from that employed in [14], where a NASTRAN model was employed to predict dome heights, in that the �nite

element method was developed directly for the PDE model used to characterize the physical mechanisms for

the actuator. Hence the resulting �nite dimensional system incorporates the physical properties associated

with the di�ering constituent materials thus permitting a detailed analysis of various aspects of the actuator

dynamics (e.g., stresses or strains at various points along the length of the actuator). This approach also

permits direct extension of the numerical method to nonlinear structural models for high drive level dynamics

as well as models which incorporate the hysteresis and constitutive nonlinearities inherent to piezoceramic

materials at moderate to high drive levels.

The manufacturing conditions for THUNDER are outlined in Section 2 and a model which quanti�es

the resulting curved shape is summarized in Section 3. The PDE model quantifying the displacements is

then presented in Section 4 along with boundary conditions which characterize a variety of experimental

setups. The numerical approximation techniques are discussed in Section 5 and examples illustrating the

performance of the resulting �nite dimensional model are presented in Section 6. Finally, future work,

including techniques to extend the model to nonlinear and hysteretic regimes will be outlined in Section 7.

2. Actuator Geometry. THUNDER actuators are typically comprised of a piezoceramic wafer, a

metallic backing material, hot melt adhesive layers, and an optional metallic top layer as depicted in Fig-

ure 2.1a. As detailed in [3], materials commonly employed for backing layers include aluminum, stainless

steel and brass while LaRC-SI is employed as the adhesive.

During the manufacturing process, the materials are placed in a vacuum bag and heated to 325o C under

a pressure of 241.3 kPa. During the cooling process, the LaRC-SI solidi�es at approximately 270o C and

subsequent cooling produces curvature in the actuator due to di�ering thermal coe�cients of the constituent

materials. Because the Curie temperature for PZT-5A (350o C) is in the proximity of the manufacturing

Aluminum

PZT  Wafer

LaRC-SI  Film

LaRC-SI  Film
Stainless Steel

(a) (b)

Fig. 2.1. (a) Components of a THUNDER actuator; (b) Curvature observed in a THUNDER actuator.
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temperature, the �nal step in the fabrication process is comprised of repoling the material through the

application of a sustained DC voltage.

As illustrated in Figure 2.1b, THUNDER actuators have a characteristic dome shape due to the man-

ifestation of di�ering thermal properties in the PZT and backing material during the cooling process and

the rotation of dipoles during repoling. In general, curvature will occur in both component directions in a

rectangular actuator; however, for the models developed here, we consider actuators whose width is small

as compared with the length so that motion is predominantly in one dimension. Finally, we note that the

curvature in the actuators occurs only in regions covered by the piezoceramic patch and the end tabs remain

straight.

3. Model for the Manufacturing Process. A necessary step before developing a model which

predicts the actuator displacements under various drive conditions is the quanti�cation of the curvature

produced in the manufacturing process. We summarize here the characterization of the stresses produced

during cooling and repoling which in turn produce the curvature. Details regarding this component of the

model can be found in [3].

To accommodate various constructions, we consider actuators with N layers and consider a coordinate

system in which the x�z plane corresponds with the outer edge of the backing material and the y-coordinate

extends through the thickness of the actuator. The width of the jth layer is denoted by bj while hj indicates

the thickness of each layer as depicted in Figure 3.1. The Young's modulus and thermal coe�cient for the

jth layer are respectively denoted by Ej and �j . The strain at the outer edge of the backing material (y = 0)

is denoted by "0, and � denotes the curvature at the neutral axis. The change in temperature during the

bonding process is indicated by �T . To incorporate the strains due to repoling, it is also necessary to employ

the Poisson ratio � and saturation electrostriction �s for PZT-5A.

