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EFFECTS OF INTERFACE MODIFICATION ON MECHANICAL BEHAVIOR OF

HI-NICALON FIBER-REINFORCED CELSIAN MATRIX COMPOSITES

Narottam P. Bansal* and Jeffrey I. Eldridge

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

Unidirectional ceisian matrix composites having -42 volume percent of uncoated or BN/
SiC-coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated

fiber-reinforced composites showed catastrophic failure with strength of 210 + 35 MPa and a flat

fracture surface. In contrast, composites reinforced with BN/SiC-coated fibers exhibited graceful

failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +
35 MPa and 0.27 _+0.01%, respectively, with ultimate strength as high as 960 MPa. The elastic

Young's modulus of the uncoated and BN/SiC-coated fiber-reinforced composites were measured as
184 _+4 GPa and 165 -+ 5 GPa, respectively. Fiber push-through tests and microscopic examination
indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of

the uncoated fiber-reinforced composite is probably due to degradation of the fibers from mechani-

cal surface damage during processing. Because both the coated and uncoated fiber reinforced com-

posites exhibited weak interfaces, the beneficial effect of the BN-SiC dual layer is primarly the

protection of fibers from mechanical damage during processing.

INTRODUCTION

Fiber-reinforced ceramic matrix composites are being develope dl'2 for high temperature

structural applications in aerospace, energy conservation, power generation, nuclear, petrochemical,
and other industries. A number of glass and glass-ceramic matrices reinforced with continuous fibers

having high strength and high modulus have been reported 1'2 over the last two decades. Monoclinic
celsian is a refractory material showing good oxidation resistance, phase stability up to -1600 °C,
and low values of dielectric constant and loss tangent. It is, therefore, a promising matrix material 3-5

for reinforcement with ceramic fibers for high temperature structural composites. Processing and

properties of celsian glass-ceramic matrix composites reinforced with large diameter CVD SiC SCS-6
monofilaments, 68 multifilament small diameter Nicalon, 9 and HPZ fibers i° have been

described earlier. The details of fabrication of Hi-Nicalon fiber-reinforced celsian matrix composites

have been reported elsewhere.11 In order to achieve stoichiometric composition, the celsian matrix

was synthesized 3'11 by solid state reaction between the metal oxides.
The objective of the present study was to investigate the effects of fiber-matrix interface

modification on the properties of small diameter Hi-Nicalon fiber-reinforced celsian matrix compos-
ites. Room temperature mechanical properties of Hi-Nicalon/celsian and Hi-Nicalon/BN/SiC/celsian

composites were measured in three-point flexure. The fiber/matrix interface was characterized by

microscopy and also by fiber push-through tests.



MATERIALS AND EXPERIMENTAL METHODS

Polymer derived Hi-Nicalon fiber tows (1800 denier, 500 filaments/tow) with low oxygen
content from Nippon Carbon Co. were used as the reinforcement. According to the manufacturer,
these fibers 12,13have an average diameter of-14 _trn and chemical composition (wt. %) of 62.4% Si,

37.1% C, and 0.5% O with C/Si atomic ratio of -1.39. The Hi-Nicalon fibers mainly consist of SiC
microcrystals and amorphous carbon and show room temperature tensile strength of -2.8 GPa and

elastic modulus of 270 GPa. Both as received Hi-Nicalon fibers as well as those having adual surface

layer of BN overcoated with SiC were used. The fiber surface coatings were applied by a commercial

vendor using a continuous chemical vapor deposition (CVD) reactor. The BN coating was deposited
at -1000 °C utilizing a proprietary precursor and was amorphous to partly turbostratic in nature. A

thin overcoating of SiC was also deposited by CVD to the BN-coated fibers. The SiC layer was
crystalline. The nominal coating thicknesses were 0.4 0m for BN, and 0.3 lain for SiC. The function

of the BN interracial layer is to act as a weak, crack deflecting phase, while that of the SiC overcoat
is to act as a barrier to diffusion of boron from BN into the BSAS oxide matrix and also to diffusion

of matrix elements into the fiber. The polyvinyl alcohol (PVA) sizing on the as-received fibers was

burned off in air by passing through a tube furnace.

The fiber-reinforced composites were fabricated by impregnation of the fiber tows with the

matrix slurry as described earlier. 11The precursor to the celsian matrix of 0.75BaO-0.25SrO-AI203-
2SiO 2 composition was synthesized by a solid state reaction method as reported elsewhere. 3 The

precursor powder consisted 3 of mainly SiO 2 (or-quartz) and BaAl204 phases with small amounts of

Ba2SiO 4, ct-Al203, and Ba2Sr2AI207 also present. This powder was made into a slurry by dispersing
in an organic solvent and ball milling along with various organic additives which acted as binder,
surfactant, deflocculant and plasticizer. Tows of BN/SiC-coated or as-received, but desized, Hi-Nicalon

fibers were spread using rollers and coated with the matrix precursor by passing through a slurry.

