Rapid Screening of Metals Using Portable High-Resolution X-Ray Fluorescence Spectrometers

Alan D. Hewitt

April 1995

SPECIAL REPORT

95-14

Abstract

Analysis of copper, zinc, arsenic, lead, chromium, cobalt, nickel, mercury, thallium, selenium, silver, antimony, cadmium, tin, and barium was performed on soils and other particle matrices using two field-portable high-resolution X-ray fluorescence spectrometers (XRF). Quantitative determinations were based on fundamental parameter analysis and a second method that relies on analyte response factors and uses the Compton K_{α} incoherent backscatter peak for matrix normalization. These two methods of instrumental analysis require only a few reference materials and are relatively insensitive to sample matrix composition. This study assessed the capability of these two rapid XRF analysis methods by determining metal concentrations in reference materials, field samples, and laboratory spiked soils. With the exception of nickel, cobalt, and chromium, concentrations within 50% of the expected values were consistently obtained at and below 1000 µg/g.

For conversion of SI units to non-SI units of measurement consult ASTM Standard E380-93, *Standard Practice for Use of the International System of Units,* published by the American Society for Testing and Materials, 1916 Race St., Philadelphia, Pa. 19103.

This report is printed on paper that contains a minimum of 50% recycled material.

Special Report 95-14

US Army Corps of Engineers

Cold Regions Research & Engineering Laboratory

Rapid Screening of Metals Using Portable High-Resolution X-Ray Fluorescence Spectrometers

Alan D. Hewitt

April 1995

Prepared for U.S. ARMY ENVIRONMENTAL CENTER SFIM-AEC-ET-CR-95039

Approved for public release; distribution is unlimited.

PREFACE

This report was prepared by Alan D. Hewitt, Research Physical Scientist, Geological Sciences Division, Research and Engineering Directorate, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire.

Funding for this work was provided by the U.S. Army Environmental Center, Martin H. Stutz, Project Monitor. The author thanks Dr. T.M. Spittler for suggesting the response factor/Compton K_{α} peak normalization method of analysis, Scott Clifford for providing the field samples, and Thomas Ranney and Dr. Thomas F. Jenkins for critical review of the text.

This publication reflects the views of the author and does not suggest or reflect policy, practices, programs, or doctrine of the U.S. Army or of the Government of the United States.

The contents of this report are not to be used for advertising or promotional purposes. Citation of brand names does not constitute an official endorsement or approval of the use of such commercial products.

CONTENTS

Preface	ii
Introduction	1
Instrumentation	2
Calibration	2
Analysis	3
Experimental	4
Reference materials	
Field samples	4
Treated laboratory soils	
Results and discussion	
Conclusions	11
Literature cited	12
Abstract	15

Page

ILLUSTRATIONS

Figure

1.	Spectrum of several characteristic K_{α} and K_{β} peaks for metals and	
	Compton and Rayleigh backscatter	3
2.	Lead concentrations established for spiked soils by both RF/Comp. K_{α}	
	normalization and FP analysis	7
3.	Antimony concentrations established for spiked soils by both RF/Comp.	
	K_{α} normalization and FP analysis	8
4.	Fluorescence yield vs. atomic number for <i>K</i> and <i>L</i> lines	11
5.	Average and standard deviation of concentrations established for	
	soils spiked with 1000 μ g metal/g	12

TABLES

Table

1.	Primary sources and analyte lines for metals of environmental concern	
	that can be detected by X-ray fluorescence spectrometry	2
2.	Daily response factors established for Cu, Zn, As, and Pb based on the	
	SRM 2710 certified reference material	3
3.	List of certified reference materials	4
4.	Characteristics of laboratory-treated soils	4

Table

Page

5.	Treatment scheme for spiking soil subsamples with metals	5
6.	Detection limit estimates and intensity counts	5
7.	Analysis of commercial reference materials from the National Institute of	
	Standards and Technology	6
8.	Analysis of commercial reference materials from Resource Technology	
	Corporation	6
9.	Concentrations of Cu, Zn, and Pb determined for field soil samples	7
10.	Concentrations of Cr, Cu, Zn, As, and Pb determined for spiked soil	
	matrices by response factor/Compton K_{α} peak normalization	8
11.	Concentrations of Co, Ni, Hg, Tl, and Se determined for spiked soil	
	matrices by response factor/Compton K_{α} peak normalization	9
12.	Concentrations of Ag, Cd, Sn, Sb, and Ba determined for spiked soil	
	matrices by response factor/Compton K_{α} peak normalization	9
13.	Concentrations of Cr, Cu, Zn, As, and Pb determined by fundamental	
	parameter analysis using the Spectrace 9000	10
14.	Concentrations of Co, Ni, Hg, Se, and Fe determined by fundamental	
	parameter analysis using the Spectrace 9000	10
15.	Concentrations of Ag, Cd, Sn, Sb, and Ba determined by fundamental	
	parameter analysis using the Spectrace 9000	11

Rapid Screening of Metals Using Portable High-Resolution X-Ray Fluorescence Spectrometers

ALAN D. HEWITT

INTRODUCTION

Metal pollution over the past decade has come to be of greater concern due to an increasing awareness of the pathways leading to chronic human toxicity (Spittler and Fender 1979). During this time the use of X-ray fluorescence (XRF) analysis has increased for establishing the presence of elevated levels of metals in environmental samples (e.g., Furst et al. 1985, Piorek and Rhodes 1988, Grupp et al. 1989, Watson et al. 1989, Ashe et al. 1991, Carlson and Alexander 1991, Driscoll et al. 1991, Garby 1991, Harding 1991, Puls et al. 1994, etc.). This instrumental method of analysis establishes concentration estimates for several metals over a concentration range extending from percent levels to around $100 \,\mu g/g$ (ppm). The method requires little or no sample pretreatment and can be performed for a small fraction of the time and cost associated with acid extraction/atomic absorption or emission analysis. Moreover, XRF analysis is nondestructive, so subsamples can be archived or analyzed by other procedures. For these reasons, XRF analysis is a very practical and economical method when screening for high concentrations of metals during a remedial investigation and feasibility study (RI/FS) at a suspected hazardous waste site.

Today several manufacturers offer energy-dispersive XRF spectrometers that have been designed to be compatible with field operations. The most transportable systems have a battery power supply option and use one or more radioactive sources as the primary incident radiation for elemental excitation. The first generation of these stand-alone systems was equipped with gas proportional detectors that had a spectral resolution on the order of 800–1000 electron volts (1000 eV = 1 keV). More recently, systems have been marketed (HNU Systems Inc., Spectrace Instruments, Inc., Metorex, Inc.) with silicon (drifted with lithium) [Si(Li)] or mercuric iodide (HgI₂) detectors capable of achieving resolutions of 170 and 300 eV, respectively. This increased spectral resolution allows for the unambiguous qualitative identification of metals in complex mixtures.

Quantitatively, however, the measurement of discrete spectral energies obtained by XRF analysis is often dependent on other metals present in the sample, due to absorption and enhancement effects. For environmental sample analysis, these matrix-specific effects are best addressed by the use of empirical coefficients (Piorek and Rhodes 1988). This method of instrumental calibration requires the acquisition or development of several well-characterized materials with a matrix composition similar to that of the samples. Moreover, the standards should contain a range of metal concentrations bracketing the desired level of quantitation. Due to these requirements, calibration standards are often both material and site specific, and their preparation and/or verification may take one or more weeks.

A more practical solution for an initial site investigation would be a calibration method that is insensitive to sample matrix so that only few standards would be needed to handle a diverse range of samples (e.g., soil composition "sand/slit/clay," sediment, sludge, dust, paint chips, etc.). Ideally, this capability would allow samples to be analyzed independent of any previous site characterization. With this concept in mind, two quantitation routines have been proposed for field-transportable high-resolution XRF systems. One routine is based on fundamental parameters (FP) analysis, which eliminates the need for several calibration standards by relying on certain physical constants to estimate metal concentration while theoretically correcting for matrix discrepancies (Figura 1987, 1993). Another approach uses response factors (RF) and corrects for matrix discrepancies by normalizing to the Compton K_{α} (Comp. K_{α}) incoherent radiation backscatter peak.*

This study evaluates these two methods of rapid sample analysis by determining the concentrations of copper (Cu), zinc (Zn), arsenic (As), lead (Pb), chromium (Cr), cobalt (Co), nickel (Ni), mercury (Hg), thallium (Tl), selenium (Se), silver (Ag), antimony (Sb), cadmium (Cd), tin (Sn), and barium (Ba) in a variety of solid-particle matrices. All analyses are performed with transportable highresolution XRF systems that can be configured for stand-alone operations. This combination of rapid sample analysis and instrumental transportability is well suited for screening purposes, thus a data quality objective of an accuracy of $\pm 50\%$ and detection limits of less than 1000 µg/g was used (Raab et al. 1987).