As detailed in [3], the balancing of forces and moments due to thermal and electrostatic stresses yields

the linear system

AE = f(3.1)

where E = ["0; �]
T and

A =

264
PN

j=1 Ejbj(hj � hj�1) � 1
2

PN
j=1 Ejbj(h

2
j � h2j�1)

1
2

PN

j=1 Ejbj(h
2
j � h2j�1) � 1

3

PN

j=1 Ejbj(h
3
j � h3j�1)

375

f =

264
PN

j=1 Ejbj(�j�T � 3=2���s)(hj � hj�1)

1

2

PN

j=1 Ejbj(�j�T � 3=2���s)(h
2
j � h2j�1)

375 :
(3.2)

The Kronecker delta, de�ned by

� =

(
1 ; if y is in the piezoceramic layer

0 ; otherwise

isolates the electrostatic strains due to repoling to the piezoceramic layer.

To solve for "0 and �, and hence obtain the �nal radius of curvature R = 1=�, it is necessary to

obtain values for Ej ; �j for each of the constituent layers in addition to determining ��s for the PZT

compound being employed. While the Young's modulus and thermal coe�cients are catalogued for various
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Fig. 3.1. Orientation of the composite THUNDER actuator with �ve layers.

PZT compounds and various metallic backing materials, they are temperature-dependent, and not easily

quanti�ed, for the LaRC-SI. Hence these parameters are typically estimated through a least squares �t

to data for the constituent materials and speci�c manufacturing conditions under consideration. Details

regarding the validity of the model for a variety of materials and geometries can be found in [3].

4. Displacement Model. The system (3.1) quanti�es the radius of curvature R = 1=� for di�ering

constituent materials, material dimensions, and manufacturing conditions. In this section, we develop models

quantifying displacements produced in the actuators through the input of voltages to the PZT or applied

loads. Because end conditions crucially a�ect the measured displacements, we consider a variety of boundary

conditions. Finally, we consider low drive regimes in which the relation between applied voltages and

generated strains are approximately linear with minimal hysteresis so that linear piezoelectric relations can

be employed.

When modeling the actuator, we consider two regimes. In the �rst, the entire actuator (including

the tabs) is assumed to have the same initial curvature. This approximation to the geometry signi�cantly

simpli�es the numerical implementation of the model but imposes the assumption that the tabs are initially

curved. In the second con�guration, only that region covered by PZT is assumed to be initially curved and

the end tabs are taken to be at in the absence of an applied voltage or load. This accurately represents the

initial con�guration of the actuator after the manufacturing process. One of the objectives when validating

the model is to compare the performance of both models and ascertain tab dimensions when the latter model

is su�ciently accurate.

4.1. Model 1. We consider initially the model which results from the assumption that the tabs have

the same curvature as that portion of the actuator covered by the PZT patch. The radius of curvature is

denoted by R (recall that R = 1=� can be predicted using the model summarized in Section 3) and the

backing material is assumed to have width b, thickness h, and Young's modulus E. The corresponding

parameters for the PZT layer are respectively denoted by bpe; hpe and Epe. The backing material is assumed

to extend from � = 0 to � = L and the region [1; 2] covered by the patch is delineated by the characteristic

function

�pe =

(
1 ; 1 �  � 2

0 ; otherwise
(4.1)

where 1 = R�1 and 2 = R�2 and �1; �2 denote the angles subtended by the patch. The longitudinal and

transverse displacements, which are coupled due to the curvature, are respectively denoted by v and w.

Under the assumptions of linear displacements, negligible rotational e�ects and shear deformation, and
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linear stress-strain relations, force and moment balancing yields the static equations

�
1

R

dN�

d�
= q̂�

�
1

R2

d2M�

d�2
+

1

R
N� = q̂n �

1

R2

d2cM�

d�2
:

(4.2)

Here N� and M� denote the internal force and moment resultants and cM� represents the external moment

generated by applied voltages to the patches. Finally, q̂� and q̂n respectively denote applied longitudinal

and normal loads to the actuator. As detailed in [1], the modeling equations (4.2) are consistent with the

restriction of modi�ed Donnell-Mushtari shell equations to the actuator geometry.

