

Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

Water-Resources Investigations Report 01-4098

U.S. Department of the Interior U.S. Geological Survey

Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

*By* Mark W. Sandstrom, Max E. Stroppel, William T. Foreman, and Michael P. Schroeder

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 01-4098

U.S. Geological Survey Method O-2002-01 Laboratory Methods (Schedules) 2002 and 2011

> Denver, Colorado 2001

U.S. Department of the Interior Gale A. Norton, Secretary

U.S. Geological Survey Charles G. Groat, Director

The use of trade, product, or firm names in this report is for descriptive purposes only and does not imply endorsement by the U.S. Government.

| For additional information write to:                                                                             | Copies of this report can be purchased from:                                            |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Chief, National Water Quality Laboratory<br>U.S. Geological Survey<br>Box 25046, Mail Stop 407<br>Federal Center | U.S. Geological Survey<br>Branch of Information Services<br>Box 25286<br>Federal Center |
| Denver, CO 80225-0046                                                                                            | Denver, CO 80225-0286                                                                   |

# CONTENTS

| Abstract  |                                                                                                                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------|
| Introduc  | tion                                                                                                                     |
| Initial m | ethod development                                                                                                        |
| Analytic  | al method                                                                                                                |
| 1.        | Scope and application                                                                                                    |
| 2.        | Summary of method                                                                                                        |
| 3.        | Interferences                                                                                                            |
| 4.        | Apparatus and instrumentation                                                                                            |
| 5.        | Reagents and consumable materials                                                                                        |
| 6.        | Sampling methods, sample-collection equipment, and cleaning procedures                                                   |
| 7.        | Standards                                                                                                                |
| 8.        | Gas chromatograph/mass spectrometer performance                                                                          |
| 9.        | Calibration                                                                                                              |
| 10        | Procedure                                                                                                                |
| 11.       | Calculation of results                                                                                                   |
| 12.       | Reporting of results                                                                                                     |
| Final me  | ethod validation                                                                                                         |
| Other co  | onsiderations                                                                                                            |
| Conclus   | ions                                                                                                                     |
| Reference | ces cited                                                                                                                |
| Supplem   | nent A—Automated solid-phase extraction procedure using                                                                  |
| - II -    | AutoTrace workstation                                                                                                    |
| Supplem   | ent B—Instructions for on-site processing using solid-phase                                                              |
| - II -    | extraction (SPE)                                                                                                         |
| FIGUR     |                                                                                                                          |
| FIGURI    | -5                                                                                                                       |
| 1.        | Selected ion chromatogram of pesticides and degradates in a                                                              |
|           | 0.625-nanogram-per-microliter (ng/µL) standard                                                                           |
| 2.        | Bias and variability data from reagent-water-set samples                                                                 |
|           | fortified with analytes at low (0.1 microgram per liter) concentrations and prepared during March through December, 1999 |
|           |                                                                                                                          |
| TABLE     | 5                                                                                                                        |
| 1.        | Analytes that were initially considered or tested but subsequently                                                       |
|           | eliminated from complete validation experiments because of                                                               |
|           | problems with ordering, analysis, or recovery                                                                            |
|           | Pesticides and degradates included in new method                                                                         |
| 3.        | Relation of pesticide degradates included in new method to parent                                                        |
|           | pesticides in U.S. Geological Survey methods 2001, 2050, and 2002                                                        |
| 4.        | Volumes of primary combined fortification, internal, and surrogate                                                       |
|           | standards needed to prepare suggested concentrations of calibration standards                                            |

| 5.  | Retention time, quantitation ion, and confirmation ions for analytes,          |    |
|-----|--------------------------------------------------------------------------------|----|
|     | surrogates, and internal standards, and selected ion-monitoring group          |    |
|     | and internal standard for analytes and surrogates                              | 24 |
| 6.  | Bias and variability data from eight reagent-water samples fortified           |    |
|     | with parent pesticide analytes at high (1.0 microgram per liter)               |    |
|     | and low (0.1 microgram per liter) concentrations                               | 33 |
| 7.  |                                                                                |    |
|     | with degradates at high (1.0 microgram per liter) and low                      |    |
|     | (0.1 microgram per liter) concentrations                                       | 36 |
| 8.  | Bias and variability data from eight surface-water samples fortified           |    |
|     | with parent pesticides and degradates at high (1.0 microgram per liter)        |    |
|     | and low (0.1 microgram per liter) concentrations                               | 38 |
| 9.  |                                                                                |    |
|     | with parent pesticides and degradates at high (1.0 microgram per liter)        |    |
|     | and low (0.1 microgram per liter) concentrations                               | 41 |
| 10. |                                                                                |    |
|     | for pesticides and pesticide degradates calculated from determination          |    |
|     | of the analytes in eight reagent-water samples fortified at concentrations     |    |
|     | from 0.015 to 0.1 microgram per liter                                          | 45 |
| 11. | Number of replicates required to determine estimated holding time of           |    |
|     | parent pesticides in water and on solid-phase-extraction columns               | 50 |
| 12. | Number of replicates required to determine estimated holding time of           |    |
|     | degradates in water and on solid-phase-extraction columns                      | 51 |
| 13. |                                                                                |    |
|     | on dry solid-phase-extraction columns maintained at 25 degrees Celsius         | 52 |
| 14. |                                                                                |    |
|     | on solid-phase-extraction columns maintained at 25 degrees Celsius             | 53 |
| 15. |                                                                                |    |
|     | pesticides in pesticide-grade water maintained at 4 degrees Celsius            | 56 |
| 16. | Statistical data used to determine estimated holding time of degradates        |    |
|     | in pesticide-grade water maintained at 4 degrees Celsius                       | 57 |
| 17. |                                                                                |    |
|     | analytes at low (0.1 microgram per liter) concentrations                       |    |
|     | and analyzed during March through December, 1999                               | 58 |
| 18. |                                                                                |    |
|     | variability results of fortified reagent-water-set samples (table 17) or short |    |
|     | holding-time results (tables 13–16)                                            | 62 |
| 19. |                                                                                |    |
|     | (methods 2010 and 2011) by on-site solid-phase extraction                      | 69 |

| Multiply                                                      | Ву                       | To obtain                |
|---------------------------------------------------------------|--------------------------|--------------------------|
|                                                               | Length                   |                          |
| centimeter (cm)                                               | 3.94 x 10 <sup>-1</sup>  | inch                     |
| micrometer (µm)                                               | 3.94 x 10 <sup>-5</sup>  | inch                     |
| millimeter (mm)                                               | 3.94 x 10 <sup>-2</sup>  | inch                     |
| meter (m)                                                     | 3.281                    | foot                     |
|                                                               | Mass                     |                          |
| gram (g)                                                      | 3.53 x 10 <sup>-2</sup>  | ounce                    |
| kilogram (kg)                                                 | 2.205                    | pound                    |
| microgram (µg)                                                | 3.53 x 10 <sup>-8</sup>  | ounce                    |
| milligram (mg)                                                | 3.53 x 10 <sup>-5</sup>  | ounce                    |
| nanogram (ng)                                                 | 3.53 x 10 <sup>-11</sup> | ounce                    |
|                                                               | Volume                   |                          |
| liter (L)                                                     | 2.64 x 10 <sup>-1</sup>  | gallon                   |
| liter (L)                                                     | 33.81                    | ounce, fliud             |
| microliter (µL)                                               | 2.64 x 10 <sup>-7</sup>  | gallon                   |
| milliliter (mL)                                               | 2.64 x 10 <sup>-4</sup>  | gallon                   |
| milliliter (mL)                                               | 1                        | cubic centimeter         |
|                                                               | Pressure                 |                          |
| kilopascal (kPa)                                              | 1.45 x 10 <sup>-1</sup>  | pounds per square inch   |
|                                                               | Area                     |                          |
| hectares (ha) (or) hectometer <sup>2</sup> (hm <sup>2</sup> ) | 2.471                    | acres                    |
|                                                               | Concentration,           |                          |
|                                                               | in water                 |                          |
| nanograms per liter (ng/L)                                    | 1                        | parts per trillion (ppt) |
| micrograms per liter ( $\mu$ g/L)                             | 1                        | parts per billion (ppb)  |
| milligrams per liter (mg/L)                                   | 1                        | parts per million (ppm)  |

Degree Celsius (<sup>o</sup>C) may be converted to degree Fahrenheit (<sup>o</sup>F) by using the following equation:

 $^{0}F = 9/5 (^{0}C) + 32.$ 

# ACRONYMS AND ABBREVIATIONS

| A                                                                                                                                                                                 | ampere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cm/sec                                                                                                                                                                            | centimeter per second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| dc                                                                                                                                                                                | direct current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| µg/L                                                                                                                                                                              | microgram per liter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| mg/L                                                                                                                                                                              | milligram per liter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| min                                                                                                                                                                               | minute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| mL/min                                                                                                                                                                            | milliliter per minute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ng/L                                                                                                                                                                              | nanogram per liter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ng/µL                                                                                                                                                                             | nanogram per microliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| lb/in <sup>2</sup>                                                                                                                                                                | pound per square inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| V                                                                                                                                                                                 | volt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ±                                                                                                                                                                                 | plus or minus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <                                                                                                                                                                                 | less than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C-18<br>CCV<br>ETFE<br>GC<br>GC/MS<br>GCC<br>HPLC<br>ID<br>IS<br>LRL<br>LT-MDL<br>MDL<br>MS<br>NAWQA<br>NWIS<br>NAWQA<br>NWIS<br>NWUS<br>NWQL<br>OD<br>PAH<br>PFA<br>PFTBA<br>LRL | octadecyl<br>continuing calibration verification<br>ethylenetetrafluoroethylene<br>gas chromatography<br>gas chromatograph/mass spectrometer<br>glass bottle, amber<br>high-performance liquid chromatography<br>inside diameter<br>internal standard<br>laboratory reporting level<br>long-term method detection level<br>method detection limit<br>mass spectrometry<br>National Water-Quality Assessment program<br>National Water Information System<br>National Water Quality Laboratory<br>outside diameter<br>polycyclic aromatic hydrocarbon<br>perfluoralkoxy<br>perfluorotributylamine<br>laboratory reporting level |
| SIM                                                                                                                                                                               | selected-ion monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SPE                                                                                                                                                                               | solid-phase extraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| USEPA                                                                                                                                                                             | U.S. Environmental Protection Agency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USGS                                                                                                                                                                              | U.S. Geological Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

# GLOSSARY

Analyte – The pesticide or pesticide degradate determined in an analysis.

**Continuing calibration verification** (CCV) – A calibration standard that contains method analytes that is used to measure and control the bias of the existing calibration curve for these analytes. The CCV is an instrumental standard only and is not processed through preparative steps of the method.

**Fortified reagent-water-set sample** – A quality-control sample prepared by adding a known amount of analytes to a reagent-water sample and analyzed with each set of environmental samples (usually 10). Also known as a "set spike."

**Internal standard** (IS) – An analyte not expected to be found in any environmental sample that is added to every sample extract in a known amount. The internal standard is used to measure the relative GC/MS responses of other analytes and surrogates in each sample.

**Laboratory reporting level** (LRL) – The concentration where the false-positive error is minimized to no more than 1 percent and the false-negative error is minimized to no more than 1 percent. The LRL is calculated as 2 times the MDL. An analyte determined to be not identified, confirmed, or measured in a sample is reported as <LRL.

**Method detection limit** (MDL) – The minimum concentration of an analyte that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. At this concentration the false positive error is minimized to no more than 1-percent probability (U.S. Environmental Protection Agency, 1997).

**Procedural internal standard quantitation** – A quantitation method where the internal standard is added to the sample extract prior to evaporation and transfer-to-vial sample processing steps. These final steps in the sample-extract processing are included in the quantitation. Use of the procedural internal-standard quantitation compensates for any bias in the extract evaporation and transfer-to-vial sample processing steps, but not the solid-phase extraction and elution steps of the analytical method.

**Surrogate** – An analyte not expected to be found in any environmental sample that is added to every sample in a known amount prior to sample processing. The surrogate is used to monitor method performance for each sample.

# Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

*By* Mark W. Sandstrom, Max E. Stroppel, William T. Foreman, and Michael P. Schroeder

# U.S. Geological Survey Method O-2002-01 Laboratory Methods (Schedules) 2002 and 2011

# Abstract

A method for the isolation and analysis of 21 parent pesticides and 20 pesticide degradates in natural-water samples is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phaseextraction columns that contain octadecylbonded porous silica to extract the analytes. The columns are dried by using nitrogen gas, and adsorbed analytes are eluted with ethyl acetate. Extracted analytes are determined by capillary-column gas chromatography/ mass spectrometry with selected-ion monitoring of three characteristic ions. The upper concentration limit is 2 micrograms per liter (µg/L) for most analytes. Single-operator method detection limits in reagent-water samples range from 0.001 to 0.057  $\mu$ g/L. Validation data also are presented for 14 parent pesticides and 20 degradates that were determined to have greater bias or variability, or shorter holding times than the other compounds. The estimated maximum holding time for analytes in pesticide-grade water before extraction was 4 days. The estimated maximum holding time for analytes after extraction on the dry solid-phaseextraction columns was 7 days. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the

recommended pre-extraction holding time. The method complements existing U.S. Geological Survey Method O-1126-95 (NWQL Schedules 2001 and 2010) by using identical sample preparation and comparable instrument analytical conditions so that sample extracts can be analyzed by either method to expand the range of analytes determined from one water sample.

# INTRODUCTION

Pesticides are widely used in the United States to increase production of agricultural products by controlling weeds, insects, and other pests in a wide variety of settings. More than 450 million kilograms of pesticides, which include insecticides, herbicides, and fungicides, are used each year in the United States. The fate of pesticides after application is important because of the potential adverse effects of pesticides on the environment and human health, especially by movement into the hydrologic system. Small concentrations of pesticides have been widespread in surface- and ground-water samples for several decades (Barbash and Resek, 1996; Gilliom and others, 1999; Larson and others, 1997; Larson and others, 1998).

Pesticides, as is the case for most organic compounds, also are transformed after release to the environment. Both chemical and biological processes might cause these transformations. The fate of the transformation products, referred to as degradates, in surface and ground water is frequently not known because degradates are not commonly included in monitoring studies. Recent interest in the presence and fate of degradates, however, has increased. Limited studies have indicated that when included in surveys, degradates are frequently detected, often at higher frequencies and concentrations than many parent pesticides. In addition, an understanding of the presence of degradates can help provide an understanding of the overall fate and behavior processes of pesticides.

There are two main reasons why degradates have not been included in previous routine monitoring studies, even after the recognition that their presence might be relevant to evaluate environmental health. First, many degradates are more polar than their parent pesticides because the transformation processes generally add oxygenated or other polar functional groups to the molecule. These more polar degradates are typically more difficult to analyze by common gas chromatography (GC) methods. Second, and more importantly, analytical standards of many potential degradates have not been widely available until recently, so they could not be included in quantitative analytical methods.

The U.S. Geological Survey (USGS) recently developed two analytical methods for the routine determination in water of many of the pesticides used nationally in greatest abundance (Werner and others, 1996; Zaugg and others, 1995). These methods were used in the National Water-Quality Assessment (NAWQA) program as part of a study of the presence and distribution of pesticides in surface- and ground-water samples nationwide (U.S. Geological Survey, 2000). Those methods included only three degradates, and did not include all of the top 120 pesticides used nationally, one of the program goals.

The methods are referred to by laboratory personnel and field teams requesting analytical services by National Water Quality Laboratory (NWQL) schedules. The laboratory schedules are identified for the benefit of readers of this report. NWQL schedules 2001 and 2010 request analyses of 47 pesticides that are isolated from filtered water by C-18 solidphase extraction (SPE) and identified and quantified by gas chromatography/mass spectrometry (GC/MS) (Zaugg and others, 1995). The pesticide acetochlor was added to the methods in June 1994 (Lindley and others, 1996). NWQL schedules 2050 and 2051 request analyses of 41 pesticides that are isolated from filtered water by Carbopak-B SPE and are identified and quantified by highperformance liquid chromatography (HPLC) with diode-array detection (Werner and others, 1996). Both methods have optional procedures for on-site SPE. Schedules 2010 and 2051 request analyses of pesticides in samples that were extracted from filtered water samples on-site, whereas schedules 2001 and 2050 request analyses for pesticides that were extracted from water samples at the NWQL. For the purposes of this report, schedules 2001 and 2010 will be referred to as method 2001, and schedules 2050 and 2051 will be referred to as method 2050. The new method presented in this report will be referred to as method 2002, even though field teams will need to request either schedules 2002 or 2011.

This report describes a method for determining a broad range of pesticide chemical classes and pesticide degradates in environmental water samples. It was developed by the USGS for use in the NWQL. The method combines octadecyl (C-18) SPE for pesticide isolation GC/MS operated in the selected-ion monitoring mode (SIM) for selective confirmation and quantitation of the **analytes**.<sup>1</sup> The method was developed to complement method 2001 by using the same sample preparation and analytical steps but adds new analytes. Extracts from method 2001 can be analyzed by the new method 2002 to expand the range of analytes determined from one water sample, because the same sample preparation procedures are followed. The method was implemented in the NWQL in March 1999 for conditional analysis of environmental samples collected as part of the NAWQA program.

This report provides a detailed description of all aspects of the methods, including the equipment, reagents, sampling protocol, instrument calibration, and SPE procedure required for sample analysis. Method performance (bias and variability), holding times in water and after isolation on the SPE column, and estimated **method detection limits** for 75 analytes are presented.

The scope of the report includes determination of method performance in reagent-water samples and in two naturalwater types-a ground-water and a surfacewater sample from the Denver, Colorado, region. Method performance was determined at two concentration levels-0.1 and 1.0 microgram per liter ( $\mu g/L$ )—in each water type. Method detection limits were estimated according to an accepted statistical procedure (U.S. Environmental Protection Agency, 1997). Holding times of the analytes in water before extraction and on the SPE columns following extraction and column drying were evaluated. An optional laboratory automated procedure is described, and an optional onsite SPE procedure is briefly described in Supplements A and B in this report.

# **INITIAL METHOD DEVELOPMENT**

This method was developed to complement the existing method 2001 by adding a new suite of pesticides and pesticide degradates without modifying the analytical procedure. Method development consisted of testing the new analytes by using the 2001 procedure and collecting method validation information on the analytes that were suitable to the GC/MS and SPE conditions used. Initial method development included obtaining analytical standards of the parent pesticides and degradates identified as candidate analytes. The new analytes were tested by GC/MS and deemed acceptable if they provided measurable response and narrow chromatographic peak shapes. The analytes then were combined into mixtures of parent or degradates and added to reagent-water samples to determine initial feasibility of recovery using C-18 SPE. The analytes that were tested initially but subsequently eliminated from the method because of low GC/MS response or C-18 SPE recovery are listed in table 1.

Eight parent pesticides, most of which were selected because of their high national-use rate, had low or no GC/MS response (xgc) and were eliminated from additional testing (table 1). Acephate and methamidophos had low SPE recovery (xspe), and chlorethoxyfos was not obtained in time to include in testing (xor). Likewise, 14 degradates had low or no GC/MS response (xgc), and 9 degradates had low SPE recovery (xspe) during preliminary testing, so the compounds were not included in additional testing. Nine degradates listed in vendors' catalogs were out of stock during testing and therefore could not be considered for method validation (xor).

<sup>&</sup>lt;sup>1</sup>Words in boldface are defined in the Glossary.

Table 1. Analytes that were initially considered or tested but subsequently eliminated from complete validation experiments because of problems with ordering, analysis, or recovery

[Analytes separated by parents and degradates, and sorted according to rank. Parent pesticides shown for corresponding degradates. Rank, national pesticide-use rank of analyte; CASRN, Chemical Abstracts Service Registry Number; P-Code, National Water Information System parameter code; xor, problem obtaining chemical standard; xgc, problem with gas chromatograph/mass spectrometer analysis; xspe, problems with solid-phase extraction recovery or instability in water; VOC, volatile organic compound; 2002x, parent pesticide initially tested but eliminated from method; -, no CASRN or

| Rank | CASRN             | P-Code        | Short name               | Use          | Class                  | Problem | Parent<br>CASRN | Parent<br>name | Parent<br>class          | Parent<br>method |
|------|-------------------|---------------|--------------------------|--------------|------------------------|---------|-----------------|----------------|--------------------------|------------------|
| 20   | Parent pesticides | ides<br>61570 | Accelera                 | Incontinida  |                        | 0.000   |                 |                |                          |                  |
| 10   | 1-61-00000        | 6/010         | Acephiate                | IIISecriciae | OI gano-<br>phosphorus | adsx    | I               | I              | I                        | I                |
| 58   | 87674-68-8        | 61588         | Dimethenamid             | Herbicide    | Amide                  | xgc     | Ι               | Ι              | Ι                        | I                |
| 70   | 59669-26-0        | 61608         | Thiodicarb               | Insecticide  | Carbamate              | xgc     | I               | I              | Ι                        | I                |
| 78   | 133-06-2          | 61582         | Captan                   | Fungicide    | Imide                  | xgc     | I               | I              | I                        | I                |
| 98   | 10265-92-6        | 61597         | Methamidophos            | Insecticide  | Organo-                | adsx    | Ι               | Ι              | I                        | I                |
|      |                   |               |                          |              | phosphorus             |         |                 |                |                          |                  |
| 101  | 115-32-2          | 61587         | Dicofol                  | Acaricide    | Organochlorine         | xgc     | I               | I              | I                        | I                |
| 104  | 76-06-2           | 61584         | Chloropicrin             | Fumigant     | VOC                    | xgc     | Ι               | Ι              | Ι                        | Ι                |
| 153  | 300-76-5          | 38856         | Naled                    | Insecticide  | Organo-                | xgc     | Ι               | Ι              | Ι                        | Ι                |
|      |                   |               |                          |              | phosphate              |         |                 |                |                          |                  |
| 155  | 66841-25-6        | 61609         | Tralomethrin             | Insecticide  | Pyrethroid             | xgc     | I               | I              | I                        | I                |
| 233  | 95465-99-9        | 61581         | Cadusaphos               | Nematocide   | Organo-                | xgc     | I               | Ι              | I                        | I                |
|      |                   |               |                          |              | phosphorus             |         |                 |                |                          |                  |
| 234  | 54593-83-8        | 61583         | Chlorethoxyfos           | Insecticide  | Organo-                | xor     | I               | I              | I                        | I                |
|      | •                 |               |                          |              | phosphorus             |         |                 |                |                          |                  |
| 1002 | Degradates        | 24607         | 1 Dichlorothonol         | Domodoto     |                        | 0404    | L 75 10         |                | Chlorohonoho             | 0500             |
| CUUI | 7-60-071          | 24002         |                          | Degradate    | I                      | adsx    | 7-01-46         | 1,4,U          | cinopilenoxy<br>acid     | 0007             |
| 1007 | I                 | 61619         | 2-Chloro-2',6' alide     | Degradate    | Ι                      | XOT     | 15972-60-8      | Alachlor       | Acetanilide              | 2001             |
| 1012 | 6515-38-4         | 61626         | 3,5,6-Trichlor_dinol     | Degradate    | I                      | xgc     | 2921-88-2       | Chlorpyrifos   | Organothio-              | 2001             |
|      |                   |               |                          |              |                        |         |                 |                | phosphate                |                  |
| 1016 | 10548-10-4        | 61675         | Terbufos-sulfoxide       | Degradate    | I                      | xor     | 13071-79-9      | Terbufos       | Organothio-              | 2001             |
| 9001 |                   | 61650         | Motubinities days ilrato | Domodoto     |                        |         | 0 17 2010       | Motellensin    | phosphate                | 1000             |
| 0701 | I                 | 00010         |                          | Degradate    | I                      |         | 2100/-04-9      |                |                          | 2001             |
| 1026 | I                 | 10165/        | Metribuzin-desamino      | Degradate    | I                      |         | 2108/-64-9      | Metribuzin     | Iriazine                 | 2001             |
| 1028 | 1113-02-6         | 61639         | Omethoate                | Degradate    | I                      | adsx    | 60-51-5         | Dimethoate     | Organothio-              | 2002             |
| 1037 | 7588-04-7         | 61667         | Dhorata sulfona          | Demadate     | I                      | ACHA    | 208-07-2        | Dhorate        | phosphate<br>Organothio- | 2001             |
|      |                   | 10010         | 1 IINI dave Sullouid     | DUBIANAW     |                        | Adev    | 7-70-077        | 1 1101 400     | on phosphate             | 1007             |
| 1043 | I                 | 61622         | 3-(2,2-Dichlor_acid      | Degradate    | I                      | xgc     | 52645-53-1      | Permethrin     | Pyrethroid               | 2001             |

4 Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

| able 1. Analytes that were initially considered or tested but subsequently eliminated from complete validation experiments because of problems | om complete validation exp | oeriments beca | ause of problem: | s |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------|------------------|---|
| vith ordering, analysis, or recovery-Continued                                                                                                 |                            |                |                  |   |
|                                                                                                                                                |                            |                |                  |   |
|                                                                                                                                                | 1                          | 1.000          | 1                |   |

| Rank | CASRN      | P-Code | Short name              | Use         | Class | Problem | Parent<br>CASRN | Parent<br>name | Parent<br>class         | Parent<br>method |
|------|------------|--------|-------------------------|-------------|-------|---------|-----------------|----------------|-------------------------|------------------|
| 1049 | 100-02-7   | 34647  | 4-Nitrophenol           | Degradate   | I     | adsx    | 56-38-2         | Parathion      | Organothio-             | 2001             |
|      |            |        | I                       | I           |       | I       |                 |                | phosphate               |                  |
| 1051 | 2327-02-8  | 61748  | 1-(3,4-Dichlor_)urea    | Degradate   | Ι     | xgc     | 330-55-2        | Linuron        | Urea                    | 2001             |
| 1060 | 35884-76-5 | 61653  | Malathion mono_acid     | Degradate   | Ι     | xor     | 121-75-5        | Malathion      | Organothio-             | 2001             |
|      |            |        |                         |             |       |         |                 |                | phosphate               |                  |
| 1064 | 65600-62-6 | 61612  | 2,3,3-trichlor_salt     | Degradate   | I     | xgc     | 2303-17-5       | Triallate      | Thiocarbamate           | 2001             |
| 1069 | 3964-56-5  | 61632  | 4-Bromo-2-chlo_henol    | Degradate   | I     | xspe    | 41198-08-7      | Profenofos     | Organothio-             | 2002             |
|      |            |        |                         |             |       |         |                 |                | phosphate               |                  |
| 1070 | 16752-77-5 | 49296  | Methomyl                | Degradate   | I     | xgc     | 59669-26-0      | Thiodicarb     | Carbamate               | 2002x            |
| 1070 | 13749-94-5 | 61655  | Methomyl-oxime          | Degradate   | Ι     | xgc     | 59669-26-0      | Thiodicarb     | Carbamate               | 2002x            |
| 1078 | I          | I      | Tetrahydrophthalimide   | Degradate   | I     | XOL     | 133-06-2        | Captan         | Imide                   | 2002             |
| 1084 | 934-32-7   | 61616  | 2-Aminobenzimidazole    | Degradate   | I     | xgc     | 17804-35-2      | Benomyl        | Carbamate               | 9060             |
| 1084 | 10605-21-7 | 38736  | Carbendazim             | Degradate   | I     | xgc     | 17804-35-2      | Benomyl        | Carbamate               | 9060             |
| 1086 | 2814-20-2  | 61621  | 2-Isopropyl-6dinol      | Degradate   | Ι     | xspe    | 333-41-5        | Diazinon       | Organothio-             | 2001             |
|      |            |        |                         |             |       |         |                 |                | phosphate               |                  |
| 1086 | 962-58-3   | 61638  | Diazinon, oxyg_nalog    | Degradate   | I     | xgc     | 333-41-5        | Diazinon       | Organothio-             | 2001             |
|      |            |        |                         |             |       |         |                 |                | phosphate               |                  |
| 1093 | I          | 61624  | 3-(3,5-Dichlor_imide    | Degradate   | I     | XOT     | 36734-19-7      | Iprodione      | Amide                   | 2002             |
| 1101 | I          | 61613  | 2,4'-Dicofol            | Byproduct   | I     | xgc     | 115-32-2        | Dicofol        | Organochlorine          | 2002             |
| 1114 | 3739-38-6  | 61628  | 3-Phenoxybenzoic acid   | Degradate   | I     | xgc     | 52315-07-8      | Cypermethrin   | Pyrethroid              | 2002             |
| 1124 | 31110-62-0 | 61661  | O-Ethyl-S-prop ioate    | Degradate   | Ι     | Xec     | 13194-48-4      | Ethoprop       | Organothio-             | 2001             |
|      |            |        |                         | )           |       | 5       |                 | <b>T T</b>     | phosphate               |                  |
| 1128 | 5459-93-8  | 61659  | N-Ethyl cycloh amine    | Degradate   | Ι     | xspe    | 1134-23-2       | Cycloate       | Thiocarbamate           | 2002             |
| 1129 | I          | 61623  | 3-(2,2-Dichlor vlate    | Degradate   | I     | xgc     | 68359-37-5      | Cyfluthrin     | Zyrethroid              | 2002             |
| 1134 | I          | 61643  | Ethion dioxon           | Degradate   | I     | xor     | 563-12-2        | Ethion         | Organothio-             | 2002             |
|      |            |        |                         |             |       |         |                 |                | phosphate               |                  |
| 1227 | 3761-42-0  | 61648  | Fenthion sulfone        | Degradate   | I     | XOT     | 55-38-9         | Fenthion       | Organothio-             | 2002             |
|      |            |        | -<br>-<br>-             | -<br>-<br>( |       |         |                 | -              | phosphate               |                  |
| 1228 | I          | 16919  | Isophenphos-de_logue    | Degradate   | I     | XOL     | 25311-71-1      | Isotenphos     | Organothio-             | 2002             |
| 1770 |            | 61650  | Ironhanhar da rand      | Damadata    |       | 107     | 75311 71 1      | Icofannhae     | phosphate               |                  |
| 0771 | I          | 00010  | 1940 Ton Sound Industry | Degradate   | I     | IOV     | T-T/-TTCC7      | conditioner    | ouganouno-<br>nhosnhate | 7007             |
| 1232 | 17210-55-8 | 61673  | Temephos sulfoxide      | Degradate   | Ι     | xgc     | 3383-96-8       | Temephos       | Organothio-             | 2002             |
|      |            |        | •                       | )           |       | )       |                 | •              | )                       |                  |

# ANALYTICAL METHOD

Organic Compounds and Parameter Codes: Pesticides and degradates, filtered, gas chromatography/mass spectrometry, Laboratory methods (schedules) 2002 and 2011 (U.S. Geological Survey Method O-2002-01)

#### 1. Scope and Application

The method is suitable for the determination of low-level concentrations (1 to 1,000 nanograms per liter) of pesticides and pesticide degradates in filtered naturalwater samples. The methods are applicable to pesticides and degradates that are (1) efficiently partitioned from the water phase onto a C-18 organic phase that is chemically bonded to a solid porous silica matrix, and (2) sufficiently volatile and thermally stable for gas chromatography. Suspended particulate matter is removed from the samples by filtration, so this method is suitable for pesticides and degradates in the dissolved phase. The quantity of pesticide dissolved in water in relation to that adsorbed to sediment depends on the physical and chemical properties of the pesticide and the concentration of suspended sediment in the water.

The sample preparation and essential GC/MS operational procedures used for the new method are identical to those in method 2001, which was developed for more abundantly and widely used pesticides (Zaugg and others, 1995). The common preparation and operational procedures will allow analysis of extracts by either method, or analysis of analytes in both methods from one water-sample extract. The 2001 method included an optional on-site extraction procedure, and different laboratory method numbers were

used to distinguish laboratory SPE (2001) and on-site SPE (2010). Similarly, the new method numbers distinguish laboratory SPE (2002) and on-site SPE (2011).

The analytes include parent pesticides of national importance based on their use and application or importance to the reregistration monitoring needs of the U.S. Environmental Protection Agency (USEPA) Office of Pesticide Programs, and degradates of pesticides included in NWOL methods 2001, 2050, or the new method 2002 presented in this report (table 2). The USEPA is reviewing older pesticides (those initially registered prior to November 1984) under the Federal Insecticide, Fungicide, and Rodenticide Act to ensure that they meet current scientific and regulatory standards (U.S. Environmental Protection Agency, 2001). Selection of parent pesticides was based on national pesticide-use information from the National Center for Food and Agricultural Policy and the Census of Agriculture (Majewski, 1997). The pesticides were sorted in decreasing order by total mass of active ingredient applied and total treated area. The top 120 were determined by combining the top 100 in total quantity used and the top 100 in total area of land treated (80 are in the top 100 by both criteria). The 120 compounds were considered a high priority for the NAWQA program (Majewski, 1997). Fifty-seven of these compounds were not included in existing NWQL analytical methods. These compounds were classified by physical attributes, such as chemical class, characteristic functional groups, and possible analytical technique. Seventeen pesticides were considered suitable for testing by GC/MS and were initially included in these methods. The USEPA reviewed the resulting list, and set priorities or added pesticides of importance to its pesticide re-registration

process. Selection of pesticide degradates initially was based on whether the parent pesticide was determined by NWQL methods 2001, 2050, or the current method, and whether an analytical standard was readily available. These compounds then were classified by physical attributes, such as chemical class, available functional groups, and whether they would be amenable to the C-18 SPE GC/MS analytical method. Seventy-three degradates initially were considered.

After this selection process, the analytes were obtained and tested in initial and final validation experiments. The analytes that successfully passed the final validation experiments are listed in table 2. The relations of pesticide degradates included in the new method to parent pesticides in U.S. Geological Survey methods 2001, 2050, and 2002 are listed in table 3.

All tables in this report list the average national-use rank of pesticide or pesticide degradate to allow sorting of the analytes and to provide an easy correlation between parent and degradate pesticides. The pesticides sorted in decreasing order in total kilograms of active ingredient applied and total treated hectares were assigned numbers indicating their order (or rank). The arithmetical average of the rank on the basis of total kilograms of active ingredient applied and total treated hectares was calculated and is termed the "rank" in this report. Degradates were arbitrarily assigned a rank of 1000 plus the average rank of the parent pesticide. For example, 2-[2-ethyl-6-methylphenyl)amino]-1-propanol and 2-ethyl-6-methylaniline, both degradates of metolachlor, which has an average rank of 2, are assigned average rank 1002 (table 3). This ranking procedure provides a convenient way to link the degradates and parent pesticides in tables and figures.

Because some degradates potentially can be derived from more than one parent pesticide, some of the degradates in table 2 are listed more than once, in order of the national-use rank of the parent pesticide. In that situation, the degradate was assigned the lowest rank, even though the degradate could have a different rank, depending on which parent it was derived from. For example, 3,4dichloroaniline is shown in table 2 with rank 1033, even though it could be assigned ranks of 1036, 1051, and 1241, which correspond to the three other potential parent pesticides (linuron, propanil, neburon) of high to moderate national use.

A short, 20-character name was used in the tables to minimize space taken by lengthy chemical names. The short name was defined as the first 14 characters and the last 5 characters of a name, joined by an underscore: "\_". Common or chemical names and corresponding short names are listed in table 2.

The calibration range is equivalent to concentrations ranging from 0.001 to 1.0  $\mu$ g/L for most analytes. The method detection limit (MDL) is not only compound dependent, but also depends on sample matrix, instrument performance, and other operational sources of variation. For all analytes listed in table 2, MDLs in pesticide-grade water vary from 0.001 to 0.7  $\mu$ g/L. Analytical results are not censored at the MDL; if a pesticide meets the detection criteria (retention time and mass spectra compared to that of a reference standard, as defined later in section 11), the result is calculated and reported with an estimated "E" qualifier.

