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Towards Arbitrary Accuracy Inviscid Surface

Boundary Conditions

Rodger W. Dyson*

NASA Glenn Research Center at Lewis Field, Cleveland, OH _135

Ray Hixon t

Institute for Computational Mechanics in Propulsion, University of Toledo, Toledo, OH 33606

Invlscid nonlinear surface boundary conditions are currently limited to 3 rd order ac-

curacy in time for non-moving surfaces and actually reduce to 1st order in time when the
surfaces move. For steady-state calculations it may be possible to achieve higher accu-

racy in space, but high accuracy in time is required for efficient simulation of multiscale

unsteady phenomena. A surprisingly simple technique is shown here that can be used

to correct the normal pressure derivatives of the flow at a surface on a Cartesian grid

so that arbitrarily high order time accuracy is achieved in idealized cases. This work

demonstrates that nonlinear high order time accuracy at a solid surface is possible and

deMrable_ but it also shows that the current practice of only correcting the pressure is

inadequate.

I. Introduction

'IGH order accuracy is required for efficient.aeroacoustic simulations. 1-3 Recently, it has
been demonstrated 4' 5 that there is an optimal range

of design accuracies in which the best efficiency and
solution accuracy is obtained. The optimal value de-

pends upon the length of the simulation and the level
of accuracy required. For example, nonlinear invis-
cid aeroacoutics simulations with 6 th order accuracy

in space and time is optimal for propagating a wave
five wavelengths with absolute error less than 10 -6 .

Unfortunately, this is not typically achieved in prac-
tice because of the solid boundary conditions 6 which

may have high order spatial accuracy, but rarely ex-
ceed 2 nd order time accuracy. This severely limits the

efficiency of time marching methods.

This paper demonstrates why most surface bound-

ary approaches are typically only 1st order accurate in
time and it presents a surprisingly simple procedure for
correcting the normal pressure derivatives to achieve

any order of time accuracy in special cases. The ba-
sic idea follows the work of Tam 7's in which walls

are modeled by pressure corrections; and follows the
work of Hixon 9 in which the pressure corrections are

treated separately from flow variables to greatly sim-

plify their nonlinear implementation; and finally, those
contributions are combined with Goodrich's boundary

treatment t° to produce arbitrary time accuracy at a
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surface.
The usefulness of these ideas are currently limited to

cases in which the pressure corrections are much larger
than the density and velocity corrections. Nonetheless,

the procedures shown here demonstrate the feasibility

and efficiency of increasing the time accuracy at sur-
faces.

II. Problem Description

The following form of the two-dimensional nonlinear

Euler equations are used:

Ou Or)OP + u_x + V_ + p -_x + = Qt (1)

ap ap ap (ou Ov)O--_+ U-_x + V-_v + Tpy -_x + -_y =Q2 (2)

O(puv)+ O(p 2+ p) + - Q3 (3)
Ot Ox Oy

O(pv) + O(puv) + O(pv 2 + p) _ Q4 (4)
Ot Ox Oy

At the solid boundary we also have the following
infinite set of boundary conditions: 1°

a'_(? '_) - a"Q_w : (_ _>o) (5)
Ot_ Ot_

Ordinarily, the source terms (Qt, Q2, Q3, Q4, Q5)
are zero. But, for testing purposes, these terms will
be modified so that the following analytical solution is
defined: 5

p(x,y, t) -- at cos(kx_-x) cos(ky_y) cos(kt_rt) + ct (6)

u(x,y,t) = a2 cos(k_x) cos(ky_y) cos(kraft) + c2 (7)

v(x,y, t) = a3 cos(kzrx) cos(kyTry) cos(kt_ct) + c3 (8)

p(x, y, t) = a4 cos(kxrx) cos(k_ry) cos(ktrt) + c4 (9)

NASA/T_2002-211583 1



Duetothelargenumberofderivativesusedinwhat
follows,thefollowingshorthandnotationwillbeused:

x s 0°+b+kl(x, y, t) (10)
Ca,b, k : Oxaybt k

where X, when used, will indicate: updated (U), new

(N), old (O), or correction (C).