The internal resultants incorporate the material properties of the backing material and PZT and, as

derived in [1], are given by

N� = Eh

�
1

R

dv

d�
+
w

R

�
+Epe

�
hpe
R

�
dv

d�
+ w

�
�

a2
2R2

d2w

d�2

�
�pe(�)

M� =
�Eh3

12R2

d2w

d�2
+Epe

�
a2
2R

�
dv

d�
+ w

�
�

a3
3R2

d2w

d�2

�
�pe(�)

(4.3)

where a2 � (h=2 + hpe)
2 � (h=2)2 and a3 � (h=2 + hpe)

3 � (h=2)3.

For low to moderate drive regimes in which the linear piezoelectric equations are su�ciently accurate,

the external moment generated by the PZT in response to an applied voltage V is

cM� =
�Eped31

2
V (h+ hpe)�pe(�)(4.4)

where d31 is the linear piezoelectric constant.

We note that the model (4.2), with resultants given by (4.3) and (4.4), neglects material contributions

due to the LaRC-SI. If desired, these contributions can be incorporated in the manner described in [1]. We

also note that in the strong form (4.2), di�erentiation of the discontinuous material parameters and patch

inputs yields unbounded components in the model. This necessitates the consideration of an appropriate

weak form of the model. As a prelude, however, it is necessary to specify appropriate boundary conditions.

We consider four sets of boundary conditions which model the constraints commonly employed in ex-

periments: �xed-end, pinned-end, sliding-end and free-end conditions. These boundary conditions can be

applied at either end of the beam; to simplify the discussion, we summarize them at the left end (� = 0) and

note that similar expression hold at � = L.

(i) Fixed-End Conditions

v(0) = 0

w(0) =
dw

d�
(0) = 0

(4.5)

(ii) Pinned-End Conditions

v(0) = 0

w(0) =M�(0) = 0
(4.6)
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(iii) Sliding-End Conditions

w(0) = v(0) tan(�i)

M�(0) = 0

N�(0) = �Q�(0) tan(�c)

(4.7)

(iv) Free-End Conditions

N�(0) =M�(0) = 0(4.8)

In the sliding end condition, Q� denotes the shear force resultant and �i; �c respectively denote the

initial angle of the actuator and the angle obtained after a load is applied (see Figure 4.1). It can be noted

that to within a �rst-order approximation, �i and �c are related by the expression �c = �i +
dw
d�
. Finally,

for implementation purposes, it has been observed that physically reasonable results can be obtained with

the approximation Q� = 0 which is typically enforced in �rst-order shell theory. This yields the natural

boundary condition N� = 0 which is easily implemented.

We note that care must be exhibited when specifying boundary conditions at the left and right ends of

the actuator to ensure model well-posedness. For example, the speci�cation of free-end conditions at both

x = 0 and x = L will yield rigid body modes and hence will not enforce unique solutions since solutions

di�ering by a constant will be equivalent. For the experiments reported in Section 6, �xed-end conditions

were enforced at x = 0 and sliding-end conditions were employed at x = L.

To accommodate the discontinuities due to the patch and to reduce smoothness requirements on the

basis functions employed for numerical approximation, we consider corresponding weak forms of the modeling

system. The state space is taken to be X = L2(
) � L2(
) where 
 = [0; L]. The test functions depend

upon the boundary conditions under consideration. For �xed, pinned, or sliding-end boundary conditions at

� = 0 and free-end conditions at � = L, we respectively employ the spaces

V = f(�; ') 2 H1 �H2 j �(0) = 0; '(0) = '0(0) = 0g

V = f(�; ') 2 H1 �H2 j �(0) = 0; '(0) = 0g

V = f(�; ') 2 H1 �H2 j '(0) = �(0) tan(�i)g :

(4.9)

We note that the constraints M�(L) = N�(L) = 0 are natural boundary conditions which do not require

any restriction of the underlying Sobolev spaces. Analogous de�nitions are employed when considering other

combinations of boundary conditions.

A weak form of the model is thenZ L

0

�
1

R
N�

d�

d�
� q̂��

�
d� = 0

Z L

0

�
1

R
N�'�

1

R2
M�

d2'

d�2
� q̂n'+

1

R2
cM�

d2'

d�2

�
d� = 0

(4.10)

for all (�; ') in the appropriate space V .

6



γ = 0 Lγ = 

γ1= t γ
2
= s+th

s

iϕ

Fig. 4.1. Geometry and arclengths of the composite actuator.

