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Final Report
Non-Deterministic, Non-Traditional Methods (NDNTM)

Executive Summary
Review Context

The purpose of the study was to identify research opportunities related to the use of non-
deterministic, non-traditional methods to support aerospace design. The scope of the study was
restricted to structural design rather than other areas such as control system design. Thus, the
observations and conclusions are limited by that scope.

The review identified a number of key results. The results include the potential for NASA/AF
collaboration in the area of a design environment for advanced space access vehicles. The
following key points set the context and delineate the key results.

The Principal Investigator’s (PI’s) context for this study derived from participation as a Panel
Member in the Air Force Scientific Advisory Board (AF/SAB) Summer Study Panel on “Whither
Hypersonics?” A key message from the Summer Study effort was a perceived need for a national
program for a space access vehicle whose operating characteristics of cost, availability,
deployability, and reliability most closely match the NASA 3" Generation Reusable Launch
Vehicle (RLV). The Panel urged the AF to make a significant joint commitment to such a
program just as soon as the AF defined specific requirements for space access consistent with the
AF Aerospace Vision 2020.

Key Findings:

The point this study brought home is the concurrent need for a national vehicle design
environment. Engineering design system technology is at a time point from which a revolution as
significant as that brought about by the finite element method is possible - this one focusing on
information integration on a scale that far surpasses current design environments. The study
therefore fully supported the concept - if not some of the details - of the Intelligent Synthesis
Environment (ISE).

It became abundantly clear during this study that the government (AF, NASA) and industry and
not moving in the same direction in this regard - in fact each is moving in its own direction.

e NASA/ISE is not yet in an effective leadership position in this regard. However, NASA
does have complementary software interoperability efforts that should be a part of any
major ISE program. Software standards that assure interoperability of data systems and
modeling representations are enabling for the proposed research advocated herein and
should be a major element in the ISE initiative.

e The international standard for data interchange is known by the acronym “STEP.”
The NASA participation and lead for that effort is at the Goddard Space Flight
Center.

e NASA/GRC is leading an effort to define CAD geometry standards through the
Object Management Group (OMG).

e To enable the design environment so necessary to the above national vision for a unique
space vehicle will require an integrating software environment with interoperability
standards that allows the development and widespread deployment of tools and toolsets,
rather than traditional “shrink-wrapped” software used by engineers today.
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e Someone or some agency has to define that software environment and its standards in
order for the US aerospace industry to approach decent levels of interoperability of
design tools and design information. NASA has some key efforts in this area.

e Each aerospace company today appears to be developing its own version of an ISE.
These are not inter-operable environments.

e The AFRL has its own program called the Common Engineering Environment (CEE).

The AF, NASA and industry could cooperate to develop a true, common design environment in a
way that will benefit the nation later on. NASA is the obvious agency to pull this together.

The contracted task of Non-deterministic, Non-traditional Methods (NDNTM) is but a subset task
within a design environment.

e A key NDNTM finding is that there is no current need for new probabilistic methods but
rather for tools and toolsets to be developed that would support the deployment and use
of non-deterministic methods.

Another key finding is that the required accuracy for reliability assessment to support the fleet
risk assessments that will underpin the future design environment poses several key issues that
must be addressed within NDNTM development.

e  We do not have the necessary tools and toolsets to deploy today's probabilistic
technologies for real systems with flight safety requirements.

¢  We do not have the needed error bound technology base for the various non-
deterministic methods.

e  We do not have the design-enabling environment to support the full deployment of
non-deterministic design outside of the research office.

e There is consensus among the industry experts consulted by the PI on these points.

The NDNTM study therefore focused on the issues for enabling this technology base for large-
scale aerospace system design. The study concludes by recommending specific programs to
support the deployment of non-deterministic design in ways that will be accepted and used by a
still-reluctant aerospace design community. The following are the priority-ranked
recommendations for NDNTM development.

1. Probabilistic Data Expert (PDE): The PDE provides a systematic means for merging
disparate forms of “data” into probabilistic design. The data ranges from subjective
expert opinions to raw data such as specimen specific fatigue test data.

2. Probabilistic Updater (PU): The probabilistic design process for total life cycle
design from concept to field deployment for complex systems generally involves
reliability growth processes of one form or another. Semi-automated systems to
support model updating based on information and data that become available after
the initial design are required.

3. Probabilistic Error Bounder (PEB): A key and, as yet, not addressed and
fundamentally critical need is to be able to compute rational reliability error
prediction bounds for the various algorithms likely to be used an advanced aerospace
vehicle and propulsion design. Error bounds are needed that span the analysis
spectrum from the physics approximations, to the response surface or surrogate
models used to represent the physics, to the specific probabilistic algorithms
deployed.

NASA/CR—2001-210976 2



4. Probabilistic Model Helper: A major limitation in the deployment of probabilistic
methods for system design is the current burden that the analyst be a skilled
“probabilistic engineer.” Non-traditional methods provide a real basis for the
development and deployment of intelligent systems to work as probabilistic “robots”
or assistants.

5. Probabilistic Mesomechanics: Significant progress has been demonstrated in the
ability to link material processing simulation software with micromechanical models
of material behavior at the mesoscale (grain size, grain orientation, flow stress,
dislocation density) to predict statistical distributions of material fatigue strength.
Such probabilistic modeling advances lend real credibility to the notion of engineered
materials that goes well beyond the simpler notions associated with composite
material systems. Probabilistic mesomechanics tools that can support the PDE tool or
feed “data” directly into the material data distributions are required.

6. Response Surface Generator (RSG): Two methods are currently employed to
generate RS’s; these are the Taylor series method and the “design of experiments
(DOE)” method. RS methods are highly effective over a range of design levels from
conceptual to final. A generalized “tool” for effective development and
representation of RS’s is needed that will interface both to probabilistics and to the
closely related field of multidisciplinary optimization (MDO).

7. System Reliability Interface: The aerospace system design environment of the future
requires the ability to interface multiple models of multiple subsystems in an efficient
and accurate manner. Intelligent systems can be developed for linking the
information and propagating it to the various “top level” events in order to provide a
powerful environment for calculating and managing system level reliability.

8. Health Management System: A new Health Management (HM) design strategy
should allow inclusion of sensors and diagnostic/prognostic technologies to be
incorporated early in the design process to optimize system performance and life
cycle costs.

NASA/CR—2001-210976 3



1.0 Detailed Overview of the Effort and Report

The purpose of the study was to identify research opportunities related to the use of non-
deterministic, non-traditional methods to support aerospace design. The scope of the study
was restricted to structural design rather than other areas such as control system design. Thus,
the conclusions are limited by that scope.

Several positive developments characterize the developing aerospace systems design
environment based on the observations made during this review. The design environment is
undergoing revolutionary changes that are at least as significant as the change from hand
analysis to ubiquitous application of finite element methods that began roughly 40 years ago.
These changes are associated with web-enabled, distributed computing and with object-
oriented programming. Every major aerospace airframe and engine company is actively
working on large-scale, integrated design systems with extensive generalized database (what
will be referred to as information) linking capabilities.

The fundamental common element in these generalized approaches is information linking
where disparate types and forms of information are made easily accessible to the various
specialized tools used for design analysis. The enabler for the developing design environment
is object-oriented programming, specialized tools for data creation, visualization, and
analysis. So-called data wrappers are specialized tools that automatically create links between
analysis tools and the required analysis information.

The new software environment is increasingly web-enabled. Web enabling includes the use
of Java-based graphical interfaces such that the workgroup on design projects may share
information and resources over the Internet. Web-enabled tools mean the programming tasks
can be done once and used over a wide range of processors. The tool sets that are being
deployed often allow the individual user to tailor their own interface to support specific
analysis or interpretation purposes.