INSTRUMENTATION

Explanations of the principals of XRF analysis can be found elsewhere (Driscoll et al. 1991, Hewitt 1994a, b). The instruments used in this study were the X-Met 920 (Metorex, Inc.; formerly Outokumpu Electronics) and the Spectrace 9000 (Spectrace Instruments) X-ray spectrophotometers. These two field-portable systems are equipped with surface analysis probes allowing for either in situ or intrusive sample analysis and have software-supported FP analysis capabilities. The Spectrace 9000 is equipped with three primary radioactive sources, Fe-55, Cd-109, and Am-241, and has a HgI₂ solidstate detector. The X-Met 920 has two radioactive sources, Cd-109 and Am-241, and has a Si(Li) detector that requires liquid N2 for operation. Table 1 lists some of the metals that can be determined by these XRF systems. The table also shows those metals that could be quantitated by FP software programs supplied by the respective manufacturers.

CALIBRATION

The FP software routines used in this study are proprietary to the instrument manufacturer. In general, these FP programs are a series of algorithms based on intensities measured for pure elements, sensitivity coefficients, summations of absorption-enhancement terms in appropriate matrices, and correction factors for overlapping peaks (Figura 1987). The X-Met 920 FP program also required the analysis of a fully characterized standard material, which for this study was SRM 2710, from the National Institute of Science and Technology (NIST).

To perform the RF/Comp. K_{α} normalization analysis, a standard must be available that contains the analytes of interest in a matrix that is physically consistent (dry particles) with the samples. When possible, the RF should be established for well resolved K_{α} , K_{β} , L_{α} , or L_{β} spectral lines (Table 1). Figure 1 is an example of an XRF spectrum obtained with the X-Met 920 showing several characteristic peaks for metals along with the incoherent (Compton) and coherent (Rayleigh) sample matrix backscatter.

For this study a finely ground soil, SRM 2710 certified reference soil from NIST, was used to establish the analyte RFs for Cu, Zn, As, and Pb. Table 2 is an example of some of the daily RFs established for these four metals. For the determination of Cr, the NIST SRM 2711 was spiked with 4000 µg

Table 1. Primary sources and analyte lines for metals of environmental concern that can be detected by Xray fluorescence spectrometry.

			Emission lines (keV)			
Source	Metals	Kα	Kβ	Lα	Lβ	
FE-55	Cr†	5.41	5.95			
Cd-109	Crt*	5.41	5.95			
Cd-109	Mn†	5.89	6.49			
Cd-109	Fe†*	6.40	7.06			
Cd-109	Cot	6.92	7.65			
Cd-109	Ni†	7.47	8.30			
Cd-109	Cu†*	8.04	8.94			
Cd-109	Zn†*	8.63	9.61			
	Ast*	10.5	11.8			
Cd-109	Set	11.2	12.6			
	Hg†			9.98	11.9	
Cd-109	TĪ			10.3	12.3	
	Pb†*			10.5	12.6	
Am-241	Ag†	22.1	25.2			
Am-241	Cďt	23.1	26.4			
Am-241	Snt	25.2	28.8			
Am-241	Sb†	26.2	30.1			
Am-241	Bat	32.0	36.8			

 Spectrace 9000 preprogrammed for fundamental parameter analysis of this metal.

 X-Met 920 preprogrammed for fundamental parameter analysis of this metal.

^{*} T.M. Spittler, U.S. Environmental Protection Agency, Environmental Services Division, Region 1, Lexington, Massachusetts.

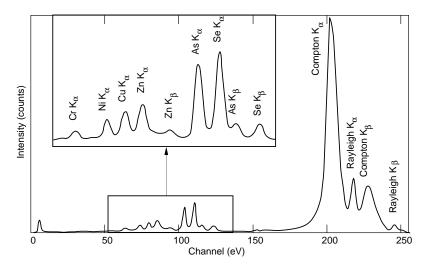


Figure 1. Spectrum of several characteristic K_{α} and K_{β} peaks for metals and Compton and Rayleigh backscatter.

Table 2. Daily response factors established for
Cu, Zn, As, and Pb based on the SRM 2710
certified reference material.

Response factor (intensity/concentration)

	Си	Zn	As	Pb
	12.0	33.9	1.09	39.5
	11.9	34.8	0.90	38.0
	12.3	34.4	1.04	39.6
Average	12.1	34.4	1.01	39.0
Std. dev.	0.21	0.45	0.098	0.90
% RSD	1.7	1.3	9.7	2.3
SRM 2710 concentration (µg				
	2950	6952	626	5532

Cr/g, to establish an RF. All of the other metals analyzed were quantified relative to RFs obtained for the Rocky Mountain Arsenal (RMA) soil matrix spiked with 1000 µg metal/g. Even with a highresolution XRF instrument, the As K_{α} and Pb L_{α} lines (10.532 and 10.549 keV, respectively) overlap, so the As K_{β} and Pb L_{β} peaks were used. In addition, because high levels (>0.4%) of Fe were present in many of the laboratory-treated soil matrices, the Fe K_{β} peak (7.06 keV) had to be subtracted from the Co K_{α} peak (6.92 keV), due to a spectral overlap. In the case of Co, the K_{β} line was not used because of insufficient response (intensity).

ANALYSIS

Only intrusive sample-analysis procedures were used in this study. Samples consisted of 2- to

5-gram quantities of air-dried materials with particle sizes averaging <600 μ m in diameter. All samples were placed into 31-mmdiameter cups and covered with a 0.2-mil polypropylene X-ray film window. XRF analyses were performed for a period of 300 seconds. Field operations using these two preparation steps, i.e., drying and sieving, have shown that up to a hundred samples can be processed and analyzed within a single day (Grupp et al. 1989, Garby 1991).

Fundamental parameter sample analysis was performed using both XRF instruments after the selection of the appropriate software application and assessing

the instrumental tuning. For the Spectrace 9000 this involved checking the resolution and the background response with supplied reference materials and selecting the fine particle application. The FP software application supplied with the X-Met 920 system was based upon the analysis and total characterization of the finely ground NIST SRM 2710.

The RF/Comp. K_{α} normalization analysis method was only performed with the X-Met 920. To perform this method of analysis, the energy spectrum from each analysis was saved and transformed from a 2048- to a 256-channel spectrum for close examination. This approach was used because it was easier to measure the intensity of smoothed peaks and, once transformed, up to six spectra could be overlaid. Measurements included the intensity of elemental spectral lines and the intensity of the incoherent radiation backscatter peak (Comp. K_{α}). The intensity of the incoherent radiation backscatter reflects both the composition of light elements (e.g. carbon, nitrogen, silicon, etc.) in the sample matrix as well as the overall concentration of detectable analytes (Nielson and Sanders 1983). Intensities of both the baseline and peaks of interest were recorded from the computer display after selecting the appropriate spectrum channels. Concentration estimates were then manually determined by multiplying the baseline-corrected analyte signal intensity by the normalization factor, followed by the response factor. The normalization factor is the quotient of the Compton K_{α} peak intensity of the certified reference material, divided by that of the samples. A more complete description of this analysis has been published elsewhere (Hewitt 1994a, 1994b).

EXPERIMENTAL

Several reference materials of different solidwaste matrices, along with field-contaminated and laboratory-treated soils, were analyzed to assess the performance of both the FP and RF/Comp. K_{α} normalization.

Reference materials

Table 3 lists the certified reference materials purchased from NIST and the Resource Technology Corporation (RTC). Those purchased from NIST have certified concentrations for the total amount of metal present, whereas the RTC materials report certified values based on the USEPA SW846, 3000-series metal acid extraction procedures (U.S. EPA 1986).

Field samples

Six river sediment subsamples from a suspected hazardous-waste site were analyzed. These field subsamples were taken from thoroughly homogenized samples that had been previously characterized by inductively coupled plasma (ICP) analysis following 3000-series metal acid extraction procedures (U.S. EPA 1986).

Treated laboratory soils

Six different soils were spiked with Cr, Cu, Zn, As, Pb, Ni, Se, Hg, Tl, Co, Ag, Cd, Sn, Sb, and Ba by using concentrated 10,000 mg/L aqueous pure element atomic absorption standards (AESAR/

Table 3. List of certified reference materials.

National Institute of Standards and Technology

SRM 1645—River sediment SRM 1646—Estuarine sediment SRM 1579a—Powdered lead-based paint SRM 2704—Buffalo River sediment SRM 2709—San Joaquin soil SRM 2710—Montana soil SRM 2711—Montana soil

Resource Technology Corporation

CRM012—Incinerated sludge CRM014—Baghouse dust CRM013—Paint chips CRM020—Soil (from EPA Superfund site) CRM021—Soil (from contaminated waste site)

Table 4. Characteristics of laboratory-treated soils.