III. Maintaining High Accuracy at

Boundary

This work uses high accuracy Hermitian Modified

Expansion Solution Approximation (MESA) methods

because high time accuracy at a surface requires cor-
recting the spatial cross derivatives of the flow vari-
ables, many of which the MESA scheme explicitly in-

cludes on the grid. Any method could be used as long
as the effect of cross derivative corrections are con-

sistently applied. In Fig. 1, the absolute error of the
numerical wavenumber for the derivative of a harmonic

function, f(x) = exp ikx, is plotted by points per wave-
length (PPW) as done in Ref. m The extraordinary
resolution of the two-point MESA schemes allows one

to use fewer grid points and larger time steps, resulting

in significant computational efficiency for problems re-
quiring high physical accuracy as shown in Fig. 1.5' 15
However, maintaining high accuracy at surfaces, 12 par-

ticularly when waves are being scattered, 13 is required

to maintain this high efficiency.

Unfortunately, most inviscid surface boundary con-
ditions are at most 2 nd order accurate in time since

only the following conditions:

Ot a
- 0Vc_: (a = 0, I) (11)

are used when in fact Eq. (5) is true for any a.

As an example, the numerical time advancement of

the pressure on a surface expressed as a Taylor series
is:

p(x, y, t + At) =

C p +C_,o,lAt-_f:P _t _o,0,0 -- "_0,0,2T --I-.. •

(12)

And from the governing equations Eqs. (1, 2, 3, 4)
we can convert the series' time derivatives into space

derivatives. For example:

_C p _-
0,0,1

P v P P u vC&o,oC_,o,o+ C;,o,oC_,_,o+ _Co,o,o(C_,o,o+ C&l,O)
(13)
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and

-C p =
0,0,2

o +1,o,o C_,o,oCl,o,o + C_,o,oC_,l,o + Co,o,oC_,o,o
u P u P v P

C_o,o,o(Cl,o,oCl,o,o + C_,o,oC_,o,o+ Cl,o,oC_,1,o+
CLo,oCL,o+ _C_,o,o(c1_,o,o+ cL_,o)+
_C_o,0(c2_0,0+ c_,1,o))+

P u v v v 1/p p
C_,l,o (Co,o,oCl,o,o -+- C_,o,oC_,l,O -}- Co,o,oC_,l,o) -}-

v u P u P v PC_,o,o(cL_,oCl,o,o+ Co,o,oG,l,o+ cLl,oCLl,O+
v P P u vCLo,oCo,2,o+ _cLI,o(Ci,o,o+ cL,,o)+

_CP,0,0 (ClU, l,O -t- 6_,2,o) ) +

u v u p v p-Y(C_,o,o+ cL_,o)(CLo,oC_,o,o+ CLo,oCL_,o+
p v P_Co,o,o(CLo,oCL_,o))+

_CLo,o(- (Ci_o,oC1_o,o+ Co_o,oC_o,o+ Cf,o,oC_,o+
v u lip p lip p

Co,o,oC1,1,o -_ Cl,o,o61,o,o _ Co,o,oC2,o,o_-) ) -_

P _ V _ V _) V
_C0,o, 0 (- (C_,l,oCl,o,o -4- C_,o,oC1,1, 0 -4- C_,l,oC_,l,O-/-

..v ,-_ _ ,.1/ p ,.p ± r.1/ o r:p _
t._O,O,O_0,2, 0 "I"-_0,i,0_0,i,0 T ,JO,O,O_JO,2,0] ]

(14)

These equations clearly show that for 2 nd order time

accuracy we must have the correct first order spatial
derivatives of the pressure and velocities at the sur-

face. In particular, Eq. (5) with a = 1 provides a
constraint on these 1st order spatial derivatives by con-

verting the time derivatives to space derivatives again
using Eqs. (31, 31):

I u u v u (wl/p rlp '-_ C_.o,oCl,o,o + C_,o,oC_,l,o + _o,o,o-_1,0,o +

t u v v v g."ll/p g"_p = 0-_y C_,o,oCl,o,o + C_,o,oC_,l,o + vo,o,o-_0,1,o
(15)

which if not true, implies the time accuracy is only 1st
order.