Table 2. Pesticides and degradates included in new method

parameter code; I, Insecticide; H, Herbicide; Def, Defoliant; N, Nematocide; F, Fungicide; PGR, Plant Growth Regulator; Deg, Degradate; Fum, Fumigant; IS, Internal 1000 plus the average rank of the lowest-ranked parent pesticide; CASRN, Chemical Abstracts Service Registry Number; P-Code, National Water Information System Table sorted by remark code and then by rank. Rank, national rank of pesticide based on application rate. Pesticide degradates were arbitrarily assigned a rank of Standard; SUR, Surrogate; -, not applicable; E, estimated remark code; --,CASRN not available]

| Rank | Name                     | Short name               | CASRN                      | P-Code | Use | Class                 | Remark<br>code |
|------|--------------------------|--------------------------|----------------------------|--------|-----|-----------------------|----------------|
|      | Parent pesticides        |                          |                            |        |     |                       |                |
| 63   | Prometryn                | Prometryn                | 7287-19-6                  | 04036  | Η   | Triazine              | I              |
| 69   | Profenofos               | Profenofos               | 41198-08-7                 | 61603  | Ι   | Organothiophosphate   | Ι              |
| 71   | <i>alpha</i> -Endosulfan | <i>alpha</i> -Endosulfan | 959-98-8                   | 34362  | Ι   | Organochlorine        | Ι              |
| 75   | Metalaxyl                | Metalaxyl                | 57837-19-1                 | 61596  | Ц   | Amino acid derivative | Ι              |
| 106  | Oxyfluorfen              | Oxyfluorfen              | 42874-03-3                 | 61600  | Η   | Diphenyl ether        | Ι              |
| 108  | cis-Propiconazole        | cis-Propiconazole        | c-60207-90-1 <sup>1</sup>  | 79846  | ц   | Triazole              | Ι              |
| 110  | trans-Propiconazole      | trans-Propiconazole      | $t-60207-90-1^{1}$         | 79847  | ц   | Triazole              | Ι              |
| 121  | Myclobutanil             | Myclobutanil             | 88671-89-0                 | 61599  | ц   | Tziazole              | Ι              |
| 126  | Fenamiphos               | Fenamiphos               | 22224-92-6                 | 61591  | Z   | Organothiophosphate   | Ι              |
| 127  | Hexazinone               | Hexazinone               | 51235-04-2                 | 04025  | Η   | Triazine              | Ι              |
| 128  | Cycloate                 | Cycloate                 | 1134-23-2                  | 04031  | Η   | Thiocarbamate         | I              |
| 132  | Methidathion             | Methidathion             | 950-37-8                   | 61598  | Ι   | Organothiophosphate   | Ι              |
| 134  | Ethion                   | Ethion                   | 563-12-2                   | 82346  | Ι   | Organothiophosphate   | Ι              |
| 211  | (E)-Dimethomorph         | (E)-Dimethomorph         | e-110488-70-5 <sup>1</sup> | 79844  | Ц   | Miscellaneous         | I              |
| 212  | (Z)-Dimethomorph         | (Z)-Dimethomorph         | z-110488-70-5 <sup>1</sup> | 79845  | Ц   | Miscellaneous         | Ι              |
| 220  | Terbuthylazine           | Terbuthylazine           | 5915-41-3                  | 04022  | Η   | Triazine              | Ι              |
| 225  | Flumetralin              | Flumetralin              | 62924-70-3                 | 61592  | PGR | Dinitroaniline        | Ι              |
| 227  | Fenthion                 | Fenthion                 | 55-38-9                    | 38801  | Ι   | Organothiophosphate   | Ι              |
| 228  | Isofenphos               | Isofenphos               | 25311-71-1                 | 61594  | Ι   | Organothiophosphate   | Ι              |
| 229  | Propetamphos             | Propetamphos             | 31218-83-4                 | 61604  | Ι   | Organothiophosphate   | I              |
| 231  | Tebupirimphos            | Tebupirimphos            | 96182-53-5                 | 61602  | Ι   | Organothiophosphate   | Ι              |
| 28   | Dimethoate               | Dimethoate               | 60-51-5                    | 82662  | I   | Organothiophosphate   | Щ              |
| 30   | Tribuphos                | Tribuphos                | 78-48-8                    | 61610  | Def | Organothiophosphate   | Щ              |
| 71   | <i>beta</i> -Endosulfan  | <i>beta</i> -Endosulfan  | 33213-65-9                 | 34357  | Ι   | Organochlorine        | Щ              |
| 76   | Tefluthrin               | Tefluthrin               | 79538-32-2                 | 61606  | I   | Pyrethroid            | Щ              |
| 83   | Dicrotonhos              | Dicrotonhos              | 141-66-2                   | 38454  | _   | Organophosphate       | Щ              |

8 Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

|                  |                                                                      | Short name                      | CASRN                     | P-Code    | Use                  | Class                      | Kemark<br>code |
|------------------|----------------------------------------------------------------------|---------------------------------|---------------------------|-----------|----------------------|----------------------------|----------------|
|                  | prodione                                                             | Iprodione                       | 36734-19-7                | 61593     | F                    | Amide                      | Е              |
|                  | Cyhalothrin                                                          | Cyhalothrin                     | 91465-08-6                | 61595     | Ι                    | Pyrethroid                 | Щ              |
|                  | Cypermethrin                                                         | Cypermethrin                    | 52315-07-8                | 61586     | Ι                    | Pyrethroid                 | Е              |
|                  | Sulprofos                                                            | Sulprofos                       | 35400-43-2                | 38716     | Ι                    | <b>Organothiophosphate</b> | Щ              |
|                  | Phosmet                                                              | Phosmet                         | 732-11-6                  | 61601     | Ι                    | Organothiophosphate        | Щ              |
|                  | Cyfluthrin                                                           | Cyfluthrin                      | 68359-37-5                | 61585     | Ι                    | Pyrethroid                 | Е              |
|                  | Bifenthrin                                                           | Bifenthrin                      | 82657-04-3                | 61580     | Ι                    | Pyrethroid                 | Е              |
|                  | Sulfotepp                                                            | Sulfotepp                       | 3689-24-5                 | 61605     | Ι                    | Organothiophosphate        | Е              |
|                  | Temephos                                                             | Temephos                        | 3383-96-8                 | 61607     | Ι                    | Organothiophosphate        | Щ              |
|                  | Degradates                                                           |                                 |                           |           |                      |                            |                |
|                  | 2-[2-Ethyl-6-methylphenyl)amino]-1-propanol                          | 2-[2-Ethyl-6-m_panol            | 61520-53-4                | 61615     | $\operatorname{Deg}$ | I                          | I              |
|                  | 2-Chloro-2,6-diethylacetanilide                                      | 2-Chloro-2,6-d_ilide            | 6967-29-9                 | 61618     | $\operatorname{Deg}$ | I                          | I              |
|                  | 4-(Hydroxymethyl)pendimethalin                                       | 4-(Hydroxymeth_halin            | 56750-76-6                | 61665     | $\operatorname{Deg}$ | Ι                          | Ι              |
| 1016 Te          | <b>[erbufos-O-analogue sulfone</b>                                   | Terbufos-O-ana_lfone            | 56070-15-6                | 61674     | $\operatorname{Deg}$ | Ι                          | Ι              |
| 1033 3,4         | 3,4-Dichloroaniline                                                  | 3,4-Dichloroaniline             | 95-76-1                   | 61625     | $\operatorname{Deg}$ | Ι                          | Ι              |
| 1043 3-          | 3-Phenoxybenzyl alcohol                                              | 3-Phenoxybenzy_cohol            | 13826-35-2                | 61629     | $\operatorname{Deg}$ | Ι                          | Ι              |
| 1044 <i>c</i> -1 | c-Methyl-3-(2,2-dichlorovinyl)-2,2-dimethyl-                         | c-Methyl-3-(2,_ylate            | <sup>1</sup> c-61898-95-1 | 79842     | $\operatorname{Deg}$ | I                          | Ι              |
| - 4 +            | (1-cyclopropane)-carboxylate                                         | + Mathia 2 () Math              | 1 + 61000 05 1            | 70013     | Dag                  | I                          | I              |
|                  | Memyr-5-(2,2-memorovmyr)-2,2-umemyr-<br>(1-cyclopropane)-carboxylate | 1/1/1/1/1/2-1-C-1/1/1/1/1/1/1/2 | 1-06-06010-1              | C + 0 6 / | Deg                  |                            |                |
| 1049 Pa          | Paraoxon-ethyl                                                       | Paraoxon-ethyl                  | 311-45-5                  | 61663     | $\operatorname{Deg}$ | Ι                          | Ι              |
| 1060 M           | Malaoxon                                                             | Malaoxon                        | 1634-78-2                 | 61652     | $\operatorname{Deg}$ | Ι                          | Ι              |
| 1062 2-          | 2-(4-tert-butylphenoxy)-cyclohexanol                                 | 2-(4-tert-buty_xanol            | 1942-71-8                 | 61637     | $\operatorname{Deg}$ | I                          | I              |
| 1067 Di          | Disulfoton sulfone                                                   | Disulfoton sulfone              | 2497-06-5                 | 61640     | $\operatorname{Deg}$ | Ι                          | Ι              |
| 1067 Di          | Disulfoton sulfoxide                                                 | Disulfoton sulfoxide            | 2497-07-6                 | 61641     | $\operatorname{Deg}$ | I                          | Ι              |
| 1071 Er          | Endosulfan sulfate                                                   | Endosulfan sulfate              | <sup>2</sup> 1031-07-8    | 61590     | $\operatorname{Deg}$ | I                          | Ι              |
| 1076 Te          | Tefluthrin metabolite [R 152912]                                     | Tefluthrin met_2912]            | ł                         | 61672     | $\operatorname{Deg}$ | I                          | I              |
| 1093 3,:         | 3,5-Dichloroaniline                                                  | 3,5-Dichloroaniline             | 626-43-7                  | 61627     | $\operatorname{Deg}$ | I                          | I              |
| 1099 2,:         | 2,5-Dichloroaniline                                                  | 2,5-Dichloroaniline             | 95-82-9                   | 61614     | $\operatorname{Deg}$ | I                          | Ι              |
| 1124 O.          | O-Ethyl-O-methyl-S-propylphosphorothioate                            | O-Ethyl-O-meth ioate            | 76960-87-7                | 61660     | $\operatorname{Deg}$ | Ι                          | Ι              |

Table 2. Pesticides and degradates included in new method—Continued

| Rank | Name                             | Short name                                       | CASRN          | P-Code | Use                  | Class           | code |
|------|----------------------------------|--------------------------------------------------|----------------|--------|----------------------|-----------------|------|
| 1126 | Fenamiphos sulfone               | Fenamiphos sulfone                               | 31972-44-8     | 61645  | $\operatorname{Deg}$ | I               | I    |
| 1231 | Tebupirimphos oxygen analogue    | Tebupirimphos,_logue                             | ;              | 61669  | $\operatorname{Deg}$ | I               | I    |
| 1002 | 2-Ethyl-6-methylaniline          | 2-Ethyl-6-meth_iline                             | 24549-06-2     | 61620  | $\operatorname{Deg}$ | I               | Щ    |
| 1012 | Chlorpyrifos oxygen analog       | Chlorpyrifos,_nalog                              | 5598-15-2      | 61636  | $\operatorname{Deg}$ | Ι               | Щ    |
| 1013 | 2-Amino-N-isopropylbenzamide     | 2-Amino-N-isop_amide                             | 30391-89-0     | 61617  | $\operatorname{Deg}$ | I               | Щ    |
| 1014 | Paraoxon-methyl                  | Paraoxon-methyl                                  | 950-35-6       | 61664  | $\operatorname{Deg}$ | I               | Щ    |
| 1015 | 4-Chloro-2-methylphenol          | 4-Chloro-2-met_henol                             | 1570-64-5      | 61633  | $\operatorname{Deg}$ | Ι               | Щ    |
| 1024 | 3-Trifluoromethylaniline         | 3-Trifluoromet_iline                             | 98-16-8        | 61630  | Deg                  | Ι               | Щ    |
| 1032 | 1-Naphthol                       | 1-Naphthol                                       | 90-15-3        | 49295  | $\operatorname{Deg}$ | Ι               | Щ    |
| 1032 | 1,4-Naphthaquinone               | 1,4-Naphthaquinone                               | 130-15-4       | 61611  | $\operatorname{Deg}$ | Ι               | Щ    |
| 1034 | Phorate oxon                     | Phorate oxon                                     | 2600-69-3      | 61666  | $\operatorname{Deg}$ | Ι               | Е    |
| 1053 | Azinphos-methyl-oxon             | Azinphos-methyl-oxon                             | 961-22-8       | 61635  | $\operatorname{Deg}$ | Ι               | Щ    |
| 1054 | Fonofos oxygen analog            | Fonofos, oxyge_nalog                             | 944-21-8       | 61649  | $\operatorname{Deg}$ | I               | Щ    |
| 1071 | Endosulfan ether                 | Endosulfan ether                                 | 3369-52-6      | 61642  | $\operatorname{Deg}$ | Ι               | Щ    |
| 1076 | Tefluthrin metabolite [R 119364] | Tefluthrin met_9364]                             | ;              | 61671  | $\operatorname{Deg}$ | I               | Щ    |
| 1101 | 4,4'-Dichlorobenzophenone        | 4,4'-Dichlorob_enone                             | 90-98-2        | 61631  | $\operatorname{Deg}$ | Ι               | Щ    |
| 1105 | 4-Chlorobenzylmethyl sulfone     | 4-Chlorobenzyl_lfone                             | 98-57-7        | 61634  | $\operatorname{Deg}$ | I               | Щ    |
| 125  | Phosmet oxon                     | Phosmet oxon                                     | 3735-33-9      | 61668  | $\operatorname{Deg}$ | I               | Щ    |
| 126  | Fenamiphos sulfoxide             | Fenamiphos sulfoxide                             | 31972-43-7     | 61646  | $\operatorname{Deg}$ | I               | Щ    |
| 1134 | Ethion monoxon                   | Ethion monoxon                                   | 17356-42-2     | 61644  | $\operatorname{Deg}$ | Ι               | Щ    |
| 153  | Dichlorvos                       | Dichlorvos                                       | 62-73-7        | 38775  | Fum                  | Organophosphate | Щ    |
| 1227 | Fenthion sulfoxide               | Fenthion sulfoxide                               | 3761-41-9      | 61647  | $\operatorname{Deg}$ | I               | Щ    |
|      | Internal standards               |                                                  |                |        |                      |                 | Ι    |
|      | Acenaphthene- $d_{10}$           | Acenaphthene- $d_{10}$                           | 15067-26-2     | I      | IS                   | I               | Ι    |
|      | Chrysene- $d_{12}$               | $Chrysene-d_{12}$                                | 1719-03-5      | I      | IS                   | I               | Ι    |
|      | Phenanthrene- $d_{10}$           | Phenanthrene- $d_{10}$                           | 1517-22-2      | I      | IS                   | I               | Ι    |
|      | Surrogates                       |                                                  |                |        |                      |                 | Ι    |
|      | $alpha$ -HCH- $d_6$ , surrogate  | <i>alpha</i> -HCH- <i>d</i> <sub>6</sub> ,_ogate | $319-84-6-d_6$ | 99224  | SUR                  | I               | I    |
|      | Diazinon- $d_{10}$ , surrogate   | $Diazinon-d_{10}$ , ogate                        | 100155-47-3    | 99223  | SUR                  | Ι               | Ι    |

Table 2. Pesticides and degradates included in new method—Continued

10 Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

| Degradate<br>rank | P-Code | CASRN                             | Degradate short name              | Parent CASRN | Parent name                 | Parent method |
|-------------------|--------|-----------------------------------|-----------------------------------|--------------|-----------------------------|---------------|
| 1002              | 61620  | 24549-06-2                        | 2-Ethyl-6-meth_iline              | 51218-45-2   | Metolachlor                 | 2001          |
| 1002              | 61615  | 61520-53-4                        | 2-[2-Ethyl-6-m_panol              | 51218-45-2   | Metolachlor                 | 2001          |
| 1007              | 61618  | 6967-29-9                         | 2-Chloro-2,6-d_ilide              | 15972-60-8   | Alachlor                    | 2001          |
| 1008              | 61665  | 56750-76-6                        | 4-(Hydroxymeth_halin              | 40487-42-1   | Pendimethalin               | 2001          |
| 1012              | 61636  | 5598-15-2                         | Chlorpyrifos, _nalog              | 2921-88-2    | Chlorpyrifos                | 2001          |
| 1013              | 61617  | 30391-89-0                        | 2-Amino-N-isop_amide              | 25057-89-0   | Bentazon                    | 2050          |
| 1014              | 61664  | 950-35-6                          | Paraoxon-methyl                   | 298-00-0     | Methyl parathion            | 2001          |
| 1015              | 61633  | 1570-64-5                         | 4-Chloro-2-met_henol <sup>1</sup> | 94-74-6      | MCPA (and salts and esters) | 2050          |
| 1015              | 61633  | 1570-64-5                         | 4-Chloro-2-met_henol <sup>1</sup> | 94-81-5      | MCPB (and salts and esters) | 2050          |
| 1016              | 61674  | 56070-15-6                        | Terbufos-O-ana_lfone              | 13071-79-9   | Terbufos                    | 2001          |
| 1024              | 61630  | 98-16-8                           | 3-Trifluoromet_iline <sup>1</sup> | 2164-17-2    | Fluometuron                 | 2050          |
| 1032              | 61611  | 130-15-4                          | 1,4-Naphthaquinone <sup>1</sup>   | 63-25-2      | Carbaryl                    | 2001          |
| 1032              | 49295  | 90-15-3                           | 1-Naphthol <sup>1</sup>           | 63-25-2      | Carbaryl                    | 2001          |
| 1032              | 61611  | 130-15-4                          | 1,4-Naphthaquinone <sup>1</sup>   | 15299-99-7   | Napropamide                 | 2001          |
| 1032              | 49295  | 90-15-3                           | 1-Naphthol <sup>1</sup>           | 15299-99-7   | Napropamide                 | 2001          |
| 1033              | 61625  | 95-76-1                           | 3,4-Dichloroaniline <sup>1</sup>  | 330-54-1     | Diuron                      | 2050          |
| 1033              | 61625  | 95-76-1                           | 3,4-Dichloroaniline <sup>1</sup>  | 709-98-8     | Propanil                    | 2001          |
| 1033              | 61625  | 95-76-1                           | 3,4-Dichloroaniline <sup>1</sup>  | 330-55-2     | Linuron                     | 2001          |
| 1033              | 61625  | 95-76-1                           | 3,4-Dichloroaniline <sup>1</sup>  | 555-37-3     | Neburon                     | 2050          |
| 1034              | 61666  | 2600-69-3                         | Phorate oxon                      | 298-02-2     | Phorate                     | 2001          |
| 1044              | 61629  | <sup>3</sup> 13826-35-2           | 3-Phenoxybenzy_cohol              | 52645-53-1   | Permethrin                  | 2001          |
| 1044              | 79842  | <sup>3</sup> с-61898-95-1         | <i>c</i> -Methyl-3-(2,ylate       | 52645-53-1   | Permethrin                  | 2001          |
| 1044              | 79843  | <sup>3</sup> t-61898-95-1         | <i>t</i> -Methyl-3-(2,_ylate      | 52645-53-1   | Permethrin                  | 2001          |
| 1044              | 79842  | <sup>3</sup> с-61898-95-1         | <i>c</i> -Methyl-3-(2,ylate       | 52315-07-8   | Cypermethrin                | 2002          |
| 1044              | 79843  | <sup>3</sup> t-61898-95-1         | <i>t</i> -Methyl-3-(2,_ylate      | 52315-07-8   | Cypermethrin                | 2002          |
| 1044              | 79842  | <sup>3</sup> <i>c</i> -61898-95-1 | <i>c</i> -Methyl-3-(2,_ylate      | 68359-37-5   | Cyfluthrin                  | 2002          |
| 1044              | 79843  | <sup>3</sup> t-61898-95-1         | <i>t</i> -Methyl-3-(2,_ylate      | 68359-37-5   | Cyfluthrin                  | 2002          |
|                   |        |                                   |                                   |              |                             |               |

**Table 3.** Relation of pesticide degradates included in new method to parent pesticides in U.S. Geological Survey methods 2001, 2050, and 2002

| Degradate<br>rank | P-Code | CASRN      | Degradate short name    | Parent CASRN | Parent name              | Parent method |
|-------------------|--------|------------|-------------------------|--------------|--------------------------|---------------|
| 1049              | 61663  | 311-45-5   | Paraoxon-ethyl          | 56-38-2      | Parathion                | 2001          |
| 1053              | 61635  | 961-22-8   | Azinphos-methyl-oxon    | 86-50-0      | Azinphos-methyl          | 2001          |
| 1054              | 61649  | 944-21-8   | Fonofos, oxyge_nalog    | 944-22-9     | Fonofos                  | 2001          |
| 1060              | 61652  | 1634-78-2  | Malaoxon                | 121-75-5     | Malathion                | 2001          |
| 1062              | 61637  | 1942-71-8  | 2-(4-tert-buty_xanol    | 2312-35-8    | Propargite               | 2001          |
| 1067              | 61640  | 2497-06-5  | Disulfoton sulfone      | 298-04-4     | Disulfoton               | 2001          |
| 1067              | 61641  | 2497-07-6  | Disulfoton sulfoxide    | 298-04-4     | Disulfoton               | 2001          |
| 1071              | 61590  | 1031-07-7  | Endosulfan sulfate      | 959-98-8     | <i>alpha</i> -Endosulfan | 2002          |
| 1071              | 61590  | 1031-07-7  | Endosulfan sulfate      | 33213-65-9   | <i>beta</i> -Endosulfan  | 2002          |
| 1071              | 61642  | 3369-52-6  | Endosulfan ether        | 959-98-8     | <i>alpha</i> -Endosulfan | 2002          |
| 1071              | 61642  | 3369-52-6  | Endosulfan ether        | 33213-65-9   | <i>beta</i> -Endosulfan  | 2002          |
| 1076              | 61671  | ł          | Tefluthrin met_9364]    | 79538-32-2   | Tefluthrin               | 2002          |
| 1076              | 61672  | ł          | Tefluthrin met_2912]    | 79538-32-2   | Tefluthrin               | 2002          |
| 1093              | 61627  | 626-43-7   | 3,5-Dichloroaniline     | 36734-19-7   | Iprodione                | 2002          |
| 1099              | 61614  | 95-82-9    | 2,5-Dichloroaniline     | 133-90-4     | Chloramben               | 2050          |
| 1101              | 61631  | 90-98-2    | 4,4'-Dichlorob_enone    | 115-32-2     | Dicofol                  | 4<br>         |
| 1105              | 61634  | 98-57-7    | 4-Chlorobenzyl_lfone    | 28249-77-6   | Thiobencarb              | 2001          |
| 1124              | 61660  | 76960-87-7 | O-Ethyl-O-meth_ioate    | 13194-48-4   | Ethoprop                 | 2001          |
| 1125              | 61668  | 3735-33-9  | Phosmet oxon            | 732-11-6     | Phosmet                  | 2002          |
| 1126              | 61646  | 31972-43-7 | Fenamiphos sulfoxide    | 22224-92-6   | Fenamiphos               | 2002          |
| 1126              | 61645  | 31972-44-8 | Fenamiphos sulfone      | 22224-92-6   | Fenamiphos               | 2002          |
| 1134              | 61644  | 17356-42-2 | Ethion monoxon          | 563-12-2     | Ethion                   | 2002          |
| 1153              | 38775  | 62-73-7    | Dichlorvos <sup>2</sup> | 300-76-5     | Naled                    | 4<br>         |
| 1227              | 61647  | 3761-41-9  | Fenthion sulfoxide      | 55-38-9      | Fenthion                 | 2002          |
| 1231              | 61669  | 1          | Tebupirimphos,_logue    | 96182-53-5   | Tebupirimphos            | 2002          |

**Table 3.** Relation of pesticide degradates included in new method to parent pesticides in U.S. Geological Survey methods 2001, 2050, and 2002—Continued

#### 12 Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

<sup>2</sup>Dichlorvos is also applied as a parent pesticide. <sup>3</sup>Letter prefix added to CASRN because CASRN not available for *cis-*, *trans-* or E-, Z-isomers. <sup>4</sup>Last modifed: February 4, 2002 (mws). port of the gas chromatograph during gas chromatography/mass spectrometry analysis.

Permanently E-Coded Compounds. Two classes of data are reported from the method: (1) compounds that are reported without qualification, and (2) compounds that are always reported as estimated. Compounds that are reported without qualification are reproducibly well recovered by the method, as defined by median recoveries between 60 and 120 percent and with variation (as indicated by the nonparametric statistic, relative Fpseudosigma; Hoaglin, 1983) less than 25 percent. Estimated-value compounds, which are "E-coded" in the data base, do not meet these performance criteria for unqualified quantification, but are retained in the method because the compounds are important owing to high use or potential environmental effects and because analytical performance has been consistent and reproducible. Estimated-value compounds, when reported, have been identified as present with a high degree of confidence according to method-specific criteria, but greater uncertainty exists in the quantitative determination of concentration than for compounds reported without qualification. It is important to note, however, that there is no qualitative difference between unqualified compounds and estimated-value compounds. The identification of the compounds is equally reliable, and, in reality, bias and variability for different compounds span a continuum of performance rather than corresponding to categories. For example, some unqualified compounds perform similarly to estimatedvalue compounds that fall just outside the unqualified category criteria. Thus, data users should consider the estimated-value designation as a categorical warning to pay extra attention to potential use and adjustment of numerical concentration results, but not as a distinct boundary between acceptable and unacceptable data, as defined at the beginning of this paragraph.

## 2. Summary of Method

Water samples are filtered at the collection site by using glass-fiber filters with nominal 0.7-µm pore diameter to remove particulate material (Sandstrom, 1995). About 1 L of the filtered water sample is pumped through a disposable, polypropylene SPE column that contains porous silica coated with an octadecyl (C-18) phase that is chemically bonded to the surface of the silica. The SPE columns are dried using a gentle stream of nitrogen to remove residual water. The adsorbed analytes (pesticides and degradates) then are removed from the SPE columns by elution with 2 mL of ethyl acetate. A procedural internal standard in toluene is added, and the eluant is further evaporated to a small volume (150  $\mu$ L) using a gentle stream of nitrogen.

Extracts are analyzed by a capillarycolumn GC/MS operated in the SIM mode. The analytes are identified by comparing their retention times and selected-ion ratios to calibration standards analyzed under the same GC/MS conditions. Analytes are quantified by relating the mass spectrometer (MS) response of the quantitation ion of the analyte to the quantitation of an **internal standard**. Quantitation of an **analyte at a concentration** less than the lowest calibration standard or greater than the highest calibration standard is qualified as "estimated" (E) to signify the lower confidence in the extrapolated concentration.

The internal standard quantitation is a procedural quantitation method in which the internal standard is added to the sample extract prior to evaporation and transfer-tovial sample-processing steps. The use of the **procedural internal standard quantitation** compensates for any bias in the extract evaporation and transfer-to-vial sampleprocessing steps, but not the SPE and elution steps of the analytical method.

**Surrogate** analytes, which are added to each sample in known concentration, are used to monitor method performance with each sample.

A reagent-water sample fortified with 0.1  $\mu$ g/L of the analytes (a **fortified reagent-water-set sample** or a set spike) and a pesticide-grade blank water sample (a laboratory reagent blank or set blank) are extracted, processed, and analyzed with each set of 10 samples.

#### 3. Interferences

Interferences might be caused by organic compounds that have gaschromatograph retention times and characteristic ions with a mass identical to those of the pesticides and degradates of interest. Contaminants in laboratory air, solvents, reagents (including water), glassware, sample bottles and caps, SPE columns, and sample-processing equipment can cause artifacts or false positives in the chromatograms. All of these materials must be routinely demonstrated to be free from interference [less than the MDL, or long-term method detection level (LT-MDL), once determined] under conditions of analysis by analyzing laboratory reagent blanks.

Glassware must be washed with detergent in hot water and rinsed with tap water and distilled or deionized water. Glassware then should be drained, dried, and heated in a laboratory furnace at 450°C for at least 4 hours before use. Solvent rinsing with methanol, followed by air drying, may be substituted for oven heating for other equipment, including sample collection bottles, sample splitters, and filtration devices. Matrix interferences might be caused by contaminants that are coextracted from the sample. The extent of matrix interferences will vary, depending on the nature of the sample matrix.

Residual chlorine in treated water samples might cause degradation of some analytes, especially organophosphorus compounds (Dennis and others, 1979). Suitable reagents that might be used to dechlorinate chlorinated water samples have not been tested for their effect on all analytes.

Pesticide degradates might be formed by degradation of the parent pesticide in the hot injection port of the GC. These degradates are considered artifacts of the analytical process. and are not representative of the concentration of analytes in the water samples. The extent of GC injection-port degradation depends on a number of factors, including surface activity, quantity of coextracted organic material, and extent of impurities on the injection-port liner. Degradates that are susceptible to this thermal degradation are identified in table 3. For example, 3,4dichloroaniline can be formed from thermal degradation of diuron if it is in the water sample.

## 4. Apparatus and Instrumentation

#### 4.1 Manual sample extraction

4.1.1 *Cleaning and elution module for SPE columns*—Supelco, Inc., Visiprep Solid-Phase Extraction Vacuum Manifold and Visidry Drying Attachment or equivalent.

4.1.2 SPE pump, ceramic-piston, valveless pump—Capable of pumping 0 to 30 mL/min, with fittings for 3.18-mm outside diameter (OD) tubing; Fluid Metering Inc., Model QSY - 2 CKC or equivalent. For onsite SPE, an SPE pump powered by a 12-V dc motor is needed; Fluid Metering Inc., Model RHB - 0 CKC or equivalent.

4.1.3 *Teflon-perfluoralkoxy* (*PFA*) *tubing*—3.18-mm OD; Cole-Parmer Instrument Co., CL-06375-01 or equivalent.

4.1.4 *Tefzel-ethylenetetrafluoroethylene (Tefzel-ETFE) female Luer connector with 1/4-28 thread*—Tefzel-ETFE union with 1/4-28 thread, and Tefzel-ETFE nut with 1/4-28 thread and 3.18-mm OD tubing connector; Upchurch Scientific or equivalent.

4.1.5 *Pump control box* (*optional*)—For 12-V dc pumps, fitted with a 4-A fuse, toggle switch, and 10-ohm 1.58-A variable resistor.

4.1.6 *Sample-preparation workstation (optional)*—For pre-cleaning SPE column; Zymark Inc., BenchMate II Workstation or equivalent.

4.1.7 *Bottle-top solvent dispenser*—Adjustable from 2 to 10 mL; Brinkman Dispensette, Van Waters & Rogers (VWR) Scientific or equivalent, for adding solvents to SPE columns during manual cleaning and conditioning steps.

4.1.8 *Luer flow-control valves* (*optional*) or on-off valves—Constructed of inert materials; Burdick & Jackson (B&J) Inert PTFE flow-control valve, Baxter Diagnostics, Inc. or equivalent.

4.1.9 *Vacuum pump*—Any vacuum pump with sufficient capacity to maintain a slight vacuum of 1.5 to 3 kPa in the cleaning/elution module.

4.2 Automated sample extraction

4.2.1 Zymark Inc. AutoTrace SPE Workstation—Configured for 3-mL SPE columns. The setup conditions and processing steps for using the AutoTrace Workstation are listed in Supplement A at the end of this report.

In the automated method, environmental and quality-control samples are extracted in batches of six. The time required for extraction is 58 minutes. One operator typically can process 30 samples in an 8-hour day using this apparatus.

4.3 Manual and automated sample extraction

4.3.1 *Micropipets*—50- and 100- $\mu$ L, fixed- and variable-volume micropipets with disposable glass capillaries; VWR Scientific or equivalent.

4.3.2 Analytical balances— Capable of accurately weighing  $1,200 \pm 1$  g (water samples),  $10.0000 \text{ g} \pm 0.0001 \text{ g}$  (SPE columns), and  $10.000 \text{ g} \pm 0.001 \text{ mg}$  (analytical standards).

4.3.3 *Automated solvent evaporator*—The sample extracts are concentrated with a Zymark TurboVap LV. The TurboVap water bath is set to 30°C, and nitrogen gas pressure is adjusted to 28 kPa.

4.4 Sample analysis

4.4.1 *GC/MS instrument*— Agilent Technologies Model 5890 Series II gas chromatograph, connected via capillary direct interface to an Agilent Technologies 5971 or 5972 mass selective detector (MSD).

4.4.2 *Fused-silica capillary column*—Provides adequate resolution, capacity, accuracy, and variability. A 30-m by 0.25-mm inside diameter (ID) fused-silica capillary column coated with a 0.10-μm bonded film of 95-percent dimethyl 5-percent diphenyl polysiloxane is used; Agilent Technologies HP-Ultra II or equivalent. 4.4.3 Recommended GC conditions—Oven, 85°C (hold 1.5 min), then program to 240°C at 4°C/min, then program to 340°C at 15°C/min and hold for 2 minutes; injection port, 225°C; carrier gas, helium; column flow nominal 0.65 mL/min (30 cm/sec linear velocity); injection volume, 1  $\mu$ L, splitless injection; split-vent flow, 30 mL/min; septum purge, 1 mL/min. Total analysis time is 49 minutes.

4.4.4 *Mass spectrometer conditions*—Interface, 290°C; source, 180°C; analyzer, 100°C; dwell time, 20 milliseconds; mass ions monitored are listed in table 5 (see section 9, Calibration).

# 5. Reagents and Consumable Materials

5.1 *Helium carrier gas*, 99.999 percent purity.

5.2 *Nitrogen gas,* for SPE column drying and solvent evaporation, ultrapure.

5.3 SPE columns, Isolute C-18 (EC) columns, packed with 500 mg of a C-18 hydrocarbon phase chemically bonded to silica (International Sorbent Technology Ltd., Mid Glamorgan, UK). The C-18 phase is end-capped to reduce polar secondary interactions with surficial silanol groups. The columns use stainless-steel frits to keep the sorbent phase in place.

5.4 *Disposable culture tubes*, borosilicate glass, 16 by 100 mm, baked at 450°C for 2 hours; Kimax Brand, VWR or equivalent.

5.5 *Glass-fiber filters*, 0.7-μm nominal pore diameter (GF/F grade), baked at 450°C for 2 hours; Whatman, Inc. or equivalent.

5.6 *Glass bottles, amber (GCC),* 1,000-mL, 33-mm neck, baked at 450°C for 2 hours, fitted with Teflon-lined screw caps; NWQL GCC or equivalent.

5.7 *Solvents*, hexane, toluene, ethyl acetate, methylene chloride, and methanol; B&J Brand ultrapure pesticide quality or equivalent.

5.8 *Pesticide-grade water*, any highpurity water such as ultrapure B&J Brand water for high-performance liquid chromatography (HPLC) or equivalent, that has been tested and demonstrated to be free from analytes and interferences in this analytical method.

5.9 *Detergent solution,* a dilute mixture (0.2 percent in tap water) of laboratory-grade phosphate-free liquid detergent; Liquinox, Alconox Inc. or equivalent.

# 6. Sampling Methods, Sample-Collection Equipment, and Cleaning Procedures

6.1 *Sampling methods:* Use sampling methods capable of collecting water samples that accurately represent the water-quality characteristics of the surface water or ground water at a given time or location. Detailed descriptions of sampling methods used by the USGS for obtaining depth- and width-integrated surface-water samples and of sampling methods for obtaining ground-water samples, and of sample processing (splitting, filtration, shipping) are described by Wilde and others (1999).

6.2 *Sample-collection equipment:* Use sample-collection equipment, including automatic samplers, that are free of tubing, gaskets, and other components made of nonfluorinated plastic material that might leach interferences into water samples or sorb the pesticides and degradates from the water. Material suitable for sample-collection and

processing equipment includes fluorocarbon polymers (Teflon, ETFE), metals (stainless steel, aluminum), glass, and ceramics.

6.3 *Sample filtration:* Water samples need to be filtered prior to SPE using procedures described by Sandstrom (1995). Filtration removes particulate material that might block the SPE column. Filter the water samples as soon as possible after collection, preferably at the sample-collection site, because filtration removes microorganisms that might degrade analytes.

6.4 *Cleaning procedures:* Wash all sample-collection equipment with phosphatefree detergent, rinse with tap water to remove all traces of detergent, and finally rinse with methanol (contained in a Teflon squeezebottle). Allow the methanol to drain and evaporate from the equipment. When dry, cover equipment orifices with aluminum foil. If it is not practical for the methanol to evaporate from the equipment, use pesticidegrade water to rinse methanol from the equipment.

**NOTE:** Methanol needs to be collected and disposed of in accordance with local regulations.

#### 6.5 Quality-control samples:

Collection of quality-control (QC) samples is a required component of sample collection for water-quality studies. QC samples are collected, usually at the field site, to identify, quantify, and document bias and variability in data resulting from the collection, processing, shipping, and handling of samples by field and laboratory personnel. The type, number, and distribution of QC samples are determined by the design and data-quality requirements of the study. Detailed discussion of the description and purpose of QC samples is presented by Wilde and others (1999).

6.5.1 *Blanks*—The primary purpose of a blank sample is to identify potential sources of sample contamination and assess the magnitude of contamination with respect to concentration of target analytes. Field blanks are collected and processed at the field site in the same manner and using the same equipment as the environmental sample(s). The field blank is comprised of an aliquot of blank water processed sequentially through each component of the sampling system. The source solution needed for blank samples must be produced and certified by a laboratory to have analyte concentrations that do not exceed a specified method detection limit. Pesticide-grade blank water (PBW) and volatile-grade blank water (VBW) are required for blanks that will be analyzed for pesticides and volatile organic compounds, respectively. VBW can also be used for pesticide blanks.

6.5.2 *Replicates*—The primary purpose of replicate samples is to identify and (or) quantify the variability in all or part of the sampling and analysis system. Replicates—environmental samples collected in duplicate, triplicate, or higher multiples are considered identical in composition and are analyzed for the same chemical properties.