Matrix	Sand (%)	Silt and clay (%)	Grain size* (μm)	Wt.† (g)
Ottawa sand	100		400	4
Rocky Mountain Arsenal	NA	NA	NA	4
Lebanon landfill	45	55	300	4
CRREL soil	NA	NA	NA	4
Tampa Bay sediments	95	5	200	4
Ft. Edwards clay	30	70	30	2

* 95% cut off

⁺ Weight of soil subsample spiked

NA Not analyzed

Alfa, Johnson Matthey). A complete description of how these soil subsamples were treated has been presented elsewhere (Hewitt 1994b). The soil characteristics and the weight of the treated subsamples are shown in Table 4.

Briefly, the soils were air dried and thoroughly mixed prior to placing subsamples into 31-mmdiameter analysis cups. Analyte spikes were made by pipetting between 0.4 and 0.025 mL quantities of the aqueous standards directly onto the individual soil subsamples, increasing the metal concentration by 1000, 500, 250, 125, or $0 \ \mu g/g$. Only five analytes were applied to a set of five replicate soil subsamples in order to limit the total volume of solution added to each subsample (0.2 mL/g). Following this protocol, one set of 30 soil subsamples (5×6) was spiked with Cr, Cu, Zn, As, and Pb, a second with Ni, Se, Hg, Tl, and Co, and a third with Ag, Cd, Sn, Sb, and Ba. Analyte additions were performed so that a given soil subsample was not treated with the same concentration more than once (Table 5). A sixth untreated subsample of each soil type was also analyzed with each group and served as the matrix blank.

RESULTS AND DISCUSSION

Table 6 lists the estimates of detection reported by the manufacturers for FP analysis, along with some values established using the RF/Comp. K_{α} normalization and method detection limit (MDL) (Federal Register 1984). This table also includes the analyte intensities measured for the RMA soil treated with 1000 µg metal/g. These intensities were included to provide a means of predicting a detection limit, based on the assumption that there is a fairly constant inverse relationship between these two parameters. This table indicates that regardless of the method of analysis, all of these

 Table 5. Treatment scheme for spiking soil subsamples with metals.

Sets	Metal groups						
1	Cr	Cu	Zn	As	Pb		
2	Ni	Se	Hg	T1	Co		
3	Sb	Ag	Ba	Cd	Sn		
	Treatment concentrations						
Subsample							
S1	1000*	125	0	500	250		
S2	500	250	1000	0	125		
S3	250	0	125	1000	500		
S4	125	1000	500	250	0		
S5	0	500	250	125	1000		
Matrix							
blank	NF	NF	NF	NF	NF		
 * μg/g							

NF Not fortified

 Table 6. Detection limit estimates and intensity counts.

	Detection limits ($\mu g/g$)				
		Spectrace	X-Met	RF/	Peak
Source	Metal	9000*	920†	Compt.**	intensity*†
FE-55	Cr	180		—	_
Cd-109	Cr	525	325	270	1.18
Cd-109	Mn	410	225	_	_
Cd-109	Fe	225	200	_	_
Cd-109	Co	205	180	—	1.33
Cd-109	Ni	125	175		3.82
Cd-109	Cu	90	175	54	6.58
Cd-109	Zn	70	160	90	6.47
Cd-109	As	50	140	42	3.18
Cd-109	Se	35	140	_	18.0
Cd-109	Hg	60	—	—	5.33
Cd-109	T1		_	_	7.83
Cd-109	Pb	30	—	48	8.34
Am-241	Ag	_	70	_	25.9
Am-241	Cď	180	100	_	24.6
Am-241	Sn	100	80	_	27.1
Am-241	Sb	65	80	_	33.5
Am-241	Ba	20	100	_	31.4

* Minimum detection limit

⁺ Minimum determination limit

** Method detection limit

*[†] Matrix-corrected peak intensity for 1000-ppm spiked RMA soil

metals should be easily quantitated below 1000 μ g/g by XRF analysis.

Tables 7 and 8 show the concentration estimates obtained for the commercial reference materials by these two methods of rapid sample analysis. These two tables show results for Cu, Zn, As, and

Pb when the certified concentration was above one of the estimates of detection listed in Table 6. In only two cases were the values established by the RF/Comp. K_{α} normalization method off by more than ±50% from the certified values. An apparently high concentration was established for Cu in the CRM 021 soil, and a low one for the SRM 2704 river sediment. Fundamental parameter analysis with the Spectrace 9000 XRF failed to establish concentrations within ±50% six times, twice each for Cu, As, and Pb. No values were obtained for Cu in the SRM 2704 river sediment and SRM 2711 soil, while low determinations of As occurred for both the SRM 2710 soil and the CRM 020 soil, and high estimates were obtained for Pb in the CRM 013 paint chips and the CRM 014 baghouse dust. The FP determinations made with the X-Met 920 failed to meet this criterion in only three cases. A low value was established for As in the CRM 020 and high values for Pb in both the CRM 013 paint chips and the CRM 014 baghouse dust.

The high values obtained for the CRM reference materials by these two methods of XRF analysis are not necessarily incorrect, since the certified value is based on an acid extraction that does not necessarily represent the total amount present. However, a low determination for these standards, or one that fails to be within ±50% of the value stated for the NIST reference materials, would be aberrant. The low As concentrations determined by FP analysis had previously been identified as a problem when samples contain much larger (>10 times) quantities of Pb (Harding 1991). The falsenegative Cu determinations were only for samples with certified concentrations very close to the estimates of detection. Overall, these two rapid methods of analysis showed that they were fairly insensitive to this wide variety of particulate matrices by establishing concentrations that would be appropriate for the data quality objectives stated.

Table 9 shows XRF concentration estimates obtained for Cu, Zn, and Pb along with the values obtained by acid-extraction/ICP analysis. The FP analysis was only performed with the X-Met 920 XRF analyzer. In those cases where the values obtained by acid-extraction/ICP analysis were above the appropriate estimate of detection (Table 6), only Cu in sample A and Zn in sample F had XRF estimates that were off by more than $\pm 50\%$. A high Cu value was established by RF/Comp. K_{α} normalization analysis, and a high Zn value was established by FP analysis. Again, since these reported estimates were higher than those obtained after acid extraction and ICP analysis, which is not necessarily a total concentration, the XRF values may not be incorrect.

The concentration estimates for Cu, Zn, As, Pb, Cr, Co, Ni, Hg, Tl, Se, Ag, Cd, Sn, Sb, and Ba in the laboratory-spiked soil subsamples appear in Tables 10 through 15. Tables 10–12 show the values for RF/Comp. K_{α} normalization analysis, and Tables 13–15 show the values for FP analysis using the Spectrace 9000 XRF analyzer. In addition to these metals that were spiked onto the soils, values for iron (Fe) determined by FP analysis are reported in Table 14. Thallium was not determined by FP analysis because this metal had not been included in the software program. All of these concentration estimates were established by using either Cd-109 or Am-241 incident radiation (Table 1).

The values in these tables were corrected for

background concentrations present in the soil matrix and for spectral overlap interferences. These corrections were made when both the subsample in the treatment set (Table 5) with no spiked analyte and the subsample of the untreated matrix were determined to have concentrations that exceeded the respective estimates of detection listed in Table 6. However, in cases where there was no estimate of detection for the RF/Comp. K_{α} normalization method of analysis, the lowest value appearing in this table was used. Corrections for Cu, Zn, and Ba were necessary because these metals were present at detectable levels in some of the soil matrices. Corrections were required for Co because of a spectral overlap with the K_{β} peak of Fe and for Ag due to spectral overlap with a peak characteristic of the Am-241 primary radiation source.

Table 7. Analysis of commercial reference materials from
the National Institute of Standards and Technology.

Table 8. Analysis of commercial reference material	s
from the Resource Technology Corporation.	

	Metal concentrations ($\mu g/g$)			
Standard	Си	Zn	As	Pb
SRM 1645	109**	1720**		714**
river sediment	[72]	[1900]		[638]
	114*	1760*		606*
SRM 1646		138**		
estuarine sedimen	ıt	[127]		
SRM 1579a				119,950**
lead-based paint				[160,000]
-				144,000+
				124,000*
SRM 2704	99**	438**		161**
river sediment	[31]	[302]		[130]
	ND [†]	464 ⁺		133+
		527*		200*
SRM 2709 soil		106**		
		[91]		
		129†		
SRM 2710 soil	2950**	6952**	626**	5532**
	3350+	7570†	149†	6240†
SRM 2711 soil	114**	350**	105**	1162**
	[167]	[343]	[138]	[1100]
	ND [†]	410 ⁺	ND [†]	1280
		414*		1210*

** Certified concentration

- [] Concentration estimate based on response factor/ Compton K_{α} peak normalization with X-Met 920
- ⁺ Concentration estimate based on fundamental parameter analysis with Spectrace 9000
- * Concentration estimate based on fundamental parameter analysis with X-Met 920

ND Not detected

	Metal concentrations ($\mu g/g$)				
Standard	Си	Zn	As	Pb	
CRM012 incinerated sludge	3015** [2470] 3590 [†] 3340*	635** [342] 744 [†] 525*		120** [114] 126 [†] 60*	
CRM 013 paint chips				643** [460] 2160 [†] 998*	
CRM 014 baghouse dust				1914** [2080] 5360t 4925*	
CRM 020 soil	753** [687] 521 [†] 684*	3021** [4420] 3550 [†] 3898*	397** [429] 113 [†] 126*	5195** [5070] 4580 [†] 4950*	
CRM 021 soil	5086** [8720] 3060 [†]	574** [549] 408 [†]			

** Certified concentration

- [] Concentration estimate based on response factor/
- Compton K_{α} peak normalization with X-Met 920 ⁺ Concentration estimate based on fundamental parameter analysis with Spectrace 9000
- * Concentration estimate based on fundamental parameter analysis with X-Met 920

ND Not detected

Table 9. Concentrations $(\mu g/g)$ of Cu, Zn, and Pb determined for field soil samples.