These developments are taking place generally outside the context of NASA’s Intelligent
Synthesis Environment (ISE). The ISE initiative appears to be a result of these developments
rather than a leader of these developments. Rather, industry has taken the lead in moving to a
new design environment under pressures of product development costs and cycle-times,
recognizing that improved information processing is the underlying enabler of true
concurrency in design. However, the very fact that each company is developing their own
environment guarantees that information sharing required to complete a new vehicle system
design for NASA will encounter significant information barriers at the system level.

Finding: NASA has an opportunity under the banner of ISE to provide leadership to the
aerospace community by taking leadership in creating high-level information and
programming standards that can facilitate advanced space vehicle design requirements. Such
an integrated system is seen as a fundamental requirement for the successful execution of the
proposed 3 Generation Reusable Launch Vehicle, for example. Defining such standards
would enable tool development and information processing that can be shared between
multiple proprietary systems. To date, there is no evidence that the NASA ISE initiative has
taken this leadership role.

Finding: NASA has demonstrated leadership in the effective deployment of system
integration platforms that enable the aerospace propulsion community to integrate proprietary
and NASA-developed codes through the NPSS effort. NASA continues in some areas,
however, to pursue multipurpose, stand-alone codes that do not integrate well with other tools
or codes.
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Recommendation: If NASA were to take the recommended approach to ISE by facilitating
an aerospace industry integrating design environment, NASA would also have the ability to
promote the development of tools that can easily be integrated by the various aerospace firms,
contractors, and universities into this design environment. This report recommends the
development of several key, object-oriented software tools or toolsets that build on non-
traditional design methods and facilitate the widespread application of non-deterministic
design methods that will be critical to the success of a new space vehicle design program.
Such tools will achieve NASA’s goal of deploying NASA-logo bearing products to the
design workplace if they employ modern, object oriented programming methodology.

A critical design requirement for future space vehicle designs is high system reliability over
the full life cycle of the system. Non-deterministic design methods are an intrinsic element in
meeting this requirement. A major element in the completed review of NDNTM has been to
assess the current state of probabilistic methods for structural design. The information used to
make the following finding is based on the following sources:

e The ongoing efforts by the Society of Automotive Engineers (SAE) Committee G-11
Probabilistic Methods (PM) Committee. That committee effort includes assessment
of the technical quality and capabilities of various probabilistic methods. The work of
this group can be referenced at
http://forums.sae.org/access/dispatch.cgi/TEAG11PM_pf.

e Reviews conducted by the USAF as part of the current contract on probabilistic high
cycle fatigue (HCF) under the leadership of Stress Technologies, Inc.

e Input from various probabilistics experts including Southwest Research Institute,
Unipass Software Systems, ARA Inc., and members of the technical staffs at Boeing,
Pratt & Whitney, Rockwell, Honeywell, and GEAE.

¢ Proceedings of the ATAA Nondeterministic Methods Forum conducted in Atlanta GA
on 3 April 2000.

o Recorded comments from the AIAA Nondeterministic Methods Panel in Atlanta GA
on 4 April 2000.

Finding: The various algorithms for probabilistic structural analysis are diverse in structure,
approach, and capabilities. The algorithms themselves are still the subject of intense scrutiny
and debate. However, there is consensus that there are no substantive research opportunities

at this time for new or improved probabilistic algorithms, per se.

Finding: The integration of probabilistic structural analysis algorithms into system design is
primitive at best. Significant research needs and opportunities have been identified that will
move probabilistics from the research application to vehicle system design capability. The
needs will draw on technologies developed in the general area of NDNTM.

Figure 1 illustrates a nondeterministic design environment based on today’s probabilistic
design codes, shown at the center. The current study has found widespread interest in and
need for powerful “tools” that will provide critical interface capabilities between the
designers and the current probabilistic algorithms. The various tools (meant in the broadest
sense) include the following items.

Probabilistic Data Expert (PDE): The PDE provides a systematic means for merging
disparate forms of “data” into probabilistic design. The data ranges from subjective expert
opinions to raw data such as specimen specific fatigue test data. The PDE relies on non-
traditional methods for integrating “fuzzy data” based on qualitative information. The major
technology needs here are in creating tools for automating the data acquisition and integration

NASA/CR—2001-210976 5



processes. A pilot study for probabilistic HCF has been forwarded to NASA under the ISE
banner as part of the joint AF/Navy/NASA and Industry program. However, there are
additional basic research needs in addition to the proposed pilot study.

Probabilistic Updater (PU): The probabilistic design process for total life cycle design from
concept to field deployment for complex systems generally involves reliability growth
processes of one form or another. Early in the design process, the reliability characteristics of
the subsystems are either not known or crudely known. Testing during development should
focus on those results that are most effective either in demonstrating greater reliability or
increasing the assurance (reducing the uncertainty) in the reliability prediction. There exists a
critical need to provide a generalized tool that will provide intelligent ways to update the
current reliability and assurance intervals (akin to statistical confidence intervals) taking into
account new information and data. Reference [33] discusses these intervals.

Knowledge Base

Test Data

Manufacturing Data
Acceptance Data

Statistical Data

Expert Judgement

Material
Processor,

Output
Distributions

Probabistic
Mesomechanics

System Modeling and
Healkth Mamagerment

Probabifistic Structural Analysis
listic Ontimization

Probabiistic Constraint Manager

Probabilistic Response Surface
Model Helper Generator

Figure 1: Integrated Nondeterministic Design Environment

Probabilistic Error Bounder (PEB): Many systems design processes have allowed for
generalized levels of comfort in product performance — so-called “fuzzy” non-
deterministic output. However, both the commercial workplace and the demands of
government acquisitions have transformed the aerospace vehicle design requirements
from non-analytical reliability bases to specified levels of “demonstrated” reliability that
may include both test and analytical bases. A key and, as yet, not addressed and
fundamentally critical need is to be able to compute rational reliability error prediction
bounds for the various algorithms likely to be used an advanced aerospace vehicle and
propulsion design. Error bounds are needed that span the analysis spectrum from the
physics approximations, to the response surface or surrogate models used to represent the
physics, to the specific probabilistic algorithms deployed. In fact, it is likely that
engineers will need to deploy hybrid combinations of the current probabilistic methods
(e.g., FPI, Monte Carlo importance sampling) for large, system design problems. Error
identification, tracking, accountability, and bounds are required for the full process.

@)}
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Response Surface Generator (RSG): All current probabilistic algorithms for any but the
most trivial problems use a “response surface” or surrogate model to describe the
component, sub-system, or system level behavior as a function of the design variables.
Thus, it is a surface in the N-dimensional design space of the problem. In fact, it is
increasingly likely to be a union of many such hyper-surfaces that can be used for
complex system design. An example of a powerful algebraic system for manipulation of
RS’s that could be easily extended to non-deterministic design is seen at the Rockwell
Science Center link: http://www.rsc.rockwell.com/designsheet/.

Two methods are currently employed to generate RS’s; these are the Taylor series
method and the “design of experiments (DOE)” method. The former are more likely to be
employed near a critical design point while the latter are more often used to span a wider
range of the design space. Fast probability methods such as the Fast Probability Integrator
(FPI) algorithms or importance sampling (a Monte Carlo simulation strategy) are
performed using the RS and do not directly use the actual detailed simulation. As such,
the RS methods are highly effective over a range of design levels from conceptual to
final. A generalized “tool” for effective development and representation of RS’s is
needed that will interface both to probabilistics and to the closely related field of
multidisciplinary optimization (MDO). Further, the PEB tool and the RSG tool should be
able to work together to adaptively build optimal RS strategies that combine
computational efficiency with minimizing the probabilistic approximation errors for large
system design problems.