6.5.3 Fortified matrix samples— Fortified (spike) samples are used to answer questions such as "What loss or gain of target analytes occurred because of water-matrix characteristics; the field processing, shipping, or handling procedures used; holding time; or laboratory analytical procedures?" A sample is fortified by adding a mixture of target compounds obtained from the laboratory to an environmental sample after the sample has been processed. An unfortified environmental sample must accompany each fortified sample. Training is required before personnel attempt to fortify samples. The fortification kits provided to USGS personnel by the NWQL include the fortification solution, equipment, bottle labels, and detailed instructions. The numbers and types of matrix samples used depend on the objectives and data-quality requirements of individual studies, as determined by the project chiefs. Although analyses for a set of fortified samples-laboratory fortified sample, fieldfortified sample, and field-fortified replicate—provide the most complete information relating to the performance of the analytical method, the data from only laboratory fortified samples, or perhaps only one field-fortified sample, could be sufficient to meet study needs.

# 7. Standards

7.1 *Stock standards:* The pesticides and degradates were obtained as pure materials from the USEPA National Pesticide Standard Repository (Ft. Meade, Md.) or commercial vendors (ChemService; EQ Laboratories). Deuterated PAH standards in solution were obtained from commercial vendors (ChemService). Isotopically labelled pesticide standards of diazinon- $d_{10}$  and *alpha*-HCH- $d_6$ were purchased from Cambridge Isotope Laboratories (Woburn, Massachusetts).

7.1.1 Stock internal standard (200 ng/ $\mu$ L)—Prepare a 200-ng/ $\mu$ L concentration of PAH internal standard by accurately weighing, to the nearest 0.001 mg, 1 mg of the pure material of acenaphthene $d_{10}$ , phenanthrene- $d_{10}$ , and chrysene- $d_{12}$  in a 5-mL volumetric flask and dilute to volume with toluene. Alternatively, the mixed stock may be obtained from commercial vendors. Transfer the stock standards to clean vials and store in a freezer. The stock standards are stable for about 6 months. 7.1.2 Stock surrogate (100 ng/ $\mu$ L)—Prepare a 100-ng/ $\mu$ L concentration of surrogate by accurately weighing, to the nearest 0.001 mg, 0.5 mg of diazinon- $d_{10}$  and *alpha*-HCH- $d_6$  in a 5-mL volumetric flask and dilute with toluene. Transfer the stock standard to clean vials and store in a refrigerator at 4°C ± 3°C. The stock standards are stable for about 6 months.

7.1.3 Stock standard (10,000  $ng/\mu L$ )—Prepare standards of pesticides and degradates of about 10,000  $ng/\mu L$  by accurately weighing, to the nearest 0.001 mg, 50 mg of the pure material in a 5-mL volumetric flask and dilute with ethyl acetate. Transfer the stock standards to clean vials and store in a refrigerator at 4°C ± 3°C. The stock standards for most compounds are stable for about 6 months.

7.2 *Primary combined fortification* standard (100-ng/ $\mu$ L)—The stock standard or standards are used to prepare two primary combined fortification standards that contain pesticides and degradates (there are too many analytes to include all parents and degradates in one solution). Alternatively, mixtures of the analytes may be obtained from commercial suppliers. Prepare a 100-ng/µL concentration primary combined fortification standard by combining appropriate volumes of the individual stock standard in a 10- or 5mL volumetric flask. Use adjustable micropipet (0–50 or 0–100  $\mu$ L) to dispense an appropriate volume into the volumetric flask and dilute with ethyl acetate. Transfer the primary combined fortification standard to a clean vial and store in a refrigerator. This standard is stable for about 6 months. Alternatively, the primary combined fortification standard can be purchased as a custom mixture from a commercial vendor.

7.3 Primary recovery standard (1 ng/ $\mu$ L): Prepare a primary recovery standard by diluting the primary combined fortification standards in 5-mL volumetric flasks with methanol. Store in a refrigerator at 4°C ± 3°C. Add a 100- $\mu$ L aliquot of this primary recovery standard to a 1-L water sample to obtain a concentration of 0.1  $\mu$ g/L for the method performance-evaluation studies.

7.4 Polycyclic aromatic hydrocarbon (PAH) internal standard ( $1 ng/\mu L$ ): Prepare a dilute solution of the PAH internal standard stock at 1 ng/ $\mu L$  with toluene. Transfer the PAH internal standard to a clean vial and store in a refrigerator. This standard is stable for about 6 months when refrigerated. A 100- $\mu L$  aliquot of this standard is added to every sample extract to quantify analyte concentrations.

7.5 Surrogate standard (1 ng/ $\mu$ L): Prepare a standard of diazinon- $d_{10}$  and *alpha*-HCH- $d_6$  from the stock standard in methanol at a concentration of 1 ng/ $\mu$ L. Store in a refrigerator at 4°C ± 3°C. A 100- $\mu$ L aliquot of this standard is added to every sample to monitor the extraction and sample preparation process.

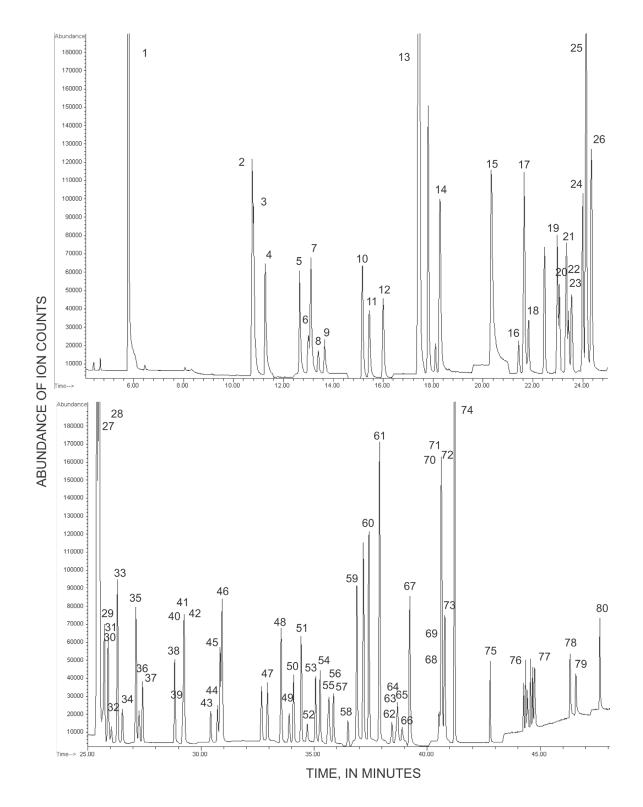
7.6 *Calibration standards:* Prepare a series of working calibration standards in toluene that contain all pesticides and degradates at concentrations ranging from 0.01 to 20.0 ng/ $\mu$ L, as well as the surrogate and the PAH internal standard at a constant concentration of 1.0 ng/ $\mu$ L. Prepare these calibration standards by appropriate dilutions of the 100-ng/ $\mu$ L primary combined fortification, and surrogate stock standards

in 5- or 10-mL volumetric flasks (refer to table 4). Alternatively, prepare serial dilutions of a 20-ng/ $\mu$ L calibration standard.

## 8. Gas Chromatograph/Mass Spectrometer Performance

8.1 Gas chromatograph performance evaluation

8.1.1 The gas chromatograph performance normally is indicated by peak shape and by the variation of the selectedcompound (pesticide or degradate) response factors relative to response factors obtained by using a new capillary column and freshly prepared calibration standards. An example of the separation and peak shape of the pesticides and degradates is shown in a total ion chromatogram of a 0.625-ng/µL standard (fig. 1). If peak shape deteriorates or if response factors fail to meet the calibration criteria, either change the injection liner or maintain the capillary column to bring the gas chromatograph into compliance. Part of the inlet end of the capillary column can be removed to restore performance. Specifically, a loss or gain in response greater than 30 percent for pesticides and degradates susceptible to loss on injection indicates a need for immediate action.


8.2 Mass spectrometer performance evaluation

8.2.1 Check the mass spectrometer prior to analysis for excessive water and air that would indicate leaks in the vacuum. If detected, locate and fix leaks. Also, check the instrument at the beginning of each series of analyses to ensure mass spectrometer performance according to the perfluorotributylamine (PFTBA) tuning

| Con                                                                             | т., шшшк, | μ <u>ξ</u> / μ, μπν |       | Concent           | Concentration of calibration standards | calibratio | n standa    | rds |                 |     |       |
|---------------------------------------------------------------------------------|-----------|---------------------|-------|-------------------|----------------------------------------|------------|-------------|-----|-----------------|-----|-------|
| Nominal concentration, in ng/µL                                                 | 0.019     | 0.039               | 0.078 | 0.156             | 0.312                                  | 0.625      | 0.625 1.25  | 2.5 | 5.0             | 10  | 20    |
| Volume of primary combined fortification standard (100 ng/ $\mu$ L), in $\mu$ L | 1.95      | 3.9                 | 7.8   | 15.6              | 15.6                                   | 31.2       | 62.5        | 125 | 250             | 500 | 1,000 |
| Volume of stock internal standard (200 ng/μL), in μL.                           | 50        | 50                  | 50    | 50                | 25                                     | 25         | 25          | 25  | 25              | 25  | 25    |
| Volume of stock surrogate standard (100 ng/μL), in μL                           | 100       | 100                 | 100   | 100               | 100                                    | 100        | 100         | 100 | 100             | 100 | 100   |
| Final volume of calibration standard, in mL                                     | 10        | 10                  | 10    | 10                | 5                                      | 5          | 5           | 5   | 5               | 5   | 5     |
| Equivalent concentration in water sample, in $\mu g/L^1$                        | 0.002     | 0.004               | 0.008 | 0.004 0.008 0.016 | 0.031                                  | 0.063      | 0.063 0.125 |     | 0.250 0.500 1.0 | 1.0 | 2.0   |

Table 4. Volumes of primary combined fortification, internal, and surrogate standards needed to prepare suggested concentrations of calibration

20 Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry



**Figure 1.** Selected ion chromatogram of pesticides and degradates in a 0.625-nanogram-per-microliter  $(ng/\mu L)$  standard. Numbers shown above each peak correspond to analytes listed in table 5.

criteria outlined in section 8.2.2. In addition, initially adjust the mass spectrometer to ensure that detection at the established reporting-level concentration for each selected compound can be achieved.

8.2.2 Verify the mass spectrometer tune prior to each analysis, and tune if necessary by using the procedure and standard software supplied by the manufacturer. Parameters in the tuning software are set to give  $\pm 0.15$  atomic mass unit resolution at masses 69, 219, and 414 in the spectrum of PFTBA. Manually adjust the resolution so that the mass 69 ion has 100percent relative abundance, mass 219 ion is 20- to 60- percent relative abundance, and mass 414 ion is 2- to 7-percent relative abundance. Check mass assignments to ensure accuracy to  $\pm 0.15$  atomic mass unit and that mass peak widths measured at onehalf the peak height are about  $0.5\pm0.15$ atomic mass unit. A complete quantitative recalibration with all analytes is needed if the mass spectrometer is re-tuned for mass or resolution.

8.2.3 *Mass spectrometer background interference*—Leaks of atmospheric air into the analyzer, or the presence of other compounds, might compromise instrument performance. Common air background and contaminant ions are 18, 28, 32, 40, and 44 atomic mass units. Check the air background and print the result before beginning an analytical *batch* (the group of samples whose data are evaluated by the quality-control samples associated with them).

#### 9. Calibration

9.1 *Initial calibration:* Eight of the eleven calibration standards listed in table 4 are recommended to calibrate over the expected analytical range of about 2 ng/L to 2  $\mu$ g/L.

The highest level standard selected will depend on the expected upper concentration range of samples.

9.2 Inject 1  $\mu$ L of each calibration standard into the GC/MS according to the GC/MS conditions described in section 4.3 and tabulate peak area response and concentration for each analyte and corresponding internal standard.

Isomers (*cis-*, *trans-*, Z/E)—Some of the compounds are resolved into two or more isomers, depending on the resolution of the chromatographic column. In the case of *c*and t-methyl-3-(2,2-dichlorovinyl)-2,2dimethyl-(1-cyclopropane)-carboxylate, Eand Z-dimethomorph, and cis- and transpropiconazole, the peak area of each isomer is used to calibrate independently, quantitate, and report each isomer separately. We assume that the stock standards contain equal amounts of each isomer. Other methods, for example, method 2060, report propiconazole rather than the individual cis- and transisomers, so in situations in which results from the different methods are compared, the sum of the cis- and trans-isomers should be calculated for comparison. For the pyrethroid compounds cypermethrin and cyfluthrin, which are resolved into 4 isomers, the peak areas for each isomer are summed and used for calibration and quantitation of the compound.

9.3 The GC/MS data-processing software uses standard regression techniques (Miller and Miller, 1993) to construct calibration equations and plot calibration curves for each analyte. The internal standard calibration technique is used, where regression of the area ratios  $(A_c/A_i)$  against the concentration ratios  $(C_c/C_i)$  is determined for each analyte after analysis of a series of the calibration standards:

- where  $A_c$  = area of the quantitation ion for the selected compound or surrogate compound;
  - $A_i$  = area of the quantitation ion for the internal standard;
  - $C_c$  = concentration of the selected compound or surrogate compound, in nanograms per microliter; and
  - $C_i$  = concentration of the internal standard, in nanograms per microliter.

The slope of the calibration curve is equivalent to the average response factor  $(RF_c)$  of the analyte relative to the internal standard. Zero should be included in the calibration curve, although the curve does not need to be forced through zero.

For most analytes, linear or quadratic regression equations provide the best fit to the data. For linear regression, the equation follows:

$$\frac{A_c}{A_i} = m \times \frac{C_c}{C_i} + b \quad , \tag{1}$$

where m = slope of the regression equation, and b = intercept of the regression equation.

Note that the quantitation ratio in equation 1 can be written as a mass ratio:

$$\frac{A_c}{A_i} = m \times \frac{M_c}{M_i} + b \quad , \tag{2}$$

where  $M_i$  = mass of the internal standard, in nanograms; and

> $M_{C}$  = mass of the selected compound or surrogate compound, in nanograms.

The quantitation ion and internal standard used in the calculation are listed in table 5.

9.4 Calculate the relative retention time  $(RRT_c)$  for each selected compound or surrogate compound in the calibration solution, as follows:

$$RRT_{\mathcal{C}} = \frac{RT_{\mathcal{C}}}{RT_{i}} \quad , \tag{3}$$

where  $RT_c$  = uncorrected retention time of the quantitation ion of the selected compound or surrogate compound, and  $RT_i$  = uncorrected retention time of the quantitation ion of the internal standard (acenaphthene- $d_{10}$ , phenanthrene- $d_{10}$ , or chrysene- $d_{12}$ ).

9.5 Verification of initial calibration: Analyze a solution prepared from standard materials from a source other than those used to prepare the initial calibration curve. Calculate the concentration from the calibration curve. The calculated concentration should be within 20 percent of its true value. This step verifies the validity of the calibration standard materials and the calibration curve prior to sample analysis.

# 10. Procedure

10.1 Weighing SPE columns: Weigh the SPE columns ( $\pm 0.0001$  g) and record the weight on the column with waterproof ink.

**NOTE:** Recording the weight on the SPE columns helps to determine when the columns are dry after extraction and drying steps.

Table 5. Retention time, quantitation ion, and confirmation ions for analytes, surrogates, and internal standards, and selected ion-monitoring group and internal standard for analytes and surrogates [Analytes sorted by retention time. No., compound number shown in figure 1; Rank, national pesticide-use rank of analyte; P-Code, National Water Information System parameter code; Approx., approximate; m/z, mass per unit charge; SIM group, selected-ion monitoring group; IS, internal standard used for quantitation: 1, Acenaphthene-d<sub>10</sub>; 2, Phenanthrene-d<sub>10</sub>; 3, Chrysene-d<sub>10</sub>; -., not applicable; -, not analyzed] I

1

|                                       | ខ                                     |                    | 1                      | 7                      | б                  |            | 7                        | 7                           |          | 1                    | 1                    | 1          | 1                    | 1                    | 1                    | 1                   | 1                    | 1                    | 1                   | 1                  | 1                   | 1          | 1                    | 7            | 7                    | 7        |
|---------------------------------------|---------------------------------------|--------------------|------------------------|------------------------|--------------------|------------|--------------------------|-----------------------------|----------|----------------------|----------------------|------------|----------------------|----------------------|----------------------|---------------------|----------------------|----------------------|---------------------|--------------------|---------------------|------------|----------------------|--------------|----------------------|----------|
|                                       | SIM<br>group                          |                    | ł                      | ł                      | ł                  |            | 15                       | 15                          |          | 1                    | 0                    | 7          | 7                    | 4                    | 4                    | 4                   | 5                    | S                    | 9                   | 9                  | 9                   | 8          | 6                    | 10           | 10                   | 10       |
| [nar finnin                           | 4th<br>monitored<br>ion<br>(m/z)      |                    | Ι                      | Ι                      | Ι                  |            | Ι                        | Ι                           |          | 160                  | 136                  | 187        | 144                  | 129                  | 153                  | 165                 | 189                  | 189                  | 165                 | 130                | 165                 | Ι          | 193                  | 170          | I                    | I        |
| , , , , , , , , , , , , , , , , , , , | 3rd<br>monitored<br>ion<br>(m/z)      |                    | Ι                      | Ι                      | I                  |            | 226                      | 183                         |          | 142                  | 135                  | 145        | 107                  | 128                  | 125                  | 163                 | 165                  | 165                  | 163                 | 104                | 163                 | 116        | 163                  | 156          | 178                  | 215      |
| 17, , mor app                         | 2d<br>monitored<br>ion<br>(m/z)       |                    | I                      | Ι                      | Ι                  |            | 222                      | 153                         |          | 114                  | 121                  | 185        | 77                   | 124                  | 97                   | 126                 | 163                  | 163                  | 126                 | 102                | 126                 | 115        | 133                  | 143          | 119                  | 155      |
| , em jeene 4                          | Quan-<br>titation<br>ion<br>(m/z)     |                    | 162                    | 188                    | 240                |            | 224                      | 183                         |          | 161                  | 120                  | 109        | 142                  | 156                  | 212                  | 161                 | 187                  | 187                  | 161                 | 158                | 161                 | 144        | 162                  | 171          | 120                  | 154      |
| 601                                   | Approx.<br>retention<br>time<br>(min) |                    | 17.419                 | 25.484                 | 40.627             |            | 23.341                   | 26.305                      |          | 5.784                | 10.750               | 10.805     | 11.275               | 12.652               | 13.014               | 13.100              | 13.409               | 13.650               | 15.162              | 15.440             | 15.994              | 18.281     | 20.332               | 21.435       | 21.651               | 21.822   |
|                                       | Short name                            | Internal Standards | Acenaphthene- $d_{10}$ | Phenanthrene- $d_{10}$ | Chrysene- $d_{12}$ | Surrogates | alpha-HCH-d <sub>6</sub> | Diazinon- $d_{10}$ , _ogate | Analytes | 3-Trifluoromet_iline | 2-Ethyl-6-meth_iline | Dichlorvos | 4-Chloro-2-met_henol | O-Ethyl-O-meth_ioate | Disulfoton sulfoxide | 2,5-Dichloroaniline | c-Methyl-3-(2,_ylate | t-Methyl-3-(2,_ylate | 3,5-Dichloroaniline | 1,4-Naphthaquinone | 3,4-Dichloroaniline | 1-Naphthol | 2-[2-Ethyl-6-m_panol | Phorate oxon | 2-Amino-N-isop_amide | Cycloate |
|                                       | P-Code                                |                    | ł                      | ł                      | ł                  |            |                          | 99223                       |          | 61630                | 61620                |            |                      | 61660                |                      |                     |                      | 79843                |                     | 61611              |                     | 49295      | 61615                | 61666        |                      | 04031    |
| -                                     | Rank                                  |                    | ł                      | ł                      | ł                  |            | 1                        | ł                           |          | 1024                 | 1002                 | 1153       | 1015                 | 1124                 | 1067                 | 1099                | 1044                 | 1044                 | 1093                | 1032               | 1033                | 1032       | 1002                 | 1034         | 1013                 | 128      |
|                                       | No.                                   |                    | 13                     | 28                     | 70                 |            | 21                       | 33                          |          | 1                    | 7                    | ς          | 4                    | 5                    | 9                    | 7                   | 8                    | 6                    | 10                  | 11                 | 12                  | 14         | 15                   | 16           | 17                   | 18       |

#### 24 Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

| σ                                                                                                                                                                   |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| quantitation ion, and confirmation ions for analytes, surrogates, and internal standards, and selected<br>I internal standard for analytes and surrogates—Continued |              |
| and                                                                                                                                                                 | •            |
| dards,                                                                                                                                                              | 2d 3rd 4th   |
| stan                                                                                                                                                                |              |
| nal                                                                                                                                                                 | -            |
| inter                                                                                                                                                               | 3ro          |
| ipue                                                                                                                                                                |              |
| es, s                                                                                                                                                               | _            |
| ogat<br>ed                                                                                                                                                          | 20           |
| surr<br>tinue                                                                                                                                                       |              |
| quantitation ion, and confirmation ions for analytes, surrog internal standard for analytes and surrogates—Continued                                                | -ue          |
| es—                                                                                                                                                                 | Approx. Quai |
| for a<br>ogate                                                                                                                                                      |              |
| surro                                                                                                                                                               | Approx.      |
| on io<br>and s                                                                                                                                                      | App          |
| mati<br>tes a                                                                                                                                                       |              |
| onfir<br>naly                                                                                                                                                       |              |
| or a<br>or a                                                                                                                                                        |              |
| n, ai<br>ard f                                                                                                                                                      |              |
| on io<br>and                                                                                                                                                        |              |
| itatic<br>al st                                                                                                                                                     |              |
| uant<br>itern                                                                                                                                                       |              |
|                                                                                                                                                                     |              |
| n time,<br>up and                                                                                                                                                   |              |
| gro                                                                                                                                                                 |              |
| <b>ble 5.</b> Retention time<br>I-monitoring group and                                                                                                              |              |
| <b>5.</b> Fonitc                                                                                                                                                    |              |
| able                                                                                                                                                                |              |

| No. | Rank | P-Code | Short name               | Approx.<br>rentention<br>time | Quan-<br>titation<br>ion | 2d<br>monitored<br>ion | ed    | 4th<br>monitored<br>ion | SIM<br>group | <u>s</u> |
|-----|------|--------|--------------------------|-------------------------------|--------------------------|------------------------|-------|-------------------------|--------------|----------|
| 19  | 83   | 38454  | Dicrotonhos              | (uin)                         | (m/z)                    | (m/z)                  | (m/z) | (m/z)                   | 11           | C        |
| 20  | 1076 | 61671  | Tefluthrin met 93641     | 23 065                        | 181                      | 141                    | 197   | I                       | : 1          | 10       |
| 22  | 230  | 61605  | Sulfoten                 | 23.444                        | 322                      | 193                    | 202   | 145                     | 11           | 1 0      |
| 23  | 1054 | 61649  | Fonofos, oxyge nalog     | 23.565                        | 230                      | 93                     | 109   |                         | 11           | 10       |
| 24  | 1007 | 61618  | 2-Chloro-2,6-d ilide     | 24.001                        | 176                      | 147                    | 177   | I                       | 12           | 7        |
| 25  | 1105 | 61634  | 4-Chlorobenzyl Ifone     | 24.125                        | 89                       | 125                    | 127   | I                       | 12           | 0        |
| 26  | 28   | 82662  | Dimethoate               | 24.341                        | 93                       | 87                     | 125   | 229                     | 12           | 0        |
| 27  | 1076 | 61672  | Tefluthrin met_2912]     | 25.401                        | 91                       | 92                     | 197   | 141                     | 13           | 0        |
| 29  | 220  | 04022  | Terbuthylazine           | 25.722                        | 173                      | 138                    | 214   | 231                     | 14           | 0        |
| 30  | 229  | 61604  | Propetamphos             | 25.895                        | 138                      | 194                    | 222   | 236                     | 14           | 0        |
| 31  | 1043 | 61629  | 3-Phenoxybenzy_cohol     | 25.895                        | 200                      | 171                    | 181   | 201                     | 14           | 0        |
| 32  | 1231 | 61669  | Tebupirimphos, logue     | 26.050                        | 245                      | 190                    | 217   | 260                     | 14           | 0        |
| 34  | 1014 | 61664  | Paraoxon-methyl          | 26.520                        | 109                      | 200                    | 230   | 247                     | 15           | 7        |
| 35  | 76   | 61606  | Tefluthrin               | 27.122                        | 177                      | 141                    | 178   | 197                     | 15           | 7        |
| 36  | 1071 | 61642  | Endosulfan ether         | 27.251                        | 170                      | 239                    | 193   | 277                     | 15           | 0        |
| 37  | 231  | 61602  | Tebupirimphos            | 27.411                        | 234                      | 137                    | 152   | 261                     | 15           | 7        |
| 38  | 1060 | 61652  | Malaoxon                 | 28.841                        | 127                      | 142                    | 173   | 195                     | 16           | 7        |
| 39  | 1062 | 61637  | 2-(4-tert-buty_xanol     | 29.192                        | 135                      | 136                    | 150   | 248                     | 16           | 0        |
| 40  | 1049 | 61663  | Paraoxon-ethyl           | 29.240                        | 109                      | 139                    | 220   | 275                     | 16           | 7        |
| 41  | 63   | 04036  | Prometryn                | 29.256                        | 241                      | 184                    | 226   | 199                     | 16           | 7        |
| 42  | 75   | 61596  | Metalaxyl                | 29.256                        | 206                      | 220                    | 146   | 160                     | 16           | 7        |
| 43  | 1016 | 61674  | Terbufos-O-ana_lfone     | 30.440                        | 183                      | 109                    | 139   | 184                     | 17           | 7        |
| 44  | 1012 | 61636  | Chlorpyrifos, nalog      | 30.733                        | 197                      | 109                    | 169   | 199                     | 17           | 0        |
| 45  | 227  | 38801  | Fenthion                 | 30.854                        | 278                      | 109                    | 125   | 169                     | 17           | 0        |
| 46  | 1101 | 61631  | 4,4'-Dichlorob_enone     | 30.923                        | 139                      | 141                    | 250   | 252                     | 17           | 7        |
| 47  | 228  | 61594  | Isofenphos               | 32.942                        | 213                      | 121                    | 185   | 255                     | 18           | ε        |
| 48  | 132  | 61598  | Methidathion             | 33.543                        | 85                       | 93                     | 125   | 145                     | 19           | Э        |
| 49  | 71   | 34362  | <i>alpha</i> -Endosulfan | 33.896                        | 195                      | 159                    | 170   | 197                     | 19           | Ć        |
|     |      |        |                          |                               |                          |                        |       |                         | •            | •        |

| e, quantitation ion, and confirmation ions for analytes, surrogates, and internal standards, and selected | atesContinued                                          |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| ons for a                                                                                                 | surrogat                                               |
| nd confirmation ic                                                                                        | d internal standard for analytes and surrogates—Contii |
| ion, ar                                                                                                   | ndard f                                                |
| quantitation                                                                                              | internal staı                                          |
| Retention time,                                                                                           | itoring group and                                      |
| Table 5.                                                                                                  | ion-monit                                              |

|     |      |        |                         | Approx.<br>rentention | Quan-<br>titation | 2d<br>monitored | 3rd<br>monitored | 4th<br>monitored | MIS   |          |
|-----|------|--------|-------------------------|-----------------------|-------------------|-----------------|------------------|------------------|-------|----------|
| No. | Rank | P-Code | Short name              | time<br>(min)         | ion<br>(m/z)      | ion<br>(m/z)    | ion<br>(m/z)     | ion<br>(m/z)     | group | <u>N</u> |
| 51  | 225  | 61592  | Flumetralin             | 34.426                | 143               | 145             | 157              | 159              | 20    | ŝ        |
| 52  | 126  | 61591  | Fenamiphos              | 34.687                | 154               | 153             | 217              | 303              | 21    | ŝ        |
| 53  | 69   | 61603  | Profenofos              | 35.068                | 208               | 97              | 179              | 206              | 21    | ς        |
| 54  | 30   | 61610  | Tribuphos               | 35.261                | 169               | 170             | 171              | 202              | 21    | ŝ        |
| 55  | 121  | 61599  | Myclobutanil            | 35.610                | 179               | 125             | 181              | 206              | 22    | ŝ        |
| 56  | 1134 | 61644  | Ethion monoxon          | 35.851                | 171               | 97              | 125              | 215              | 22    | ς        |
| 57  | 106  | 61600  | Oxyfluorfen             | 35.867                | 252               | 195             | 300              | 361              | 22    | б        |
| 58  | 71   | 34357  | <i>beta</i> -Endosulfan | 36.495                | 195               | 159             | 170              | 197              | 23    | Э        |
| 59  | 1227 | 61647  | Fenthion sulfoxide      | 36.884                | 125               | 109             | 153              | 279              | 24    | ŝ        |
| 60  | 134  | 82346  | Ethion                  | 37.429                | 231               | 67              | 125              | 153              | 24    | ŝ        |
| 61  | 115  | 38716  | Sulprofos               | 37.887                | 156               | 139             | 140              | 322              | 25    | Э        |
| 62  | 1071 | 61590  | Endosulfan sulfate      | 38.440                | 272               | 229             | 237              | 274              | 26    | Э        |
| 63  | 108  | 79846  | cis-Propiconazole       | 38.613                | 173               | 175             | 259              | 261              | 27    | ς        |
| 64  | 1125 | 61668  | Phosmet oxon            | 38.681                | 160               | 161             | 133              | 268              | 27    | С        |
| 65  | 1008 | 61665  | 4-(Hydroxymeth_halin    | 38.716                | 268               | 178             | 269              | 297              | 27    | e        |
| 99  | 110  | 79847  | trans-Propiconazole     | 38.888                | 173               | 175             | 259              | 261              | 27    | ŝ        |
| 67  | 127  | 04025  | Hexazinone              | 39.226                | 171               | 83              | 128              | 172              | 28    | e        |
| 68  | 1126 | 61646  | Fenamiphos sulfoxide    | 40.524                | 304               | 122             | 303              | I                | 29    | ς        |
| 69  | 1053 | 61635  | Azinphos-methyl-oxon    | 40.524                | 132               | 77              | 160              | Ι                | 29    | ŝ        |
| 71  | 93   | 61593  | Iprodione               | 40.644                | 187               | 189             | 244              | 246              | 24    | ŝ        |
| 72  | 1126 | 61645  | Fenamiphos sulfone      | 40.747                | 320               | 122             | 292              | Ι                | 29    | ε        |
| 73  | 125  | 61601  | Phosmet                 | 40.765                | 93                | 77              | 160              | Ι                | 29    | ŝ        |
| 74  | 131  | 61580  | Bifenthrin              | 41.209                | 181               | 165             | 166              | 182              | 30    | e        |
| 75  | 102  | 61595  | Cyhalothrin             | 42.780                | 181               | 141             | 197              | 199              | 31    | e        |
| 76  | 129  | 61585  | Cyfluthrin              | 44.388                | 163               | 165             | 199              | 226              | 32    | ε        |
| LL  | 114  | 61586  | Cypermethrin            | 44.709                | 163               | 165             | 181              | I                | 32    | ŝ        |
| 78  | 211  | 79844  | (E)-Dimethomorph        | 46.318                | 301               | 165             | 166              | 303              | 33    | c        |
| 79  | 212  | 79845  | (Z)-Dimethomorph        | 46.564                | 301               | 165             | 166              | 303              | 33    | e        |
| 80  | 737  | 61607  | Temenhos                | 869 21                | 175               | 202             | 106              |                  | 77    | "        |

# 26 Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

10.2 *Precleaning SPE columns:* Columns are precleaned prior to use by using a vacuum pump (manual procedure) or the Zymark BenchMate II Workstation (automated procedure).

# 10.2.1 Manual procedure

Preclean the SPE columns by rinsing with 3 mL of the elution solvent (ethyl acetate). Allow the solvent to drain by gravity, then completely remove all solvent from the column by either nitrogen positive pressure or vacuum. Store the cleaned columns in 40-mL glass vials or in a desiccator at room temperature.

# 10.2.2 Automated procedure

If using the BenchMate II Workstation, place columns on the rack with culture tube and fitting (clean in lots of 100 if possible). Program the workstation to rinse the lines with ethyl acetate, then sequentially pump 3 mL ethyl acetate through each column and dry the column with nitrogen. Store the cleaned columns at room temperature in closed 40-mL glass vials or in a desiccator to minimize sorption of contaminants from the laboratory environment.

10.3 *Precleaning extraction apparatus:* Set up the SPE pumping apparatus. Use a 50mL glass graduated cylinder to contain the cleaning solutions and prevent contamination of the inlet tubing. Rinse the Teflon-PFA tubing and pump with about 50 mL of detergent solution, followed by about 200 mL of tap water and 50 mL of methanol. Turn on the pump and adjust the flow rate of the pump to between 20 to 25 mL/min by using a graduated cylinder to measure the volume through the SPE column. Ensure that there are no leaks in any of the fittings. Keep the clean inlet tubing of the pump in the clean glass cylinder to avoid contamination of the tubing while preparing the sample and SPE column. For longer storage, wrap the tubing in aluminum foil.

If using the automated AutoTrace procedure, rinse the Teflon-PFA tubing and pump with about 50 mL of cleaning solution of isopropanol: methylene chloride: toluene (7:2:1), followed by about 50 mL of methanol and 100 mL of distilled water.

10.4 SPE column conditioning: Immediately before sample extraction, add 3 mL of methanol to the SPE column and allow the methanol to drain partially through the column by gravity. An optional Luer flow-control valve attached to the male Luer fitting of the SPE column can be used to control the flow of fluids through the SPE column. Conditioning is needed to solvate the C-18 phase attached to the silica particles in the SPE column to ensure maximum interaction of the C-18 phase with the sample.

**NOTE:** Do not allow the columns to go dry once conditioning and equilibration have started. If the fluid level drops below the upper frit of the SPE column, air will enter the SPE column bed and might prevent exposure of the water sample to the SPE C-18 phase. Maintain levels of fluids by adding additional fluid or by closing Luer fittings or flow-control valves. If the column does go dry, repeat the conditioning process with methanol followed by water.

10.5 *SPE column equilibration:* Drain the methanol to the upper frit of the SPE column. Add 3 to 6 mL of pesticide-grade water and allow the water and residual methanol to drain by gravity through the column to the upper frit. About 5 minutes is required for each column volume of the methanol and water to drip through the column.

10.6 Sample preparation: Water samples must have been previously filtered (Sandstrom, 1995). Weigh the sample and bottle ( $W_s$ ) and record the gross sample weight ( $\pm 1$  g). Add methanol to the sample equivalent to 1 percent of the sample volume (about 9 mL) as a conditioner, and record the sample weight ( $W_m$ ). Add a 100-µL aliquot of the surrogate solution (1 ng/µL; section 7.5) by using a micropipet with a clean disposable glass bore for each sample. (This step should result in a concentration of 0.1 µg/L for the surrogates in a 1-L sample.) Cap and gently swirl the sample in the bottle to mix thoroughly.

**NOTE:** Allow surrogate and fortified standards to come to room temperature before adding to samples.

10.7 Sample extraction: Weigh and record the weight  $(W_c)$  of a 1,000-mL plastic beaker (or similar container) that will be used to collect the volume of sample processed through the column. Place the inlet end of the Teflon-PFA tubing into the sample container, making sure that the tubing end is positioned in the lowest spot of the bottle, and turn on the pump. After all air is displaced from the tubing, attach the SPE column to the outlet fitting of the pump tubing, and collect the sample that is pumped through the column. Ensure that there are no leaks or sources of bubbles in the system. Small bubbles might form as the sample is pumped through the tubing, but they will not cause any problems if they accumulate in the pump head. Large air bubbles are a problem because they can displace the methanol conditioner in the column or cause uneven flow.

**NOTE:** To avoid contaminating the sample, do not handle the outside of the clean section of tubing that is placed in the sample bottle.

Wrap the clean tube in aluminum foil, or insert into 0.5-mm ID Teflon-PFA tubing when not in use. A piece of tape attached to the top of the tubing indicates which section of the tubing can be handled and which section is clean and will be in contact with the sample.

Pump the entire sample through the SPE column at a flow rate of between 20 to 25 mL/min. and turn off the pump when completed. Disconnect the column from the pump system, and remove residual interstitial water with a positive air pressure using a syringe with a Luer fitting and short length of silicone tubing to connect the Luer fitting to the open end of the SPE column. Weigh the extracted water sample, and record the final weight  $(W_a)$  of the sample processed through the column and the collection container. Discard the extracted sample according to appropriate waste-disposal practices, weigh the empty sample bottle, and record the tare weight (W<sub>b</sub>).

10.8 *SPE pump cleaning:* Clean the pump and Teflon-PFA tubing with detergent solution, tap water, and methanol (or other solvent mixture) to prepare for the next sample.