4.2. Model 2. A second model is derived under the assumption that the actuator region covered by

the patch is curved while the tabs are initially straight. This model is constructed by coupling at and

curved beam models through appropriate interface conditions.

To specify the geometry, we let  denote the arclength with  = 0 at the left end of the actuator

as depicted in Figure 4.1. We assume that the tabs have equal length t and that the portion covered by

the piezoceramic patch has arclength s = (�2 � �1)R. The region covered by the patch is denoted by


pe = [1; 2] = [t; s+ t] while 
 = [0; L] again denotes the domain for the full actuator. The characteristic

function �pe, de�ned in (4.1) delineates that portion of the structure covered by the patch. For the tabs,

the arclength is designated by  = x whereas it has the form  = R� in the curved portion of the actuator.

For the curved portion of the actuator, force and moment balancing again yield the coupled relations

�
1

R

dN�

d�
= q̂�

�
1

R2

d2M�

d�2
+

1

R
N� = q̂n �

1

R2

d2cM�

d�2
:

(4.11)

where N�;M� and cM� are de�ned in (4.3) and 4.4). The tabs have in�nite radius of curvature which yields

the uncoupled relations

�
dNx

dx
= q̂x ; �

d2Mx

dx2
= q̂n(4.12)

where the resultants are given by

Nx = Eh
dv

dx
; Mx = �

Eh3

12

d2w

dx2
:(4.13)

Finally, the displacements and slopes at 1 and 2 are coupled through the interface constraints

lim
!

�

1

v() = lim
!

+

1

v() ; lim
!

�

2

v() = lim
!

+

2

v()

lim
!

�

1

w() = lim
!

+

1

w() ; lim
!

�

2

w() = lim
!

+

2

w()

lim
!

�

1

dw

dx
() = lim

!
+

1

dw

dx
() ; lim

!
�

2

dw

dx
() = lim

!
+

2

dw

dx
() :

(4.14)

Formulation of the model in terms of the arclength  yields the uni�ed relations

�
dN

d
= q̂

�
d2M

d2
+

1

R
N = q̂n �

d2cM

d2
:

(4.15)
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with

N = Eh

�
dv

d
+
w

R

�
+Epe

�
hpe

dv

d
+
hpew

R
�
a2
2

d2w

d2

�
�pe()

M =
�Eh3

12

d2w

d2
+Epe

�
a2
2

dv

d
+
a2w

2R
�
a3
3

d2w

d2

�
�pe()

cM =
�Eped31

2
V (h+ hpe)�pe() :

(4.16)

The radius of curvature is taken to be R = 1 for the tabs. When employing the formulation (4.15), it

must be noted that the second derivatives may not exist at the points 1 and 2. Finally, �xed, pinned and

sliding-end boundary conditions are enforced by employing the constraints (4.5) - (4.7) at  = 0 or  = L.

The construction of the weak model formulation is analogous to Model 1 with the exception that second

derivatives of the transverse test functions may not exist at the interface points [1; 2]. To illustrate, the

space of test functions for an actuator with �xed-end conditions at  = 0 and sliding-end conditions at  = L

is

V =

�
(�; ') 2 H1 �H2 j �(0) = 0; '(0) = '0(0) = 0; '(L) = �(L) tan(�i) and

lim
!

�

1

'00() 6= lim
!

+

1

'00(); lim
!

�

2

'00() 6= lim
!

+

2

'00()

�
:

Analogous spaces are employed for the remaining combinations of boundary conditions. A weak form of the

model is then Z L

0

�
N

d�

d
� q̂�

�
d = 0

Z L

0

�
�M

d2'

d2
+

1

R
N'� q̂n'+ cM

d2'

d2

�
d = 0

(4.17)

for all (�; ') 2 V .

5. Numerical Approximation Techniques. To approximate the solution of (4.10) or (4.17), we

consider Galerkin techniques with basis functions chosen to satisfy smoothness requirements as well as

boundary and interface conditions. We consider �rst the system which arises when discretizing the model

for the uniformly curved actuator.