	Metal concentrations ($\mu g/g$)				
Field samples	Си	Zn	Pb		
А	114**	1140**	253**		
	[176]	[1260]	[229]		
	286*	1500*	318*		
В	776**	1390**	488**		
	[756]	[1310]	[473]		
	984*	1810*	614*		
С	1860**	261**	2060**		
	[1750]	[182]	[1650]		
	1600*	220*	1600*		
D	3960**	735**	546**		
	[3270]	[408]	[475]		
	3510*	688*	494*		
Е	449**	1260**	350**		
	[443]	[1230]	[328]		
	567*	1710*	416*		
F	104**	182**	87**		
	[145]	[200]	[108]		
	331*	391*	245*		

** Concentrations based on acid-extraction/ ICP analysis

 Concentration estimate based on response factor/Compton K_α peak normalization with X-Met 920

 Concentration estimate based on fundamental parameter analysis with X-Met 920

This study of laboratory-spiked soils was included because commercial reference materials typically contain only a few metals (e.g., Cu, Zn, Pb) at concentrations that can be readily detected by XRF analysis. The soil spiking method used (Hewitt 1994b) appears to have resulted in fairly homogenous and accurate analyte concentrations, as shown by Figures 2 and 3. Plots of the results of Pb and Sb were chosen to show this feature because XRF analysis is particularly sensitive for these two metals (Table 6), and they are representative of metals excited by the Cd-109 and Am-241 primary sources, respectively. It is logical to assume that the other metals spiked onto the different soil matrices were likewise evenly distributed.

The results in Tables 10–15 show that these two methods of rapid sample analysis consistently established concentrations for Cu, Zn, Pb, Se, Ag, Sn, Sb, and Ba that were within ±50% of the expected values from 1000 to 125 ppm. This was also the case for Hg as determined by RF/Comp. K_{α} normalization analysis. The few aberrant values for Hg, as established by FP analysis with the

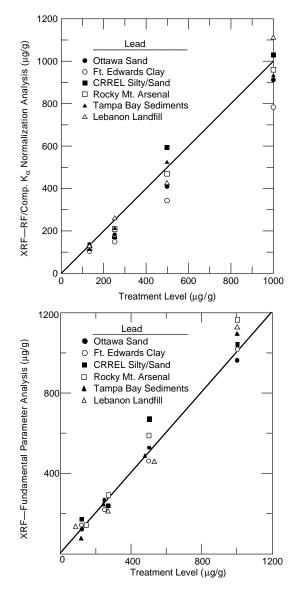


Figure 2. Lead concentrations ($\mu g/g$) established for spiked soils by both RF/Comp. K_{α} normalization and FP analysis.

Spectrace 9000, were most likely caused by a peak overlap with Tl. This problem occurred because Tl had not been one of the metals included in the FP software. With the exception of a few values established for the two lowest treatment levels for As and Cd (and Tl by RF/Comp. K_{α}) these metals were also within the ±50% concentration criterion. Clearly, the concentrations of all of these metals can be adequately estimated at 1000 µg/g and below by these two rapid methods of XRF analysis. Furthermore, since both methods established concentration trends that were consistent with the treatment levels, they would correctly define the areas of greatest concern.

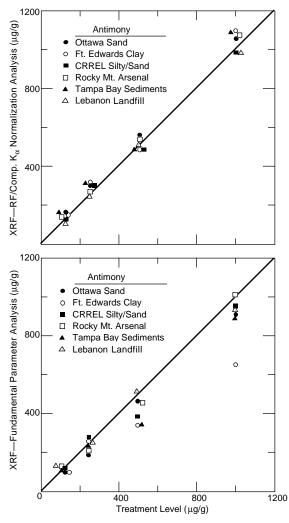


Figure 3. Antimony concentrations ($\mu g/g$) established for spiked soils by both RF/Comp. K_{α} normalization and FP analysis.

The remaining metals in this study, Ni, Co, and Cr, required additional qualifications because their estimates of detection precluded some of the lower laboratory treatment levels. For instance, Ni and Co could only be assessed for spiked concentrations that were >205 ppm $(\mu g/g)$, likewise Cr for concentrations >525 ppm and >270 ppm for FP and the RF/Comp. K_{α} analysis, respectively. Values for all three of these metals were established by both methods of analysis that failed to meet the ±50% concentration criterion. High concentration estimates tended to be established for both Ni and Co by FP analysis in soils with low Fe content (Table 14). In contrast, low concentrations of these two metals were established by RF/Comp. K_{α} normalization analysis when high levels of Fe were present. Both meth-

Table 10. Concentrations (μ g/g) of Cr, Cu, Zn, As, and Pb determined for spiked soil matrices by response factor/ Compton K_{α} peak normalization.

Material & spike Cu Zn As Pb Cr Ottawa sand1000 ppm1010*102014209111770500 ppm534*458381411856250 ppm264*224324182312125 ppm132*12772139840 ppm69NDNDNDNDMatrix6418ND10NDFt. Edwards clay1000 ppm711*751*906785979500 ppm289*374*491344638250 ppm144*252*229150175125 ppm142*91*1041083040 ppm19981ND1946Matrix21880ND4NDCRREL soil1000 ppm787*87078210301100500 ppm461*541635597439250 ppm250*247320178220125 ppm69*152261302500 ppm864848ND93Matrix6259ND18257Rocky Mountain Arsenal C 241349125 ppm93*1531051252290 ppm76ND37ND209125 ppm93*153105126653250 ppm <th></th> <th colspan="4">Metal concentrations ($\mu g/g$)</th> <th>)</th>		Metal concentrations ($\mu g/g$))
1000 ppm 1010* 1020 1420 911 1770 500 ppm 534* 458 381 411 856 250 ppm 264* 224 324 182 312 125 ppm 132* 127 72 139 84 0 ppm 69 ND ND ND ND Matrix 64 18 ND 10 ND ft Edwards clay	Material & spike	Си	Zn	As	Pb	Cr
1000 ppm 1010* 1020 1420 911 1770 500 ppm 534* 458 381 411 856 250 ppm 264* 224 324 182 312 125 ppm 132* 127 72 139 84 0 ppm 69 ND ND ND ND Matrix 64 18 ND 10 ND ft Edwards clay	Ottawa sand					
500 pm 534* 458 381 411 856 250 ppm 264* 224 324 182 312 125 ppm 132* 127 72 139 84 0 ppm 69 ND ND ND ND Matrix 64 18 ND 10 ND Ft. Edwards clay		1010*	1020	1420	911	1770
250 ppm 264^* 224 324 182 312 125 ppm 132^* 127 72 139 84 0 ppm 69 NDNDNDNDMatrix 64 18 ND 10 NDFt. Edwards clay 1000 ppm 711^* 751^* 906 785 979 500 ppm 289^* 374^* 491 344 638 250 ppm 144^* 252^* 229 150 175 125 ppm 142^* 91^* 104 108 304 0 ppm 199 81 ND 19 46 Matrix 218 80 ND 4 NDCRREL soil 1000 ppm 787^* 870 782 1030 1100 500 ppm 260^* 247 320 178 220 125 ppm 69^* 152 26 130 250 0 ppm 86 48 48 ND 93 Matrix 62 59 ND 18 257 Rocky Mountain Arsenal 1000 ppm 897^* 1050 1450 960 1160 500 ppm 26^* ND 37 ND 205 Matrix 62 2 41 23 NDTampa Bay sediments 1000 ppm 513^* 486 560^* 526 653 250 ppm 250^* 218 200^* 219 639 125 ppm 03^* <td>11</td> <td></td> <td></td> <td></td> <td></td> <td></td>	11					
125 ppm132*12772139840 ppm69NDNDNDNDMatrix6418ND10Ft. Edwards clay1000 ppm711*751*906785979500 ppm289*374*491344638250 ppm144*252*229150175125 ppm142*91*1041083040 ppm19981ND1946Matrix21880ND4NDCRREL soil1000 ppm787*87078210301100500 ppm250*247320178220125 ppm69*152261302500 ppm864848ND93Matrix6259ND18257Rocky Mountain Arsenal V V V V 1000 ppm897*105014509601160500 ppm209*245304211349125 ppm93*1531051252290 ppm76ND37ND205Matrix6224123NDTampa Bay sediments V V V V 1000 ppm513*486560*526653250 ppm250*218200*219639125 ppm03*15973*12421						
0 pm Matrix 69 64 ND ND ND ND ND ND Ft. Edwards clay 1000 ppm 711* 751* 906 785 979 500 ppm 289* 374* 491 344 638 250 ppm 144* 252* 229 150 175 125 ppm 142* 91* 104 108 304 0 ppm 199 81 ND 19 46 Matrix 218 80 ND 4 ND CRREL soil	11			-		-
Matrix6418ND10NDFt. Edwards clay 1000 ppm 711^* 751^* 906 785 979500 ppm289* 374^* 491344638250 ppm144*252*229150175125 ppm142*91*1041083040 ppm19981ND1946Matrix21880ND4NDCRREL soil1000 ppm787*87078210301100500 ppm461*541635597439250 ppm250*247320178220125 ppm69*152261302500 ppm864848ND93Matrix6259ND18257Rocky Mountain Arsenal1000 ppm897*105014509601160500 ppm483*459608470493250 ppm209*245304211349125 ppm93*1531051252290 ppm76ND37ND250 ppm209*245304211349125 ppm93*1531051252290 ppm6224123NDTampa Bay sediments1000209*218200*219125 ppm103*15973*<						• -
1000 ppm 711^* 751^* 906 785 979500 ppm289* 374^* 491344638250 ppm144*252*229150175125 ppm142*91*1041083040 ppm19981ND1946Matrix21880ND4NDCRREL soil V 1000 ppm787*87078210301100500 ppm461*541635597439250 ppm250*247320178220125 ppm69*152261302500 ppm864848ND93Matrix6259ND18257Rocky Mountain Arsenal V V V V 1000 ppm897*105014509601160500 ppm245304211349125 ppm93*1531051252290 ppm76ND37ND205Matrix6224123NDTampa Bay sediments 1000 ppm513*486560*5261000 ppm513*486560*526653250 ppm250*218200*219639125 ppm03*15973*1242190 ppm60112207120Matrix71ND249	11					
1000 ppm 711^* 751^* 906 785 979500 ppm289* 374^* 491344638250 ppm144*252*229150175125 ppm142*91*1041083040 ppm19981ND1946Matrix21880ND4NDCRREL soil V 1000 ppm787*87078210301100500 ppm461*541635597439250 ppm250*247320178220125 ppm69*152261302500 ppm864848ND93Matrix6259ND18257Rocky Mountain Arsenal V V V V 1000 ppm897*105014509601160500 ppm245304211349125 ppm93*1531051252290 ppm76ND37ND205Matrix6224123NDTampa Bay sediments 1000 ppm513*486560*5261000 ppm513*486560*526653250 ppm250*218200*219639125 ppm03*15973*1242190 ppm60112207120Matrix71ND249	Ft. Edwards clav					
500 ppm289* 374^* 491 344 638 250 ppm144*252*229150175125 ppm142*91*1041083040 ppm19981ND1946Matrix21880ND4NDCRREL soil1000 ppm787*87078210301100500 ppm461*541635597439250 ppm250*247320178220125 ppm69*152261302500 ppm864848ND93Matrix6259ND18257Rocky Mountain Arsenal1000 ppm897*10501450960500 ppm209*245304211349125 ppm93*1531051252290 ppm76ND37ND205Matrix6224123NDTampa Bay sediments1000 ppm842*9391350*9361570500 ppm250*218200*219639125 ppm103*15973*1242190 ppm60112207120Matrix71ND249ND99Lebanon landfill soil1000 ppm859*87298811921500500 ppm <t< td=""><td></td><td>711*</td><td>751*</td><td>906</td><td>785</td><td>979</td></t<>		711*	751*	906	785	979
250 ppm144*252*229150175125 ppm142*91*1041083040 ppm19981ND1946Matrix21880ND4NDCRREL soil1000 ppm787*87078210301100500 ppm461*541635597439250 ppm250*247320178220125 ppm69*152261302500 ppm864848ND93Matrix6259ND18257Rocky Mountain Arsenal1000 ppm897*105014509601160500 ppm209*245304211349125 ppm93*1531051252290 ppm76ND37ND205Matrix6224123NDTampa Bay sediments250*2181000 ppm513*486560*526653250 ppm205*218200*219639125 ppm103*15973*1242190 ppm60112207120Matrix71ND249ND99Lebanon landfill soil71781351000 ppm859*87298811921500						
125 ppm 142^* 91^* 104 108 304 0 ppm199 81 ND19 46 Matrix 218 80 ND 4 NDCRREL soil1000 ppm 787^* 870 782 1030 1100 500 ppm 461^* 541 635 597 439 250 ppm 250^* 247 320 178 220 125 ppm 69^* 152 26 130 250 0 ppm 86 48 48 ND 93 Matrix 62 59 ND 18 257 Rocky Mountain Arsenal 1000 ppm 897^* 1050 1450 960 1160 500 ppm 209^* 245 304 211 349 125 ppm 93^* 153 105 125 229 0 ppm 76 ND 37 ND 205 Matrix 62 2 41 23 NDTampa Bay sediments 1000 ppm 842^* 939 1350^* 936 1570 500 ppm 513^* 486 560^* 526 653 250 ppm 250^* 218 200^* 219 639 125 ppm 103^* 159 73^* 124 219 0 ppm 60 11 220 7 120 Matrix 71 ND 249 ND 99 Lebanon landfill soi	••				-	
0 ppm 199 81 ND 19 46 Matrix 218 80 ND 4 ND CRREL soil						
Matrix 218 80 ND 4 ND CRREL soil 1000 ppm 787* 870 782 1030 1100 500 ppm 461* 541 635 597 439 250 ppm 250* 247 320 178 220 125 ppm 69* 152 26 130 250 0 ppm 86 48 48 ND 93 Matrix 62 59 ND 18 257 Rocky Mountain Arsenal	11					
1000 ppm 787* 870 782 1030 1100 500 ppm 461* 541 635 597 439 250 ppm 250* 247 320 178 220 125 ppm 69* 152 26 130 250 0 ppm 86 48 48 ND 93 Matrix 62 59 ND 18 257 Rocky Mountain Arsenal						
1000 ppm 787* 870 782 1030 1100 500 ppm 461* 541 635 597 439 250 ppm 250* 247 320 178 220 125 ppm 69* 152 26 130 250 0 ppm 86 48 48 ND 93 Matrix 62 59 ND 18 257 Rocky Mountain Arsenal	CRREL soil					
500 ppm 461* 541 635 597 439 250 ppm 250* 247 320 178 220 125 ppm 69* 152 26 130 250 0 ppm 86 48 48 ND 93 Matrix 62 59 ND 18 257 Rocky Mountain Arsenal 1000 ppm 897* 1050 1450 960 1160 500 ppm 483* 459 608 470 493 250 ppm 209* 245 304 211 349 125 ppm 93* 153 105 125 229 0 ppm 76 ND 37 ND 205 Matrix 62 2 41 23 ND Tampa Bay sediments 1000 ppm 513* 486 560* 526 653 250 ppm 250* 218 200* 219 639 125 ppm 103* 159 73* 124 219 0 pp	1000 ppm	787*	870	782	1030	1100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11					
125 ppm 69^* 152 26 130 250 0 ppm 86 48 48 ND 93 Matrix 62 59 ND 18 257 Rocky Mountain Arsenal 62 59 ND 18 257 Rocky Mountain Arsenal 1000 ppm 897^* 1050 1450 960 1160 500 ppm 483^* 459 608 470 493 250 ppm 209^* 245 304 211 349 125 ppm 93^* 153 105 125 229 0 ppm 76 ND 37 ND 205 Matrix 62 2 41 23 ND Tampa Bay sediments 1350^* 936 1570 1000 ppm 842^* 939 1350^* 936 1570 500 ppm 250^* 218 200^* 219 639 125 ppm 103^* 159 73^* 124 219 0 ppm 60 11 220 7 120 Matrix 71 ND 249 ND 99 Lebanon landfill soil 1000 ppm 859^* 872 988 1192 1500 500 ppm 373^* 469 536 423 495 250 ppm 195^* 224 305 264 407 125 ppm 99^* 2 ND ND ND			-			
0 ppm 86 48 48 ND 93 Matrix 62 59 ND 18 257 Rocky Mountain Arsenal						
Matrix 62 59 ND 18 257 Rocky Mountain Arsenal 1000 ppm 897^* 1050 1450 960 1160 500 ppm 483^* 459 608 470 493 250 ppm 209^* 245 304 211 349 125 ppm 93^* 153 105 125 229 0 ppm 76 ND 37 ND 205 Matrix 62 2 41 23 NDTampa Bay sediments 1350^* 936 1570 1000 ppm 842^* 939 1350^* 936 1570 500 ppm 513^* 486 560^* 526 653 250 ppm 250^* 218 200^* 219 639 125 ppm 103^* 159 73^* 124 219 0 ppm 60 11 220 7 120 Matrix 71 ND 249 ND 99 Lebanon landfill soil 1120 73^* 469 536 423 495 500 ppm 373^* 469 536 423 495 500 ppm 97^* 224 305 264 407 125 ppm 94^* 140 78 135 326 0 ppm 99 2 ND ND ND						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Rocky Mountain Arsenal	1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2		1050	1450	960	1160
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		483*	459	608	470	493
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	••	209*	245	304	211	349
0 pm Matrix 76 62 ND 2 37 41 ND 23 205 ND Tampa Bay sediments 62 2 41 23 ND Tampa Bay sediments 500 ppm 513* 486 560* 526 653 500 ppm 513* 486 560* 526 653 250 ppm 250* 218 200* 219 639 125 ppm 103* 159 73* 124 219 0 ppm 60 11 220 7 120 Matrix 71 ND 249 ND 99 Lebanon landfill soil		93*	153	105	125	229
Matrix 62 2 41 23 NDTampa Bay sediments1000 ppm 842^* 939 1350^* 936 1570 500 ppm 513^* 486 560^* 526 653 250 ppm 250^* 218 200^* 219 639 125 ppm 103^* 159 73^* 124 219 0 ppm 60 11 220 7 120 Matrix 71 ND 249 ND 99 Lebanon landfill soil 1000 ppm 859^* 872 988 1192 1500 500 ppm 373^* 469 536 423 495 250 ppm 195^* 224 305 264 407 125 ppm 94^* 140 78 135 326 0 ppm 99 2 NDNDND	11	76	ND	37	ND	205
1000 ppm 842* 939 1350* 936 1570 500 ppm 513* 486 560* 526 653 250 ppm 250* 218 200* 219 639 125 ppm 103* 159 73* 124 219 0 ppm 60 11 220 7 120 Matrix 71 ND 249 ND 99 Lebanon landfill soil	1 1	62	2	41	23	ND
1000 ppm 842* 939 1350* 936 1570 500 ppm 513* 486 560* 526 653 250 ppm 250* 218 200* 219 639 125 ppm 103* 159 73* 124 219 0 ppm 60 11 220 7 120 Matrix 71 ND 249 ND 99 Lebanon landfill soil	Tampa Bay sediments					
500 ppm 513* 486 560* 526 653 250 ppm 250* 218 200* 219 639 125 ppm 103* 159 73* 124 219 0 ppm 60 11 220 7 120 Matrix 71 ND 249 ND 99 Lebanon landfill soil		842*	939	1350*	936	1570
250 ppm 250* 218 200* 219 639 125 ppm 103* 159 73* 124 219 0 ppm 60 11 220 7 120 Matrix 71 ND 249 ND 99 Lebanon landfill soil		513*	486	560*	526	653
125 ppm 103* 159 73* 124 219 0 ppm 60 11 220 7 120 Matrix 71 ND 249 ND 99 Lebanon landfill soil 1000 ppm 859* 872 988 1192 1500 500 ppm 373* 469 536 423 495 250 ppm 195* 224 305 264 407 125 ppm 94* 140 78 135 326 0 ppm 99 2 ND ND ND	••	250*	218	200*	219	639
0 ppm Matrix 60 71 11 ND 220 249 7 ND 120 99 Lebanon landfill soil	••	103*	159	73*	124	219
Matrix71ND249ND99Lebanon landfill soil1000 ppm859*87298811921500500 ppm373*469536423495250 ppm195*224305264407125 ppm94*140781353260 ppm992NDNDND		60	11	220	7	120
1000 ppm859*87298811921500500 ppm373*469536423495250 ppm195*224305264407125 ppm94*140781353260 ppm992NDNDND	1 1	71	ND	249	ND	99
500 ppm373*469536423495250 ppm195*224305264407125 ppm94*140781353260 ppm992NDNDND	Lebanon landfill soil					
500 ppm373*469536423495250 ppm195*224305264407125 ppm94*140781353260 ppm992NDNDND	1000 ppm	859*	872	988	1192	1500
250 ppm195*224305264407125 ppm94*140781353260 ppm992NDNDND		373*	469	536	423	495
125 ppm 94* 140 78 135 326 0 ppm 99 2 ND ND ND	••	195*	224	305	264	407
0 ppm 99 2 ND ND ND		94*	140	78	135	326
11	11	99	2	ND	ND	ND
	Matrix	70	8	ND	24	ND

* Average of 0 ppm and matrix subsamples subtracted

ods of analysis tended to establish high estimates for Cr for soil matrices with low Fe content. Even though this apparent matrix effect was not adequately handled by either of these two methods of analysis to meet the $\pm 50\%$ criterion consistently, the appropriate concentration trends were established.

	Metal concentrations (µg/g)				
Material & spike	Со	Ni	Hg	Τl	Se
Ottawa sand					
1000 ppm	1250	1230	758	909	977
500 ppm	539	609	471	532	502
250 ppm	267	290	149	421	231
125 ppm	199	90	132	225	89
0 ppm	ND	ND	13	52	ND
Matrix	ND	ND	ND	13	ND
Ft. Edwards clay					
1000 ppm	200*	496	623	813	675
500 ppm	50*	260	268	482	449
250 ppm	ND*	187	145	347	136
125 ppm	ND*	90	120	199	73
0 ppm	6500	45	ND	63	ND
Matrix	6300	16	ND	ND	ND
CRREL soil					
1000 ppm	390*	761	823	993	882
500 ppm	ND*	356	323	553	519
250 ppm	180*	93	141	330	238
125 ppm	ND*	15	110	225	128
0 ppm	4050	ND	43	66	8
Matrix	4070	ND	ND	ND	ND
Rocky Mountain Arsenal					
1000 ppm	560*	947	933	1030	977
500 ppm	270*	481	395	545	483
250 ppm	60*	298	179	449	211
125 ppm	50*	86	161	216	111
0 ppm	1580	12	21	33	ND
Matrix	1680	ND	ND	12	ND
Tampa Bay sediments					
1000 ppm	846*	962	933	997	1010
500 ppm	482*	457	395	519	460
250 ppm	178*	315	179	425	221
125 ppm	103*	129	161	199	124
0 ppm	193	22	21	73	ND
Matrix	135	ND	ND	7	11
Lebanon landfill soil					
1000 ppm	435*	838	550	996	968
500 ppm	395*	470	472	460	511
250 ppm	135*	179	207	435	192
125 ppm	85*	88	148	253	123
0 ppm	2260	ND	21	45	ND
Matrix	2170	ND	ND	14	ND

Table 11. Concentrations (μ g/g) of Co, Ni, Hg, Tl, and Se determined for spiked soil matrices by response factor/ Compton K_{α} peak normalization.

Table 12. Concentrations (μ g/g) of Ag, Cd, Sn, Sb, and Ba determined for spiked soil matrices by response factor/Compton K_{α} peak normalization.

	Metal concentrations (μ g/g)				
Material & spike	Ag	Cd	Sn	Sb	Ba
Ottawa sand					
1000 ppm	1170	1000	986	1060	1160
500 ppm	646	499	398	557	527
250 ppm	269	176	226	302	262
125 ppm	109	48	145	160	121
0 ppm	19	ND	97	ND	ND
Matrix	25	ND	25	12	ND
Ft. Edwards clay					
1000 ppm	1032*	936	899	1080	996*
500 ppm	604*	334	447	495	496*
250 ppm	297*	162	248	317	288*
125 ppm	166*	42	146	152	163*
0 ppm	312	ND	92	ND	703
Matrix	263	ND	26	20	665
CRREL soil					
	896*	1040	918	996	1030*
1000 ppm 500 ppm	363*	531	459	493	489*
500 ppm 250 ppm	363 179*	253	286	495 295	489 273*
11	82*	255 153	142	142	273 118*
125 ppm	169	ND	142 81	ND	392
0 ppm Matrix	159	ND	36	14	410
Ividu IX	139	ND	50	14	410
Rocky Mountain Arsenal	l				
1000 ppm	992*	984	745	1070	1060*
500 ppm	410*	416	418	538	530*
250 ppm	297*	142	246	274	220*
125 ppm	140*	42	155	143	130*
0 ppm	246	ND	95	ND	914
Matrix	230	ND	37	11	967
Tampa Bay sediments					
1000 ppm	1210*	1060	899	1080	1050
500 ppm	567*	488	447	495	596
250 ppm	368*	203	348	317	287
125 ppm	153*	94	146	152	152
0 ppm	167	ND	92	ND	28
Matrix	160	ND	26	20	29
Lebanon landfill soil					
1000 ppm	1040	1070	902	1060	990*
500 ppm	535	436	454	496	498*
250 ppm	314	297	248	304	490 247*
125 ppm	180	182	150	144	118*
0 ppm	49	36	90	ND	360
Matrix	55	50 72	31	15	439
	00	• -	01	10	107

* Average of 0 ppm and matrix subsamples subtracted

Several factors that control the sensitivity of elemental analysis by XRF analysis are independent of matrix composition. First of all, elements with low atomic numbers have low fluorescence yields (Fig. 4). The fluorescence yield is the ratio of number of vacancies created within an atom by the incident radiation to the number of vacancies that * Average of 0 ppm and matrix subsamples subtracted

actually result in the production of characteristic X-ray photons (Jenkins 1986). In addition, since only a few isotopes are available for field-portable XRF systems, there can be a large separation between incident and excitation energies. The greater this separation, the lower the analyte response, because fewer atoms become excited. A third factor

Table 13. Concentrations (µg/g) of Cr, Cu, Zn, As, and						
Pb determined by fundamental parameter analysis						
using the Spectrace 9000.						