SPE column drying: All SPE 10.9 columns are dried in the laboratory prior to elution. Attach a universal adapter to the large, open end of the SPE column. Next attach the adapter to the male Luer fitting on the gas-pressure module of the SPE vacuum manifold, and then dry the column using a positive pressure (138 kPa for 20 minutes) of nitrogen to remove all interstitial water. Verify that all water is removed from the column by periodically weighing the column and comparing the weight to the preextraction weight. Store dry columns in a desiccator (no longer than 7 days) until elution.

**NOTE:** Do not dry the column for excessive periods. Pesticides and degradates might evaporate and be removed in the gas phase.

10.10 Elution of compounds: Label a 16- by 100-mm culture tube with sample identification and place in a holding rack. Add 100 µL of the PAH internal standard (1  $ng/\mu L$ ; section 7.4) to the culture tube using a micropipet or syringe. Place the dried SPE columns in the appropriate culture tube. The open end of the SPE column should rest on the edge of the culture tube to keep the male Luer end of the SPE column raised a few centimeters above the bottom of the culture tube. Add 2 mL of ethyl acetate to the SPE column, and allow the solvent to drain by gravity into the culture tube (about 15–20 minutes). Air pressure (with a 50-mL glass syringe) can be used to gently force interstitial solvent that remains in the column into the vial.

10.11 Evaporation of solvent: Preheat the TurboVap evaporator water bath to 30°C, and adjust the gas pressure to 28 kPa. Place culture tubes in the TurboVap evaporator for about 15 minutes to concentrate the eluant to about 100  $\mu$ L under a gentle stream of nitrogen. Periodically check the sample volumes. At no time should the eluant be allowed to evaporate completely because this will result in loss of compounds.

10.12 *Transfer to vials:* Use a baked disposable glass Pasteur pipet to withdraw eluant, and transfer eluant to an appropriately labeled GC vial that contains a 400-μL insert for GC/MS analysis.

**NOTE:** A glass syringe fitted with a short length of silicone tubing to attach the glass Pasteur pipet is the preferred equipment for withdrawing eluant into the pipet. Solvent vapors in contact with rubber or latex pipet bulbs might contaminate the eluant with plasticizers. Rinse the culture tube with about 150 to 200  $\mu$ L of toluene using a syringe to dispense the solvent, and take care not to allow the tip of the syringe to contact the walls of the culture tube. If the tip does contact the culture tube, rinse with solvent. Vortex the culture tube, ensuring the solvent reaches the height of the original 2-mL solvent volume. Transfer the toluene rinse into the GC vial insert. A 200- to 300- $\mu$ L volume of extract should fill about half the volume of the glass insert. Cap the GC vial, and refrigerate until GC/MS analysis is performed.

**NOTE:** Use of a pipet or squeeze bottle to rinse the culture tube is not good practice because this might result in excess solvent and require additional evaporation to obtain the desired final volume of about 200 to  $300 \ \mu$ L.

10.13 Sample analysis and data evaluation: Ensure that GC/MS conditions for the analysis of the selected compounds in sample extracts are the same as those used in the analysis of the calibration standards. Prior to the analysis of any sample extracts, ensure that the PFTBA mass-spectral performance criteria have been met, and that the selectedcompound calibration data conform to the criteria set forth above. In addition, optimize the system so that the reporting level for each selected compound can be achieved as described in section 8.2. Inject 1 µL of the sample extract, and acquire data using the GC/MS conditions described in sections 4.4 and 9.

## 11. Calculation of Results

#### 11.1 Qualitative identification

11.1.1 The observed retention time of the GC peak of the quantitation ion for the selected compound of interest needs to be within  $\pm 6$  seconds of the expected retention time (*RT*) based on the *RRT<sub>C</sub>*  obtained from the internal-standard analysis (eq. 3). The expected retention time is calculated as follows:

$$RT = RRT_{\mathcal{C}} \times RT_{i} \quad , \tag{4}$$

- where *RT* = expected retention time of the selected compound or surrogate compound in the sample;
  - $RRT_{C}$  = relative retention time of the selected compound or surrogate compound from the calibration standards; and
  - $RT_i$  = uncorrected retention time of the quantitation ion of the internal standard in the sample.

11.1.2 Mass-spectral ions are verified for each selected compound by comparing the relative integrated abundance values of the three or four significant ions monitored with the relative integrated abundance values obtained from calibration solutions determined by the GC/MS according to procedures previously given. The relative ratios of the three or four ions need to be within  $\pm 20$  percent of the relative ratios of those obtained on injection of a 1-ng/mL calibration solution in the absence of any obvious interferences.

11.2 Quantitation

11.2.1 Calculate the weight of sample processed as follows:

$$W = (W_a - W_c) \times \frac{W_s - W_b}{W_m - W_b} \quad , \tag{5}$$

- where W = weight of sample, in grams;
  - $W_a$  = weight of sample and collection container after SPE, in grams;
  - $W_c$  = weight of container used to collect sample that passes through SPE column, in grams;
  - $W_S$  = weight of bottle and sample, in grams;
  - $W_b$  = weight of empty sample bottle, in grams; and
  - $W_m$  = weight of sample, methanol, and bottle, in grams.

11.2.2 If a selected compound has passed the aforementioned qualitative identification criteria, the GC/MS dataprocessing software is used to calculate the total mass of the analyte from the calibration equations determined in section 9.3. For linear regression, the calibration equation is as follows:

$$M_{c} = \frac{M_{i}}{m} \times \left(\frac{A_{c}}{A_{i}} - b\right) \quad , \tag{6}$$

- where  $M_c$  = mass of the selected compound or surrogate compound in the sample, in micrograms;
  - $M_i$  = mass of the internal standard added to extract, in micrograms;
  - m = slope of regression equation;
  - $A_c$  = area of the quantitation ion for the selected compound or surrogate compound identified in the sample;
  - $A_i$  = area of the quantitation ion for the internal standard in the sample; and
  - b = intercept of regression equation.

The mass of the internal standard added is calculated as follows:

$$M_i = C_i \times V_i \quad , \tag{7}$$

- where  $M_i$  = mass of the internal standard added to extract, in micrograms;
  - $C_i$  = concentration of the internal standard added to extract, in nanograms per liter; and
  - $V_i$  = volume of the internal standard (section 7.4) added to extract, in microliters.

The concentration of the analyte in the sample is calculated as follows:

$$C_{\mathcal{C}} = \frac{M_{\mathcal{C}}}{W} \quad , \tag{8}$$

where  $C_c$  = concentration of compound, in micrograms per liter;

 $M_c$  = mass of the compound, in mircrograms; and

W = volume of the sample, in liters (assume 1.0 g = 1.0 mL).

11.2.3 The percent recovery of the surrogate compounds is calculated as follows:

$$R = \left[\frac{M_{\mathcal{C}}}{C_S \times V_S}\right] \times 100 \quad , \tag{9}$$

where R = recovery of the surrogate compound, in percent;

 $M_c$  = mass of the surrogate in the sample, in micrograms (from eq. 6);  $C_s$  = concentration of the surrogate compound in the surrogate standard (section 7.5) added to the sample, in micrograms per microliter; and

 $V_s$  = volume of the surrogate standard added to the sample, in microliters.

#### 12. Reporting of Results

This method was designed for use in studies of pesticide concentrations in water in a variety of seasons and land-use settings for which the best possible information about the presence and concentration of a pesticide in filtered water is needed. Consequently, results are not censored at a low reporting limit for detected pesticides. Results calculated to be less than the lowest calibration standard (equivalent to 0.002  $\mu$ g/L in a water sample for most compounds; table 4) are qualified as "estimated" (E) to signify the lower confidence in the extrapolated concentrations.

Concentrations of pesticides are reported to the NWIS data base as follows. If the pesticide is not detected, the result is reported as less than the laboratory reporting level (LRL) (for example, <0.002). If the concentration is within the calibration range, the result is reported to three significant figures. If the concentration is less than the LRL or lowest calibration standard, the concentration is reported to two significant figures, and is labelled with the estimated "E" remark to signify the lower confidence in the extrapolated concentration. Similarly, if the concentration is greater than the highest concentration standard, the concentration is reported to two significant figures and the "E" code is used. Other situations in which the "E" qualifier is used

include when the **continuing calibration verification** (CCV) standard is outside of expected limits and the set is not reanalyzed, or any time the analyst feels the quantitation might not be accurate.

### FINAL METHOD VALIDATION

Analytes that passed both initial GC/MS and SPE validation experiments were used in additional quantitative validation studies of bias and variability in three water types (pesticide-grade water, surface water, and ground water) at two nominal concentrations (0.10 and 1.0  $\mu$ g/L), and at a low concentration (0.015 to 0.10  $\mu$ g/L) to determine initial MDLs. In addition, holdingtime experiments on the SPE column and in water were conducted.

A reagent-water sample, a surface-water sample collected from Boulder Creek near 75<sup>th</sup> Street, Boulder, Colo., and a groundwater sample collected from a monitor well near the wastewater-treatment plant in Denver, Colo., were used to test method performance. The reagent-water sample was split into four sets of eight subsamples each. One set of eight subsamples was fortified with  $0.10 \mu g/L$  of each parent analyte, and the other set of eight subsamples was fortified with 1.0  $\mu$ g/L of each parent analyte. The other two sets of eight subsamples were fortified with 0.10 and 1.0  $\mu$ g/L of each degradate, respectively. Parent pesticides were analyzed separately from degradates to assess formation of degradates during sample processing and analysis.

Each of the surface- and ground-water samples was split into 17 1-L subsamples. One set of eight subsamples was fortified with  $0.10 \ \mu g/L$  of each analyte, and the other set of eight subsamples was fortified with 1.0 µg/L of each analyte. In addition, unfortified samples of the surface water and ground water were extracted and analyzed to determine background concentrations of the pesticides. All subsamples were analyzed at the National Water Quality Laboratory using one GC/MS. Each sample set was fortified, extracted, and analyzed on different days during June–July 1999, so comparison of different matrices and concentrations includes bias from day-to-day variation. The surfaceand ground-water samples did not require correction for background concentrations of analytes because no analytes were detected in either unfortified sample. Summaries of recovery and variability of the analyses are provided in tables 6 through 9.

The percent recovery of the analytes is calculated as follows:

$$R = \frac{(C_s - C_u)}{C_n} \times 100 \quad , \tag{10}$$

- where R = recovery of the pesticide or pesticide degradate, in percent;
  - $C_S$  = measured concentration in the fortified sample, in micrograms per liter;
  - $C_u$  = measured concentration in the unfortified sample, in micrograms per liter (use 0 for reagent-water sample); and
  - $C_n$  = nominal (theoretical) concentration increase that results from fortifying the sample, in micrograms per liter.

Table 6. Bias and variability data from eight reagent-water samples fortified with parent pesticide analytes at high (1.0 microgram per liter) and low (0.1 microgram per liter) concentrations

application and use rank of pesticide; P-Code, National Water Information System parameter code; µg/L, microgram per liter; F-pseu, F-pseudosigma (interquartile range/1.349); Rel F-pseu, relative F-pseudosigma; -, not applicable; --, not analyzed; E, estimated remark code] corresponding parent pesticide during sample preparation or analysis. Recovery of degradate based on expected concentration of parent pesticide. Rank, national [Analytes are separated into parent pesticides and degradates and sorted by remark code and then by rank. Presence of degradate indicates breakdown of

|      |             |                          |                           | Ŧ                | High                            |                            |                           |                  | Low                             |                            |                |
|------|-------------|--------------------------|---------------------------|------------------|---------------------------------|----------------------------|---------------------------|------------------|---------------------------------|----------------------------|----------------|
| Rank | Rank P-Code | Short name               | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Remark<br>code |
|      |             | <b>Parent</b> pesticides | )                         |                  |                                 |                            |                           |                  |                                 |                            |                |
| 63   | 04036       | Prometryn                | 0.950                     | 0.0379           | 95.0                            | 4.0                        | 0.0838                    | 0.0034           | 83.8                            | 4.1                        | I              |
| 69   | 61603       | Profenofos               | 0.680                     | 0.0184           | 68.0                            | 2.7                        | 0.0671                    | 0.0035           | 67.1                            | 5.2                        | I              |
| 71   | 34362       | <i>alpha</i> -Endosulfan | 0.799                     | 0.0123           | 79.9                            | 1.5                        | 0.0799                    | 0.0026           | 79.9                            | 3.2                        | I              |
| 75   | 61596       | Metalaxyl                | 0.934                     | 0.0426           | 93.4                            | 4.6                        | 0.0858                    | 0.0033           | 85.8                            | 3.9                        | I              |
| 106  | 61600       | Oxyfluorfen              | 0.538                     | 0.0485           | 53.8                            | 9.0                        | 0.0527                    | 0.0042           | 52.7                            | 7.9                        | Ι              |
| 108  | 79846       | cis-Propiconazole        | 0.673                     | 0.0127           | 67.3                            | 1.9                        | 0.0696                    | 0.0020           | 69.6                            | 2.8                        | I              |
| 110  | 79847       | trans-Propiconazole      | 0.714                     | 0.0085           | 71.4                            | 1.2                        | 0.0697                    | 0.0034           | 69.7                            | 4.8                        | I              |
| 121  | 61599       | Myclobutanil             | 0.784                     | 0.0136           | 78.4                            | 1.7                        | 0.0663                    | 0.0033           | 66.3                            | 5.0                        | I              |
| 126  | 61591       | Fenamiphos               | 0.572                     | 0.0192           | 57.2                            | 3.4                        | 0.0724                    | 0.0023           | 72.4                            | 3.1                        | I              |
| 127  | 04025       | Hexazinone               | 0.578                     | 0.0261           | 57.8                            | 4.5                        | 0.0515                    | 0.0013           | 51.5                            | 2.6                        | Ι              |
| 128  | 04031       | Cycloate                 | 0.829                     | 0.0155           | 82.9                            | 1.9                        | 0.0803                    | 0.0029           | 80.3                            | 3.7                        | I              |
| 132  | 61598       | Methidathion             | 0.795                     | 0.0189           | 79.5                            | 2.4                        | 0.0716                    | 0.0018           | 71.6                            | 2.5                        | I              |
| 134  | 82346       | Ethion                   | 0.627                     | 0.0344           | 62.7                            | 5.5                        | 0.0503                    | 0.0015           | 50.3                            | 3.0                        | I              |
| 211  | 79844       | (E)-Dimethomorph         | 0.698                     | 0.0119           | 69.8                            | 1.7                        | 0.0811                    | 0.0044           | 81.1                            | 5.4                        | I              |
| 212  | 79845       | (Z)-Dimethomorph         | 0.683                     | 0.0136           | 68.3                            | 2.0                        | 0.0824                    | 0.0032           | 82.4                            | 3.8                        | Ι              |
| 220  | 04022       | Terbuthylazine           | 1.052                     | 0.0568           | 105.2                           | 5.4                        | 0.1000                    | 0.0044           | 100.0                           | 4.4                        | I              |
| 225  | 61592       | Flumetralin              | 0.534                     | 0.0484           | 53.4                            | 9.1                        | 0.0520                    | 0.0036           | 52.0                            | 7.0                        | Ι              |
| 227  | 38801       | Fenthion                 | 0.988                     | 0.0337           | 98.8                            | 3.4                        | 0.0965                    | 0.0051           | 96.5                            | 5.3                        | I              |
| 228  | 61594       | Isofenphos               | 0.849                     | 0.0405           | 84.9                            | 4.8                        | 0.0759                    | 0.0035           | 75.9                            | 4.6                        | I              |
| 229  | 61604       | Propetamphos             | 0.861                     | 0.0524           | 86.1                            | 6.1                        | 0.0828                    | 0.0025           | 82.8                            | 3.0                        | I              |
| 231  | 61602       | Tebupirimphos            | 0.844                     | 0.0448           | 84.4                            | 5.3                        | 0.0741                    | 0.0033           | 74.1                            | 4.5                        | Ι              |
| 28   | 82662       | Dimethoate               | 0.292                     | 0.0416           | 29.2                            | 14.3                       | 0.0515                    | 0.0120           | 51.5                            | 23.3                       | Щ              |
| 30   | 61610       | Tribuphos                | 0.400                     | 0.0468           | 40.0                            | 11.7                       | 0.0328                    | 0.0038           | 32.8                            | 11.7                       | Щ              |

**Table 6.** Bias and variability data from eight reagent-water samples fortified with parent pesticide analytes at high (1.0 microgram per liter) and low (0.1 microgram per liter) concentrations—Continued

|      |        |                      |                           | Ŧ                | High                            |                            |                           |                  | Low                             |                            |                |
|------|--------|----------------------|---------------------------|------------------|---------------------------------|----------------------------|---------------------------|------------------|---------------------------------|----------------------------|----------------|
| Rank | P-Code | Short name           | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Remark<br>code |
| 71   | 34357  | beta-Endosulfan      | 0.815                     | 0.0194           | 81.5                            | 2.4                        | 0.0857                    | 0.0033           | 85.7                            | 3.8                        | н              |
| 76   | 61606  | Tefluthrin           | 0.215                     | 0.0367           | 21.5                            | 17.1                       | 0.0167                    | 0.0022           | 16.7                            | 13.4                       | Е              |
| 83   | 38454  | Dicrotophos          | 0.135                     | 0.0249           | 13.5                            | 18.5                       | 0.0147                    | 0.0035           | 14.7                            | 23.8                       | Щ              |
| 93   | 61593  | Iprodione            | 0.608                     | 0.0265           | 60.8                            | 4.4                        | 0.0455                    | 0.0024           | 45.5                            | 5.4                        | Е              |
| 102  | 61595  | Cyhalothrin          | 0.194                     | 0.0304           | 19.4                            | 15.7                       | 0.0091                    | 0.0011           | 9.1                             | 12.3                       | Ц              |
| 114  | 61586  | Cypermethrin         | 0.270                     | 0.0337           | 27.0                            | 12.5                       | 0.0307                    | 0.0066           | 30.7                            | 21.6                       | Ц              |
| 115  | 38716  | Sulprofos            | 0.719                     | 0.0330           | 71.9                            | 4.6                        | 0.0596                    | 0.0045           | 59.6                            | 7.5                        | Е              |
| 125  | 61601  | Phosmet <sup>1</sup> | 0.586                     | 0.0420           | 58.6                            | 7.2                        | 1                         | ł                | 1                               | ł                          | Ц              |
| 129  | 61585  | Cyfluthrin           | 0.265                     | 0.0330           | 26.5                            | 12.5                       | 0.0310                    | 0.0061           | 31.0                            | 19.7                       | Щ              |
| 131  | 61580  | Bifenthrin           | 0.262                     | 0.0555           | 26.2                            | 21.2                       | 0.0132                    | 0.0023           | 13.2                            | 17.2                       | Е              |
| 230  | 61605  | Sulfotepp            | 0.960                     | 0.0293           | 96.0                            | 3.0                        | 0.0851                    | 0.0023           | 85.1                            | 2.8                        | Ц              |
| 232  | 61607  | Temephos             | 0.283                     | 0.0499           | 28.3                            | 17.7                       | 0.0371                    | 0.0040           | 37.1                            | 10.7                       | Э              |
|      |        | Degradates           |                           |                  |                                 |                            |                           |                  |                                 |                            |                |
| 1002 | 61615  | 2-[2-Ethyl-6-m_panol | ł                         | ł                | ł                               | 1                          | 1                         | ł                | ł                               | I                          | I              |
| 1007 | 61618  | 2-Chloro-2,6-d_ilide | ł                         | ł                | ł                               | ł                          | ł                         | ł                | ł                               | ł                          | I              |
| 1008 | 61665  | 4-(Hydroxymeth_halin | ł                         | ł                | ł                               | ł                          | ł                         | ł                | ł                               | I                          | Ι              |
| 1016 | 61674  | Terbufos-O-ana_lfone | ł                         | ł                | ł                               | 1                          | 1                         | ł                | ł                               | I                          | I              |
| 1033 | 61625  | 3,4-Dichloroaniline  | ł                         | ł                | ł                               | ł                          | 1                         | ł                | ł                               | ł                          | I              |
| 1043 | 61629  | 3-Phenoxybenzy_cohol | ł                         | ł                | ł                               | ł                          | ł                         | ł                | ł                               | I                          | I              |
| 1044 | 79842  | c-Methyl-3-(2,_ylate | 0.015                     | 0.0016           | 1.5                             | 10.6                       | 0.0057                    | 0.0009           | 5.7                             | 16.3                       | Ι              |
| 1044 | 79843  | t-Methyl-3-(2,_ylate | 0.010                     | 0.0007           | 1.0                             | 7.5                        | 0.0070                    | 0.0003           | 7.0                             | 3.7                        | Ι              |
| 1049 | 61663  | Paraoxon-ethyl       | ł                         | ł                | ł                               | ł                          | ł                         | ł                | 1                               | I                          | I              |
| 1060 | 61652  | Malaoxon             | ł                         | 1                | ł                               | ł                          | 1                         | ł                | 1                               | ł                          | Ι              |
| 1062 | 61637  | 2-(4-tert-buty_xanol | 1                         | ł                | ł                               | 1                          | 1                         | ł                | ł                               | ł                          | I              |
| 1067 | 61640  | Disulfoton sulfone   | ł                         | ł                | 1                               | ł                          | ł                         | ł                | 1                               | I                          | I              |
| 1067 | 61641  | Disulfoton sulfoxide | ł                         | ł                | ł                               | 1                          | 1                         | ł                | 1                               | I                          | I              |
| 1071 | 61590  | Endosulfan sulfate   | ł                         | ł                | ł                               | 1                          | ł                         | ł                | 1                               | I                          | I              |
| 1071 | 61642  | Endosulfan ether     | 0.007                     | 0.0011           | 0.7                             | 15.8                       | 0.0033                    | 0.0007           | 3.3                             | 21.1                       | Ι              |
| 1076 | 61672  | Tefluthrin met_2912] | 1                         | 1                | ł                               | ł                          | 1                         | ł                | 1                               | 1                          | I              |

**Table 6.** Bias and variability data from eight reagent-water samples fortified with parent pesticide analytes at high (1.0 microgram per liter) and low (0.1 microgram per liter) concentrations—Continued

|      |             |                                   |                           |                  |                                 |                            |                           | 1                |                                 |                            |                |
|------|-------------|-----------------------------------|---------------------------|------------------|---------------------------------|----------------------------|---------------------------|------------------|---------------------------------|----------------------------|----------------|
| Rank | Rank P-Code | Short name                        | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Remark<br>code |
| 1093 | 61627       | 3,5-Dichloroaniline               | 1                         | 1                | 1                               | 1                          | I                         | :                | 1                               | I                          | I              |
| 1099 | 61614       | 2,5-Dichloroaniline               | 1                         | ł                | 1                               | 1                          | ł                         | ł                | 1                               | ł                          | I              |
| 1124 | 61660       | O-Ethyl-O-meth_ioate              | 1                         | ł                | 1                               | ł                          | 0.0029                    | 0.0003           | 2.9                             | 10.0                       | I              |
| 1126 | 61645       | Fenamiphos sulfone                | 1                         | ł                | 1                               | ł                          | I                         | ł                | 1                               | 1                          | I              |
| 1231 | 61669       | Tebupirimphos, logue              | 1                         | ł                | 1                               | 1                          | ł                         | 1                | 1                               | 1                          | I              |
| 1002 | 61620       | 2-Ethyl-6-meth_iline              | 1                         | ł                | 1                               | ł                          | ł                         | ł                | 1                               | 1                          | Щ              |
| 1012 | 61636       | Chlorpyrifos, _nalog              | 1                         | ł                | 1                               | ł                          | ł                         | ł                | 1                               | 1                          | Щ              |
| 1013 | 61617       | 2-Amino-N-isop_amide              | 1                         | ł                | 1                               | ł                          | ł                         | ł                | 1                               | 1                          | Щ              |
| 1014 | 61664       | Paraoxon-methyl                   | 1                         | I                | 1                               | ł                          | ł                         | ł                | 1                               | 1                          | Щ              |
| 1015 | 61633       | 4-Chloro-2-met_henol              | 1                         | ł                | 1                               | ł                          | ł                         | ł                | 1                               | 1                          | Щ              |
| 1024 | 61630       | 3-Trifluoromet_iline              | 1                         | ł                | 1                               | ł                          | ł                         | ł                | 1                               | 1                          | Щ              |
| 1032 | 49295       | 1-Naphthol                        | 1                         | I                | 1                               | ł                          | ł                         | ł                | 1                               | 1                          | Щ              |
| 1032 | 61611       | 1,4-Naphthaquinone                | 1                         | ł                | 1                               | ł                          |                           |                  | 1                               | 1                          | Щ              |
| 1034 | 61666       | Phorate oxon                      | ł                         | I                | ł                               | I                          | ł                         | ł                | ł                               | ł                          | Щ              |
| 1053 | 61635       | Azinphos-methyl-oxon              | ł                         | I                | ł                               | ł                          | ł                         | ł                | ł                               | ł                          | Щ              |
| 1054 | 61649       | Fonofos, oxyge_nalog              | ł                         | I                | ł                               | ł                          | ł                         | ł                | ł                               | ł                          | Е              |
| 1076 | 61671       | Tefluthrin met_9364]              | ;                         | ł                | 1                               | ł                          | ł                         | ł                | 1                               | :                          | Щ              |
| 1101 | 61631       | 4,4'-Dichlorob_enone              | 1                         | ł                | 1                               | ł                          | ł                         | ł                | 1                               | 1                          | Щ              |
| 1105 | 61634       | 4-Chlorobenzyl_lfone              | ł                         | ł                | 1                               | ł                          | ł                         | ł                | 1                               | ł                          | Щ              |
| 1125 | 61668       | Phosmet oxon                      | ł                         | ł                | 1                               | ł                          | ł                         | ł                | 1                               | ł                          | Щ              |
| 1126 | 61646       | Fenamiphos sulfoxide              | 1                         | ł                | 1                               | ł                          | ł                         | ł                | 1                               | 1                          | Щ              |
| 1134 | 61644       | Ethion monoxon                    | ł                         | I                | ł                               | ł                          | 0.0101                    | 0.0009           | 10.1                            | 9.3                        | Щ              |
| 1153 | 38775       | Dichlorvos                        | 1                         | ł                | 1                               | ł                          | 1                         | 1                | 1                               | ł                          | Щ              |
| 1227 | 61647       | Fenthion sulfoxide                | 0.014                     | 0.0009           | 1.4                             | 6.2                        | 0.0048                    | 0.0011           | 4.8                             | 22.8                       | Щ              |
|      |             | Surrogates                        | ł                         | I                | ł                               | ł                          | ł                         | ł                | ł                               | 1                          | I              |
|      | 99223       | Diazinon-d <sub>10</sub> , _ogate | 0.755                     | 0.0169           | 75.5                            | 2.2                        | 0.0996                    | 0.0021           | 9.66                            | 2.1                        | I              |
|      | 99224       | alpha-HCH-d <sub>6</sub> , ogate  | 0.953                     | 0.0457           | 95.3                            | 4.8                        | 0.0859                    | 0.0033           | 85.9                            | 3.8                        | Ι              |

Table 7. Bias and variability data from eight reagent-water samples fortified with degradates at high (1.0 microgram per liter) and low (0.1 microgram per liter) concentrations Analytes are sorted by remark code and then by rank. Rank, national application and use rank of pesticide; P-Code, National Water Information System parameter code; Median conc., median observed concentration; µg/L, microgram per liter; F-pseu, F-pseudosigma (interquartile range/1.349); Rel F-pseu, relative F-pseudosigma; –, not applicable; E, estimated remark code]

|      |             |                                 |                           | Ĩ                | High                            |                            |                           | Ľ                | Low                             |                            |                |
|------|-------------|---------------------------------|---------------------------|------------------|---------------------------------|----------------------------|---------------------------|------------------|---------------------------------|----------------------------|----------------|
| Rank | Rank P-Code | Short name                      | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Remark<br>code |
|      |             | Degradates                      |                           |                  |                                 |                            |                           |                  |                                 |                            |                |
| 1002 | 61615       | 2-[2-Ethyl-6-m_panol            | 1.009                     | 0.0988           | 100.9                           | 9.8                        | 0.0808                    | 0.0053           | 80.8                            | 9.9                        | I              |
| 1007 | 61618       | 2-Chloro-2,6-d_ilide            | 1.054                     | 0.0439           | 105.4                           | 4.2                        | 0.0938                    | 0.0018           | 93.8                            | 1.9                        | I              |
| 1008 | 61665       | 4-(Hydroxymeth_halin            | 1.051                     | 0.1364           | 105.1                           | 13.0                       | 0.0834                    | 0.0077           | 83.4                            | 9.3                        | I              |
| 1016 | 61674       | Terbufos-O-ana_lfone            | 0.954                     | 0.0797           | 95.4                            | 8.4                        | 0.0774                    | 0.0071           | 77.4                            | 9.1                        | I              |
| 1033 | 61625       | 3,4-Dichloroaniline             | 0.947                     | 0.1165           | 94.7                            | 12.3                       | 0.0863                    | 0.0084           | 86.3                            | 9.7                        | I              |
| 1043 | 61629       | 3-Phenoxybenzy_cohol            | 1.132                     | 0.0972           | 113.2                           | 8.6                        | 0.0718                    | 0.0024           | 71.8                            | 3.3                        | Ι              |
| 1044 | 79842       | c-Methyl-3-(2,_ylate            | 0.862                     | 0.0574           | 86.2                            | 6.7                        | 0.0846                    | 0.0028           | 84.6                            | 3.3                        | Ι              |
| 1044 | 79843       | t-Methyl-3-(2,_ylate            | 0.927                     | 0.0512           | 92.7                            | 5.5                        | 0.0891                    | 0.0040           | 89.1                            | 4.5                        | I              |
| 1049 | 61663       | Paraoxon-ethyl <sup>1</sup>     | 1.198                     | 0.3089           | 119.8                           | 25.8                       | 0.0872                    | 0.0028           | 87.2                            | 3.3                        | I              |
| 1060 | 61652       | Malaoxon                        | 1.009                     | 0.0727           | 100.9                           | 7.2                        | 0.0919                    | 0.0052           | 91.9                            | 5.7                        | I              |
| 1062 | 61637       | 2-(4-tert-buty_xanol            | 1.060                     | 0.0547           | 106.0                           | 5.2                        | 0.0800                    | 0.0057           | 80.0                            | 7.1                        | I              |
| 1067 | 61640       | Disulfoton sulfone              | 0.923                     | 0.0734           | 92.3                            | 8.0                        | 0.0783                    | 0.0033           | 78.3                            | 4.2                        | I              |
| 1071 | 61590       | Endosulfan sulfate <sup>1</sup> | 0.865                     | 0.0209           | 86.5                            | 2.4                        | 0.0919                    | 0.0032           | 91.9                            | 3.5                        | I              |
| 1071 | 61642       | Endosulfan ether                | 1.088                     | 0.0430           | 108.8                           | 4.0                        | 0.1018                    | 0.0027           | 101.8                           | 2.6                        | I              |
| 1076 | 61672       | Tefluthrin met_2912]            | 0.653                     | 0.0898           | 65.3                            | 13.7                       | 0.0601                    | 0.0024           | 60.1                            | 4.0                        | I              |
| 1093 | 61627       | 3,5-Dichloroaniline             | 1.081                     | 0.1030           | 108.1                           | 9.5                        | 0.0965                    | 0.0064           | 96.5                            | 9.9                        | I              |
| 1099 | 61614       | 2,5-Dichloroaniline             | 0.986                     | 0.1050           | 98.6                            | 10.7                       | 0.0856                    | 0.0050           | 85.6                            | 5.9                        | I              |
| 1124 | 61660       | O-Ethyl-O-meth_ioate            | 0.954                     | 0.0856           | 95.4                            | 9.0                        | 0.0852                    | 0.0047           | 85.2                            | 5.6                        | I              |
| 1126 | 61645       | Fenamiphos sulfone              | 0.861                     | 0.1068           | 86.1                            | 12.4                       | 0.0637                    | 0.0053           | 63.7                            | 8.3                        | Ι              |
| 1231 | 61669       | Tebupirimphos, logue            | 0.900                     | 0.0719           | 90.06                           | 8.0                        | 0.0722                    | 0.0025           | 72.2                            | 3.5                        | I              |
| 1002 | 61620       | 2-Ethyl-6-meth_iline            | 1.090                     | 0.0788           | 109.0                           | 7.2                        | 0.1014                    | 0.0019           | 101.4                           | 1.9                        | Щ              |
| 1012 | 61636       | Chlorpyrifos, _nalog            | 0.282                     | 0.0466           | 28.2                            | 16.5                       | 0.0176                    | 0.0051           | 17.6                            | 28.7                       | Щ              |
| 1013 | 61617       | 2-Amino-N-isop_amide            | 0.675                     | 0.0681           | 67.5                            | 10.1                       | 0.0589                    | 0.0088           | 58.9                            | 15.0                       | Щ              |
| 1014 | 61664       | Paraoxon-methyl                 | 0.852                     | 0.0909           | 85.2                            | 10.7                       | 0.0695                    | 0.0022           | 69.5                            | 3.2                        | Щ              |
|      |             |                                 |                           |                  |                                 |                            |                           |                  |                                 |                            |                |

36 Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

**Table 7.** Bias and variability data from eight reagent-water samples fortified with degradates at high (1.0 microgram per liter) and low (0.1 microgram per liter) concentrations—Continued

|      |             |                                   |                           | C                | ngn                             |                            |                           | Ľ                | LOW                             |                            |                |
|------|-------------|-----------------------------------|---------------------------|------------------|---------------------------------|----------------------------|---------------------------|------------------|---------------------------------|----------------------------|----------------|
| Rank | Rank P-Code | Short name                        | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Remark<br>code |
| 1015 | 61633       | 4-Chloro-2-met_henol              | 0.817                     | 0.1319           | 81.7                            | 16.1                       | 0.0721                    | 0.0098           | 72.1                            | 13.7                       | Е              |
| 1024 | 61630       | 3-Trifluoromet_iline              | 0.451                     | 0.1181           | 45.1                            | 26.2                       | 0.0407                    | 0.0030           | 40.7                            | 7.5                        | Щ              |
| 1032 | 49295       | 1-Naphthol                        | 0.136                     | 0.0542           | 13.6                            | 39.9                       | 0.0255                    | 0.0103           | 25.5                            | 40.4                       | Щ              |
| 1032 | 61611       | 1,4-Naphthaquinone                | 0.211                     | 0.1189           | 21.1                            | 56.2                       | 0.0335                    | 0.0104           | 33.5                            | 31.0                       | Щ              |
| 1034 | 61666       | Phorate oxon                      | 0.879                     | 0.1341           | 87.9                            | 15.2                       | 0.0727                    | 0.0059           | 72.7                            | 8.1                        | Щ              |
| 1053 | 61635       | Azinphos-methyl-oxon              | 0.919                     | 0.0993           | 91.9                            | 10.8                       | 0.0575                    | 0.0115           | 57.5                            | 19.9                       | Щ              |
| 1054 | 61649       | Fonofos, oxyge_nalog              | 0.839                     | 0.0861           | 83.9                            | 10.3                       | 0.0709                    | 0.0019           | 70.9                            | 2.7                        | Щ              |
| 1067 | 61641       | Disulfoton sulfoxide              | 1.417                     | 0.0640           | 141.7                           | 4.5                        | 0.1318                    | 0.0070           | 131.8                           | 5.3                        | Щ              |
| 1076 | 61671       | Tefluthrin met_9364]              | 0.491                     | 0.0892           | 49.1                            | 18.2                       | 0.0451                    | 0.0034           | 45.1                            | 7.6                        | Щ              |
| 1101 | 61631       | 4,4'-Dichlorob_enone              | 0.900                     | 0.0763           | 90.06                           | 8.5                        | 0.0697                    | 0.0026           | 69.7                            | 3.8                        | Щ              |
| 1105 | 61634       | 4-Chlorobenzyl_lfone              | 0.681                     | 0.0671           | 68.1                            | 9.8                        | 0.0654                    | 0.0073           | 65.4                            | 11.2                       | Щ              |
| 1125 | 61668       | Phosmet oxon                      | 0.771                     | 0.0593           | 77.1                            | 7.7                        | 0.0294                    | 0.0102           | 29.4                            | 34.8                       | Щ              |
| 1126 | 61646       | Fenamiphos sulfoxide              | 0.197                     | 0.0277           | 19.7                            | 14.0                       | 0.0251                    | 0.0029           | 25.1                            | 11.4                       | Щ              |
| 1134 | 61644       | Ethion monoxon                    | 0.645                     | 0.0837           | 64.5                            | 13.0                       | 0.0452                    | 0.0022           | 45.2                            | 4.8                        | Щ              |
| 1153 | 38775       | Dichlorvos <sup>1</sup>           | 0.673                     | 0.0752           | 67.3                            | 11.2                       | 0.0803                    | 0.0041           | 80.3                            | 5.1                        | Щ              |
| 1227 | 61647       | Fenthion sulfoxide                | 0.823                     | 0.1058           | 82.3                            | 12.9                       | 0.0785                    | 0.0035           | 78.5                            | 4.5                        | Щ              |
|      |             | Surrogates                        |                           |                  |                                 |                            |                           |                  |                                 |                            |                |
|      | 99223       | Diazinon-d <sub>10</sub> , _ogate | 1.472                     | 0.0466           | 147.2                           | 3.2                        | 0.1083                    | 0.0051           | 108.3                           | 4.7                        | I              |
|      | 99224       | alpha-HCH-d <sub>6</sub> , _ogate | 0.613                     | 0.0487           | 61.3                            | 7.9                        | 0.0596                    | 0.0028           | 59.6                            | 4.7                        | I              |

<sup>&</sup>lt;sup>1</sup>Analyte was determined in parent fortification mixture.