Probabilistic Model Helper: A major limitation in the deployment of probabilistic
methods for system design is the current burden that the analyst be a skilled “probabilistic
engineer.” Such individuals at this time are probably numbered in the low dozens and are
scattered between software firms, universities, government labs, and industry. The field is
not one that has received much attention in academic curricula although the topic is now
covered in the most recent undergraduate mechanical design texts. Further, the process of
preparing and interpreting a probabilistic design problem involves the inclusion and
assessment of many more sources of information and decisions regarding the analysis
strategy. Non-traditional methods provide a real basis for the development and
deployment of intelligent systems to work as probabilistic “robots” or assistants. The
approach will likely require significant use of adaptive networks, software robots, genetic
algorithms, expert systems and other non-traditional methods.

Probabilistic Mesomechanics: Significant progress has been achieved since the early
attempts at what was called “level 3” probabilistic material modeling as part of the
original NASA Probabilistic Structural Analysis Methods (PSAM) contract.
Demonstration problems have shown the ability to link material processing simulation
software with micromechanical models of material behavior at the mesoscale (grain size,
grain orientation, flow stress, dislocation density) to predict statistical distributions of
material fatigue strength. Such probabilistic modeling advances lend real credibility to
the notion of engineered materials that goes well beyond the simpler notions associated
with composite material systems. Probabilistic mesomechanics tools that can support the
PDE tool or feed “data” directly into the material data distributions are required.
Automated, intelligent systems are envisioned with the capability to forward model
material processing to define scatter in properties as well as sensitivity links to the
independent process and material primitive variables. Further, the inverse problem of
optimizing the processing and design of the material microstructure provides the ultimate
in an “engineered materials” design capability.
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System Reliability Interface: The aerospace system design environment of the future
requires the ability to interface multiple models of multiple subsystems in an efficient and
accurate manner. Each failure mode of the system has its own probabilistic model in
terms of a response surface or surrogate model representation of the physical problem
together with the associated non-deterministic design variable descriptions. Current
NASA technology focuses on traditional block-diagram forms for representing system
reliability. Each block is typically represented by point estimates of reliability that are not
linked to the underlying physics or to the distribution and confidence in the underlying
variables. Physics based system modeling provides an information-based opportunity for
linking the key design parameters and physics-based models together from the sub-
system/component level to the full system level. Intelligent systems can be developed for
linking the information and propagating it to the various “top level” events in order to
provide a powerful environment for calculating and managing system level reliability.

Health Management System: Health Management is a philosophy that merges component
and system level Health Monitoring concepts, consisting of anomaly detection, diagnostic
and prognostic technologies, with consideration to the design and maintenance arenas.
Traditionally, Health Monitoring design has not been an integral aspect of the design
process. This may be partly due to the fact a cost/benefit model of a HM system
configuration cannot be fully realized at this stage. Without a doubt, Health Monitoring
technology must “buy” its way into an application. Hence, the need exists to extend the
utility of traditional system reliability methods to create a virtual environment in which
Health Monitoring architectures and design tradeoffs can be evaluated and optimized
from a cost/benefit standpoint. This capability should be present both during the design
stage and throughout the life of the system. A new HM design strategy should allow
inclusion of sensors and diagnostic/prognostic technologies to be generated in order to
produce an enhanced realization of component design reliability requirements at a very
early stage. Life Cycle Costs can be reduced through implementation of health
monitoring technologies, optimal maintenance practices and continuous design
improvement. To date, these areas have not been successfully linked with non-
deterministic design methods to achieve cost/benefit optimization at the early design
stage.

Summary Recommendation: Significant opportunities and critical needs exist in the
area of non-traditional methods as applied to the area of non-deterministic modeling to
support reliability-based design for advanced, complex aerospace systems. While the ISE
initiative has the overall responsibility for the environment, the current NTNDM contract
effort clearly establishes an opportunity for NASA/GRC leadership in the development
and deployment of interoperable modeling tools that will substantially enable the
deployment of non-deterministic capability to the aerospace industry. NASA/GRC is
urged to define a long-range plan (5 to 10 years at the current level of funding) to fund
the above tool needs.
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2.0 Proposed NASA Research Announcement (NRA) Focus Areas
2.1 Probabilistic Data Expert
2.1.1 Background

Probabilistic system analysis capabilities for complex aerospace systems must be
effective elements within generalized design environments for integrated vehicle
and propulsion systems. The information required to support such integrated
design systems will characterize the uncertainties inherent to the type of design
data (e.g., loads, materials, etc.) at a level of fidelity consistent with the
knowledge available at the particular stage of the design process (e.g.,
conceptual, preliminary, final, in-service) [1]. Some of the design information
will consist of usual forms of materials data such as “A” or “B” allowables and
the supporting statistical data base such that probability distributions and
confidence levels can be assigned to the data. Some of the design data will
involve engineering judgment based on experience [2]. Such data is “fuzzy” data
in that there may be significant reliance on subjective measures and estimates.
Some of the design data may be in the form of qualification testing at the sub-
system or component level.

The inherent range in design data from very subjective to fully characterized
statistical models must be included in the probabilistic design analysis cycle.
However, subjective data must be mapped into probability distributions to
support the design process in ways that most correctly capture the expertise of
the individuals submitting the data while removing to the greatest extent possible
biases and unrelated judgments of the experts. Such “fuzzy” input data must then
be effectively merged with the other types and quality of probabilistic input data
so that the usual formalisms of probabilistic design analysis can be deployed.

2.1.2 Statement of Work

A comprehensive “tool set” is to be developed that accepts a full range of input
data from domain-expert opinions to crisp statistical data and creates
probabilistic data sets that define distributions (closed-form to empirical),
uncertainty characteristics for the distributions, truncation levels, etc. such that
comprehensive probabilistic design analysis can be performed on the created
input data. Further, the tool set will provide linkage such that the resulting
probabilistic design analysis distribution and levels of assurance (equivalent to
statistical confidence levels) can be related back to the specific information
elements for the un-mapped, raw input data. When data is taken from physical
test results or from analysis models, the data is to include estimates of
experimental error, modeling error, and any biases in these errors. Finally, the
provided probabilistic design analysis input distribution data (known as “prior”
distributions) are to be accessible through the tool set to a range of updating
strategies. The technical elements to be included in the tool set are as follows.

o Tools and strategies that support self-elicitation of expert opinions for the
knowledge base for pilot applications.

e Graphical tools specifically tailored to define design system processes
and interactions, logic models, event trees, reliability block diagrams,
Bayesian networks, FMEA models, etc. with the facility to generate
appropriate data structures for subsequent application.
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2.1.3

e Knowledge base groupware with extensive capability for segregating
proprietary databases, tracking knowledge use to and from the
application software to be used on pilot problem.

e Mapping tools for converting knowledge base into prior distributions
with traceability.

Software Requirements

All software is to be prepared using “C++” or “JAVA” based on the most up-to-
date object oriented programming methods. The tool set is defined to mean the
collection of all software objects required to provide tailored user interfaces,
analysis modules, data interfaces, module linkages, and output tailoring including
comprehensive graphics. The tool set is to be provided with non-proprietary
“data wrappers” such that the input and output results are able to interact with
text, spreadsheet, free-format, and other forms of data records as well as be able
to prepare data for commercial analysis codes in the disciplines of structural, heat
transfer, CFD, and algebraic interpreters. The underlying analysis software is to
be capable of execution on NT workstations and Unix workstations. The
interfaces are to be written in Java to be web-enabled and device independent.

