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ABSTRACT
The p ap er present s a  n ov el on -w a fer, a nt en n a fa r f ield 
p at tern  meas u rement  tech n iq ue f o r micro elect ro -
mecha nical s y st ems ( MEMS )  b as ed  reco n figu ra b le p a tch
a nt en na s . Th e mea su remen t  t echn iqu e s ig nifican tly 
red uces  th e t ime an d  t he co st  a s so cia ted wit h th e
cha ra ct eriza t io n of  prin t ed  a nt enn as , f ab ricat ed  on  a 
s emicon d ucto r w af er or d ielectric su b st ra te. To mea su re
t he rad iat io n  p at terns , t he R F p ro b e st at ion  is  mod if ied  t o 
a ccommo d at e a n op en - en ded  recta n gu la r w av eg u id e a s
t he rot a ting  linearly po larized  sa mp lin g an t en na . The
o pen- en d ed  w a vegu id e is a tt ached  t hro ug h a coa xia l
rot ary j oint  to  a  Plex ig las ™ arm a nd  is  d riv en  a lon g an 
a rc b y a  s tep per mo t or. Thu s, t h e sp inn in g o pen- end ed 
w av eg uid e ca n  s ample t he rela tiv e field  int ens it y  o f th e
p at ch  a s  a  f u nction  of  t h e an gle f ro m b ore s ig ht . The
exp eriment al resu lt s  includ e th e mea s ured  linearly
p olarized an d  circu larly  po la rized  ra diat io n  p at t erns  f o r
M EM S- ba s ed  f req uency  reco nf ig ura ble recta ng u la r a nd 
p olariza tion  reco nf igu ra b le n ea rly  s q ua re p a tch
a nt en na s , res pect iv ely .

1. Introduction
Microelectromechanical systems (MEMS) based actuators
have emerged as a viable alternative to solid state control
devices in microwave circuits. The MEMS actuators offer
several advantages [1]. First, significant reduction in
insertion loss, which results in higher figure-of-merit.
Second, they consume insignificant amount of power
during operation, which results in higher efficiency. Third,
they exhibit higher linearity and as a result lower signal
distortion when compared to semiconductor devices. Last,
MEMS actuators have the potential to dynamically
reconfigure the frequency, polarization, and radiation
pattern of antennas thus providing total reconfigurability.
These advantages have been the motivation to integrate
MEMS switches/actuators with planar antennas for beam

steering and frequency/polarization reconfiguration.
Typical examples of MEMS based antennas are reported in
references [1–9]. In these examples, the antennas and arrays
are fabricated on a semiconductor wafer, such as high
resistivity silicon, semi-insulating GaAs or a dielectric
substrate, such as alumina or fused quartz, using
conventional photolithography techniques. One of the
challenges faced with the characterization of MEMS based
antennas on semiconductor wafers is the need for a fast and
inexpensive technique to measure the radiation patterns
without having to saw the wafer. Measurement techniques
reported in the literature [10–12] are more suited for
conventional printed antennas.

I n th is  paper , we d emo ns trate a no vel o n- waf er , anten na far
f ield  p atter n  m easu r em en t techn iqu e f or  MEMS -b as ed
r econ fig ur ab le patch  antenn as  f abr icated on  a hig h resis tivity
s ilicon  wafer . Th is  tech n iq ue r equ ir es a co p lanar  w av eg u id e
( CP W)  g r ou nd - sign al- gr ou n d (G -S - G)  m icr ow av e p ro b e
( Pico pr o be Mo del 40  A, p itch 25 0  µ m) , a RF w af er  pr ob e
s tation  (Cas cad e Mo d el 4 2 ), and  an  au to matic n etw or k
analy zer /m icr ow av e r eceiv er . Th e adv antag es  of  th is 
techn iq u e ar e ( 1)  it elim in ates  th e n eed to  saw the w af er in to
s maller  in div id ual p atch  an tenn a f or  ch ar acter ization ,
m in im izing  lo ss  d ue br eak ag e an d  enh ancin g y ield , and  ( 2 ) it
eliminates  th e need  fo r cus to m- b uilt test f ixtur es with  sp ecial
lau ncher s/tr ans itio n s, r edu cing  th e com plex ity , d ev elop m en t
tim e, an d co s t. I n a p ro d uction  en vir on ment, this  techn iqu e is
extremely fas t an d inexp ens iv e w hen autom ated fo r  r ep eated 
m easu rem en ts .