5.1. Model 1. We consider Galerkin approximation for v and w which are respectively based on linear

and cubic Hermite functions. To de�ne the bases, consider a uniform partition of [0; L] with gridpoints

�i = ih; h = L=N; i = 0; � � � ; N . For i = 1; � � � ; N � 1, linear splines are taken to be

�i(�) =
1

h

8>><>>:
(� � �i�1) ; � 2 [�i�1; �i]

(�i+1 � �) ; � 2 [�i; �i+1]

0 ; otherwise :

(5.1)

The cubic Hermite basis functions employed to specify w and w0 are given by

'i0(�) =
1

h3

8>><>>:
(� � �i�1)

2[2(�i � �) + h] ; � 2 [�i�1; �i]

(�i+1 � �)2[2(�i+1 � �)� h] ; � 2 (�i; �i+1]

0 ; otherwise
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and

'i1(�) =
1

h2

8>><>>:
(� � �i�1)

2(� � �i) ; � 2 [�i�1; �i]

(�i+1 � �)2(� � �i) ; � 2 (�i; �i+1]

0 ; otherwise :

As detailed in [11], all three sets of basis functions vanish identically outside the interval [�i�1; �i+1]. The

basis functions �0; '00; '01 and �N ; 'N0; 'N1 are de�ned similarly on the intervals [0; �1] and [�N�1; �N ]

(see [11, pages 49 and 57]). The essential boundary conditions (i)-(iii) summarized in (4.5)-(4.7) are enforced

by omitting or forming linear combinations of the boundary basis functions.

The displacements are then represented as linear combinations of basis functions with coe�cients de-

termined by enforcing the constraints provided by the weak form of the model. To illustrate, consider the

discretization of the model satisfying �xed-end conditions at � = 0 and pinned-end conditions at � = L. The

approximate solutions are taken to be

vN (�) =

N�1X
j=1

vj�j(�)

wN (�) =

N�1X
j=1

wj'j0(�) +

NX
j=1

ewj'j1(�)

(5.2)

in the subspace HN � V . Analogous expressions are employed for other combinations of boundary condi-

tions.

A matrix system is obtained by considering the approximate solution in (4.10) with basis functions

employed as test functions (this is equivalent to projecting the system (4.10) onto the �nite dimensional

subspace HN ). This yields the linear relation

K~v = ~f(5.3)

where ~v = [v1; � � � ; vN�1; w1; � � � ; wN�1; ew1; � � � ; ewN ] denotes the vector of unknown coe�cients.

5.2. Model 2. The formulation of approximation techniques for Model 2 is accomplished in a similar

manner. In this case, we consider uniform partitions on each of the subintervals [0; 1]; [1; 2]; [2; L] and

de�ne basis functions on each subdomain. The displacements vN = [vN1 ; v
N
2 ; v

N
3 ] and wN = [wN

1 ; w
N
2 ; w

N
3 ]

are de�ned in a manner analogous to (5.2) with the interface conditions enforced through the constraints

vN1 (1) = vN2 (1) ; vN2 (2) = vN3 (2)

wN
1 (1) = wN

2 (1) ; wN
2 (2) = wN

3 (2)

dwN
1

d
(1) =

dwN
2

d
(1) ;

dwN
2

d
(2) =

dwN
3

d
(2)

Orthogonalization against the test functions then yields a corresponding linear system

K~v = ~f

which can be solved to obtain the displacement and slope coe�cients at each of the nodes in the subdomains.

9



6. Experimental Validation. In this section, we illustrate the performance of the combined model

through comparison with experimental data. In the �rst example, the strain model outlined in Section 3 is

used to predict the shape of a variety of actuators as a function of the manufacturing process. This provides

the initial geometry employed in Section 4 when characterizing displacements generated through voltage

inputs to the patches. The performance of the displacement model is illustrated in Example 2.

6.1. Example 1. Actuator Shape

The model summarized in Section 3 quanti�es the thermal and electrostatic strains and resulting changes

in curvature generated during the cooling and repoling of the actuator during the manufacturing process.

This provides a means of characterizing the radius of curvature and dome height for an actuator as functions

of properties of the constituent materials as well as the dimensions of these materials. We consider in this

example an actuator construction comprised of a stainless steel bottom layer, LaRC-SI, PZT-5A and a

protective LaRC-SI top layer (there is no metallic top layer). The width of all materials was 0.5 inches and

the PZT was 1.5 inches in length while the stainless steel was 2.5 inches in length. Hence s = 1:5 and t = 0:5

in Figure 4.1. The PZT was 8 mils thick while the LaRC-SI had a mean thickness of 1 mil. Actuators were

constructed with steel thicknesses ranging from 1 mil to 20 mils to illustrate the e�ect of backing material

thickness on the �nal dome height of the actuator. Note that the dimensions of the THUNDER devices

considered here permit the use of the 1-D model.

The dome heights h predicted by the relation (3.1) are compared with experimental data from actuators

having steel thicknesses ranging from 3 mils to 20 mils in Figure 6.1. In the model, the parameter values

Epe = 177�109 N/m2, ESI = 7:45�109 N/m2, Esteel = 173�109 N/m2, �pe = 0:8�10�7, �SI = 46�10�6

(23-150o C), �SI = 60� 10�6 (23-150o C), �steel = 9:8� 10�6, �s = 0:6� 10�3 and � = 0:3 were estimated

through a least squares �t to the full data set. It is observed that the model predicts both the trends and

magnitudes for the dome heights to within 5% relative accuracy for all steel thicknesses except 6 mils for

which the relative error was 8%. This provides a characterization of the actuator shape which can then be

employed when modeling subsequent displacements or forces.
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Fig. 6.1. Model predictions and experimentally measured dome heights h as a function of steel thickness.
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6.2. Example 2:. Actuator Displacements

To illustrate the performance of the displacement model presented in Section 4, we consider the con-

struction described in Example 1 for actuators having �xed-end conditions at the left edge ( = 0) and

sliding-end conditions at the right edge ( = L). Model 2 was used to predict the displacements generated

at the patch center ( = t+ s=2) for a variety of steel thicknesses and input voltages.

For �xed voltage levels, model predictions for the displacement to voltage ratio as a function of steel

thickness are compared with experimental data in Figure 6.2a. It is observed that the model accurately

predicts the displacement for actuators having steel thicknesses of 3 mils, 8 mils and 10 mils with discrepancies

observed at 1 mil and 6 mils. We note that the LaRC-SI has the same thickness as the steel at 1 mil and

we hypothesize that in this case, unmodeled viscoelastic properties of the LaRC-SI may be dominating the

elastic properties of the steel. The error in the 6 mil prediction reects the discrepancy observed in the dome

height prediction for that thickness.

To further illustrate the performance of the model at low drive levels, the predicted displacements for

input voltage levels of 20 V, 80 V and 120 V are compared with experimentally measured displacements in

Figure 6.2b. The steel thickness in this case was 10 mil. It is observed that within this (approximately)

linear range, the model accurately predicts the displacement for a variety of input levels.

7. Concluding Remarks. The model described here provides a technique for quantifying both the

initial shape of THUNDER devices due to the manufacturing process and displacements generated by ap-

plied voltages. The actuator shapes were modeled through the quanti�cation of thermal and electrostatic

strains while Newtonian principles were used to derive PDE models characterizing displacements for a va-

riety of boundary conditions and exogenous loads. Both components of the model were illustrated through

comparison with experimental data.

It should be noted that linear theory was employed when deriving both components of the model and

degradation of performance is expected in high drive regimes. The extension of both components to nonlinear

regimes is under current investigation. The extension of the thermal model to include nonlinear e�ects is

being considered in the context of theory in [10]. To incorporate the constitutive nonlinearities and hysteresis

inherent to piezoceramic materials at moderate to high drive levels, the models developed in [12, 13] are
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Fig. 6.2. (a) Model predictions and measured displacements as a function of steel thickness; (b) Modeled and measured
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being combined with the current model to accommodate large inputs. Finally, nonlinear shell theory will be

employed to ascertain limitations in the linear PDE presented here when displacements are large.
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