Similarly, the boundary condition Eq. (5) with a =

2 will provide a constraint on the first and second or-
der spatial derivatives (including density), which if not
true, will reduce the numerical method to below 3 rd

order time accuracy. And in general, one must enforce

Eq. (5) for all a up to the desired time accuracy. Note,
however, in the special case of a nonmoving inviscid
wall that the even alpha conditions will automatically
be satisfied if the initial flow conditions and their spa-
tial derivatives are correct at the surface.

A. Time Advancing Boundary

If the spatial derivatives are correctly specified to
maintain the desired time accuracy, then after time

advancing the flow variables we find that the boundary

condition, Eq. (5), with a = 0 will still be satisfied as
shown below (via its Taylor series expansion in time):

_.p(_, y,t + At)_(_, y,t + At)+
nyp(x, y, t + At)v(x, y, t + At) =

= nzp(x, y, t)u(x, y, t) + nyp(X, y, t)v(x, y, t)+

o 1 ( O_(pu) Ok(pv)_
E# \nz Ot------v-+ny_)(At)k
k=l

= p (,_(_, y, t) + _(_, y, t)) +
• -_o "

0 1 (_-_.(k ok-ip [ O'u Oiv]_(At)k
=0

=0
(16)

At the new time step, the boundary condition,

Eq. (5), for a > 0 will in general not be true. For
example, we know that after time advancing the prim-
itive variables that for c_ = 1:

n_(p(x,y,t + At)u(x,y,t + At))t+

ny(p(x,y,t + At)v(x,y,t + At))t =
= -nz (p_u 2 + 2puuz + Pz + pyuv + pUyV + pUVy)

--ny (pyV _ + 2pvv u + Pu + pzuv + puzv + puvz)
# o

(17)
Clearly it m necessary to correct the spatial deriva-

tives at each time step to maintain time accuracy at
the boundary. In this work however, only the spatial
derivatives of the pressure are corrected because this

approach was successful for the I st order corrections

used by Tam 7' 14 and Hixon2 This approach reduces
the seemingly intractible complexity of very high or-
der nonlinear boundary conditions to a few lines of
code. The downside to this approach is entropy and

vorticity waves may be excited as no mechanism for

properly correcting the density and velocity derivatives
is provided here. For example, the one-dimensional

characteristic form (entropy and two acoustic waves)
of the Euler equations is:

A. o____o____.+ =0 for i=1,2,3
Ot z Ox

e@_)= e(p) - @,
d(v2) = d(u) + _,

d@_)= d(u) -
Al=u, A2=u+c, )_3=u-c
vi = s = const, for dx = udt

2____¢_c= const, for dx = (u + a)dt
V2 : U -t- 7_cl

va u-_ const, for dx (u-a)dt

(18)

where c is the speed of sound, s is the entropy, d(vi)

is the i th characteristic variable differential which is

integrable for isentropic flows, and Ai is the speed of
the characteristic wave.

The time derivative of the Euler equations provides
a new set of characteristics with the same velocities

NASA/T_2002-211583 3



butincludehigherorderspacederivatives:

_o(_) + (_)_ + _£ (8) =0,i = 1,2,3
-_ [-- i Ox ) -w i-_ [-- i Ot J -- k i)t Ox

d(vl)= d (-u(p=+ 9))

 (v2): I-(u +d(v_)= d -(_ - c)(_=- _))
_l=u, A2=u+c, A3=u-c

(19)

where c is the speed of sound. In this analysis, the
lower order terms are source terms and are assumed

known (using the procedure provided later).