Table 14. Concentrations (µg/g) of Co, Ni, Hg, Se, and Fe
determined by fundamental parameter analysis using
the Spectrace 9000.

	Metal concentrations ($\mu g/g$)				
Material & spike	Си	Zn	As	Pb	Cr
Ottawa sand					
1000 ppm	1430	1320	1380	976	3010
500 ppm	731	652	389	531	1120
250 ppm	270	287	335	274	580
125 ppm	102	152	51	131	310
0 ppm	ND	ND	ND	ND	ND
Matrix	ND	ND	10	ND	ND
Ft. Edwards clay					
1000 ppm	1340	1140*	1020	1020	850
500 ppm	532	524*	660	467	300
250 ppm	334	192*	343	225	ND
125 ppm	227	147*	13	138	ND
0 ppm	131	99	ND	ND	ND
Matrix	67	99	66	ND	ND
CRREL soil					
1000 ppm	1130	1270*	1280	1040	940
500 ppm	489	550*	656	657	57
250 ppm	253	221*	311	232	53
125 ppm	77	120*	60	172	ND
0 ppm	ND	74	ND	ND	ND
Matrix	ND	95	56	ND	ND
Rocky Mountain Arsenal					
1000 ppm	1280	1240	1350	1170	1480
500 ppm	678	675	636	589	440
250 ppm	236	333	375	281	280
125 ppm	74	125	19	141	120
0 ppm	ND	ND	22	ND	ND
Matrix	ND	36	28	ND	ND
Tampa Bay sediments					
1000 ppm	1210	1250	1230	1100	1490
500 ppm	662	545	651	477	700
250 ppm	312	289	278	256	120
125 ppm	70	118	63	83	ND
0 ppm	ND	ND	12	ND	66
Matrix	ND	ND	23	ND	ND
Lebanon landfill soil					
1000 ppm	1130	1130	1110	1130	1350
500 ppm	584	613	567	460	450
250 ppm	316	327	332	218	150
125 ppm	71	133	59	130	ND
0 ppm	ND	13	11	ND	ND
Matrix	ND	22	43	ND	ND

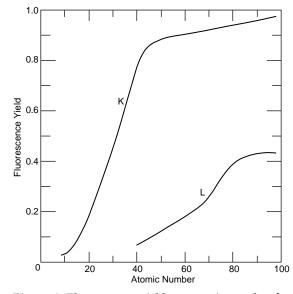
* Average of 0 ppm and matrix subsamples subtracted

is the depth of penetration achieved by the incident radiation, i.e., how much of the sample is actually analyzed. The penetration depth of incident radiation is inversely proportional to its wavelength and directly proportional to its energy. For the sources used in this study, the depth of penetration (99% attenuation) for a quartz matrix

	<i>Metal concentrations</i> ($\mu g/g$)				
Material & spike	Со	Ni	Hg	Se	Fe
Ottawa sand					
	1830	1538	1010	1240	ND
1000 ррт 500 ррт	1830 994	846	781	637	79
250 ppm	442	427	228	307	67
125 ppm	109	183	380	143	120
0 ppm	ND	ND	111	ND	118
Matrix	ND	ND	ND	ND	1420
Ft. Edwards clay					
1000 ppm	727*	999	791	1100	55,400
500 ppm	277*	495	458	503	54,600
250 ppm	67*	207	200	265	56,700
125 ppm	ND*	12	360	120	57,000
0 ppm	560	ND	80	ND	55,600
Matrix	406	ND	ND	ND	56,900
					,
CRREL soil	0.45*	1010	1001	1050	40.000
1000 ppm	965*	1210	1321	1350	40,000
500 ppm	295*	624	665	611	40,900
250 ppm	235*	216	259	332	41,100
125 ppm	315*	148	155	146	41,100
0 ppm	190	11	95	ND	41,300
Matrix	280	ND	16	ND	40,900
Rocky Mountain Arsen	al				
1000 ppm	1490	1480	1170	1390	18,600
500 ppm	900	786	736	689	19,600
250 ppm	479	324	301	304	22,500
125 ppm	224	141	579	140	21,700
0 ppm	ND	ND	121	ND	21,100
Matrix	ND	ND	ND	ND	20,100
Tampa Bay sediments					
1000 ppm	1710	1720	1350	1310	4410
500 ppm	738	687	728	758	4240
250 ppm	423	308	356	350	3930
125 ppm	198	152	529	185	3470
0 ppm	122	32	151	ND	3500
Matrix	24	ND	ND	ND	4190
Lebanon landfill soil					
1000 ppm	1330	1280	1040	1260	24,900
500 ppm	660	578	744	705	25,900
250 ppm	208	294	227	346	25,500
125 ppm	160	119	336	134	25,500
0 ppm	ND	ND	151	ND	25,600
Matrix	109	14	ND	ND	25,800
	109	14	IND	IND	23,700

* Average of 0 ppm and matrix subsamples subtracted

ranges from 40 mm for Am-241 to 4.8 mm for Cd-109. The combination of these factors controls the intensity that will be measured for a given element. For example, Table 6 shows the range of analyte intensities obtained for the same concentration in the RMA soil.

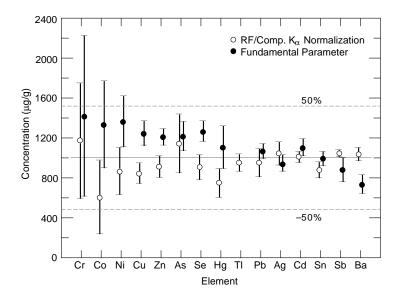

To illustrate the combination of these two ef-

	Metal concentrations ($\mu g/g$)					
Material & spike	Ag	Cd	Sn	Sb	Ba	
Ottawa sand						
1000 ppm	937	1110	1000	915	772	
500 ppm	504	581	429	474	353	
250 ppm	274	394	269	196	174	
125 ppm	193	229	174	109	75	
0 ppm	77	111	43	ND	ND	
Matrix	25	74	41	ND	ND	
Ft. Edwards clay						
1000 ppm	820	976	857	654	601*	
500 ppm	377	542	452	345	300*	
250 ppm	197	361	226	261	215*	
125 ppm	86	172	154	108	148*	
0 ppm	ND	127	74	ND	379	
Matrix	ND	100	81	17	436	
CRREL soil						
1000 ppm	998	1060	1050	955	715*	
500 ppm	508	584	527	490	381*	
250 ppm	268	302	301	276	201*	
125 ppm	191	225	153	122	92*	
0 ppm	67	51	37	16	288	
Matrix	40	99	28	ND	329	
Rocky Mountain Arsen	al					
1000 ppm	1060	1200	1040	1010	850*	
500 ppm	535	613	486	562	472*	
250 ppm	296	406	336	221	250*	
125 ppm	190	253	194	133	105*	
0 ppm	77	143	33	22	716	
Matrix	37	80	58	14	734	
Tampa Bay sediments						
1000 ppm	989	1141	1030	897	706	
500 ppm	486	557	485	445	365	
250 ppm	268	299	205	235	215	
125 ppm	181	189	114	115	92	
0 ppm	56	42	51	ND	ND	
Matrix	56	84	55	12	ND	
Lebanon landfill soil						
1000 ppm	914	1190	1020	930	832*	
500 ppm	525	608	538	515	343*	
250 ppm	301	337	287	259	232*	
125 ppm	205	223	165	133	111*	
0 ppm	39	66	41	ND	278	
Matrix	ND	18	71	18	300	
		10	/1	10	500	

Table 15. Concentrations (μ g/g) of Ag, Cd, Sn, Sb, and Ba determined by fundamental parameter analysis using the Spectrace 9000.

* Average of 0 ppm and matrix subsamples subtracted

fects, matrix composition and characteristic analyte response, Figure 5 shows the average concentration and standard deviations for the $1000 \,\mu g$ metal/g spiked soil matrices. Overall, both the precision and accuracy of analysis improves with atomic number. However, for Cr, Co, and Ni, the degree of bias and range of uncertainty shows that values


Figure 4. Fluorescence yield vs. atomic number for K and L lines.

even at this level can be greater than $\pm 50\%$ from the true concentration when analyzing a variety of soils. Most likely, the bias in the determined concentrations is the result of a matrix effect, while the extent of uncertainty is a function of both the matrix effect and the characteristic analyte response.

In summary, these two methods of rapid sample analysis with field-portable XRF systems often achieved the data requirement for screening of ±50% accuracy at and below a concentration of 1000 μ g/g. This goal was accomplished for a variety of soil matrices, and the results in Tables 7–9 show that this approach is also promising for several other particulate matrices (e.g., sediment, dust, paint chips, and sludge). The determination of Ni, Co, and Cr, however, was not found to accomplish this goal consistently, even though reported estimates of detection for XRF analysis are well below 1000 μ g/g. It appears that for analytes with poor XRF sensitivity, matrix effects are more problematic, and matrixspecific standards would be necessary to achieve a ±50% accuracy.

CONCLUSIONS

With the exception of Ni, Co, and Cr, the determination of Cu, Zn, As, Pb, Hg, Tl, Se, Ag, Cd, Sn, Sb, and Ba at and below 1000 μ g/g in a variety of solid particulate materials was often within ±50% of the expected values when using either funda-

mental parameter or response factor/Compton K_{α} peak-normalization methods of analysis. These alternative approaches to XRF analysis are very useful for screening a variety of matrices during RI/FS activities when it is impractical to produce matrix-matched standards.

LITERATURE CITED

Ashe, J.B., P.F. Berry, G.R. Voots, M. Bernick and G. Prince (1991) A high resolution portable XRF HgI₂ spectrometer for field screening of hazardous waste. In *Proceedings of the 2nd International Symposium on Field Screening for Hazardous Waste and Toxic Chemicals, February* 12–14, *Las Vegas, Nevada*, p. 507–514.

Carlson, C.D. and J.R. Alexander (1991) Data quality assurance/quality control for field X-ray fluorescence spectrometry. In *Proceedings of the 2nd International Symposium on Field Screening for Hazardous Waste and Toxic Chemicals, February* 12–14, *Las Vegas, Nevada*, p. 525–532.

Driscoll, J.N., J.K. Marshall, C. Wood and T. Spittler (1991) A multifunctional portable X-ray fluorescence instrument. *American Laboratory*, July, p. 25–36.

Federal Register (1984) Definition and procedure for the determination of the method detection limit. Code of Federal Regulations, Part 136, Appendix B, October 26.

Figura, P.M. (1993) Standardless X-ray fluorescence analysis of liquids. *American Laboratory*, July, p. 40–43.

Figura, P.M. (1987) Standardless quantitative X-

Figure 5. Average and standard deviation of concentrations established for soils spiked with 1000 μg metal/g, as determined by RF/ Comp. K_{α} normalization and FP analysis.

ray fluorescence analysis using stored calibration constants. *American Laboratory*, February, **19**(2): 156–164.

Furst, G.A., V. Tillinghast and T.M. Spittler (1985) Screening for metals at hazardous waste sites: A rapid cost-effective technique using X-ray fluorescence. In *Proceedings of the National Conference on Management of Uncontrolled Hazardous Waste Sites,* Washington, D.C.,

Garby, J.C. (1991) Comparison of mobile laboratory XRF and CLP split sample lead results from a Superfund site remediation in New Jersey. In *Proceedings of the 2nd International Symposium on Field Screening for Hazardous Waste and Toxic Chemicals, February* 12–14, *Las Vegas, Nevada*, p. 671–672.

Grupp, D.J., D.A. Everitt, R.J. Bath, and R. Spear (1989) Use of a transportable XRF spectrometer for on-site analysis of Hg in soils. *American Laboratory*, November, p. 32–40.

Harding, A.R. (1991) Low concentration soil contaminant characterization using EDXRF analysis. In *Proceedings of the 2nd International Symposium on Field Screening for Hazardous Waste and Toxic Chemicals, February* 12–14, *Las Vegas, Nevada*, p. 517–523. **Hewitt, A.D.** (1994a) Screening for metals by Xray fluorescence spectrometry/response factor/ Compton K_{α} peak normalization analysis. *American Environmental Laboratory*, June, p. 24–26.

Hewitt, A.D. (1994b) Screening for metals by Xray fluorescence spectrometry using a single calibration standard. USA Cold Regions Research and Engineering Laboratory, Special Report 94-20.

Jenkins, R. (1984) X-ray fluorescence analysis. *Analytical Chemistry*, **56**(9): 1099A–1103A

Nielson, K.K., and R.W. Sanders (1983) Multi-

element analysis of unweighed biological and geological samples using backscatter and fundamental parameters. *Advances in X-Ray Analysis 1983*, **26**:385–390.

Piorek, S. and J.R. Rhodes (1988) A new calibration technique for X-ray analyzers used in hazardous waste screening. In *Proceedings of the 5th National Conference on Hazardous Waste and Hazardous Materials, April 19–21, Las Vegas, Nevada*, p. 428–433. Puls, R., D.A. Clark, C. Carlson and J. Vardy (1994) Characterization of chromium-contaminated soils using field-portable X-ray fluorescence. *Ground Water Monitoring and Remediation*, 14: 111–115.

Raab, G.A., D. Cardenas, S.J. Simon and L.A. Eccles (1987) Evaluation of a prototype field-portable X-ray fluorescence system for hazardous waste screening. Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, EPA/600/4-87/021, National Technical Information Service, PB87-227633.

Spittler, T.M. and W.A. Fender (1979) A study of soil contamination and plant lead uptake in Boston urban gardens. *Communications in Soil Science and Plant Analysis*, **10**(9): 1195–1210.

U.S. EPA (1986) *Test Methods for Evaluating Solid Waste*, Vol. 1B. Washington, D.C.: Environmental Protection Agency.

Watson, W., J.P. Walsh and B. Glynn (1989) Onsite X-ray fluorescence spectrometry mapping of metal contaminants in soils at Superfund sites. *American Laboratory*, July.

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188
maintaining the data needed, and completing	and reviewing the co to Washington Head	ollection of information. Send cor dquarters Services, Directorate for	mments regarding thi for Information Opera	s burden estimate or any o tions and Reports, 1215 Je	searching existing data sources, gathering and ther aspect of this collection of information, fferson Davis Highway, Suite 1204, Arlington,
1. AGENCY USE ONLY (Leave blank)		PORT DATE April 1995		REPORT TYPE AND D	ATES COVERED
4. TITLE AND SUBTITLE	I	I	I	5. FUND	ING NUMBERS
Rapid Screening of Meta Fluorescence Spectromet		table High-Resoluti	on X-Ray		
6. AUTHORS					
Alan D. Hewitt					
7. PERFORMING ORGANIZATION NA	ME(S) AND ADD	RESS(ES)			ORMING ORGANIZATION
U.S. Army Cold Regions	Research an	d Engineering Lab	oratory	REPO	DRT NUMBER
72 Lyme Road Hanover New Hampshi	02755 120	~ •	-	Spee	cial Report 95-14
Hanover, New Hampshi	re 03700-129	J			
9. SPONSORING/MONITORING AGE	NCY NAME(S) AN	JD ADDRESS(ES)			NSORING/MONITORING
				AGE	ENCY REPORT NUMBER
U.S. Army Environmenta Aberdeen Proving Grou		4 21010-5401		SEI	M-AEC-ET-CR-95039
Aberdeen rioving Grou	10, 1viai y iai w	1 21010-0401		51.11	/I-AEU-E1-UK-73037
11. SUPPLEMENTARY NOTES				I	
12a. DISTRIBUTION/AVAILABILITY ST	[ATEMENT			12b. DIS	TRIBUTION CODE
Approved for public rele	ase; distribu	tion is unlimited.			
Available from NTIS, Sp	ringfield, Vir	ginia 22161:			
13. ABSTRACT (Maximum 200 words)				I	
cadmium, tin, and bariu resolution X-ray fluoresc parameter analysis and incoherent backscatter pe a few reference materials capability of these two ra	m was perfo cence spectro a second me eak for matrix s and are rela pid XRF anal atory spiked	ormed on soils and ometers (XRF). Qua ethod that relies or x normalization. Th atively insensitive to lysis methods by de soils. With the exce	other particl antitative det n analyte res nese two meth to sample ma etermining m eption of nick	e matrices using terminations we ponse factors ar hods of instrume atrix composition tetal concentration kel, cobalt, and c	elenium, silver, antimony, g two field-portable high- re based on fundamental nd uses the Compton K_{α} ental analysis require only n. This study assessed the ons in reference materials, hromium, concentrations g.
14. SUBJECT TERMS Analysis Field an	nalysis	Soil analysis	X-ray	y spectrometry	15. NUMBER OF PAGES 21 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY OF THIS F	Y CLASSIFICATION PAGE	19. SECURITY OF ABSTRA		20. LIMITATION OF ABSTRACT

NSN	7540-01	-280-5500
11011	1040 01	200 0000

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

UL