2.2 Probabilistic Updater

2.2.1

Background

Probabilistic design analysis for complex aerospace systems is required to
support the entire life cycle of the system from conceptual design to service use.
Knowledge of system variables and operating characteristics will increase in
quality through the life cycle. Development testing is an inherent part of the life
cycle of these complex systems and is intended to provide cost-effective means
for improving the state of this knowledge. Improved knowledge and the
associated development costs must be fully integrated into the probabilistic
design analysis process for these complex aerospace systems. The integration
must be a proper blend of automation and judgment such that prior distributions
are updated for continuing system assessments of performance reliability
consistent with sound engineering principles.

Bayes theorem [3] is one but not the only method for updating. When the
situation is appropriate for its use, it is often method of choice because of a most
desirable result: when the prior distribution and the likelihood reinforce one
another (overlap), the posterior distribution from the theorem has a narrower
variance. One can overcome some of the major criticisms of the use of Bayes’
Theorem as with today's computing we are not limited to using specific
distribution forms (e.g., beta) for computational convenience.

By the same reasoning, we are not limited to using Bayes” Theorem when other
weighting schemes or conditional probability combining schemes are
appropriate. For example, when two sources of information, say two reliability
distributions from two experts, greatly differ, one would not blindly just use
Bayes” Theorem to combine these. First, as part of the formal elicitation methods
(see Probabilistic Data Expert tool above), one would want to try and resolve
why the two experts disagreed. Perhaps they had different assumptions or were
assuming certain conditions were holding. If such differences cannot be resolved,
then the large uncertainty range covered by both distributions reflects the state of
knowledge at that time. It then becomes the task of trying to identify how to
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gather additional information to reduce that large uncertainty. In the mean time, a
simple weighting scheme (the default being equal weights) would be a method
for combining the two different distributions.

Regardless of the combining method used (Bayes’ or other), the recommended
approach is to review all combining analysis results with the experts, to make
sure that the combination is consistent with the existing state of knowledge. The
elements of this process can be implemented in “smart” tools.

2.2.2 Statement of Work

A comprehensive “smart tool set” is to be developed to provide probabilistic
updating capabilities to probabilistic design analysis systems. The tool set is to
include a knowledge base as well as an adaptive network to support the
“intelligent” use of various updating strategies and to advise the user of options
or recommendations. The tool set is to operate on predefined networks of the
system problem (see 1.1) such that measured results at any node can be used to
support an updating of related priors. The tool set is to be configured in such a
manner as to permit its application to single node models as well as system
models with up to 10° degrees of freedom.

2,23 Software Requirements

All software is to be prepared using “C++” or “JAVA” based on the most up-to-
date object oriented programming methods. The tool set is defined to mean the
collection of all software objects required to provide tailored user interfaces,
analysis modules, data interfaces, module linkages, and output tailoring including
comprehensive graphics. The tool set is to be provided with non-proprietary
“data wrappers” such that the input and output results are able to interact with
text, spreadsheet, free-format, and other forms of data records as well as be able
to prepare data for commercial analysis codes in the disciplines of structural, heat
transfer, CFD, and algebraic interpreters. The underlying analysis software is to
be capable of execution on NT workstations and Unix workstations. The
interfaces are to be written in Java to be web-enabled and device independent.

2.3 Probabilistic Error Bounder
2.3.1 Background

The use of probabilistic methods for gas turbine engine design will require
efficient and accurate algorithms for low probability of occurrence design
conditions. The engineer must have access to automatic algorithms and protocols
that provide user-control over accuracy within the constraints of available
modeling capacity and time. In order to do this, the various computational
algorithms for reliability assessment need to have formal error estimators.
Further, given the likelihood that hybrid methods are going to be required, hybrid
reliability computation strategies must be developed and qualified.

Fast probability integration (FPI) algorithms include one, two, and three
parameter fits to the equivalent normal distributions. Some error studies have
been performed. The errors are dependent on the various characteristics of the
actual distributions such as uniform and truncated distributions. Some algorithms
such as the fast Fourier transform (FFT) are better suited to certain types of
distributions. The need is for a systematic study of accuracy and efficiency for
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various, useful distributions. An analytical estimate of residual errors based on
available information regarding the distributions being modeled is required.

The iterative advanced mean value (AMV+) algorithm is taken to be the full
iteration process at the estimated and updated design point. The requirements for
this methodology are a mathematical demonstration of convergence to the “true”
answer and a residual error term for both the first-order reliability method
(FORM) and the second-order reliability method (SORM). Since these methods
are implicit, the use of nonlinear mapping functions is not to be considered.
Computational efficiency vs. accuracy is to be demonstrated.

The response surface method has three areas of error estimations. The first error
issue is the error estimates for fitting the response surface. The issues include
selection of the fitting points and this should include DOE considerations as well
as COV data for each variable. The second concern is the error estimation for the
Monte Carlo method itself. Finally, the use of response surfaces for probability
levels that are low (or high) focus on accuracy of the response surface near the
portion of the design space that is driving that reliability calculation. Thus, local
fitting issues rather than global have to be included in the error study and
resulting metrics. Accuracy and computational efficiency studies are to be
performed.

The “best” solution is likely to involve combinations of algorithms in ways that
focus the process of getting to the region of the final design point quickly and
resolving the estimated probability for the design point with user-defined
accuracy. Residual error estimates are needed. Computational efficiency with
specified error levels is to be the selection criterion. New probabilistic sensitivity
factors are needed that properly describe the “tail” sensitivities for the response
function at the final design point. The method of interval analysis (Section 3.4.4)
is seen as an important tool in error bounding by using acceptable intervals to
describe the input in a non-probabilistic manner.

2.3.2 Statement of Work

An error-bounding tool set is ultimately required. However, the focus of this
effort is first to define good error bounds by analysis for each of the common
probabilistic design analysis algorithms in current use for aerospace systems. The
error bounds are to provide traceable contributions starting from the physical
problem and proceeding through computational simulation, response surface or
surrogate model approximations, and then to the final design probability level for
any defined critical event.

An industry panel of probabilistic designers is to oversee the development and
application of the defined bounds to assure that all relevant probabilistic methods
and problem solving strategies are adequately addressed.

Recommended error estimate defaults are to be provided for any required input to
the error bound algorithm. Such defaults are to be defined using available
statistics or probability theory in a conservative manner. An intelligent interface
is to be developed that will both guide and assess the user. Such an interface
should have the ability to impose conservative strategies based on an assessment
of the user knowledge and expertise. Interval mathematics are to be explored as a
complementary, non-probabilistic supplement to the probabilistic error
estimation effort.
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2.3.3 Software Requirements

The error bound algorithms are to be documented such that any commercial or
proprietary probabilistic design system can properly incorporate the algorithms.
The intelligent PEB tool is to be developed consistent with the following
requirements.

All software is to be prepared using “C++” or “JAVA” based on the most up-to-
date object oriented programming methods. The tool set is defined to mean the
collection of all software objects required to provide tailored user interfaces,
analysis modules, data interfaces, module linkages, and output tailoring including
comprehensive graphics. The tool set is to be provided with non-proprietary
“data wrappers” such that the input and output results are able to interact with
text, spreadsheet, free-format, and other forms of data records as well as be able
to prepare data for commercial analysis codes in the disciplines of structural, heat
transfer, CFD, and algebraic interpreters. The underlying analysis software is to
be capable of execution on NT workstations and Unix workstations. The
interfaces are to be written in Java to be web-enabled and device independent.

2.4 Response Surface Generator
2.4.1 Background

Response surface methods form the basis of all current NDM if one accepts the
fact that FORM and SORM work with fitted polynomials based on the local
slope and curvatures of the physical model (which may itself be an
approximation of the physics). RS’s may be formed from the Taylor series, from
a design of experiments (DOE) strategy, or from experimental data. Traditional
RS methods derive from the field of statistics and include not only a physical
model but information on the statistics of the variables. In the current context we
do not include the statistics of the RS but admit that experimental RS’s may need
to include these measures as part of the “assurance level” associated with the RS.