Table 8. Bias and variability data from eight surface-water samples fortified with parent pesticides and degradates at high (1.0 microgram per liter) and low (0.1 microgram per liter) concentrations

[Analytes are separated into parent pesticides and degradate pesticides and sorted by remark code and then by rank. Surface water collected from Boulder Creek at 75th Street on June 3, 1999. Analysis of unfortified sample indicated no analytes greater than reporting levels. Rank, national application and use rank of pesticide; P-Code, National Water Information System parameter code; F-pseu, F-pseudosigma (interquartile range/1.349); Rel F-pseu, relative F-

| Rank         P.4           63         63         63         66         67         75         61         32         75         61         108         75         61         108         75         61         108         75         110         75         61         102         101         121         61         111         75         61         112         02         121         124         02         1134         82         1134         82         1134         82         1134         82         2212         75         2212         75         2212         75         2212         75         75         2212         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75 |        |                             |                           | Ï                | High                            |                            |                           | Ľ                | Low                             |                            |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------|------------------|---------------------------------|----------------------------|---------------------------|------------------|---------------------------------|----------------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P-Code | Short name                  | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Remark<br>code |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | <b>Parent</b> pesticides    |                           |                  | ;                               | ,<br>;                     |                           |                  | ļ                               |                            |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 04036  | Prometryn                   | 0.410                     | 0.3697           | 41.0                            | 90.2                       | 0.0786                    | 0.0040           | 78.6                            | 4.0                        | I              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61603  | Profenofos                  | 0.768                     | 0.0358           | 76.8                            | 4.7                        | 0.1041                    | 0.0063           | 104.1                           | 6.3                        | I              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34362  | <i>alpha</i> -Endosulfan    | 0.796                     | 0.0199           | 79.6                            | 2.5                        | 0.0962                    | 0.0117           | 96.2                            | 11.7                       | Ι              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61596  | Metalaxyl                   | 0.952                     | 0.0414           | 95.2                            | 4.3                        | 0.0910                    | 0.0040           | 91.0                            | 4.0                        | I              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61600  | Oxyfluorfen                 | 0.675                     | 0.0839           | 67.5                            | 12.4                       | 0.0927                    | 0.0086           | 92.7                            | 8.6                        | Ι              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79846  | cis-Propiconazole           | 0.239                     | 0.2567           | 23.9                            | 107.4                      | 0.1063                    | 0.0068           | 106.3                           | 6.8                        | Ι              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79847  | trans-Propiconazole         | 0.470                     | 0.2901           | 47.0                            | 61.7                       | 0.1089                    | 0.0047           | 108.9                           | 4.7                        | I              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61599  | Myclobutanil                | 0.798                     | 0.0358           | 79.8                            | 4.5                        | 0.1034                    | 0.0031           | 103.4                           | 3.1                        | I              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61591  | Fenamiphos                  | 0.796                     | 0.0404           | 79.6                            | 5.1                        | 0.1024                    | 0.0051           | 102.4                           | 5.1                        | Ι              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 04025  | Hexazinone                  | 0.615                     | 0.0818           | 61.5                            | 13.3                       | 0.0981                    | 0.0030           | 98.1                            | 3.0                        | Ι              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 04031  | Cycloate                    | 0.844                     | 0.0598           | 84.4                            | 7.1                        | 0.1045                    | 0.0069           | 104.5                           | 6.9                        | Ι              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61598  | Methidathion                | 0.849                     | 0.0496           | 84.9                            | 5.8                        | 0.1102                    | 0.0038           | 110.2                           | 3.8                        | Ι              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 82346  | Ethion                      | 0.496                     | 0.0193           | 49.6                            | 3.9                        | 0.0800                    | 0.0045           | 80.0                            | 4.5                        | Ι              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79844  | (E)-Dimethomorph            | 0.846                     | 0.0412           | 84.6                            | 4.9                        | 0.1026                    | 0.0043           | 102.6                           | 4.3                        | I              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79845  | (Z)-Dimethomorph            | 0.838                     | 0.0248           | 83.8                            | 3.0                        | 0.1091                    | 0.0060           | 109.1                           | 6.0                        | Ι              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 04022  | Terbuthylazine <sup>1</sup> | 1                         | ł                | ł                               | ł                          | ł                         | I                | ł                               | ł                          | Ι              |
| 225 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61592  | Flumetralin                 | 0.499                     | 0.0939           | 49.9                            | 18.8                       | 0.0918                    | 0.0056           | 91.8                            | 5.6                        | I              |
| 227 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38801  | Fenthion                    | 0.934                     | 0.0501           | 93.4                            | 5.4                        | 0.0697                    | 0.0042           | 69.7                            | 4.2                        | Ι              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61594  | Isofenphos                  | 0.883                     | 0.0426           | 88.3                            | 4.8                        | 0.0921                    | 0.0043           | 92.1                            | 4.3                        | Ι              |
| 229 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61604  | Propetamphos                | 0.863                     | 0.0396           | 86.3                            | 4.6                        | 0.0966                    | 0.0072           | 96.6                            | 7.2                        | Ι              |
| 231 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61602  | Tebupirimphos               | 0.767                     | 0.0219           | 76.7                            | 2.9                        | 0.0802                    | 0.0049           | 80.2                            | 4.9                        | Ι              |
| 28 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82662  | Dimethoate                  | 0.450                     | 0.0715           | 45.0                            | 15.9                       | 0.0413                    | 0.0011           | 41.3                            | 1.1                        | Щ              |
| 30 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61610  | Tribuphos                   | 0.451                     | 0.0265           | 45.1                            | 5.9                        | 0.0825                    | 0.0041           | 82.5                            | 4.1                        | Е              |
| 71 3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34357  | beta-Endosulfan             | 0.703                     | 0.0362           | 70.3                            | 5.1                        | 0.1047                    | 0.0071           | 104.7                           | 7.1                        | Ш              |
| 76 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61606  | Tefluthrin                  | 0.173                     | 0.0135           | 17.3                            | 7.8                        | 0.0414                    | 0.0038           | 41.4                            | 3.8                        | Щ              |

Table 8. Bias and variability data from eight surface-water samples fortified with parent pesticides and degradates at high (1.0 microgram per liter) and low (0.1 microgram per liter) concentrations—Continued

|      |        |                      |                           | Ī                | High                            |                            |                           | Ľ                | Low                             |                            |                |
|------|--------|----------------------|---------------------------|------------------|---------------------------------|----------------------------|---------------------------|------------------|---------------------------------|----------------------------|----------------|
| Rank | P-Code | Short name           | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Remark<br>code |
| 83   | 38454  | Dicrotophos          | 0.164                     | 0.0548           | 16.4                            | 33.5                       | 0.0338                    | 0.0026           | 33.8                            | 2.6                        | Е              |
| 93   | 61593  | Iprodione            | 0.690                     | 0.0239           | 69.0                            | 3.5                        | 0.1116                    | 0.0117           | 111.6                           | 11.7                       | Е              |
| 102  | 61595  | Cyhalothrin          | 0.160                     | 0.0170           | 16.0                            | 10.6                       | 0.0454                    | 0.0037           | 45.4                            | 3.7                        | Щ              |
| 114  | 61586  | Cypermethrin         | 0.223                     | 0.0195           | 22.3                            | 8.7                        | 0.0787                    | 0.0093           | 78.7                            | 9.3                        | Щ              |
| 115  | 38716  | Sulprofos            | 0.476                     | 0.0343           | 47.6                            | 7.2                        | 0.0792                    | 0.0046           | 79.2                            | 4.6                        | Е              |
| 125  | 61601  | Phosmet              | 0.622                     | 0.0490           | 62.2                            | 7.9                        | 0.1058                    | 0.0035           | 105.8                           | 3.5                        | Щ              |
| 129  | 61585  | Cyfluthrin           | 0.214                     | 0.0092           | 21.4                            | 4.3                        | 0.0773                    | 0.0026           | 77.3                            | 2.6                        | Щ              |
| 131  | 61580  | Bifenthrin           | 0.144                     | 0.0108           | 14.4                            | 7.5                        | 0.0506                    | 0.0041           | 50.6                            | 4.1                        | Щ              |
| 230  | 61605  | Sulfotepp            | 0.734                     | 0.0380           | 73.4                            | 5.2                        | 0.0651                    | 0.0053           | 65.1                            | 5.3                        | Щ              |
| 232  | 61607  | Temephos             | 0.217                     | 0.0146           | 21.7                            | 6.7                        | 0.1425                    | 0.0097           | 142.5                           | 9.7                        | Э              |
|      |        | Degradates           |                           |                  |                                 |                            |                           |                  |                                 |                            |                |
| 1002 | 61615  | 2-[2-Ethyl-6-m_panol | 0.871                     | 0.0335           | 87.1                            | 3.8                        | 0.1055                    | 0.0087           | 105.5                           | 8.7                        | I              |
| 1007 | 61618  | 2-Chloro-2,6-d_ilide | 0.903                     | 0.0638           | 90.3                            | 7.1                        | 0.0980                    | 0.0052           | 98.0                            | 5.2                        | I              |
| 1008 | 61665  | 4-(Hydroxymeth_halin | 0.993                     | 0.0161           | 99.3                            | 1.6                        | 0.1329                    | 0.0097           | 132.9                           | 9.7                        | I              |
| 1016 | 61674  | Terbufos-O-ana_lfone | 0.861                     | 0.0410           | 86.1                            | 4.8                        | 0.0923                    | 0.0053           | 92.3                            | 5.3                        | I              |
| 1033 | 61625  | 3,4-Dichloroaniline  | 0.926                     | 0.0359           | 92.6                            | 3.9                        | 0.0765                    | 0.0023           | 76.5                            | 2.3                        | I              |
| 1043 | 61629  | 3-Phenoxybenzy_cohol | 0.827                     | 0.0430           | 82.7                            | 5.2                        | 0.0896                    | 0.0073           | 89.6                            | 7.3                        | Ι              |
| 1044 | 79842  | c-Methyl-3-(2,_ylate | 0.788                     | 0.0185           | 78.8                            | 2.4                        | 0.0955                    | 0.0054           | 95.5                            | 5.4                        | Ι              |
| 1044 | 79843  | t-Methyl-3-(2,_ylate | 0.805                     | 0.0239           | 80.5                            | 3.0                        | 0.0905                    | 0.0074           | 90.5                            | 7.4                        | I              |
| 1049 | 61663  | Paraoxon-ethyl       | 0.922                     | 0.0337           | 92.2                            | 3.7                        | 0.1012                    | 0.0074           | 101.2                           | 7.4                        | I              |
| 1060 | 61652  | Malaoxon             | 0.873                     | 0.0345           | 87.3                            | 3.9                        | 0.1064                    | 0.0071           | 106.4                           | 7.1                        | I              |
| 1062 | 61637  | 2-(4-tert-buty_xanol | 0.864                     | 0.0433           | 86.4                            | 5.0                        | 0.1042                    | 0.0087           | 104.2                           | 8.7                        | I              |
| 1067 | 61640  | Disulfoton sulfone   | 0.869                     | 0.0416           | 86.9                            | 4.8                        | 0.1045                    | 0.0035           | 104.5                           | 3.5                        | I              |
| 1071 | 61590  | Endosulfan sulfate   | 0.761                     | 0.0237           | 76.1                            | 3.1                        | 0.0915                    | 0.0079           | 91.5                            | 7.9                        | I              |
| 1071 | 61642  | Endosulfan ether     | 0.826                     | 0.0264           | 82.6                            | 3.2                        | 0.0805                    | 0.0052           | 80.5                            | 5.2                        | I              |
| 1076 | 61672  | Tefluthrin met_2912] | 0.327                     | 0.0363           | 32.7                            | 11.1                       | 0.0675                    | 0.0068           | 67.5                            | 6.8                        | I              |
| 1093 | 61627  | 3,5-Dichloroaniline  | 0.923                     | 0.0276           | 92.3                            | 3.0                        | 0.0913                    | 0.0051           | 91.3                            | 5.1                        | Ι              |
| 1099 | 61614  | 2,5-Dichloroaniline  | 0.841                     | 0.0154           | 84.1                            | 1.8                        | 0.0819                    | 0.0043           | 81.9                            | 4.3                        | Ι              |
| 1124 | 61660  | O-Ethyl-O-meth_ioate | 0.856                     | 0.0298           | 85.6                            | 3.5                        | 0.0978                    | 0.0058           | 97.8                            | 5.8                        | I              |
| 1126 | 61645  | Fenamiphos sulfone   | 0.788                     | 0.0353           | 78.8                            | 4.5                        | 0.0955                    | 0.0047           | 95.5                            | 4.7                        | I              |

**Table 8.** Bias and variability data from eight surface-water samples fortified with parent pesticides and degradates at high (1.0 microgram per liter) and low (0.1 microgram per liter) concentrations—Continued

| Rank P-Code |       |                                   |                           |                  | <u> </u>                        |                            |                           | LOW              | ~                               |                            |                |
|-------------|-------|-----------------------------------|---------------------------|------------------|---------------------------------|----------------------------|---------------------------|------------------|---------------------------------|----------------------------|----------------|
|             | -Code | Short name                        | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Remark<br>code |
| 1231        | 61669 | Tebupirimphos, logue              | 0.832                     | 0.0376           | 83.2                            | 4.5                        | 0.0766                    | 0.0051           | 76.6                            | 5.1                        | I              |
| 1002        | 61620 | 2-Ethyl-6-meth_iline              | 0.786                     | 0.0422           | 78.6                            | 5.4                        | 0.1170                    | 0.0049           | 117.0                           | 4.9                        | Щ              |
| 1012        | 61636 | Chlorpyrifos, _nalog              | 0.780                     | 0.0296           | 78.0                            | 3.8                        | 0.0496                    | 0.0032           | 49.6                            | 3.2                        | Щ              |
| 1013        | 61617 | 2-Amino-N-isop_amide              | 0.689                     | 0.0878           | 68.9                            | 12.8                       | 0.0476                    | 0.0019           | 47.6                            | 1.9                        | Щ              |
| 1014        | 61664 | Paraoxon-methyl                   | 0.884                     | 0.0501           | 88.4                            | 5.7                        | 0.1047                    | 0.0032           | 104.7                           | 3.2                        | Щ              |
| 1015        | 61633 | 4-Chloro-2-met_henol              | 0.814                     | 0.0515           | 81.4                            | 6.3                        | 0.0693                    | 0.0034           | 69.3                            | 3.4                        | Щ              |
| 1024        | 61630 | 3-Trifluoromet_iline              | 0.733                     | 0.0928           | 73.3                            | 12.7                       | 0.0432                    | 0.0011           | 43.2                            | 1.1                        | Щ              |
| 1032        | 49295 | 1-Naphthol <sup>1</sup>           | ł                         | ł                | 1                               | 1                          | ł                         | ł                | 1                               | ł                          | Щ              |
| 1032        | 61611 | 1,4-Naphthaquinone <sup>1</sup>   | ł                         | ł                | 1                               | :                          | 0.0733                    | 0.0042           | 73.3                            | 4.2                        | Щ              |
| 1034        | 61666 | Phorate oxon                      | 0.862                     | 0.0463           | 86.2                            | 5.4                        | 0.0848                    | 0.0049           | 84.8                            | 4.9                        | Щ              |
| 1053        | 61635 | Azinphos-methyl-oxon              | 0.875                     | 0.0470           | 87.5                            | 5.4                        | 0.1316                    | 0.0004           | 131.6                           | 0.4                        | Щ              |
| 1054        | 61649 | Fonofos, oxyge_nalog              | 0.774                     | 0.0463           | 77.4                            | 6.0                        | 0.0922                    | 0.0065           | 92.2                            | 6.5                        | Щ              |
| 1067        | 61641 | Disulfoton sulfoxide              | 0.966                     | 0.0507           | 96.6                            | 5.3                        | 0.1051                    | 0.0069           | 105.1                           | 6.9                        | Щ              |
| 1076        | 61671 | Tefluthrin met_9364]              | 0.217                     | 0.0143           | 21.7                            | 9.9                        | 0.0404                    | 0.0052           | 40.4                            | 5.2                        | Щ              |
| 1101        | 61631 | 4,4'-Dichlorob_enone              | 0.858                     | 0.0305           | 85.8                            | 3.6                        | 0.1035                    | 0.0079           | 103.5                           | 7.9                        | Щ              |
| 1105        | 61634 | 4-Chlorobenzyl_lfone              | 0.684                     | 0.0919           | 68.4                            | 13.4                       | 0.0538                    | 0.0040           | 53.8                            | 4.0                        | Щ              |
| 1125        | 61668 | Phosmet oxon                      | 0.601                     | 0.0504           | 60.1                            | 8.4                        | 0.1188                    | 0.0021           | 118.8                           | 2.1                        | Щ              |
| 1126        | 61646 | Fenamiphos sulfoxide <sup>1</sup> | :                         | 1                | 1                               | 1                          | 0.0552                    | 0.0120           | 55.2                            | 12.0                       | Щ              |
| 1134        | 61644 | Ethion monoxon                    | 0.771                     | 0.0296           | 77.1                            | 3.8                        | 0.1007                    | 0.0045           | 100.7                           | 4.5                        | Щ              |
| 1153        | 38775 | Dichlorvos                        | 0.638                     | 0.0349           | 63.8                            | 5.5                        | 0.0444                    | 0.0023           | 44.4                            | 2.3                        | Щ              |
| 1227        | 61647 | Fenthion sulfoxide                | 0.775                     | 0.0336           | 77.5                            | 4.3                        | 0.0965                    | 0.0038           | 96.5                            | 3.8                        | Щ              |
|             |       | Surrogates                        |                           |                  |                                 |                            |                           |                  |                                 |                            |                |
|             | 99223 | Diazinon- $d_{10}$ , _ogate       | 1.209                     | 0.0290           | 120.9                           | 2.4                        | 0.0781                    | 0.0023           | 78.1                            | 2.3                        | Ι              |
|             | 99224 | alpha-HCH-d <sub>6</sub> , _ogate | 0.865                     | 0.1916           | 86.5                            | 22.1                       | 0.0980                    | 0.0047           | 98.0                            | 4.7                        | I              |

40 Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

Table 9. Bias and variability data from eight ground-water samples fortified with parent pesticides and degradates at high (1.0 microgram per liter) and low (0.1 microgram per liter) concentrations

pesticide; P-Code, National Water Information System parameter code; µg/L, microgram per liter; F-pseu, F-pseudosigma (interquartile range/1.349); Rel F-[Analytes are separated into parent pesticides and degradate pesticides and sorted by remark code and then by rank. Ground water collected in northeast Denver on June 3, 1999. Analysis of unfortified sample indicated no analytes greater than reporting limits. Rank, national application and use rank of

|      |        |                             |                           | Н                | High                            |                            |                           |                  | Low                             |                            |                |
|------|--------|-----------------------------|---------------------------|------------------|---------------------------------|----------------------------|---------------------------|------------------|---------------------------------|----------------------------|----------------|
| Rank | P-Code | Short name                  | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Remark<br>code |
|      |        | <b>Parent</b> pesticides    |                           |                  |                                 |                            |                           |                  |                                 |                            |                |
| 63   | 04036  | Prometryn                   | 1.010                     | 0.031            | 101.0                           | 3.1                        | 0.0821                    | 0.0057           | 82.1                            | 6.9                        | I              |
| 69   | 61603  | Profenofos                  | 0.782                     | 0.037            | 78.2                            | 4.8                        | 0.0926                    | 0.0086           | 92.6                            | 9.3                        | I              |
| 71   | 34362  | <i>alpha</i> -Endosulfan    | 0.818                     | 0.034            | 81.8                            | 4.2                        | 0.0951                    | 0.0056           | 95.1                            | 5.9                        | I              |
| 75   | 61596  | Metalaxyl                   | 0.952                     | 0.027            | 95.2                            | 2.9                        | 0.0910                    | 0.0047           | 91.0                            | 5.2                        | I              |
| 106  | 61600  | Oxyfluorfen                 | 0.849                     | 0.038            | 84.9                            | 4.5                        | 0.0917                    | 0.0051           | 91.7                            | 5.6                        | I              |
| 108  | 79846  | cis-Propiconazole           | 0.604                     | 0.016            | 60.4                            | 2.6                        | 0.1144                    | 0.0076           | 114.4                           | 6.7                        | I              |
| 110  | 79847  | trans-Propiconazole         | 0.877                     | 0.034            | 87.7                            | 3.8                        | 0.1102                    | 0.0109           | 110.2                           | 9.9                        | I              |
| 121  | 61599  | Myclobutanil                | 0.881                     | 0.029            | 88.1                            | 3.3                        | 0.1069                    | 0.0040           | 106.9                           | 3.7                        | I              |
| 126  | 61591  | Fenamiphos                  | 0.771                     | 0.024            | 77.1                            | 3.2                        | 0.1048                    | 0.0098           | 104.8                           | 9.4                        | I              |
| 127  | 04025  | Hexazinone                  | 0.645                     | 0.026            | 64.5                            | 4.1                        | 0.0902                    | 0.0103           | 90.2                            | 11.4                       | I              |
| 128  | 04031  | Cycloate                    | 0.942                     | 0.070            | 94.2                            | 7.4                        | 0.0950                    | 0.0056           | 95.0                            | 5.9                        | Ι              |
| 132  | 61598  | Methidathion                | 0.848                     | 0.012            | 84.8                            | 1.5                        | 0.1033                    | 0.0055           | 103.3                           | 5.3                        | I              |
| 134  | 82346  | Ethion                      | 0.637                     | 0.047            | 63.7                            | 7.3                        | 0.0850                    | 0.0042           | 85.0                            | 4.9                        | I              |
| 211  | 79844  | (E)-Dimethomorph            | 0.851                     | 0.031            | 85.1                            | 3.6                        | 0.0958                    | 0.0042           | 95.8                            | 4.3                        | Ι              |
| 212  | 79845  | (Z)-Dimethomorph            | 0.844                     | 0.032            | 84.4                            | 3.8                        | 0.1006                    | 0.0041           | 100.6                           | 4.1                        | Ι              |
| 220  | 04022  | Terbuthylazine <sup>1</sup> | 1                         | I                | 1                               | ł                          | ł                         | ł                | ł                               | ł                          | I              |
| 225  | 61592  | Flumetralin                 | 0.973                     | 0.092            | 97.3                            | 9.5                        | 0.0949                    | 0.0062           | 94.9                            | 9.9                        | Ι              |
| 227  | 38801  | Fenthion                    | 0.993                     | 0.022            | 99.3                            | 2.2                        | 0.0789                    | 0.0050           | 78.9                            | 6.3                        | I              |
| 228  | 61594  | Isofenphos                  | 0.948                     | 0.033            | 94.8                            | 3.4                        | 0.0918                    | 0.0043           | 91.8                            | 4.7                        | I              |
| 229  | 61604  | Propetamphos                | 0.876                     | 0.032            | 87.6                            | 3.7                        | 0.0908                    | 0.0040           | 90.8                            | 4.4                        | I              |
| 231  | 61602  | Tebupirimphos               | 0.841                     | 0.025            | 84.1                            | 3.0                        | 0.0787                    | 0.0050           | 78.7                            | 6.3                        | I              |
| 28   | 82662  | Dimethoate                  | 0.328                     | 0.007            | 32.8                            | 2.1                        | 0.0447                    | 0.0033           | 44.7                            | 7.4                        | Е              |
| 30   | 61610  | Tribuphos                   | 0.541                     | 0.057            | 54.1                            | 10.5                       | 0.0842                    | 0.0089           | 84.2                            | 10.6                       | E              |
| 71   | 34357  | <i>beta</i> -Endosulfan     | 0.775                     | 0.043            | 77.5                            | 5.5                        | 0.0982                    | 0.0125           | 98.2                            | 12.7                       | Щ              |
| 76   | 61606  | Tefluthrin                  | 0.339                     | 0.041            | 33.9                            | 12.2                       | 0.0461                    | 0.0051           | 46.1                            | 11.1                       | Щ              |

**Table 9.** Bias and variability data from eight ground-water samples fortified with parent pesticides and degradates at high (1.0 microgram per liter) and low (0.1 microgram per liter) concentrations—Continued

| 1      |        |                      |                           |                  | High                            |                            |                           | Low              | M                               |                            |                |
|--------|--------|----------------------|---------------------------|------------------|---------------------------------|----------------------------|---------------------------|------------------|---------------------------------|----------------------------|----------------|
| Rank I | P-Code | Short name           | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Remark<br>code |
| l I    | 38454  | Dicrotophos          | 0.147                     | 0.011            | 14.7                            | 7.4                        | 0.0186                    | 0.0052           | 18.6                            | 28.3                       | н              |
|        | 61593  | Iprodione            | 0.708                     | 0.049            | 70.8                            | 6.9                        | 0.1051                    | 0.0128           | 105.1                           | 12.2                       | Щ              |
|        | 61595  | Cyhalothrin          | 0.361                     | 0.034            | 36.1                            | 9.4                        | 0.0479                    | 0.0050           | 47.9                            | 10.5                       | Ц              |
|        | 61586  | Cypermethrin         | 0.435                     | 0.033            | 43.5                            | 7.6                        | 0.0767                    | 0.0067           | 76.7                            | 8.8                        | Щ              |
|        | 38716  | Sulprofos            | 0.622                     | 0.047            | 62.2                            | 7.5                        | 0.1014                    | 0.0079           | 101.4                           | 7.8                        | Щ              |
|        | 61601  | Phosmet              | 0.771                     | 0.035            | 77.1                            | 4.6                        | 0.0869                    | 0.0074           | 86.9                            | 8.6                        | Щ              |
|        | 61585  | Cyfluthrin           | 0.415                     | 0.035            | 41.5                            | 8.5                        | 0.0749                    | 0.0032           | 74.9                            | 4.3                        | Е              |
|        | 61580  | Bifenthrin           | 0.373                     | 0.041            | 37.3                            | 11.0                       | 0.0575                    | 0.0055           | 57.5                            | 9.6                        | Е              |
|        | 61605  | Sulfotepp            | 0.844                     | 0.019            | 84.4                            | 2.3                        | 0.0783                    | 0.0067           | 78.3                            | 8.5                        | Щ              |
|        | 61607  | Temephos             | 0.471                     | 0.026            | 47.1                            | 5.5                        | 0.1296                    | 0.0101           | 129.6                           | 7.8                        | Щ              |
|        |        | Degradates           |                           |                  |                                 |                            |                           |                  |                                 |                            |                |
|        | 61615  | 2-[2-Ethyl-6-m_panol | 0.838                     | 0.016            | 83.8                            | 2.0                        | 0.1030                    | 0.0049           | 103.0                           | 4.8                        | I              |
|        | 61618  | 2-Chloro-2,6-d_ilide | 0.837                     | 0.072            | 83.7                            | 8.6                        | 0.0934                    | 0.0067           | 93.4                            | 7.1                        | I              |
|        | 61665  | 4-(Hydroxymeth_halin | 0.993                     | 0.010            | 99.3                            | 1.0                        | 0.1159                    | 0.0055           | 115.9                           | 4.8                        | I              |
|        | 61674  | Terbufos-O-ana_lfone | 0.820                     | 0.016            | 82.0                            | 1.9                        | 0.0879                    | 0.0108           | 87.9                            | 12.3                       | I              |
|        | 61625  | 3,4-Dichloroaniline  | 0.836                     | 0.020            | 83.6                            | 2.4                        | 0.0853                    | 0.0046           | 85.3                            | 5.4                        | I              |
|        | 61629  | 3-Phenoxybenzy_cohol | 0.804                     | 0.019            | 80.4                            | 2.3                        | 0.0848                    | 0.0059           | 84.8                            | 6.9                        | I              |
|        | 79842  | c-Methyl-3-(2,_ylate | 0.834                     | 0.017            | 83.4                            | 2.0                        | 0.0893                    | 0.0063           | 89.3                            | 7.1                        | I              |
|        | 79843  | t-Methyl-3-(2,_ylate | 0.832                     | 0.018            | 83.2                            | 2.2                        | 0.0891                    | 0.0078           | 89.1                            | 8.7                        | Ι              |
|        | 61663  | Paraoxon-ethyl       | 0.908                     | 0.033            | 90.8                            | 3.7                        | 0.0894                    | 0.0114           | 89.4                            | 12.8                       | Ι              |
|        | 61652  | Malaoxon             | 0.809                     | 0.023            | 80.9                            | 2.9                        | 0.0933                    | 0.0089           | 93.3                            | 9.5                        | I              |
|        | 61637  | 2-(4-tert-buty_xanol | 0.875                     | 0.027            | 87.5                            | 3.1                        | 0.0915                    | 0.0081           | 91.5                            | 8.9                        | I              |
|        | 61640  | Disulfoton sulfone   | 0.850                     | 0.024            | 85.0                            | 2.8                        | 0.1059                    | 0.0062           | 105.9                           | 5.8                        | I              |
|        | 61590  | Endosulfan sulfate   | 0.809                     | 0.036            | 80.9                            | 4.4                        | 0.0892                    | 0.0045           | 89.2                            | 5.1                        | I              |
|        | 61642  | Endosulfan ether     | 0.846                     | 0.023            | 84.6                            | 2.7                        | 0.0794                    | 0.0055           | 79.4                            | 6.9                        | Ι              |
|        | 61672  | Tefluthrin met_2912] | 0.500                     | 0.028            | 50.0                            | 5.5                        | 0.0641                    | 0.0048           | 64.1                            | 7.5                        | I              |
|        | 61627  | 3,5-Dichloroaniline  | 0.881                     | 0.030            | 88.1                            | 3.4                        | 0.0919                    | 0.0067           | 91.9                            | 7.3                        | I              |
|        | 61614  | 2,5-Dichloroaniline  | 0.725                     | 0.031            | 72.5                            | 4.3                        | 0.0810                    | 0.0060           | 81.0                            | 7.4                        | I              |
|        | 61660  | O-Ethyl-O-meth_ioate | 0.807                     | 0.024            | 80.7                            | 2.9                        | 0.0889                    | 0.0065           | 88.9                            | 7.3                        | I              |
|        | 61645  | Fenamiphos sulfone   | 0.813                     | 0.008            | 81.3                            | 1.0                        | 0.0886                    | 0.0048           | 88.6                            | 5.4                        | I              |
|        |        |                      |                           |                  |                                 |                            |                           |                  |                                 |                            |                |

Table 9. Bias and variability data from eight ground-water samples fortified with parent pesticides and degradates at high (1.0 microgram per liter) and low (0.1 microgram per liter) concentrations—Continued

|                   |             |                                                             |                 |               | <b>Пі</b> ль          |                                                      |                 | -      |                       |                     |        |
|-------------------|-------------|-------------------------------------------------------------|-----------------|---------------|-----------------------|------------------------------------------------------|-----------------|--------|-----------------------|---------------------|--------|
|                   |             |                                                             |                 | C             | gn                    |                                                      |                 | LOW    | M                     |                     |        |
| Rank              | Rank P-Code | Short name                                                  | Median          | F-nseu        | Median                | Rel                                                  | Median          | F-nseu | Median                | Rel                 | Remark |
|                   |             |                                                             | conc.<br>(µg/L) | (hg/L)        | recovery<br>(percent) | F-pseu<br>(percent)                                  | conc.<br>(µg/L) | (hg/L) | recovery<br>(percent) | F-pseu<br>(percent) | code   |
| 1231              | 61669       | Tebupirimphos, logue                                        | 0.840           | 0.018         | 84.0                  | 2.1                                                  | 0.0739          | 0.0061 | 73.9                  | 8.2                 | I      |
| 1002              | 61620       |                                                             | 0.772           | 0.008         | 77.2                  | 1.0                                                  | 0.1034          | 0.0082 | 103.4                 | 8.0                 | Е      |
| 1012              | 61636       | Chlorpyrifos, _nalog                                        | 0.662           | 0.072         | 66.2                  | 10.9                                                 | 0.0440          | 0.0088 | 44.0                  | 19.9                | Е      |
| 1013              | 61617       | 2-Amino-N-isop_amide                                        | 0.548           | 0.010         | 54.8                  | 1.8                                                  | 0.0588          | 0.0031 | 58.8                  | 5.2                 | Е      |
| 1014              | 61664       | Paraoxon-methyl                                             | 0.817           | 0.058         | 81.7                  | 7.1                                                  | 0.0844          | 0.0086 | 84.4                  | 10.2                | Е      |
| 1015              | 61633       | 4-Chloro-2-met_henol                                        | 0.619           | 0.017         | 61.9                  | 2.7                                                  | 0.0681          | 0.0049 | 68.1                  | 7.3                 | Е      |
| 1024              | 61630       | 3-Trifluoromet_iline                                        | 0.466           | 0.023         | 46.6                  | 4.9                                                  | 0.0518          | 0.0033 | 51.8                  | 6.3                 | Е      |
| 1032              | 49295       | 1-Naphthol                                                  | 0.341           | 0.083         | 34.1                  | 24.4                                                 | 0.0063          | 0.0018 | 6.3                   | 28.9                | Е      |
| 1032              | 61611       | 1,4-Naphthaquinone <sup>1</sup>                             | ł               | 1             | 1                     | ;                                                    | 0.0781          | 0.0065 | 78.1                  | 8.3                 | Е      |
| 1034              | 61666       | Phorate oxon                                                | 0.842           | 0.016         | 84.2                  | 1.9                                                  | 0.0802          | 0.0079 | 80.2                  | 9.8                 | Е      |
| 1053              | 61635       | Azinphos-methyl-oxon                                        | 0.810           | 0.039         | 81.0                  | 4.8                                                  | 0.1258          | 0.0058 | 125.8                 | 4.6                 | Е      |
| 1054              | 61649       | Fonofos, oxyge_nalog                                        | 0.694           | 0.038         | 69.4                  | 5.5                                                  | 0.0776          | 0.0067 | 77.6                  | 8.6                 | Е      |
| 1067              | 61641       | Disulfoton sulfoxide                                        | 0.960           | 0.029         | 96.0                  | 3.0                                                  | 0.0996          | 0.0056 | 9.66                  | 5.6                 | Е      |
| 1076              | 61671       | Tefluthrin met_9364]                                        | 0.394           | 0.044         | 39.4                  | 11.2                                                 | 0.0432          | 0.0046 | 43.2                  | 10.7                | Е      |
| 1101              | 61631       | 4,4'-Dichlorob_enone                                        | 0.844           | 0.038         | 84.4                  | 4.5                                                  | 0.0928          | 0.0073 | 92.8                  | 7.9                 | Е      |
| 1105              | 61634       | 4-Chlorobenzyl_lfone                                        | 0.506           | 0.006         | 50.6                  | 1.1                                                  | 0.0552          | 0.0023 | 55.2                  | 4.2                 | Е      |
| 1125              | 61668       | Phosmet oxon                                                | 0.735           | 0.034         | 73.5                  | 4.7                                                  | 0.0999          | 0.0083 | 99.9                  | 8.3                 | Е      |
| 1126              | 61646       | Fenamiphos sulfoxide <sup>1</sup>                           | ł               | ł             | 1                     | I                                                    | 0.0174          | 0.0010 | 17.4                  | 5.9                 | Е      |
| 1134              | 61644       | Ethion monoxon                                              | 0.811           | 0.034         | 81.1                  | 4.2                                                  | 0.1002          | 0.0043 | 100.2                 | 4.3                 | Е      |
| 1153              | 38775       | Dichlorvos                                                  | 0.451           | 0.040         | 45.1                  | 8.8                                                  | 0.0312          | 0.0083 | 31.2                  | 26.5                | Е      |
| 1227              | 61647       | Fenthion sulfoxide                                          | 0.750           | 0.022         | 75.0                  | 3.0                                                  | 0.0850          | 0.0061 | 85.0                  | 7.2                 | Е      |
|                   |             | Surrogates                                                  |                 |               |                       |                                                      |                 |        |                       |                     |        |
|                   | 99223       | Diazinon- $d_{10}$ , _ogate                                 | 1.238           | 0.028         | 123.8                 | 2.3                                                  | 0.0750          | 0.0030 | 75.0                  | 4.0                 | I      |
|                   | 99224       | alpha-HCH-d <sub>6</sub> , _ogate                           | 1.036           | 0.280         | 103.6                 | 27.0                                                 | 0.0941          | 0.0058 | 94.1                  | 6.1                 | I      |
| <sup>1</sup> Tert | outhylazin  | <sup>1</sup> Terbuthylazine, 1,4-naphthaquinone, and fenami | fenamiphos s    | sulfoxide not | included in f         | phos sulfoxide not included in fortification mixture | ixture.         |        |                       |                     |        |

#### **Method Detection Limits**

Short-term method detection limits (MDLs) for pesticides and pesticide degradates were estimated by determining the analytes in eight reagent-water samples fortified at concentrations of  $0.015 \ \mu g/L$  for most analytes. The MDLs usually are calculated as about three standard deviations of the mean concentration (U.S. Environmental Protection Agency, 1997). For this report, the F-pseudosigma rather than the standard deviation was used to calculate the MDLs.

$$MDL = F \times t (n-1, 1-\alpha = 0.99) \quad , \quad (11)$$

- where F = F-pseudosigma of replicate analyses, in micrograms per liter;
  - n = number of replicate samples;
  - t = Student's *t*-value for a one-tailed test appropriate for the 99-percent confidence level  $(1-\alpha = 0.99)$  with *n*-1 degrees of freedom; and
  - $\alpha$  = level of significance.