Differentiating once more in time provides a new set
of characteristics with the same velocity as before:

d(vl) = d (u(ux(px - 9) - u(p_ - _P-_)))

/

(20)
In Eq. (18) the entropy characteristic, d(vl) does not

depend on velocity, but the new differentiated charac-
teristic does depend upon velocity in Eq. (19). And,

in Eq. (20) the new entropy characteristic depends on
all flow variable first derivatives. By only correcting

the pressure derivatives, the Euler system is under-
specified because the velocity and density derivatives
are incorrect at the surface. Ideally, all the flow vari-

able derivatives would be corrected so that d(vl) and

the outgoing acoustic characteristic are not changed.
This issue is beyond the scope of this paper since it is

currently standard practice to only correct the pres-
sure terms and since physically correct solutions have

been achieved with it (probably because the required
corrections in the other terms were small compared to

the pressure). This will become more important as
higher order time accuracy is required and the proce-
dure shown next could be extended for such cases.

IV. Surface Pressure Correction

Algorithm

The basic idea 7 is to modify the normal pressure

derivatives on a boundary to satisfy the governing
equations and boundary conditions. One-sided deriva-

tives at a surface will generally be incorrect since they
do not account for the walls presence, thus they need

to be corrected. And, contrary to the assertion of only
one physical boundary condition being available for

high order finite-difference schemes, we make use of
the infinite additional conditions 1° in Eq. (5).

For a wall with normal vector, ff = (_x, r/u), tangen-

tial vector, F = (Tx, Ty), and a numerical method with
order O accuracy, the pressure derivatives:

oa+bp
_-=----az-_V(a, b): (1 _< a + b _< O)
a_xa_y

(21)

will be modified such that the boundary condition,

Eq. (5), is satisfied while simultaneously insuring the
tangential derivatives of the pressure:

0_P 0_P 0_P V(a): (a < O) (22)
0_-, 0_-IT0_/' • ""' 0_-0_-1_/

do not change on an inviscid wall.
We can represent the new pressure, ()N, as the sum

of the old, ()o, and correction, ()c, pressures:

Oa+bp _ _ ( °_+_p_ (23)(_ +

Op Cp

= C_,b,o + C_,b,o

where

Cp

Ca_i,i, 0

u c CQ_-n_Co,o,= - nyC_,o,, + o,0,_j (-1) iMi (24)

_j-_ Aj(-1)Y Mj
j=0

Mi = (-1)_+i b i% ,_y
b=0

Aj = (26)

( c _ (__-n_ T_,l,i .... C3,0,o+T_,1o'-1,_,. 0,o,o+ • cxo_ _-
\ 0,0,0 ] ]

C_ C _ ( T_ o,_- _....
-ny (Ta,l,j-l,u,v o,o,o + Ta,l,j-2,u,v o,o,o + 'c ° ))0,0,0

Ta,fLi,Lg =

_+i _ r :._c_ )(_+_)
k 0,0,0

(-1)a-i E E IHm'i'a'z'¢ (C" "V'+"+_)
m=0 i=0 L k o,o,o/

(C<oo) k o,o,o1 j
Hm,i,,x,2,i =

(a - 1)!(m + i)!

(27)

(a - 13 - 2i - _ - I)!(_- 2m)!(2(i + m) + fl)!i!m!

u/
The updated term, Co,o,_, in Eq. (24), refers to the

value of C _ after the lower order pressure deriva-
0,0,a

tives have been corrected. For example, we first correct

the 1_t (a = 1) order pressure derivatives, (p,, p_), us-
ing Eq. (24). Next, the higher order time derivatives,
U U

C u and C_,o,2 are calculated, but using the new val-0,0,2

ues of p= and py. These "updated" time derivatives are
then used to calculate new 2_d (a = 2) order pressure

derivatives, pz_, p_y, pyy, with Eq. (24).
This process is repeated until the desired accuracy

is achieved. A complete derivation of Eq. (24) may be
found in the appendix.

NASA/T_2002-211583 4



V. Results
Theadequacyofcorrectingonlythepressurederiva-

tivesto achievehightime accuracywastestedby
scatteringtheinitialGaussianpulse:

p(x,y,O)=O.OOlexp( ln2[(x-1)2+Y2])_04 (28)

with four grid points per unit interval from a flat plate
at progressively higher order accuracy. The initial uni-

form flow conditions were p = 1.4, p = 1.0, u = 0, and
v--0

In Fig. 2, pressure contours of the reflected pulse
are shown for the 3 r4 order conditions. The solution is

stable, but the reflected pressure is slightly amplified.

The pressure is over-corrected (amplified) because the
effects of the other uncorrected variables must be ac-

counted for to maintain the no-flow boundary condi-

tions, Eq. (5). As the accuracy increases, the number
and effect of uncorrected variables increases resulting
in an over-correction of the pressure that leads to nu-

merical instability, unless some damping mechanism is
added.

In Fig. 3, the reflected pulse using the 3 rd order

conditions are compared with the current practice of

correcting only the first derivatives, px and py using
3_4 and 1st order design time accuracy at the surface

(though both achieve only 1st order time accuracy as

mentioned). The 3 rd order time accuracy cases in Figs.
3a and 3b, showed little difference here suggesting the

higher order corrections are small, but the 1_t order
time advance in Fig. 3c generated spurious waves and
was unstable.

The 5 th order example in Fig. 4 shows more clearly
the importance of correcting the higher derivatives.

Despite only correcting the pressure, the reflected
pulse is qualitatively superior to correcting only the
first order pressure derivatives. The simulation be-

comes unstable however on the surface after the pulse
has reflected from it at time t = 0.8. Higher order con-

ditions result in larger over-corrections of the pressure,

as expected. Note that the MESA scheme explicitly
uses the 2 nd order spatial derivatives and the effects of

high order boundary corrections are directly observ-
able. Other methods may perform differently for the

cases shown in Fig. 4b and 4c., though their results
remain nonphysical.

As a test of the procedures on curved surfaces with a
Cartesian grid, the same Gaussian pulse was scattered

from a sphere of radius, r = .25, with a grid density
of 128 points per unit interval. In Fig. 5, a 3rd or-

der solution is shown. The curvature results in greater
changes in the velocity and the pressure corrections

must compensate for that, resulting in a dissipated,
but clearly reflected pulse and was numerically stable.

The higher order conditons (> 4) were unstable with-
out adding artificial dissipation for the circle case.

As a more realistic example, observe the entropy

production shown for the 2D stator blade passage in
Fig. 6 in which the height of the grid indicates mag-
nitude of the entropy. Only the 1_t order pressure

derivatives are corrected and for this inviscid problem
the solution should be flat, indicating no change in

entropy. Here, the curvlinear form of the nonlinear
Euler equations are solved using a 6 th order compact
scheme 1S for spatial derivatives and a 4 th order 5-6

Low Dispersion and Dissipation Runge-Kutta scheme
for time marching. 19 Notice the entropy production at
the suction surface and convected downstream in the
wake.

Overall, the .advantages of correcting the high or-
der spatial derivatives is clear, and as shown in Fig. 1,
the efficiency of high accuracy is evident for demand-

ing long-term low error tolerance simulations. But the
current practice of correcting only the pressure is not

physically correct despite the flow variables satisfying
the governing equations and boundary conditions at

the surface. The practice is still nonphysical (e.g.,
produces entropy and vorticity) because the character-
istics are under-specified and therefore the other flow
variables must be corrected as well.