RS methods may include ties to multidisciplinary design optimization (MDO)
where approximations to the objective function may be needed, as in linear
programming and in second order methods. The linkage between NDM and
MDO is a critical one for future designs of large complex aerospace systems.

The issues of efficiency and accuracy of RS’s is critical to NDM of design as
well as to MDO where efficiency is most critical. Efficiency in RS
approximation may be most important near the mean-value design point and in
preliminary or conceptual design. Accuracy will become the critical issue in
NDM near the final probabilistic design point.

2.4.2 Statement of Work

A response surface generator tool set is needed. The tool set should provide an
open interface to information used to characterize physical phenomena. The tools
should include intelligent systems such as agents, knowledge-based rules, or
other Al technologies to assist in guiding an efficient computational strategy for
both probabilistic design and for MDO. The tools must also provide for user-
controlled, variable-fidelity combinations of speed and accuracy in tailoring the
RS. The tools must be capable of interaction with the PEB toolset.

The RS tool set is to include a full complement of DOE facilities for multifactor,
multilevel “design” variable condition selections. An option to include Taguchi-
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like DOE strategies focusing on controlled and uncontrolied variables should also
be included. All interaction terms are to be included for both Taylor series and
DOE strategies.

2.4.3 Software Requirements

All software is to be prepared using “C++” or “JAVA” based on the most up-to-
date object oriented programming methods. The tool set is defined to mean the
collection of all software objects required to provide tailored user interfaces,
analysis modules, data interfaces, module linkages, and output tailoring including
comprehensive graphics. The tool set is to be provided with non-proprietary
“data wrappers” such that the input and output results are able to interact with
text, spreadsheet, free-format, and other forms of data records as well as be able
to prepare data for commercial analysis codes in the disciplines of structural, heat
transfer, CFD, and algebraic interpreters. The underlying analysis software is to
be capable of execution on NT workstations and Unix workstations. The
interfaces are to be written in Java to be web-enabled and device independent.

2.5 Probabilistic Model Helper
2.5.1 Background

A major limitation in the deployment of probabilistic methods for system design
is the current burden that the analyst be a skilled “probabilistic engineer.” Such
individuals at this time are probably numbered in the low dozens and are
scattered between software firms, universities, government labs, and industry.
The field is not one that has received much attention in academic curricula
although the topic is now covered in the most recent undergraduate mechanical
design texts. Further, the process of preparing and interpreting a probabilistic
design problem involves the inclusion and assessment of many more sources of
information and decisions regarding the analysis strategy.

Considerable work has been done over the past decade to apply probabilistic
design methods to component design. A major effort in the field of “six sigma”
design has developed a great deal of data on process and property variations for
complex mechanical and production systems. Effective linkages to this
experience would assure that such knowledge and experience can be accessed by
the current NDM system design analyst.

Non-traditional methods provide a real basis for the development and
deployment of intelligent systems to work as probabilistic “robots” or assistants.
The approach will likely require significant use of adaptive networks, software
robots, genetic algorithms, expert systems and other non-traditional methods.

2.5.2 Statement of Work

An adaptive and intelligent PMH toolset is to be developed that will support high
quality, high fidelity, and robust non-deterministic design for large, complex
aerospace systems. The toolset will monitor, assess, guide, and learn. It will also
have the capacity to operate in a tutorial mode based on an assessment of the user
skill level. The toolset is to interface to all elements of non-deterministic design
of such aerospace systems and include elements appropriate to all design stages
from pre-conceptual to deployed systems. The toolset is to operate on at least
three levels of user interactions based on a system of expertise evaluation and
certification.
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2.5.3 Software Requirements

All software is to be prepared using “C++” or “JAVA” based on the most up-to-
date object oriented programming methods. The tool set is defined to mean the
collection of all software objects required to provide tailored user interfaces,
analysis modules, data interfaces, module linkages, and output tailoring including
comprehensive graphics. The tool set is to be provided with non-proprietary
“data wrappers” such that the input and output results are able to interact with
text, spreadsheet, free-format, and other forms of data records as well as be able
to prepare data for commercial analysis codes in the disciplines of structural, heat
transfer, CFD, and algebraic interpreters. The underlying analysis software is to
be capable of execution on NT workstations and Unix workstations. The
interfaces are to be written in Java to be web-enabled and device independent.

2.6 System Reliability Interface
2.6.1 Background

The aerospace system design environment of the future requires the ability to
interface multiple models of multiple subsystems in an efficient and accurate
manner. Each failure mode of the system has its own probabilistic model in terms
of a response surface or surrogate model representation of the physical problem
together with the associated non-deterministic design variable descriptions.

Current NASA technology focuses on traditional block-diagram forms for
representing system reliability. Each block is typically represented by point
estimates of reliability that are not linked to the underlying physics or to the
distribution and confidence in the underlying variables. Typical of this important,
but dated, modeling is the NASA QRAS system developed for the current space
access system.

Physics based system modeling provides an information-based opportunity for
linking the key design parameters and physics-based models together from the
sub-system/component level to the full system level. Intelligent systems can be
developed for linking the information and propagating it to the various “top
level” events in order to provide a powerful environment for calculating and
managing system level reliability.

2.6.2 Statement of Work

The System Reliability Interface toolset will define a working environment for
managing, linking, and synthesizing system level reliability while providing
defined “assurance intervals” for the system based on basic design variable
inputs. The system level operation should be capable of linking to the updating
tools so that hardware experience, test data, and new information can be used to
provide updated system reliability and assurance interval results. The System
Reliability Interface toolset shall have adaptive, reliability networks as the basis
for recording and calculating system reliability and the marginal distributions for
all interactive failure modes at every system level. Furthermore, the toolset shall
have an intelligent means for propagating component level failures to the system
level while identifying all of the important interactions involved.

2.6.3 Software Requirements

All software is to be prepared using “C++” or “JAVA” based on the most up-to-
date object oriented programming methods. The tool set is defined to mean the
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collection of all software objects required to provide tailored user interfaces,
analysis modules, data interfaces, module linkages, and output tailoring including
comprehensive graphics. The tool set is to be provided with non-proprietary
“data wrappers” such that the input and output results are able to interact with
text, spreadsheet, free-format, and other forms of data records as well as be able
to prepare data for commercial analysis codes in the disciplines of structural, heat
transfer, CFD, and algebraic interpreters. The underlying analysis software is to
be capable of execution on NT workstations and Unix workstations. The
interfaces are to be written in Java to be web-enabled and device independent.

2.7 System HeaRh Management
2.7.1 Background

System Health Management is a philosophy that merges component and system
level Health Monitoring concepts, consisting of anomaly detection, diagnostic
and prognostic technologies, with consideration to the design and maintenance
arenas. Traditionally, Health Monitoring design has not been an integral aspect of
the design process. This may be partly due to the fact a cost/benefit model of a
HM system configuration cannot be fully realized at this stage. Without a doubt,
Health Monitoring technology must “buy” its way into an application. Hence, the
need exists to extend the utility of advanced no-deterministic system modeling to
serve as the basis for a virtual environment in which Health Monitoring
architectures and design tradeoffs can be evaluated and optimized from a
cost/benefit standpoint. This capability should be present both during the design
stage and throughout the life of the system. A new HM design strategy should
allow inclusion of sensors and diagnostic/prognostic technologies to be generated
from traditional Failure Mode Effects And Criticality Analysis (FMECA)
information producing an enhanced realization of component design reliability
requirements at a very early stage.