For eight replicates and a 99-percent confidence level, the value of *t* is 2.998. The phrase, short-term MDL, is used to differentiate these one-time and oneanalytical-instrument estimates from longterm MDLs (LT–MDLs) determined over a longer time and that use results from different analytical instruments (Childress and others, 1999). Exercise caution in interpreting these MDLs and the preliminary LRLs because they are based on short-term studies, and for some of the analytes, the fortification level was greater than 2 to 5 times the MDL as recommended in the procedure (U.S. Environmental Protection Agency, 1997).

Some analytes that had low recovery or instrumental response were fortified at

successively higher concentrations (0.025, 0.075, and 0.1  $\mu$ g/L). Samples were analyzed on one instrument. The preliminary estimated MDLs ranged from 0.001 to 0.7  $\mu$ g/L, with a median MDL of 0.002  $\mu$ g/L for all analytes (table 10). More than 80 percent of the analytes had MDLs less than 0.01  $\mu$ g/L.

The LRLs are usually calculated as at least twice the LT-MDLs (Childress and others, 1999). Because of the limitations of the short-term MDL noted above, preliminary LRLs calculated using short-term MDLs were, in some cases, much lower than the lowest calibration standard that can be measured. Recently, the LRL calculation has been modified to include the bias introduced by low analyte recovery by calculating the LRL as twice the MDLs divided by the median recovery (expressed as a fraction) (Foreman and others, 2001). This new calculation resulted in preliminary LRLs for this method that were consistent with analysis of low calibration standards for most analytes (table 10). Eight analytes had calculated preliminary LRLs that were too low for reliable detection (greater than the maximum 1 percent false negative error rate; Childress and others, 1999). Therefore, the concentration of the lowest calibration standard that could be reliably detected was used instead as an estimate of the preliminary LRL for these analytes (shown in bold in table 10). The preliminary LRLs range from 0.003 to 0.267  $\mu$ g/L for most analytes (table 10).

#### Data Analysis

The data summaries presented in tables 6 through 10 use nonparametric equivalents of the more commonly used summary statistics. For a description of the data, the median has been used rather than the arithmetic mean or average. Similarly, for the dispersion or spread of the data, the **Table 10.** Method detection limits and preliminary laboratory reporting levels for pesticides and pesticide degradates calculated from determination of the analytes in eight reagent-water samples fortified at concentrations from 0.015 to 0.1 microgram per liter

[Analytes are separated into parent pesticides and degradates and sorted by remark code and then by rank. Analyses performed on one instrument. Rank, national application and use rank of pesticide; P-Code, National Water Information System parameter code; µg/L, microgram per liter; Median conc., median concentration; F-pseu, F-pseudosigma; Rel F-pseu, relative F-pseudosigma; MDL, method detection limit; LRL, laboratory reporting level; **bold** numbers are estimated LRLs based on lowest calibration standard observed; –, not applicable; E, estimated qualifier remark]

| Rank | P-Code | Short name            | Fortifi-<br>cation<br>level<br>(µg/L) | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | MDL<br>(µg/L) | Prelim-<br>inary<br>LRL<br>(μg/L) | Remark<br>code |
|------|--------|-----------------------|---------------------------------------|---------------------------|------------------|---------------------------------|----------------------------|---------------|-----------------------------------|----------------|
|      |        | Parent pesticides     |                                       |                           |                  |                                 |                            |               |                                   |                |
| 63   | 04036  | Prometryn             | 0.015                                 | 0.0112                    | 0.00067          | 74.7                            | 6.0                        | 0.0020        | 0.0054                            | _              |
| 69   | 61603  | Profenofos            | 0.015                                 | 0.0067                    | 0.00044          | 44.7                            | 6.6                        | 0.0013        | 0.0059                            | _              |
| 71   | 34362  | alpha-Endosulfan      | 0.015                                 | 0.0078                    | 0.00041          | 52.3                            | 5.2                        | 0.0012        | 0.0047                            | _              |
| 75   | 61596  | Metalaxyl             | 0.015                                 | 0.0123                    | 0.00069          | 81.7                            | 5.6                        | 0.0021        | 0.0051                            | _              |
| 106  | 61600  | Oxyfluorfen           | 0.015                                 | 0.0065                    | 0.00053          | 43.6                            | 8.2                        | 0.0016        | 0.0073                            | _              |
| 108  | 79846  | cis-Propiconazole     | 0.015                                 | 0.0056                    | 0.00021          | 37.4                            | 3.8                        | 0.0006        | 0.008                             | _              |
| 110  | 79847  | trans-Propiconazole   | 0.015                                 | 0.0030                    | 0.00044          | 19.9                            | 14.8                       | 0.0013        | 0.0133                            | _              |
| 121  | 61599  | Myclobutanil          | 0.015                                 | 0.0056                    | 0.00037          | 37.4                            | 6.6                        | 0.0011        | 0.008                             | _              |
| 126  | 61591  | Fenamiphos            | 0.1                                   | 0.1010                    | 0.00489          | 101.0                           | 4.8                        | 0.0154        | 0.0290                            | _              |
| 127  | 04025  | Hexazinone            | 0.025                                 | 0.0079                    | 0.00068          | 31.6                            | 8.6                        | 0.0020        | 0.0129                            | _              |
| 128  | 04031  | Cycloate              | 0.015                                 | 0.0133                    | 0.00070          | 88.7                            | 5.3                        | 0.0021        | 0.0047                            | _              |
| 132  | 61598  | Methidathion          | 0.015                                 | 0.0068                    | 0.00044          | 45.1                            | 6.5                        | 0.0013        | 0.0058                            | _              |
| 134  | 82346  | Ethion                | 0.015                                 | 0.0059                    | 0.00026          | 39.4                            | 4.4                        | 0.0008        | 0.0040                            | _              |
| 211  | 79844  | (E)-Dimethomorph      | 0.075                                 | 0.0126                    | 0.00057          | 16.8                            | 4.6                        | 0.0017        | 0.0203                            | _              |
| 212  | 79845  | (Z)-Dimethomorph      | 0.075                                 | 0.0104                    | 0.00106          | 13.9                            | 10.2                       | 0.0032        | 0.0457                            | _              |
| 220  | 04022  | Terbuthylazine        | 0.015                                 | 0.0132                    | 0.00150          | 88.0                            | 11.4                       | 0.0045        | 0.0102                            | _              |
| 225  | 61592  | Flumetralin           | 0.015                                 | 0.0053                    | 0.00018          | 35.1                            | 3.4                        | 0.0005        | 0.004                             | _              |
| 227  | 38801  | Fenthion              | 0.015                                 | 0.0064                    | 0.00110          | 42.8                            | 17.1                       | 0.0033        | 0.0154                            | _              |
| 228  | 61594  | Isofenphos            | 0.015                                 | 0.0100                    | 0.00038          | 66.9                            | 3.8                        | 0.0011        | 0.0034                            | _              |
| 229  | 61604  | Propetamphos          | 0.015                                 | 0.0101                    | 0.00043          | 67.3                            | 4.3                        | 0.0013        | 0.0038                            | _              |
| 231  | 61602  | Tebupirimphos         | 0.015                                 | 0.0110                    | 0.00067          | 73.3                            | 6.1                        | 0.0020        | 0.0055                            | _              |
| 28   | 82662  | Dimethoate            | 0.015                                 | 0.0052                    | 0.00035          | 34.6                            | 6.8                        | 0.0011        | 0.0061                            | E              |
| 30   | 61610  | Tribuphos             | 0.015                                 | 0.0054                    | 0.00026          | 35.7                            | 4.9                        | 0.0008        | 0.0044                            | Е              |
| 71   | 34357  | beta-Endosulfan       | 0.025                                 | 0.0145                    | 0.00137          | 58.0                            | 9.5                        | 0.0041        | 0.0142                            | Е              |
| 76   | 61606  | Tefluthrin            | 0.015                                 | 0.0048                    | 0.00041          | 31.9                            | 8.6                        | 0.0012        | 0.0077                            | Е              |
| 83   | 38454  | Dicrotophos           | 0.1                                   | 0.0377                    | 0.00530          | 37.7                            | 14.1                       | 0.0167        | 0.0843                            | Е              |
| 93   | 61593  | Iprodione             | 0.1                                   | 0.4120                    | 0.23721          | 412.0                           | 57.6                       | 0.7456        | 1.4223                            | E              |
| 102  | 61595  | Cyhalothrin           | 0.025                                 | 0.0049                    | 0.00029          | 19.6                            | 5.9                        | 0.0009        | 0.0089                            | Е              |
| 114  | 61586  | Cypermethrin          | 0.025                                 | 0.0064                    | 0.00037          | 25.8                            | 5.8                        | 0.0011        | 0.0086                            | Е              |
| 115  | 38716  | Sulprofos             | 0.015                                 | 0.0039                    | 0.00067          | 26.0                            | 17.3                       | 0.0020        | 0.0155                            | Е              |
| 125  | 61601  | Phosmet               | 0.025                                 | 0.0055                    | 0.00029          | 22.1                            | 5.3                        | 0.0009        | 0.0079                            | Е              |
| 129  | 61585  | Cyfluthrin            | 0.025                                 | 0.0104                    | 0.00019          | 41.6                            | 1.8                        | 0.0006        | 0.008                             | Е              |
| 131  | 61580  | Bifenthrin            | 0.015                                 | 0.0038                    | 0.00022          | 25.1                            | 6.0                        | 0.0007        | 0.0053                            | Е              |
| 230  | 61605  | Sulfotepp             | 0.015                                 | 0.0106                    | 0.00030          | 70.7                            | 2.8                        | 0.0009        | 0.0025                            | Е              |
| 232  | 61607  | Temephos <sup>1</sup> | 0.1                                   | 0.0339                    | 0.01509          | 33.9                            | 44.5                       | 0.0361        | 0.2669                            | Е              |

**Table 10.** Method detection limits and preliminary laboratory reporting levels for pesticides and pesticide degradates calculated from determination of the analytes in eight reagent-water samples fortified at concentrations from 0.015 to 0.1 microgram per liter—Continued

| Rank | P-Code | Short name                         | Fortifi-<br>cation<br>level<br>(µg/L) | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | MDL<br>(µg/L) | Prelim-<br>inary<br>LRL<br>(μg/L) | Remark<br>code |
|------|--------|------------------------------------|---------------------------------------|---------------------------|------------------|---------------------------------|----------------------------|---------------|-----------------------------------|----------------|
|      |        | Degradates                         |                                       |                           |                  |                                 |                            |               |                                   |                |
| 1002 | 61615  | 2-[2-Ethyl-6-m_panol               | 0.1                                   | 0.087                     | 0.01831          | 87.4                            | 20.9                       | 0.0575        | 0.1256                            | _              |
| 1007 | 61618  | 2-Chloro-2,6-d_ilide               | 0.015                                 | 0.013                     | 0.00070          | 83.3                            | 5.6                        | 0.0021        | 0.0050                            | _              |
| 1008 | 61665  | 4-(Hydroxymeth_halin) <sup>1</sup> | 0.1                                   | 0.081                     | 0.01920          | 80.6                            | 23.6                       | 0.0455        | 0.1428                            | _              |
| 1016 | 61674  | Terbufos-O-ana_lfone               | 0.075                                 | 0.039                     | 0.00587          | 52.1                            | 15.0                       | 0.0176        | 0.0676                            | _              |
| 1033 | 61625  | 3,4-Dichloroaniline                | 0.015                                 | 0.010                     | 0.00049          | 64.6                            | 5.0                        | 0.0015        | 0.0045                            | _              |
| 1043 | 61629  | 3-Phenoxybenzy_cohol               | 0.075                                 | 0.042                     | 0.00436          | 56.1                            | 10.3                       | 0.0131        | 0.0466                            | _              |
| 1044 | 79842  | c-Methyl-3-(2,_ylate               | 0.015                                 | 0.004                     | 0.00165          | 25.2                            | 10.5                       | 0.0049        | 0.0393                            | _              |
| 1044 | 79843  | t-Methyl-3-(2,_ylate               | 0.015                                 | 0.007                     | 0.00250          | 44.7                            | 19.9                       | 0.0075        | 0.0335                            | _              |
| 1049 | 61663  | Paraoxon-ethyl                     | 0.025                                 | 0.016                     | 0.00063          | 62.6                            | 5.7                        | 0.0019        | 0.008                             | _              |
| 1060 | 61652  | Malaoxon                           | 0.025                                 | 0.013                     | 0.00042          | 50.4                            | 6.6                        | 0.0013        | 0.008                             | _              |
| 1062 | 61637  | 2-(4-tert-buty_xanol               | 0.015                                 | 0.011                     | 0.00133          | 74.0                            | 15.3                       | 0.0040        | 0.0108                            | _              |
| 1067 | 61640  | Disulfoton sulfone                 | 0.015                                 | 0.006                     | 0.00113          | 42.5                            | 7.3                        | 0.0034        | 0.0159                            | _              |
| 1071 | 61642  | Endosulfan ether                   | 0.015                                 | 0.015                     | 0.00068          | 103.0                           | 7.5                        | 0.0020        | 0.0041                            | _              |
| 1071 | 61590  | Endosulfan sulfate                 | 0.015                                 | 0.009                     | 0.00056          | 57.8                            | 4.8                        | 0.0017        | 0.0058                            | _              |
| 1076 | 61671  | Tefluthrin met_9364]               | 0.015                                 | 0.005                     | 0.00083          | 32.0                            | 8.2                        | 0.0025        | 0.0156                            | _              |
| 1093 | 61627  | 3,5-Dichloroaniline                | 0.015                                 | 0.012                     | 0.00061          | 78.0                            | 5.9                        | 0.0018        | 0.0047                            | _              |
| 1099 | 61614  | 2,5-Dichloroaniline                | 0.015                                 | 0.010                     | 0.00293          | 67.3                            | 10.9                       | 0.0088        | 0.0261                            | _              |
| 1124 | 61660  | O-Ethyl-O-meth_ioate               | 0.015                                 | 0.010                     | 0.00094          | 68.3                            | 24.9                       | 0.0028        | 0.0083                            | _              |
| 1126 | 61645  | Fenamiphos sulfone                 | 0.075                                 | 0.027                     | 0.00046          | 35.7                            | 6.9                        | 0.0014        | 0.0077                            | _              |
| 1231 | 61669  | Tebupirimphos,_logue               | 0.015                                 | 0.010                     | 0.00069          | 65.8                            | 7.0                        | 0.0021        | 0.0063                            | _              |
| 1002 | 61620  | 2-Ethyl-6-meth_iline               | 0.015                                 | 0.011                     | 0.00054          | 72.3                            | 5.0                        | 0.0016        | 0.0045                            | Е              |
| 1012 | 61636  | Chlorpyrifos, _nalog               | 0.075                                 | 0.027                     | 0.00332          | 35.4                            | 12.5                       | 0.0099        | 0.0562                            | Е              |
| 1013 | 61617  | 2-Amino-N-isop_amide               | 0.015                                 | 0.007                     | 0.00038          | 46.3                            | 5.4                        | 0.0011        | 0.0049                            | Е              |
| 1014 | 61664  | Paraoxon-methyl                    | 0.075                                 | 0.048                     | 0.00321          | 64.3                            | 6.7                        | 0.0096        | 0.0299                            | Е              |
| 1015 | 61633  | 4-Chloro-2-met_henol               | 0.015                                 | 0.007                     | 0.00044          | 46.7                            | 6.3                        | 0.0013        | 0.0056                            | Е              |
| 1024 | 61630  | 3-Trifluoromet_iline               | 0.015                                 | 0.005                     | 0.00055          | 30.5                            | 12.0                       | 0.0016        | 0.0108                            | Е              |
| 1032 | 49295  | 1-Naphthol                         | 0.025                                 | 0.021                     | 0.01212          | 82.4                            | 58.8                       | 0.0363        | 0.0882                            | Е              |
| 1032 | 61611  | 1,4-Naphthaquinone                 | 0.025                                 | 0.008                     | 0.00277          | 32.6                            | 23.3                       | 0.0083        | 0.0509                            | Е              |
| 1034 | 61666  | Phorate oxon                       | 0.075                                 | 0.012                     | 0.00258          | 15.9                            | 10.3                       | 0.0077        | 0.0973                            | Е              |
| 1053 | 61635  | Azinphos-methyl-oxon               | 0.015                                 | 0.025                     | 0.00027          | 33.5                            | 3.3                        | 0.0008        | 0.016                             | Е              |
| 1054 | 61649  | Fonofos, oxyge_nalog               | 0.015                                 | 0.008                     | 0.00020          | 55.9                            | 3.2                        | 0.0006        | 0.0021                            | Е              |
| 1067 | 61641  | Disulfoton sulfoxide               | 0.075                                 | 0.081                     | 0.00040          | 107.5                           | 8.3                        | 0.0012        | 0.0024                            | Е              |
| 1076 | 61672  | Tefluthrin met_2912]               | 0.015                                 | 0.009                     | 0.00104          | 60.3                            | 8.1                        | 0.0031        | 0.0103                            | Е              |
| 1101 | 61631  | 4,4'-Dichlorob_enone               | 0.015                                 | 0.013                     | 0.00048          | 85.3                            | 6.1                        | 0.0014        | 0.0034                            | Е              |
| 1105 | 61634  | 4-Chlorobenzyl_lfone               | 0.015                                 | 0.008                     | 0.00265          | 52.2                            | 8.5                        | 0.0083        | 0.0304                            | Е              |
| 1125 | 61668  | Phosmet oxon                       | 0.1                                   | 0.031                     | 0.00287          | 31.1                            | 8.6                        | 0.0086        | 0.0553                            | Е              |

**Table 10.** Method detection limits and preliminary laboratory reporting levels for pesticides and pesticide degradates calculated from determination of the analytes in eight reagent-water samples fortified at concentrations from 0.015 to 0.1 microgram per liter—Continued

| Rank | P-Code | Short name                        | Fortifi-<br>cation<br>level<br>(µg/L) | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | MDL<br>(µg/L) | Prelim-<br>inary<br>LRL<br>(μg/L) | Remark<br>code |
|------|--------|-----------------------------------|---------------------------------------|---------------------------|------------------|---------------------------------|----------------------------|---------------|-----------------------------------|----------------|
| 1126 | 61646  | Fenamiphos sulfoxide              | 0.075                                 | 0.033                     | 0.00014          | 44.5                            | 2.2                        | 0.0004        | 0.031                             | Е              |
| 1134 | 61644  | Ethion monoxon                    | 0.015                                 | 0.006                     | 0.00241          | 43.0                            | 29.6                       | 0.0072        | 0.0336                            | Е              |
| 1153 | 38775  | Dichlorvos                        | 0.025                                 | 0.011                     | 0.00089          | 45.2                            | 7.9                        | 0.0027        | 0.0118                            | Е              |
| 1227 | 61647  | Fenthion sulfoxide                | 0.015                                 | 0.008                     | 0.00068          | 51.6                            | 8.8                        | 0.0021        | 0.0079                            | Е              |
|      |        | Surrogates                        |                                       |                           |                  |                                 |                            |               |                                   |                |
|      | 99223  | Diazinon-d <sub>10</sub> , _ogate | 0.015                                 | 0.081                     | 0.00187          | 81.0                            | 2.3                        | 0.0056        | 0.0138                            | _              |
|      | 99224  | alpha-HCH-d <sub>6</sub> , _ogate | 0.015                                 | 0.091                     | 0.00065          | 91.3                            | 0.7                        | 0.0019        | 0.0043                            | _              |

<sup>1</sup>MDL for temephos and 4-(hydroxymethyl)pendamethalin were estimated from reagent-water set-spike data (table 17) with t = 2.39.

F-pseudosigma has been used rather than the standard deviation. The F-pseudosigma is defined as the interquartile range divided by 1.349 (Hoaglin, 1983). Because the nonparametric summaries are less likely to be influenced by an outlying result, they are more robust than their parametric equivalents in the small data sets produced in the method validation experiments.

*Recovery at different concentrations:* The median recovery of most compounds was comparable at 1.0, 0.1, or 0.01  $\mu$ g/L (tables 6 through 10), which indicated no major bias caused by the concentration of the analyte over the concentration range tested. For all sample matrices, samples were grouped by concentration and compared by using the nonparametric Mann-Whitney test to examine the null hypothesis that the median recoveries were equal to the median recovery at  $0.1 \,\mu\text{g/L}$ in each concentration (Miller and Miller, 1993). For other compounds, the median recoveries were significantly higher (p < 0.05; Mann-Whitney test) in the  $0.1-\mu g/L$  sample set compared to the  $1.0-\mu g/L$  set. These differences were small (4 to 15 percent) and might be the result of variation in instrument

performance because each sample set (same matrix and concentration) was analyzed at different times. The CCVs for the groundwater low-concentration set were also high, perhaps explaining an instrument analytical effect rather than sample matrix or concentration effects for some of the analytes determined in this set.

*Recovery in different matrices:* The mean recovery of some compounds was lower in the reagent-water sample sets (tables 6 and 7) compared to samples of surface water (table 8) or ground water (table 9). Again, these differences were small (4 to 15 percent) and might be the result of variation in instrument performance because each sample set was analyzed at different times.

#### **Recommended Holding Time**

The recommended holding time of analytes in pesticide-grade water at 4°C and after extraction on the SPE column with storage on the dry column at room temperature was estimated by modifying a standard practice (ASTM Procedure D-4841-88) for estimating holding time for constituents in water samples (American Society for Testing and Materials, 2000). In that standard, the maximum holding time is defined as the maximum period that a sample can be stored before the analyte degrades so that the systematic error exceeds the 99percent confidence interval (not to exceed 15 percent) of the mean concentration determined at time zero. Holding time is estimated by replicate analyses at discrete time intervals of a large volume of sample. A plot of the data then is prepared, and a line is fit to the data. The point where the line crosses the lower tolerable range of variation is the estimated holding time. An estimate of the analyte variability is needed to calculate the number of replicates required for each discrete time interval prior to determining the holding time.

It should be noted that the holding-time estimates were determined in reagent water. In environmental samples, the sample matrix might result in holding times different than those determined in a relatively clean matrix like reagent water. These holding times are recommended to provide a balance between the practical requirements of sample collection, shipping and processing, and the limited information provided by these estimated holding-time experiments. In general, the best approach is to extract samples by SPE and elute from the SPE column as quickly as possible.

The practice was modified for use in this report to better match the data produced in the validation experiments and identify analytes that have holding times shorter than those described in the complementary method 2001 (Zaugg and others, 1995). In method 2001, the recommended maximum holding times are 4 days in water prior to SPE, and 7 days on the SPE column after SPE (Zaugg and others, 1995, p. 39). The relative Fpseudosigma was used instead of the relative standard deviation to calculate the number of replicates needed at each discrete time interval. Similarly, instead of the standard deviation, the F-pseudosigma was used to calculate the tolerable range of variation. The F-pseudosigma generally is similar to the standard deviation for most compounds, and, therefore, the modification is expected to have little effect except when variability is high because of outliers. In that case, the Fpseudosigma provides a more conservative estimate than the standard deviation. A linear fit of the data rather than other graphical estimates was used to estimate maximum holding time to simplify the analysis. Visual examination of the data was used to make sure the linear fit did not underestimate the holding times for water and on the SPE column given in Zaugg and others (1995), although, in some cases, other types of graphical fit might provide better numerical estimates of holding time.

Calculation of replicates required for holding-time experiments: The relative F-pseudosigma of samples fortified in pesticide-grade water at 0.1  $\mu$ g/L (tables 6 and 7) was used to estimate the number of samples needed to evaluate a significant change in concentration over time. The number of replicates required for the holdingtime experiments was calculated according to the following equation:

$$n = \left(\frac{t \times Rel \ Fpseu}{D}\right)^2 \quad , \tag{12}$$

| where | n         | = | number of replicate samples;                                                                     |
|-------|-----------|---|--------------------------------------------------------------------------------------------------|
|       | t         | = | Student's <i>t</i> -value for a two-tailed test appropriate for the 99-percent confidence level; |
|       | Rel Fpseu | = | Relative F-pseudosigma,<br>in percent (tables 6 and 7); and                                      |
|       | D         | = | 15 percent, maximum variation from mean to be tolerated.                                         |

#### 48 Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

The value of t is 3.499 for eight replicates and a 99-percent confidence level. For most compounds, the calculated number of replicates n was less than four (tables 11 and 12), so this value was selected as a practical number of replicates to use for the holding-time study. For some of the more variable analytes, the use of four replicates is insufficient to characterize the estimated holding time.

SPE holding-time experiment: Reagentwater samples were fortified with parent pesticides or degradates at 0.1  $\mu$ g/L, extracted by SPE, and the column was dried on day zero. The SPE columns then were stored at room temperature. Four replicate samples were eluted from the SPE columns at discrete (0, 1, 3, 7, 14, and 28 days) intervals over 28 days. Parent pesticides and degradates were prepared and determined in separate experiments to avoid bias from formation of degradates during the holding-time experiment.

Pesticide-grade water holding-time experiment: Reagent-water samples were fortified with parent pesticides or degradates at 0.1  $\mu$ g/L and stored at 4°C. Four replicate samples were extracted at discrete (0, 1, 3, 7, 14, and 28 days) intervals over 28 days. Parent pesticides and degradates were prepared and determined in separate experiments to avoid bias from formation of degradates during the holding-time experiment.

Holding-time data analysis: All samples from either the SPE or water holdingtime experiments were analyzed in one batch at the end of the experiment. The tolerable variation *d* that was calculated from the following formula is listed in tables 13 and 14:

$$d = \pm \frac{t \times Fpseu}{\sqrt{n}} \quad , \tag{13}$$

where d = range of tolerable variation from initial recovery, in percent;

t

п

- = Student's *t*-value, for a twotailed test appropriate for the 99-percent confidence level;
- *Fpseu* = F-pseudosigma (tables 6 and 7) converted to percent; and
  - = 4, number of replicates.

The value of t is 3.499 for eight replicates and a 99-percent confidence level. The estimated d value, in percent recovery, then was subtracted from the day-zero value to give the lower tolerable range of variation from the day-zero recovery. Straight lines were fit to the data, and the day-zero intercept was calculated from the regression line. The equation for the regression line is

$$R = m \times t + b \quad , \tag{14}$$

where R = recovery, in percent;

m = slope of linear regression;

t = time, in days; and

*b* = time zero intercept, in percent recovery.

The intercept of the linear fit of the concentration in relation to the time line with the lower tolerable range of concentration gives the estimated holding time. The slope and intercept for the linear fit of the data are provided to allow estimates of holding times by using other estimates of the tolerable range of variation.

*Holding time on dry SPE column:* Ten parent pesticides had holding times on the dry SPE column that were 30 days or less (table 13). Two organothiophosphate pesticides, sulfotepp and sulprofos, had holding times **Table 11.** Number of replicates required to determine estimated holding time of parent pesticides in water and on solid-phase-extraction columns

| Rank | P-Code | Short name                  | Number<br>of replicates ( <i>n</i> ) | Remark<br>code |
|------|--------|-----------------------------|--------------------------------------|----------------|
|      |        | Parent pesticides           |                                      |                |
| 63   | 04036  | Prometryn                   | 1                                    | _              |
| 69   | 61603  | Profenofos                  | 2                                    | _              |
| 71   | 34362  | alpha-Endosulfan            | 1                                    | _              |
| 75   | 61596  | Metalaxyl                   | 1                                    | _              |
| 106  | 61600  | Oxyfluorfen                 | 4                                    | _              |
| 108  | 79846  | cis-Propiconazole           | 1                                    | _              |
| 110  | 79847  | trans-Propiconazole         | 2                                    | _              |
| 121  | 61599  | Myclobutanil                | 2                                    | _              |
| 126  | 61591  | Fenamiphos                  | 1                                    | _              |
| 127  | 04025  | Hexazinone                  | 1                                    | _              |
| 128  | 04031  | Cycloate                    | 1                                    | _              |
| 132  | 61598  | Methidathion                | 1                                    | _              |
| 134  | 82346  | Ethion                      | 1                                    | _              |
| 211  | 79844  | (E)-Dimethomorph            | 2                                    | _              |
| 212  | 79845  | (Z)-Dimethomorph            | 1                                    | _              |
| 220  | 04022  | Terbuthylazine <sup>1</sup> | 2                                    | _              |
| 225  | 61592  | Flumetralin                 | 3                                    | _              |
| 227  | 38801  | Fenthion                    | 2                                    | _              |
| 228  | 61594  | Isofenphos                  | 2                                    | _              |
| 229  | 61604  | Propetamphos                | 1                                    | _              |
| 231  | 61602  | Tebupirimphos               | 2                                    | _              |
| 28   | 82662  | Dimethoate                  | 30                                   | Е              |
| 30   | 61610  | Tribuphos                   | 8                                    | Е              |
| 71   | 34357  | beta-Endosulfan             | 1                                    | Е              |
| 76   | 61606  | Tefluthrin                  | 10                                   | Е              |
| 83   | 38454  | Dicrotophos                 | 31                                   | Е              |
| 93   | 61593  | Iprodione                   | 2                                    | Е              |
| 102  | 61595  | Cyhalothrin                 | 9                                    | Е              |
| 114  | 61586  | Cypermethrin                | 26                                   | Е              |
| 115  | 38716  | Sulprofos                   | 4                                    | Е              |
| 125  | 61601  | Phosmet                     | 3                                    | Е              |
| 129  | 61585  | Cyfluthrin                  | 22                                   | Е              |
| 131  | 61580  | Bifenthrin                  | 17                                   | Е              |
| 230  | 61605  | Sulfotepp                   | 1                                    | Е              |
| 232  | 61607  | Temephos <sup>1</sup>       | 7                                    | Е              |
|      |        | Surrogates                  |                                      |                |
|      | 99223  | Diazinon- $d_{10}$ , _ogate | 1                                    | _              |
|      | 99224  | $alpha$ -HCH- $d_6$ , ogate | 1                                    | _              |

[Number of replicates needed at each time step to estimate the mean concentration within 15 percent (*n*), (equation 12); P-Code, National Water Information System parameter code; –, not applicable; E, estimated qualifier remark]

<sup>1</sup>Terbuthylazine and temephos are not included in holding-time experiments.

**Table 12.** Number of replicates required to determine estimated holding time of degradates in water and on solid-phase-extraction columns

| Rank | P-Code | Short name                      | Number<br>of replicates ( <i>n</i> ) | Remark<br>code |
|------|--------|---------------------------------|--------------------------------------|----------------|
|      |        | Degradates                      |                                      |                |
| 1002 | 61615  | 2-[2-Ethyl-6-m_panol            | 3                                    | _              |
| 1007 | 61618  | 2-Chloro-2,6-d_ilide            | 1                                    | _              |
| 1008 | 61665  | 4-(Hydroxymeth_halin            | 5                                    | _              |
| 1014 | 61664  | Paraoxon-methyl                 | 1                                    | _              |
| 1033 | 61625  | 3,4-Dichloroaniline             | 6                                    | _              |
| 1043 | 61629  | 3-Phenoxybenzy cohol            | 1                                    | _              |
| 1044 | 79842  | <i>c</i> -Methyl-3-(2, ylate    | 1                                    | _              |
| 1044 | 79843  | <i>t</i> -Methyl-3-(2, _ylate   | 2                                    | _              |
| 1049 | 61663  | Paraoxon-ethyl <sup>1</sup>     | 1                                    | _              |
| 1060 | 61652  | Malaoxon                        | 2                                    | _              |
| 1062 | 61637  | 2-(4-tert-buty_xanol            | 3                                    | _              |
| 1067 | 61640  | Disulfoton sulfone              | 1                                    | _              |
| 1071 | 61642  | Endosulfan ether                | 1                                    | _              |
| 1071 | 61590  | Endosulfan sulfate <sup>1</sup> | 1                                    | _              |
| 1076 | 61672  | Tefluthrin met_2912]            | 1                                    | _              |
| 1076 | 61671  | Tefluthrin met_9364]            | 4                                    | _              |
| 1093 | 61627  | 3,5-Dichloroaniline             | 3                                    | _              |
| 1099 | 61614  | 2,5-Dichloroaniline             | 2                                    | _              |
| 1124 | 61660  | O-Ethyl-O-meth ioate            | 2                                    | _              |
| 1126 | 61645  | Fenamiphos sulfone              | 4                                    | _              |
| 1231 | 61669  | Tebupirimphos,_logue            | 1                                    | _              |
| 1002 | 61620  | 2-Ethyl-6-meth_iline            | 1                                    | Е              |
| 1012 | 61636  | Chlorpyrifos, nalog             | 45                                   | Е              |
| 1013 | 61617  | 2-Amino-N-isop amide            | 13                                   | Е              |
| 1015 | 61633  | 4-Chloro-2-met_henol            | 11                                   | Е              |
| 1016 | 61674  | Terbufos-O-ana lfone            | 5                                    | Е              |
| 1024 | 61630  | 3-Trifluoromet iline            | 4                                    | Е              |
| 1032 | 49295  | 1-Naphthol                      | 89                                   | Е              |
| 1032 | 61611  | 1,4-Naphthaquinone              | 53                                   | Ē              |
| 1034 | 61666  | Phorate oxon                    | 4                                    | Ē              |
| 1053 | 61635  | Azinphos-methyl-oxon            | 22                                   | Ē              |
| 1054 | 61649  | Fonofos, oxyge_nalog            | 1                                    | Ē              |
| 1067 | 61641  | Disulfoton sulfoxide            | 2                                    | Ē              |
| 1101 | 61631  | 4,4'-Dichlorob_enone            | 1                                    | E              |
| 1105 | 61634  | 4-Chlorobenzyl_lfone            | 7                                    | E              |
| 1125 | 61668  | Phosmet oxon                    | 66                                   | E              |
| 1126 | 61646  | Fenamiphos sulfoxide            | 8                                    | E              |
| 1120 | 61644  | Ethion monoxon                  | 2                                    | E              |
| 1153 | 38775  | Dichlorvos <sup>1</sup>         | 2                                    | E              |
| 1227 | 61647  | Fenthion sulfoxide              | 2                                    | E              |
|      | 01017  | Surrogates                      | 2                                    | Ľ              |
|      | 99223  | Diazinon- $d_{10}$ , _ogate     | 2                                    | _              |
|      | 99223  | $alpha$ -HCH- $d_6$ , _ogate    | 2                                    |                |

[Number of replicates needed at each time step to estimate the mean concentration within 15 percent (*n*), (equation 12); P-Code, National Water Information System parameter code; –, not applicable; E, estimated qualifier remark]

<sup>1</sup>Dichlorvos, endosulfan sulfate, and paraoxon-ethyl were analyzed in parent fortification mixture.