2. Patch Antennas with Integrated
MEMS Actuators

Figures 1(a) and (b) are wafer maps illustrating patch
antennas on a 3-in. diameter high resistivity silicon wafer
(εr = 11.7) with integrated MEMS actuator for frequency
and polarization reconfiguration, respectively. In these
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circuits a microstrip line of characteristic impedance equal
to 50 Ω excites the patch antennas. The length of this line is
kept small to minimize feed losses. The microstrip feed is
terminated at the opposite end in a microstrip-to-CPW

Figure 1(b).—Patch Antennas With Integrated MEMS Actuator for

   Polarization Reconfiguation On a 3 Inch Diameter High Resist-

   ivity Silicon Wafer.

Figure 1(a).—Patch Antennas With Integrated MEMS Actuator for 

   Frequency Reconfiguation On a 3 Inch Diameter High Resist-

   ivity Silicon Wafer.

transition for on-wafer characterization using CPW RF
probes, as illustrated in figure 2. The transition makes use
of a radial stub to provide a virtual RF short circuit between
the ground contacts of the CPW RF wafer probe and the
substrate ground plane [13]. A typical frequency
reconfigurable and polarization reconfigurable patch
antennas with integrated MEMS actuator are illustrated in
figures 3 (a) and (b), respectively. The design and
fabrication of these antennas are described in references [3]
and [4], respectively. Briefly, the frequency reconfigurable
patch antenna operates at its normal frequency as
determined by the dimension b when the actuator is in the
OFF-state. In the ON-state, the excess capacitance provided
by the actuator tunes the patch to a lower operating
frequency thus providing frequency reconfiguration.

Figure 2.—Schematic Illustrating the Experimental Setup for

   Measuring the Return Loss of a Patch Antenna.
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Figure 3(a).—Frequency Reconfigurable Patch Antenna Element 

   With Two Independent MEMS Actuators, L = 580 µm, 

   W = 50 µm, a = 2600 µm, b = 1500 µm.
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Figure 3(b).—Polarization Reconfigurable Patch Antenna Element

   With Integrated MEMS Actuator, c = 1500 µm and d = 1492 µm.
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In the case of polarization reconfigurable patch antenna, the
nearly square patch with notches is designed to support two
degenerate orthogonal modes when excited at a corner.
When the MEMS actuator is in the OFF-state, the
perturbation of the modes is negligible and hence the patch
radiates a circularly polarized (CP) wave. In the ON-state,
the excess capacitance perturbs the phase relation between
the modes causing the patch to radiate dual linearly
polarized (LP) waves.

3. Measurement Methodology
3.1 Return Loss
The CPW G-S-G RF probes are calibrated to the tips using
an automatic network analyzer (ANA) (HP 8510C) and a
short circuit, open circuit, and a matched load as standards.
The probe manufacturer provides, on an impedance
standard substrate (ISS) and on a disc, the calibration
standards and the software necessary to carry out the
calibration. The calibration corrects for the errors, the losses
as well as the parasitics associated with the experimental
set-up, which includes the CPW RF probes. The calibrated

Figure 4.—Computer Controlled On-Wafer CP Radiation Pattern 

   Measurement Set-Up Using a Rotating Linearly Polarized Pick-

   Up Antenna for MEMS Actuator Based Patch Antennas. (Sur-

   rounding Microwave Absorber Panels Have Been Removed).
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probe is then made to contact the circuit under test as
shown in figure 2. Thus, the intrinsic return loss of the
antenna is displayed on the ANA and can be recorded. In
addition, the feed losses as well as the input impedance of
the antenna can be de-embedded as demonstrated in
references [14,15].