Life Cycle Costs can be reduced through implementation of health monitoring
technologies, optimal maintenance practices and continuous design
improvement. To date, these areas have not been successfully linked with non-
deterministic design methods to achieve cost/benefit optimization at the early
design stage.

2.7.2 Statement of Work

An information environment and the necessary tools will be developed in order
to construct a comprehensive non-deterministic-based System Health
Management design environment. Design feedback shall be provided by the
Probabilistic Updater tools. Linkages shall be provided between the design
information, experimental test data as well as on-line health monitoring data and
appropriate system models in order to provide continuous design reliability
improvements, maintenance management, and life cycle cost reductions. The
System Health Management tools and information environment shall also link to
traditional system reliability models as derived from FMECA, fault tree, event
tree and other appropriate system level representations. A key capability shall be
the ability to operate the system by taking advantage of health monitoring to
increase overall system performance while maintaining the required system
reliability.
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2.7.3

3.0 Discussion

Software Requirements

The overall software environment must be designed with specific attention paid
to the diversity of data sources needed for System Health Management, from test
cell data to fleet operations data to field maintenance data. General purpose tools
and communication protocols appropriate to System Health Management will be
defined and developed. All software is to be prepared using “C++" or “JAVA”
based on the most up-to-date object oriented programming methods. The tool set
is defined to mean the collection of all software objects required to provide
tailored user interfaces, analysis modules, data interfaces, module linkages, and
output tailoring including comprehensive graphics. The tool set is to be provided
with non-proprietary “data wrappers” such that the input and output results are
able to interact with text, spreadsheet, free-format, and other forms of data
records as well as be able to prepare data for commercial analysis codes in the
disciplines of structural, heat transfer, CFD, and algebraic interpreters. The
underlying analysis software is to be capable of execution on NT workstations
and Unix workstations. The interfaces are to be written in Java to be web-enabled
and device independent.

3.1 Review of Study Process

USAF Probabilistics HCF Program
Probabilistic Structural Analysis Methods

The four elements of the study process are shown in Figure 2. The contracted
Consultant sought to integrate relevant technologies and requirements by making
personal contacts with each of the indicated entities. The study began by a review
of efforts relevant to design environments and to non-deterministic, non-
traditional design at the NASA Glenn Research Center. The Consultant was
briefed on both technology and safety related programs and initiatives including
plans for the NPSS environment. The Consultant was given information on the
NASA Intelligent Synthesis Environment, which he supplemented, by further
study of the literature and reviews with individuals in that program.

NASA's Design Technology Base

Intelligent Synthesis Environment
NPSS Design Environment

Current Design Environment Development

Current Technology

The Boeing Company
Consultant ‘ Rockwell Science Center
The Honeywell Corporation

Pratt & Whitney
GE Aircraft and Corporate R&D

Personal Design Expertise
NDNTM Literature Review

Technology Tool & Environment Development

Engineous Software, Inc.
Applied Research Associates, Inc.
Southwest Research Institute
STI Technologies, Inc.
Impact Technologies, Inc.
Unipass Software, Inc.
Wright State University
Los Alamos National Laboratory
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Figure 2: NDNTM Study Process Elements

The Consultant is also very actively involved in the deployment of non-
deterministic design methods and requirements for both low cycle fatigue (LCF)
and high cycle fatigue (HCF) design of gas turbine engine structures within the
Air Force via the Engine Structural Integrity Program (ENSIP) handbook (Mil-
Hdbk-1783) in support of the Joint Strike Fighter (JSF) and future Air Force and
Navy Aeropropulsion requirements. The Consultant’s involvement with the Air
Force is as an advisor on probabilistic design and derives from his extensive
experience with reliability based design of gas turbines, risk assessment support
of large fleets of commercial gas turbine engines, and as the program manager
for the NASA-funded Probabilistic Structural Analysis Methods (PSAM)
program in the 1983 — 1990 time period. This total experience base has been
critical in assessing the elements of a future non-deterministic, non-traditional
design environment. It also opened the doors to talking with key organizations
and individuals in both the aerospace industry and in technology oriented small
businesses.

A literature review of recent publications in various sub-topics within the field of
non-deterministic, non-traditional analysis methods has been completed. That
review is given in subject areas that were researched included the following
topics.

e Fuzzy logic

e Possibilistic analysis

¢ Interval arithmetic

e Neural networks

e Adaptive and Bayesian networks

e Artificial intelligence (focused applications)
¢ Genetic algorithms

e Probabilistic methods (only new work)

e Reliability based design (PREDICT)

¢ Integrated design methods for large system problems
e Chaos and complexity theory

¢ Health monitoring

The highlights of findings from the literature review will be given in the next
section. There were few surprises in that no significant research breakthroughs in
non-deterministic methods beyond those already deployed appear to be worth
pursuing. However, it is abundantly clear that there are many non-traditional
methods that can be brought into the advanced design environment envisioned by
the ISE initiative.

The Consultant made a number of visits and teleconferences with key aerospace
industries and with critical elements of the small business community that are
active in NDNTM development and deployment. In each visit, the Consultant
presented a talk on the ISE and discussed how NDNTM are needed to support
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future design environments. A set of the presentation material from a typical
presentation is given in the imbedded PowerPoint presentation in Appendix 4.3.
Selection of that page in any electronic form of this report will invoke the Slide
presentation.

The discussions held with industry produced a range of input from verbal ideas
or priorities for research topics to detailed discussions of new developments
related to new design environments that share some of the goals of the ISE but
are more coherently defined and being developed. Some highlights follow.

NASA/CR—2001-210976

The Boeing Company

The meeting was held with representatives of various elements of the
Boeing Phantom Works and Rocketdyne Division. The primary focus of
the discussion was the Boeing Integrated Vehicle Design System
(BIVDS). The Consultant was given proprietary information on this
system. The conclusion is that Boeing is making a very serious attempt
to define an operating environment that is information based and allows
three levels of design complexity from conceptual to detailed design The
major outcome of the meeting was a commitment made by Boeing to
move strongly to bring non-deterministic methods into BIVDS at the
earliest possible time. An action team was initiated to lead this effort.

Rockwell Science Center

The Rockwell Science Center has several excellent design system
initiatives as well as many concepts for elements of ISE. The most
interesting development for NDNTM is their algebraic design
environment called Design Sheet™. Design sheet is a constraint
manager system for working in very large design environments where
designers must balance many requirements off against each other.
Examples may be seen at http://www.rsc.rockwell.com/designsheet/. The
product calculates constraints and sensitivity equations using the
MACSYMA™ algebraic manipulation kernel together with some critical
RSC proprietary algorithms.

One can envision the operation of Design Sheet™ as a linked set of
algebraic design rules or response surfaces, linked by common design
variables. They have developed an 8,000-degree of freedom model
representing the 3 Generation RLV for NASA. The RSC scientist also
pointed to research at the University of Ohio related to large,
discontinuous design spaces as an important design environment research
project. That site is http:// www.cis.ohio-state. edu/~chandra/aaai-98.pdf.

A proprietary White Paper was submitted and is included in this report
package.

GE Aircraft Engines and Corporate R&D

These corporate entities, along with Engineous Software Inc., Stanford,
Ohio Aerospace Institute, and others have initiated a major design
environment initiative with funding participation from NIST. The project
title is “A Federated Intelligent Product Environment.” There is much of
great value in this effort ranging from effective means for the



development and use of CAD information to non-deterministic design
[4].

A common theme or element in these efforts is generalized information
processing. A number of non-traditional design methods are deployed
and all will at some time include a wide range of current non-
deterministic design analysis methods. All individuals agreed that a key
need for the future is interoperability issues such that tools can be moved
between applications. All recognized the need for national initiatives on
this issue and agreed that NASA would be a logical agent, with others,
for creating such a national effort. And, all agreed that all would benefit.