## **Table 13.** Statistical data used to determine estimated holding time of parent pesticides on dry solid-phase-extraction columns maintained at 25 degrees Celsius

[Holding times less than 7 days shown in boldface. Reagent-water samples were fortified at 0.1 microgram per liter, isolated on the SPE column on day 0, and four replicate samples were eluted from the SPE column on days 0, 1, 3, 7, 14, and 28. P-Code, National Water Information System parameter code; *d*, tolerable range of variation in initial concentration (in percent recovery); Mean–*d*, mean recovery on day 0 minus *d*; Intercept, intercept of linear fit to holding-time results; Slope, slope of linear fit to holding-time results; Holding time, estimated holding time (days) from least-squares regression (using a straight-line model); --, estimated holding time greater than 28 days because compound did not decrease in concentration over 28-day test period; –, not applicable; E, estimated qualifier remark]

| Rank | P-Code | Short name                  | <i>d</i><br>(percent) | Mean<br>recovery<br>day 0<br>(percent) | Mean– <i>d</i><br>(percent) | Intercept<br>(percent) | Slope  | Holding<br>time<br>(days) | Remark<br>code |
|------|--------|-----------------------------|-----------------------|----------------------------------------|-----------------------------|------------------------|--------|---------------------------|----------------|
|      |        | Parent pesticides           |                       |                                        |                             |                        |        |                           |                |
| 63   | 04036  | Prometryn                   | 6.0                   | 84.8                                   | 78.7                        | 83.3                   | 0.014  |                           | —              |
| 69   | 61603  | Profenofos                  | 6.1                   | 70.9                                   | 64.8                        | 69.7                   | -0.955 | 7                         | _              |
| 71   | 34362  | alpha-Endosulfan            | 4.5                   | 97.8                                   | 93.3                        | 102.0                  | 0.026  |                           | —              |
| 75   | 61596  | Metalaxyl                   | 5.8                   | 88.3                                   | 82.5                        | 88.5                   | -0.043 |                           | _              |
| 106  | 61600  | Oxyfluorfen                 | 7.3                   | 63.9                                   | 56.5                        | 63.5                   | -0.170 |                           | —              |
| 108  | 79846  | cis-Propiconazole           | 3.4                   | 70.0                                   | 66.6                        | 70.9                   | 0.025  |                           | —              |
| 110  | 79847  | trans-Propiconazole         | 5.9                   | 82.5                                   | 76.6                        | 82.8                   | 0.007  |                           | _              |
| 121  | 61599  | Myclobutanil                | 5.8                   | 78.5                                   | 72.6                        | 79.5                   | -0.001 |                           | _              |
| 126  | 61591  | Fenamiphos                  | 4.0                   | 54.6                                   | 50.6                        | 66.5                   | -0.085 |                           | _              |
| 127  | 04025  | Hexazinone                  | 2.4                   | 56.5                                   | 54.1                        | 60.8                   | -0.086 | 28                        | _              |
| 128  | 04031  | Cycloate                    | 5.1                   | 77.8                                   | 72.6                        | 76.2                   | 0.114  |                           | _              |
| 132  | 61598  | Methidathion                | 3.1                   | 75.9                                   | 72.7                        | 76.5                   | 0.021  |                           | _              |
| 134  | 82346  | Ethion                      | 2.7                   | 66.6                                   | 64.0                        | 65.8                   | -0.048 |                           | _              |
| 211  | 79844  | (E)-Dimethomorph            | 7.7                   | 68.5                                   | 60.9                        | 68.9                   | -0.038 |                           | _              |
| 212  | 79845  | (Z)-Dimethomorph            | 5.5                   | 63.9                                   | 58.4                        | 65.2                   | -0.075 |                           | _              |
| 220  | 04022  | Terbuthylazine <sup>1</sup> | 7.7                   | _                                      | _                           | _                      | _      | _                         | _              |
| 225  | 61592  | Flumetralin                 | 6.3                   | 68.6                                   | 62.3                        | 69.9                   | -0.254 | 25                        | _              |
| 227  | 38801  | Fenthion                    | 6.2                   | 85.5                                   | 78.8                        | 82.3                   | -1.363 | <sup>2</sup> 7            | _              |
| 228  | 61594  | Isofenphos                  | 4.3                   | 85.0                                   | 78.3                        | 82.1                   | -0.038 |                           | _              |
| 229  | 61604  | Propetamphos                | 5.8                   | 82.6                                   | 83.8                        | 81.6                   | -0.022 |                           | _              |
| 231  | 61602  | Tebupirimphos               | 21.0                  | 89.6                                   | 0.0                         | 87.1                   | -0.019 |                           | _              |
| 28   | 82662  | Dimethoate                  | 6.7                   | 16.7                                   | 46.4                        | 16.7                   | -0.004 | 2                         | Е              |
| 30   | 61610  | Tribuphos                   | 3.9                   | 53.1                                   | 38.4                        | 50.8                   | -0.287 | <sup>2</sup> 24           | Е              |
| 71   | 34357  | beta-Endosulfan             | 5.7                   | 107.2                                  | 101.4                       | 109.8                  | -0.193 | 30                        | Е              |
| 76   | 61606  | Tefluthrin                  | 6.1                   | 42.3                                   | 4.5                         | 40.3                   | -0.018 |                           | Е              |
| 83   | 38454  | Dicrotophos                 | 4.3                   | 10.6                                   | 87.2                        | 14.9                   | 0.086  |                           | Е              |
| 93   | 61593  | Iprodione                   | 2.0                   | 91.4                                   | 29.2                        | 88.2                   | 0.072  | 2                         | Е              |
| 102  | 61595  | Cyhalothrin                 | 11.6                  | 31.2                                   | 36.4                        | 30.2                   | -0.090 | <sup>2</sup> 22           | Е              |
| 114  | 61586  | Cypermethrin                | 7.4                   | 48.0                                   | 31.9                        | 49.9                   | -0.075 | 2                         | Е              |
| 115  | 38716  | Sulprofos                   | 7.8                   | 71.6                                   | 63.8                        | 68.8                   | -1.415 | 6                         | Е              |
| 125  | 61601  | Phosmet                     | 10.7                  | 39.3                                   | 36.5                        | 37.3                   | -0.281 | <sup>2</sup> 27           | Е              |
| 129  | 61585  | Cyfluthrin                  | 4.0                   | 47.1                                   | 29.0                        | 50.9                   | -0.029 |                           | Е              |

#### 52 Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

**Table 13.** Statistical data used to determine estimated holding time of parent pesticides on dry solid-phase-extraction columns maintained at 25 degrees Celsius—Continued

| Rank | P-Code | Short name                        | <i>d</i><br>(percent) | Mean<br>recovery<br>day 0<br>(percent) | Mean– <i>d</i><br>(percent) | Intercept<br>(percent) | Slope  | Holding<br>time<br>(days) | Remark<br>code |
|------|--------|-----------------------------------|-----------------------|----------------------------------------|-----------------------------|------------------------|--------|---------------------------|----------------|
| 131  | 61580  | Bifenthrin                        | 9.0                   | 32.9                                   | 76.5                        | 32.2                   | 0.053  | 2                         | Е              |
| 230  | 61605  | Sulfotepp                         | 4.1                   | 83.2                                   | 79.1                        | 80.2                   | -1.218 | 4                         | Е              |
| 232  | 61607  | Temephos <sup>1</sup>             | 7.0                   | _                                      | _                           | _                      | _      | _                         | Е              |
|      |        | Surrogates                        |                       |                                        |                             |                        |        |                           |                |
|      | 99223  | Diazinon- $d_{10}$ , _ogate       | 3.7                   | 97.9                                   | 94.2                        | 94.6                   | -0.316 | 12                        | _              |
|      | 99224  | alpha-HCH-d <sub>6</sub> , _ogate | 5.7                   | 91.0                                   | 85.3                        | 88.9                   | -0.126 |                           | -              |

<sup>1</sup>Terbuthylazine and temephos were not included in holding-time experiments.

<sup>2</sup>Holding times (days) were corrected in pdf version of the report, February 4, 2002 (mws).

## **Table 14.** Statistical data used to determine estimated holding time of degradates on solid-phase-extraction columns maintained at 25 degrees Celsius

[Holding times less than 7 days shown in boldface. Reagent-water samples were fortified at 0.1 microgram per liter, isolated on the SPE column on day 0, and four replicate samples were eluted from the SPE column on days 0, 1, 3, 7, 14, and 28. P-Code, National Water Information System parameter code; *d*, tolerable range of variation in initial concentration (in percent recovery); Mean–*d*, mean recovery on day 0 minus *d*; Intercept, intercept of linear fit to holding-time results; Slope, slope of linear fit to holding-time results; Holding time, estimated holding time (days) from least-squares regression (using a straight-line model); –, not applicable; --, estimated holding time greater than 28 days because compound did not decrease in concentration over 28-day test period; E, estimated qualifier remark]

| Rank | P-Code | Short name                      | <i>d</i><br>(percent) | Mean<br>recovery<br>day 0<br>(percent) | Mean– <i>d</i><br>(percent <i>)</i> | Intercept<br>(percent) | Slope  | Holding<br>time<br>(days) | Remark<br>code |
|------|--------|---------------------------------|-----------------------|----------------------------------------|-------------------------------------|------------------------|--------|---------------------------|----------------|
|      |        | Degradates                      |                       |                                        |                                     |                        |        |                           |                |
| 1002 | 61615  | 2-[2-Ethyl-6-m_panol            | 9.3                   | 91.8                                   | 82.5                                | 90.1                   | -0.836 | 12                        | _              |
| 1007 | 61618  | 2-Chloro-2,6-d_ilide            | 3.2                   | 92.9                                   | 89.8                                | 94.6                   | -0.153 | 21                        | _              |
| 1008 | 61665  | 4-(Hydroxymeth_halin            | 13.5                  | 91.0                                   | 77.5                                | 92.1                   | 0.105  |                           | _              |
| 1016 | 61674  | Terbufos-O-ana_lfone            | 14.7                  | 93.9                                   | 91.2                                | 87.4                   | -1.060 | 12                        | _              |
| 1043 | 61629  | 3-Phenoxybenzy_cohol            | 4.2                   | 70.0                                   | 65.8                                | 74.7                   | -0.334 | 13                        | _              |
| 1044 | 79842  | c-Methyl-3-(2,_ylate            | 4.9                   | 95.4                                   | 90.5                                | 93.2                   | -0.101 |                           | _              |
| 1044 | 79843  | t-Methyl-3-(2,_ylate            | 7.0                   | 94.4                                   | 87.4                                | 94.6                   | -0.109 |                           | _              |
| 1049 | 61663  | Paraoxon-ethyl <sup>1</sup>     | 5.0                   | 70.5                                   | 65.5                                | 67.8                   | -0.596 | 9                         | _              |
| 1060 | 61652  | Malaoxon                        | 9.1                   | 92.6                                   | 83.5                                | 88.5                   | -0.855 | 11                        | _              |
| 1062 | 61637  | 2-(4-tert-buty_xanol            | 9.9                   | 83.6                                   | 73.7                                | 88.0                   | -0.157 |                           | _              |
| 1067 | 61640  | Disulfoton sulfone              | 5.8                   | 86.0                                   | 80.2                                | 86.3                   | -0.049 |                           | _              |
| 1071 | 61642  | Endosulfan ether                | 4.7                   | 105.8                                  | 101.1                               | 108.9                  | -0.233 | 21                        | _              |
| 1071 | 61590  | Endosulfan sulfate <sup>1</sup> | 5.7                   | 102.5                                  | 96.8                                | 103.4                  | -0.032 | _                         | _              |
| 1076 | 61672  | Tefluthrin met_2912]            | 4.2                   | 69.0                                   | 64.8                                | 69.2                   | -0.291 | 15                        | _              |
| 1093 | 61627  | 3,5-Dichloroaniline             | 11.2                  | 107.5                                  | 96.3                                | 109.6                  | -0.794 | 15                        | _              |
| 1099 | 61614  | 2,5-Dichloroaniline             | 8.8                   | 89.5                                   | 80.7                                | 92.4                   | -0.268 |                           | _              |
| 1124 | 61660  | O-Ethyl-O-meth_ioate            | 8.3                   | 87.8                                   | 79.5                                | 89.3                   | -0.042 |                           | _              |

**Table 14.** Statistical data used to determine estimated holding time of degradates on solid-phase-extraction columns

 maintained at 25 degrees Celsius—Continued

| Rank | P-Code | Short name                        | d<br>(percent) | Mean<br>recovery<br>day 0<br>(percent) | Mean– <i>d</i><br>(percent) | Intercept<br>(percent) | Slope   | Holding<br>time<br>(days) | Remark<br>code |
|------|--------|-----------------------------------|----------------|----------------------------------------|-----------------------------|------------------------|---------|---------------------------|----------------|
| 1126 | 61645  | Fenamiphos sulfone                | 9.3            | 65.2                                   | 55.9                        | 67.3                   | -0.152  |                           | -              |
| 1231 | 61669  | Tebupirimphos,_logue              | 4.4            | 78.7                                   | 74.3                        | 80.5                   | -0.375  | 12                        | _              |
| 1002 | 61620  | 2-Ethyl-6-meth_iline              | 3.4            | 87.0                                   | 83.6                        | 95.5                   | -0.783  | 5                         | Е              |
| 1012 | 61636  | Chlorpyrifos, _nalog              | 8.8            | 71.0                                   | 62.2                        | 60.7                   | -17.963 | 1                         | Е              |
| 1013 | 61617  | 2-Amino-N-isop_amide              | 15.4           | 93.4                                   | 78.0                        | 95.2                   | -0.159  |                           | Е              |
| 1014 | 61664  | Paraoxon-methyl                   | 12.4           | 57.4                                   | 81.6                        | 52.4                   | -0.879  | 12                        | E              |
| 1015 | 61633  | 4-Chloro-2-met_henol              | 3.9            | 78.0                                   | 53.6                        | 79.9                   | 0.048   | 5                         | Е              |
| 1024 | 61630  | 3-Trifluoromet_iline              | 17.2           | 56.5                                   | 60.8                        | 61.4                   | -0.852  |                           | E              |
| 1032 | 49295  | 1-Naphthol                        | 5.3            | 229.3                                  | 51.2                        | 145.7                  | -5.886  | 7                         | Е              |
| 1032 | 61611  | 1,4-Naphthaquinone                | 18.2           | 40.4                                   | 22.2                        | 20.1                   | -1.186  | 16                        | E              |
| 1033 | 61625  | 3,4-Dichloroaniline               | 10.3           | 105.9                                  | 76.7                        | 108.3                  | -1.321  | 5                         | Е              |
| 1034 | 61666  | Phorate oxon                      | 18.0           | 86.9                                   | 211.3                       | 77.2                   | -2.107  | 4                         | Е              |
| 1053 | 61635  | Azinphos-methyl-oxon              | 20.0           | 53.5                                   | 33.5                        | 48.8                   | -0.479  |                           | Е              |
| 1054 | 61649  | Fonofos, oxyge_nalog              | 3.4            | 82.7                                   | 79.3                        | 77.8                   | -1.412  | 3                         | E              |
| 1067 | 61641  | Disulfoton sulfoxide              | 12.2           | 153.5                                  | 141.3                       | 172.4                  | 0.343   |                           | Е              |
| 1076 | 61671  | Tefluthrin met_9364]              | 6.0            | 69.8                                   | 63.8                        | 69.2                   | -0.583  | 11                        | E              |
| 1101 | 61631  | 4,4'-Dichlorob_enone              | 4.6            | 80.1                                   | 75.5                        | 81.0                   | -0.957  | 5                         | Е              |
| 1105 | 61634  | 4-Chlorobenzyl_lfone              | 12.8           | 58.2                                   | 45.4                        | 62.9                   | -0.055  |                           | Е              |
| 1125 | 61668  | Phosmet oxon                      | 17.9           | 31.0                                   | 13.1                        | 19.9                   | -0.194  |                           | E              |
| 1126 | 61646  | Fenamiphos sulfoxide              | 5.0            | 15.3                                   | 10.3                        | 19.6                   | -0.008  |                           | Е              |
| 1134 | 61644  | Ethion monoxon                    | 3.8            | 67.7                                   | 63.9                        | 66.9                   | -0.198  | 20                        | Е              |
| 1153 | 38775  | Dichlorvos <sup>1</sup>           | 7.1            | 59.8                                   | 52.6                        | 38.9                   | -1.672  | 5                         | Е              |
| 1227 | 61647  | Fenthion sulfoxide                | 6.2            | 69.6                                   | 63.4                        | 70.5                   | -0.057  |                           | Е              |
|      |        | Surrogates                        |                |                                        |                             |                        |         |                           |                |
|      | 99223  | Diazinon- $d_{10}$ , _ogate       | 9.0            | 101.3                                  | 92.3                        | 102.9                  | -0.321  | 28                        | _              |
|      | 99224  | alpha-HCH-d <sub>6</sub> , _ogate | 5.0            | 100.9                                  | 96.0                        | 100.1                  | 0.002   |                           | _              |

<sup>1</sup>Dichlorvos, endosulfan sulfate, and paraoxon-ethyl were analyzed in parent fortification mixture.

less than 7 days. Because this is shorter than the holding time recommended in method 2001 (Zaugg and others, 1995), these compounds are reported with an estimated remark qualifier. Another organothiophosphate pesticide, profenofos, had a slightly longer holding time of 7 days.

More pesticide degradates (table 14) had holding times less than 30 days when compared to the parent pesticides (table 13). Eight degradates had estimated holding times less than 7 days. This is shorter than the holding time recommended in method 2001 (Zaugg and others, 1995), so these compounds are reported with an estimated remark qualifier. Two organophosphate degradates, chlorpyrifos oxygen analog and fonophos oxygen analog, appeared to be unstable with holding times of 3 days or less. This might eliminate any advantages to onsite SPE for these compounds.

*Holding time in pesticide-grade water:* Twelve parent pesticides had calculated

holding times in pesticide-grade water of less than 30 days (table 15). An organothiophosphate pesticide (phosmet), an isomer of an organochlorine pesticide (*beta*endosulfan), and a pyrethroid pesticide (cyhalothrin) had holding times of 4 days or less, which is the recommended holding time in water for method 2001. As a result, these analytes are reported with an estimated remark qualifier.

In addition to cyhalothrin, other pyrethroid pesticides, cyfluthrin, cypermethrin, and tefluthrin had calculated holding times of less than 30 days. This might be caused by sorption to the walls of the glass sample bottles over the duration of the experiments because these compounds have high octanol-water partition coefficients (log  $K_{ow}$ ) compared to the other analytes (Mackay and others, 1997). None of the degradates had holding times in water less than 4 days (table 16).

# Fortified Reagent-Water-Set Samples

Environmental water samples collected by some NAWQA projects were analyzed in 1999 as part of a pilot test during implementation of the new method. Reagentwater samples were fortified with the analytes at 0.1  $\mu$ g/L and analyzed with each set of 10 samples. The median recovery and variability of 74 of these fortified reagent-water-set samples prepared during March–December, 1999, are listed in table 17. Degradates were included in all 74 samples, while parent pesticides were included only in the last 49 samples. These fortified reagent-water-set samples are comparable to the lowconcentration, reagent-water samples analyzed during method validation (tables 6 and 7). They probably better represent the performance of the analytes in pesticide-grade water because they were analyzed in many different sets and over a longer period

compared to the reagent-water data listed in tables 6 and 7. For most analytes, median recovery in the fortified reagent-water-set samples was comparable to that in the reagent-water method validation data listed in tables 6 and 7, although the variability is somewhat larger.

**NOTE:** During the pilot test of the method, environmental samples were extracted by SPE, generally within 4 days of collection, processed, and the extracts stored in a freezer until GC/MS analysis. Repeated GC/MS analysis of a CCV standard stored for a 20week period indicated no significant loss of any analytes.

The average median recovery for the fortified reagent-water-set samples for all compounds was 68 percent, with an average Fpseudosigma of 12 percent.

Some analytes, however, exhibited significantly larger variability in the fortified reagent-water-set samples, perhaps indicating analytes that are more susceptible to procedural error than others. A plot of the median concentration and F-pseudosigma for all analytes is shown in figure 2. A line of relative F-pseudosigma equal to 25 percent is plotted to indicate analytes that have high Fpseudosigma compared to other analytes. Compounds that had an F-pseudosigma greater than 25 percent include the following: 1,4-naphthaquinone; 1-naphthol, 3trifluoromethylaniline; 4-chloro-2methylphenol; azinphos-methyl-oxon; chlorpyrifos oxygen analog, cyhalothrin; cypermethrin; dichlorvos; ethion monoxon; fenamiphos sulfoxide; fenthion sulfoxide; iprodione; phosmet; phosmet oxon; and temephos.

#### **Qualification of Some Compounds**

During quantitative method validation, some compounds exhibited performance

## **Table 15.** Statistical data used to determine estimated holding time of parent pesticides in pesticide-grade water maintained at 4 degrees Celsius

[Analytes with holding times less than 4 days shown in bold. Reagent-water samples were fortified at 0.1 microgram per liter, and four replicate samples were extracted and prepared for analysis on days 0, 1, 3, 7, 14, and 28. P-Code, National Water Information System parameter code; *d*, tolerable range of variation from mean recovery, in percent; Mean –d, mean recovery on day 0 minus d; Intercept, intercept of linear fit to holding-time results; Slope, slope of linear fit to holding-time results; --, estimated holding time greater than 28 days because compound did not decrease in concentration over 28-day test period; –, not applicable; E, estimated qualifier remark]

| Rank | P-Code | Short name                                        | d<br>(percent) | Mean<br>recovery<br>day 0<br>(percent) |      | Intercept<br>(percent) | Slope  | Holding<br>time<br>(days) | Remark<br>code |
|------|--------|---------------------------------------------------|----------------|----------------------------------------|------|------------------------|--------|---------------------------|----------------|
|      |        | Parent pesticides                                 |                | <u> </u>                               |      |                        |        |                           |                |
| 63   | 04036  | Prometryn                                         | 6.0            | 84.7                                   | 78.7 | 84.9                   | 0.142  |                           | _              |
| 69   | 61603  | Profenofos                                        | 6.1            | 72.2                                   | 66.0 | 66.8                   | -0.832 | 8                         | _              |
| 71   | 34362  | alpha-Endosulfan                                  | 4.5            | 92.2                                   | 87.7 | 80.7                   | -0.851 | 6                         | _              |
| 75   | 61596  | Metalaxyl                                         | 5.8            | 87.9                                   | 82.1 | 90.5                   | 0.204  |                           | _              |
| 106  | 61600  | Oxyfluorfen                                       | 7.3            | 61.8                                   | 54.5 | 58.6                   | -0.124 |                           | _              |
| 108  | 79846  | cis-Propiconazole                                 | 3.4            | 69.7                                   | 66.2 | 68.0                   | -0.017 |                           | _              |
| 110  | 79847  | trans-Propiconazole                               | 5.9            | 79.7                                   | 73.8 | 77.2                   | 0.023  |                           | _              |
| 121  | 61599  | Myclobutanil                                      | 5.8            | 76.4                                   | 70.6 | 76.2                   | 0.086  |                           | _              |
| 126  | 61591  | Fenamiphos                                        | 4.0            | 70.9                                   | 66.9 | 70.2                   | 0.141  |                           | _              |
| 127  | 04025  | Hexazinone                                        | 2.4            | 62.4                                   | 60.0 | 60.7                   | -0.272 | 9                         | _              |
| 128  | 04031  | Cycloate                                          | 5.1            | 81.0                                   | 75.8 | 84.4                   | -0.224 | 24                        | _              |
| 132  | 61598  | Methidathion                                      | 3.1            | 71.1                                   | 68.0 | 69.3                   | -0.045 |                           | _              |
| 134  | 82346  | Ethion                                            | 2.7            | 64.6                                   | 61.9 | 62.4                   | -0.042 |                           | _              |
| 211  | 79844  | (E)-Dimethomorph                                  | 7.7            | 71.4                                   | 63.8 | 73.9                   | 0.008  |                           | _              |
| 212  | 79845  | (Z)-Dimethomorph                                  | 5.5            | 69.0                                   | 63.5 | 68.5                   | 0.040  |                           | _              |
| 220  | 04022  | Terbuthylazine <sup>1</sup>                       | 7.7            | _                                      | _    | _                      | _      | _                         | _              |
| 225  | 61592  | Flumetralin                                       | 6.3            | 66.2                                   | 59.9 | 64.7                   | -0.042 |                           | _              |
| 227  | 38801  | Fenthion                                          | 9.0            | 77.9                                   | 68.9 | 79.9                   | 0.080  |                           | _              |
| 228  | 61594  | Isofenphos                                        | 6.2            | 85.3                                   | 79.1 | 83.7                   | 0.035  |                           | _              |
| 229  | 61604  | Propetamphos                                      | 4.3            | 81.8                                   | 77.5 | 81.4                   | 0.089  |                           | _              |
| 231  | 61602  | Tebupirimphos                                     | 5.8            | 84.3                                   | 78.5 | 86.4                   | 0.090  |                           | _              |
| 28   | 82662  | Dimethoate                                        | 21.0           | 17.6                                   | 0.0  | 27.1                   | 0.570  |                           | Е              |
| 30   | 61610  | Tribuphos                                         | 6.7            | 53.9                                   | 47.2 | 50.1                   | -0.070 |                           | Е              |
| 71   | 34357  | beta-Endosulfan                                   | 5.7            | 98.5                                   | 92.7 | 78.8                   | -1.714 | 4                         | Е              |
| 76   | 61606  | Tefluthrin                                        | 3.9            | 43.4                                   | 39.5 | 47.4                   | -0.148 | 27                        | Е              |
| 83   | 38454  | Dicrotophos                                       | 6.1            | 18.2                                   | 12.1 | 22.2                   | -0.142 |                           | Е              |
| 93   | 61593  | Iprodione                                         | 4.3            | 80.0                                   | 75.7 | 74.6                   | -0.661 | 7                         | Е              |
| 102  | 61595  | Cyhalothrin                                       | 2.0            | 29.8                                   | 27.8 | 23.5                   | -0.700 | 3                         | Е              |
| 114  | 61586  | Cypermethrin                                      | 11.6           | 52.6                                   | 41.0 | 53.0                   | -0.784 | 15                        | Е              |
| 115  | 38716  | Sulprofos                                         | 7.8            | 61.3                                   | 53.5 | 62.3                   | -0.061 |                           | Е              |
| 125  | 61601  | Phosmet                                           | 7.4            | 27.0                                   | 19.6 | 27.0                   | -4.525 | 2                         | Е              |
| 129  | 61585  | Cyfluthrin                                        | 10.7           | 51.6                                   | 40.9 | 52.2                   | -0.750 | 15                        | Е              |
| 131  | 61580  | Bifenthrin                                        | 4.0            | 37.2                                   | 33.3 | 37.8                   | -0.084 |                           | Е              |
| 230  | 61605  | Sulfotepp                                         | 4.1            | 79.2                                   | 75.1 | 79.8                   | -0.496 | 9                         | Е              |
| 232  | 61607  | Temephos <sup>1</sup>                             | 7.0            | -                                      | _    | _                      | _      | _                         | Е              |
|      |        | Surrogates                                        |                |                                        |      |                        |        |                           |                |
|      | 99223  | Diazinon- $d_{10}$ , _ogate                       | 3.7            | 89.8                                   | 86.2 | 93.1                   | -0.036 |                           | _              |
|      | 99224  | <i>alpha</i> -HCH- <i>d</i> <sub>6</sub> , _ogate | 5.7            | 88.8                                   | 83.1 | 94.5                   | 0.002  |                           | _              |

<sup>1</sup>Terbuthylazine and temephos were not included in holding-time experiments.

#### 56 Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

## **Table 16.** Statistical data used to determine estimated holding time of degradates in pesticide-grade water maintained at 4 degrees Celsius

[Analytes with holding times less than 4 days shown in bold. Reagent-water samples were fortified at 0.1 microgram per liter, and four replicate samples were extracted and prepared for analysis on days 0, 1, 3, 7, 14, and 28. P-Code, National Water Information System parameter code; *d*, tolerable range of variation from mean recovery, in percent; Mean –d, mean recovery on day 0 minus d; Intercept, intercept of linear fit to holding-time results; Slope, slope of linear fit to holding-time results; --, estimated holding time greater than 28 days because compound did not decrease in concentration over 28-day test period; –, not applicable; E, estimated qualifier remark]

| Rank | P-Code | Short name                      | <i>d</i><br>(percent) | Mean<br>recovery<br>day 0<br>(percent) | Mean– <i>d</i><br>(percent) | Intercept<br>(percent) | Slope  | Holding<br>time<br>(days) | Remark<br>code |
|------|--------|---------------------------------|-----------------------|----------------------------------------|-----------------------------|------------------------|--------|---------------------------|----------------|
|      |        | Degradates                      |                       |                                        |                             |                        |        |                           |                |
| 1002 | 61615  | 2-[2-Ethyl-6-m_panol            | 9.3                   | 72.3                                   | 63.0                        | 73.3                   | 0.104  |                           | _              |
| 1007 | 61618  | 2-Chloro-2,6-d_ilide            | 3.2                   | 86.1                                   | 82.9                        | 86.3                   | 0.042  |                           | _              |
| 1008 | 61665  | 4-(Hydroxymeth_halin            | 13.5                  | 106.5                                  | 92.9                        | 105.1                  | 0.018  |                           | _              |
| 1016 | 61674  | Terbufos-O-ana_lfone            | 12.4                  | 59.6                                   | 47.2                        | 52.4                   | -0.332 |                           | -              |
| 1033 | 61625  | 3,4-Dichloroaniline             | 14.7                  | 85.3                                   | 70.7                        | 89.9                   | 0.258  |                           | _              |
| 1043 | 61629  | 3-Phenoxybenzy_cohol            | 4.2                   | 74.0                                   | 69.8                        | 76.2                   | -0.022 |                           | _              |
| 1044 | 79842  | c-Methyl-3-(2,_ylate            | 4.9                   | 90.2                                   | 85.3                        | 89.5                   | -0.083 |                           | _              |
| 1044 | 79843  | t-Methyl-3-(2,_ylate            | 7.0                   | 90.8                                   | 83.7                        | 90.0                   | -0.030 |                           | _              |
| 1049 | 61663  | Paraoxon-ethyl <sup>1</sup>     | 5.0                   | 65.9                                   | 61.0                        | 66.4                   | 0.085  |                           | _              |
| 1060 | 61652  | Malaoxon                        | 9.1                   | 67.4                                   | 58.3                        | 54.0                   | -0.409 | 23                        | _              |
| 1062 | 61637  | 2-(4-tert-buty_xanol            | 9.9                   | 80.7                                   | 70.9                        | 81.2                   | -0.002 |                           | _              |
| 1067 | 61640  | Disulfoton sulfone              | 5.8                   | 53.5                                   | 47.7                        | 50.9                   | -0.194 | 30                        | _              |
| 1071 | 61642  | Endosulfan ether                | 4.7                   | 103.9                                  | 99.2                        | 100.6                  | 0.016  |                           | _              |
| 1071 | 61590  | Endosulfan sulfate <sup>1</sup> | 5.7                   | 93.2                                   | 87.5                        | 92.3                   | 0.034  |                           | _              |
| 1076 | 61672  | Tefluthrin met_2912]            | 4.2                   | 70.1                                   | 65.9                        | 70.3                   | -0.074 |                           | _              |
| 1093 | 61627  | 3,5-Dichloroaniline             | 11.2                  | 88.7                                   | 77.5                        | 92.1                   | 0.230  |                           | _              |
| 1099 | 61614  | 2,5-Dichloroaniline             | 8.8                   | 81.2                                   | 72.4                        | 83.1                   | 0.120  |                           | _              |
| 1124 | 61660  | O-Ethyl-O-meth_ioate            | 8.3                   | 80.9                                   | 72.6                        | 82.0                   | 0.156  |                           | _              |
| 1126 | 61645  | Fenamiphos sulfone              | 9.3                   | 72.0                                   | 62.7                        | 68.2                   | -0.140 |                           | _              |
| 1231 | 61669  | Tebupirimphos,_logue            | 4.4                   | 75.9                                   | 71.5                        | 76.1                   | -0.058 |                           | _              |
| 1002 | 61620  | 2-Ethyl-6-meth_iline            | 3.4                   | 89.7                                   | 86.3                        | 93.0                   | 0.166  |                           | Е              |
| 1012 | 61636  | Chlorpyrifos, _nalog            | 8.8                   | 56.7                                   | 47.8                        | 55.6                   | 0.266  |                           | Е              |
| 1013 | 61617  | 2-Amino-N-isop_amide            | 15.4                  | 50.8                                   | 35.3                        | 54.6                   | 0.289  |                           | Е              |
| 1014 | 61664  | Paraoxon-methyl                 | 3.9                   | 79.7                                   | 75.8                        | 76.0                   | 0.359  |                           | Е              |
| 1015 | 61633  | 4-Chloro-2-met_henol            | 17.2                  | 58.0                                   | 40.8                        | 65.3                   | 0.393  |                           | Е              |
| 1024 | 61630  | 3-Trifluoromet_iline            | 5.3                   | 52.0                                   | 46.7                        | 53.4                   | 0.108  |                           | E              |
| 1032 | 49295  | 1-Naphthol                      | 18.0                  | 97.8                                   | 79.8                        | 113.5                  | 0.706  |                           | Е              |
| 1032 | 61611  | 1,4-Naphthaquinone              | 18.2                  | 42.2                                   | 24.1                        | 39.4                   | 0.002  |                           | Е              |
| 1034 | 61666  | Phorate oxon                    | 10.3                  | 72.2                                   | 62.0                        | 70.8                   | -1.371 | 8                         | Е              |
| 1053 | 61635  | Azinphos-methyl-oxon            | 20.0                  | 35.1                                   | 15.0                        | 37.2                   | 0.389  |                           | Е              |
| 1054 | 61649  | Fonofos, oxyge_nalog            | 3.4                   | 65.0                                   | 61.7                        | 66.8                   | 0.181  |                           | Е              |
| 1067 | 61641  | Disulfoton sulfoxide            | 12.2                  | 121.4                                  | 109.3                       | 122.7                  | 0.409  |                           | Е              |
| 1076 | 61671  | Tefluthrin met_9364]            | 6.0                   | 55.3                                   | 49.3                        | 54.8                   | -0.250 | 24                        | Е              |
| 1101 | 61631  | 4,4'-Dichlorob_enone            | 4.6                   | 69.0                                   | 64.4                        | 71.8                   | 0.104  |                           | Е              |

| Rank | P-Code | Short name                        | <i>d</i><br>(percent) | Mean<br>recovery<br>day 0<br>(percent) | Mean– <i>d</i><br>(percent) | Intercept<br>(percent) | Slope  | Holding<br>time<br>(days) | Remark<br>code |
|------|--------|-----------------------------------|-----------------------|----------------------------------------|-----------------------------|------------------------|--------|---------------------------|----------------|
| 1105 | 61634  | 4-Chlorobenzyl_lfone              | 12.8                  | 61.7                                   | 48.9                        | 62.3                   | 0.064  |                           | Е              |
| 1125 | 61668  | Phosmet oxon                      | 17.9                  | 7.4                                    | 0.0                         | 9.7                    | 0.003  |                           | Е              |
| 1126 | 61646  | Fenamiphos sulfoxide              | 5.0                   | 9.9                                    | 4.9                         | 11.2                   | -0.034 |                           | Е              |
| 1134 | 61644  | Ethion monoxon                    | 3.8                   | 55.0                                   | 51.2                        | 54.4                   | 0.021  |                           | Е              |
| 1153 | 38775  | Dichlorvos <sup>1</sup>           | 7.1                   | 35.3                                   | 28.2                        | 33.1                   | 0.055  |                           | Е              |
| 1227 | 61647  | Fenthion sulfoxide                | 6.2                   | 63.8                                   | 57.7                        | 64.7                   | 0.057  |                           | Е              |
|      |        | Surrogates                        |                       |                                        |                             |                        |        |                           |                |
|      | 99223  | Diazinon- $d_{10}$ , _ogate       | 9.0                   | 100.8                                  | 91.8                        | 98.4                   | -0.068 |                           | _              |
|      | 99224  | alpha-HCH-d <sub>6</sub> , _ogate | 5.0                   | 85.9                                   | 80.9                        | 86.5                   | -0.104 |                           | _              |

**Table 16.** Statistical data used to determine estimated holding time of degradates in pesticide-grade

 water maintained at 4 degrees Celsius—Continued

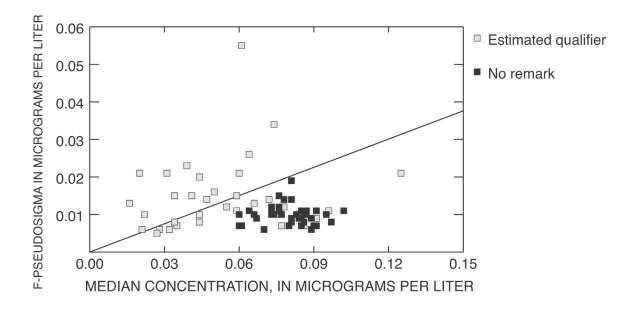
<sup>1</sup>Dichlorvos, endosulfan sulfate, and paraoxon-ethyl were analyzed in parent fortification mixture.