Excess slurry was squeezed out of the fiber tow before winding it (26 fiber tows/inch) on a rotating
drum. The prepreg tape was allowed to dry and cut to size. Unidirectional fiber-reinforced compos-

ites were prepared by prepreg tape lay up (12 plies) and warm pressing which resulted in a "green"
composite. The fugitive organics were slowly burned out of the sample in air, followed by hot press-

ing under vacuum in a graphite die. The resulting composites were almost fully dense. The oxide

precursor was converted into the desired monoclinic celsian phase in situ during hot pressing. The
hot pressed fiber-reinforced composite panel was surface polished and sliced into test bars (~50.4 mm
× 6.4 mm × 1.9 mm) for mechanical testing.

X-ray diffraction (XRD) patterns were recorded at room temperature using a step scan
procedure (0.02°/20 step, time per step 0.5 or 1 s) on a Philips ADP-3600 automated diffractometer

equipped with a crystal monochromator employing copper K a radiation. Density was measured from
dimensions and mass as well as by the Archimedes method. Microstructures of the polished cross-

sections and fracture surfaces were observed in an optical microscope as well as by a JEOL JSM-
840A scanning electron microscope (SEM). Prior to analysis, a thin carbon coating was evaporated

onto the SEM specimens to provide for electrical conductivity. Mechanical properties were deter-

mined from stress-strain curves recorded in three-point flexure using an Instron machine at a cross-

head speed of 0.127 cm/min (0.05 in./min) and support span (L) of 40 mm. Strain gauges were glued
to the tensile surfaces of the flexure test bars. The first matrix cracking stress was calculated from the

stress-strain curves where the curve deviates from linearity. The elastic modulus of the composite

was determined from the linear po_on of the stress-strain curve.

Fiber push-through tests were performed using a desktop apparatus previously described,54
but with the addition of a pair of capacitance displacement gauges for displacement measurements.

Thin sections of the composites, cut normal to the fiber axis with a diamond saw, and polished down

to a 0.1 _tm finish on both top and bottom faces were used. Fibers aligned above 300 _tm wide

channels in the sample support were pushed with a conical diamond indenter (70 ° included angle)



witha10timdiameterflatbase.Load-displacementandacousticemissionmeasurementswerecol-
lectedat50msintervalsbyacomputer.Thepushthroughcurvesconsistedof appliedloadplotted
versusmeasureddisplacement(averagedfromtwosymmetricallyplacedcapacitancegauges).Over
twentyfiberswerepushedoutindifferentregionsofthespecimen.Testswereperformedatroom
temperatureinambientatmosphere(relativehumidity-50%).

RESULTS AND DISCUSSION

Microstructural Analysis
SEM micrographs taken from the polished cross-sections of the unidirectional composites

containing uncoated and the BN/SiC-coated Hi-Nicalon fibers are shown in Fig. 1. Uniform fiber

distribution and good matrix infiltration within the fiber tows which are evident in Fig. 1, result in

high composite density. Occasional pores, particularly within the fiber tows, are present. The manu-

facturer reports an average fiber diameter of -14 lain, but a large variation in the diameter of the
filaments within a fiber tow can be seen. The BN/SiC surface coating has been detached from some

of the fibers during metallography or composite processing which may lead to adverse reactions
between the fibers and the oxide matrix at high temperature resulting in strong fiber-matrix bonding.

XRD patterns taken from the polished surface of the hot pressed composites indicated the

presence of monoclinic celsian as the only crystalline phase. This implies that the desired,

Figure 1 .--SEM micrographs showing polished cross-section of unidirectional

(a) Hi-Nicalon(uncoated)/BSAS composite and (b) Hi-Nicalon/BN/SiC/BSAS

composite.



thermodynamically stable, monoclinic celsian phase is formed in situ, from the mixed oxide precur-

sor, during hot pressing of the composite. The undesired hexacelsian phase was not detected from
XRD. However, the presence of a second matrix phase, not yet identified, is evident from the micro-

graphs of Fig. 1. The fraction of this phase should be less than -5% as it was not detected by XRD.

Mechanical Properties

The fiber volume fraction in the hot pressed composite panels was calculated to be -0.42.