VI. Conclusion

Most surface boundary methods in use today
achieve only 1st order accuracy in time since only the

no flow condition is imposed. Higher time accuracy
requires enforcing the highier order time derivatives of

the no flow condition. In the special case of stationary
surfaces, the even ordered time derivatives of the no
flow condition will be automatically satisfied if they

were correctly specified at the start of the simulation.

The primary advantage of high time accuracy is
better resolution and larger time steps at surfaces.

Achieving high time accuracy requires correcting
cross-derivatives of the flow at a surface. In principle,

any numerical method could be used with the bound-
ary procedure presented here. But a Hermitian MESA
scheme was used because of its extraordinary resolu-

tion and potential for efficiency at a surface with high

time accuracy. The exact performance advantages of
high time accuracy will depend upon the physical ac-
curacy required.

The design time accuracy was increased here by

correcting only the pressure as is the currently ac-
cepted 1 st order practice. Despite the apparently high
complexity in deriving very high order pressure correc-

tions, a simple process for doing this was found that
requires only a few lines of code to implement. How-

ever, a characteristic analysis and numerical testing
has revealed that it is important to correct the veloc-

ity and density spatial derivatives as well. Therefore,
an important next step is to correct all flow derivatives

to avoid underspecifying the hyperbolic Euler system
and to extend this analysis to curvilinear coordinates

NASA/T_2002-211583 5



a) t_-O b) t----.3 c) t_.6

Fig. 2 Third Order Scattered Pulse From Plate

d) t_l

a) Fully 3 rd Order in Time b) Partially 3 rd Order in Time c) Partially I st Order in Time

Fig. 3 Fully VS. Partially Corrected 3 rd Order

a) Fully 5 th Order in Time b) Partially 5 th Order in Time c) Partially 18t Order in Time

Fig. 4 Fully VS. Partially Corrected 5 th Order
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a) n=190

Fig. 5

to efficiently resolve curvature effects.

b) n=690 c) n----l190

Third Order Pulse Scattered From Circle

find the following relationship:

VII. Appendix: Derivation of Pressure

Correction

The pressure correction procedure shown in sec-
tion IV was derived by assuming only the pressure's

spatial derivatives required adjustment to account for
the presence of the wall. After the corrections are ap-

plied, the flow variables and their spatial derivatives
must satisfy the nonlinear Euler equations and the

boundary condition at the surface. In addition, the
flow's spatial derivatives must satisfy the time deriva-
tives of these equations to achieve high accuracy in
time.

Starting with the following boundary condition,

from Eq. (5), for any a:

cOa(V'_t) cOau cOav = C Q_ (29)
Ot_ - n_ Ot----W + ny _ 0,o,_

we want to correct the pressure derivatives so that the

following is satisfied:

(30)
C C

The terms, C u and C v0,0,a 0,0,_, are the corrections to
the time derivatives of the velocities resulting from the

corrections to the spatial derivatives of the pressure.

We need to determine how changes in the pressure
derivatives will effect the velocity time derivatives so

that Eq. (30) is satisfied up to some specified order a.

This relationship can be found using the governing
equations, Eqs. (1, 2, 3, 4) and the following alternate
form of the momentum equations: is

Ou __ (U Ou -l- V Ou -.l- 10p_

or- o / (31)
Or_ _ O_ .v Ov + l op _

From this alternate momentum equation form we

d) n----1410

C

C_,0,a = C

°U U C v ['_U

- Co,o,oCl,o,_-, + 0,0,0_0,1,_-1 + _1,o,_-1]
C

C_,0,a = C

- \ o,o,o  ,o,o-1+ +
(32)

which shows how changes in pressure and velocity
mixed space and time derivatives will affect the bound-

ary condition equation.
The critical and most difficult next step in this

derivation is expressing the right hand side of Eq. (31)

in terms of the corrected pressure's spatial derivatives.
This was done by recursively differentiating all six gov-

erning equation forms with computer algebra until a

pattern could be discerned. The following pattern was
observed and inductively verified:

c X2-'cv T •
Cl,o,a-i = L (-/a-J,J,O a,l,2,u,v

j=0

Cu a Cp T
C0,1,a-1 = E Cct-J,J, 0 a,l,j-l,u,v

j--o

C v a C
, , -_- C p ' -oTcr 1 j--luvC1 o c_-i E -3,3, ....