**Table 17.** Bias and variability data from reagent-water-set samples fortified with analytes at low (0.1 microgram per liter) concentrations and analyzed during March through December, 1999

[Analytes with median recoveries less than 60 percent or greater than 120 percent, or having a relative Fpseudosigma greater than 25 percent are reported with an estimated (E) remark code. Additional analytes with short holding times are also reported with an estimated remark code. Rank, national application and use rank of pesticide; P-Code, National Water Information System parameter code; conc., concentration; µg/L, microgram per liter; F-pseu, F-pseudosigma (interquartile range/1.349); Rel F-pseu, relative F-pseudosigma; –, not applicable; E, estimated remark code]

| Rank | P-Code | Short name          | Median<br>conc.<br>(μg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Count | Remark<br>code |
|------|--------|---------------------|---------------------------|------------------|---------------------------------|----------------------------|-------|----------------|
|      |        | Parent pesticides   |                           |                  |                                 |                            |       |                |
| 63   | 04036  | Prometryn           | 0.089                     | 0.009            | 89.3                            | 10.5                       | 49    | _              |
| 69   | 61603  | Profenofos          | 0.073                     | 0.011            | 72.9                            | 14.9                       | 49    | _              |
| 71   | 34362  | alpha-Endosulfan    | 0.081                     | 0.008            | 81.3                            | 9.8                        | 49    | _              |
| 75   | 61596  | Metalaxyl           | 0.095                     | 0.010            | 95.1                            | 10.7                       | 49    | _              |
| 106  | 61600  | Oxyfluorfen         | 0.061                     | 0.007            | 61.4                            | 11.0                       | 49    | _              |
| 108  | 79846  | cis-Propiconazole   | 0.083                     | 0.010            | 82.6                            | 12.1                       | 49    | _              |
| 110  | 79847  | trans-Propiconazole | 0.081                     | 0.009            | 81.4                            | 11.6                       | 49    | _              |
| 121  | 61599  | Myclobutanil        | 0.080                     | 0.007            | 80.3                            | 9.2                        | 49    | _              |
| 126  | 61591  | Fenamiphos          | 0.070                     | 0.006            | 70.5                            | 9.2                        | 49    | _              |
| 127  | 04025  | Hexazinone          | 0.060                     | 0.007            | 60.3                            | 12.0                       | 49    | _              |
| 128  | 04031  | Cycloate            | 0.089                     | 0.006            | 89.3                            | 6.3                        | 49    | _              |
| 132  | 61598  | Methidathion        | 0.077                     | 0.010            | 76.9                            | 13.1                       | 49    | _              |
| 134  | 82346  | Ethion              | 0.064                     | 0.011            | 64.2                            | 16.5                       | 49    | _              |
| 211  | 79844  | (E)-Dimethomorph    | 0.076                     | 0.011            | 75.8                            | 15.0                       | 49    | _              |
| 212  | 79845  | (Z)-Dimethomorph    | 0.073                     | 0.010            | 72.8                            | 14.0                       | 49    | _              |
| 220  | 04022  | Terbuthylazine      | 0.097                     | 0.008            | 96.7                            | 8.0                        | 18    | _              |
| 225  | 61592  | Flumetralin         | 0.066                     | 0.010            | 66.4                            | 15.7                       | 49    | _              |
| 227  | 38801  | Fenthion            | 0.087                     | 0.011            | 86.8                            | 12.4                       | 49    | _              |

**Table 17.** Bias and variability data from reagent-water-set samples fortified with analytes at low


 (0.1 microgram per liter) concentrations and analyzed during March through December, 1999—Continued

| Rank | P-Code | Short name           | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Count | Remark<br>code |
|------|--------|----------------------|---------------------------|------------------|---------------------------------|----------------------------|-------|----------------|
| 228  | 61594  | Isofenphos           | 0.086                     | 0.008            | 85.6                            | 9.7                        | 49    | _              |
| 229  | 61604  | Propetamphos         | 0.087                     | 0.010            | 86.7                            | 11.5                       | 49    | _              |
| 231  | 61602  | Tebupirimphos        | 0.086                     | 0.008            | 86.4                            | 8.7                        | 49    | _              |
| 28   | 82662  | Dimethoate           | 0.035                     | 0.007            | 35.3                            | 21.2                       | 49    | Е              |
| 30   | 61610  | Tribuphos            | 0.044                     | 0.008            | 43.7                            | 17.4                       | 49    | Е              |
| 71   | 34357  | beta-Endosulfan      | 0.091                     | 0.009            | 91.0                            | 9.5                        | 49    | Е              |
| 76   | 61606  | Tefluthrin           | 0.032                     | 0.006            | 32.4                            | 17.7                       | 49    | Е              |
| 83   | 38454  | Dicrotophos          | 0.028                     | 0.006            | 28.1                            | 22.0                       | 49    | Е              |
| 93   | 61593  | Iprodione            | 0.074                     | 0.034            | 74.3                            | 46.1                       | 49    | Е              |
| 102  | 61595  | Cyhalothrin          | 0.021                     | 0.006            | 20.9                            | 30.0                       | 49    | Е              |
| 114  | 61586  | Cypermethrin         | 0.047                     | 0.014            | 46.6                            | 30.9                       | 49    | Е              |
| 115  | 38716  | Sulprofos            | 0.066                     | 0.013            | 66.3                            | 19.9                       | 49    | Е              |
| 125  | 61601  | Phosmet              | 0.020                     | 0.021            | 20.1                            | 104.1                      | 49    | Е              |
| 129  | 61585  | Cyfluthrin           | 0.044                     | 0.010            | 44.3                            | 23.3                       | 49    | Е              |
| 131  | 61580  | Bifenthrin           | 0.027                     | 0.005            | 27.3                            | 19.5                       | 49    | Е              |
| 230  | 61605  | Sulfotepp            | 0.086                     | 0.007            | 86.1                            | 8.0                        | 49    | Е              |
| 232  | 61607  | Temephos             | 0.034                     | 0.015            | 33.9                            | 44.5                       | 49    | Е              |
|      |        | Degradates           |                           |                  |                                 |                            |       |                |
| 1002 | 61615  | 2-[2-Ethyl-6-m panol | 0.084                     | 0.009            | 84.3                            | 10.7                       | 74    | _              |
| 1007 | 61618  | 2-Chloro-2,6-d_ilide | 0.087                     | 0.011            | 86.6                            | 12.1                       | 74    | _              |
| 1008 | 61665  | 4-(Hydroxymeth_halin | 0.081                     | 0.019            | 80.6                            | 23.6                       | 74    | _              |
| 1016 | 61674  | Terbufos-O-ana_lfone | 0.073                     | 0.012            | 72.6                            | 16.8                       | 49    | _              |
| 1033 | 61625  | 3,4-Dichloroaniline  | 0.081                     | 0.014            | 80.6                            | 17.6                       | 74    | _              |
| 1043 | 61629  | 3-Phenoxybenzy_cohol | 0.074                     | 0.010            | 74.3                            | 13.6                       | 74    | _              |
| 1044 | 79842  | c-Methyl-3-(2,_ylate | 0.085                     | 0.007            | 85.0                            | 8.8                        | 74    | _              |
| 1044 | 79843  | t-Methyl-3-(2,_ylate | 0.090                     | 0.007            | 90.4                            | 7.6                        | 74    | _              |
| 1049 | 61663  | Paraoxon-ethyl       | 0.085                     | 0.011            | 84.9                            | 13.4                       | 49    | _              |
| 1060 | 61652  | Malaoxon             | 0.076                     | 0.015            | 76.4                            | 20.0                       | 74    | _              |
| 1062 | 61637  | 2-(4-tert-buty_xanol | 0.086                     | 0.010            | 86.1                            | 11.3                       | 74    | _              |
| 1067 | 61640  | Disulfoton sulfone   | 0.073                     | 0.010            | 72.7                            | 13.4                       | 74    | _              |
| 1071 | 61642  | Endosulfan ether     | 0.102                     | 0.011            | 101.6                           | 11.1                       | 74    | _              |
| 1071 | 61590  | Endosulfan sulfate   | 0.091                     | 0.007            | 91.3                            | 7.4                        | 49    | _              |
| 1076 | 61672  | Tefluthrin met_2912] | 0.060                     | 0.010            | 60.1                            | 16.8                       | 74    | _              |
| 1093 | 61627  | 3,5-Dichloroaniline  | 0.091                     | 0.011            | 91.2                            | 12.6                       | 74    | _              |
| 1099 | 61614  | 2,5-Dichloroaniline  | 0.078                     | 0.014            | 77.8                            | 17.5                       | 74    | _              |
| 1124 | 61660  | O-Ethyl-O-meth_ioate | 0.085                     | 0.009            | 85.3                            | 10.1                       | 74    | -              |
| 1231 | 61669  | Tebupirimphos,_logue | 0.076                     | 0.012            | 76.4                            | 15.4                       | 74    | _              |
| 1002 | 61620  | 2-Ethyl-6-meth_iline | 0.096                     | 0.011            | 96.1                            | 11.1                       | 74    | Е              |
| 1012 | 61636  | Chlorpyrifos, _nalog | 0.039                     | 0.023            | 38.8                            | 59.5                       | 74    | Е              |
| 1013 | 61617  | 2-Amino-N-isop_amide | 0.055                     | 0.012            | 54.7                            | 21.9                       | 74    | Е              |
| 1014 | 61664  | Paraoxon-methyl      | 0.072                     | 0.014            | 72.4                            | 19.9                       | 74    | Е              |
| 1015 | 61633  | 4-Chloro-2-met_henol | 0.060                     | 0.021            | 60.4                            | 34.1                       | 74    | Е              |

| Rank | P-Code | Short name                        | Median<br>conc.<br>(µg/L) | F-pseu<br>(µg/L) | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Count | Remark<br>code |
|------|--------|-----------------------------------|---------------------------|------------------|---------------------------------|----------------------------|-------|----------------|
| 1024 | 61630  | 3-Trifluoromet_iline              | 0.041                     | 0.015            | 41.1                            | 35.9                       | 74    | Е              |
| 1032 | 49295  | 1-Naphthol                        | 0.061                     | 0.055            | 60.7                            | 90.9                       | 73    | Е              |
| 1032 | 61611  | 1,4-Naphthaquinone                | 0.034                     | 0.015            | 34.2                            | 44.3                       | 74    | Е              |
| 1034 | 61666  | Phorate oxon                      | 0.078                     | 0.012            | 77.5                            | 15.3                       | 74    | Е              |
| 1053 | 61635  | Azinphos-methyl-oxon              | 0.044                     | 0.020            | 44.5                            | 45.6                       | 72    | Е              |
| 1054 | 61649  | Fonofos, oxyge_nalog              | 0.077                     | 0.007            | 77.0                            | 8.6                        | 49    | Е              |
| 1067 | 61641  | Disulfoton sulfoxide              | 0.125                     | 0.021            | 125.0                           | 16.8                       | 49    | Е              |
| 1076 | 61671  | Tefluthrin met_9364]              | 0.034                     | 0.008            | 33.7                            | 24.2                       | 74    | Е              |
| 1101 | 61631  | 4,4'-Dichlorob_enone              | 0.076                     | 0.010            | 76.5                            | 12.7                       | 74    | Е              |
| 1105 | 61634  | 4-Chlorobenzyl_lfone              | 0.059                     | 0.011            | 59.2                            | 17.8                       | 49    | Е              |
| 1125 | 61668  | Phosmet oxon                      | 0.016                     | 0.013            | 15.6                            | 86.3                       | 49    | Е              |
| 1126 | 61646  | Fenamiphos sulfoxide              | 0.022                     | 0.010            | 21.9                            | 46.5                       | 48    | Е              |
| 1134 | 61644  | Ethion monoxon                    | 0.059                     | 0.015            | 58.7                            | 26.3                       | 74    | Е              |
| 1153 | 38775  | Dichlorvos                        | 0.050                     | 0.016            | 49.8                            | 31.4                       | 49    | Е              |
| 1227 | 61647  | Fenthion sulfoxide                | 0.064                     | 0.026            | 63.9                            | 41.0                       | 74    | Е              |
|      |        | Surrogates                        |                           |                  |                                 |                            |       |                |
|      | 99223  | Diazinon- $d_{10}$ , _ogate       | 0.094                     | 0.010            | 94.4                            | 10.7                       | 74    | _              |
|      | 99224  | alpha-HCH-d <sub>6</sub> , _ogate | 0.092                     | 0.013            | 91.9                            | 14.5                       | 74    | _              |

**Table 17.** Bias and variability data from reagent-water-set samples fortified with analytes at low

 (0.1 microgram per liter) concentrations and analyzed during March through December, 1999—Continued



**Figure 2.** Bias and variability data from reagent-water-set samples fortified with analytes at low (0.1 microgram per liter) concentrations and prepared during March through December, 1999. Line shows ratio of F-pseudosigma to median of 0.25, comparable to an F-pseudosigma of 25 percent (data from table 17).

problems in all matrices and all concentrations or had short holding times. These analytes are reported with an estimated remark code to alert the data user to the greater uncertainty associated with the quantitative results. The fortified reagentwater-set sample results were used to characterize long-term bias and variability problems (table 17). Criteria for qualification as estimated were median recovery less than 60 percent or greater than 120 percent, or relative F-pseudosigma greater than 25 percent. In addition, the holding-time results were used to qualify analytes with short holding times. Criteria used were holding times in water less than 4 days or holding times on the dry SPE column less than 7 days.

The analytes qualified with "estimated" are listed in table 18. Parent pesticides qualified with estimated remark codes because of median recovery less than 60 percent were dimethoate, tribuphos, tefluthrin, dichrotophos, cyfluthrin, and bifenthrin. Degradates qualified with estimated remark codes because of low median recovery were 2-amino-N-isop amide, 4-chlorobenzyl lfone and tefluthrin met 9364, but disulfoton sulfoxide was qualified because of high recovery. Iprodione was qualified with estimated remark code because of relative Fpseudosigma greater than 25 percent. Cyhalothrin, cypermethrin, phosmet, and temephos were characterized by low recovery and high variability. Degradate analytes with relative F-pseudosigma greater than 25 percent included 4-chloro-2-met henol; 1naphthol and fenthion sulfoxide. Degradates characterized by low recovery and high variability included 1,4-naphthaquinone; chlorpyrifos, \_nalog; 3-trifluoromet iline; azinphos-methyl-oxon; phosmet oxon; fenamiphos sulfoxide; ethion monoxon; and dichlorvos.

Analytes with holding times in water less than or equal to 4 days included *beta*-

endosulfan, cyhalothrin, and phosmet. None of the degradate compounds had estimated holding times less than or equal to 4 days. Sulprofos and sulfotepp are organothiophosphate pesticides that have short holding times on the dry SPE column, even though they are apparently stable for a longer time in water. Oxidative degradation can cause loss of organothiophosphate pesticides, and it would be useful to analyze oxidative degradates of these two pesticides in the samples to determine if these pesticides were lost during storage on the SPE column. Similarly, a number of degradates appear to have short holding times on the dry SPE column, including 2-ethyl-6-meth iline; paraoxon-methyl; 1-naphthol; phorate oxon; chlorpyrifos, nalog; and 4,4'dichlorob enone. Chlorpyrifos, nalog appears to degrade quickly on the SPE column, and this might explain high variability for this degradate in the validation experiments and fortified reagent-water samples.

## **OTHER CONSIDERATIONS**

#### Automation

The method is ideally suited for automation by using laboratory systems to prepare samples. The method, with minor modifications, has been successfully used with an AutoTrace SPE Workstation. An example of the procedure and parameter setup used with the AutoTrace SPE Workstation is shown in Supplement A.

#### **On-Site Extraction**

The method also can be used with an optional on-site extraction procedure, which allows samples to be collected and processed at remote locations. This procedure reduces potential problems for some analytes that exceed the estimated pre-extraction holding-time limit in water of 4 days and avoids complications and **Table 18.** Analytes qualified as estimated concentration because of large bias and variability results of fortified reagent-water-set samples (table 17) or short holding-time results (tables 13–16). Criteria for estimation were median recovery less than 60 percent, or greater than 120 percent, relative F-pseudosigma more than 25 percent, holding time in water less than 4 days, or holding time on solid-phase-extraction column less than 7 days.

[Rank, national application and use rank of pesticide; P-Code, National Water Information System parameter code; Rel F-pseu, Relative F-pseudosigma; *d*, day; SPE, solid-phase extraction; --, not within criteria; E, estimated remark code]

| Rank | P–Code | Short name           | Median<br>recovery<br>(percent) | Rel<br>F-pseu<br>(percent) | Water<br>hold time<br>(d) | SPE<br>hold time<br>( <i>d</i> ) | Remark<br>code |
|------|--------|----------------------|---------------------------------|----------------------------|---------------------------|----------------------------------|----------------|
|      |        | Parent pesticides    |                                 |                            |                           |                                  |                |
| 28   | 82662  | Dimethoate           | 35.3                            |                            |                           |                                  | Е              |
| 30   | 61610  | Tribuphos            | 43.7                            |                            |                           |                                  | Е              |
| 71   | 34357  | beta-Endosulfan      |                                 |                            | 4                         |                                  | E              |
| 76   | 61606  | Tefluthrin           | 32.4                            |                            |                           |                                  | Е              |
| 83   | 38454  | Dicrotophos          | 28.1                            |                            |                           |                                  | E              |
| 93   | 61593  | Iprodione            |                                 | 46.1                       |                           |                                  | Е              |
| 102  | 61595  | Cyhalothrin          | 20.9                            | 30.0                       | 3                         |                                  | Е              |
| 114  | 61586  | Cypermethrin         | 46.6                            | 30.9                       |                           |                                  | Е              |
| 115  | 38716  | Sulprofos            |                                 |                            |                           | 6                                | Е              |
| 125  | 61601  | Phosmet              | 20.1                            | 104.1                      | 2                         |                                  | Е              |
| 129  | 61585  | Cyfluthrin           | 44.3                            |                            |                           |                                  | Е              |
| 131  | 61580  | Bifenthrin           | 27.3                            |                            |                           |                                  | Е              |
| 230  | 61605  | Sulfotepp            |                                 |                            |                           | 4                                | Е              |
| 232  | 61607  | Temephos             | 33.9                            | 44.5                       |                           |                                  | Е              |
|      |        | Degradates           |                                 |                            |                           |                                  |                |
| 1002 | 61620  | 2-Ethyl-6-meth_iline |                                 |                            |                           | 5                                | Е              |
| 1012 | 61636  | Chlorpyrifos, _nalog | 38.8                            | 59.5                       |                           | 1                                | Е              |
| 1013 | 61617  | 2-Amino-N-isop_amide | 54.7                            |                            |                           |                                  | Е              |
| 1014 | 61664  | Paraoxon-methyl      |                                 |                            |                           | 5                                | Е              |
| 1015 | 61633  | 4-Chloro-2-met_henol |                                 | 34.1                       |                           |                                  | Е              |
| 1024 | 61630  | 3-Trifluoromet_iline | 41.1                            | 35.9                       |                           |                                  | Е              |
| 1032 | 49295  | 1-Naphthol           |                                 | 90.9                       |                           | 4                                | Е              |
| 1034 | 61666  | Phorate oxon         |                                 |                            |                           | 5                                | Е              |
| 1053 | 61635  | Azinphos-methyl-oxon | 44.5                            | 45.6                       |                           |                                  | Е              |
| 1054 | 61649  | Fonofos, oxyge_nalog |                                 |                            |                           | 3                                | Е              |
| 1067 | 61641  | Disulfoton sulfoxide | 125.0                           | 16.8                       |                           |                                  | Е              |
| 1076 | 61671  | Tefluthrin met_9364] | 33.7                            |                            |                           |                                  | Е              |
| 1101 | 61631  | 4,4'-Dichlorob enone |                                 |                            |                           | 5                                | Е              |
| 1105 | 61634  | 4-Chlorobenzyl lfone | 59.2                            |                            |                           |                                  | Е              |
| 1125 | 61668  | Phosmet oxon         | 15.6                            | 86.3                       |                           |                                  | Е              |
| 1126 | 61646  | Fenamiphos sulfoxide | 21.9                            | 46.5                       |                           |                                  | Е              |
| 1134 | 61644  | Ethion monoxon       | 58.7                            | 26.3                       |                           |                                  | Е              |
| 1032 | 61611  | 1,4-Naphthaquinone   | 34.2                            | 44.3                       |                           |                                  | Е              |
| 1153 | 38775  | Dichlorvos           | 49.8                            | 31.4                       |                           |                                  | Е              |
| 1227 | 61647  | Fenthion sulfoxide   |                                 | 41.0                       |                           |                                  | Е              |

expense of overnight shipping of samples to the laboratory. A holding-time study on damp SPE columns applicable to on-site extraction has not been conducted. Instructions for onsite processing are listed in Supplement B.

#### CONCLUSIONS

Solid-phase extraction with determination by gas chromatography/mass spectrometry is shown to be a sensitive and reliable method for the determination of low concentrations of a broad range of pesticides and degradates in water samples. This report presents a new method for routine analysis of 21 parent pesticides and 20 pesticide degradates in filtered natural-water samples. Estimated method detection limits range from 0.001 to 0.057  $\mu$ g/L. Another 14 parent pesticides and 20 pesticide degradates demonstrated median recoveries less than 60 percent or greater than 120 percent, or had relative F-pseudosigma more than 25 percent, or holding times less than 4 days in water or 7 days on the dry solid-phase-extraction column, and, therefore, are reported in the method with an estimated remark code. This new method complements method 2001 by using the same sample preparation and analytical steps but adds 41 new analytes.

#### **REFERENCES CITED**

American Society for Testing and Materials, 2000, Standard practice for estimation of holding time for water samples containing organic and inorganic constituents: Annual book of ASTM standards, Section 11, Water: West Conshohocken, Penn., American Society for Testing and Materials, v. 11.01, p. 485–490.

Barbash, J.E., and Resek, E.A., 1996,
Pesticides in ground water: Distribution, trends, and governing factors; Pesticides in the hydrologic system: Chelsea,
Mich., Ann Arbor Press, v. 2, 588 p.

- Childress, C.J., Foreman, W.T., Connor, B.F., and Maloney, T.J., 1999, New reporting procedures based on long-term method detection levels and some considerations for interpretations of water-quality data provided by the U.S. Geological Survey National Water Quality Laboratory: U.S. Geological Survey Open-File Report 99-133, 19 p.
- Dennis, W.H., Meier, E.P., Randall, W.F., Rosencrance, A.B., and Rosenblatt, D.H., 1979, Degradation of diazinon by sodium hypochlorite. Chemistry and aquatic toxicity: Environmental Science & Technology, v. 13, no. 5, p. 594–598.
- Foreman, W.T., Connor, B.F., Beaty, D.A., Kellogg, E.K., Maloney, T.J., and Pritt, J.W., 2001, A long-term approach for determining method detection levels and establishing reporting levels, *in* 2001 Pittsburgh Conference Abstract Book, New Orleans, La., March 4–9, 2001, abstract no. 1374.
- Gilliom, R.J., Barbash, J.E., Kolpin, D.W., and Larson, S.J., 1999, Testing water quality for pesticide pollution: Environmental Science & Technology, v. 33, no. 7, p. 164A.
- Hoaglin, D.C., 1983, Letter values: A set of selected order statistics, *in* Hoaglin, D.C., Mosteller, F., and Tukey, J.W., eds., Understanding robust and exploratory data analysis: New York, John Wiley and Sons, p. 33–54.
- Larson, S.J., Capel, P.D., and Majewski, M.S., 1997, Pesticides in surface water: Distribution, trends, and governing factors; Pesticides in the hydrologic system: Chelsea, Mich., Ann Arbor Press, v. 3, 373 p.
- Larson, S.J., Gilliom, R.J., and Capel, P.D., 1998, Pesticides in streams of the United States—Initial results from the National Water-Quality Assessment Program: U.S. Geological Survey Water-Resources Investigations Report 98-4222, 99 p.

- Lindley, C.E., Stewart, J.T., and Sandstrom, M.W., 1996, Determination of low concentrations of acetochlor in water by automated solid-phase extraction and gas chromatography with mass-selective detection: Journal of Association of Official Analytical Chemists International, v. 79, no. 4, p. 962–966.
- Mackay, D., Shiu, W.Y., and Ma, K.C., 1997, Pesticide chemicals: Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals: Boca Raton, Lewis Publishers Inc, v. V, 812 p.
- Majewski, M.J., 1997, National and study unit pesticide use: U.S. Geological Survey web site, accessed July 31, 2000, at http://wwwdcascr.wr.usgs.gov/pnsp/natsu/
- Miller, J.C., and Miller, J.N., 1993, Statistics for analytical chemistry (3d ed.): New York, Ellis Horwood Limited, 233 p.
- Sandstrom, M.W., 1995, Filtration of watersediment samples for the determination of organic compounds: U.S. Geological Survey Water-Resources Investigations Report 95-4105, 13 p.
- U.S. Environmental Protection Agency, 1997, Guidelines establishing test procedures for the analysis of pollutants (App. B, Part 136, Definition and procedures for the determination of the method detection limit): U.S. Code of Federal Regulations, Title 40, p. 265–267. 2001, Pesticide tolerance reassessment
- and reregistration: USEPA web site, accessed May 4, 2001, at URL http://www.epa.gov/pesticides/reregistration/
- U.S. Geological Survey, 2000, Pesticides analyzed in NAWQA samples: Use, chemical analyses, and water-quality criteria: web site accessed July 31, 2000, at http://ca.water.usgs.gov/pnsp/anstrat/

- Werner, S.L., Burkhardt, M.R., and DeRusseau, S.N., 1996, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory— Determination of pesticides in water by Carbopak-B solid-phase extraction and high-performance liquid chromatography: U.S. Geological Survey Open-File Report 96-216, 42 p.
- Wilde, F.D., Radtke, D.B., Gibs, Jacob, and Iwatsubo, R.T., eds., 1999, National field manual for the collection of waterquality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chaps. A1 through A6.
- Zaugg, S.D., Sandstrom, M.W., Smith, S.G., and Fehlberg, K.M., 1995, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory— Determination of pesticides in water by C-18 solid-phase extraction and capillary-column gas chromatography/ mass spectrometry with selected-ion monitoring: U.S. Geological Survey Open-File Report 95-181, 49 p.

Supplement A—Automated Solid-Phase Extraction Procedure

#### Zymark AutoTrace Extraction Workstation 1.20

AutoTrace Extraction Procedure: 2001 CONDITIONING/EXTRACTION 9/8/94

Estimated time for samples: 57.8 minutes Date: 8 Sep 94

- Step 1: Process 6 samples using the following procedure:
- Step 2: Condition column with 3 mL of METHANOL into SOLVENT WASTE
- Step 3: Condition column with 6 mL of WATER into SOLVENT WASTE
- Step 4: Load 1,000 mL of sample onto column
- Step 5: Dry column with gas for 4 minutes
- Step 6: Pause and alert operator, resume when CONTINUE is pressed
- Step 7: Clean each sample path with 50 mL cleaning solution (isopropanol: methylene chloride: toluene; 7:2:1) into SOLVENT WASTE
- Step 8: Clean each sample path with 50 mL methanol into SOLVENT WASTE
- Step 9: Clean each sample path with 100 mL distilled water into AQUEOUS WASTE
- Step 10: Dry column with gas for 0.1 minute
- Step 11: END

#### **Setup Parameters**

[mL/min, milliliters per minute; mL, milliliter]

| FLOW RAT<br>(mL/min) |    |                    | SOLID-PHASE EXTRACTION<br>PARAMETERS |  |  |  |
|----------------------|----|--------------------|--------------------------------------|--|--|--|
| Condition flow:      | 25 | Push delay:        | 2 seconds                            |  |  |  |
| Load flow:           | 25 | Air factor:        | 0.5                                  |  |  |  |
| Rinse flow:          | 25 | Autowash volume:   | 0.00 mL                              |  |  |  |
| Elute flow:          | 5  |                    |                                      |  |  |  |
| Condition air push:  | 25 | WORKSTATI          | ON PARAMETERS                        |  |  |  |
| Rinse air push:      | 25 | Maximum elution vo | olume: 12.0 mL                       |  |  |  |
| Elute air push:      | 5  | Exhaust fan on:    | Y Y=Yes N=No                         |  |  |  |
|                      |    | Beeper on:         | N Y=Yes N=No                         |  |  |  |

#### AutoTrace Extraction Workstation

#### Name Solvents

| Solvent 1 | : | Water     |
|-----------|---|-----------|
| Solvent 2 | : | Methanol  |
| Solvent 3 | : | Solvent 3 |
| Solvent 4 | : | Solvent 4 |
| Solvent 5 | : | Solvent 5 |

## Supplement B—Instructions for On-Site Processing Using Solid-Phase Extraction (SPE)

#### INSTRUCTIONS FOR ON-SITE PROCESSING USING SOLID-PHASE EXTRACTION (SPE)

- 1. Gather the equipment and supplies needed for on-site SPE listed in table 19.
- 2. Record the precleaned SPE column type, lot number, and weight on the field form. Prepare the SPE column by conditioning with about 2 mL of methanol, followed by about 2 mL of water to remove excess methanol. Allow the methanol and water to flow by gravity through the column. AT NO TIME SHOULD THE COLUMN GO DRY ONCE CONDITIONING HAS STARTED (if it does, add methanol then water to recondition again). Maintain the water in the column bed by replacing the water that drains through, or by using an on-off valve to stop all water from draining out of the column.
- Tare the weight of the amber glass 1-L sample bottle. Collect, split, and filter samples using appropriate procedures (Sandstrom, 1995). Collect about 1 L of the sample in the 1-L sample bottle (do not completely fill the bottle; leave about a 2-cm headspace to add conditioner and surrogate).
- Weigh and record the amount of sample collected. Add about
   10 mL of the methanol by using the bottle-top dispenser. Weigh and record the sample-plus-methanol weight.
- 5. Add the surrogate solution (1.25 ng/μL) contained in the 2-mL amber screw-cap vial (refer to Spike Kit Instruction Manual for more detailed information on use of micropipet). Use the 100-μL micropipet and a clean glass bore. Withdraw the solution into the glass bore, then put the tip into the sample

bottle, below the surface of the sample (tip the bottle on the side if needed to reach below the surface with the tip of the micropipet), and press the plunger to deliver the surrogate to the sample. Withdraw the micropipet, remove and discard the glass bore, and rinse the orange-colored Teflon tip with methanol. Swirl the sample to mix. Detailed instructions on use of the micropipet are contained in the spike kit.

- 6. Obtain a plastic 1-L beaker for collecting the extracted water.
- If necessary, adjust the pump flow rate to 20 to 25 mL/min by using the cleaning solutions and graduated cylinder or beaker to measure volume.
- 8. Insert the inlet end of the Teflon-PFA tubing from the SPE pump into the sample bottle. Turn on the pump and allow the air to be displaced from the Teflon tubing, then attach the Luer tip of the SPE column to the outlet end of the pump tubing. Invert the column to discard any conditioning water remaining in the SPE reservoir and begin collecting extracted water that passes through the column into the plastic beaker. Pump sample through the column at 20 to 25 mL/min. After sample has been pumped through column, turn off pump, disconnect SPE column, and record final weight of sample processed through the column.
- Remove excess water from SPE column by using a syringe to blow out water. Write sample ID on side of column, and store in 40-mL glass ampule. Store columns in cool place (between 4– 25°C).

## **CLEANING PROCEDURE**

Clean all equipment after use by rinsing with a laboratory detergent (Liquinox solution, 0.2 percent), followed by rinses with about 30 mL of tap water to remove the detergent; finally, rinse with about 30 mL of methanol. Wrap all openings of cleaned material with aluminum foil.

Samples (and any materials added to samples) should contact only glass, Teflon, ceramic or stainless steel (or other metal).

## **QUALITY-ASSURANCE SAMPLES**

Field equipment blank: Process a sample of pesticide-grade water (available from NWQL, through One Stop Shopping)<sup>1</sup> exactly as the samples. This includes sample bottles, compositing, splitting, and filtration equipment as well as the SPE system. Process the field-equipment blank at the start of sampling, and then after about every 10 to 15 samples. More frequent blanks are always helpful.

Field matrix spikes: Collect duplicate samples and add the 2.0-ng/ $\mu$ L-spike solution to one sample. Use the 100- $\mu$ L micropipet to add the spike solution, which is contained in a 2-mL glass vial, after about every 20 samples. Add the surrogate to every spiked sample.

### FURTHER INFORMATION

Contact Frank Wiebe (e-mail – fwwiebe@usgs.gov; 303-236-3279), or Mark Sandstrom (e-mail – sandstro@usgs.gov; 303-236-3943) for additional information.

**Table 19.** Equipment and supplies required for broad spectrum pesticide analysis (methods 2010 and 2011) by on-site solid-phase extraction

[mm, millimeter; in., inch; mL, milliliter; SPE, solid-phase extraction;  $\mu$ L, microliter; g, gram;  $\mu$ m, micrometer; mg, milligram; L, liter; ng/ $\mu$ L, nanogram per microliter]

|                                                                                                                   | Number per<br>sample |
|-------------------------------------------------------------------------------------------------------------------|----------------------|
| Equipment                                                                                                         | -                    |
| Filter Unit, 147-mm diameter, aluminum, and FMI Model QB-1 CKC pump and 1/4-in. diameter convoluted Teflon tubing | 1                    |
| Teflon squeeze bottle, 250 mL, for methanol                                                                       | 1                    |
| Valveless, piston-type metering pump for SPE; FMI Model RHB 0CKC                                                  | 1                    |
| Fixed volume (100-µL) micropipet                                                                                  | 1                    |
| Portable balance (1,200.0 g)                                                                                      | 1                    |
| Filters, 147-mm diameter, 0.7-µm pore diameter, precleaned                                                        | 1–5                  |
| Bottle-top dispenser, 1–5 mL, for methanol (optional)                                                             | 1                    |
| Teflon squeeze bottle, 250 mL, for pesticide-grade water                                                          | 1                    |
| Supplies                                                                                                          |                      |
| SPE columns, International Sorbent Technologies Isolute C-18, 500 mg, precleaned Sample bottles, 1-L, amber       | 1<br>1               |
| Disposable glass bores, for 100- $\mu$ L micropipet <sup>1</sup>                                                  | 1                    |
| Surrogate mixture, 1.25 ng/µL, 2-mL vial                                                                          | 1                    |
| Liquinox detergent, 0.2-percent solution, 200 mL                                                                  | 1                    |
| Pesticide-grade methanol, 200 mL                                                                                  | 1                    |
| Pesticide-grade water, 5 mL                                                                                       | 1                    |
| Aluminum foil, roll                                                                                               | 1                    |
| Gloves, disposable, nonpowdered, medium                                                                           | 1–5                  |
| Spike kit, including Instruction Manual                                                                           | 1                    |
| Spike mixture, 1–10 ng/µL, 2-mL vial <sup>1</sup>                                                                 | 1                    |

<sup>1</sup>Supplies obtained through WRD One Stop Shopping <a href="http://lstop.usgs.gov">http://lstop.usgs.gov</a>>.

| Solid-Phase Extraction, GC/MS                                     | •                                  |
|-------------------------------------------------------------------|------------------------------------|
| Methods 2010 a                                                    | nd 2011                            |
|                                                                   | ne                                 |
| Date: Time Collector:                                             |                                    |
| Comments:                                                         | Number of Collector:               |
| ON-SITE INFORM                                                    | ATION                              |
|                                                                   | Date filtered:                     |
| Prior to filtration, record bottle tare wt.                       | gg                                 |
|                                                                   |                                    |
| SPE Column Brand or Type:                                         |                                    |
| Lol#.<br>Dry Wt                                                   |                                    |
|                                                                   | g                                  |
| SPE Column Conditioning:                                          | Date of SPE procedure:mL           |
| Pesticide-grade water (2 mL):                                     |                                    |
| (DO NOT LET COLUMN GO DRY ONCE CONDITIONIN                        |                                    |
|                                                                   | ,                                  |
| () hottle tone and t                                              | g                                  |
|                                                                   | <u> </u>                           |
| Add methanol conditioner (1% sample wt.):                         | mL                                 |
| Sample + bottle + methanol:                                       | g                                  |
| Solution ID:                                                      |                                    |
| Volume added:                                                     | μL                                 |
| 🗌 QA Samples - Spike Mixture                                      | · · ·                              |
| Solution ID:                                                      |                                    |
| Volume added (100 µL):                                            | μL                                 |
| □ Sample through column:                                          |                                    |
| Sample + plastic beaker:                                          | g                                  |
| plastic beaker:                                                   | g                                  |
| <b>Flow rate:</b> (=sample wt. extracted/time)                    | mL/min                             |
| Start time:                                                       | hr:min                             |
| Finish time:                                                      | hr:min                             |
| Remove excess water — Write station IPD, date, time on            | column — Store in 40-mL vial @ 4°C |
| NWQL INFORMA                                                      |                                    |
| Lab ID: Set #:                                                    |                                    |
| Dry column with N <sub>2</sub> or CO <sub>2</sub> :               | Date:                              |
| Pressure:                                                         | lb/in <sup>2</sup>                 |
| Time:                                                             | min                                |
| Dry SPE cartridge wt.:                                            |                                    |
| SPE Elution                                                       | Date:                              |
| Add 1.8 mL elution solvent (3:1)                                  | mL                                 |
| ☐ Internal Standard (PAH-d <sub>n</sub> mixture in toluene keeper | r)                                 |
| Solution ID:                                                      |                                    |
|                                                                   | μL                                 |
| 📙 Evaporate solvent - nitrogen                                    | Date:                              |
| Pressure:                                                         | lb/in <sup>2</sup>                 |
| Time:                                                             | min                                |
| Analysis - Instrument ID:                                         | Date:                              |
| Comments:                                                         |                                    |
| Comments.                                                         |                                    |

70 Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry