POTENTIAL BENEFITS OF SMART REFRIGERANT DISTRIBUTORS

Final Report

Date Published - December 2002

W. Vance Payne and Piotr A. Domanski

National Institute of Standards and Technology
Building Environment Division
MS 8631, Building 226, Room B114
Gaithersburg, Maryland USA 20899
Prepared for the
AIR-CONDITIONING AND REFRIGERATION TECHNOLOGY INSTITIITE
4100 North Fairfax Drive, Suite 200, Arlington, Virginia 22203

Distribution A - Approved for public release; further dissemination unlimited.

DISCLAIMER

This report was prepared as an account of work sponsored by the Air-conditioning and Refrigeration Technology Institute (ARTI) under its "HVAC\&R Research for the $21^{\text {st }}$ Century" ($21-\mathrm{CR}$) program. Neither ARTI, the financial supporters of the 21-CR program, or any agency thereof, nor any of their employees, contractors, subcontractors or employees thereof - makes any warranty, expressed or implied; assumes any legal liability or responsibility for the accuracy, completeness, any third party's use of, or the results of such use of any information, apparatus, product, or process disclosed in this report; or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute nor imply its endorsement, recommendation, or favoring by ARTI, its sponsors, or any agency thereof or their contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of ARTI, the 21-CR program sponsors, or any agency thereof.

Funding for the 21-CR program provided by (listed in order of support magnitude):

- U.S. Department of Energy (DOE Cooperative Agreement No. DE-FC05-99OR22674)
- Air-conditioning \& Refrigeration Institute (ARI)
- Copper Development Association (CDA)
- New York State Energy Research and Development Authority (NYSERDA)
- Refrigeration Service Engineers Society (RSES)
- Heating, Refrigeration Air-conditioning Institute of Canada (HRAI)

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
(703) 487-4650

Available to U.S. Department of Energy and its contractors in paper from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831
(423) 576-8401

POTENTIAL BENEFITS OF SMART REFRIGERANT DISTRIBUTORS

Final Report

Date Published - December 2002
W. Vance Payne

Piotr A. Domanski

Prepared for the
AIR-CONDITIONING AND REFRIGERATION TECHNOLOGY INSTITUTE Under ARTI 21 -CR Program Contract Number 605-20050

Use of Non-SI Units in a Non-NIST Publication

It is the policy of the National Institute of Standards and Technology to use the International System of Units (metric units) in all of its publications. However, in North America in the HVAC\&R industry, certain non-SI units are so widely used instead of SI units that it is more practical and less confusing to use measurement values for customary units only in figures and tables describing system performance.

EXECUTIVE SUMMARY

The main goal of this study was to investigate the benefits possible for finned tube refrigerant evaporators when refrigerant distribution was precisely controlled to produce a desired equal superheat in each circuit. This goal was accomplished by examining three different finned tube evaporators; a wavy fin, wavy-lanced fin, and a wavy-lanced fin evaporator with tube sheets separated. The effects of non-uniform airflow on capacity were also examined while superheat was controlled in each evaporator circuit. In parallel with the experimental effort, a modeling program was implemented and validated with the experimental results and then used to determine the savings in evaporator core volume possible if refrigerant distribution was controlled by a smart distributor. In extreme cases, the savings in core volume could be as much as $40 \boldsymbol{Y}_{\text {o }}$.

Within the experimental part of this study, all three evaporators could avoid significant performance degradation using the ability to control superheat within each of the three finned tube circuits. As an example, with cross-counter flow configuration, uniform airflow, and exit manifold superheat fixed at $5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$, the wavy fin and wavy-lanced fin evaporator's capacity dropped by as much as $41 \boldsymbol{Y}_{o}$ and 32%, respectively, as the superheat was allowed to vary between the circuits. Control of superheat was shown to be even more important during cross-parallel refrigerant flow due to the rapid pinching of the refrigerant and air temperatures. For the wavy and lanced finned evaporators in cross-parallel flow, capacity dropped by $85 \boldsymbol{Y}_{o}$ and $78 Y_{o}$ as superheat changed from $5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$ to $16.7^{\circ} \mathrm{C}\left(30.0^{\circ} \mathrm{F}\right)$. As the coil faces were blocked to produce a non-uniform airflow, pressure drop through the coils increased
substantially and control of superheat was shown to restore performance. The non-uniform airflow tests showed that when airflow rate was held constant, the losses in capacity due to low airflow over a portion of the coil could be recovered to within 2% of the original uniform airflow capacity by controlling superheat. The more non-uniform the airflow over the coil, the more capacity was improved by controlling superheat.

A combination of results obtained from laboratory testing and simulations indicate the influence of tube-to-tube heat transfer on capacity degradation. The impact of tube-to-tube heat transfer was negligible in tests with a uniform $5.6{ }^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)$ supcrheat. but it was significant in tests involving $16.7^{\circ} \mathrm{C}\left(\mathbf{3 0}^{\circ} \mathrm{F}\right)$ superheat. Between the two possible conduction mechanisms of heat transfer that may occur, longitudinal fin conduction is responsible for degraded performance rather than longitudinal tube conduction, which has insignificant impact. The upgraded versi申n of the EVAP5 evaporator model, which accounts for tube-to-tube heat transfer based on tube temperatures, was able to predict key return bend temperatures which indicated the occurrence of tube-to-tube heat transfer. However, the study also confirmed that longitudinal heat conduction is affected by the fin design, air-side heat transfer coefficient, and moisture removal process.

ACKNOWLEDGEMENT

This work was sponsored by the Air-conditioning and Refrigeration Technology Institute (ARTI) under ARTI 21-CR Program Contract Number 605-20050. We acknowledge the comments and support from people associated with the sponsoring organizations and all members of the ARTI 21-CR Equipment Energy Efficiency Subcommittee. John Wamsley provided technician support for all of the experimental efforts, and Jong Min Choi assisted greatly with his technical comments and skillful support. David Yashar contributed the analysis on longitudinal tube conduction and provided many helpful comments for the final draft of this repors.

TABLE OF CONTENTS

EXECUTIVE SUMMARY i
ACKNOWLEDGMENTS iii
LIST OF TABLES vi
LIST OF FIGURES viii
NOMENCLATURE xii
CHAPTER 1. SCOPE OF THE STUDY 1
CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 3
CHAPTER 3. LABORATORY EXPERIMENT 7
3.1 Experimental Setup 7
3.2 Evaporators Selected for Testing 11
3.3 Test Conditions and Experimental Procedure 14
3.4 Experimental Results 19
3.4.1 Cross-Counter Air/Refrigerant Flow Configuration Tests 19
3.4.1.1 Non-Uniform Superheat Tests 19
3.4.1.2 Effects of Airflow Rate on Coil Capacity 29
3.4.1.3 Effects of Non-Uniform Airflow on Coil Capacity 31
3.4.2 Cross-Parallel Air/Refrigerant Flow Configuration Tests 48
CHAPTER 4. EVAPORATOR MODELING AND SIMULATIONS 52
4.1 Background on Evaporator Model EVAP5 52
4.2 Description of EVAP5 53
4.2.1 Modeling Approach 53.
4.2.2 Heat Transfer and Pressure Drop Correlations 55
4.3 Modeling Issues 58
4.3.1 Refrigerant Distribution 58
4.3.2 Air-Side Heat Transfer Correlations 62
4.3.3 Internal Heat Transfer in a Finned Tube Evaporator 65
4.3.3.1 Longitudinal Tube Conduction 66
4.3.3.2 Tube-to-Tube Heat Transfer via Fins 71
4.4 Validation and Simulations with EVAP5 77
4.4.1 Validation of EVAPS 77
4.4.2 Possible Savings in Heat Transfer Area Due to Optimized Superheat 93
4.4.2.1 Cross-Counter Flow Configuratin with Uniform Air Flow Distribution 93
4.4.2.2 Cross-Parallel Flow Configuration with Uniform Air Flow Distribution 95
4.4.2.3 Cross-Counter Flow Arrangement With Non-Uniform Air Flow Distribution 97
CHAPTER 5. CONCLUSIONS 102
APPENDIX A. SUMMARY OF TEST RESULTS 104
APPENDIX B. CAPACITY UNCERTAINTY 166
APPENDIX C. USER'S INSTRUCTION FOR THE EVAP-COND VERSION USED IN THIS STUDY 167
BIBLIOGRAPHY 178

LIST OF TABLES

Table 3.1.1: Essential Control Parameters 10
Table 3.3.1 Experimental Test Conditions 14
Table 3.3.2 Evaporator Tests 16
Table 3.3.3 Test Number and Conditions for Each Evaporator Test 16
Table 3.4.1.1 .1. Non-Uniform Superheat Test Data for COIL-W and COIL-E 20
Table 3.4.1.2.1 : Capacity of the Test Evaporators at Varying Airflow Rates 30
Table 3.4.1.3.1 : COIL-W Performance with Non-Uniform Airflow 32
Table 3.4.1.3.2: COIL-E Performance with Non-Uniform Airflow 33
Table 3.4.2.1: Counter and Parallel Flow Performance of COIL-W and COIL-E 49
Table 4.4.1.1: Measured and Simulated Capacities for COIL-W in Cross-Counter Flow Configuration 81
Table 4.4.1.2: Measured and Simulated Capacities for COIL-E in Cross-Counter Flow Configuration 82
Table 4.4.1.3: Measured and Simulated Capacities for COIL-EC in Cross-Counter Flow Configuration. 83
Table 4.4.1.4a: EVAPS Validations for COIL-W, SI Units 84
Table 4.4.1.4b: EVAPS Validations for COIL-W, IP Units 85
Table 4.4.1.5a: EVAPS Validations for COIL-E, SI Units. 86
Table 4.4.1.5b: EVAPS Validations for COIL-E, IP Units 87
Table 4.4.1.6a: EVAPS Validations for COIL-EC, SI Units 88
Table 4.4.1.6a: EVAPS Validations for COIL-EC, IP Units 88
Table 4.4.2.3.1: Simulated Capacities and Refrigerant Distributions for Non-Uniform Inlet Air Velocity Profile 99
Table 4.4.2.3.2: Savings in Coil Volume Relative to COIL-W due to Optimized Refrigerant for 1:2.5 and 1:4 Air Velocity Ratios 101
Table A.1.1: Wavy Fin Evaporators in Cross-Counter Flow 104
Table A.2.1: Wavy Fin Evaporator in Cross-Parallel Flow 114
Table A.3.1: Enhanced Fin (Wavy Lanced) Evaporators in Cross-CounterFlow 119
Table A.4.1: Enhanced Fin (Wavy-Lanced) Evaporators in Cross-ParallelFlow 132
Table A.5.1: Enhanced-Cut Fin (Wavy-Lanced) Evaporator in Cross-Counter Flow 137
Table A.6.1: Wavy Fin Evaporator with Non-Uniform Airflow 146
Table A.7.1: Enhanced Fin (Wavy-Lanced)
Evaporator with Non-Uniform Airflow 153
Table B.1: Relative Uncertainties of Two Evaporator Tests 166

LIST OF FIGURES

Figure 3.1.1: Schematic diagram of the experimental setup 7
Figure 3.1.2: Condensing unit used to precisely control refrigerant conditions 8
Figure 3.2.1: COIL-EC showing separated tube depth rows 12
Figure 3.2.2: A schematic side view of refrigerant circuitry 12
Figure 3.2.3: A schematic side view of refrigerant circuitry for COIL-EC................... 13
Figure 3.2.4: Circuiting of all three evaporators... 13
Figure 3.3.1: Capacity ratio for different shape fins relative
to the capacity at test 9 for the wavy coil.. 18
Figure 3.4.1.1.1: Capacity of evaporators for tests 5 through 12............................... 21
$\begin{array}{ll}\text { Figure 3.4.1.1.2: } & \text { Capacity ratio at different superheat conditions } \\ \text { relative to test } 9 \text { for COIL-W and COIL-E................................. } 21\end{array}$
Figure 3.4.1.1.3: Capacity ratio for COIL-W relative
to test 9 for wet and test 5 for dry conditions 23
Figure 3.4.1.1.4: Capacity ratio for COIL-E relative
to test 9 for wet and test 5 for dry conditions 23
Figure 3.4.1.1.5: COIL-W, test 9. circuit bend
temperatures for cross-counter flow .. 26
Figure 3.4.1.1.6: COIL-W, test 12. circuit bend temperatures for cross-counter flow26

Figure 3.4.1.1.7. Capacity of COIL-E and COIL-EC relative
to COIL-E, test 9 at two different airflow rates 27

Figure 3.4.1.1.8. COIL-EC and COIL-E bend temperatures for test 9....................... 27
Figure 3.4.1.1.9: COIL-EC and COIL-E bend temperatures for test 10.................... 28
Figure 3.4.1.1.10: COIL-EC and COIL-E bend temperatures for test 13.................... 28

Figure 3.4.1.2.1: Capacity as a function of air flow rate for wet coil conditions 31

Figure 3.4.1.3.1 : Idealized velocity profile over evaporator with upper half partially blocked 32

Figure 3.4.1.3.2: Uniform airflow velocity (ft/min) contour map for COIL-W 35
Figure 3.4.1.3.3: Non-uniform velocity (1:1.5) (ft/min) contour map for COIL-W 36
Figure 3.4.1.3.4: Non-uniform velocity (1:2) (ft/min) contour map for COIL-W........ 37
Figure 3.4.1.3.5: Relative capacities for COIL-W non-uniform airflow 38
Figure 3.4.1.3.6: Uniform velocity (ft/min) contour map for COIL-E 40
Figure 3.4.1.3.7: Non-uniform velocity (1:1.26) (ft/min) contour map for COIL-E.... 41
Figure 3.4.1.3.8: Non-uniform velocity ($1: 1.36$) ($\mathrm{ft} / \mathrm{min}$) contour map for COIL-E 42
Figure 3.4.1.3.9: Non-uniform velocity (1:1.62) (ft/min) contour map for COIL-E 43
Figure 3.4.1.3.10: Non-uniform velocity (1:1.75) (ft/min) contour map for COIL-E.. 44
Figure 3.4.1.3.1 1: Non-uniform velocity (1:2.59) (ft/min) contour map for COIL-E.. 45
Figure 3.4.1.3.12: Capacity relative to uniform airflow for COIL-E 47
Figure 3.4.2.1 : Cross-parallel flow capacity comparison for COIL-W and COIL-E relative to their performance at test 9 with cross-counter flow50

Figure 4.2.1.1 : Representation of air distribution
and refrigerant circuitry in EVAP5 54

Figure 4.3.1.1 : Possible refrigerant pressure profiles in
a three-circuit evaporator fed by a refrigerant distributor 59
Figure 4.3.1.2: EVAP-COND refrigerant input data options for evaporator simulations 60
Figure 4.3.1.3: EVAP-COND input data window forsimulations involving a refrigerant distributor60

Figure 4.3.1.4: EVAP-COND input data window for simulations with specified overall evaporator exit saturation temperature and superheat61

Figure 4.3.2.1: Comparison of air-side heat transfer correlations
Figure 4.3.3.1: Tested and predicted capacities for COIL-E
and COIL-EC at $5.6^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)$ and $16.7^{\circ} \mathrm{C}\left(30^{\circ} \mathrm{F}\right)$ superheats 66
Figure 4.3.3.1.1: Refrigerant circuitry configuration for the analyzed R-22 evaporator68
Figure 4.3.3.1.2: EVAP-COND window with evaporator design information 69
Figure 4.3.3.1.3: EVAP-COND window with evaporator operating conditions 69
Figure 4.3.3.2.1: Schematic graph for longitudinal fin conduction between two adjacent tubes 74
Figure 4.3.3.2.2: Schematic of refrigerant circuitry for COIL-W, COIL-E and COIL-EC in cross-counter flow configuration 75
Figure 4.3.3.2.3: COIL-E measured and simulated capacities fortests with $5.6^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)$ and $16.7^{\circ} \mathrm{C}\left(30^{\circ} \mathrm{F}\right)$ superheats 76
Figure 4.4.1.1: Design parameters for COIL-W 78
Figure 4.4.1.2: Correction parameters for COIL-W and COIL-E 79
Figure 4.4.1.3: Difference between simulated and measured capacities for all wet coil tests for COIL-W, COIL-E, and COIL-EC 89
Figure 4.4.1.4 Difference between simulated and measured capacities for all dry coil tests for COIL-W, COIL-E, and COIL-EC 89
Figure 4.4.1.5: Tube numbering and refrigerant exit temperatures for individual tubes for test 9 and test 12 for COIL-W 91
Figure 4.4.1.6: Refrigerant exit qualities for individual tubes for COIL-E and COIL-EC test 10 92
Figure 4.4.2.1.1: Simulation results for alternative coil designs to COIL-W in cross-counter flow configuration 95
Figure 4.4.2.2.1: Simulation results for alternative coil designs to COIL-W in cross-parallel configuration 97
Figure 4.4.2.3.1: Air velocity profile representation for the 1:3 top-to-bottom velocity ratio 99
Figure 4.4.2.3.2: COIL-W capacities at different air velocity ratios referenced to capacity at test 9 in cross-counter flow configuration 100
Figure 4.4.2.3.3 Two evaporators with a reduced number of tubes 101

NOMENCLATURE

$\mathrm{A}_{\mathrm{f}} \quad=$ finned surface area, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
$\mathrm{A}_{\mathrm{o}} \quad=$ outside tube and fin area, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
$\boldsymbol{A}_{n} \quad=$ pipe mean surface area, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
$\mathrm{A}, \quad=$ pipe outside surface area, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
A, $=$ cross sectional area of the tube available for axial heat conduction, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
$\mathrm{C}_{\text {min }}=$ minimum of mass flow rate times heat capacity for either fluid, W/K ($\mathrm{Btu} /\left(\mathrm{h} \cdot{ }^{\circ} \mathrm{F}\right)$
$\mathrm{C}_{\max }=$ maximum of the mass flow rate times the heat capacity for either fluid, W / K ($\mathrm{Btu} /\left(\mathrm{h}{ }^{\circ} \mathrm{F}\right.$)
$\mathrm{C}_{\mathrm{pa}}=$ specific heat at constant pressure for air, $\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K})\left(\mathrm{Btu} /\left(\mathrm{lb} \cdot{ }^{\circ} \mathrm{F}\right)\right)$
cfm =airflow in cubic feet per minute
COP = coefficient of performance
$\mathrm{fpm}=$ velocity in feet per minute
$h_{i} \quad=$ inside-tubeheat-transfer coefficient, $\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right),\left(\mathrm{Btu} /\left(\mathrm{ft}^{2} \cdot \mathrm{~h}^{\circ} \mathrm{F}\right)\right)$
$h_{1} \quad=$ heat-transfer coefficient for condensate layer, $\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\left(\mathrm{Btu} /\left(\mathrm{ft}^{2} \cdot \mathrm{~h}^{\circ} \mathrm{F}\right)\right)$
$h_{p f} \quad=$ heat-transfer coefficient for tube/fin contact, $\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\left(\mathrm{Btu} /\left(\mathrm{ft}^{2} \cdot \mathrm{~h}^{\circ} \mathrm{F}\right)\right)$
$h_{0} \quad=$ air-side heat transfer coefficient, $\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\left(\mathrm{Btu} /\left(\mathrm{ft}^{2} \cdot \mathrm{~h}^{\circ} \mathrm{F}\right)\right)$
$\mathrm{i}_{\mathrm{fg}} \quad=$ latent heat of evaporation, $\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K}) \quad\left(\mathrm{Btu} /\left(\mathrm{lb} \cdot{ }^{\circ} \mathrm{F}\right)\right.$
in $\mathrm{WG}=$ inches of water in gage pressure
IP = inch-pound or English system of units
$\mathrm{K} \quad=$ material thermal conductivity, $\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})\left(\mathrm{Btu} /\left(\mathrm{ft} \cdot \mathrm{h} \cdot{ }^{\circ} \mathrm{F}\right)\right)$
$\mathrm{L} \quad=$ length, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
$\mathrm{m}_{\mathrm{a}} \quad=$ air mass flow rate, $\mathrm{kg} / \mathrm{s}(\mathrm{lb} / \mathrm{h})$
NTU = number of transfer units for the heat exchanger, dimensionless
Q = capacity or heat transferred, W (Btu/h)
scfm = airflow in standard cubic feet per minute where flowrate is taken at the air standard density of $0.075 \mathrm{lbm} / \mathrm{ft}^{3}$ (ANSI/ASHRAE 51-1985)

SI = international system of units or metric system of units
$\mathrm{T}=$ temperature, $\mathrm{K}\left({ }^{\circ} \mathrm{F}\right)$
$\mathrm{t} \quad=$ thickness, m (ft)
TXV = thermostatic expansion valve
$\mathrm{U} \quad=$ overall heat-transfer coefficient, $\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) \quad\left(\mathrm{Btu} /\left(\mathrm{ft}^{2} \cdot{ }^{\circ} \cdot{ }^{\circ} \mathrm{F}\right)\right)$
$\mathrm{W} \quad=$ width, m (ft)
$\mathrm{X}_{\mathrm{p}} \quad=$ thickness of the tube wall, $\mathrm{m}(\mathrm{ft})$
a $\quad=\mathrm{i}_{\mathrm{fgw}}\left(\omega_{\mathrm{a}}-\omega_{\mathrm{w}}\right) /\left(\mathrm{C}_{\mathrm{pa}}\left(\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{w}}\right)\right)$
$\varepsilon \quad=$ heat-transfer effectiveness, fraction
$\phi \quad=$ fin efficiency, fraction
$\lambda \quad=$ longitudinal heat conduction parameter, dimensionless
$\tau \quad=$ tube longitudinal conduction effect factor, fraction
$\omega_{\mathrm{a}} \quad=$ humidity ratio of air at tube inlet, $\mathrm{kg}_{\mathrm{w}} / \mathrm{kg}_{\mathrm{a}, \mathrm{dry}}\left(\mathrm{lb}_{\mathrm{w}} / \mathrm{lb}_{\mathrm{a}, \mathrm{dry}}\right)$
$\omega_{\omega} \quad=$ humidity ratio of saturated air at temperature of condensate wetting the tube, $\mathrm{kg}_{\mathrm{w}} / \mathrm{kg}_{\mathrm{a}, \mathrm{dry}}\left(\mathrm{lb}_{\mathrm{w}} / \mathrm{lb}_{\mathrm{a}, \mathrm{dry}}\right)$

Subscripts
a $=$ air
f $\quad=$ fin
i $=$ inlet, inside, or tube numbering index
j =tube numbering index
nc $\quad=$ no longitudinal conduction effects
wc = considering longitudinal conduction effects
r $\quad=$ refrigerant
sim $=$ simulation
w $\quad=$ tube wall or water

1. SCOPE OF THE STUDY

Typically, finned tube evaporators employ parallel refrigerant circuits to obtain an optimal refrigerant mass flux, which affects refrigerant heat transfer coefficient and pressure drop. Each circuit performs optimally when the superheat at its exit matches the desired overall superheat in the exit manifold. Circuit superheat is affected by the refrigerant mass flowrate and the air flowrate associated with each tube.

Most evaporators use an inlet expansion valve with a flow distributor to control the bulk superheat at the evaporator exit manifold. The current practice does not embody means for adjusting refrigerant distribution between different circuits as needed. This means that non-uniform airflow or unintended pressure drops could cause some circuits to have excessive superheat while others may remain two-phase at the evaporator exit. In such situations, some circuits are inefficiently using coil area by transferring heat with superheated vapor instead of two-phase refrigerant. There are also mixing losses associated with reaching the final superheat as two-phase and superheated refrigerant mix in the evaporator exit manifold.

The advances in micro electro-mechanical systems (MEMS) offers the opportunity to develop and place inexpensive flow control valves on each circuit of an evaporator. This would allow control of the refrigerant superheat at the exit of each circuit. This experimental investigation examines the benefits of controlling superheat by placing individual needle valves on each circuit of the evaporators. The study involves three evaporators containing three parallel refrigerant circuits in identical configurations. Two
of these evaporators equipped with enhanced (wavy-lanced) fins, respectively, were tested to examine the benefits of maintaining even superheat when compared to three different scenarios of excessive superheat. The third evaporator with wavy-lanced fins and separated (cut) depth rows facilitates documenting the impact of tube-to-tube heat conduction. Non-uniform superheats are imposed and compared to uniform superheats of $5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$ and $16.7^{\circ} \mathrm{C}\left(30.0^{\circ} \mathrm{F}\right)$. Non-uniform airflow is also imposed while superheats are allowed to adjust naturally, and while superheats are controlled by the individual expansion valves. The NIST tube-by-tube evaporator model, EVAPS, is also modified and used to simulate the experimental results.

The modeling part of the study discusses longitudinal tube and fin conduction and presents a scheme for including tube-to-tube heat transfer into a tube-by-tube simulation model. Validated results for an upgraded evaporator model are presented.

2. BACKGROUND AND LITERATURE REVIEW

Refrigerant incurs a phase change from the two-phase to the superheat zone in the evaporator. Large refrigerant mass flux not only increases the heat transfer rate, but also increases the pressure drop. Therefore, most refrigerant evaporators employ parallel circuits to provide a balanced effect on the evaporator capacity between the negative effect of refrigerant pressure drop and the positive effect of improved inside-tube heat transfer coefficient.

Even though all refrigerant circuits have the same inlet and outlct conditions. the refrigerant distribution is not uniform; the staggered tube arrangement can cause diffcrent heat transfer rates. Non-uniform refrigerant distribution is also due to the thermal resistance in the superheat region increasing more rapidly than in the two-phase region. Superheated vapor at the evaporator exit is necessary to prevent liquid compresson and subsequent damage to the compressor, even though superheat reduces the performance of the system.

Refrigerant superheat in a given circuit is affected by the refrigerant mass flow rate and the airflow rate over the coil area associated with that circuit. For a given air distribution there is one refrigerant flow rate that results in a desired superheat at the individual circuit exit. When circuits are not well balanced, the target overall superheat is a result of mixing a highly superheated refrigerant and two-phase refrigerant leaving diffcrent circuits. This causes significant degradation in evaporator capacity because the circuit with superheated refrigerant transfers less heat.

Liang et al.(2001) conducted a numerical study of the refrigerant circuit. The governing equations and control volumes were presented with the simulation procedure for branches, tubes, and control volumes of a coil. Using the model, the heat transfer and fluid flow characteristics of the coils were studied. Compared to a common coil, the researchers found that using a complex refrigerant circuit arrangement where the refrigerant circuits are properly branched or joined may reduce the heat transfer area by around 5% while maintaining constant capacity. The investigators experimentally validated 6 different refrigerant circuiting arrangements while maintaining the evaporators inlet and exit states. They used an R134a expansion valve inlet condition of $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ saturated liquid with $5.0^{\circ} \mathrm{C}\left(2.8^{\circ} \mathrm{F}\right)$ of subcooling and an evaporator exit saturation temperature of $10^{\prime \prime} C\left(50^{\circ} \mathrm{F}\right)$ with $5.0^{\prime \prime} C\left(\mathbf{2 . 8}^{\circ} \mathrm{F}\right)$ of superheat. Liang et al. noted that for a given evaporator load, designers must design the refhgerant circuitry to produce a refrigerant mass velocity that produces a maximum heat flux. Maximum heat fluxes vary with refrigerant circuiting due to varying levels of refrigerant pressure drop. Their model was able to predict evaporator capacity within 5% on four of the six coils while predicting refrigerant pressure drop to within 25%.

Kirby et al. (1998) experimentally investigated the performance of a 5275 W (18000 Btu/h) window air conditioner under wet and dry coil conditions with non-uniform airflow over the evaporator. The velocity variation over the evaporator varied by as much as a factor of 3 , but upon correcting the non-uniformity of airflow, the investigators saw only a minor improvement in performance. This was a system study with no attempt
to maintain constant refrigerant states at the inlet and exit of the evaporator. A round disk was used to block 16% of the central area of the evaporator while maintaining the original airflow. Tests were conducted with this blockage against the evaporator face and then moved in steps in the upstream direction. They found no capacity degradation greater than 2%. The authors noted that the blockage caused more of the evaporating refrigerant to exist in the two-phase state; thereby reducing the superheated area of the evaporator and offsetting the inability of the air velocity to compensate for the loss of heat transfer area. Wet-coil tests also showed very little difference in the sensible heat ratio with non-uniform airflow. The authors noted that any non-uniformity in airflow must be noted by designers and used to intelligently circuit the refrigerant to equalize exposure of the evaporating refrigerant to airflow.

Chwalowski et al. (1989) examined computer models and performed experiments using three different evaporators; two V-shaped evaporators with upflow and one vertical slab evaporator with horizontal and angled flow with respect to the approaching airstream. These were evaporator tests with fixed evaporator saturation pressures; therefore, these tests parallel the technique used in the current experimental investigation. The investigators determined coil face velocity for several of the configurations and noted non-uniformity of the airflow. Generally, the evaporator capacity varied with the configuration mainly as a function of the exit superheats at the two evaporator exits. As the coil angle with respect to the approaching airstream was varied, capacity degradations on the order of 20% were noted. Non-uniformities in superheat were produced by nonuniform airflow that produced differences in heat transfer and pressure drops within the
heat exchangers. The design of the circuitry and various splitting points within the evaporator produced differing capacities as a function of the coil orientation with the airstream. The investigators noted that none of the three evaporator models they considered could accurately predict capacity without some knowledge of the air velocity profile and refrigerant maldistribution.

3. LABORATORY EXPERIMENT

3.1 Experimental Setup

Figure 3.1.1 shows a schematic diagram of the experimental setup. The test rig consisted of three major flow loops: (1) a refrigerant flow loop containing a detachable test section, (2) a water flow loop used for the condensation heat exchanger and (3) an air flow loop used for the evaporation heat exchanger. The design of the rig allowed easy control of operating parameters such as condensing pressure and subcooling at the inlet of the expansion valve (evaporator inlet enthalpy), evaporating pressure at the exit of the evaporator, and superheat at the exit of the evaporator.

Figure 3.1.1: Schematic diagram of the experimental setup

Figure 3.1.2 is a photo of the specially designed and constructed $\mathbf{R 2 2}$ condensing unit. The design of this condensing unit allowed complete control of the subcooled $\mathbf{R 2 2}$ liquid conditions.

Figure 3.1.2: Condensing unit used to precisely control refrigerant conditions

An open-drive compressor with a variable speed motor provided refrigerant mass flow, set the enthalpy entering the test section, set the condensing pressure, and set the subcooling at the inlet of the expansion valves. We controlled condensing pressure by adjusting cooling water flow using a hand-operated needle valve. To provide additional pressure control for the condenser, we also controlled the entering temperature of the cooling water. Water flow rate and temperature through the subcooler plate type heat
exchanger controlled the refrigerant subcooling at the inlet of the expansion valve. A loop supplying water to the condensing heat exchanger and subcooler consisted of a refrigerator, water storage tank, and a pump. The controls combined to produce evaporator inlet quality of $25 \% \pm 1 Y_{0}$.

The test section has three parallel refrigerant paths. The exit pressure of the evaporator was adjusted by a pressure regulating valve which was installed in the refrigerant line. The superheats of the three circuits of the evaporator were adjusted by three manual expansion valves. The design of the test section allowed easy installation and replacement of the evaporators. The pressure and temperature were measured upstream and downstream of the test rig. Flow conditions were also monitored using a sight glass at the inlet of the compressor and expansion valves.

The total refrigerant flow rate was measured by a Coriolis-type mass flow meter in the liquid line between the subcooler and the expansion valves. Two turbine flow meters were installed to measure flow rate in two of the circuits. Flow through the third circuit was calculated by subtracting the flow through two of the circuits from the total mass flow.

Air flow rate was measured in the air flow chamber according to ANSI/ASHRAE 511985. Evaporator capacity was calculated using the air enthalpy method and refrigerant enthalpy method following procedures specified in ASHRAE Standard 37 (1998). In the present experiments, the maximum difference between the air and refrigerant side capacity was less than $5 \boldsymbol{Y}$. Air velocity at the face of the evaporator was measured with a hot wire anemometer.

Table 3.1.1 lists the parameters controlled to produce a successful evaporator test. The parameters are listed in the order they were set to produce a controlled test.

Table 3.1.1: Essential Control Parameters

Parameter	Setpoint
Upstream Liquid Saturation Temperature	40.6 " $\mathrm{C}\left(105.0^{\circ} \mathrm{F}\right)$: controlled by condenser water flowrate and compressor speed
Liquid Line Subcooling	$8.3^{\prime \prime} \mathrm{C}\left(15.0^{\circ} \mathrm{F}\right)$: controlled by upstream pressure and refrigerant charge
Evaporator Circuit Superheats	5.6 "C or $16.7^{\prime \prime} \mathrm{C}\left(10.0^{\mathrm{N}} \mathrm{F}\right.$ or $\left.\mathbf{3 0 . 0}{ }^{\circ} \mathrm{F}\right)$: controlled by expansion/needle valve opening and evaporator exit pressure
Evaporator Exit Saturation Temperature	$7.2^{\prime 2} \mathrm{C}\left(45.0^{\circ} \mathrm{F}\right)$: controlled by evaporator pressure regulator valve and compressor speed
Evaporator Inlet Liquid Enthalpy	Corresponds to the saturated liquid temperature of $40.6^{\prime \prime} \mathrm{C}\left(105.0^{\circ} \mathrm{F}\right)$: when inlet pressures were increased. the inlet enthalpy was always monitored to produce an enthalpy equal to the saturated liquid enthalpy at $40.6^{\prime \prime} \mathrm{C}\left(105.0^{\circ} \mathrm{F}\right) \pm 1.4^{\circ} \mathrm{C}$ ($2.5^{\circ} \mathrm{F}$)

3.2 Evaporators Selected for Testing

We used three finned tube heat exchangers of the same outside dimensions, tube spacing, and circuitry as the test evaporators: (1) COIL-W with wavy fins, (2) COIL-E with wavylanced (enhanced) fins, and (3) COIL-EC (Figure 3.2.1) with wavy-lanced (enhanced) fins and the tube rows separated to inhibit tube-to-tube heat transfer (enhanced-cut). Figures 3.2.2, 3.2.3, and 3.2.4 show the side views of the refrigerant circuits. The following are the main design parameters:
(a) 3 depth rows with 25.4 mm (1 in) face spacing and 22.0 mm (0.866 in) row spacing
(b) 3 refrigerant circuits as shown in Figures 3.2.1 and 3.2.2
(c) 9.53 mm (0.375 in) diameter round copper tubes, smooth walls, 0.254 mm (0.010 in) wall thickness
(d) $0.1143 \mathrm{~mm}(0.0045 \mathrm{in})$ thick aluminum fins; wavy fins for COIL-W and louvered or slit fins for COIL-E and COIL-EC

Figure 3.2.1: COIL-EC showing separated tube depth rows

Figure 3.2.2: A schematic side view of refrigerant circuitry

Figure 3.2.3: A schematic side view of refrigerant circuitry for COIL-EC

Figure 3.2.4: Circuiting of all three evaporators

3.3 Test Conditions and Experimental Procedure

Table 3.3.1 lists the test parameters and environmental chamber conditions for tests on the three evaporators. All tests were conducted at the same $26.7^{\prime \prime} \mathrm{C}\left(80.0^{\circ} \mathrm{F}\right)$ indoor drybulb with dew-point varying for wet-coil tests and dry-coil tests. Refrigerant R22 conditions at the inlet to the expansion valves were controlled to maintain an enthalpy equivalent to a $48.9^{\circ} \mathrm{C}\left(120.0^{\circ} \mathrm{F}\right)$ saturation temperature with a subcooling of $8.3^{\circ} \mathrm{C}$ $\left(15.0^{\circ} \mathrm{F}\right) \pm 1.4^{\mathrm{\prime}} \mathrm{C}\left(2.5^{\circ} \mathrm{F}\right)$. Some tests required increasing the inlet pressure to produce the required superheats at the evaporator circuit exits. When the pressure was increased, the enthalpy and subcooling were adjusted to keep a constant enthalpy at the evaporator inlet.

Table 3.3.1 : Experimental Test Conditions

Variable	Value	Tolerance
Indoor Dry-Bulb	$26.7^{\circ} \mathrm{C}\left(80.0^{\circ} \mathrm{F}\right)$	$0.28^{\circ} \mathrm{C}\left(0.5^{\circ} \mathrm{F}\right)$
Indoor Dew-Point for Wet- Coil Tests	$15.8^{\circ} \mathrm{C}\left(60.4^{\circ} \mathrm{F}\right)$	$0.28^{\circ} \mathrm{C}\left(0.5^{\circ} \mathrm{F}\right)$
Evaporator Exit Saturation Temperature	$7.2^{\prime \prime} \mathrm{C}\left(45.0^{\circ} \mathrm{F}\right)$	$0.28^{\circ} \mathrm{C}\left(0.5^{\circ} \mathrm{F}\right)$
Evaporator/Expansion Valve Inlet Saturation Temperature	$48.9^{\circ} \mathrm{C}\left(120.0^{\circ} \mathrm{F}\right)$	$1.4^{\circ} \mathrm{C}\left(2.5^{\circ} \mathrm{F}\right)$
Evaporator/Expansion Valve Inlet Subcooling	$8.3^{\circ} \mathrm{C}\left(15.0^{\circ} \mathrm{F}\right)$	$1.4^{\circ} \mathrm{C}\left(2.5^{\circ} \mathrm{F}\right)$

Once an evaporator coil was mounted in the airflow chamber, indoor dry-bulb and dewpoint were stabilized for at least one hour. While indoor psychrometric conditions stabilized, the evaporator inlet R22 pressure and temperature were set by adjusting the
flow control valves on the condensing unit. Water flow to the condenser and subcooler plate heat exchangers was adjusted to establish the evaporator expansion valves inlet pressure and temperature. The evaporator exit saturation temperature was set by adjusting the evaporator pressure regulating valve at the exit of the evaporator. Superheat conditions in the individual circuits were set by adjusting R22 mass flow through each circuit. Airflow rate over the evaporator was adjusted using the variable speed drive on the airflow chamber's pull-thru fan.

Table 3.3.2 and 3.3.3 list the tests performed for the evaporators. Capacity specific airflow rate was initially established at $193 \mathrm{~m}^{3} / \mathrm{kWh}(400 \mathrm{scfm} / \mathrm{ton})$ for test 9 . Test 9 required manipulating superheats and airflow rate to obtain the desired airflow to capacity ratio. Test 9 capacity was then used to calculate the airflow rate for the $169 \mathrm{~m}^{3} / \mathrm{kWh}(300 \mathrm{scfm} / \mathrm{ton})$ and $242 \mathrm{~m}^{3} / \mathrm{kWh}(500 \mathrm{scfm} / \mathrm{ton})$ tests. Tests with a crossparallel flow configuration were performed by switching the refrigerant flow.

Non-uniform airflow tests were performed with COIL-W and COIL-E. We established non-uniform air distribution by attaching a series of metal mesh plates to the upper half of the coil.

A hot wire anemometer was used to measure airflow rate by traversing the coil at a minimum of 25 equally spaced points at the face of the coil. This measurcmcrit apeed with the chamber airflow within 2%.

Evaporator	Tests Performed
COIL-W (wavy fins), cross-counter flow	$1,5-13(10$ tests $)$
COIL-W (wavy fins), cross-parallel flow	$9-12$ (4 tests)
COIL-E (lanced fins), cross-counter flow	$1,2,5-14(12$ tests)
COIL-E (lanced fins), cross-parallel flow	$9-12$ (4tests)
COIL-EC, cross-counter flow	$1,2,5,6,9,10,13,14(8$ tests)
COIL-W, cross-counter flow, non-uniform airflow	$9(1 / 2$ profile, no superheat adjustment), $9(1 / 2$ profile, superheat adjusted), $9(1 / 3$ profile, no superheat adjustment), $9(1 / 3$ profile, superheat adjusted) [4 tests]
COIL-E, cross-counter flow, non-uniform airflow	$9(1 / 2$ profile, no superheat adjustment), 9 (1/2 profile, superheat adjusted), $9(1 / 3$ profile, no superheat adjustment), $9(1 / 3$ profile, superheat adjusted) [4 tests]

Table 3.3.3: Test Numbs and Conditions for Each Evaporator Test

	Volumetric Flowrate of Air m ${ }^{\mathbf{3} / \mathrm{h}}$ (scfm)					Overall Superheat					
				Superheats in Individual Circuits							
	$145 \cdot Q^{\prime}$	193. Q^{\prime}	242. Q^{1}				$\stackrel{\square}{0}$	$\begin{gathered} 5.6^{\circ} \mathrm{C} \\ \left(10.0^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	$\begin{gathered} 16.7^{\circ} \mathrm{C} \\ \left(30.0^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	$\begin{gathered} 5.6^{\circ} \mathrm{C} \\ \left(10.0^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	$\begin{gathered} 5.6^{\circ} \mathrm{C} \\ \left(10.0^{\circ} \mathrm{F}\right) \end{gathered}$
	(300.Q)	(400.Q)	($500 \cdot \mathrm{Q}$)	-	3	$\begin{aligned} & 5.6 / 5.6 / 5.6 \\ & (10 / 10 / 10) \end{aligned}$	$\begin{aligned} & 16.7 / 16.7 / 16 . \\ & 7(30 / 30 / 30) \end{aligned}$	$\begin{gathered} 16.7 / * / 16.7 \\ (30 / * / 30) \end{gathered}$	$\begin{gathered} * / 16.7 / 16.7 \\ (* / 30 / 30) \\ \hline \end{gathered}$		
1	X				x	1					
2	x				x		2				
3	x				x			3			
4	x				x				4		
5		x		x		5					
6		x		x			6				
7		x		x				7			
8		x		x					8		
9		x			x	9					
10		X			x		10				
11		x			x			11			
12		x			x				12		
13			x		x	13					
14			x		x		114				
15			x		x			15			
16			x		x				16		

Superheat to be controlled such that the desired overall level of superheat is obtainec'

1) SI units of $\mathrm{m}^{3} / \mathrm{kWh}$ multiplied by capacity (Q) in kW to determine airflow, (IP units of $\mathrm{cfm} / \mathrm{ton}$ multiplied by capacity (Q) in tons).

In total we performed 54 tests with uniform airflow and 28 tests with imposed nonuniform distribution of air. We conducted a total of 90 tests including repeats and tests that were excluded due to unsteady or non-standard conditions.

The capacity characteristics of the three evaporators are shown below. Figure 3.3.1 shows the capacity ratio at different test conditions to the capacity at test 9 for the wavy coil. Tests $1, \mathbf{9}$, and 13 are wet coil tests, and test 5 is a dry coil test. COIL-E and COILEC evaporators represented higher capacity than that of the COIL-W evaporator for the wet coil tests. Even though the air-side sensible heat transfer coefficient is much lower than the refrigerant side, the air-side thermal resistance is reduced due to the enhancement of moisture condensation and large finned area. For wet coil tests (tests 1, 9, 13), the capacity of COIL-E and COIL-EC was larger than that of COIL-W. The COIL-EC produced higher capacity than COIL-E possibly because of the added fin leading edges agitating the boundary layer and increasing the air-side heat transfer coefficient even further in addition to eliminating some tube-to-tube heat transfer.

Figure 3.3.1: Capacity ratio for different shape fins relative to the capacity at test 9 for the wavy coil (Test 1: low airflow, wet coil, Test 5: median airflow, dry coil, Test 9: median airflow, wet coil, Test 13: high airflow, wet coil). All tests have a $5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$ uniform superheat.

3.4 Experimental Results

3.4.1 Cross-Counter Air/Refrigerant Flow Configuration Tests

3.4.1.I Non-Uniform Superheat Tests

Figure 3.4.1.1.1 shows capacity at different superheat test conditions. These data are shown in Table 3.4.1.1.1. All of the coils showed a rapid decrease in capacity when individual circuit superheat was increased with the overall superheat maintained at $5.6^{\circ} \mathrm{C}$ $\left(10^{\circ} \mathrm{F}\right)$. Figure 3.4.1.1.2 shows the relative capacity of COIL-W tests 10 and 12 with respect to test 9 . Even though the overall superheat was held at $5.6^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)$, the nonuniformity of superheat in cases 11 and 12 produced a 41% loss in capacity. This was almost as severe as the 43% loss in capacity seen when overall superheat was held at $16.7^{\circ} \mathrm{C}\left(30.0^{\circ} \mathrm{F}\right)$.

Test 12 showed similar capacity as test 10 even though overall superheat was lower. At test condition 12 , the mass flow rate through the top circuit was much higher than that at test 10. Therefore, the inlet refrigerant temperature of the evaporator for test 10 was higher than test 12 because exit pressure was the same. This means that the temperature difference between air and refrigerant for test 12 was higher than for test 10 . This allowed test 12 to have a higher capacity than test 10 .

Table 3.4.1.1.1: Non-Uniform Superheat Test Data for COIL-W and COIL-E

$\begin{aligned} & \stackrel{\mathscr{E}}{E} \\ & \underset{\sim}{Z} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$			Volumetric Flowrate of Air m${ }^{\mathbf{3} / \mathrm{h}}$ (cfm)					Overall Superheat							
			$\begin{aligned} & 145 \cdot \mathrm{Q}^{\text {Ia }} \\ & (300 \cdot \mathrm{Q}) \end{aligned}$	$\left\lvert\, \begin{gathered} 193 \cdot Q^{1 a} \\ (400 \cdot Q) \end{gathered}\right.$	$\left\|\begin{array}{l} 242 \cdot \mathrm{Q}^{\text {Ia }} \\ (500 \cdot \mathrm{Q}) \end{array}\right\|$	침	$\begin{aligned} & \pm \\ & 3 \end{aligned}$	$\begin{gathered} 5.6^{\circ} \mathrm{C} \\ \left(10.0^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$		$\begin{gathered} 16.7^{\circ} \mathrm{C} \\ \left(30.0^{\circ} \mathrm{F}\right) \end{gathered}$		$5.6^{\circ} \mathrm{C}$		$5.6{ }^{\circ} \mathrm{C}\left(10.0{ }^{\circ} \mathrm{F}\right)$	
								$\begin{array}{\|l} \hline 5.6 / 5.6 / 5 \\ (10 / 10 / 11 \\ \hline \end{array}$		$\begin{array}{r} 16.7 / 16.7 \\ (30 / 30 / \\ \hline \end{array}$	$\begin{aligned} & 7 / 16.7 \\ & \hline / 30) \\ & \hline \end{aligned}$	$\begin{gathered} 16.7 / * / 1 \\ (30 / * / 3 \end{gathered}$	$\begin{aligned} & 16.7 \\ & 30) \\ & \hline \end{aligned}$	$\begin{gathered} * / 16.7 / \\ (* / 30 / \end{gathered}$	$\begin{aligned} & 16.7 \\ & 30) \\ & \hline \end{aligned}$
								$\mathrm{Q}_{\text {test }}$ Q $\mathrm{W}(\mathrm{Btu} / \mathrm{h})$ Q	$\mathrm{Q}_{\text {Lest }}{ }^{\text {b }}$	($\mathrm{Q}_{\text {test }}$	$Q_{\text {est }} /$ $Q^{\text {16/ }}$	$\frac{Q_{\text {test }}}{}$	Q ${ }^{\text {Lest }}$	$\frac{Q_{\text {test }}}{}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{Q}_{\text {est }}} \\ & \mathrm{Q}^{1 \mathrm{~b}} \end{aligned}$
Cross-Counter Air/Refrigerant Flow															
W020225B	5	W		X		X		5428 (18519)	1						
W020228A	6	W		X		X				$\begin{gathered} 3569 \\ (12177) \\ \hline \end{gathered}$	0.66				
W020221A	7	W		X		X						$\begin{array}{\|c\|} \hline 3910 \\ (13341) \end{array}$	0.72		
W020225A	8	W		X		X								$\begin{array}{\|c\|} \hline 3888 \\ (13266) \end{array}$	0.72
W020207B	9	W		X			X	$\begin{array}{\|c\|} \hline 6507 \\ (22203) \\ \hline \end{array}$	1						
W020530A	10	W		X			X			$\begin{array}{\|c} 3722 \\ (12701) \\ \hline \end{array}$	0.57				
W020531A	11	W		X			X					$\begin{array}{\|c\|} \hline 3837 \\ (13091) \end{array}$	0.59		
W0202 15B	12	W		X			X							$\begin{array}{\|c\|} \hline 3830 \\ (13067) \end{array}$	0.59
W020322A	5	E		X		X		$\begin{gathered} 5602 \\ (19115) \\ \hline \end{gathered}$	1						
W020321B	6	E		X		X				$\begin{array}{\|c\|} \hline 4301 \\ (14677) \end{array}$	0.77				
W020322C	7	E		X		X						$\begin{gathered} 4797 \\ (16367) \\ \hline \end{gathered}$	0.86		
W0203228	8	E		X		X								4700 (16037)	0.84
E020607A	9	E		X			X	6955 (23733)	1						
W0203 18A	10	E		X			X			$\begin{array}{\|c} \hline 4865 \\ (16599) \end{array}$	0.70				
W0203 188	11	E		X			X					$\begin{array}{\|c\|} \hline 5485 \\ (18715) \\ \hline \end{array}$	0.79		
W0203 19A	12	E		X			X							$\|$4735 (16157)	0.68

* Superheat to be controlled such that the desired overall level of superheat is obtained

1a) SI units of $\mathrm{m}^{3} / \mathrm{kWh}$ multiplied by capacity (Q) in kW to determine airflow, (IP units of $\mathrm{cfm} / \mathrm{ton}$ multiplied by capacity (Q) in tons).
1b) Capacity relative to the $5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$ tests noted by a ratio of 1 in the row above.

Figure 3.4.1.1.1: Capacity of evaporators for tests $\mathbf{5}$ through $\mathbf{1 2}$

Figure 3.4.1.1.2: Capacity ratio at different superheat conditions relative to test $\mathbf{9}$ for COIL-W and COIL-E (superheat cases follow Table 3.4.1.1.1).

For COIL-E, the reduction in capacity due to an increase in superheat was lower than COIL-W (Figure 3.4.1.1.1 and 3.4.1.1.2). COIL-E seemed to show a preference as to which flooded circuit (test 11 or 12) produced the higher capacity. When the middle circuit was flooded, the capacity decreased by $\mathbf{2 1} \%$ compared to $\mathbf{3 2} \%$ when the top circuit was flooded.

Figure 3.4.1.1.3 shows the relative capacity of COIL-W for tests 10 and 12 with respect to test $\mathbf{9}$ and for tests $\mathbf{6}$ and $\mathbf{8}$ with respect to test 5. The capacity of the dry coil decreased by $\mathbf{2 8} \%$ with non-uniform circuit superheats with overall superheat fixed at $5.6{ }^{\prime \prime} \mathrm{C}\left(10{ }^{\circ} \mathrm{F}\right)$. COIL-E capacity (Figure 3.4.1.1.4) dropped by 16 \% with non-uniform superheat under dry conditions; again COIL-E showed that flooding the middle circuit produced a smaller capacity drop than flooding the top circuit while holding overall superheat constant at $5.6{ }^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)$.

Figure 3.4.1.1.3: Capacity ratio for COIL-W relative to test $\mathbf{9}$ for wet and test 5 for dry conditions

Figure 3.4.1.1.4: Capacity ratio for COIL-E relative to test $\mathbf{9}$ for wet and test 5 for dry conditions

The experimental investigation was designed to reveal some of the effects of tube-to-tube heat transfer by heat conduction through the fin material. The comparison was done by
examining COIL-E and COIL-EC and comparing their capacity at different levels of superheat. In addition to the capacity comparison between COIL-E and COIL-EC, direct evidence of conduction between tubes was noted from the thermocouple bend temperature data for COIL-W.

Figures 3.4.1.1.5 and 3.4.1.1.6 show bend temperature data for test $9\left(6.7^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)\right.$ superheat on all circuits) and test 12 (flooded top circuit with $16.7^{\circ} \mathrm{C}\left(30.0^{\circ} \mathrm{F}\right)$ superheat on the other two circuits). The figure for test 9 shows a uniform temperature distribution between comparable bends in the three refrigerant circuits. The noticeable difference occurs for test 12 where the low temperature, flooded top circuit shows some thermal communication with the final tube passes of the middle circuit. The top circuit is showing an average surface temperature of approximately $9.4{ }^{\prime \prime} \mathrm{C}\left(49^{\circ} \mathrm{F}\right)$ throughout all of its tubes, while the middle circuit shows definite superheat at the third and fourth final tube bend with a temperature of $24.0^{\prime \prime} \mathrm{C}\left(75.2^{\circ} \mathrm{F}\right)$. This is where the conduction between circuits was obvious; the surface temperature on the final two tubes bend was $22.3{ }^{\circ} \mathrm{C}$ $\left(72.2^{\circ} \mathrm{F}\right)$. This is a decrease in temperature due to conduction between the top circuit's tube and the middle circuit's tubes.

The conduction effects were quantified in the tests conducted with COIL-E and COILEC; by separating the tube sheets in COIL-EC and thereby removing a majority of the conduction path between tubes. Figure 3.4.1.1.7 shows the capacity of COIL-E and COIL-EC relative to test 9 for COIL-E during cross-counter flow for tests $9,10,13$, and 14. These two coils used identical fin material and fin type; the only difference was the
tube sheets of COIL-EC were separated. Figure 3.4.1.1.8 shows that for test 9, COIL-E and COIL-EC have very similar bend temperatures. Figure 3.4.1.1.9 shows the same coils with the superheat increased to $16.7^{\prime \prime} \mathrm{C}\left(30.0^{\circ} \mathrm{F}\right)$ at the coil exit (test 10). COIL-EC shows lower inlet temperatures than COIL-E even though expansion valve inlet and coil exit conditions are almost identical for both tests. The differences in temperatures seen with tests 9 and 10 are more pronounced for tests 13 and 14 at the higher airflow rate.

These differences in temperatures could have produced the differences in capacity seen between COIL-E and COIL-EC. As noted above, the inlet and exit conditions for these coils were nearly identical, but COIL-EC always showed lower bend temperatures than COIL-E. This would mean that COIL-EC was operating at a higher average temperature difference with respect to the air than COIL-E. The greater average temperature difference for COIL-EC could translate to higher capacity than COIL-E. The test results showed that both coils produced very similar capacities when the overall superheat was at $5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$. As the superheat was increased to $16.7^{\circ} \mathrm{C}\left(30.0^{\circ} \mathrm{F}\right)$, COIL-EC capacity was 10% higher than COIL-E. As the airflow increased for tests 13 and 14, COIL-E and COIL-EC still produced nearly equal capacities at $5.6{ }^{\prime \prime} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$ superheat, but when superheat was increased to $16.7^{\circ} \mathrm{C}\left(30.0^{\circ} \mathrm{F}\right)$, COIL-EC had a 23% higher capacity than COIL-E (Figures 3.4.1.1.10 and 3.4.1.1.11). This tends to lend more evidence to conduction effects between the tube sheets; eliminating some conduction paths improved the performance of the enhanced fin coil.

Figure 3.4.1.1.6: COIL-W, test 12, circuit bend temperatures for cross-counter flow (Top circuit flooding with $16.7^{\circ} \mathrm{C}\left(30.0^{\circ} \mathrm{F}\right)$ superheat on bottom two circuits to yield overall exit superheat of $5.6^{\prime \prime} \mathrm{C}\left(\mathbf{1 0 . 0}{ }^{\circ} \mathrm{F}\right)$; refrigerant exit manifold saturation temperature set to $\left.7.2{ }^{\circ} \mathrm{C}\left(45.0^{\circ} \mathrm{F}\right)\right)$

Figure 3.4.1.1.7: Capacity of COIL-E and COIL-EC relative to COIL-E, test 9 at two different airflow rates

Figure 3.4.1.1.8: COIL-EC and COIL-E bend temperatures for test 9 (cross-counter flow, wet coil, $5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$ superheat on all circuits)

Figure 3.4.1.1.9: COIL-EC and COIL-E bend temperatures for test 10 (cross-counter flow, wet coil, $16.7^{\circ} \mathrm{C}\left(30.0^{\circ} \mathrm{F}\right)$ superheat on all circuits)

Figure 3.4.1.1.11: COIL-EC and COIL-E bend temperatures for test $\mathbf{1 4}$ (cross-counter flow, wet coil, $16.7^{\circ} \mathrm{C}\left(\mathbf{3 0 . 0}{ }^{\circ} \mathrm{F}\right)$ superheat on all circuits)

3.4.1.2Effects of Airflow Rate on Coil Capacity

Air flow rate through the evaporator plays an important role in the capacity. When air flow rate is higher than the optimum quantity, the COP of the system decreases due to an increase in the air pressure drop and accompanying fan power consumption. But higher airflow enhances the heat transfer rate of the evaporator on the air-side due to the higher Reynolds number. Table 3.4.1.2.1 and figure 3.4.1.2.1show the capacity variation of the tested evaporators as a function of air flow rate. As the air flow rate increased, total capacity increased due to the increased air mass flow rate. The latent heat transfer rate changed a little due to the constant evaporator pressure set by the evaporator pressure regulating valve. Other reasons that could play, a small part in the constant latent
capacity may be the condensed water on the surface of tube and fin mixing with the air which is unsaturated before latent heat transfer takes place at the range of these air flow rates. Secondly, the temperature difference between the air and the surface of condensing water decreases because thermal resistance increases due to the condensed water layer. As a result, the dominant increase in total capacity was caused by the increase in the sensible heat transfer rate.

Table 3.4.1.2.1: Capacity of the Test Evaporators at Varying Airflow Rates

Test Name		$\left\|\begin{array}{l} 7 \\ \vdots \\ \vdots \\ \vdots \\ \end{array}\right\|$	Volumetric Flowrate of Air $\mathrm{m}^{\mathbf{3}} \mathrm{h}$ (scfm)					Overall Superheat					
						Superheats in Individual Circuits							
										$\begin{gathered} 5.6^{\circ} \mathrm{C} \\ \left(10.0^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	$\begin{gathered} 16.7^{\circ} \mathrm{C} \\ \left(30.0^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	$\begin{gathered} 5.6^{\circ} \mathrm{C} \\ \left(10.0^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	$\begin{gathered} 5.6^{\circ} \mathrm{C} \\ \left(10.0^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$
			$\left\|\begin{array}{c} 145 \cdot Q \\ (300 \cdot Q) \end{array}\right\|$	$\left\|\begin{array}{c} 193 \cdot Q^{\prime} \\ (400 \cdot Q) \end{array}\right\|$	$\begin{gathered} 242 \cdot Q^{\prime} \\ (500 \cdot Q) \end{gathered}$	$\stackrel{\text { 난 }}{\text { - }}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 5.6 / 5.6 / 5.6 \\ & (10 / 10 / 10) \\ & \hline \end{aligned}$	$\begin{gathered} 16.7 / 16.7 / 16.7 \\ (30 / 30 / 30) \\ \hline \end{gathered}$	$\begin{gathered} 16.7 / * / 16.7 \\ (30 / * / 30) \\ \hline \end{gathered}$	$\begin{gathered} * / 16.7 / 16.7 \\ (* / 30 / 30) \\ \hline \end{gathered}$		
								W (Btu/h)	W (Btu/h)	W (Btu/h)	W (Btu/h)		
V020226A	W	1	X				X	$\begin{gathered} 5788 \\ (19746) \\ \hline \end{gathered}$					
V020207B	W	9		X			X	$\begin{gathered} 6508 \\ (22203) \\ \hline \end{gathered}$					
V020301A	W	13			X		X	$\begin{gathered} 7503 \\ (25598) \end{gathered}$					
, V020320B	E	1	X				X	$\begin{gathered} 5998 \\ (20464) \end{gathered}$					
, , 020607A	E	9		X			X	$\begin{gathered} 6956 \\ (23732) \\ \hline \end{gathered}$					
, V0203 19B	E	13			X		X	$\begin{gathered} 7653 \\ (26109) \end{gathered}$					
1020417A	EC	1	X				X	$\begin{gathered} 6085 \\ (20760) \\ \hline \end{gathered}$					
102041SA	EC	9		X			X	$\begin{gathered} 6972 \\ (23788) \\ \hline \end{gathered}$					
:020416B	EC	13		.	X		X	$\begin{gathered} 7781 \\ (26546) \\ \hline \end{gathered}$					

Superheat to he anntrolled curh that the decired nverall level of cunerheat is ohtained

1) SI units of $\mathrm{m}^{3} / \mathrm{kWh}$ multiplied by capacity (Q) in kW to determine airflow, (IP units of $\mathrm{cfm} / \mathrm{ton}$ multiplied by capacity (Q) in tons).

Figure 3.4.1.2.1: Capacity as a function of air flow rate for wet coil conditions

3.4.1.3Effects of Non-Uniform Airflow on Coil Capacity

The combined effects of non-uniform airflow and evaporator superheat were examined by blocking the upper portion of the test evaporator on COIL-W and COIL-E during cross-counter flow operation for wet coil conditions. Figure 3.4.1.3.1 shows an idealized non-uniform velocity profile for a test coil with the upper half of the coil partially blocked. The velocity ratio was calculated by taking the average of the 15 velocity points on the top half divided by the average of the 15 velocity points on the lower half of the test evaporator. Test 9 conditions of $5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$ superheat were first performed, then the blockage was applied with no expansion valve adjustment (test 9A), and finally the expansion valves were adjusted to yield $5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$ superheat on all circuits (test 9B). During these tests the standard airflow rate was held constant; the airflow was not
allowed to drop when the blockage was added regardless of the significantly higher pressure drop. Table 3.4.1.3.1 shows the performance of the coils with varying degrees of airflow blockage.

Figure 3.4.1.3.1: Idealized velocity profile over evaporator with upper half partially blocked

Velocity Ratio (see Figure \#)	Test name	$\begin{aligned} & \text { Test } \\ & \text { type }^{1} \end{aligned}$	$\overline{\overline{0}}$	Airflow, $\mathrm{m}^{3} / \mathrm{h}$ (scfm)	Air-side Capacity, W (Btu/h)	Capacity Ratio, Q/QTest 9	Coil Air Pressure Drop, Pa (in WG)
$\begin{gathered} 1: 1 \\ \text { (Fig. 3.4.1.3.2) } \\ \hline \end{gathered}$	W020522 W020523 W020524 A	9	W	1244 (732)	6598 (22515)	1	$\begin{gathered} 37.9 \\ (0.152) \\ \hline \end{gathered}$
$\begin{gathered} 1: 1.5 \\ \text { (Fig. 3.4.1.3.3) } \end{gathered}$		9A	W	1252 (737)	6351 (21670)	0.96	$\begin{gathered} 49.6 \\ (0.199) \\ \hline \end{gathered}$
1:1.5		9B	W	1249 (735)	6535 (22298)	0.99	$\begin{gathered} 49.8 \\ (0.200) \\ \hline \end{gathered}$
1:1	$\begin{gathered} \text { W020528 } \\ \text { B } \\ -\mathrm{W} 020528- \\ \text {-W020529- } \\ \text { A } \\ \hline \end{gathered}$	9	W	1245 (733)	6636 (22644)	1	$\begin{gathered} 38.1 \\ (0.153) \\ \hline \end{gathered}$
$\begin{gathered} 1: 2 \\ \text { (Fig. 3.4.1.3.4) } \\ \hline \end{gathered}$		9A	W	1239 (729)	6179 (21085)	0.93	$\begin{gathered} 53.3 \\ (0.214) \\ \hline \end{gathered}$
1:2		9B	W	1237 (728)	6307 (21521)	0.95	$\begin{gathered} 58.8 \\ (0.236) \\ \hline \end{gathered}$

1) Test 9: uniform airtlow with superheat on all circuits of $5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right), 9 \mathrm{~A}$: same expansion valve setting as test 9 ut with non-uniform airflow and no superheat adjustment, 9B: expansion valves adjusted to yield $5.6^{\circ} \mathrm{C}\left(10.0^{\prime \prime} \mathrm{F}\right)$ superheat on all circuits with non-uniformairflow.