GE recommends that the ISE initiative consider participation in this
effort.

Both Honeywell and Pratt & Whitney have large scale, proprietary
design environment initiatives. They did not provide information on
those efforts.

Technology tools and environment research is underway at a number of small
businesses. The contract effort involved the ones indicated in Figure 2 where Los
Alamos National Lab is included for some of their effort. The sites were selected
on the basis of their work in non-traditional system optimization (Engineous) and
in non-deterministic design (all others). The key areas of related non-
deterministic tool development expertise are highlighted in the following
discussion,
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Applied Research Associates, Inc.

ARA has been very successful in creating a highly capable software
interface to various non-deterministic analysis algorithms while using a
commercial finite element code for the physics modeling (ANSYS™).
ARA has specific capabilities for the Probabilistic Error Bounder as well
as response surface technologies.

Southwest Research Institute

SwRI is a leader in probabilistic analysis software with the NASA-
sponsored NESSUS software product. SWRI identified interval analysis
using the new Sun Microsystems Inc. Fortran compiler. SWRI is also
highly capable in areas related to design strategy for system reliability.

STI Technologies, Inc.

STI has extensive experience in response surface technologies and in
random field and random process representations.

Impact Technologies, Inc.

Impact Technologies has done excellent work in the area of probabilistic
System Health Management through a number of AF and DOE efforts.
The SHM tools require extensive use of non-traditional methods for data
fusion and for data interpretation.

A White Paper was submitted and is part of this report package.

Unipass Software, Inc.
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Unipass has also developed a commercial probabilistic design code.
They are particularly interested in research areas that are non-traditional
applications of probabilistic modeling.

e  Wright State University

Three white papers on Response Surface modeling were submitted and
are part of this report package.

e I os Alamos National Lab

LANL has been very successful in deploying non-deterministic and non-
traditional methods to real industrial problems involving total life cycle
product design as well as a major industrial processing system. In
particular, they have developed with the Delphi Automotive company a
design environment called PREDICT. This environment is described by
several of their presentations now posted at
http://www.frontier.net/~tcruse/predict.

Several White Papers were submitted and are included in this report.

In visits to each of these entities, a presentation was given. The focus on each of
these visits though was in hearing ideas from each on important NDNTM
research needs and opportunities. The suggested topics derive from these
discussions both in general terms as well as the specifics of white papers that
were submitted by some. Each of the submitted white papers is included in this
report.

NASA Efforts that Relate to NDNTM

Following a presentation of this work to NASA/GRC, the author was made
aware of other NASA programs that have relations to this effort. These include
the development of data sharing standards via the international STEP standard
led by NASA/Goddard. A description of this effort has been taken from their web
site (http://step.nasa.gov) as follows.

“The information generated about a product during its design,
manufacture, use, maintenance, and disposal is used for many purposes
during that life cycle. The use may involve many computer systems,
including some that may be located in different organizations. In order to
support such uses, organizations need to be able to represent their
product information in a common computer-interpretable form that is
required to remain complete and consistent when exchanged among
different computer systems.

STEP (ISO 10303) is an International Standard for the computer-
interpretable representation and exchange of product data. The objective
is to provide a mechanism that is capable of describing product data
throughout the life cycle of a product, independent from any particular
system. The nature of this description makes it suitable not only for
neutral file exchange, but also as a basis for implementing and sharing
product databases and archiving.”

NASA Glenn Research Center is supporting another compatible effort focusing
on developing CAD geometry standards. That work can be viewed at
http://www.grc.nasa. gov/WWW/jcad and is a cooperative effort through another
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international consortium known as the Object Management Group (OMG). More
information on OMG is available at the site http://www.omg org. The following
is the mission statement of the OMG:

“The OMG was formed to create a component-based software
marketplace by hastening the introduction of standardized object
software. The organization's charter includes the establishment of
industry guidelines and detailed object management specifications to
provide a common framework for application development.
Conformance to these specifications will make it possible to develop a
heterogeneous computing environment across all major hardware
platforms and operating systems. Implementations of OMG
specifications can be found on many operating systems across the world
today. OMG's series of specifications detail the necessary standard
interfaces for Distributed Object Computing. Its widely popular Internet
protocol [IOP (Internet Inter-ORB Protocol) is being used as the
infrastructure for technology companies like Netscape, Oracle, Sun, IBM
and hundreds of others. These specifications are used worldwide to
develop and deploy distributed applications for vertical markets,
including Manufacturing, Finance, Telecoms, Electronic Commerce,
Real-time systems and Health Care.

OMG defines object management as software development that models
the real world through representation of "objects." These objects are the
encapsulation of the attributes, relationships and methods of software
identifiable program components. A key benefit of an object-oriented
system is its ability to expand in functionality by extending existing
components and adding new objects to the system. Object management
results in faster application development, easier maintenance, enormous
scalability and reusable software.”

Both the STEP and OMG efforts are enabling software developments
complementary to the technology development recommendations included in this
report. Clearly, the integration of such interoperability standards in any future
software development research initiatives that are a part of the ISE initiative is
imperative.

The preliminary findings of this study were also presented to LaRC. Members of
the Structures Lab and the ISE program office attended the briefing. The briefing
was generally well received and no conflicts were identified. Subsequent efforts
to brief this study at NASA/ARC to the Intelligent Software Initiative and the
Design for Quality Initiative were unsuccessful.

The NASA/MSFC Structures Laboratory (Dr. Roger Townsend has a number of
projects underway in association with Vanderbilt University under the leadership
of Prof. S. Mahadevan). The details of those projects are given in the Appendix,
Section 4.5.

3.2 Relation of NDNTM to ISE

The operating premise for the current study is that NDNTM are a subset of the future
design environment, seen by NASA as the Intelligent Synthesis Environment (ISE).

Thus, it was deemed appropriate that the study should include reviews of ISE as well
as studies of the various aerospace industry approaches to the design environment of
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the future. A typical structure for ISE is the simple interaction diagram shown in
Figure 3.

Figure 3 is framed around a cultural change in the creativity process. Such a change
cannot occur, as is known to the ISE proponents, unless the ability to access, process,
and interpret information also undergoes radical change. Non-deterministic design, in
and of itself, poses such a radical change in the design environment. Such change is
slow in coming but it is coming. NASA should continue to lead in such radical
changes as it did in non-deterministic design methods for aerospace systems but the
current study suggests that NASA will have to make some cultural changes as well.

The current study mostly focused on the Life Cycle Integration and Validation
element with some interaction with rapid design and synthesis. The question posed
during the many interactions with others was “what are the unique requirements for
the total life cycle design analysis of complex aerospace systems based on reliability-
based considerations?”” More generally, what are the non-deterministic research
needs to allow such a radical change in the design environment for such system
design problems?

Human-Centered
Computing

Infrastructure
for

Life Cycle
Integration

Distributed
Collaboration

and
Validation

Rapid Synthesis and
Simulation Tools

Figure 3: Overview of ISE Initiative

There are many common elements between the Consultant’s view of NDNTM and
ISE. However, the overwhelmingly common characteristic of both is that both are
“information processors” (IP). Such an IP focus is attributed to both as both the non-
deterministic design process and the future total system design process will operate
on disparate types and forms of data, expert judgment, approximations, and so forth.
It is most effective in terms of modern developments in software engineering to see
these as information rather than data.