j=o

c x--" % T
C_,l,a-1 = LUa-J,J, 0 a,l,/--2,u,v

j=0

% T •
C1,0,a_ 1 = ,2 _ _vt--j,j,O a,O,3,u,v

j=0

% T
C0,1,a-1 = _ (-_c_--j,j,O a,O,c_--j,v,u

j----0

(33)

where T_,Z,;,Lg is defined in Eq. (27).
For each value of a, we can now correct the following

pressure derivatives:

_P__j,j,oVj = O, 1,..., a (34)
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Fig. 6 Entropy Produced on Surface of Stator Blade On Curvilinear Grid
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by subsituting Eq. (33) in to Eq. (32) and solving
boundary condition Eq. (30):

cp - n _ (35)Z Ca_j,j,oA j =- cQ 5 u U vo,o,a zCo,o,a - nyCo,o,a

j=o

with Aj defined in Eq. (26).
In addition, since we do not want corrections of the

pressure derivative to effect the tangential derivatives,

we impose, for each a the following a conditions :

Oap =OVj:j=O,l,...,a-1O'r_-5-b_ j co_ea_o_
(36)

which can be written as a condition of only the Carte-

sian x and y pressure derivatives as:

Or"-JOrlJ ] correction.

(37)
c_

x-'% B
/_ t_.--a,a,O a,3

a=0
= 0

b=0

(--1)(b-a) (nx)(j-2b+a) (ny)(_-J+ 2b-_)

since 7_ = yy and ry = -r/_.
For each value of a, we can write the a + 1 conditions

in Eqs. (35,37) in the following matrix form:

A0

Bo,0

Bo,1
Bo,2

Bo,a-1

A1 A,

B1,0 B_,o

B1,1 B_,I
B1,2 B_,2

:

BI,,-1 B,,a-1

Cp
• . . C.,o,o

Cp
•.. C._1,1,0

''' Cp
•. • 6a_2,2, 0

Cp

• " " v, Co,.,0

5

cQ 5 u u-- r_ u v
O,O,a xCo,o,a - TtyCo,o,a

0
0

0

0

(38)

Since the right hand side of this matrix systemis
zero, except the first term, we can efficiently solve this
system with Cramer's rule for the i th element of vector
C:

Ci- det(F) (39)
get(E)

where matrix F equals matrix E with column number

i replace by vector D.
The determinant of a matrix may be solved using

cofactor expansion along a column. 17 So we can take

advantage of all the zeros in F by expanding along
column i to efficiently evaluate the determinant of the
matrix:

D1
_. co.factor

U U "_

det(F) Q5 -n u v= (Co,o,. _Co,o,. - nyCo,o,a) (-1)iMi
(40)

where Mi is the minor of the element in the first row
and i th column of matrix F.

Similarly we can evaluate the determinant of matrix

E by cofactor expansion along the top row:

det(E) = _ Aj(-1)JMj

j=O

2_ _(_-1) ,-i i
= (-1)_(n_ +nv) 2 n_ nyA_

\i=0 /

(41)

where Aj is defined in Eq. (26). The expression for
Mj, from Eq. (25), was derived by observation with
the help of computer algebra and verified inductively•

With Mj known, we can quickly apply Cramer's rule
to solve Eq. (39) for the unknown pressure correction

vector C in Eq. (38). This simple procedure is repeated
for a = 1, 2,..., O until all higher order pressure spa-
tial derivatives are corrected.
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