Typical stress-swain curves recorded in three-point flexure of the composites reinforced with uncoated

and BN/SiC-coated Hi-Nicalon fibers are shown in Fig. 2 and 3, respectively. The stress-strain curve
for a hot pressed BSAS monolith is also shown for comparison. The monolith shows a modulus of

96 GPa, flexural strength of 131 MPa and fails in a brittle mode as expected. The uncoated fiber

reinforced composite also shows catastrophic failure with flexure strength of 180-245 MPa and elas-
tic modulus of- 184 _+4 GPa. In contrast, the BN/SiC-coated fiber-reinforced composite shows graceful

failure. The values of first matrix cracking stress, _mc' and the first matrix cracking strain, Emc, were
measured to be 435 + 35 MPa and 0.27 + 0.01%, respectively. The elastic modulus was calculated to
be -165 +_5 GPa. Composite ultimate strength as high as 960 MPa has been observed. Room tem-

perature mechanical properties of the various composites of this study axe given in Table I. The

composite containing BN/SiC-coated fibers had a lower modulus than the uncoated fiber-reinforced

composite due to the presence of the BN layer.
SEM micrographs of fracture surfaces of the uncoated and BN-SiC coated fiber-reinforced

composites, after the three-point flexure tests, are shown in Fig. 4 and 5, respectively. Extensive long

lengths of fiber pullout are observed in the Hi-Nicalon/BN/SiC/BSAS composite indicating tough-

ening behavior. In contrast, the fracture surface of the uncoated fiber-reinforced composite shows
little fiber pullout consistent with the observed catastrophic failure. One possible reason for this

behavior could be strong bonding of the uncoated fibers with the oxide matrix during hot pressing.

Another possible explanation for such a low strength of the uncoated fiber-reinforced composites

could be mechanical damage to the fibers during composite processing resulting in fiber strength
degradation. An SEM micrograph (Fig. 6) of polished cross-section of a Hi-Nicalon/BN/SiC/BSAS

composite, after the flexure test, shows debonding at the fiber-matrix interface and crack deflection
around the reinforcing fibers.

Fiber-Matrix Interface

For tough composites, the fiber-matrix interface must be sufficiently weak to allow debonding

at the interface, yet strong enough for effective load transfer from the matrix to the fiber. To help

understand the large differences observed in the mechanical behavior of the two composites with

different interfaces, differences in fiber debonding and frictional sliding stresses at the fiber-matrix
interface were evaluated along with the underlying microstructure.

Fig. 7 shows typical fiber push-through toad/displacement curves, along with
detected acoustic emission, for the uncoated and BN/SiC coated fiber-reinforced

composites. Both plots show two debonding events. The initial debonding event, associated with
initial displacement of the top fiber end, occurs where the load displacement curve first deviates from

linearity (with a simultaneous small acoustic emission event); this corresponds to debond initiation

and the corresponding applied load is labeled Pinitial debond. After this, the load/displacement curve
continues with a lower slope as the debonded length of interface propagates under increasing load
until an abrupt load decrease (accompanied by a large acoustic emission event) is observed corre-

sponding to debonding of the entire fiber length. The peak load attained immediately preceding

debond completion is labeled P_nd debond"The load measured immediately after the load drop is due
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Figure 2.--Stress-strain curve recorded in 3-point flexure for a
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Figure 5.--SEM micrographs from the
fracture surfaces of unidirectional

Hi-N icalon/BNISiCIBSAS compos-

ites showing extensive fiber pullout.

Figure 4._EM micrographs from
the fracture surface of a unidirec-

tional Hi-Nicalon(uncoated)/BSAS

composite.

Figure 6.---SEM micrograph from the

polished cross-section of a failed

Hi- Nicalon/BN/SiC/BSAS compos-
ite after the flexure test.
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BN-SiC fiber 0.21 30 1.48 _+0.20 2.84 __0.48 52.1 + 9.9

coatin_



solelytofrictionalresistancetoslidingoftheentirefiber length and is labeled P friction" On continued
fiber sliding, the frictional sliding load was fairly stable for the uncoated fiber reinforced composite
whereas the frictional sliding loads tended to increase for the BN-SiC coated fiber reinforced composite.

Table II summarizes the results of the push-through tests, giving the 95% confidence inter-
val about each mean value. Because of the variation in fiber diameters, applied compressive stress, o

= P/(rCr_ber2), is reported rather than applied load, P for fiber-matrix debonding. The average interfa-
cial frictional sliding stress, "[friction' was calculated by simply dividing the applied load, Pfriction' by
the nominal contact area between the fiber and the matrix:

_ Pfriction (1)

"cfricti°n 2_rfibert

where rfiber is the fiber radius, t is the specimen thickness. This equation assumes a uniform interfa-
ciai shear stress along the length of the fiber/matrix interface when the entire length of the fiber is

sliding.
Results in Table II surprisingly indicate that the presence of the BN-SiC coating did not

have a very pronounced effect on the fiber push-through behavior. Compared to the composite with
uncoated fibers, the composite with BN-SiC coated fibers showed a very modest decrease in the

applied stress necessary for debond initiation (Oinitia I debond)' and no significant difference in the peak

debond stress (Ofinal debond)" Also "[friction values indicate that the uncoated fibers slid more easily
after debonding than the coated fibers. This is surprising because the uncoated fiber-reinforced com-

posite showed brittle failure, suggesting a strongly bonded fiber/matrix interface. The most pro-

nounced effect of the BN/SiC fiber coating was the continuous increase in "[friction with additional

fiber sliding, whereas "[friction for the uncoated fiber-reinforced composite remain relatively constant.

The increase in "[friction with continued fiber sliding for the BN/SiC coated fiber-reinforced compos-
ite, suggests the occurrence of interfacial wear during fiber sliding. 14 A build-up of wear debris

between the sliding fiber and matrix would tend to make fiber sliding increasingly difficult. This

explanation is supported by SEM micrographs of the pushed-in coated-fibers that
consistently showed debris along the exposed matrix-hole-wall resulting from the tearing/shredding
of the fiber coating. In contrast, inspection of the pushed-in uncoated fibers showed no such debris.

There was no strong reaction between the uncoated Hi-Nicalon fibers and the BSAS matrix

during processing, as supported by the modest applied stresses required to initiate fiber debonding
(Table II) as well as the clean fiber/matrix separation observed in SEM micrographs of pushed-

through fibers. The subtle differences in fiber/matrix bonding in the two composites do not account

for the large observed differences in their mechanical behavior. A possible explanation for the low

strength and flat fracture surface of the uncoated fiber-reinforced composite could be degradation of
the fibers from mechanical surface damage during processing. While both the coated and uncoated

fibers provide a weak interface, the BN-SiC dual layer also protects the fiber surface from mechani-

cal damage during processing. To substantiate this, evaluation of fiber strength in the hot pressed

composites from measurements of their fracture mirror radii is in progress. Strength of fibers extracted
from the composites by leaching away the matrix in HF acid is also being measured. Unidirectional
Hi-Nicalon (uncoated) fiber-reinforced lithium aluminosilicate (LAS) glass-ceramic composites con-

taining 50 volume per cent fibers and processed at 1360 °C for 40 min. exhibited 16 room temperature

three-point flexural strength of 1158 MPa. The fibers extracted from the composite by dissolving the
LAS matrix in HF acid showed 20-25% reduction in tensile strength. 16Similar strength loss has also

been observed for Ceramic Grade Nicalon fibers extracted from LAS glass-ceramic matrix compos-

ites 17. After heat treatment at 1300 °C for 30 min. in argon, ~25% loss in strength was observed for
Hi-Nicalon fibers. 16However, this much reduction in fiber strength is not sufficient to explain the



differencesinstrengthsofthecompositesofthepresentstudy.Perhaps,theBN-SiCduallayeralso
contributessecondarily by reducing stress concentrations at the fiber surface and lowering residual
stresses in the composite.

SUMMARY

Uncoated and BN/SiC-coated Hi-Nicaion fiber-reinforced monoclinic celsian matrix com-

posites have been produced by impregnation of the matrix slurry into fiber tows followed by hot

pressing. Almost fully dense unidirectional composites containing ~42 volume percent of fibers have
been obtained. The uncoated fiber-reinforced composites exhibited monolithic-like failure with three-

point flexural strength of 180-245 MPa. In contrast, the composites containing coated-fibers showed

graceful failure with a first matrix cracking stress of 435 + 35 MPa and an ultimate strength as high

as 960 MPa. Values of the elastic Young's modulus were measured to be - 184 GPa and ~ 165 GPa for
the composites containing uncoated and BN/SiC-coated fibers, respectively. No chemical reaction

was observed between the fiber and the matrix during composite processing as indicated by modest

stresses required to initiate fiber debonding as well as clean and smooth surfaces of the pushed out
fibers.

CONCLUSIONS AND FUTURE RESEARCH

It may be concluded that reinforcement of the monoclinic celsian with BN/SiC-coated Hi-

Nicalon fibers results in strong, tough, and almost fully dense composites. However, reinforcement

with the uncoated Hi-Nicalon fibers yields a weak composite material probably due to strength deg-

radation of the fibers from surface damage during hot pressing. While both the uncoated and BN-SiC

coated fibers provide a weak interface, the BN layer is needed to protect the fibers from mechanical
damage. The increased frictional sliding stresses observed for the BN-SiC coated fibers will result in
a more effective load transfer from the matrix to the fiber.

Future research will involve the investigation of the mechanical properties (tensile strength,
creep, fatigue, etc.) of unidirectional and cross-ply Hi-Nicalon/BN/SiC/celsian composites at elevated

temperatures in air and inert environments. The effects of high temperature annealing on room tem-
perature residual strength and fiber-matrix interface bonding will also be studied.
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