Table 3.4.1.3.2: COIL-E Performance with Non-Uniform Airflow

Velocity Ratio (see Figure \#)	Test name	$\begin{aligned} & \text { Test } \\ & \text { type } \end{aligned}$	B	Airflow, $\mathrm{m}^{3} / \mathrm{h}$ (scfm)	Air-side Capacity, W (Btu/h)	Capacity Ratio, $Q / Q_{\text {Iest } 9}$	Coil Air Pressure Drop, Pa (in WG)
$\begin{gathered} 1: 1 \\ \text { (Fig. 3.4.1.3.6) } \end{gathered}$	$\begin{array}{\|c} \hline \text { E020604 } \\ \text { A } \\ \hline \end{array}$	9	E	1276 (751)	6985 (23833)	1	$\begin{gathered} 92.7 \\ (0.372) \\ \hline \end{gathered}$
$\begin{gathered} 1: 1.26 \\ \text { (Fig. 3.4.1.3.7) } \end{gathered}$	$\begin{array}{\|c} \hline \text { E020604 } \\ \text { B } \\ \hline \end{array}$	9A	E	1281 (754)	6933 (23655)	0.99	$\begin{gathered} 108.4 \\ (0.435) \\ \hline \end{gathered}$
1:1.26	$\begin{gathered} \text { E020605 } \\ \text { A } \\ \hline \end{gathered}$	9B	E	1281 (754)	7029 (23984)	1.01	$\begin{gathered} 106.6 \\ (0.428) \\ \hline \end{gathered}$
1:1	$\begin{array}{\|c\|} \hline \text { E020607 } \\ \text { A } \\ \hline \end{array}$	9	E	1293 (761)	6955 (23733)	1	$\begin{gathered} 84.7 \\ (0.340) \\ \hline \end{gathered}$
$1: 1.36$ (Fig. 3.4.1.3.8)	$\begin{array}{\|c} \hline \text { E020607 } \\ \text { B } \\ \hline \end{array}$	9A	E	1291 (760)	6797 (23192)	0.98	$\begin{gathered} 102.9 \\ (0.413) \\ \hline \end{gathered}$
1:1.36	$\begin{gathered} \text { E020610 } \\ \text { A } \\ \hline \end{gathered}$	9B	E	1286 (757)	6807 (23226)	0.98	$\begin{gathered} \hline 101.9 \\ (0.409) \\ \hline \end{gathered}$
$1: 1.62$ (Fig. 3.4.1.3.9)	$\begin{array}{\|c} \hline \text { E020611 } \\ \text { A } \\ \hline \end{array}$	9A	E	1290 (759)	6751 (23034)	0.97	$\begin{gathered} 101.1 \\ (0.406) \\ \hline \end{gathered}$
1:1.62	$\begin{gathered} \text { E020612 } \\ \text { A } \\ \hline \end{gathered}$	9B	E	1274 (750)	6914 (23591)	0.99	$\begin{gathered} 101.4 \\ (0.407) \end{gathered}$
$1: 1.75$ (Fig. 3.4.1.3.10)	$\begin{array}{\|c} \hline \text { E020613 } \\ \text { A } \\ \hline \end{array}$	9A	E	1288 (758)	6654 (22705)	0.96	$\begin{gathered} \hline 105.4 \\ (0.423) \\ \hline \end{gathered}$
1:1.75	$\begin{gathered} \mathrm{E} 020620 \\ \mathrm{~A} \\ \hline \end{gathered}$	9B	E	1288 (758)	6877 (23465)	0.99	$\begin{gathered} 103.4 \\ (0.415) \\ \hline \end{gathered}$
$\begin{gathered} 1: 2.59 \\ \text { (Fig. } 3.4 .1 .3 .11 \text {) } \end{gathered}$	$\begin{array}{\|c} \hline \text { E020621 } \\ \text { A } \\ \hline \end{array}$	9A	E	1299 (764)	6575 (22435)	0.95	$\begin{gathered} 98.9 \\ (0.397) \\ \hline \end{gathered}$
1:2.59	$\begin{gathered} \mathrm{E} 020624 \\ \mathrm{~A} \\ \hline \end{gathered}$	9B	E	1290 (759)	6874 (23456)	0.99	$\begin{gathered} 101.9 \\ (0.409) \\ \hline \end{gathered}$

1) Test 9: uniform airflow with superheat on all circuits of $5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right), 9 \mathrm{~A}$: same expansion valve setling d tev 4 hut with non-uniform airflow and no superheat adjustment,9B: expansion valves adjusted to yield $5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{I}\right)$ superteat on all circuits with non-uniform airflow.

Figure 3.4.1.3.2 shows the air velocity contour map for COIL-W with no obstructions present. The volumetric flowrate for this test was $\mathbf{1 2 4 4} \mathrm{m}^{\mathbf{3}} / \mathrm{h}(\mathbf{7 3 2} \mathrm{scfm})$ with an average velocity of $\mathbf{6 4 3 7} \mathrm{m} / \mathrm{h}(\mathbf{3 5 2} \mathrm{fpm})$ and standard deviation of $\mathbf{5 1 2} \mathrm{m} / \mathrm{h}(28 \mathrm{fpm})$. Any nonuniformity in the unobstructed evaporator's entrance region airflow was due to the dewpoint sampling tree, thermocouple grid, and fin angles. Figure 3.4.1.3.3 shows the
non-uniform velocity contour map for COIL-W when the flow was obstructed to the upper half of the coil. An average of the top half air velocity was compared to the bottom half average air velocity to yield the velocity ratio of 1 to 1.5 . The volumetric flowrate for this test was $1252 \mathrm{~m}^{3} / \mathrm{h}(737 \mathrm{scfm})$ with a $4097 \mathrm{~m} / \mathrm{h}(224 \mathrm{fpm})$ and $6163 \mathrm{~m} / \mathrm{h}$ (337 fpm) average velocity on the upper and lower halves of the coil, respectively. Further obstruction was added to produce the velocity contours seen in Figure 3.4.1.3.4 at a velocity ratio of 1 to 2 . The average velocities in this case were $4005 \mathrm{~m} / \mathrm{h}(219 \mathrm{fpm})$ and $8211 \mathrm{~m} / \mathrm{h}$ (449 fpm) over the upper and lower halves of the coil, respectively.

The imposed airflow blockage in the case of the 1 to 1.5 velocity ratio would have increase fan power by more then $30 \boldsymbol{Y}_{\text {o }}$. For the 1 to 2 velocity ratio case, the fan power would have increased by at least $54 Y_{o}$ relative to the uniform airflow case.

Figure 3.4.1.3.2: Uniform airflow velocity ($\mathrm{ft} / \mathrm{min}$) contour map for COIL-W

Figure 3.4.1.3.3: Non-uniform velocity ($1: 1.5$) ($\mathrm{ft} / \mathrm{min}$) contour map for COIL-W

Figure 3.4.1.3.4: Non-uniform velocity ($1: 2$)($\mathrm{ft} / \mathrm{min}$) contour map for COIL-W

Figure 3.4.1.3.5 shows the non-uniform air velocity evaporator capacity relative to the uniform air velocity capacity. The first case shows the effects of an imposed obstruction with a fixed area expansion device. The expansion device would not be able to correct superheat and capacity would drop by $\mathbf{4 \%}$ in the $1: 1.5$ velocity ratio case and by 6.5% in the $1: 2$ velocity ratio case. If the expansion device were able to correct each circuit, then the performance would improve closer to pre-obstruction, but for both cases the capacity
still decreased by $\mathbf{1 . 2} \%$ and $\mathbf{4 . 5} \%$, respectively. The COIL-W non-uniform velocity results show that a more non-uniform velocity ratio produced a higher drop in capacity; and superheat correction still could not alleviate the entire penalty.

Figure 3.4.1.3.5: Relative capacities for COIL-W non-uniform airflow (refer to Table 3.4.1.3.1 for a description of the actual tests)

Figure 3.4.1.3.6 shows the air velocity contour map for COIL-E with no obstructions present. The volumetric flowrate for this test was $1276 \mathrm{~m}^{3} / \mathrm{h}(\mathbf{7 5 1} \mathrm{scfm})$ with an average velocity of $\mathbf{6 1 0 8} \mathrm{m} / \mathrm{h}(\mathbf{3 3 4} \mathrm{fpm})$ and standard deviation of $512 \mathrm{~m} / \mathrm{h}$ ($\mathbf{2 8} \mathbf{f p m}$). Any nonuniformity in the unobstructed evaporator's entrance region airflow was due to the dewpoint sampling tree, thermocouple grid, and fin angles. Figure 3.4.1.3.7 shows the non-uniform velocity contour map for COIL-E when the flow was obstructed to the upper half of the coil. An average of the top half air velocity was compared to the bottom half
average air velocity to yield the velocity ratio of 1 to $\mathbf{1 . 2 6}$. The volumetric flowrate for this test was $\mathbf{1 2 8 1} \mathrm{m}^{3} / \mathrm{h}(\mathbf{7 5 4} \mathrm{scfm})$ with a $5340 \mathrm{~m} / \mathrm{h}(\mathbf{2 9 2} \mathrm{fpm})$ and $\mathbf{6 7 4 8} \mathrm{m} / \mathrm{h}(\mathbf{3 6 9} \mathrm{fpm})$ average velocity on the upper and lower halves of the coil, respectively. Further obstruction was added to produce the velocity contours seen in Figure 3.4.1.3.8 at a velocity ratio of 1 to $\mathbf{1 . 3 6}$. The average velocities in this case were $5340 \mathrm{~m} / \mathrm{h}(\mathbf{2 9 2} \mathrm{fpm})$ and $7279 \mathrm{~m} / \mathrm{h}(\mathbf{3 9 8} \mathrm{fpm})$ over the upper and lower halves of the coil, respectively. More obstruction was added to produce a 1 to $\mathbf{1 . 6 2}$ average velocity ratio seen in Figure 3.4.1.3.9. Average velocities in this case were $4609 \mathrm{~m} / \mathrm{h}(252 \mathrm{fpm})$ and $7498 \mathrm{~m} / \mathrm{h}$ ($\mathbf{4 1 0} \mathrm{fpm}$) over the upper and lower halves of the coil, respectively. Again, obstruction was added to produce a 1 to 1.75 average velocity ratio seen in Figure 3.4.1.3.10. Average velocities in this case were $3621 \mathrm{~m} / \mathrm{h}(198 \mathrm{fpm})$ and $\mathbf{6 3 4 6} \mathrm{m} / \mathrm{h}(\mathbf{3 4 7} \mathrm{fpm})$ over the upper and lower halves of the coil, respectively. The final obstruction was then added to produce a velocity ratio of 1 to $\mathbf{2 . 5 9}$. Average velocities in this case were $\mathbf{3 2 1 9} \mathrm{m} / \mathrm{h}$ ($\mathbf{1 7 6} \mathrm{fpm}$) and $\mathbf{8 3 5 8} \mathrm{m} / \mathrm{h}(\mathbf{4 5 7} \mathrm{fpm})$ over the upper and lower halves of the coil, respectively.

Figure 3.4.1.3.6: Uniform velocity (ft/min) contour map for COIL-E

Figure 3.4.1.3.7: Non-uniform velocity ($1: 1.26$) ($\mathrm{ft} / \mathrm{min}$) contour map for COIL-E

Figure 3.4.1.3.8: Non-uniform velocity ($1: 1.36$) ($\mathrm{ft} / \mathrm{min}$) contour map for COIL-E

Figure 3.4.1.3.9: Non-uniform velocity (1:1.62) (ft/min) contour map for COIL-E

Figure 3.4.1.3.10: Non-uniform velocity ($1: 1.75$) ($\mathrm{ft} / \mathrm{min}$) contour map for COIL-E

Figure 3.4.1.3.11: Non-uniform velocity ($1: 2.59$) (ft/min) contour map for COIL-E

Figure 3.4.1.3.12 shows the non-uniform air velocity evaporator capacity relative to the uniform air velocity capacity for all COIL-E tests represented above and shown in Table 3.4.1.3.2. The cases labeled "Test 9A" show the effects of an imposed obstruction with a fixed area expansion device. Cases labeled "Test 9B" have the superheat adjusted back to $5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$ on each circuit. The first case had a velocity ratio of 1 to 1.26 and a capacity specific airflow of $183 \mathrm{~m}^{3} / \mathrm{kWh}$ ($378 \mathrm{scfm} / \mathrm{ton}$). Less than 1% in capacity was
lost due to the obstruction, and this lost capacity was recovered when superheat was corrected (capacity was corrected within the uncertainty of our measurement at approximately 3.5%). At a higher absolute airflow of $186 \mathrm{~m}^{3} / \mathrm{kWh}$ (385 scfdton), the losses in capacity with the obstruction were greater.

The losses in capacity with no superheat correction ranged from slightly more than 2% at the 1 to 1.36 velocity ratio to approximately 5.5% at the 1 to 2.59 velocity ratio. When the superheat was corrected, much of the loss in capacity was recovered. Please note that all of these tests were performed at a constant airflow rate. As shown in Table 3.4.1.3.1 and 3.4.1.3.2, the air pressure drop across the evaporator increased substantially when the blockage was imposed. This would translate into much higher fan power requirements and a subsequently lower COP. In the case of the 1 to 1.36 velocity profile, fan power would have increased by 21% with the imposed blockage (power equals flowrate times the pressure drop). For the 1:1.62 velocity profile, fan power would have increased by 19 $\%$. For the $1: 1.75$ velocity ratio, fan power would have increased by 24%. For the highest blockage test with a velocity ratio of 1:2.59, the fan power would have increased by at least 20%.

Figure 3.4.1.3.12: Capacity relative to uniform airflow for COIL-E (refer to Table 3.4.1.3.2for a description of the tests)

3.4.2 Cross-Parallel Air/Refrigerant Flow Configuration Tests

Table 3.4.2.1 shows the performance of COIL-W and COIL-E with refrigerant circuited in cross-counter flow and cross-parallel flow with a capacity specific airflow rate of $193 \mathrm{~m}^{3} / \mathrm{h}$ (400 scfdton). COIL-W airflow rates for parallel flow and counter flow were $912 \mathrm{~m}^{3} / \mathrm{h}(537 \mathrm{scfm})$ and $1240 \mathrm{~m}^{3} / \mathrm{h}(\mathbf{7 3 0} \mathrm{scfm})$, respectively. COIL-E airflow rates for parallel flow and counter flow were $\mathbf{8 9 5} \mathrm{m}^{3} / \mathrm{h}(527 \mathrm{scfm})$ and $1288 \mathrm{~m}^{\frac{1}{1} / \mathrm{h}(758 \mathrm{scfm}) \text {, }}$ respectively. The main information to be gained from this comparison is the rapid reduction in capacity that follows any increase in superheat during parallel flow (Figure
3.4.2.1). This was evident for both coils tested under parallel flow conditions.

As the superheat increased from $5.6^{\prime \prime} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$ to $16.7^{\prime \prime} \mathrm{C}\left(\mathbf{3 0 . 0}{ }^{\circ} \mathrm{F}\right)$, the refrigerant and air temperatures became pinched very quickly. During all tests the evaporator pressure was fixed to give an evaporating saturation temperature of $7.2{ }^{\circ} \mathrm{C}\left(\mathbf{4 5 . 0}{ }^{\circ} \mathrm{F}\right)$. When superheat was increased to $16.7^{\prime \prime} \mathrm{C}\left(30.0^{\circ} \mathrm{F}\right)$, the exiting refrigerant temperature approached $\mathbf{2 3 . 9}{ }^{\prime \prime} \mathrm{C}\left(\mathbf{7 5 . 0}{ }^{\circ} \mathrm{F}\right)$; pinching of the two streams occurred rapidly. This is evident from examining the capacity of test $\mathbf{1 0}$ in parallel flow.

Figure 3.4.2.1 shows that COIL-W capacity in parallel flow decreased by 84.8% as the superheat increased from $5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$ to $\mathbf{1 6 . 7}{ }^{\prime \prime} \mathrm{C}\left(\mathbf{3 0 . 0}{ }^{\circ} \mathrm{F}\right)$; test 9 to test 10 . Tests 11 and $\mathbf{1 2}$ also produced very low capacity due to two of the three circuits having a $16.7^{\prime \prime} \mathrm{C}$ $\left(30 . \mathbf{0}^{\circ} \mathrm{F}\right)$ superheat. Although tests with the center circuit flooding produced higher capacity than the top circuit flooding for both COIL-W and COIL-E.

Table 4.2.1: Counter and Parallel Flow Performance of COIL-W and COIL-E

			Volumetric Flowrate of Air m ${ }^{3} / \mathrm{h}$ (cfm)			Bice	Overall Superheat							
			$\begin{aligned} & 145 \cdot Q^{\prime a} \\ & (300 \cdot Q) \end{aligned}$	$\left\lvert\, \begin{aligned} & 193 \cdot Q^{\text {fa }} \\ & (400 \cdot Q) \end{aligned}\right.$	$\left\|\begin{array}{l} 242 \cdot Q^{\text {la }} \\ (500 \cdot Q) \end{array}\right\|$	$\stackrel{\rightharpoonup}{5}$	$\begin{gathered} 5.6^{\circ} \mathrm{C} \\ \left(10.0^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$		$\begin{gathered} 16.7^{\circ} \mathrm{C} \\ \left(30.0^{\circ} \mathrm{F}\right) \end{gathered}$		$5.6^{\circ} \mathrm{C}$		$5.6{ }^{\circ} \mathrm{C}\left(10.0{ }^{\circ} \mathrm{F}\right)$	
							$5.6 / 5.6 / 5$ $(10 / 10 / 10)$	$\begin{aligned} & 15.6 \\ & 10) \\ & \hline \end{aligned}$	$\begin{gathered} 16.7 / 16.7 / 16.7 \\ (30 / 30 / 30) \end{gathered}$		$\begin{gathered} 16.7 / * / 16.7 \\ (30 / * / 30) \\ \hline \end{gathered}$		$\begin{aligned} & * / 16.7 / 16.7 \\ & (* / 30 / 30) \\ & \hline \end{aligned}$	
							W $\mathrm{Q}_{\text {test }}$	$\mathrm{Q}_{\text {iest }} /$ Q^{16}	$\frac{\mathrm{Q}_{\text {test }}}{\mathrm{W}(\mathrm{Btw} / \mathrm{h})}$	$\mathrm{Q}_{\text {test }}$ Q^{16}	$\frac{\mathrm{Q}_{\text {test }}}{\mathrm{W}(\text { Btwh }}$ (${ }_{\text {a }}$	$\begin{aligned} & \mathrm{Q}_{\text {iest }} \\ & \mathrm{Q}^{\text {Ib }} \end{aligned}$	$\mathrm{Q}_{\text {test }}$	$\begin{aligned} & Q_{\text {tess }} \\ & Q^{1 \mathrm{bb}} \end{aligned}$
Cross-Counter Air/Refrigerant Flow														
W020207B	9	W		X		X	$\begin{array}{\|c\|} \hline 6507 \\ (22203) \end{array}$	1						
W020530A	10	W		X		X			$\begin{array}{\|c\|} \hline 3722 \\ (12701) \\ \hline \end{array}$	0.57				
W020531A	11	W		X		X					$\begin{array}{\|c\|} \hline 3837 \\ (13091) \\ \hline \end{array}$	0.59		
W020215B	12	W		X		X							$\begin{array}{\|c\|} \hline 3830 \\ (13067) \\ \hline \end{array}$	0.59
E020607A	9	E		X		X	$\begin{array}{\|c\|} \hline 6955 \\ (23733) \\ \hline \end{array}$	1						
W020318A	10	E		X		X			$\begin{array}{\|c\|} \hline 4865 \\ (16599) \\ \hline \end{array}$	0.70				
W0203 18B	11	E		X		X					$\begin{array}{\|c\|} \hline 5485 \\ (18715) \\ \hline \end{array}$	0.79		
W0203 19A	12	E		X		X							4735 (16157)	0.68
Cross-Parallel Air/Refrigerant Flow														
W020304A	9	W		X		X	$\begin{gathered} 4732 \\ (16146) \end{gathered}$	1						
W020311B	10	W		X		X			$\begin{array}{\|c\|} \hline 721 \\ (2461) \\ \hline \end{array}$	0.15				
W020306A	11	W		X		X					$\begin{gathered} \hline 2605 \\ (8887) \\ \hline \end{gathered}$	0.55		
W020307A	12	W		X		X							$\begin{array}{\|c} \hline 2143 \\ (7311) \end{array}$	0.45
E020403A	9	E		X		X	$\begin{array}{\|c\|} \hline 4549 \\ (15523) \end{array}$	1						
E020404A	10	E		X		X			$\begin{array}{\|c\|} \hline 1017 \\ (3470) \\ \hline \end{array}$	0.22				
E020408A	11	E		X		X					3373 (11508)	0.74		
E020409A	12	E		X		X							$\begin{gathered} 2797 \\ (9543) \end{gathered}$	0.61

[^0]

Figure 3.4.2.1: Cross-parallel flow capacity comparison for COIL-W and COIL-E relative to their performance at test $\mathbf{9}$ with cross-counter flow

COIL-E capacity in parallel flow was $\mathbf{3 . 9}$ \% less than COIL-W at the test $\mathbf{9}$ condition of $193 \mathrm{~m}^{3} / \mathrm{kWh}$ (400 scfdton). This is the opposite of the counter flow capacity results where COIL-E had a $\mathbf{5 . 4} Y_{o}$ greater capacity than COIL-W. COIL-E produced a slightly lower capacity than COIL-W at the test $\mathbf{9}$ parallel flow conditions. This was mainly due to the $196 \mathrm{~m}^{3} / \mathrm{kWh}(\mathbf{4 0 6} \mathrm{scfm} /$ ton $)$ for COIL-W and the $193 \mathrm{~m}^{3} / \mathrm{kWh}(399 \mathrm{scfm} / \mathrm{ton})$ for COIL-E. The ideal airflow would have produced $193 \mathrm{~m}^{3} / \mathrm{kWh}(\mathbf{4 0 0} \mathrm{scfm} / \mathrm{ton})$ for both coils, but COIL-W airflow was high while COIL-E airflow was slightly low. These differences in airflow produced the accompanying difference in capacity. Also, a secondary factor in the lower capacity of COIL-E than COIL-W may be due to the more rapid pinching of COIL-E than COIL-W due to the higher air-side heat transfer of the enhanced fins.

COIL-E capacity in parallel flow decreased by 77.6 \% as the superheat increased from $5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$ to $16.7^{\circ} \mathrm{C}\left(30.0^{\circ} \mathrm{F}\right)$; test 9 to test 10 . Again, rapid pinching of the two fluid streams reduced capacity.

4 EVAPORATOR MODELING AND SIMULATIONS

4.1 Background on Evaporator Model EVAPS

Modeling of finned tube heat exchangers started at NIST with a tube-by-tube simulation model originally formulated by Chi (1979). Over the years, the model underwent significant upgrades, which are documented in Domanski and Didion (1983), Domanski (1991), Lee and Domanski (1997), and Domanski (1999b). These upgrades included the capability to account for air maldistribution and its interaction with refrigerant distribution, the extension to zeotropic mixtures, the extension to new refrigerant property representations, and implementations of new simulation correlations. The 1999 upgrade equipped the evaporator model with a graphical user interface (GUI). The GUI serves as a pre- and post-processor; it facilitates preparation of simulation input data, including the layout of refrigerant circuitry, and allows the user to display detailed performance results for individual tubes after a simulation run is completed. In 2002 under a parallel ARTI-21CR/605-500100 project (Domanski and Payne, 2002), the EVAP-COND simulation package was developed that included the evaporator and condenser models, EVAP5 and COND5, working under the same GUI. Both models were validated with experimental data taken with R22 and R410A heat exchangers at NIST. Since the current project and ARTI-21CR/605-500100 project partially overlapped in time, the EVAP-COND attached to the ARTI-2 1CR/605-500100 report included some of upgrades developed under this study, e.g. the option to simulate the evaporator together with a refrigerant distributor. Not included in the release version of EVAP-COND are the upgrades to the evaporator model that account for longitudinal fin
conduction, which were needed to perform simulations with controlled refrigerant superheats at individual refrigerant circuits.

4.2 Description of EVAPS

4.2.1 Modeling Approach

Figure 4.2.1.1 presents the refrigerant circuitry and air velocity representation used by EVAPS. The tube-by-tube modeling approach recognizes each tube as a separate entity for which the model performs simulation calculations. These calculations are based on inlet refrigerant and air parameters, their properties, and mass flow rates. The simulation begins with the inlet refrigerant tubes and proceeds to successive tubes along the refrigerant path in the heat exchanger. At the outset of the simulation, the air temperature is only known for the tubes in the first row and has to be estimated for the remaining tubes. A successful simulation run requires several passes (iterations) through the refrigerant circuitry, each time updating inlet air and refrigerant parameters for each tube.

Figure 4.2.1.1 : Representation of air distribution and refrigerant circuitry in EVAP5

Heat transfer calculations start by calculating the heat-transfer effectiveness, E, by one of the applicable relations (Kays and London, 1984). With the air temperature changing due to heat transfer, the selection of the appropriate relation for \mathbf{E} depends on whether the refrigerant undergoes a temperature change during heat transfer. Once \mathbf{E} is determined, heat transfer from air to refrigerant is obtained using equation 4.2.1.1.

$$
\begin{equation*}
Q_{a}=m_{a} C_{p a}\left(T_{a i}-T_{r i}\right) \varepsilon \tag{4.2.1.1}
\end{equation*}
$$

The overall heat-transfer coefficient, U, is calculated by equation 4.2.1.2, which sums up the individual heat-transfer resistances between the refrigerant and the air.

$$
\begin{equation*}
U=\left\lvert\, \frac{A_{o}}{h_{i} A_{p i}}+\frac{A_{0} X_{p}}{A_{p m} K_{p}}+++\frac{A_{o}}{h_{1}}+\frac{1}{A_{p o} h_{p f}}+\frac{h_{0}(1+\dot{a})\left(1-\frac{A_{f}}{A_{o}}(1-0)\right)}{-1}\right. \tag{4.2.1.2}
\end{equation*}
$$

The first term of equation 4.2.1.2 represents the refrigerant-side convective resistance. The second term is the conduction heat-transfer resistance through the tube wall, and the third term accounts for the conduction resistance through the water layer on the fin and tube. The fourth term represents the contact resistance between the outside tube surface and the fin collar. The fifth term is the convective resistance on the air-side where the multiplier $(1+\alpha)$ in the denominator accounts for the latent heat transfer on the outside surface. For a dry tube $\mathbf{a}=0.0$ and $1 / h_{1}=0.0$. Once the heat transfer rate from the air to the refrigerant is calculated, the tube wall and fin surface temperatures can be calculated directly using heat-transfer resistances. Then, the humidity ratios for the saturated air at the wall and fin temperatures are calculated, and mass transfer from the moist air to the tube and fin surfaces is determined. For more detailed information on heat transfer calculations refer to Domanski (1991).

4.2.2 Heat Transfer and Pressure Drop Correlations

EVAPS uses the following correlations for calculating heat transfer and pressure drop.

Air Side

- heat-transfer coefficient for flat fins: Wang et al. (2000)
- heat-transfer coefficient for wavy fins: Wang et al. (1999a)
- heat-transfer coefficient for slit fins: Wang et al. (2001)
- heat-transfer coefficient for louver fins: Wang et al. (1999b)
- fin efficiency: Schmidt method, described in McQuiston et al. (1982)

A correlation for calculating the tube-collar junction resistance is not listed because all air-side heat transfer correlations authored by Wang include the heat transfer resistance between the tube and collar.

Refrigerant Side

- single-phase heat-transfer coefficient, smooth tube: McAdams, described in ASHRAE (2001)
- evaporation heat-transfer coefficient up to 80% quality, smooth tube: Jung and Didion (1989)
- evaporation heat-transfer coefficient up to 80% quality, rifled tube: Jung and Didion (1989) correlation with a 1.9 enhancement multiplier suggested by Schlager et al. (1989)
- mist flow, smooth and rifled tubes: linear interpolation between heat transfer coefficient values for $80 Y_{o}$ and $100 Y_{o}$ quality
- single-phase pressure drop, smooth tube: Petukhov (1970)
- two-phase pressure drop, smooth tube, lubricant-free refrigerant: Pierre (1964)
- two-phase pressure drop, rifled tube: Pierre (1964) correlation for smooth tube with a 1.4 multiplier suggested by Schlager et al. (1989)
- single-phase pressure drop, return bend, smooth tube: White, described in Schlichting (1968)
- two-phase pressure drop, return bend, smooth tube: Chisholm, described in Bergles et al. (1981). The length of a return bend depends on the relative locations of the tubes connected by the bend. This length is accounted for in pressure drop calculations.

4.2.3 Representation of Refrigerant Properties

Representation of thermodynamic and transport properties is based on REFPROP6 property routines (McLinden et al., 1998). Because EVAP5 simulations are computationally intensive, using a refrigerant property look-up tables is a practical necessity if simulation runs are expected to take less than 60 seconds. This is particularly true in case of REFPROP6 for which property calculations are several times more CPU demanding than for REFPROP5. EVAP-COND employs a pressure-enthalpy-based system of look-up tables, which includes eight different routines that retrieve the desired state or transport property. The look-up scheme is applicable to single component refrigerants and refrigerant mixtures. If a given refrigerant state falls outside the range of the look-up table, then EVAP-COND calls a REFPROP6 refrigerant property routine directly.

Since REFPROP6 property calculations may not converge occasionally, particularly during phase equilibrium calculations for refiigerant mixtures, EVAP-COND employs an error evasive scheme. Under this scheme, EVAP-COND attempts to obtain a given property even if REFPROP flash calculations do not converge, e.g., if a routine PHFLSH crashes, a routine that uses TPRHO is invoked to attempt to iteratively match TPRHO's enthalpy value with the known (target) value. If both REFPROP flash calculations do not converge, then the data point in the refrigerant look-up table is flagged and look-up table routines iterate properties for this point using refrigerant properties in the neighboring nodes of the table.

4.3 Modeling Issues

The following four sections present four major modeling issues that received special consideration during this study.

4.3.1 Refrigerant Distribution

Simulating refrigerant distribution is an important aspect of heat exchanger simulation because of its impact on the heat exchanger performance. It is also know that in some designs a non-uniform air distribution may affect refrigerant distribution. In a heat exchanger with multiple circuits, refrigerant distributes itself in appropriate proportions so that the refrigerant pressure drop from the inlet to the outlet for all circuits is the same. In the context of simulating refrigerant distribution, a refrigerant circuit starts at the point of the first split of refrigerant stream after leaving the condenser and ends at the final merging point before entering the suction line leading the refrigerant to the compressor. If the refhgerant enters the evaporator by a single tube, the first split, if any, will exist within the coil assembly. If the evaporator has several inlet tubes and a refrigerant distributor is used, the first refrigerant split typically occurs at the inlet to the distributor tubes just after the expansion process in a thermostatic expansion valve (TXV) or a short tube restrictor. Note, that in this design, refrigerant pressures and temperatures at different inlet tubes may be different, as graphically shown in Figure 4.3.1.1. Such different refrigerant pressure and temperature profiles also occurred during the tests with controlled uneven exit superheats (refrigerant distributions), namely tests 3, 4, 7, 8, 11, and 12.

Figure 4.3.1.1 : Possible refrigerant pressure profiles in a three-circuit evaporator fed by a refrigerant distributor

Under this project, two simulation methods were developed to simulate evaporator performance with controlled refhgerant superheats at the evaporator outlet tubes. The first scheme involving a general model for a refrigerant distributor was introduced into EVAP-COND as one of the eight evaporator simulation options. When the evaporator is simulated using this option, the refrigerant operating input data are the condenscr exit bubble-point temperature, condenser subcooling, evaporator exit dew-point temperature, and evaporator superheat (in the release version of EVAP-COND, condenser subcooling and evaporator superheat are imposed as $\left.5.0^{\circ} \mathrm{C}\left(9.0^{\circ} \mathrm{F}\right)\right)$. For this option, as the first task EVAP-COND runs preliminary simulations to establish dimensions of the refrigerant distributor tubes that would inflict a $70 \mathrm{kPa}(\mathbf{1 0 . 2} \mathbf{~ p s i})$ refrigerant pressure drop. Once the distributor tubes are sized, EVAP-COND proceeds to main simulations in which it
establishes refrigerant distribution between different circuits based on the total pressure drop. This total pressure drop includes the pressure drop in a given distributor tube and the refrigerant circuit in the coil assembly it feeds. In the test version used in this study, EVAP-COND additionally solicits a "restriction factor" for each distributor tube, which acts as a multiplier to the pressure drop calculated by the program. By inputting values different from 1.0, the user can control refrigerant distribution and refhgerant superheat at different evaporator exit tubes. The program iterates the refrigerant mass flow rate until the overall superheat is reached at the evaporator exit. Figures 4.3.1.2 and 4.3.1.3 present the eight refiigerant input data options and the input data window for EVAPCOND simulations involving a refrigerant distributor, respectively.

Figure 4.3.1.2: EVAP-COND refrigerant input data options for evaporator simulations

Figure 4.3.1.3: EVAP-COND input data window for simulations involving a refiigerant distributor

While the simulation option involving a refrigerant distributor is useful for a coil designer for typical simulations, this option proved to be somewhat impractical for controlling individual exit superheats when we tried to reproduce our test results. This was due to a non-linear dependence of individual exit superheats on the "restriction factors". For this reasonanother simulation scheme was developed in which the user directly assigns refrigerant distribution between different circuits. The operating conditions are as shown in Figure 4.3.1.4with the refrigerant inlet quality and distribution (in fractions) solicited by the follow-up DOS window. While holding the refrigerant distribution constant, the program iterates the overall refrigerant mass flow rate and inlet pressures at individual inlet tubes to converge on the target exit pressure (the same for each exit tube) and overall target superheat. Different individual superheats can be obtained by specifying different refrigerant distributions. Eventually, all simulation results for this study were obtained using the second scheme.

Figure 4.3.1.4:EVAP-COND input data window for simulations with specified overall evaporator exit saturation temperature and superheat.

4.3.2. Air-side Heat Transfer Correlations

Often the most significant part of heat transfer resistance between the air and refrigerant is on the air-side of the heat exchanger. For this reason, a literature review on the latest air-side heat transfer correlations was performed at the outset of this study. Of our particular interest were correlations for wavy and lanced (slit) fins - the two fin types used in the evaporators tested under this project.

Figure 4.3.2.1 compares the predictions of different correlations available in the literature. These predictions were calculated for typical fin designs for a three-depth-row heat exchanger. The layout of different prediction lines in the figure may serve as an explanation why predicting performance of a finned-tube heat exchanger may be difficult. For wavy fins, the correlation by Wang et al. (1999a) and Kim et al. (1997) are in a close agreement, while the correlation by Webb (1990) calculates heat transfer coefficients up to $50 \boldsymbol{Y}_{o}$ lower that the two first methods. In the air velocity range of 1.8 $\mathrm{m} / \mathrm{s}(5.9 \mathrm{ft} / \mathrm{s})$ to $2.1 \mathrm{~m} / \mathrm{s}(6.9 \mathrm{Ws})$, the Webb correlation breaks sharply due to switching between two different algorithms with a changing air-side Reynolds number. At some point the Webb correlations provide a value for the wavy fin heat transfer coefficient that is lower than that for a flat fin, which is not a realistic prediction.

For slit (lanced) fins, the correlations by Nakamura and Xu (1983) and Wang et al. (2001) may differ by more than $\mathbf{4 0} \%$, depending on air velocity. This spread may be indicative of the general fact that some correlations do not predict well outside the geometries for which they were developed. A measurement uncertainty in one or both
experiments may also be a contributing factor to this large discrepancy. In addition, it should be noted that the Nakayama and Xu (1983) predictions do not approach zero at air velocities below $2 \mathrm{~m} / \mathrm{s}(6.5 \mathrm{ft} / \mathrm{s})$, the trend exhibited by the other correlations. Regarding louver fins, the correlation by Wang et al. (1999b) shows a step change in the $1.5 \mathrm{~m} / \mathrm{s}$ ($4.9 \mathrm{ft} / \mathrm{s}$) to $1.8 \mathrm{~m} / \mathrm{s}(5.9 \mathrm{ft} / \mathrm{s})$ range caused by using two different algorithms, similar to the Webb correlation for the wavy fins.

The analysis of relative predictions of the air-side heat transfer coefficient provided the reason for replacing the existing correlations in EVAPS with correlations published by Wang and his co-workers for all types of fins, i.e., flat, wavy, louver, and slit fins. It was judged that a better degree of prediction consistency can be obtained with all correlations developed by the same author. Still, the reader should note a reservation regarding the louver fin correlation, which did not provide smooth predictions in Figure 4.3.2.1.

In conclusion, we have to recognize the spread in performance between different enhanced fins, either realistic or perhaps, in some instances, overstated by correlations. To accommodate these differences and facilitate accurate evaporator model predictions, EVAP-COND provides an option that allows the user to "tune" evaporator simulated performance to the laboratory data by specifying a "correcting parameter" for the air-side heat transfer coefficient (such correcting parameters are also allowed for the refrigerantside heat transfer coefficient, and refhgerant pressure drop).

Figure 4.3.2.1: Comparison of air-side heat transfer correlations

4.3.3. Internal Heat Transfer in a Finned-Tube Evaporator

The current study stipulated evaporator tests with a superheat as high as $16.7^{\prime \prime} \mathrm{C}$ $\left(30.0^{\circ} \mathrm{F}\right)$ to assess capacity degradation at large and uneven superheats. As presented in previous sections, these tests for COIL-E and COIL-EC produced rather interesting data suggesting that internal heat transfer within the evaporator metal body may be the culprit for significant capacity degradation. Figure 4.3.3.1 presents measured capacities at $193 \mathrm{~m}^{3} / \mathrm{kWh}$ ($400 \mathrm{cfm} / \mathrm{ton}$) and includes capacities predicted by EVAPS (internal heat transfer not considered). The figure shows that tested capacities at $5.6{ }^{\prime \prime} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)$ overlap for both coils and are reasonably well predicted by EVAP5. However, at $16.7^{\circ} \mathrm{C}\left(\mathbf{3 0}^{\circ} \mathrm{F}\right)$ superheat COIL-E capacity was tested to be 346 W (1 180 Btuh) less that COIL-EC capacity and $966 \mathrm{~W}(3295 \mathrm{Btu} / \mathrm{h})$ less than the simulated value. The lower capacity degradation for COIL-EC can be explained by the fin cuts, which physically separated different tube depth rows and disallowed heat transfer between neighboring rows.

Figure 4.3.3.1: Tested and predicted capacities for COIL-E and COIL-EC at $5.6{ }^{\circ} \mathrm{C}(10$ $\left.{ }^{\circ} \mathrm{F}\right)$ and $16.7^{\circ} \mathrm{C}\left(\mathbf{3 0}{ }^{\circ} \mathrm{F}\right)$ superheats (Test 9 and Test 10 operating conditions. Internal heat transfer within the evaporator metal body not considered.)

The following two sections discuss the two modes of the internal heat transfer, longitudinal tube conduction and longitudinal fin conduction (tube-to-tubc hcat transfer), and their impact on evaporator performance.

4.3.3.I Longitudinal Tube Conduction

The general theory states that if a temperature gradient exists in a wall of a heat exchanger, then conduction heat transfer will occur along that wall and may thercfore degrade the performance of the heat exchanger. Kays and London (1984) identified the major parameters affecting the magnitude of the performance degradation due to this phenomenon as follows:

$$
\begin{equation*}
\lambda=\frac{\mathrm{kA}_{w}}{\mathrm{LC}_{\min }}, \quad \frac{\mathrm{C}_{\min }}{\mathrm{C}_{\max }}, \text { and NTU } \tag{4.3.3.1.1}
\end{equation*}
$$

The magnitude of the performance degradation becomes larger with increasing λ, $\mathrm{C}_{\text {min }} / \mathrm{C}_{\text {max }}$, and NTU. Kays and London stated that this reduction in performance is seen in heat exchangers designed for high effectiveness $(\varepsilon>0.9)$, however, they did not provide much of a quantitative analysis. Ranganayakulu et. al. (1996)carried out a series of finite element simulations to quantify the magnitude of the performance degradation in a heat exchanger due to longitudinal heat conduction.. The results of their simulations are represented by the "conduction effect factor", $\boldsymbol{\tau}$, in terms of the effectiveness with no longitudinal conduction effects, $\varepsilon_{\mathrm{NC}}$, and the effectiveness considering longitudinal conduction effects, $\boldsymbol{\varepsilon}_{\mathrm{wc}}$.

$$
\begin{equation*}
\tau=\frac{\varepsilon_{\mathrm{NC}}-\varepsilon_{\mathrm{wC}}}{\varepsilon_{\mathrm{NC}}} \tag{4.3.3.1.2}
\end{equation*}
$$

The conduction effect factor can be read from the charts presented in the paper for given $\varepsilon, \lambda, C_{\text {min }} / C_{\text {max }}$, and NTU. Ranganayakulu et. al. suggested 0.8 as the effectiveness limit below which the impact of longitudinal conduction is negligible.

With the theory and the results from the numerical simulations at hand, the impact of longitudinal tube conduction for a typical finned-tube evaporator was examined. Using EVAPS, a 10.6 kW (3 ton) evaporator was simulated to identify the tubes with two-phase R-22 (in which the longitudinal heat conduction does not occur) and the tubes with a
superheated refrigerant (in which longitudinal heat conduction does take place). Then the capacity penalty for the superheated tubes was calculated as a fraction of capacity of these tubes and as a fraction of the evaporator capacity.

Figure 4.3.3.1.1 displays an evaporator side view with a schematic of the refhgerant circuitry. Figure 4..3.3.1.2 contains a Coil Design Data window from EVAP-COND with the coil design information, and Figure 4.3.3.1.3presents the operating conditions of the evaporator.

Figure 4.3.3.1.1: Refrigerant circuitry configuration for the analyzed R-22 evaporator (inlet tube: tube \# 24, outlet tubes: tube \# 1 and tube \#16;)

Figure 4.3.3.1.2: EVAP-COND window with evaporator design information

Figure 4.3.3.1.3: EVAP-COND window with evaporator operating conditions

For the evaporator exit superheat of $8.0^{\circ} \mathrm{C}\left(\mathbf{1 4 . 4}{ }^{\circ} \mathrm{F}\right)$, the simulations showed that only 5 of the 48 tubes in the heat exchanger have superheated refrigerant and experience a temperature change. This means that $\mathbf{4 3}$ of the tube passes in the heat exchanger will not experience any axial heat conduction because there will be no temperature difference for this to occur (neglecting the marginal drop of saturation temperature due to the pressure
drop). An example of a tube with superheated vapor, tube number 15, has the following values for the aforementioned parameters.

$$
\begin{gather*}
\lambda=\frac{\mathrm{kA}_{\mathrm{w}}}{\mathrm{LC}_{\min }}=\frac{\left(386 \frac{\mathrm{~W}}{\mathrm{mK}}\right)\left(1.1932 \mathrm{E}-5 \mathrm{~m}^{2}\right)}{(0.454 \mathrm{~m})\left(9.476 \frac{\mathrm{~W}}{\mathrm{~K}}\right)}=0.0011 \tag{4.3.3.1.3}\\
\frac{\mathrm{C}_{\min }}{\mathrm{C}_{\max }}=0.441 \tag{4.3.3.1.4}\\
\mathrm{NTU}=0.368
\end{gather*}
$$

These parameters lie below the range of data given by Ranganayakulu. Using extrapolation, it was determined that the conduction effect factor would be approximately 0.0005 . This means that this particular tube in the heat exchanger would see a loss in capacity of one twentieth of one percent due to axial heat conduction. When this capacity degradation is summed over all of the tubes in the entire heat exchanger where this effect occurs, the capacity reduction totals $\mathbf{0 . 1 3} \mathrm{W}(0.45 \mathrm{Btu} / \mathrm{h})$, which is insignificant when compared to the predicted performance of the evaporator being $49000 \mathrm{~W}(16800 \mathrm{Btu} / \mathrm{h})$.

It should be noted that the effectiveness of tube $\mathbf{1 5}$ is $\mathbf{0 . 2 9}$. Hence, our result agrees with the general statements by Kays and London and that of Ranganayakulu et. al. that the longitudinal heat transfer has an insignificant effect for heat exchangers with an effectiveness less than 0.8 . The negligible impact of the longitudinal tube conduction on evaporator performance permits neglecting this heat transfer in modeling of a finned-tube heat exchanger. It may be further inferred that the same conclusion can be made for the R407C zeotropic mixture. Although a $7{ }^{\circ} \mathrm{C}\left(12{ }^{\circ} \mathrm{F}\right)$ glide associated with R407C phase change produces a temperature difference promoting longitudinal heat transfer, in the
analyzed evaporator this glide would be distributed over $10 \mathrm{~m}(33 \mathrm{ft})$ of tube passes and would result in a small longitudinal temperature gradient.

4.3.3.2 Tube-to-Tube Heat Transfer via Fins

If we recognize that longitudinal tube heat conduction has a negligible impact, then the difference in capacity degradation between COIL-E and COIL-EC at $16.7^{\circ} \mathrm{C}\left(\mathbf{3 0}^{\circ} \mathrm{F}\right)$ superheat must be due to longitudinal fin conduction. In COIL-EC, the continuous cuts in the fins separating different depth rows prevent heat transfer between diffcrent depth rows. However, the fins join the adjacent tubes in the same depth row. and some heat transfer between them occurs. This is why COIL-EC still experiences a decline in capacity, but not as much as COIL-E.

Our literature review located two publications that shed some light on the longitudinal fin conduction phenomenon. Heun and Crawford (1994) performed analytical study of the effects of longitudinal fin conduction on multipass cross-counterflow single-depth-row heat exchanger. They considered the fins to have one-dimensional tcmpcrature distributions and solve them using a system of non-dimensional differentials equations. Their results showed that longitudinal fin conduction always degrades heat exchanger performance and this effect is stronger for a low normalized fin resistance and large values of the ratio of air-side conductance to air heat capacity rate.

Romero-Mender et al. (1997) also studied tube-to-tube heat transfer in a single-row finned-tube heat exchanger. They assumed the fins to be continuously and uniformly
distributed along the length of each tube. With his continuum assumption, they solved a system of ordinary differential equations for steady-state refrigerant and tube-wall temperatures. They identified four non-dimensional groups that effected the degradation of evaporator capacity. These group are: (1) the ratio of the thermal conductance for convective heat transfer between the refrigerant and the wall to the product of refrigerants heat capacity and mass flow rate, (2) the ratio of the thermal conductance for external heat transfer from the unfinned portion of the tube to the internal thermal conductance, (3) the ratio of the thermal conductance for convection from the fin to the thermal conductance for conduction along it, and (4) the ratio of the thermal conductance for heat conduction along the insulated fin to the thermal conductance between the refrigerant and the wall. Their study also indicated the number of tubes to be an influencing factor. The study by Romero-Mender et al. indicates that tube-to-tube heat transfer always degrades capacity and that the influencing parameters they identified have a non-linear impact on capacity degradation over the wide range of values studied. For some parametric values they found the degradation in a single-row heat exchanger to be as high as $\mathbf{2 0} \%$.

Our literature review have not located a publication that would discuss longitudinal fin conduction in a multi-depth-row evaporator, but it may be safely expected that capacity degradation would be higher than that for a single-depth-row coil. The literature review identified a very recent paper which presents three simulation models for finned-tube single-phase dehumidifying heat exchangers, the most advanced of which accounts for tube-to-tube heat transfer (Oliet et al. (2002)). This model, referred to as
"advancedCHESS", is based on a finite volume approach with discretization of the heat exchanger domain into a set of control volumes as fin-and-tube elements where both local thermophysical properties and empirical coefficients are computed. While "advancedCHESS" appears to be a research model, two other models are more practical for production simulations. The two less advanced models, called "basicCHESS" and "quickCHESS", do not consider tube-to-tube heat transfer.

While the above publications are very interesting and valuable, they do not offer a methodology for accounting for tube-to-tube heat transfer in a tube-by-tube simulation model. The number of influencing parameters identified for a dry fin by RomeroMender et al. (1997) suggests that a fully fundamental approach will be difficult to implement into a tube-by-tube evaporator model, which uses the adiabatic fin tip assumption and considers an individual tube as a separate entity for heat transfer calculations. Our attempts to apply a few algorithms derived from their paper, however, were unsuccesful because we were unable to resolve the "clashes" between the fundamental algorithms and the current simulation scheme used in EVAPS. It appears that merging a fundamental scheme into EVAPS amounts to a separate project that should be dedicated to this task.

To reach the objectives of the project within a stipulated effort and time, a practical scheme was developed, which uses the temperature difference between neighboring tubes as the driving force for heat transfer. This scheme approaches the tube-to-tube heat
transfer problem in a similar way Sheffield (1988) studied fin collar-tube heat transfer resistance as shown in Figure 4.3.3.2.1.

Figure 4.3.3.2.1: Schematic graph for longitudinal fin conduction between two adjacent tubes

To determine the heat transferred, the Fourier Law of Conduction is applied. The effects of the available width and configuration of the conducting material (fin) are represented by a "shape factor" S used in equation 4.9:

$$
\begin{equation*}
\left(Q_{f i n}\right)_{i, j}=\left(\frac{W \cdot t_{f}}{L} K_{f}\right)\left(T_{w, i}-T_{w, j}\right)=S \frac{t_{f}}{L} \cdot K_{f}\left(T_{w, i}-T_{w, j}\right) \tag{4.3.3.2.1}
\end{equation*}
$$

To show the impact of fin conduction, Lee and Domanski used this scheme considering up to six immediate neighboring tubes. For example, for the circuitry used in the evaporators tested under this project and shown in Figure 4.3.3.2.2 the intermediate neighbors for tube $\mathbf{2 5}$ are tubes $\mathbf{7 , 8}, 26,44,43$, and 24 .

Figure 4.3.3.2.2: Schematic of refrigerant circuitry for COIL-W, COIL-E and COIL-EC in cross-counter flow configuration (inlet tubes: 42, 48, 54; outlet tubes: 1, 7, 13)

Extensive experimenting with this scheme for the coils tested under this project indicated that it was important to add additional neighbors to the group of immediate neighbors considered so far. This need demonstrated itself not only in predicted capacity values but also in simulation runs, which did not yield gradually changing predictions at small changes in imposed refrigerant superheat at the outlet tubes. Based on these observations, depending on location up to six second-order neighbors were added. These are other tubes in the coil assembly that a given tube "can see". Tube 25 has four second-order neighbors; they are tubes $6,9,45$, and 42. For tube 9 , the immediate neighbors are tube $8,10,27$, and 26 , and the second-order neighbors are tubes 25,45 , and 28. In a three-depth-row coil, the maximum number of second-order neighbors is four. A five-depth-row coil is need for a tube located in the middle depth row to have all six second-order neighbors.

The value of the shape factor depends on a fin design. For flat and wavy fins the fin material is continuous. Lanced fins, however, have numerous cuts, which reduce the fin cross-section area that is available for heat transfer. Hence, the shape factor for flat and wavy fins should be expected to have higher values than for lanced or louver fins. Since
we are not aware of any publication that quantifies the fin shape factor, the values for COIL-W and COIL-E were assigned based on their respective results for test 10 . Once these values for shape factors were assigned, they were left unchanged for the remaining simulations. COIL-EC used the same shape factor as COIL-E, however, any tube in COIL-EC could have only two neighbors, the closest two tubes located in the same depth row.

Figure 4.3.3.2.3 shows tested and simulated capacities for COIL-E at conditions of test 1 , $2,9,10,13$, and 14 . For the tests at $5.6^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)$ superheat (tests 1,9 and 13$)$, the model predicted measured capacities within 5.1%. For the tests with $16.7^{\circ} \mathrm{C}\left(30^{\circ} \mathrm{F}\right)$ superheat, the differences in between tested and predicted and tested capacities were $6.7 \%, 3.1 \%$, and -2.9%. Without accounting for tube-to-tube heat transfer, EVAP5 would overpredict the capacities at $16.7^{\circ} \mathrm{C}\left(30^{\circ} \mathrm{F}\right)$ superheat by approximately 20%.

Section 4.4 presents validation results for all three evaporators.

Figure 4.3.3.2.3: COIL-E measured and simulated capacities for tests with $5.6^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)$ and $16.7^{\circ} \mathrm{C}\left(30^{\circ} \mathrm{F}\right)$ superheats (tests $\left.1,2,9,10,13,14\right)$

4.4 Validation and Simulations with EVAPS

4.4.1 Validation of EVAPS

The majority of laboratory test data measured in this study are for a cross-counter flow configuration with non-disturbed (uniform) air velocity profile at the coil inlet. These measurements for COIL-W, COIL-E, and COIL-EC were used to validate EVAPS and explore the impact of tube-to-tube heat transfer. The imposed variety of rekgerant superheats at individual exit tubes combined with a wide range of air flow provided a unique set of challenging test data for validating any evaporator model.

The refrigerant circuitry for the tested evaporators has already been presented in Figure 4.3.3.2.2 as it is displayed by the EVAP-COND interface. Also copying from the respective window of EVAP-COND, Figure 4.4.1.1 shows the key design parameters of COIL-W. Except for a different fin design, these parameters were the same for COIL-E and COIL-EC.

At the outset of simulations for each coil, EVAPS was "tuned" to predict the performance of a given evaporator at the conditions of test 9 . This was accomplished by inputting "corrections parameters" for the refrigerant heat transfer coefficient, refrigerant pressure drop, and air-side heat transfer coefficient. (Section 4.3.2 discusses the reasons for using these parameters in the context of prediction discrepancies between different air-side correlations). Figure 4.4.1.2 presents the correction parameters for COIL-W and COIL-E
as they were input into the EVAP-COND window. The input for COIL-EC was different by the value for the air-side heat transfer coefficient, which was 0.62 instead of 0.65 . The 1.6 value for the refrigerant pressure drop parameter accounts for the impact of lubricant, which can be responsible for 35% pressure drop underprediction. Since the parameter for refhgerant heat transfer coefficient was set to 1.0 , the 0.65 or 0.62 value for the airside heat transfer coefficient accommodates the heat transfer adjustment on the air and refrigerant sides. These correction parameters were used in all simulations for the respective coils.

Figure 4.4.1.1: Design parameters for COIL-W

Figure 4.4.1.2: Correction parameters for COIL-W and COIL-E

Tables 4.4.1.1, 4.4.1.2, and 4.4.1.3 show tested and simulated total capacities for COILW, COIL-E, and COIL-EC, respectively, in the test matrix format. Tables 4.4.1.4a, 4.4.1.4b, 4.4.1.5a, 4.4.1.5b, 4.4.1.6a, and 4.4.1.6b present total and sensible capacities, sensible heat ratios, and differences between simulated and measured results. It is convenient to screen the accuracy of capacity predictions by reviewing Figures 4.4.1.3 and 4.4.1.4. Figure 4.4.1.3 shows that the maximum error in capacity prediction for wet coil tests was 5.5% for all air velocities and refrigerant superheat scenarios. For dry coil tests shown in Figure 4.4.1.4, EVAP5 predicted the three capacities at uniform $5.6^{\circ} \mathrm{C}$ $\left(10^{\circ} \mathrm{F}\right)$ superheat within 5.0%. (They are represented by the first bar for each coil). For the remaining six tests at different superheat scenarios, the only capacity predicted within 5.0% was for COIL-EC (represented by the last bar on the right hand side). Capacities for COIL-W and COIL-E capacities were unpredicted by as much as $\mathbf{2 0 . 0} \%$. The inability of EVAP5 to account accurately for longitudinal fin conduction for dry coil tests can be explained by the fact that the used algorithm considers only temperature differences between neighboring tubes (the first order effect) and neglects variations in air-side heat transfer. This conclusion agrees with the observation by Romero-Mendez et
al. (1997) who indicated thermal conductance for convection from the fin as one of the parameters affecting tube-to-tube heat transfer. This and other effects identified by Romero-Mendez et al. (1997) should receive detailed attention in a future study dedicated to this challenging modeling issue.
Table 4.4.1.1: Measured and Simulated Capacities for COIL-W in Cross-Counter Flow Configuration

* Superheat to be controlled such that the desired overall level of superheat is obtained

1) SI units of $\mathrm{m}^{3} / \mathrm{kWh}$ multiplied by capacity (Q) in kW to determine airflow (IP units of cfm/ton multiplied by capacity (Q) in tons).
Table 4.4.1.2: Measured and Simulated Capacities for COIL-E in Cross-Counter Flow Configuration

Test Name	Test \#	Volumetric Flowrate of Air m ${ }^{3} / h$ (scfm)			Coil Surface		Overall Superheat									
					Superheats in Individual Circuits											
		$\begin{gathered} 145 \cdot Q^{\prime} \\ (300 \cdot Q) \end{gathered}$	$\begin{gathered} 193 \cdot Q^{\prime} \\ (400 \cdot Q) \end{gathered}$	$\begin{aligned} & 242 \cdot Q^{\prime} \\ & (500 \cdot Q) \end{aligned}$			Dry	Wet	$5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$$5.6 / 5.6 / 5.6$$(10 / 10 / 10)$		$\begin{gathered} 16.7^{\circ} \mathrm{C}\left(30.0^{\circ} \mathrm{F}\right) \\ \hline 16.7 / 16.7 / 16.7 \\ (30 / 30 / 30) \\ \hline \end{gathered}$		$\begin{gathered} 5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right) \\ \hline 16.7 / * / 16.7 \\ (30 / * / 30) \\ \hline \end{gathered}$		$\begin{gathered} 5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right) \\ \hline * / 16.7 / 16.7 \\ (* / 30 / 30) \end{gathered}$	
					$\begin{array}{r} \mathrm{Q}_{\text {lest }} \\ \mathrm{W}(\mathrm{Btu} / \mathrm{h}) \\ \hline \end{array}$	$\frac{\mathrm{Q}_{\text {sim }}}{\mathrm{W}(\mathrm{Btu} / \mathrm{h})}$			$\begin{gathered} \mathrm{Q}_{\text {test }} \\ \mathrm{W}(\mathrm{Btu} / \mathrm{h}) \\ \hline \end{gathered}$	$\begin{gathered} \frac{\mathrm{Q}_{\text {sim }}}{\mathrm{W}(\mathrm{Btwh})} \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{Q}_{\text {test }} \\ \mathrm{W}(\mathrm{~B} \mathbf{\mathrm { B } / \mathrm { h })} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Q}_{\text {sim }} \\ \mathrm{W}(\mathrm{Bt} \omega \mathrm{~h}) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Q}_{\text {test }} \\ & \mathrm{W}(\mathrm{Brwh}) \end{aligned}$	$\begin{gathered} \mathrm{Q}_{\text {sim }} \\ \mathrm{W}(\mathrm{Bt}(\mathrm{wh}) \\ \hline \end{gathered}$		
W020320B	1	x				x	5998 (20464)	$\begin{gathered} 6239 \\ (21289) \\ \hline \end{gathered}$								
W020321A	2	X				x			$\begin{gathered} 4026 \\ (13737) \end{gathered}$	$\begin{gathered} 3806 \\ (12987) \\ \hline \end{gathered}$						
E020322A	5		x		x		$\begin{gathered} 5603 \\ (19115) \\ \hline \end{gathered}$	$\begin{gathered} 5323 \\ (18163) \\ \hline \end{gathered}$								
E020321B	6		x		x				$\begin{gathered} 4302 \\ (14677) \\ \hline \end{gathered}$	$\begin{gathered} 3466 \\ (11828) \\ \hline \end{gathered}$						
E020322C	7		x		x						$\begin{gathered} 4797 \\ (16367) \\ \hline \end{gathered}$	$\begin{gathered} 3835 \\ (13086) \\ \hline \end{gathered}$				
E020328B	8		x		x								$\begin{gathered} 4700 \\ (16037) \\ \hline \end{gathered}$	$\begin{gathered} 3794 \\ (12945) \\ \hline \end{gathered}$		
E020607A	9		x			x	$\begin{gathered} 6956 \\ (23733) \\ \hline \end{gathered}$	$\begin{gathered} 6977 \\ (23807) \\ \hline \end{gathered}$								
E020318A	10		x			x			$\begin{gathered} 4865 \\ (16599) \\ \hline \end{gathered}$	$\begin{gathered} 5055 \\ (17249) \\ \hline \end{gathered}$						
E020:18B	11		x			x					$\begin{gathered} 5485 \\ (18715) \\ \hline \end{gathered}$	$\begin{gathered} 5181 \\ (17678) \\ \hline \end{gathered}$				
F030319A	17		x			x							$\begin{gathered} 4736 \\ (16157) \end{gathered}$	$\begin{gathered} 4774 \\ (16789) \end{gathered}$		

* Superheat to be controlled such that the desired overall level of superheat is obtained
1 SI units of $\mathrm{m}^{3} / \mathrm{kWh}$ multiplied by capacity (Q) in kW to determine airflow (IP units of cfm/ton multiplied by capacity (Q) in tons)
Table 4.4.1.3: Measured and Simulated Capacities for COIL-EC in Cross-Counter Flow Configuration

Test Name	$\begin{gathered} \text { Test } \\ \# \end{gathered}$	Volumetric Flowrate or Air m ${ }^{3} / \mathrm{h}$ (scfm)			Coil Surface		Overall Superheat									
					Superheats in Individual Circuits											
		$\begin{gathered} 145 \cdot Q^{1} \\ (300 \cdot Q) \end{gathered}$	$\begin{gathered} 193 \cdot \mathrm{Q}^{\prime} \\ (400 \cdot \mathrm{Q}) \end{gathered}$	$\begin{gathered} 242 \cdot \mathrm{Q}^{1} \\ (500 \cdot \mathrm{Q}) \end{gathered}$			Dry	Wet	$5.6{ }^{\circ} \mathrm{C}\left(10.0{ }^{\circ} \mathrm{F}\right)$		$16.7^{\circ} \mathrm{C}\left(30.0^{\circ} \mathrm{F}\right)$ $16.7 / 16.7 / 16.7$ $(30 / 30 / 30)$		$\begin{gathered} 5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right) \\ \hline 16.7 / * / 16.7 \\ (30 / * / 30) \\ \hline \end{gathered}$		$\begin{gathered} \hline 5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right) \\ * / 16.7 / 16.7 \\ (* / 30 / 30) \\ \hline \end{gathered}$	
					$\begin{aligned} & 5.6 / 5.6 / 5.6 \\ & (10 / 10 / 10) \\ & \hline \end{aligned}$											
					$\mathrm{Q}_{\text {test }}$	$\mathrm{Q}_{\text {sim }}$			$\mathrm{Q}_{\text {test }}$	$\mathrm{Q}_{\text {sim }}$	$\mathrm{Q}_{\text {test }}$	$\mathrm{Q}_{\text {sim }}$	$\mathrm{Q}_{\text {test }}$	$\mathrm{Q}_{\text {sim }}$		
					$\mathrm{W}(\mathrm{~B} t \omega / \mathrm{h})$	W (Btwh)			W (Btwh)	W (Btwh)	W (Btwh)	W (Btwh)	W (Btu/h)	W (Btu/h)		
E020417A	1	x				x	$\begin{gathered} 6085 \\ (20760) \end{gathered}$	$\begin{gathered} 6189 \\ (21117) \\ \hline \end{gathered}$								
E020417B	2	x				x			$\begin{gathered} 4647 \\ (15855) \end{gathered}$	$\begin{gathered} 4890 \\ (16684) \end{gathered}$						
E020418A	5		x		x		$\begin{gathered} 5578 \\ (19032) \\ \hline \end{gathered}$	$\begin{gathered} 5356 \\ (18272) \\ \hline \end{gathered}$								
E020419A	6		x		x				$\begin{gathered} 4170 \\ (14226) \\ \hline \end{gathered}$	$\begin{gathered} 4291 \\ (14640) \end{gathered}$						
E020415A	9		x			x	$\begin{gathered} 6972 \\ (23788) \\ \hline \end{gathered}$	$\begin{gathered} 6989 \\ (23845) \\ \hline \end{gathered}$								
E020509A	10		x			x			$\begin{gathered} 5361 \\ (18292) \end{gathered}$	$\begin{gathered} 5467 \\ (18652) \end{gathered}$						
E020416B	13			x		x	$\begin{gathered} 7781 \\ (26546) \\ \hline \end{gathered}$	$\begin{gathered} 7927 \\ (27047) \\ \hline \end{gathered}$								
E020416A	14			x		x			$\begin{gathered} 6653 \\ (22700) \end{gathered}$	$\begin{gathered} 6007 \\ (20496) \end{gathered}$						

* Superheat to be controlled such that the desired overall level of superheat is obtained

1) SI units of $\mathrm{m}^{3} / \mathrm{kWh}$ multiplied by capacity (Q) in kW to determine airflow (IP units of cfm/ton multiplied by capacity (Q) in tons).
Table 4.4.1.4a: EVAP5 Validations for COIL-W (evaporator with wavy fins), SI Units

Flow configuration	Test name	$\begin{gathered} \text { Test } \\ \# \end{gathered}$	Test results			Simulations with fin conduction included					Simulated capacity w/o fin conduction	
						Results			Difference ${ }^{1}$			
			Total capacity (watt)	Sensible capacity (watt)	Sensible heat ratio (fraction)	Total capacity (watt)	Sensible capacity (watt)	Sensible heat ratio (fraction)	Total Capacity (\%)	Sensible heat ratio (\%)	Total capacity (watt)	Capacity difference ${ }^{2}$ (\%)
					0.68							
c.e. 8 rovnter	W020226A	1	5788	3953		5747	3706	0.64	-0.7	-5.9	5837	1.6
cross-counter	W020225B	5	5429	5429	1.00	5418	5418	1.00	-0.2	0.0	5425	0.1
cross-counter	W020228A	6	3595	3595	1.00	2953	2954	1.00	-17.8	0.0	4816	63.1
cross-counter	W020221A	7	3910	3910	1.00	3168	3168	1.00	-19.0	0.0		
cross-counter	W020225A	8	3889	3889	0.76	3360	3360	1.00	-13.6	0.0		
cross-counter	W020207B	9	6508	4914	0.76	6485	4724	0.73	-0.3	-3.7	6499	0.2
cross-counter	W020530A	10	3723	3381	0.91	3819	3014	0.79	2.6	-15.1	5968	56.3
cross-counter	W020531A	11	3837	3372	0.88	3819	2939	0.77	-0.5	-14.2		
cross-counter	W020215B	12	3830	3503	0.91	3885	3013	0.78	1.4	-17.9	7810	1.1
cross-counter	W020301A	13	7503	5820	0.78	7728	5678	0.73	3.0	-5.6		

${ }^{1} 100 \%$ (simulated value with fin conduction - tested value)/tested value
Table 4.4.1.4b: EVAP5 Validations for COIL-W (evaporator with wavy fins), IP Units

Flow configuraton	t	$\left\lvert\, \begin{gathered} \text { Test } \\ \# \end{gathered}\right.$	Testesilts			Simulations with fin conduction included					Simulated capacity w/o fin conduction	
						Results			Difference ${ }^{1}$			
			Total capacity (Btu/h)	Sensible capacity (Btu/h)	Sensible heat ratio (fraction)	Total capacity (Btu/h)	Sensible capacity (Btu/h)	Sensible heat ratio (fraction)	Total Capacity (\%)	Sensible heat ratio (\%)	Total capacity (Btu/h)	Capacity difference ${ }^{2}$ (\%)
cross-counter	W020226A	1	19746	13488	0.68	19609	12643	0.64	-0.7	-5.9		
											19916	1.6
cross-counter	W020225B	5	18521	18521	1.00	18485	18485	1.00	-0.2	0.0	18509	0.1
cross-counter	W020228A	6	12265	12265	1.00	10076	10077	1.00	-17.8	0.0	16431	63.1
cross-counter	W020221A	7	13341	13341	1.00	10810	10810	1.00	-19.0	0.0		
cross-counter	W020225A	8	13267	13267	0.76	11464	11465	1.00	-13.6	0.0		
cross-counter	W020207B	9	22203	16767	0.76	22127	16119	0.73	-0.3	-3.7	22172	0.2
cross-counter	W020530A	10	12701	11535	0.91	13030	10283	0.79	2.6	-15.1	20363	56.3
cross-counter	W020531A	11	13091	11503	0.88	13030	10029	0.77	-0.5	-14.2		
cross-counter	W020215B	12	13067	11950	0.91	13255	10281	0.78	1.4	-17.9		
cross-counter	W020301A	13	25598	19857	0.78	26367	19372	0.73	3.0	-5.6	26645	1.1

${ }^{2} 100 \%$ (simulated value w/o fin conduction - simulated value with fin conduction)/ simulated value with fin conduction
Table 4.4.1.5a: EVAP5 Validations for COIL-E (evaporator with lanced fins), SI Units

Flow configuration	Test Name	$\left\lvert\, \begin{gathered} \text { Test } \\ \# \end{gathered}\right.$	Test reouls			Simulations with fin conduction included					Simulated capacity w/o conduction	
						Results			Difference ${ }^{1}$			
			Total capacity (watt)	Sensible capacity (watt)	Sensible heat ratio (fraction)	Total capacity (watt)	Sensible capacity (watt)	Sensible heat ratio (fraction)	Total Capacit! (\%)	Sensible heat ratio (\%)	Total capacity (watt)	Capacity difference ${ }^{2}$ (\%)
cross-counter	W020320B	1	5998	3959	0.66	6239	3876	0.62	4.0	-5.9	6238	0.0
cross-counter	W020321A	2	4026	3171	0.79	3806	2733	0.72	-5.5	-8.8	5196	36.5
cross-counter	E020322A	5	5603	5603	1.0	5323	5323	1.00	-5.0	0.0	5426	1.9
cross-counter	E020321B	6	4302	4302	1.0	3466	3466	1.00	-19.4	0.0	4572	31.9
cross-counter	E020322C	7	4797	4797	1.0	3835	3835	1.00	-20.0	0.0		
cross-counter	E020328B	8	4700	4700	1.0	3794	3794	1.00	-19.3	0.0		
cross-counter	E020607A	9	6956	5057	0.73	6977	4677	0.67	0.3	-7.8	6952	-0.4
cross-counter	E020318A	10	4865	3981	0.82	5055	3810	0.75	3.9	-7.9	5723	13.2
cross-counter	E020318B	11	5485	4266	0.78	5181	3789	0.73	-5.5	-6.0		
cross-counter	E020319A	12	4736	3943	0.83	4774	3541	0.74	0.8	-10.9		
cross-counter	W020319B	13	7653	5720	0.75	8027	5651	0.70	4.9	-5.8	8004	-0.3
cross-counter	W020320A	14	5429	4615	0.85	5693	4338	0.76	4.9	-10.4	6395	12.3

? 100% (simulated value w/o fin conduction - simulated value with fin conduction)/ simulated value with fin conduction

Flow conigguration	Test Name	$\left\|\begin{array}{ll} t \end{array}\right\|$	Test results			Simulations with fin conduction included					Simulated capacity w/o conduction	
						Results			Difference ${ }^{1}$			
			Total capacity (Btu/h)	Sensible capacity (Btu/h)	Sensible heat ratio (fraction)	Total capacity (Btu/h)	Sensible capacity (Btu/h)	Sensible heat ratio (fraction)	Total Capacity (\%)	Sensible heat ratio (\%)	Total capacity (Btu/h)	Capacity difference ${ }^{2}$ (\%)
cross-counter	W020320B	1	20464	13506	0.66	21289	13224	0.62	4.0	-5.9	21284	∞
cross-counter	W020321A	2	13737	10819	0.79	12987	9324	0.72	-5.5	-8.8	17730	E6.5
cross-counter	E020322A	5	19115	19115	1.0	18163	18163	1.00	-5.0	0.0	18514	$1 \times$
cross-counter	E020321B	6	14677	14677	1.0	11828	11828	1.00	-19.4	0.0	15602	810
cross-counter	E020322C	7	16367	16367	1.0	13086	13086	1.00	-20.0	0.0		
cross-counter	E020328B	8	16037	16037	1.0	12945	12945	1.00	-19.3	0.0		
cross-counter	E020607A	9	23733	17252	0.73	23807	15957	0.67	0.3	-7.8	23720	+. 4
cross-counter	E020318A	10	16599	13581	0.82	17249	13000	0.75	3.9	-7.9	19528	N. 2
cross-counter	E020318B	11	18715	14556	0.78	17678	12927	0.73	-5.5	-6.0		
cross-counter	E020319A	12	16157	13452	0.83	16289	12081	0.74	0.8	-10.9		
cross-counter	W020319B	13	26109	19517	0.75	27389	19282	0.70	4.9	-5.8	27312	-0.3
cross-counter	W020320A	14	18524	15744	0.85	19427	14802	0.76	4.9	-10.4	21820	12.3

${ }^{2} 100 \%$ (simulated value w/o fin conduction - simulated value with fin conduction)/ simulated value with fin conduction
Table 4.4.1.6a: EVAP5 Validation for COIL-EC (evaporator with lanced fins, cut between tube depth rows), SI Units

Flow configuration	Test name	$\begin{gathered} \text { Test } \\ \# \end{gathered}$	Tet resuls			Simulations with fin conduction included					Simulated capacity w/o fin conduction	
						Results			Difference ${ }^{1)}$			
			Total capacity (watt)	Sensible capacity (watt)	Sensible heat ratio (fraction)	Total capacity (watt)	Sensible capacity (watt)	Sensible heat ratio (fraction)	Total Capacity (\%)	Sensible heat ratio (\%)	Total Capacity (watt)	Difference ${ }^{2}$ (\%)
cross-counter	E020417A	1	6085	4182	0.69	6189	3950	0.64	1.7	-7.7	6196	0.1
cross-counter	E020417B	2	4647	3577	0.77	4890	3329	0.68	5.2	-13.1	4962	1.5
cross-counter	E020418A	5	5578	5578	1.0	5356	5356	1.0	-4.0	0.0	5360	0.1
cross-counter	E020419A	6	4170	4170	1.0	4291	4291	1.0	2.9	0.0	4400	2.5
cross-counter	E020415A	9	6972	5125	0.74	6989	4816	0.69	0.2	-6.7	7005	0.2
cross-counter	E020509A	10	5361	4361	0.81	5467	4044	0.74	2.0	-10.0	5579	2.0
cross-counter	E020416B	13	7781	6083	0.78	7927	5778	0.73	1.9	-7.3	7990	0.8
cross-counter	E020416A	14	6653	5465	0.82	6382	4893	0.77	-4.1	-7.1	6694	4.9

${ }^{1} 100 \%$ (simulated value with fin conduction - tested value)/tested value
${ }^{2} 100 \%$ (simulated value w/o fin conduction - simulated value with fin conduction)/ simulated value with fin conduction

Flow configuration	Test name	$\begin{array}{\|c} \text { Test } \\ \# \end{array}$	Test results			Simulations with fin conduction included					Simulated capacity w/o fin conduction	
						Results			Difference ${ }^{1)}$			
			Total capacity (Btu/h)	Sensible capacity (Btu/h)	Sensible heat ratio (fraction)	Total capacity (Btu/h)	Sensible capacity (Btu/h)	Sensible heat ratio (fraction)	Total Capacity (\%)	Sensible heat ratio (\%) \qquad	I otal Capacity (Btu/h)	1 00
cross-counter	E020417A	1	20760	14269	0.69	21117	13477	0.64	1.7	-7.7	21138	
cross-counter	E020417B	2	15855	12204	0.77	16684	11359	0.68	5.2	-13.1	16928	1
cross-counter	E020418A	5	19032	19032	1.0	18272	18273	1.0	-4.0	0.0	18287	0.
cross-counter	E020419A	6	14226	14226	1.0	14640	14641	1.0	2.9	0.0	15013	2
s-counter	E020415A	9	23788	17485	0.74	23845	16432	0.69	0.2	-6.7	23898	0
cross-counter	E020509A	10	18292	14880	0.81	18652	13799	0.74	2.0	-10.0	19033	2
cross-counter	E020416B	13	26546	20754	0.78	27047	19713	0.73	1.9	-7.3	27261	0
cross-counter	E020416A	14	22700	18645	0.82	21773	16693	0.77	-4.1	-7.1	22840	σ

2100% (simulated value with fin conduction - tested value)/tested value

Figure 4.4.1.3: Difference between simulated and measured capacities for all Het coil tests for COIL-W, COIL-E, and COIL-EC

Figure 4.4.1.4Difference between simulated and measured capacities for all dry coil tests for COIL-W, COIL-E, and COIL-EC

Tube-to-tube heat transfer demonstrates itself in temperatures that can be measured on coils return bends, as it was shown for COIL-W in Figures 3.4.4.1 and 3.4.4.2. Figure 4.4.1.5 shows similar information (refrigerant temperature at tube exits) as it is displayed by EVAP-COND for the same tests. For test 9 with even refrigerant superheat, refrigerant temperatures are similar for each circuit; refrigerant temperatures reflect drop in refrigerant pressure until the last two tubes in each circuit (2 and 1, 8 and 7, and 14 and 13) in which the refrigerant is superheated. For test 12, the first circuit is in two-phase flow until the exit tube 1, while the refrigerant leaving two other exit tubes (7 and 13) is highly superheated. Tubes 7 and $\mathbf{8}$ experience a drop in temperature compared to tube 9 because of their vicinity to the left-hand side circuit with twophase, low-temperature refrigerant. Tubes 13 and 14 also experience temperature drop, however, it is small because the adjacent tubes are also superheated. This simulation results agree in principle with the measured return bend temperature of Figures 3.4.4.1 and 3.4.4.2.

Tube numbering

$$
V_{\text {air flow }}
$$

Refrigerant exit temperatures (${ }^{\circ} \mathrm{F}$) for COIL-W, test 9

Refrigerant exit temperatures (${ }^{\circ} \mathrm{F}$) for COIL-W, test 12
Figure 4.4.1.5: Tube numbering and refrigerant exit temperatures for individual tubes for test 9 and test 12 for COIL-W, (inlet tubes: 42, 48, 54; outlet tubes: 1, 7, 13)

Figure 4.4.1.6 presents refrigerant exit qualities for individual tubes for COIL-E and COIL-EC for test $10\left(16.7^{\circ} \mathrm{C}\left(30^{\circ} \mathrm{F}\right)\right.$ even superheat). The figure shows that refrigerant reaches superheat (quality 1) two tubes earlier in COIL-E than in COIL-EC in each refrigerant circuit. This is a result of heat transfer between different tube depth rows that was allowed in COIL-E and was inhibited in COIL-EC. Corresponding tube temperatures predicted by EVAPS agree with those measured during laboratory tests.

Refrigerant exit qualities (fraction) for COIL-E, test 10

Refrigerant exit qualities (fraction) for COIL-EC, test 10
Figure 4.4.1.6: Refrigerant exit qualities for individual tubes for COIL-E and COIL-EC test $\mathbf{1 0}$ (16.7 ' $\mathrm{C}\left(30^{\circ} \mathrm{F}\right)$ even superheat)

The last two columns in Tables $4.4 .1 .4,4.4 .1 .5$, and 4.4.1.6 compare simulated capacities that were obtained with and without accounting for tube-to-tube heat transfer. For the tests with a uniform superheat of $5.6^{\prime \prime} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)$, the difference in capacities is not greater than $\mathbf{2 . 7} \%$ for any of the three coils. For the tests with uniform superheat of $16.7^{\circ} \mathrm{C}\left(30^{\circ} \mathrm{F}\right)$, the capacities differ by $63.1 Y_{o}$ and 56.3 Y_{o} for COIL-W, 33.6 \%, $\mathbf{1 8 . 8} Y_{o}, \mathbf{1 9 . 2} Y_{o}$ for COIL-E, and $\mathbf{1 . 5} \%$, $\mathbf{2 . 5} \%$, 2.5 $\%$, and 4.9 Y_{0} for COIL-EC. These results demonstrate the impact of fin design on tube-to-tube heat transfer.

Thevalidation of EVAP5 used the full set of COIL-W, COIL-E, and COIL-EC measurements in cross-counter flow configuration, which constituted the majority of the measurements taken in this study. The validation effort was not extended to the eight data points taken in cross-parallel flow configuration because six of these tests that involved $16.7^{\circ} \mathrm{C}\left(30^{\circ} \mathrm{F}\right)$ superheat resulted in severe pinching within less than $1^{\prime \prime} \mathrm{C}\left(\mathbf{1 . 8}{ }^{\circ} \mathrm{F}\right)$ in at least one of the circuits. Such a close
approach of refrigerant and air causes a profound convergence problem for a tube-by-tube model in which air temperatures upstream of each tube have to be iterated around a target value. Furthermore, for evaluating the potential reduction in heat exchanger volume, only capacity predictions at test 9 with $5.6^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)$ superheat were needed, and these were attainable with EVAP5.

Test 9 measured capacities for COIL-W and COIL-E were $4729 \mathrm{~W}(16146 \mathrm{Btu} / \mathrm{h})$ and 4549 W ($15522 \mathrm{Btu} / \mathrm{h}$), while EVAP5 predictions were $4796 \mathrm{~W}(16366 \mathrm{Btu} / \mathrm{h})$ and $5482 \mathrm{~W}(18705$ $\mathrm{Btu} / \mathrm{h}$), respectively. This is a very good prediction for COIL-W, within 1.3%, while the discrepancy for COIL-E is 20.5 \%. It should be noted that a higher capacity should be expected for COIL-E than for COIL-W, as it was predicted by EVAPS and always was obtained from laboratory measurements except this time. It is possible that some condensate holdup might have influenced the measured capacity for COIL-E. With this, it was concluded that EVAP5 properly simulated coils in a cross-parallel flow set up. Consequently, COIL-W was applied in a later section to examine potential savings in evaporator core volume for the cross-parallel configuration.

4.4.2 Possible Savings in Heat Transfer Area Due to Optimized Superheat

4.4.2.1 Cross-CounterFlow Configuration with UniformAir Flow Distribution

Considering similar performance degradations for different refiigerant superheat scenarios, possible savings in heat exchanger material are demonstrated using test 12 of COIL-W as an example. In our simulations, it was assumed that smart refrigerant distributors would optimize refrigerant distribution so the evaporator obtains maximum capacity. In these tests with a
uniform air velocity profile, the evaporators reached maximum capacity when the refrigerant split between the three circuits resulted in uniform superheat at the individual outlet tubes.

For these simulations, five alternative coils were coded with a smaller number of tubes than COIL-W. All simulation runs had the same inlet air condition, refrigerant inlet quality, and refrigerant outlet pressure and superheat at the evaporator exit. Also, inlet air velocity was the same for each coil as for COIL-W. A coil with a smaller face area had a lower volumetric flow rate than COIL-W, proportional to the percentage that its face area was reduced.

Figure 4.4.2.1.1 shows coil designs and simulation results. Four out of five alternative coil designs offered both savings in the heat exchanger core volume and an increase in coil capacity. The coils with a lower volumetric flow of air would also provide savings in fan power.

$\mathrm{Q}=14712 \mathrm{Btu} / \mathrm{h}$
Air flow rate $=488.5 \mathrm{ft}^{3} / \mathrm{min}$ $\mathrm{Q} / \mathrm{Q}_{\mathrm{test} 12}=1.13$
HX vol. core saved $=\mathbf{3 3 . 3} \%$

Figure 4.4.2.1.1: Simulation results for alternative coil designs to COIL-W in cross-counter flow configuration. Performance is compared to COIL-W test 12 with simulated capacity of $13225 \mathrm{Btu} / \mathrm{h}$.

4.4.2.2 Cross-Parallel Flow Configuration with UniformAir Flow Distribution

Simulations were also performed to demonstrate possible savings in coil material (core volume of the heat exchanger) for COIL-W in cross-parallel configuration. Test 9 (W020304a) was used as a reference. Alternative coil designs with two depth rows were only examined because, in the cross-parallel configuration, more depth rows are not beneficial due to pinching.

All simulations were run using test 9 operating conditions, including $6^{\circ} \mathrm{C}\left(10.8^{\circ} \mathrm{F}\right)$ superheat, with the difference that the volumetric flow of air was adjusted so that each coil had the same inlet air velocity as COIL-W. This means that a coil with a smaller face area had a lower volumetric flow rate than COIL-W by the same percentage its face area was reduced.

Figure 4.4.2.2.1 shows coil designs and simulation results. Each of the four presented two-depth row designs offered improved capacity and savings in coil core volume. The coils with a lower volumetric flow of air would also provide savings in fan power. The smallest coil with 12×2 tube arrangement matched the capacity of test 12 with a 33.3% savings in coil material.

$\mathrm{Q}=14513 \mathrm{Btu} / \mathrm{h}$
Air flow rate $=536.7 \mathrm{ft}^{3} / \mathrm{min}$
$\mathrm{Q} / \mathrm{Q}_{\text {test12 }}=1.99$
HX vol. core saved $=33.3 \%$

$\mathrm{Q}=11876 \mathrm{Btu} / \mathrm{h}$
Air flow rate $=477.1 \mathrm{ft}^{3} / \mathrm{min}$ $\mathrm{Q} / \mathrm{Q}_{\text {test } 12}=1.62$
HX vol. core saved $=\mathbf{4 0 . 7} \%$

$\mathrm{Q}=9707 \mathrm{Btu} / \mathrm{h}$
Air flow rate $=447.3 \mathrm{ft}^{3} / \mathrm{min}$
$\mathrm{Q} / \mathrm{Q}_{\text {test } 12}=1.33$
HX vol. core saved $=44.4$
$\mathrm{Q}=7378.7 \mathrm{Btu} / \mathrm{h}$
Air flow rate $=357.8 \mathrm{ft}^{3} / \mathrm{min}$ $\mathrm{Q} / \mathrm{Q}_{\text {iest } 12}=1.01$
HX vol. core saved = 33.3%

Figure 4.4.2.2.1 : Simulation results for alternative coil designs to COIL-W in cross-parallel configuration. Comparisons are to COIL-W, test 12 with tested capacity of 7311 Btu/h.

4.4.2.3 Cross-Counter Flow Arrangement with Non-Uniform Air Flow Distribution

The tests performed in the lab with non-uniform air distributions resulted in complicated velocity profiles that currently cannot be reproduced in EVAP5 simulations. For this reason, the simulations were performed with one-dimensional, non-uniform velocity profiles that were independent of the tests performed in the lab and represented a different application case scenario. For these simulations, COIL-W test 9 with a uniform air distribution was selected as a reference test, and additional simulations were performed for two-step velocity profiles where the top (left) to bottom (right) velocity ratios were $1: 1.5,1: 2.0,1: 2.5,1: 3,1: 3.5$, and $1: 4$.

Two runs were performed for each velocity ratio: the first - with a uniform refrigerant distribution, and the second - with a refrigerant distribution optimized to obtain maximum capacity. During all these tests, the external run parameters (refrigerant inlet state, exit pressure and superheat, air flow rate, etc.) were the same. Figure 4.4.2.3.1 presents a velocity profile representation for the 1:3 ratio as it was input into EVAP-COND. Since our velocity profiles have a near step change, they represent a more radical departure from uniformity than the profiles obtained in the laboratory.

Table 4.4.2.3.1 summarizes simulation results, and Figure 4.4.2.3.2 presents simulated capacities as referenced to the capacity of test 9 . The table and figure show that the capacity degrades linearly with degradation of the air velocity. For the $1: 4$ air velocity ratio and uniform refrigerant distribution, the obtained capacity was only $63 \boldsymbol{Y}$ of the reference test 9 value. However, with optimized refrigerant distribution, as is the purpose of smart distributors, the obtained capacity was within $7 Y_{o}$ of the reference capacity.

Figure 4.4.2.3.1: Air velocity profile representation for the $1: 3$ top-to-bottom velocity ratio (during tests the coil was positioned vertically, turned clockwise by 90°)

Table 4.4.2.3.1: Simulated Capacities and Refrigerant Distributions for Non-Uniform Inlet Air Velocity Profile

Air velocity ratio (top to bottom)	$1: 1$	$1: 1.5$	$1: 2$	$1: 2.5$	$1: 3$	$1: 3.5$	$1: 4$	
Capacity (watt)	Uniform ref. distribution	7044	6748	6194	5710	5199	4886	4465
	Optimized ref. distribution	7044	7001	6914	6849	6762	6662	6582
Capacity (Btu/h)	Uniform ref. distribution	22127	21197	19456	17935	16331	15347	14024
	Optimized ref. distribution	22127	21997	21718	21515	21240	20928	20675
Optimized refrig. distribution (fraction)	top (left) circuit	0.33	0.295	0.265	0.240	0.222	0.210	0.195
	middle circuit	0.33	0.333	0.340	0.340	0.342	0.345	0.350
	bottom (right) circuit	0.33	0.372	0.395	0.420	0.436	0.445	0.455

Figure 4.4.2.3.2: COIL-W capacities at different air velocity ratios referenced to capacity at test 9 in cross-counter flow configuration

To assess the savings in the heat exchanger material due to optimized control of refrigerant superheat, two evaporators with reduced number of tubes were coded, shown in Figure 4.4.2.3.3, and simulations were performed for 1:2.5 and 1:4 air velocity profiles. The two-depth row evaporator had the same face area as COIL-W and was simulated with the same volumetric flow rate of air. For the three-depth-row, the volumetric flow rate was reduced by 16.7%, which corresponds to the reduction of the coil face area in relation to that of COIL-W. The results presented in Table 4.3.3.1.1 show that the benefit of optimizing refrigerant distribution increases with the level of non-uniformity in the air velocity profile. For the $\mathbf{1 : 4}$ air velocity ratio, optimizing refrigerant distribution allows a reduction in coil volume of $\mathbf{3 3 . 3} \%$. For the 1:2.5 air velocity ratio, the use of $\mathbf{1 5 x} \mathbf{3}$ coil with a slightly increased volumetric flow rate could produce a $\mathbf{1 6 . 7} \%$ reduction in the coil volume.

Coil 15x3

Coil 18x2
Figure 4.4.2.3.3: Two evaporators with a reduced number of tubes

Table 4.4.2.3.2: Savings in Coil Volume Relative to COIL-W due to Optimized Refrigerant for 1:2.5 and 1:4 Air Velocity Ratios

Coil	Refrigerant distribution	Air velocity ratio (top to bottom)	Air volumetric flow rate $\mathbf{m}^{3} / \mathbf{m i n}$	Capacity watt	vir volumetric flow rate $\mathrm{ft}^{3} / \mathrm{min}$	Capacity Btu/h	Savings in coil volume $\%$
COIL-W	uniform	$1: 1$	20.7	6485	733	$\mathbf{2 2 1 2 7}$	0
COIL-W	optimized	$1: 2.5$	20.7	6305	733	$\mathbf{2 1 5 1 5}$	0
COIL-W	uniform	$1: 2.5$	20.7	5256	733	$\mathbf{1 7 9 3 5}$	0
18x2	optimized	$1: 2.5$	20.7	4558	733	$\mathbf{1 5 5 5 3}$	33.3
15x3	optimized	$1: 2.5$	17.3	4890	611	$\mathbf{1 6 6 8 5}$	16.7
COIL-W	uniform	$1: 1$	20.7	6485	733	$\mathbf{2 2 5 2 7}$	0
COIL-W	outimized	$1: 4$	20.7	6059	733	$\mathbf{2 0 6 7 5}$	0
COIL-W	uniform	$1: 4$	20.7	4110	733	$\mathbf{1 3 0 2 4}$	0
18x2	optimized	$1: 4$	20.7	4335	733	14790	33.3
15×3	optimized	$1: 4$	17.3	4474	611	$\mathbf{1 5 2 6 6}$	16.7

5 CONCLUSIONS

This collection of experimental data for the three evaporators has revealed interesting results related to non-uniform refrigerant distribution and conduction between tubes through the fins. With cross-counter refrigerant flow, uniform airflow, and exit manifold superheat fixed at 5.6 " C $\left(10.0^{\circ} \mathrm{F}\right)$, the wavy fin and wavy-lanced fin evaporator's capacity dropped by as much as 41% and $32 \mathbf{Y}_{0}$,respectively, as the superheat was allowed to vary between the circuits. Control of superheat was shown to be even more important during cross-parallel refrigerant flow due to the rapid pinching of the refrigerant and air temperatures. For the wavy and lanced finned evaporators in cross-parallel flow, capacity dropped by 85% and 78% as superheat changed from $5.6^{\prime \prime} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$ to $16.7^{\prime \prime} \mathrm{C}\left(30.0^{\circ} \mathrm{F}\right)$.

As the coil's faces were blocked to produce a non-uniform airflow, control of superheat was shown to restore capacity if the volumetric flow of air was unchanged. The tests showed that when airflow rate was held constant, the losses in capacity due to non-uniform airflow could be recovered to within 2% of the original uniform airflow capacity by controlling superheat. The more non-uniform the airflow over the coil, the greater was the benefit of controlling superheat. For the lanced fin coil, as the airflow ratio between the top half and lower half of the coil varied from 1:1.26 to $1: 2.59$, superheat control improved capacity by 1.4% and 4.6%, respectively.

In parallel with the experimental effort, the NIST evaporator model EVAPS was upgraded to control refrigerant distribution and account for tube-to-tube heat transfer. The model was validated with the experimental results and then used to determine the possible savings in
evaporator core volume if refrigerant distribution was controlled by a smart distributor. In extreme cases, the savings in core volume could be as much as 40%.

A combination of results obtained from laboratory testing and simulations indicated the influence of tube-to-tube heat transfer on capacity degradation. The impact of tube-to-tube heat transfer was negligible in tests with a uniform $5.6^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)$ superheat, but it was significant in tests involving $16.7^{\circ} \mathrm{C}\left(30^{\circ} \mathrm{F}\right)$ superheat. Between two possible conduction mechanisms by which such heat transfer may occur, longitudinal fin conduction was chiefly responsible for degraded performance while longitudinal tube conduction had insignificant effect. The upgraded version of the EVAPS evaporator model, which accounts for tube-to-tube heat transfer based on tube temperatures, was able to predict key return bend temperatures that indicated the occurrence of tube-to-tube heat transfer. However, the study also confirmed that longitudinal heat conduction is affected by the fin design, air-side heat transfer coefficient, and moisture removal process. Consequently, a more detailed modeling scheme needs to be developed to capture other effects influencing tube-to-tube heat transfer. Such a study would not only improve the modeling of evaporators but also of condensers and of gas coolers, where internal heat tansfer may be even more pronounced.

APPENDIX A. SUMMARY OF TEST RESULTS

A. 1 Wavy fin evaporator in cross-counter flow

Table A. 1.1: Wavv Fin Evadorators in Cross-Counter Flow

Test names	Test type
W020225B	5
W020228A	$\mathbf{6}$
W020221A	$\mathbf{7}$
W020225A	$\mathbf{8}$
W020207B	9
W020530A	10
W020531A	11
W020215B	12
W020301A	13

064

Range motal Air-Side Capacity: 18519. 09

$$
\begin{array}{rrr}
\text { ange } & \text { motal Air-Side Capacity: } & 18519.09 \\
0.32 & \text { Sensible Cap (Btu/h): } & 18521.16 \\
0.00 & \text { Latent CaD } & \text { (Btu/h): }
\end{array}
$$

$$
\begin{aligned}
\text { EvapAir Delta } T \text { (F): } & 22.85 \\
\text { Air/Ref Cap Prent Diff: } & -3.32
\end{aligned}
$$

ir I
lbair 1 .

$$
\begin{aligned}
\text { Latent Cap }(\text { Btu } / \mathrm{h}): & -2.07 \\
\text { EvapAir Delta } \mathrm{T}(\mathrm{~F}): & 22.85
\end{aligned}
$$

$$
\begin{array}{rr}
\text { Sensible Heat Ratio: } & 1.000 \\
\text { SCFM per Ton: } & 82.95
\end{array}
$$

$$
\text { (} 0.075 \text { lb/ft3 statourd air) }
$$

$$
\begin{aligned}
& 0.003864 \\
& 0.003864
\end{aligned}
$$

$$
\begin{aligned} & 0.003864 \\ & \text { Nozz1e Temp } \end{aligned}
$$
 E6

$: \quad 62$
0.037
0.004
155.20
0.01
1.87
0.16

Ref-side Cap (Btu/h) : 17904.05

$\begin{array}{cr}\text { Turbine A Frequency (} \mathrm{Hz}) & 166.38 \\ \text { murb A Vol Flow (ft3/min) } & 0.0236 \\ \text { Turb A Density (lbm/ft3) } & 70.37 \\ \text { Turb A Mass Flow (lb/h) } & 99.76 \\ \text { Turbine C Frequency (} \mathrm{Hz}) \vdots & 146.08 \\ \text { Turb C Vol Flow (ft3/min) } & 0.0217 \\ \text { Turb C Density (lbm/ft3) } & 70.40 \\ \text { Turb C Mass Flow (lb/h) } & 91.77 \\ \text { Calculated Mass Flow (lbm/h) } & 69.85 \\ \text { \% Total Mass Flow Thru A } & 38.17 \\ \text { \% Total Mass Flow Thru B } & 26.72 \\ \text { \% Total Mass Flow Thru C } & 35.11\end{array}$

Conditions
Refrigerant Side
Upstream Pressure (psia): 270.55

Coriolis Density (lbm/ft3)
Upstream R22 Tsat (F)

0 r

Upstream Average Temp (F): Upstream Subcooling A (F) :

Upstream Subcooling B (F) :
Average Subcooling (F)
Evap Exit Pressure (psia)
Evap Exit Pressure (pap
Evap Exit Avg Temp B (A) 7eəuxadns G ךז̣noxip Circuit B Superheat (F)
 Overall Superheat (

 zvan Circuit Temp zva@ Circuit Temp

 \&van Circuit Temp 8
SATA FILENAME: W020228A.DAT SISTRIBUTOR SUMMARY SHEET

Refrigerant Side Conditions

SMART DISTRIBUTOR SUMMARY SHEET
DATA FILENAME: W020221A.DAT SUMMARY FILENAME: W020221A.sum

055

SMART DISTRIBUTOR SUMMARY SHEET
DATA FILENAME: WO20225A.DAT SUMMARY FILENAME: W020225A.sum

R n nge
209.99
209.99
0.00
0.22
-. 54
0.0000

Air-Si\#z Conditiows		Range	rotal Air-Side Capacity:	13266.99
Indoor D×y-Bulb	79.866	0.32	Sensible Cap ($\mathrm{Btu} / \mathrm{h}$) :	13267.21
Indoor $\mathrm{I}^{\text {®let }}$ Dew (F)	32.006	0.00	Latent Cap (Btu/h) :	-0.22
Indoor E^{\star} it $\mathrm{Dry}^{\text {- }}$ - ul_{\square} :	64.004	0.19	EvapAir Delta T (F) :	16.5
Ineoor fxit Dew (F_{1} :	32.006	0,00	Air/Ref Cap Prcnt Diff:	-4.

SCFM per Ton: 667.44
Sensider $\begin{array}{ll}\text { Indoor Airflow (SCFM): } 737.917 .29 & (0.075 \mathrm{lb} / \mathrm{ft} 3 \text { standard air) } \\ \text { Evap Inlet Humidity Ratio (1.oH2O/lbAir) }\end{array}$
0.003864
Nozzle Temp (F): 67.29
$\begin{array}{lll}\text { (in Water): } & 1.922 & 0.038 \\ \text { (in Water): } & 0.108 & 0.004\end{array}$
Barometric Pressure (in HG): 29.24
Air Chamber Nozzle Pressure Drop

$$
\text { x- }-1-3-2
$$

Non No mo

$\stackrel{\omega_{0}^{\circ}}{\infty}$ సี

 $\stackrel{-1}{-1}$ 0.480 $\stackrel{i}{\text { in }}$ 0.486

Refrigerant Side Conditions
Expansion Valve
eam Pressure (psia)
Upstream Temp A
(F) $\begin{array}{ll}\text { Upstream Temp B } & (\mathrm{F}) \\ \text { Upstream Temp } & \text { (F) }\end{array}$ Upstream Average Temp (F)会 poream Subcooling B (F) Upstream Subcooling C (F) Evap Exit Pressure (psia) Evap Exit Avg Temp A Evan Exit Avg Temp C Circuit A superheat (F) Circuit C superheat (F)
Overall superheat (F)

Refrigerant Side Coodirions

 Air-Side Conditions $\quad 7 \quad$ Range

mo:al Air-Side Capacity: 22203.15
mo:al Air-Side Capacity
Sensible Cap (Btu/h)
Latent Cap (Btu/h) EvapAir Delta $T(F)$ Air/Ref Cap Prent Diff: Sensible Heat Ratio: SCFM per Ton;
$10.075 \mathrm{lb} / \mathrm{ft3}$ stan 0.011004 đuəl əโzzon

arometric Pressure (in HG): 29.24
Air Chamber Nozzle Pressure Drop (in Evaporator Coil Air Pressure Drop (in Evaporator Coil Air Pressure Drop (in Expansion Valve
Upstream Pressur
eam Pressure (psia)
Upstream Temp A (F) $\begin{array}{ll}\text { Upstream Temp B (F) } \\ \text { Upstream Temp C } & \text { (F) }\end{array}$
Upstream Average Temp (F) Upstream Subcooling A (F) Upstream Subcooling B (F)
Upstream Subcooling C (F) Average Subcooling (F) Evap Exit Pressure (psia) Evap Exit Avg Temp B Circuit A Superheat (F) Circuit B Superheat (F) Circuit C Superheat (F)

$$
\begin{aligned}
& 0.681 \\
& 0.841
\end{aligned}
$$

 Evan $=$ incuit
 $\begin{array}{rrr}56.16 & 2.094 & \text { TurbA Density (lbm/ft3) } \\ 55.82 & 1.778 & \text { TurbAMass Flow (lb/h) } \\ 10.09 & 2.644 & \text { Turbine C Frequency (} \mathrm{Hz} \text {) } \\ 10.14 & 2.250 & \text { Turb C Vol Flow (ft3/min) } \\ 9.80 & 1.778 & \text { Turb C Density (lbm/ft3) } \\ 11.37 & 1.246 & \text { Turb CMass Flow (lb/h) }\end{array}$ Circut B \&alculated Mass Flow (lbm/h) $\begin{array}{ll}2.217 & \text { \% Total Mass Flow Thru A } \\ 0.650 & \text { \% Total Mass Flow Thru B } \\ 0.248 & \text { \% Total Mass Flow Thru C }\end{array}$

 $\begin{array}{llc}56.16 & 2.094 & \text { Turb A Density (} 1 \mathrm{bm} / \mathrm{ft} 3 \text {) } \\ 55.82 & 1.778 & \text { Turb A Mass Flow (} 1 \mathrm{~b} / \mathrm{h} \text {) } \\ 10.09 & 2.644 & \text { Turbine C Frequency (Hz) } \\ 10.14 & 2.250 & \text { Turb C Vol Flow (ft3/min) }\end{array}$
$58.90 \mathrm{z} \quad \mathrm{S}_{(\mathrm{zH})} \mathrm{K}$) Turb A Density ($1 \mathrm{bm} / \mathrm{ft}+3$): 70.28 ZE. ZZT :(प/at) mota ssew Turbine Frequency (Hz): $\quad 177.75$ Turb C 109.50
 $\begin{array}{lll}\text { \% Total Mass Flow Thru B: } & 27.09 \\ \text { \% Total Mass Flow Thru C: } & 34.44\end{array}$ 0.731
0.866
0.737
0.910

$$
0.796
$$

$$
\alpha^{\infty}
$$

$$
\begin{array}{r}
274.00 \\
105.16 \\
105.48 \\
104.86 \\
105.16 \\
15.16 \\
14.84 \\
15.46 \\
15.16 \\
91.35 \\
56.12
\end{array}
$$

T3

$$
{ }^{T 3}
$$

0.731	Ref-side Cap (Btu/h)	21775.54
0.866	Ref-side Cap (tons) :	1.81
0.737	$\mathrm{R}^{\mu} \sum \mathrm{rigerant} \mathrm{Mdot} \mathrm{(} \mathrm{lbm} / \mathrm{h}$)	317.95
0.910	Coriolis Density (lbm/ft3) :	69.81
	Tpstream R22 Tsat (F) :	120.32
0.796		
0.681		
0.841		
0.851	Turbine A Frequency (Hz)	z06.85

mo 0° rin o 0° imo

SATA FILENAME：WO20530A．dat DISTRIBUTOR SUMMARY SHEET
Range
282.03
253.92
160.77
0.22
3.42
0.015 0.011439

$$
\begin{gathered}
\text { JO:al Air-Side Capacity: 12700. }=0 \\
\text { Sensible Cap (Btu/h) } 11535.04
\end{gathered}
$$

Latent Cap（Btu／／h）
EvapAir Delta $T(F): 1165.35$
14.37
Air／Ref Cap Prent Diff：-2.54
SCFM per Ton： 688.01
（0．075 $1 \mathrm{~b} / \mathrm{ft3}$ \＃tandard air
0.011439

Range
Rag
0.40
0.16
0.33
0.15

 Air－Side Conditions Indoor Dry－BulbIndoor Inlet Dew（F） mindoor Inlet Dew（F）

Indoor Exit Dew（F）：
Indoor Airflow（CFM） Indoor Airflow（SCFM）：$\quad 728.20 \quad 8.17$

Evap Inlet Humidity Rat．io（lbH2O／1bAir）： Evap Exit Humidity Rat Lo（lbH2O／lbA
Barometric Pressure（in HG）： 29.24

Air Chamber Nozzle Pressure Drop
Air Chamber Nozzle P：cessure Drop（in Water）： 0.720
Evaporator Coil Air P：cessure Drop（in Water）： 0.132
Evaporator Coil Air P：essure Drop（in Water）： $0.132 \quad 0.006$
Refrigerant Side Conditions
Expansion Valve
Expansion Valve
Upstream Pressure（psia）：

0.252
0.087
0.593

Turbine A Frequency（ Hz ）： 109.56
 Turb A Density（ $1 \mathrm{bm} / \mathrm{ft} 3$ ）$\vdots \quad 70.33$

 $\begin{array}{cl}\text { Turb C Density（lbm／ft3）} & 70.32 \\ \text { Turb C Mass Flow（lb／h）} & 66.72\end{array}$ Calculated Mass Flow（llbm／h）$\quad 42.96$ 0.486
0.628
0.629
0.584
0.651
0.629
0.584 4
4
4
4
4

「ザがどが「

画画画画焉画宝

SMART DISTRIBUTOR SUMMARY SHEET

DATA FILENAME: W020531A.dat SUMMARY FILENAME: W020531A.sum

$$
\begin{gathered}
\text { Range } \\
0.23 \\
0.39 \\
0.72 \\
0.49
\end{gathered}
$$

Total Air-Side Capacity. 13090.69

Air):

$$
\begin{aligned}
& 0.020 \\
& 0.005
\end{aligned}
$$

0.54
$\begin{array}{rrr}\text { EV/Ref Cap Prant Diff: } & -0.54 \\ \text { Sensible Heat Ratio: } & 0.879 \\ \text { SCFM per Ton: } & 667.36\end{array}$
 0.011465

$$
\begin{aligned}
& 0.011008 \\
& \text { Nozzle }
\end{aligned}
$$

91
0

$$
\angle 5^{\circ}
$$

\square

$$
6 L \cdot 99 \text { :(ज) duəป əโzzon }
$$

13018.97
\vdots
$: \quad 189.08$
$:$
120.54

$\begin{array}{rrr}\text { Turbine A Frequency (Hz): } & 95.85 \\ \text { Turb A Vol Flow (ft } 3 / \mathrm{min}): & 0.0143 \\ \text { Turb A Density (lbm/ft3): } & 70.40 \\ \text { Turb A Mass Flow (lb/h): } & 60.20 \\ \text { Turbine C Frequency (Hz): } & 32.75 \\ \text { Turb C Vol Flow (ft } / \mathrm{min} \text {): } & 0.0066 \\ \text { Turb C Density (lbm/ft3): } & 70.49 \\ \text { Turb C Mass Flow (lb/h): } & 27.93 \\ \text { Calculated Mass Flow (lbm/h): } & 101.55 \\ \text { \% Total Mass Flow Thru A: } & 31.74 \\ \text { \% Total Mass Flow Thru B: } & 53.54 \\ \text { \% Total Mass Flow Thru C: } & 14.72\end{array}$

と99 0

9
0.
0.

0.730
0.448 n
-
-
-1

SOS. 0 $088^{\circ} 0$ $\tau 98^{\circ} \varepsilon$
$9 \angle L^{\circ} 0$
$088^{\circ} 0$

Refrigerant Side Conditiona
Expansion Valve
Upstream Pressure (psia) Upstream Temp A (F) Upstream Temp C (F): Upstream Average Temp (F) Upstream Subcooling B (F): Upstream Subcooling C (F) Evap Exit Pressure (psia): Evap Exit Avg Temp A :
Evap Exit Avg Temp B:

Evap Exit Avg Temp C Circuit B Superheat (F) Circuit C Superheat (F)
(a) 7eəyxədns tiexəィO

SMART DISTRIBUTOR SUMMARY SHEET
DATA FILENAME：WO20215B．DAT SUMMARY FILENAME：WO20215B．sum
DATA FILENAME：WO20215B．DAT SISTRIBUTOR SUMMARY SHEET
Total Air－Side Capacity： 13066.57

$$
\begin{array}{ccc}
\text { Lr-Side Conditions } & \text { Range } & \text { Total Air-Side Capacity: } 13066.57 \\
\text { Indoor Dry-Bulb : } 79.301 \quad 0.18 & \text { Sensible Cap (Btu/h): } 11950.49
\end{array}
$$

$$
0 \quad 01
$$

0

$$
\begin{aligned}
& 0.10 \\
& 0.05 \\
& 0.18 \\
& 0.10
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Latent Cap (Btu/h): } & 1116.08 \\
\text { EvapAir Delta } T(F): & 14.83
\end{array}
$$

$$
\begin{array}{r}
\text { Sensible Cap (Btu/h): } 11950.49 \\
\text { Latent Cap (Btu/h): } 1116.08
\end{array}
$$

$$
\begin{array}{ll}
\text { Air/Ref Cap Prent Diff: } & 0.46 \\
\text { Concihle Heat Ratio: } & 0.915
\end{array}
$$

$$
\begin{array}{ccc}
& \text { Sensible Heat Ratio: } & 0.915 \\
4.67 & \text { SCFM per Ton: } & 672.23 \\
4.61 & (0.075 \mathrm{lb} / \mathrm{ft3} \text { standard air) }
\end{array}
$$

$$
\begin{aligned}
& (0.075 \mathrm{lb} / \mathrm{ft} 3 \text { standard air) } \\
& 0.010704
\end{aligned}
$$

$$
\begin{aligned}
& 0.010704 \\
& 0.010384
\end{aligned}
$$

Range
353.33
217.05
136.28
0.22
3.04
0.0081

Nozzle Temp（F）：68．79

$$
516^{\circ} 0
$$

Noro	

Air Chamber Nozzle Pressure Drop（in Air Chamber Nozzle Pressure Drop（in Water）： 1.905
Evaporator Coil Air Pressure Drop（in Water）： 0.132 Refrigerant Side Conditions
Expansion Valve
Upstream Pressure（psia）：

芭芭芭芭芭芭芭芭芭

Upstream Pressure (psia) :	317.57	0.609	Ref-side Cap (Btu/h)	25532.14	33591
Upstream Temp A (F)	105.66	0.524	Ref-side Cap (tons) :	2.13	003
Upstream Temp B (F) :	105.98	0.262	Refrigerant Mdot ($1 \mathrm{bm} / \mathrm{h}$) :	373.69	
Upstream Temp C (F)	105.44	0.262	Coriolis Density (lbm; ft 3) :	69.91	007
Upstream Average Temp (F)	105.69		Upstream R22 Tsat (F) :	132.01	
Upstream Subcooling A (F)	26.35	0.617			
Upstream Subcooling B (F) :	26.02	$0 \cdot 293$			
Upstream Subcooling C (F) :	26.57	0.386			
Average Subcooling (F) :	26.31				
Evap Exit Pressure (psia)	91.29	0.486	Turbine A Frequency (Hz) :	z44.24	2.00
Evap Exit Avg Temp A	56.21	1.951	Turb A Vol Flow (ft 3 /min) :	0.0340	$0.0{ }^{\circ}$
Evap Exit Avg Temp B:	57.07	2. 250	Turb A Density (lbm/ft3) :	70.20	0.03
Evap Exit Avg Temp C;	56.51	1.973	Turb A Mass Flow (lb/h) :	143.13	1.25
Circuit A Superheat (F)	10.00	$1 \cdot 884$	Turbine C Frequency (Hz) :	210.33	1.00
Circuit B Superheat (F) :	10.86	2.173	Turb C Vol Flow (ft 3 min) :	0.0303	0.00
Circuit C Superheat (F) :	10.30	1.818	Turb C Density (lbm/ft3) :	70.24	$0.0<$
Overall Superheat (F):	11.46	1.807	Turb C Mass Flow (lb/h) :	27.69	$0.6{ }^{\circ}$
	Ci	cuit B	Calculated Mass Flow (1)m/h) :	$\underline{102.87}$	5.43
Eves \sim fircuit Temp 1 (F):	51.28	1,480	\% Total Mass Flow trru A:	38.30	$0.6 \leqslant$
EVBN =ircuit Temp 2 (F):	51.53	0,602	\% Total Mass Flow Trru B:	27.53	1.10
$\sum_{V \rightarrow \mathcal{N}}$ fircuit Temp 3 (F):	51. 21	0.647	\% Total Mass Flow Trru C:	34.17	0.53
$\sum_{V E S N}$ fircuit Temp 4 (F):	51.80	1,112			
Evan zircuit Temp 5 (F):	49. 78	0.648			
	52.38	0.467			
\&v̇ \mathcal{N} aircuit Temp 7 (F):	53.55	1.242			
	49.47	1.024			
\&v̇N =ircuit Temo 9 (F):	51.32	0.693			

A. 2 Wavy fin evaporator in cross-parallel flow

Test names	Test type
W020304A	9
W020311B	10
W020306A	11
W020307A	$\mathbf{1 2}$

SMART DISTRIBUTOR SUMMARY SHEET
DATA FILENAME: WO20304A.DAT SUMMARY FILfNAME: WO2n304A sum

$\begin{array}{lll}\text { n } & -1 & 0 \\ m & 0 \\ \infty & 0 \\ \infty & 0 & 0\end{array}$

0.209
0.323
0.324
0.208
0.593
0.662
0.620
0.486
0.365

N

0 N
\sim
N
0
0
0 rcuit
0.645
0.089
0.599
0.089 0.089 $\begin{array}{ll}0 \\ 0 & n \\ \cdots \\ 0 \\ 0\end{array}$ 0.407 0.368
0.365
-

Upstream Pressure (psia) $\begin{array}{lll}\text { Upstream Temp } & \text { (F) } \\ \text { Upstream } & \text { Temp } & \text { (F) }\end{array}$ Upstream Temp C (F)
Upstream Average Temp (F) Upstream Subcooling A (F) (a) J but roooqns weaxzsd Evap Exit Pressure (psia) Evap Exit Avg Temp A
Evap Exit Avg Temp B Evap Exit Avg Temp C
Circuit A Superheat (F) Circuit B Superheat (F)
Circuit C Superheat (F) Circuit C Superheat (F)
Overall Superheat (F)

Refrigerant Side Conditions
SMART DISTRIBUTOR SUMMARY SHEET

ir)

1

Total Air-Side Capacity: 3887.11

Denge

ange
0.30
ir-Sime Conditions
Indoor Dry-Bulb : $\sum 0.396$ Indoor Inlet Dew $\left(F \mid: \sum 0.252\right.$
 Indoor Airflow (CFM):
Indoor Airflow (SCFM) :
Ind
Evap Inlet Humidity Ratio (lbH2O/lbAir) Evap Exit Humidity Ratio (lbH2O/lbAir) Barometric Pressure (in HG): 29.24
 Refrigerant Side Conditions
Expansion Valve
Upsitream Pressure (psia) Upstream Temp A (F)
Upstream Temp B (F) Upstream Temp C (F)
Upst:ream Average Temp (F) Upst..eam Average Temp (F) Upstiream Subcooling $B(F)$
Upstream Subcooling C (F) Average Subcooling (F)
Evap Exit Pressure (psia) Evap Exit Pressure (psia)
Evap Exit Avg Temp C

 Circuit C Superheat (F)
vap Circuit Temp 1 (F):

芭

 Overall Superheat (F)
$\begin{array}{llc}0 & 1.095 & \text { Turbine A Frequency (Hz) } \\ 4 & 0.406 & \text { Turb A Vol Flow (ft } 3 / \mathrm{min}) \\ 6 & 1.848 & \text { Turb A Density (lbm/ft3) } \\ 4 & 0.518 & \text { TurbA Mass Flow (lb/h) } \\ 3 & 1.022 & \text { Turbine C Frequency (Hz) } \\ 5 & 2.199 & \text { Turb C Vol Flow (ft3/min) } \\ 3 & 1.055 & \text { Turb C Density (lom/ft3) } \\ 4 & 1.251 & \text { TurbCMass Flow (lb/h) } \\ \text { Circuit B Calculated Mass Flow (lbm/h) }\end{array}$
 (suoz) aeか Ref-side Cap (tons)
Refrigerant Mdot (lbm/h)
Coriolis Density (lbm/ft3)
Upstream R22 Tsat (F)

(in Water):

Upstream Pressure (psia) :	273.97	0.974	Ref-side Cap (Btu/h)	3316.15	2432.86
Upstream Temp A (F) :	103.36	0.524	Ref-side Cap (tons) :	0.78	0.20
Upstream Temp B (F):	111.52	0.784	Refrigerant Mdot (lbm/h) :	136.90	35.63
Upstream Temp C (F) :	104.76	0.743	Coriolis Density (lbm/ft3) :	64.97	1.17
Upst:ream Average Temp (F)	106.55		Upstream R22 Tsat (F):	120.39	
Upstream Subcooling A (F) :	17.03	0.490			
Upstream Subcooling B (F) :	8.87	0.715			
Upstream Subcooling C (F) :	15.63	0.743			
Average Subcooling (F):	13.84				
Evap Exit Pressure (psia)	90.80	1.095	Turbine A Frequency (Hz) :	$z 9.07$	1.00
Evap Exit Avg Temp A :	70.24	0.406	Turb A Vol Flow (ft3/min) :	0.0054	0.00
Evap Exit Avg Temp B :	51.46	1.848	Turb A Density (lbm/ft3) :	70.55	0.08
Evap Exit Avg Temp C:	72.44	0.518	Turb A Mass Flow (lb/h) :	22.74	0.59
Ciscuit A Superheat (F)	25.03	1.022	Turbine C Frequency (Hz) :	32.19	2.00
Circuit B Superheat (F) :	6.25	2.199	Turb C Vol Flow (ft3/min) :	0.0065	0.00
Circuit C Superheat (F) :	27.23	1.055	Turb C Density (lom/ft3)	70.34	0.11
Overall Superheat (F):	11.74	1.251	Turb C Mass Flow (lb/h) :	27.55	1.13
		cuit B	alculated Mass Flow ($1 \mathrm{bm} / \mathrm{h}$) :	86.61	36.19
Evap Circuit Temp 1 (F):	48.56	0.647	\% Total Mass Flow Thru A	16.68	4.59
Evad Circuit Temp 2 (F):	69.49	2.179	\% Total Mass Flow Thru B.	63.12	10.51
Evad Circuit Temp 3 (F):	69.92	0.816	\% Total Mass Flow Thru C	20.21	5.92
Evad Circuit Temp 4 (F):	50.51	0.648			
Evad Circuit Temp 5 (F):	49.61	0.648			
Evap Circuit Temp 6 (F):	51.42	0.835			
Evap Circuit Temp 7 (F):	54.68	1.661			
Evan Circuit Temp 8 (F):	62.05	7.423			
Evap Circuit Temp 9 (F):	72.71	0.587			

Refrigerant Side Conditions Expansion Valve

Ref－side Cap（Btu／h）：8082．88
144.34
0.01
2.20
0.11
 NOONNOーNNNO

1）． 680
1.176
1.874
0.730
0.320

1.848
0.934
0.650 0.812 0.997
0.644

932
896
629 0.629

 2.33
9.41
54.67
1.66
4.97
Upstream Pressure（psia） Upstream Temp B（F）
Upstream Temp C（F） Upstream Average Temp（F） Upstream Subcooling A（F） Upstream Subcooling C（F） Evap Exit Pressure（psia） Evap Exit Avg Temp A： Evap Exit Avg Temp B
Circuit A Superheat（F） Circuit B Superheat（F）
Circuit C Superheat（F）
 ーNのみにも「かの

 a

 H．
य
u
u
a
w

A. 3 Enhanced fin (wavy-lanced) evaporator in cross-counter flow

Table A.3.1: Enhanced Fin (Wavy Lanced) Evaporators in Cross-Counter Flow

W020320B	Test type
	1
W020321A	2
W020322A	5
W020321B	$\mathbf{6}$
W020322C	7
W020322B	$\mathbf{8}$
E020607A	9
W020318A	10
W020318B	11
W020319A	12
W020319B	13
W020320A	14

SMART DISTRIBUTOR SUMMARY SHEET
DATA FILENAME: WO20320B.DAT SUMMARY FILENAME: WO203

> Refrigerant Side Conditions
Expansion Valve

Upstream Pressure (psia):
Ref-side Cap (Btu/h) : 20106.95

HNONO
Nomo
Nom

м o 'riro o morio

$\begin{array}{cccc}n & -1 & 0 \\ 0 & 9 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$ 0.481
0.610
0.619
 29.24
Drop
Drop
0.45 0.01156
(0.075 lb/ft3 standard air)

$$
\text { Nozzle Temp (F): } 66.56
$$

129
 Refrigerant side

Ref-side Cap (Btu/h) : 13203.77
\qquad Upstream R22 Tsat (F)
 Evap Exit Humidity Ratio (lb
Barometric Pressure (in HG):
Air Chamber Nozzle Pressure $\begin{array}{lll}\text { Indoor Airflow (CFM): } & 608.69 & 11.13 \\ \text { Indoor Airflow (SCFM): } & 5 \equiv 6.58 & 10.93\end{array}$
 Air-SiNe Conmitions Range 0.10

Indoor Airflow (CFM): $608.69 \quad 11.13$ Evap Inlet Humidity Ratio (lbH2O/lbAi Evaporator Coil Air Pressure Conditiona Expansion Valve
Upstream Pressure Upstream Temp A (F) Upstream Temp C (F): Upstream Average Temp (F) : Upstream Subcooling A (F) Upstream Subcooling B (F) Upstream Subcooling C (F)

Evap Exit Pressure (psia) Evap Exit Avg Temp A
Evap Exit Avg Temp B
E

Circuit A Superheat (F) Circuit B Superheat (F). Circuit C Superheat (F)
Overall Superheat (F)

$$
\begin{aligned}
& 0.16 \\
& 0.10
\end{aligned}
$$ 76.63

75.42
52.54
77.08
76.80
56.76
77.43
75.87
53.66 $\begin{array}{ll}1 & \text { (F) } \\ 2 & \text { (F) } \\ 3 & \text { (F) } \\ 4 & \text { (F) } \\ 5 & \text { (F) } \\ 6 & \text { (F) } \\ 7 & \text { (F) } \\ 8 & \text { (F) } \\ 9 & \text { (F): }\end{array}$

	Circuit Tem@ Circuit Tem@
	Circuit Tem@
	Circuit Tem@
,	Circuit Tem@
trap	Circuit Tem@
vap	Circuit Tem@
	Circuit Tem@

$$
\begin{aligned}
& 0.047 \\
& 0.005
\end{aligned}
$$

SMART DISTRIBUTOR SUMMARY SHEET

SMART DISTRIBUTOR SUMMARY SHEET
DATA FILENAME: WO20321B.DAT SUMMARY FILENAME: WO20321B.sum

 Range 0.20 0.0 §
0.13 0.13
$0.0 \leqslant$
 Air-Side Conditions Rofrige rant -----------------

Refrigerant Jide <onditions
Expansion Valve
Expansion Valve
Upstream Pressur

$$
\begin{aligned}
& 0.629 \\
& 0.642
\end{aligned}
$$

$$
\begin{aligned}
& 0.642 \\
& 0.540
\end{aligned}
$$

Upstream Pressure (psia)
Upstream Temp A (F)
Upstream Temp
Upstream
(F)

1.755
$\begin{array}{rr}\text { Ref-side Cap (Btu/h) } & 13636.52 \\ \text { Ref-side Cap (tons) } & 1.14\end{array}$

119.14 Refrigerant Mdot ($1 \mathrm{bm} / \mathrm{h}$)
Coriolis Density ($1 \mathrm{bm} / \mathrm{ft} 3$) \&oriolis Density
Upstream R22 Tsat (F)
0.487
0.52°
0.08
$0.5<7$
0.559
0.262
0.567

- <08

Turbine A Frequency (Hz) Turb A Vol Flow (ft $3 / \mathrm{min}$)
murb A Densicx ($\mathrm{lbm} / \mathrm{fç}$) Turb A Mass Flow (lb/h): mu Dism C mrequency (Hz):
Turb C Vol Flow (ft3/min): murb C Density $\mid 1 \mathrm{bm} / \mathrm{ft} 3$
 : nayl mold ssew lejol
:a nati mold ssew lejol 0.357
0.532
0.647
©. $0_{0}^{\circ} \mathrm{O}$ No No.

| Ref-side Cap (Btu/h) : | 15478.92 |
| ---: | ---: | ---: |
| Ref-side Cap (tons) : | 1.29 |
| Refrigerant Mdot (lbm/h) : | 227.86 |
| Coriolis Density (lbm/ft3) : | 69.87 |
| Upstream R22 Tsat (F) : | 121.70 |

2.923
0.127
0.347
0.170
0.754
0.754
0.754
127.38
0.0184
70.01
77.47
103.21
0.0160
70.05
67.27
83.13
34.00
36.48
29.52

Turbine A Frequency (Hz)
Turb A Vol Flow (ft $3 / \mathrm{min})$
Turb A Density (lbm/ft3)
Turb A Mass Flow (lb/h)
Turbine C Frequency (Hz$)$
Turb C Vol Flow (ft $3 / \mathrm{min})$
Turb C Density (lbm/ft3)
Turb C Mass Flow (lb/h)
4alculated Mass Flow (lbm/h)
\% Total Mass Flow Thru A
\% Total Mass Flow Thru B
\% Total Mass Flow Thru C
2.311
0.495
0.558
0.539

1.531
1.872
$5 \quad 3.853$
Circuit B

$\stackrel{0}{9}$
4.01
7.36

St. IT Evap Exit Pressure (psia): : y dual bny

Evap Exit Avg Temp C:
Evap Exit Avg Temp ($: ~$
Circuit A Superheat (F):
Circuit B Superheat (F) : Circuit C Superheat (F):

444444444

SMART DISTRIBUTOR SUMMARY SHEET
DATA FILENAME: WO20322B.DAT SUMMARY FILENAME: WO20322B.sum

Expansion Valve					
Upstream Pressure (psia):	276.86	$6 \quad 0.244$	Ref-side Cap (Btu/h) :	15039.85	234.64
Upstream Temp A (F) :	105.34	$4 \quad 0.347$	Ref-side Cap (tons) :	1.25	0.02
Upstream Temp B (F) :	105.23	$3 \quad 10.524$	Refrigerant Mdot ($1 \mathrm{bm} / \mathrm{h}$) :	219.73	3.08
Upstream Temp C (F) :	105.11	10.085	Coriolis Density ($1 \mathrm{bm} / \mathrm{ft} 3$) :	70.13	0.07
Upstream Average Temp (F) :	105.23		Upstream R22 Tsat (F) :	121.16	
Upstream Subcooling A (F):	15.82	$2 \quad 10.347$			
Upstream Subcooling B (F) :	15.93	$3 \quad 10.593$			
Upstream Subcooling C (F):	16.05	510.154			
Average Subcooling (F):	15.93				
Evap Exit Pressure (psia) :	91.03	310.365	Turbine A Frequency (Hz) :	167.48	1.00
Evap Exit Avg Temp A:	47.22	$2 \quad 10.486$	Turb A Vol Flow (ft3/min) :	0.0238	0.00
Evap Exit Avg Temp B:	74.24	$4 \quad 0.357$	Turb A Density (lbm/ft3) :	70.25	0.05
Evap Exit Avg Temp C:	75.32	$2 \quad 0.269$	Turb A Mass Flow (lb/h) :	100.21	0.63
Circuit A Superheat (F) :	1.69	$9 \quad 0.565$	Turbine C Frequency (Hz) :	122.48	1.00
Circuit B Superheat (F) :	28.71	10.448	Turb C Vol Flow (ft3/min) :	0.0186	0.00
Circuit C Superheat (F) :	29.80	$0 \quad 0.347$	Turb C Density (lbm/ft3) :	70.29	0.01
Overall Superheat (F) :	10.93	$3 \quad 3.666$	Turb C Mass Flow (lb/h) :	78.34	0.58
	Circuit B Calculated Mass Flow (lbm/h) :			41.18	3.77
Evad Eircuit Temp 1 (F) :	76.78	0.625	\% Total Mass Flow Thru A:	45.61	0.80
Evag fircuit Temp 2 (F):	49.73	0.603	\% Total Mass Flow Thru B:	18.74	1.49
Evad Gircuit Temp 3 (F):	53.96	0.322	\% Total Mass Flow Thru C:	35.65	0.69
Evad Eircuit Temp 4 (F):	75.62	0.584			
Evad Ebccuit Temp 5 (F):	76.51	0.357			
	56.66	0.553			
Evad Ciccuit Temp 7 (F):	54.14	0.598			
Evad ficcuit Temp 8 (F):	74.96	0.358			
Evad Ciccuit Temp 9 (F):	55.71	0.643			

SMART DISTRIBUTOR SUMMARY SHEET
DATA FILENAME: E020607A.dat SUMMARY FILENAME: E020607A.sum
 Refrigerant Side Conditions Expansion Valve

3619.08
1.97
344.39
82.28
119.69

0 -------
23619.08

73

Turbine A Frequency (Hz) Turb A Vol Flow (ft3/min)
TurbA Density (lbm/ft3)
Turb A Mass Flow (lb/h)
Turbine C Fr\&quency (Hz)
Turb C Vol Flow (ft3/min)
Turb C Densicy (lbm/ft3)
Turb C Mass Flow (lb/h)
Calculated Mass mlow $1 \mathrm{bm} / \mathrm{h}$)
\% Total Mass Flow Thru A
\% Total Mass Flow Thru B
\% Total Mass Flow Thru C
Expansion Valve
Upstream Pressure (psia).

0.644
0.297
0.524 0.486
1.263
1.747
2.343
1.419
1.668
2.656
1.228
B

Upstream Temp A (F) Upstream Temp B (F)
Upstream Temp C (F) Upstream Average Temp (F) Upstream Subcooling A (F) Upstream Subcooling B (F)
Upstream Subcooling C (F) Average Subcooling (F)
Evap Exit Pressure (psia) Evap Exit Pressure Temp A Evap Exit Avg Temp C
 Circuit B Superheat (F)
Circuit C Superheat (F)

SMART DISTRIBUTOR SUMMARY SHEET
DATA FILENAME: W020318A.DAT SUMMARY FILENAME: W020318A.sum

SMAOTI DISTRIBUTOR SUMMARY SHEET DATA FILENAME wOZO318B．D．TT SUMMARY FILENAME wO20318B sum

Total Air－Side Capacity：18714．97
NJnge
0.289
50.077
$\leqslant 3.435$
7.148
pirir－Side Conditions
Indoor Dry－Bulb
Indoor Inlet Dew（ F ） $\begin{array}{c:cc}\text { Indoor Inlet Dew（F）} & \$ 0.077 & 0.10 \\ \text { Indoor Exit Dry－Bulb } & \$ 3.435 & 0.14 \\ \text { Invoorr Exit Dew（F）} & 37.148 & 0.10\end{array}$ －
Indoor Airflow（CFM）： $773.75 \quad 9.07$ $\begin{array}{cc}\text { Indoor Airflow（CFM）：} & 773.75 \\ \text { Indoor Airflow（SCFM）：} & 759.46\end{array}$ Evap Inlet Humidity Ratio（1bH2O／1bAir 0.011334

$$
\text { Nozzle Temp (F): } 65 \text { zo }
$$

Barometric Pressure（in HG）： 29.24
Air Chamber Nozzle Pressure Drop
$\begin{array}{cc}\text { Air Chamber Nozzle Pressure Drop（in Water）：} & 2.101 \\ \text { Evaporator Coil Air Pressure Drop（in Water）：} & 0.228\end{array}$

$\underset{\infty}{\dot{\circ}-i \stackrel{0}{\sim} \stackrel{0}{\sim}}$	
안 털	
尔	0，
${ }_{8}^{\text {¢ }}$	
	¢－${ }_{0}^{\text {¢ }}$
年島吕	
－${ }^{-1}$	${ }_{\text {¢ }}$
2 ${ }^{\text {¢ }}$	FHEE 己 ${ }^{\text {do do do }}$

0.486
0.538
0.350
R

NनHन
Upstream Pressure（psia）
Upstream Temp A（F）
Upstream Temp
B
Upstream Temp C（F）
Upstream Average Temp（F） Upstream Average Temp（F）
Upstream Subcooling A（F） Upstream Subcooling B（F） Upstream Subcooling C（F）
Average Subcooling（F） Evap Exit Pressure（psia） Evap Exit Avg Temp A
Evap Exit Avg Temp B
Evap Exit Avg Temp C
Circuit A Superheat（F）
Circuit B Superheat（F）

Evap Circuit Temp 1
Evap Circuit Temp 2
Evap Circuit Temp 3
Evap Circuit Temp 4
Evap Circuit Temp 5
Evap Circuit Temp 6
Evap Circuit Temp 7
Evap Circuit Temp 8
Evap Circuit Temp 9

Refrigerant Side Conditions
Expansion Valve
SMART DISTRIBUTOR SUMMARY SHEET

Expansion Valve
243.60
0.02
3.30
0.13

Ref-zide Cap \|Btu/h)	10242.23
Res-side Ca (tons)	1.33
Rofrigersnt Mdot ${ }^{(1)}$ ($1 \mathrm{bm} / \mathrm{h}$)	237.93
Coriolis DEnsity ($1 \mathrm{bm} / \mathrm{ft3}$)	$70.0 \leqslant$
Upstr.am R22 Tsat (F)	120.63

$\begin{array}{cr}\text { Turbine A Frequency (Hz) } & 137.48 \\ \text { Turb A Vol Flow (ft3/min) } & 0.0278 \\ \text { Turb A Density (lbm/ft3) } & 70.20 \\ \text { Turb A Mass Flow (lb/h) } & 116.95 \\ \text { Turbine C Frequency (Hz) } & 143.52 \\ \text { Turb C Vol Flow (ft3/min) } & 0.0214 \\ \text { Turb C Density (lbm/ft3) } & 70.24 \\ \text { Turb C Mass Flow (lb/h) } & 90.13 \\ \text { Calculated Mass Flow (lbm/h) } & 30.91 \\ \text { \% Total Mass Flow Thru A } & 49.14 \\ \text { \% Total Mass Flow Thru B } & 12.99 \\ \text { \% Total Mass Flow Thru C } & 37.87\end{array}$ 0.486

0.630 \begin{tabular}{c}
9

$\stackrel{9}{0}$

\hline

n

\multirow{2}{c}{}

\multirow{1}{n}{}

0

0
\end{tabular} ∞

0
0

$\stackrel{n}{n}$
0
0 m
$\stackrel{y}{n}$
0
0
m Cirguit B

IS $5^{\circ} 0$
$\angle 97^{\circ} 0$
$0 \angle Z^{\circ} 0$ 0.540 0.
0.527

597 | 0.597 |
| :--- |
| 0. |
| 43 |
| 0.672 |

 0.555 275.15
105.64
105.62
105.38
105.55
15.04
15.06
15.30
15.13
90.56 Upstream Pressure (psia): Upstream Temp A (F):
Upstream Temp B (F): Upstream Temp C (F): Upstream Subcooling B (F): Upstream Subcooling C (F): Evap Exit Pressure (psia): Evap Exit Avg Temp A: Evap Exit Avg Temp B:
Evap Exit Avg Temp C: Circuit A Superheat (F): Circuit A Superheat (F):
Circuit B Superheat (F): Circuit C Superheat (F): Overall Suverheat (F):
 \&vap circuit Temp Evap sircuit Temp zvap Esrcuit Temp \&vap circuit Temp

55

$$
\begin{aligned}
& 0.011522 \\
& 0.010128 \\
& \text { Nozzle Temp }
\end{aligned}
$$

$\begin{array}{llll}\text { Indoor Inlet Dew (F) : } 60.531 & 0.11 & \text { Latent Cap (Btu/h) } \\ \text { Indoor Exit Dry-Bulb: } 62.441 & 0.24 & \text { EvapAir Delta } T(F)\end{array}$
Indoor Exit Dew (F): 56.993 0.20 Air/Ref Cap Prent Diff:
Indoor Airflow (CFM) : $1008.70 \quad 8.47 \quad$ Sensible Heat Ratio Indoor Airflow (SCFM): $991.62 \quad 8.25 \quad(0.075 \mathrm{lb} / \mathrm{ft} 3$ stan

.731
.262
.525
.567
0
0
0.
Evaporator Coil Air Pressure Drop (in Water) Evaporator Coil Air Pressure Drop (in Water): 0.381 Refrigerant Side Conditions
Expansion Valve
Upstream Pressur
$\begin{array}{ll}\text { eam Pressure (psia) } & 273.73 \\ \text { Upstream Temp A (F) } & 104.55 \\ 104.78\end{array}$ $\begin{array}{ll}\text { Upstream Temp A (F) } \\ \text { Upstream Temp B (F) } \\ \text { Upstream Temp C } & \text { (F) }\end{array}$ Upstream Average Temp (F) Upstream Subcooling A (F) Upstream Subcooling B (F) Upstream Subcooling C (F) Evap Exit Pressure (psia) Evap Exit Avg Temp A Evap Exit Avg Temp C Circuit A Superheat (F) Circuit B Superheat (F) ircuit C Superheat (F)
Overall Superheat (F)
Circuit 0.982

品

A. 4 Enhanced fin (wavy-lanced) evaporator in cross-parallel flow

Table A.4.1: Enhanced Fin (Wavy-Lanced) Evaporators in Cross-Parallel Flow

Test names	Test type
E020403A	9
E020404A	10
E020408A	11
E020409A	12

 Refrigerant Side Conditions
Expansion Valve
Upstream Pressur

 Turb A Vol Flow (ft3/min)
Turb A Density (lbm/ft3)
Turb A Mass Flow (lb/h)
Turbine C Frequency (Hz)
Turb C Vol Flow (ft3/min)
Turb C Density (lbm/ft3)
Turb C Mass Flow (lb/h)
Calculated Mass Flow (lbm/h)
\% Total Mass Flow Thru A
\% Total Mass Flow Thru B
\% Total Mass Flow Thru C

N ∞ 0 0 0 0 0 0

0.741
0.698
0.635

Cir<uit

0.621
0.558
0.780
0.655
0.556
0.636
0.733
0.739
0.508

$$
0.508
$$

Upstream Pressure (psia) : Upstream Temp B (F):
Upstream Temp C (F)
Upstream Average Temp (F) Upstream Subcooling A (F) : Upstream Subcooling B (F) :
Upstream Subcooling C (F)
Average Subcooling (F)
Evap Exit Pressure (psia)

SMART DISTRIBUTOR SUMMARY SHEET

DATA FILENAME: E020408A.DAT DISTRIBUTOR SUMMARY SHEET

Ref－side Cap（Btu／h）	9515.76
Ref－side Cap（tons）	0.79
Refrigerant Mdot（lbm／h）	138.13
Coriolis Density（lbm／ft3）	82.30
Upstream R22 Tsat（F）	120.05

0.244
0.654
0.698
0.173 0.654 0.654
0.681
0.173

Turbine A Frequency（Hz）

$0 \varepsilon L^{\circ} 0$ 0.650
0.360 0.721 0.721
0.581 0
0
0
0
0

8โ9．
 $\mathrm{SZ}_{8} \mathrm{C}^{\circ}$ $696^{\circ} \mathrm{C}$
$528^{\circ} 2$ 7.969
0.716
 0.648
0.904

 Refrigerant Side Conditions Expansion Valve
Upstream Pressure（psia）： Upstream Temp A（F）
Upstream Temp B（F） Upstream Temp C（F）
Upstream Average Temp（F） Upstream Average Temp（F）
Upstream Subcooling A（F） Upstream Subcooling B（F） Average Subcooling（F） Evap Exit Pressure（psia） Circuit A Superheat（F） Circuit B Superheat（F）

芗合合合合关会会关

A. 5 Enhanced-Cut fin (wavy-lanced) evaporator in cross-counter flow

- Test names	Test type
E020417A	1
E020417B	2
E020418A	5
E020419A	6
E020415A	9
E020509A	10
E020416B	$\mathbf{1 3}$

SMART DISTRIBUTOR SUMMARY SHEET
DATA FILENAME：E020417A．DAT SUMMARY FILENAME：E020417A．sum

Refrigerant Side Conditions
（ 275 Ref－side Cap（Btu／h）： 21005.77

気命

Avera ${ }^{\mu}$ Subcooling（F）
svap Exic Presjwse（NSia）
svap Exit Avg Temp A：
Evap Exit Avg Temp C
Circuit A Superheat（F） Circuit B Superheat（F）
Circuit C Superheat（F）
rcuit C Superheat（F）
overall Super N（F）

HNMサルமN

Total Air-Side Capacity: 15855.26
 Range

 Air/Ref Cap Pront Diff: $\quad-3.21$ Sensible Heat Ratio: $\begin{array}{r}0.770 \\ \hline 48.44\end{array}$ SCFM per Ton: 448.44
$(0.075 \mathrm{lb} / \mathrm{ft} 3$ standard air) 0.011458
0.010165

$$
\begin{aligned}
& 0.035 \\
& 0.006
\end{aligned}
$$

$$
\text { Nozzle Temp (F): } 62.65
$$

Range
298.26
260.58
102.26
0.22
3.50
0.0060
LGGHS XZ甘WWnS

15346.55
1.28
217.44
81.87
126.40
 Ref-sing (tons)
Refrigerant Mdot ($1 \mathrm{bm} / \mathrm{h}$)
Coriolis Density (lbm/ft3)
0.731

0.623
0.611
0.548
0.486

$$
\begin{aligned}
& \text { rcuit B } \\
& 0.223 \\
& 0.726 \\
& 0.653 \\
& 0.723 \\
& 0.679 \\
& 0.462 \\
& 0.672 \\
& 0.635 \\
& 0.605
\end{aligned}
$$

Upstream R22 Tsat (F):

Expansian Pressure (psia):
Upstream Temp A (F): Upstream Temp B (F) :
Upstream Temp $C(F)$: Upstream Average Temp (F): Upstream Subcooling A (F): Upstream Subcooling C (F): Evap Exit Pressure (psia):

SMART DISTRIBUTOR SUMMARY SHEET

Range
490.90
504.52
76.25
0.44
6.95
0.0053

SMART DISTRIBUTOR SUMMARY SHEET
Total Air-Side Capacity: 14125.73 Latent Cap (Btu/h): -397.47 EvapAir Delta T (F): 17.08 Sensible Heat Ratio: $\begin{array}{r}1.028 \\ \$ 59.78\end{array}$ SCFM per Ton: $\sum 59.7 \leqslant$
(0.075 lb/ft3 stan@Erd air)
0.007380 0.007380

$$
\text { Nozzle Temp (F): } 6373
$$

Range

$$
\begin{aligned}
& \text { Air-Side Conditions } \\
& \text { Indoor Dry-Bulb : }
\end{aligned}
$$ $\begin{array}{ccc}\text { Indoor Exit Dry-Bulb: } 63.019 & 0.37 \\ \text { Indoor Exit Dew (F): } 4 』 .883 & 0.15\end{array}$ $\begin{array}{lll}\text { Indoor Airflow (CFM): } & 789.23 & 8.25\end{array}$ Evap Inlet Humidity Ratio (lbH2O/lbAir I: Barometric Pressure (in HG): 29.24

न.

N
N
•r
0
0
$0 . \sum 87$

$$
\begin{array}{r}
: \quad 63 \\
0.016 \\
0.008
\end{array}
$$ Ref-side Cap (Btu/h)

Ref-side Cap (tons)
Refrigerant Mdot (lbm/h)
Coriolis Density (lbm/ft 3$)$
Upstream R22 Tsat (F)

Turbine A Frequency (Hz) : urb A Vol Flow $(\mathrm{ft} 3 / \mathrm{min})$)
Turb A Density $(1 \mathrm{bm} / \mathrm{ft} 3)$ Turb A Density (llm/ft3)
Turb A Mass Flow (lb/h)
Turbine C Frequency (Hz) Turb C Vol Flow (ft3/min) Turb C Density (lbm/ft3)
Turb C Mass Flow (lb/h) 0.770 Turb C Mass Flow (lb/h)

 Indoor Dry-Bulb :
Indoor Inlet Dew (F): $\begin{array}{rlll}\text { Air Chamber Nozzle Pressure Drop (in Water): } & 0.812 \\ \text { Evaporator Coil Air Pressure Drop (in Water): } & 0.170\end{array}$ Refrigerant Side Conditions
Expansion Valve Refrigerant Side Conditions
Expansion Valve
Upstream Pressure (psia): 277.85
 $29 . L O T:(a) D$ dural weraxsd

\qquad

Upstream Average Temp (F):
Upstream Subcooling A (F):
Upstream Subcooling B (F):
Upstream Subcooling C (F):
Average Subcooling (F):
Evap Exit Pressure (psia):Evap Exit Pressure (psia):
Circuit A Superheat (F):

[^1]

Total Air－Side Capacity： 18291.86 Range Total Air－Side Capacity： 18291.86

$$
\begin{aligned}
\text { Sensible Cap (Btu/h): } & 14879.62 \\
\text { Latent Cap (Btu/h): } & 3412.24 \\
\text { EvapAir Delta } T(F): & 17.26
\end{aligned}
$$

nn n
in
in
in

$$
\begin{aligned}
\text { EvapAir Delta } T(F): & 17.26 \\
\text { Air/Ref Cap Prent Diff: } & -4.19
\end{aligned}
$$

$$
\begin{array}{rr}
\text { Sensible Heat Ratio: } \\
\text { SCFM ner Ton: } & 513.813 \\
\hline
\end{array}
$$

$$
\begin{gathered}
\text { SCFM per Ton: } 513.29 \\
(0.075 \mathrm{lb} / \mathrm{ft} 3 \text { standard air) }
\end{gathered}
$$

$$
0.011451
$$

Ref－side Cap（Btu／h）： 17523.19
17523.19
1.46
248.82
81.81
119.04

Refrigerant Mdot（ $1 \mathrm{bm} / \mathrm{h}$ ） Coriolis Density（ $1 \mathrm{bm} / \mathrm{ft} 3$ ）
Upstream R22 Tsat（F）
 0.382
0.340
$0 . \sum 10$

Turbine A Frequency（ Hz ）．$\quad 157.80$ murb A Vol Flow（ft3／min）： 0.0225 Turb A Density（lbm／ft3）：$\quad 70.56$
 murb C Vol Flow（ft $3 / \mathrm{min}$ ）： 0.0213 Turb C Density（lbm／ft3）： 70.59
 NiN N
 Upstream R22 Tsat（F）

0.486 | M |
| :---: |
| 0 |

$$
\begin{aligned}
& \begin{array}{c}
N \\
\underset{\sim}{N} \\
0
\end{array} \\
& \begin{array}{c}
\text { N } \\
\text { N } \\
0
\end{array} \\
& \begin{array}{l}
0.649 \\
0.892
\end{array}
\end{aligned}
$$

9
4
Cir＠it B Calculated Mass Flow（lbm／h）

先
71.33
03.34
03.54
03.15
03.34
15.70
15.50
15.89
15.70

드№̂ong
Refrigerant side Conditions
Expansion Valve
Upstream Pressure（psia）

Upstream Temp B (F)
Upstream Temp C Upstream Subcooling A（F） Upstream Subcooling B（F） Npstage Subcooling（F） Evap Exit Pressure（psia）

Evap Exit Avg Temp B
Evap Exit Avg Temp C
Circuit A Superheat（F） Circuit B Superheat（F）
Circuit C Superheat（F）

匡匡匡匡画画

品

 Circuit Temp
SMART DISTRIBUTOR SUMMARY SHEET
DATA FILENAME: E020416B.DAT SUMMARY FILENAME: E020416B.sum
 Refrigerant Side Conditions Expansion Valve
Upstream Pressur
519.99
0.05
8.97
0.14

Ref-side Cap (Btu/h) :	26335.16
Ref-side Cap (tons)	2.19
Refrigerant Mdot (lbm/h):	383.61
Coriolis Density (lbm/ft3):	82.25
Upstream R22 Tsat (F):	119.72

M		
$\underset{\sim}{n}$		
0		
0	0	0
0		

0.664
0.619

0.486
1.951
2.799
2.848
2.084
2.644
2.848
1.740
it B C
 0.652 0.653
0.692
0.692
1.111
N

0
0
0.652
0.651
が

Upstream Temp A (F): Upstream Temp A (F)
Upstream Temp B (F)
Upstream Temp C (F)
Upstream Average Temp (F): Upstream Subcooling A (F): Upstream Subcooling C (F):
Evap Exit Pressure (psia): Evap Exit Avg Temp A:
Evap Exit Avg Temp B: i) dual bat 7țx dena Circuit A Superheat (F):

SMART DISTRIBUTOR SUMMARY SHEET
DATA FILENAME：E020416A．DAT SUMMARY FILENAME：E020416A．sum

Refrigerant Side Conditions Expansion Valve

Upstream Pressure
Upstream Temp A（F） Upstream Temp B（F）
Upstream Temp C

Upstream Average Temp（F） Upstream Subcooling A（F）． Upstream Subcooling B（F）

Average Subcooling（F）
Evap Exit Pressure（psia）
Evap Exit Avg Temp A
Evap Exit Avg Temp C
缺昰 （F）

国国画画画画画画
नNmチル6「かの

$\stackrel{y}{3}$
$\overrightarrow{3}$
H．
un 믈
華 늘

$\prod_{\text {w }}^{2}$

$\begin{array}{ll}68.01 & 1.590 \\ 51.52 & 0.556\end{array}$
0.585
1.088
0.279

Turb C Density $(1 \mathrm{bm} / \mathrm{ft} 3$ ）

Turb C Mass Flow（lb／h）
Calculated Mass Flow（lbm／h） \％Total Mass Flow Thru A
\％Total Mass Flow Thru
\％Total Mass Flow Thru

Turbine A Frequency（ Hz ）	203.68
Turb A Vol Flow（ft3／min）	0.0286
Turb A Density（lbm／ft3）	70.54
Turb A Mass Flow（lb／h）	121.00
Turbine C Frequency（ Hz ）	175.48
Turb C Vol Flow（ft3／min）	0.0256
Turb C Density（lbm／ft3）	70.57
Turb C Mass Flow（lb／h）	108.61
Calculated Mass Flow（lbm／h）	82.79
\％Total Mass Flow Thru A	38.73
\％Total Mass Flow Thru B	26.50
\％Total Mass Flow Thru C	34.77

$\begin{array}{rr}\text { Ref－side Cap（Btu／h）} & \text { z19\＆6．14 } \\ \text { Ref－side Cap（tons）} & 1.83 \\ \text { Refrigerant Mdot（lbm／h）} & 312.41 \\ \text { Coriolis Density（lbm／ft3）} & 81.76 \\ \text { Upstream R22 Tsat（F）} & 118.87\end{array}$

0.823

0
7
4
4
0
0
0
0.243

 －
\qquad

A. 6 Wavy fin evaporator with non-uniform airflow

Test names	Test type $^{\mathrm{J}}$	Velocity ratio
W020522A	9	$1: 1$
W020523A	9 A	$1: 1.5$
W020524A	9 B	$1: 1.5$
W020528B	9	$1: 1$
W020528C	9 A	$\mathbf{1}: 2$
W020529A	9 B	$\mathbf{1 : 2}$

SMART DISTRIBUTOR SUMMARY SHEET

DATA FILENAME: WO20522A.dat SUMMARY FILENAME: WO20522A.sum

 Evap Inlet Humidity Ratio (lbH20/lbAir): 0.011461
Nozzle Temp (F): $\leqslant 1.66$

$---$

(zH) Kouənbəxa \forall əuṬqxnむ Turb A Vol Flow (ft $3 / \mathrm{min}$)
Turb A Density $(1 \mathrm{bm} / \mathrm{ft} 3)$ Turb A Mass Flow (1b/h) Turbine C Frequency (Hz)
Turb C Vol Flow (ft $3 / \mathrm{min}$) Turb C Vol Flow (ft3/min)
Turb C Density ($1 \mathrm{bm} / \mathrm{ft} 3$) $2.163 \quad$ Turb C Density (1bm/ft
$1.731 \quad$ Turb C Mass Flow (lb/h)
$.1 t$ B Calculated Mass Flow (lbm/h)
.558
 0.371 0
n
0
0
0
0
0 0.603
0.366 0.366
0.604
1.115

 $\begin{array}{ll}90.98 & 0.730 \\ 54.60 & 2.254\end{array}$

 Upstream Pressure (psia) Upstream Temp A (F)
Upstream Temp B (F)
Upstream Temp C (F) Upstream Temp C (F)
Upstream Average Temp (F) Upstream Subcooling A (F) Upstream Subcooling B (F) Upstream Subcooling C (F) Evap Exit Pressure (psia) Evap Exit Avg Temp A Evap Exit Avg Temp C荎 Circuit B Superheat (F) Circuit C Superheat (F)

Circuic
a a a a a a a a a
Laghs xtywhns yolnaizisia wtyws

$$
\begin{array}{r}
\text { Range } \\
0.30 \\
0.10 \\
0.12 \\
0.05
\end{array}
$$

$$
\begin{array}{r}
\text { Latent 4ap } \mid \mathrm{Btu} / \mathrm{h}) \\
\text { EvapAir }
\end{array}
$$

$$
\begin{aligned}
& \text { Air/Ref Cap Prent Diff: } \\
& \text { Sensible Heat Ratio: }
\end{aligned}
$$

$$
\begin{array}{r}
\text { Sensible Heat Ratio: } \\
\text { SCFM per Ton: }
\end{array}
$$

$$
\begin{aligned}
& \text { SCFM per Ton: } 408.17 \\
& (0.075 \text { lb/ft3 standard air) } \\
& 0.011405
\end{aligned}
$$

$$
\begin{aligned}
& 0.009801 \\
& \text { Nozzle }
\end{aligned}
$$

Range

$$
\begin{array}{r}
1+80 q \\
z \tau \cdot L
\end{array}
$$

$8 L^{\circ} \mathrm{L}$ 69.9ウ

$$
\begin{aligned}
& 860 \\
& \nabla \angle 9 \\
& \angle \nabla Z 2 \\
& 006
\end{aligned}
$$

ap Inlet Humidity Ratio (IbH2O LbวAir)
Barometric Pressure (in HG): 2.224
Air Chamber Nozzle Pressure Dro Evaporator Coil Air Pressure Dra

Refrigerant Side Conditions
Expansion Valve
Upstream Pressure (psia): $\begin{array}{ll}\text { Upstream Temp A (F): } \\ \text { Upstream Temp B } & \text { (F) }\end{array}$ (a) J duəl weəx7sdn Upstream Average Temp (F) Upstream Subcooling A (F): Upstream Subcooling B (F): Upstream Subcooling C (F):

Evap Exit Pressure (psia):
Evap Exit Avg Temp A:
Evap Exit Avg Temp C:
Circuit A Superheat (F):
Circuit A Superheat (F): Circuit C Superheat (F):

Overall Superheat (F):

SMART DISTRIBUTOR SUMMARY SHEET
DATA FILENAME：W020524A．dat SUMMARY FILENAME：W020524A．sum
0 ＜0

$$
\text { Indoor Dry-Bulb : } 79 . \equiv 59
$$

Total Air－Side Capacity：2z297． 78
Range0.65
0.26

$$
\begin{array}{cc}
\text { EvapAir Delta T T } F \text { I: } & \text { 2. } 10 \\
\text { Mir/Ref Cap Prcnt Diff: } & 0.28 \\
\text { Sencible }
\end{array}
$$

$$
\begin{array}{lc}
\text { sible Heat Ratio: } & 0.72 \exists \\
\text { SCFM per Ton: } & 395.4 乏 \\
\text { (0.075 } \mathrm{lb} / \mathrm{ft} 3 & \text { standard air) } \\
0.011453
\end{array}
$$

$$
\begin{aligned}
& 0.009731 \\
& \text { Nozzle Temp (F): } \quad 61 \text { ミ3 } \\
& \text { ter): } 0.724 \\
& 0.011
\end{aligned}
$$

$\begin{array}{lll}0.65 & \text { Latent Cap（Btu／h）：} & 2035.79 \\ 0.26\end{array}$
\qquad 0.011453 Indoor Dry－Bulb ： $79 . \equiv 59$
Indoor Inlet Dew（F）： $60 . \equiv 65$ $\begin{array}{ccc}\text { Indoor Exit Dry－Bulb：} & 60 . \equiv 28 & 0.41 \\ \text { Indoor Exit Dew（F）：} & 55 . \equiv 04 & 0.30\end{array}$

$$
s L^{\circ}
$$

\square 0.139 0.139 0.559
0.414 0.601
0.650 0.650
3.981 29.24
Drop
brop 0.200

$0.200-0.008$ | in water |
| :--- |
| n water $)$ |

$$
\begin{aligned}
& 0.011 \\
& 0.008
\end{aligned}
$$

Turbine A Frequency（ Hz ） $\begin{array}{cc}\text { Turb A Vol Flow } & (\mathrm{ft} 3 / \mathrm{min}) \\ \text { Turb A Density } & (\mathrm{lbm} / \mathrm{ft} 3)\end{array}$ Turb A Mass Flow（lb／h）
Turbine C Frequency（Hz） Turbine C Frequency（ Hz ）
Turb C Vol Flow（ftb／ Turb C Density（ $1 \mathrm{bm} / \mathrm{ft} \mathrm{t})$
Turb C Mass Flow（ $1 \mathrm{l} / \mathrm{h}$ ） Turb C Mass Flow（1b／h）
Calculated Mass Flow（1bm／h） $\begin{array}{ll}\text { rcuit B Celculated Mass Flow（ } \\ 0.324 & \text { \％Total Mass Flow Thru A } \\ 0.604 & \text { \％Total Mass Flow Thru B } \\ 0.6\end{array}$ \％Total Mass Flow Thru 1.812
2.202 2.475
1.4202 1.812
2.201 Circuit

．．
Upstream R22 Tsat (F):

$$
\begin{aligned}
& 0.486
\end{aligned}
$$

－－－－－－－
on

Refrigerant Side Conditions
Expansion Valve
Upstream Pressure（psia）
Upstream Temp A（F）
Upstream Temp B（F）
（a）D duәL weəx7sd』
Upstream Average Temp（F）
Upstream Subcooling A（F）
Upstream Subcooling B（F）
Upstream Subcooling C（F）
Average Subcooling（F）
Evap Exit Pressure（psia）
7 ํx
Circuit A Superheat（F） Circuit B Superheat（F）

SMART DISTRIBUTOR SUMMARY SHEET

DATA FILENAME: WO20528B.dat SUMMARY FILENAME: WO20528B.sum
SMART DISTRIBUTOR SUMMARY SHEET

SMART DISTRIBUTOR SUMMARY SHEET
DATA FILENAME: W020529A.dat SUMMARY FILENAME: W020529A.sum

II

A. 7 Enhanced fin (wavy-lanced) evaporator with non-uniform airflow

Table A.7.1: Enhanced-Cut Fin (Wavy-Lanced) Evaporator with Non-Uniform Airflow

Test names	Test type	Velocity ratio
E020604A	9	$1: 1$
E020604B	9 A	$1: 1.26$
E020605A	9 B	$1: 1.26$
E020607A	9	$1: 1$
E020607B	9 A	$\mathrm{I}: \mathrm{I} .36$
E02061OA	9 B	$1: 1.36$
E020611A	9 A	$1: 1.62$
E020612A	9 B	$1: 1.62$
E020613A	9 A	$1: 1.75$
E020620A	9 B	$1: 1.75$
E020621A	9 A	$1: 2.59$
E020624A	9 B	$1: 2.59$

airflow and no superheat adjustment, 9 B : expansion valves adjusted to yield $5.6^{\circ} \mathrm{C}\left(10.0^{\circ} \mathrm{F}\right)$ superheat on all circuits with non-uniform airflow.
SMART DISTRIBUTOR SUMMARY SHEET
DATA FILENAME: E020604A.dat SUMMARY FILENAME: E020604A.sum

$\hat{0}$	6	-1	4
0	0	0	\ddots
m	0	m	0
w			

Ref-side Cap (Btu/h) Ref-side Cap (tons)	$\begin{array}{r} 23476.20 \\ 1.96 \end{array}$
Refrigerant Mdot ($1 \mathrm{bm} / \mathrm{h}$) :	340.40
Coriolis Density ($1 \mathrm{bm} / \mathrm{ft} 3$) :	81.94
Upstream R22 Tsat (F) :	120.22
Turbine A Frequency (Hz) :	z15.39
Turb A Vol Flow (fth/min) :	0.0301
Turb A Density ($1 \mathrm{~lm} / \mathrm{ft} 3$)	70.47
Turb A Mass Flow (lb/h) :	127.46
Turbine C Frequency (Hz) :	197.67
Turb C Vol Flow (ft3/min)	0.0286
Turb C Density ($1 \mathrm{bm} / \mathrm{ft} 3$)	70.45
Turb C Mass Flow (1b/h) :	120.94
<blculated Mass Flow ($1 \mathrm{bm} / \mathrm{h}$) :	92.00
\% Total Mass Flow Thru A	37.45
\% Total Mass Flow Thru B	27.02
\% Total Mass Flow Thru C	35.53

0.973

 3.166

Upstream Pressure (psia) Upstream Temp A
Upstream
Temp
Upstream
Temp
C (F) Upstream Average Temp (F) Upstream Subcooling A (F) Upstream Subcooling C (F) Average Subcooling (F) Evap Exit Pressure Exp A Evap Exit Avg Temp Circuit A Superheat (F)
 Circuit C Superheat (F)
Overall Superheat (F)
)
Air Chamber Nozzle Pressure Drop

 0.011509
Barometric Pressure (in HG): $29.24 \quad$ Nozzle Temp (F): $61 \quad 3 \quad 0 \quad 37$
0.020
0.016
0.016 .756
.372

Refrigerant side Conditions Expansion Valve

1.218	Ref－side Cap（Btu／h）：	23360.84
0.524	Ref－side Cap（tons）：	1.95
0.525	Refrigerant MOot（lbm／h）：	340.61
0.262	Coriolis Density（1bm／ft 3）：	81.84
.	Upstream R22 lsat（F）：	119.84
0.594		
0.420		
0.383		

$$
\begin{aligned}
& \text { Turbine A Frequency (} \mathrm{Hz}) \\
& \text { Curb A Vol Flow (ft } 3 / \mathrm{min}) \\
& \text { Curb A Density (lbm/ft3) } \\
& \text { Curb A Mass Flow (lb/h) } \\
& \text { Turbine C Frequency (Hz) } \\
& \text { Curb C Vol Flow (ft } 3 / \mathrm{min}) \\
& \text { Curb C Density (lbm/ft3) } \\
& \text { Curb C Mass Flow (lb/h) } \\
& \text { culated Mass Flow (lbm/h) } \\
& \text { \& Total Mass Flow Thru A } \\
& \text { \& Total Mass Flow Thru B } \\
& \text { \% Total Mass Flow Thru C. }
\end{aligned}
$$

DATA FILENAME：E020604B．dat SUMMARY FILENAME：E020604B．sum $\begin{array}{c:cc}\text { Indoor } \\ \text { ndoor Inlet Dew（F）} & 60.484 & 0.37 \\ \text { indoor Exit Dry－Bulb } & 5 \equiv .911 & 0.37 \\ \text { Indoor Exit Dew（F）} & 5 \equiv .688 & 0.34\end{array}$

Total Air－Side Capacity： 23654.81

$$
0.011503
$$ －－－－－－－－－－－－－－－－－－－－－－－－－－－－－

$\begin{array}{lll}\text { Indoor Airflow（CFM）：} & 762.89 & 9.67 \\ \text { Indoor Airflow（SCFM）：} & 753.71 & 9.93\end{array}$ Evap Inlet Humidity Ratio（lbH2O／lbAir）： Evan Exit Humidity Ratio（lbH2O／lbAir）
Barometric Pressure（in HG）： 29.24
$\begin{array}{rc}\text { idle Heat Ratio：} & 0.719 \\ \text { SCFM per Ton：} & 382.36 \\ 0.075 \mathrm{lb} / \mathrm{ft} 3 & \text { stan fard air）}\end{array}$ 0.011503
0.006
0.009654
Air Chamber Nozzle Pressure Drop －－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－
Refrigerant Side Conditions
Expansion Valve
Upstream Pressure
$\begin{array}{ll}\text { eam Pressure（psia）：} & 274.33 \\ \text { Upstream Temp A（F）} & 103.65 \\ \end{array}$ Upstream Temp A
Upstream Temp B
（F）
Upstream Average Temp（F）
Upstream Subcooling A（F）
Upstream Subcooling B（F）：
Upstream Subcooling C（F）
Average Subcooling（F）
Evap Exit Pressure（psia）
Evan Exit Avg Temp A
Evan Exit Avg Temp B
Evap Exit Avg Temp C
ircuit A Superheat（F）
Circuit A Superheat（F）
Circuit B Superheat（F） Circuit C Superheat（F）

$$
\begin{aligned}
& 0.009654 \\
& \text { Nozzle Temp (F): } \quad 51.41
\end{aligned}
$$

$$
\begin{array}{lll}
\text { Water): } 0.762 & 0.0: 20 \\
\text { Water) } & 0.435 & 0.0119 \\
-------------------~
\end{array}
$$

J

「NMがロNかの

出出出出出出出出出

0.257
0.603
0.330
 0.091
0.373
0.557

Expansion Valve
Upstream Pressure (psia):
Jpstream Temp A (F) Upstream Temp B (F)
Upstream Temp C (F) Upstream Temp C (F)
Upstream Average Temp (F) Upstream Subcooling A (F) Upstream Subcooling B (F) :
Upstream Subcooling C (F) Average Subcooling (F) Evap Exit Pressure (psia)

Evap Exit Avg Temp C
ircuit A Superheat (F) Circuit A Superheat (F) Circuit C Superheat (F): Overall Superheat (F)

 Circuit Temp Circuit Temp Circuit Temp
 Circuit Temp

Total Air-Jide Capscity: 23732.88 Sensibd $=$ Cap (BCu/h) : 17252.27 $\begin{aligned} \text { Latent Cap (Btu/h) } & 6480.61 \\ \text { \&vapAir D } \mathrm{l} \text { ¢ } \mathrm{m}(\mathrm{m}) & 20.59\end{aligned}$
Range

$$
\begin{aligned}
& 0.39 \\
& 0.11 \\
& 0.19 \\
& 0.15
\end{aligned}
$$

$$
\begin{array}{rr}
\text { Sensible Heat Ratio: } & 0.72 T \\
\text { SCFM per Ton: } & 384.7 \Sigma
\end{array}
$$

(0 $075 \mathrm{lb} /$ 印 st $ص$ mard air)

$$
\begin{array}{ll}
0 & 011451 \\
0 & 009 \Sigma \Sigma \Sigma
\end{array}
$$

$$
\text { Nozzle Temp (F): } 6070
$$

SMART DISTRIBUTOR SUMMARY SHEET

SMART DISTRIBUTOR SUMMARY SHEET

SMART DISTRIBUTOR SUMMARY SHEET
DATA FILENAME: E020611A.dat SUMMARY FILENAME: E020611A.sum

motal Air-Side Capacity: 23033.79
 $$
\begin{array}{rr} \text { Sensible Cap (Btu/h): } 16747.09 \\ \text { Latent Cap (Btu/h): } 6286.70 \end{array}
$$

$$
\begin{aligned}
& \text { Latent Cap (Btu/h): } 6286.7 \\
& \text { EvapAir Delta } T(F): \\
& 20.05
\end{aligned}
$$

$$
\begin{array}{rr}
\text { /Ret cap Prcnt Dirr: } & 1.14 \\
\text { Sensible Heat Ratio: } & 0.727 \\
\text { SCFM oer Ton: } & 395.17
\end{array}
$$

Range
239.47
210.65
141.28
0.22
2.25
0.0059

$$
\begin{aligned}
& 0.011467 \\
& 0.009729
\end{aligned}
$$

Nozzle Temp (F): 61.63

$\begin{array}{ll}\text { (in Water) : } & 0.772 \\ \text { (in Water) : } & 0.406\end{array}$
rometric Pressure (in HG): 29.24
Air Chamber Nozzle Pressure Drop
 Air-Side Conditions , Ev
A Ev Refrigerant Side Conditions Expansion
Upstream Pressure

Upstream Average Temp (F): Upstream Subcooling A (F) : Upstream Subcooling $B(F)$:
Upstream Subcooling $C(F)$: Average Subcooling (F):
Evap Exit Pressure (psia) : Evap Exit Avg Temp A: Evap Exit Avg Temp C Circuit A Superheat (F) : Circuit B Superheat (F): Circuit C Superheat (F):
Overall Superheat (F):

Tap Circuit Temp (F)

 vap Circuit Temp
 rap Circuit Temp vap Circuit Temp
 vap Circuit Temp
vap Circuit Temp

$$
\begin{gathered}
0611 A . \text { dat } \\
\text { Range }
\end{gathered}
$$

$$
\begin{array}{rr}
\text { EvapAir Delta } T(F): & 20.05 \\
\text { Air/Ref Cap Pront Diff: } & 1.14 \\
\text { Conainlo }
\end{array}
$$

$$
\begin{gathered}
\text { SCFM per Ton: } 395.17 \\
(0.075 \mathrm{lb} / \mathrm{ft} 3 \text { standard air) }
\end{gathered}
$$

> Ref-sine Cap |Btu/h)
> 0.525 Refrigerant Mdot $(1 \mathrm{bm} / \mathrm{h})$
0.262 Coriolis Density ($1 \mathrm{bm} / \mathrm{ft} 3$)

> Upstream R22 Tsat (F):

574.87	\%65315 00
6098	8.68
0.45	0.11
578.31	\%36720 Z5
0.33	\%195.00
. 263	0.03
. 43	0.04
1.12	\%109.96
2346.75	\%36617.35
7.96	\%10799.68
690.37	¢10768.28
. 41	32.15

SMART DISTRIBUTOR SUMMARY SHEET

NOOOHOOO6OHO

Refrigerant Side Conditions
Expansion Valve

09

Refrigerant Circuit A Superheat（F） Circuit B Superheat（F）

Circuit C Superheat（F）
Overall Superheat（F） 49.60
49.56
49.29 48.31 48.22 51.56 48.77
50.13

Turbine A Frequency（Hz）
Turb A Vol Flow（ft $3 / \mathrm{min}$ ）
Turb A Density（lbm／ft3）
Turb A Mass Flow（lb／h）
Turbine C Frequency（ Hz ）
Turb C Vol Flow（ft $3 / \mathrm{min})$
Turb C Density（lbm／ft3）
Turb C Mass Flow（lb／h）
Calculated Mass Flow（lbm／h）
\％Total Mass Flow Thru A
\％Total Mass Flow Thru B
\％Total Mass Flow Thru C

0.974
0.350
0.088
0.568
0.423
0.205
0.680
0.486

Upstream Pressure
eam Pressure（psia）：
Upstream Temp A（F）
 Upstream Average Temp（F）： Upstream Average Temp（F）：
Upstream Subcooling A（F）： Upstream Subcooling B（F）： Upstream Subcooling C（F）：
Average Subcooling（F）： Evap Exit Pressure（psia） Exit Pressure（psia）： 90.5
Evap Exit Avg Temp A：
Evap Exit Avg Temp B $: 54.8$
Evap Exit Avg Temp C： Evap Exit Avg Temp C
\circ Exit Pressure（psia）：
Evap Exit Avg Temp A $: ~$
53.53
Evap Exit Avg Temp B \vdots
Evap Exit Avg Temp $\mathrm{C}: .92$
56.77
van Circuit Temp 1 （F）
\＆an Circuit Temp 2 （F） Evan Circuit Temp 3 （F） \＆va＠Circuit Temp 4 （F） をva＠Circuit Temp 5 （F） Eva＠Circuit Temp 6 （F）
Eva＠Circuit Temp 7 （F） Eva＠Circuit Temp 8 （F）：

Range
58．095
19．8をも
488.23
0.43
3.58
0.0151
SMART DISTRIBUTOR SUMMARY SHEET
Refrigerant Side Conditions
Expansion Valve

NOOHNOOHのNinन

389.14
0.22
3.38
0.0106
55

\qquad
\qquad Upstream R22 Tsat（F）

895.
292.
895.
8 IZ． L69 م̂en ∞
0
0
0

$\begin{array}{ll}\infty & \infty \\ 0 & n \\ 6 & n \\ 0 & \end{array}$ | ∞ | m |
| :---: | :---: |
| n | $ल$ |
| n | N |
| \vdots | |
| 0 | |

$\begin{array}{ll}N & 6 \\ & 0 \\ 0 & 0 \\ 0 & 0\end{array}$
$\begin{array}{ll}6 & \pi \\ 0 & \mathrm{~N} \\ 0 & \mathrm{~N} \\ 0 & \mathrm{H}\end{array}$

Upstream Pressure（psia）
 （a）duəц əБexəก甘 meəォ7sdก Upstream Subcooling A（F） Upstream Subcooling C（F）
（d）6uptooدqns əБexəл甘

Evap Exit Avg Temp A
Evap Exit AvJ Temp B

 Circuit C Superheat（F） Overall Superheat（F）

芭芭芗芗芭芗芗芗芗
 $\underset{\substack{\mathrm{w}}}{\mathrm{m}}$

SATA FILENAME: E020624A.dat SISTRIBUTOR SUMMARY SHEET

APPENDIX B. CAPACITY UNCERTAINTY

Table B.l lists the relative uncertainty in the air-side capacity for two representative tests at low and high evaporator capacity. Two tests are shown below, with the first test being a typical test at a capacity comparable to a majority of the other tests for all coils. The second test listed in Table B.l shows a worst case test for COIL-W in parallel flow with an extremely low capacity. For the majority of tests, the uncertainty in the evaporator capacity was at the 4% to 5% level. A complete description of the propagation of error technique used to calculate uncertainty is given in Payne and Domanski (2001).

Table B.1: Relative Uncertainties of Two Evaporator Tests

Test Name	Coil Designation	Capacity, $\mathrm{kW}(\mathrm{Btu} / \mathrm{h})$	Uncertainty Description	Capacity, $\mathrm{kW}(\mathrm{Btu} / \mathrm{h})$	Percent Uncertainty at a 95 \% Confidence Limitonthe_Mean
E020416B	Enhanced- cut	$7.8(26546)$	Typical of all tests	$7.8(26546)$	4.2
W020311B	Wavy	$0.90(3078)$	Worst case	$0.90(3078)$	8.9

APPENDIX C. USER'S INSTRUCTION FOR THE EVAP-COND VERSION USED IN THIS STUDY

A CD attached to this report contains a version of EVAP-COND that was specifically developed for this study. The following pages describe how to install and use the model. As needed for this study, this version of EVAP-COND simulates only evaporators with multiple inlets using the option that solicits refiigerant outlet saturation temperatures and global superheat. This option is identified in the figure below with the EVAPORATOR OPERATING CONDITIONS. The condenser, which normally is included in the EVAP-COND package is not provided here.

The attached CD package contains the following two files:
EV-CD.exe - self-extracting file with all files needed for executing EVAP-COND.

EVAP-COND instructions.pdf - file with visual instructions on how to use EVAPCOND. (You need Version 5 of Adobe Reader to read this file.). The instructions are also included in this appendix.

Installation of EVAP-COND on your PC

Execute file EV-CD.exe to expand it on your hard drive. You will be prompted to select a directory where you want the program to reside. When the installation is completed, you should see EVAP-COND directory and two subdirectories called FLUIDS and MIXTURES.

In the main directory (EVAP-COND), EVAP-COND.exe is the interface. EVAP5.exe is the evaporator. Files with the affix.dat are example cases of input data used in this study. Files with the affix.ope extension contain corresponding operating conditions.

Next step

Refer to the following pages or EVAP-COND instructions.pdf for further information about EVAP-COND capabilities and limitations. They will also assist you in your first evaporator simulation run. It is recommended for the user to follow the steps described there to familiarize yourself with the model. Because of constant upgrading of the model, the simulation results you are going to obtain may not be the same as those presented in EVAP-COND instructions.pdf.

Control of the option to simulate with or without longitudinal fin conduction

The user can control the option of using longitudinal fin conduction in a simulation by accessing file TUNE.TXT selecting 0 or 1 for the flag, as it is explained in the file, and saving the file. TUNE.TXT is located in the EVAP-COND directory.

The following pages contain general visual instructions for using EVAP-COND as they are presented in the file EVAP-COND instructions.pdf located on the attached CD. The option developed for this project is marked and available in this package is marked.

EVAP- COND INSTRUCTIONS

NAPCOND is a software package that contains NIST's simulation models for a finned-tube evaporator (EVAP5) and condenser (COND5). The following pages provide basic instructionson how to use this package. The instructions indude preparation of input data, execution of the program, and examination of simulation results.
Capabilities include:
- tube-by-tube simulation
- non-uniformair distribution
- simulation of refrigerantdistribution
- condenser model capable of simulattions above the critical point
- 10 refrigerants and refrigerant mixtures
- REFPROPG refrigerant properties

Piotr A Domanski
National Institute of Standards and Technology Building and Fire Research Laboratory Gaithersburg, MD, USA

4ateys LOADING A FILE

Ather matiling the progran, dick enthe open file buttien on the power ber or. nelect "Operi" on the
pull down mena

PREPARING A SIMULATION RUN

REFRIGERANT CIRCUIT DESIGN

REFRIGERANT SELECTION

COIL DESIGN DATA

AIR VELOCITY PROFILE

EVAPORATOR OPERATING CONDITIONS

(Eloht options)

EVAPS OPENING WINDOW

EVAPS SOLICITS REFRIGERANT DISTRIBUTION

This window appears only in this version of EVAP- COND for the simulation option used for this study

SIMULATION RESULTS

SIMULATION SUMMARY

SIMULATION SUMMARY (cont.)
 (Complete printout offile si.res)

HOW TO SIMULATE EVAPORATOR?

[^2]
HOW TO PREPARE YOUR DATA FILE?

Start with EditCoil Design menu item. Input all information.
Select Edif/Operating Conditions menu item to input operabngconditions data
Seloct Ealivelocity Profile lo change rhe velocity profile using a mouse (left button)
Specity retrigerant circuitry
If you are coding evaporator circuitry, start mth one of the inlet lubes and proceed downstream If you are coding condensercircultry, start with one of the outlet lubes and proceed upstream, ie, in either case you have to start from the side that is coser to the saturated liquid inte
To draw a return bend, point the mouse on a tube, press the left button, drag the mouse to the next lube, and release If you want lo moddy a circuitry, you may delete a part of it starting from a gwen tube end ending by the exit tube by pointing the mouse on the gwen tube and double-clicking the left button
Once a circuit is coded. it can be used for both evaporator and condenser simulations based on specified operating conditions

Piotr A. Domanski
National Institute of Standardsand Technology Building and Fire Research Laboratory Gaithersburg, MD, USA
Piotr.Domanski@NIST.gov

BIBLIOGRAPHY

ANSYASHRAE Standard 51-1985 or ANSI/AMCA Standard 210. Laboratory methods of testing fans for rating. American Society of Heating, Refrigerating and Air-conditioning Engineers. 1791 Tullie Circle NE, Atlanta, GA, USA.

ANSYASHRAE Standard 37-1988. Methods of testingfor rating unitary air conditioning and heat pump equipment. American Society of Heating, Refrigerating and Air-conditioning Engineers. 1791 Tullie Circle NE, Atlanta, GA, USA.

ARI, 1999. "Positive Displacement Refrigerant Compressor and Compressor Units", Standard 540-1999, Air-conditioning and Refrigeration Institute, Arlington, VA.

ASHRAE, 2001.ASHRAE Handbook, Fundamentals Volume, p. 3.14, American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc., Atlanta, GA.

Bergles, A.E., Collier, J.G., Delhaye, J.M., Hewitt, G.F., and Mayinger, F., 1981. Two-Phase Flow and Heat Transfer in the Power and Process Industries, p. 146-147,Hemisphere Publishing Corp., New York, NY.

Chen J. C., 1966, Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow, I\&EC Process Design and Development, Vol. 5, No. 3.

Chi, J., 1979. "A Computer Model HTPUMP for Simulation of Heat Pump Steady-State Performance", National Bureau of Standards, Internal Report, Washington, D.C.

Chwalowski, M., Didion, D. A., and Domanski, P. A., 1989, Verification of evaporator computer models and analysis of performance of an evaporator coil, ASHRAE Trans., Vol. 95, No. 1.

Domanski, P.A., and Didion, D.A., 1983. "Computer Modeling of the Vapor Compression Cycle with Constant Flow Area Expansion Device", Building Science Series 155, National Bureau of Standards, Gaithersburg, MD.

Domanski, P.A., 1990. "Rating Procedure for Mixed Air-Source Unitary Heat Pumps Operating in the Heating Mode", NISTIR 90-4298, National Institute of Standards and Technology, Gaithersburg, MD.

Domanski, P.A., 1991. "Simulation of an Evaporator with Nonuniform One Dimensional Air Distribution", ASHRAE Transactions,Paper No. NY-91-13-1, Vol. 97, Part 1.

Domanski, P.A. and McLinden, M.O., 1992. A Simplified Cycle Simulation Model for the Performance Rating of Refrigerants and Refrigerant Mixtures, Int. Journal of Refrigeration, Vol. 15, No 2, pp. 81-88.

Domanski, P.A., 1999a. Evolution of Refrigerant Application, Proc. International Congress on Refrigeration, Milan, Italy.

Domanski, P.A., 1999b, "Finned-Tube Evaporator Model With a Visual Interface", $20^{\text {th }}$ Int. Congress of Refrigeration, Sydney, Australia, September 19-24, 1999, International Institute of Refrigeration, Paris.

Ellison R.R., Crewick F.A., Ficher S.K., Jackson W.L., 1981, A computer model for air-cooled refrigerant condenser with specified refrigerant circuiting. ASHRAE Trans.

Gray D.L., Webb R.L., 1986, Heat transfer and friction correlations for plate fin-tube heat exchangers having plain fins, Proceedings of the $9^{\text {th }}$ International Heat Transfer Conference, San Francisco.

Gungor K. E., Winterton R. H. S., 1986, A General Correlation for Flow Boiling in Tubes and Annuli, International Journal of Heat and Mass Transfer, Vol. 29, No. 3.

Heun, M.K., Crawford, R.R., 1994. Longitudinal Fin Conduction in Multipass CrossCounterflow Finned-Tube Heat Exchangers, ASHRAE Transactions, Vol. 100, Part 1, pp. 382-389

Judge J., Radermacher R., 1997, A heat exchanger model for mixtures and pure refrigerant cycle simulations, International Journal of Refrigeration, Vol. 20.

Jung, D.S., Didion, D.A., 1989, Horizontal Flow Boiling Heat Transfer using Refrigerant Mixtures, ER-6364, EPRI Project 8006-2.

Kandlikar S. G., 1990, A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes, Transactions of the ASME. Journal of Heat Transfer, Vol. 112.

Kandlikar S.G., 1991, A model for correlating flow boiling heat transfer in augmented tubes and compact evaporators, Journal of Heat Transfer, Vol. 113.

Kays, W.M., London, A.L., 1984, Compact Heat Exchangers, McGraw-Hill.
Kirby, E. S., C. W. Bullard, and W. E. Dunn, 1998, Effect of Airflow Nonuniformity on Evaporator Performance, Transactions of the American Society of Heating. Refrigeration, and Air Conditioning Engineers, Vol. 104, No. 2.

Kim, N.H., Yun, J.H., and Webb, R.L., 1997. "Heat transfer and friction corrclations for wavy plate fin-and-tube heat exchangers", Journal of Heat Transfer 119, 560-567.

Klimenko V.V., 1988, A general correlation for two-phase forced flow heat transfer for twophase forced flow heat transfer, Int. J. Heat Mass Transfer, Vol. 39, No. 3.

Lee, J., Domanski, P. A., 1997.Impact $\boldsymbol{\propto}$ Air and Refrigerant Maldistributions on the Performance af Finned-Tube Evaporators with R22 and R-407C, Report DOE/CE/238 10-81 for ARI, National Institute of Standards and Technology, Gaithersburg, MD.

Liang S.Y., Wong T.N., Nathan G.K., 2001, Numerical and experimental studies of refhgerant circuitry of evaporator coils, International Journal of Refrigeration, Vol. 24.

McLinden, M.O., Klein, S.A., Lemmon, E.W., and Peskin, A.P., 1998. NIST Standard Reference Database 23, Version 6.01 (REFPROP), National Institute of Standards and Technology, Gaithersburg, MD.

McQuiston F.C., 1978, Correlation of heat, mass and momentum transport coefficients for plate-fin-tube heat transfer surface, ASHRAE Trans.,Vol. 84, No. 1.

McQuiston, F.C., and Parker, J.D, 1982. Heating, Ventilating, and Air Conditioning, J.Wiley \& Sons.

Nakayama, W., and Xu, L.P., 1983. Enhanced fins for air-cooled heat exchangers -heat transfer and friction correlations, Proceedings of the 1st ASME/JSME Thermal Engineering Joint Conference, 495-502.

Oliet, C., Perez-Segarra, C.D., Danov, S., Oliva, A., 2002. Numerical Simulations of Dehumidifying Fin-and tube Heat Exchangers. Model Strategies and Experimental Comparisons, Int. Refrig. Conf. at Purdue University, W. Lafayette, IN, July 15-19.

Payne, W.V. and Domanski, P. A., 2001, A comparison of rating water-source heat pumps using ARI standard 320 and ISO standard 13256-1, NISTIR 6803, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.

Petukhov, B.S., 1970. "Heat transfer and friction in turbulent pipe flow with variable physical properties", Advances in Heat Transfer, Vol. 6., p. 503-564, Academic Press, New York.

Pierre, B., 1964. "Flow Resistance with Boiling Refrigerants", ASHRAE Journal, September issue.

Ranganayakulu, Ch. et. al. 1996. The effects of longitudinal heat conduction in compact plate-fin and tube-fin heat exchangers using afinite element method Int. J. Heat Mass Transfer, Vol. 40, No. 6, pp. 1261-1277.

Romero-Mendez, R., Sen, M., Yang, K.T., McClain, R.L., 1997. Effect of tube-to-tube conduction on plate-fin and tube heat exchanger performance, Int. J. Heat Mass transfer, Vol. 40, No. 16,pp 3909-3916.

Shah M. M., 1976, A New Correlation for Heat Transfer During Boiling Flow Through Pipes, ASHRAE Transactions, Vol. 82.

Sheffield, J.W., Wood, R.A., and Sauer, H.J., 1988. "Experimental Investigation of Thermal Conductance of Finned Tube Contacts", Experimental Thermal and Fluid Science, Elsevier Science Publishing Co., Inc., New York, NY.

Schlager, L.M., Pate, M.B., Bergles, A.E., 1989. "Heat Transfer and Pressure Drop during Evaporation and Condensation of R22 in Horizontal Micro-fin Tubes", Int. J. Refrig., Vol. 12, No. 1.

Schlichting,H., 1968. Boundary-Layer Theory, Sixth Edition, p. 590, McGraw-Hill, Inc.
Wang, C.C., Jang, J.Y., and Chiou, N.F., 1999a. "A heat transfer and friction correlation for wavy fin-and-tubeheat exchangers", International Journal of Heat Mass Transfer 42, 1919-1924.

Wang, C.C., Lee, C.J., Chang, C.T., and Lin, S.P., 1999b. "Heat transfer and friction correlation for compact louvered fin-and-tube heat exchangers", International Journal of Heat Mass Transfer 42, 1945-1956.

Wang, C.C., Chi, K.Y., and Chang, C.J., 2000, "Heat transfer and friction characteristics of plain fin-and-tube heat exchangers", part 11: correlation, International Journal of Heat Mass Transfer 43,2693-2700.

Wang C.C., Lee W.S., Sheu W.J., 2001. A comparative study of compact enhanced fin-and-tube heat exchangers, International Journal of Heat Mass Transfer, Vol. 44.

Webb, R.L., 1990. "Air-side heat transfer correlations for flat and wavy plate fin-and-tube geometries", ASHRAE Transactions 96, Pt.2, 445-449.

[^0]: la : capacity determined at $193 \mathrm{~m}^{3} / \mathrm{h}(400 \mathrm{scfm} / \mathrm{ton})$
 1b : capacity at test 9 for the coil specified.

[^1]:

 ##

[^2]: Run Windows Explorer and go to the directorycontaining EVAP-CONDexe
 Double-click on EVAP-COND exe to start the program
 Open file EXAMPLE-5dat to simulate the evaporator After the file is loaded you will see a schematic representing a side view of the evaporator The red circle(s) indicates the inlet tube to lhe evaporator The blue crcles indicate the outlet tubes The horizontal line at the botom of the screenindicates the arr velocdy profile at the evaporator mlel
 Review Input Data Click on the Edit/Coil Design menu item to review the evaporator design information You may select either the SI or 8ritish system of units foryour input data and simulation results

 Click on the Edit/Operating Conditions/Evaporator/inle1 pressure and quality menu tem to review operation conditions Note that the loaded optwn has a mark on the left-hand side Since EVAP5 simulates performance tube-by-tube from the inlel to outlet the options that specify any outlet refrigerani parameter involve iterative calls to the option that specifies reftigerant inlet pressure and quality until the larger outlet parameters are obtained (e.g saturation temperature and superheat)

 Clck on the EditNelocity Profile menu Hem to review the air velocity profile You may use the air mass flow rate specified earlier in the Operating Conditionsmndow or integrate the air velocity profile In general the first option is recommended unless very detailed and accurate local measurements of the velocity profile were taken You may change the ar velocity profle using a mouse by clicking the left button

 Run a simulation Clck on the Run Simulation menu item and select EVAPS An MS-DOS mndow will appear and will give you a message when a simulation run is successfully completed
 Examinelocal and global Simulation results EVAP5 writes global simulationresults to file SI res (SI systern of units) and BT res (British system of units) The same information S provided in the pull-down menu in the units selected for data input