3.2 Radiation Pattern
To measure the radiation patterns, the RF probe station is
modified to accommodate an open-ended rectangular
waveguide (e.g., WR–42) as the rotating linearly polarized
sampling antenna. The open-ended waveguide is attached to
a custom-built Plexiglas™ fixture. The fixture arm is
positioned along a virtual arc, extending from –90° to +90°
in increments of few degrees, by a stepper motor.
Simultaneously, a miniature DC motor attached to the
Plexiglas™ arm spins the open-ended waveguide. The
spinning open-ended waveguide samples the relative field
intensity of the circularly polarized radiation from the patch
as a function of the angle from bore sight. The signals
picked up by the waveguide are coupled to a detector
through a coaxial rotary joint. The experimental setup is
illustrated in figure 4. Figure 5 presents a close-up of the
experimental set-up showing the CPW RF and the DC
probes for exciting the patch and biasing the MEMS
actuator.
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Figure 5.—Close-up of the Measurement Set-Up.
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4. Measured Return Loss Characteristics
4.1 Frequency Reconfigurable Patch
The measured return loss for the two states of the actuators
are shown in figures 6(a)–(c). When both the actuators are
in the OFF-state, the patch resonates at its nominal
operating frequency of about 25.0 GHz as shown in
figure 6(a). The –10.0 dB return loss bandwidth of the patch
is about 3.3 percent. When actuator #1 is in ON-state and
actuator #2 is in the OFF-state, the resonant frequency (fr)
shifts to about 24.8 GHz as shown in figure 6(b). Similarly,
when actuator #1 is in the OFF-state and actuator #2 is in
the ON-state, the fr shifts to 24.8 GHz. This result is
expected since the two actuators are identical in
construction. The step change of 200 MHz in the fr for both
cases is about 0.8 percent of the patch nominal operating
frequency. Finally, when both actuators are in the ON-state,
the fr is 24.6 GHz as shown in figure 6(a). The shift is twice
as much as the case when a single actuator is turned ON.
Furthermore, at resonance the magnitudes of the return loss
are almost equal for the two states, implying minimum loss
of sensitivity. Thus for this configuration, the patch antenna
can be dynamically reconfigured to operate at different
bands, separated by a few hundred MHz, by digitally
addressing either or both actuators. This is a desirable
feature in mobile wireless systems to enhance capacity as
well as combat multipath fading.

4.2 Polarization Reconfigurable Patch
The measured return loss for the OFF-state of the actuator
is shown in figure 7. The patch is well matched to the 50Ω
feed line and resonates at a frequency of 26.7 GHz. In the
OFF-state the patch radiates a circularly polarized wave.
The measured return loss for the ON-state of the actuator is
also shown in figure 7. In the ON-state also the patch is also
well matched to the 50Ω feed line and resonates at a

Figure 6.—Measured Return Loss Demonstrating Frequency 

   Reconfigurability. (a) Both Actuators Are Either in the OFF 

   State or ON State. (b) Actuator #1 is ON and Actuator #2 

   is OFF. (c) Actuator #1 is OFF and Actuator #2 is ON. 
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Figure 7.—Measured Return Loss of Nearly Square

   Patch Antenna.
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frequency of 26.625 GHz. The change in the resonance
frequency for the two states is considered to be small. In the
ON-state, the patch radiates dual linearly polarized waves.
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5. Measured Radiation Patterns
5.1 Frequency Reconfigurable Patch
The measured E- and H-plane radiation patterns are shown
in figure 8.

5.2 Polarization Reconfigurable Patch
In the OFF-state, the patch radiates a circularly polarized
wave. The measured radiation patterns along the two
orthogonal planes are shown in figure 9. The measured
axial ratio at boresight is about 2.0 dB. In the ON-state,
the patch radiates dual linearly polarized waves. The
measured E- and H-plane radiation patterns for the vertical
polarization are shown in figure 10. Similar radiation
patterns are observed for the horizontal polarization.

Figure 8.—Measured E and H-plane Radiation Patterns of The 

   Frequency Reconfigurable Patch Antenna.
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Figure 9.—Measured Circularly Polarized Radiation

   Patterns of Nearly Square Patch Antenna.
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Figure 10.—Measured Linearly Polarized Radiation

   Patterns for Vertical Polarization of Nearly Square

   Patch Antenna.
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6. Sources of Measurement Errors
One of the major sources of error is the reflection of the
signal radiated from the patch antenna by the probe station
positioners and fixtures. This causes distortion in the
measured radiation patterns. This problem can be reduced
with the use of high quality microwave absorbing material
covering the probe station metal surfaces. A second source
of error is due to misalignment of the patch antenna and the
sampling antenna. The wafer with the patch antennas can be
horizontally aligned and the open-ended waveguide
sampling antenna can be vertically aligned using a precision
level and a plumb bob, respectively. In addition, the angular
alignment of the wafer can be done optically with the help
of a microscope. Last, the errors associated with the CPW
G-S-G RF probes can be calibrated out as discussed in
section 3.1.

7. Conclusions and Future Directions
A novel fast and inexpensive on-wafer far field radiation
pattern measurement technique for characterizing patch
antennas with integrated MEMS actuators is demonstrated.
This technique eliminates the need to saw the wafer into
smaller individual patch antennas, thus minimizing loss due
breakage and enhancing yield. In addition, eliminates the
need for custom-built test fixtures with special
launcher/transition, thus reducing the complexity,
development time, and cost.

We plan to extend this effort to the measurement of gain
and cross-polarization. The gain can be determined by the
reflection method [16]. The cross-polarization can be
measured using a circularly polarized sampling antenna
whose sense of polarization is known.
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