One proposed representation of NDNTM is given in Figure 4. This representation is
drawn as a design process. Based on the literature review and other data sources, the
most liberal view of NDNTM is shown in a logical arrangement.

e Information Input

In the past, data for probabilistic modeling was in the form of statistic
data represented by analytical or empirical distribution functions and
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Input Information:

statistical data &
probabilistic models

past experience,
lessons learned

expert opinion
regression nets

RSs/ANOVA

their parameters. For the future, input will include a much broader range

of information. Such information that is subjective or “fuzzy” is
envisioned as a critical element in non-deterministic analysis. The
elicitation of such fuzzy input is a critical element in the process such
that expert bias and prior assumptions do not overly influence the
representation of the information.

Information Fusion

This critical junction is where one must convert disparate forms of
information into a common basis for modeling. A critical element in the
technology requirements here is the translation of properly-acquired

fuzzy input into sensible probabilistic representations. It is also the place

where new information must come in to update prior information.

Information Fusion:
Prior distributions
System hypotheses

Possibilities

Model Updating

Bayesian posteriors
Distribution updates

network weights

knowledge base
expert opinion

physical models -

improved physics
calibration
validation

ND-NT Methods:

simulation algorithms,
fast probability integrators
for physical models

semi-empirical reliability -
physics based
Neural network model
Bayesian, adaptive network models

Interval mathematics,
fuzzy logic, memberships,
possibilistics

Response Surfaces
Surrogate Models

DOE applied to
physical processes to
define RSs, ANOVAs

ND-NT Outcomes:

probability of failure -
components
systems
risk assessment
sensitivity factors

probability of success -
life cycle costing
reliability growth
interval analysis

system interactions -
sensitivity factors
failure modes
risk allocation
fault tree definition

constraint management -
risk based
multi-objective optimization
detail roll-up

cost reduction -

process controls
critical characteristics

test requirements
development planning

Figure 4: Elements of the ND-NT Design Process
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ND-NT Methods

This element contains all of the possible ND-MT methods of modeling
that were considered in the current program. At this point, the collective
Judgment is that the simulation algorithms and probabilistic methods do
not need an infusion of new technology. However, semi-empirical,
physics based models of systems based on various networking modeling
methods is likely to be important, especially for large systems. Interval
mathematics may yet buy its way into design. However, this can happen
only if interval mathematics (discussed in Section 3.4.4) is much faster to

24



execute than traditional probabilistic methods, given the relatively low
amount of information that is conveyed and that alternative, probabilistic
methods can be used for getting the same and more information. Fuzzy
logic and its attendant elements of membership functions and
possibilistic analysis is NOT seen as playing a role in this stage of the
overall design system of the future for acrospace systems.

Response surface modeling or surrogate (simplified physics) models is
intrinsic to non-deterministic design. All probabilistic methods use such
models in one way or another. DOE approaches or Taylor series
approaches are variations on RS methods. The use of DOE to construct
such surfaces from empirical data is seen as an alternative to network
models, although the technologies may merge.

e ND-NT Outcomes

This is the heart of the design process valuation. A proper ND-NT design
environment in the other entities in this diagram will yield much more
useful information for making decisions for design stages from
conceptual design to detailed design.

e Model updating

A critical element in any design process is updating. Viable design
operations have evolved means for capturing past experience for new
designs. Viable risk management programs allow for updating the
assumed statistics used in the previous modeling. Certainly verification
and validation of physics models is a real part of good design practice
today.

However, the future design environment needs rigorous and sensible
formalisms for capturing new data as a product is developed and
deployed such that the data is fed into the process not only for new
designs but also for managing the design and maintenance of current
products.

3.3 Interoperability and Software Environment

This Consultant is not an expert in software engineering. Nonetheless, the various
discussions as well as a professional awareness of new trends compel one to include
a brief set of comments on this topic. Past software development efforts from NASA
Glenn Research Center have generally, but not always, had a single, “shrink-
wrapped” code as their objective. It has been stated by NASA/GRC management that
part of the valuation of leadership from a NASA center is its ability to point to
industry use of NASA products. This is a very understandable metric.

However, the design environment of the future is object-oriented software, not
modular codes. There are big differences. Object oriented code provides many
features but one of them is adaptivity in run-time. Another is the ability to create
tools that can be used — again in run time — in various parts of the problem process
without requiring recompilation of source code.

If one looks at the recent software engineering initiatives such as the DARPA Robust
Design Computational System (RDCS) effort at Rocketdyne

http://www.{rontier.net/~tcruse/rdes/rdcs. htm/
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and the Engineous Software called iSight,

http://www.engineous.com/isightvS. html#products

one sees a likely paradigm for the future. The computer screen is the design desktop.
Tools are dragged from one part of the analysis process to another. Datasets are
dragged and dropped onto an analysis process the designer has just set up on the
desktop. Such flexibility in the design analysis process is critical to the productivity
goals set by all major firms.

3.4 Non-Deterministic and Non-traditional Methods: Status and Opportunities

The methods selected for review were taken from the AIAA Structures, Dynamics,
and Materials Conference held in Atlanta in April 2000. A summary of the panelist
input is given in Appendix 4.2. The list of methods is as follows. Following each
item is a brief discussion and conclusions for each topic based on the completed
literature review and various meetings. The titles and order are those that defined the
AIAA Forum on non-deterministic approaches.

3.4.1 Neural Networks
References that were reviewed include [39, 41, 44, 45, 46, and 47].

Neural nets (NN) have the ability to represent physical responses somewhat
like a Response Surface used in design. A NN model training process is used
to establish nodal weights and biases. In general, NN weights do not conform
to specific physical variables. A NN would be used to model a RS only if one
had datasets and not a physical model. However, the statistical method for
constructing RS’s is more robust as far as sorting out noise from model
behavior and for giving statistics that can be used in constructing assurance
intervals for error analysis when applying the RS. As pointed out in [39],
NN’s rapidly lose their attractiveness for large numbers of NN nodes.

Reference [41] summarizes various uses of networks for data-mining. Such
applications may be valuable when constructing data models for non-
deterministic design based on extensive test data. An interesting example of
the use of NN’s to model a combination of experimental data and varying
types of modeling results for airfoil design is given in [44]. These authors use
the NN as a effective way to solve the inverse problem for finding a RS from
disparate data sources. The also report that their strategy for training results
in nodal weights that can be tied to specific design variables.

A Bayesian network is one in which the nodal weights represent conditional
event probabilities, as discussed in [45]. Such modeling appears to be useful
for large system reliability problems and provides a direct means for
simulating the top event and knowing its probabilistic design variable causes.
They state that the Bayesian network method is preferable to Monte Carlo for
system simulation for the additional information on conditional probabilities
that is gained.

Conclusion: The review indicates that an important role for NN’s is likely to
be found in the proposed Model Helper and Data Expert. The application of
NN’s with a strategy to tie the nodal weights to physical variables appear to
be an effective data mining strategy to support probabilistic input. Bayesian
networks and other probabilistic learning networks appear to be useful for
system reliability modeling. Finally, NN’s have a valid and important role in
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the data gathering and interpretation role in System Health Management. It
does not seem likely that standard NN’s will be used in the probabilistic
algorithms.

3.4.2 Fuzzy Theory

Fuzzy theory is a “hot” area and is reviewed in References [14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, and 32]. The last of
these, [32] compares probabilistic and fuzzy modeling for reliability. Fuzzy
set theory and the closely related field of possibilistics are strongly touted as
the new field for probabilistic modeling. This review does not support that
position.

Fuzzy systems are based on the mathematics of fuzzy set theory. The above
references provide an adequate introduction to these fields. Generally
speaking, fuzzy systems are used where so-called “crisp” probabilistic
models do not exist, such as in linguistic representations. Characteristic
mathematical models are assigned to fuzzy functions that are then combined
using fuzzy logic. All input variables to the mathematical-physical model are
given fuzzy representations and the physical model is written using the
“algebra” of “fuzzy logic” to yield “fuzzy output.” As in the paper by Rao
[5], one finds that fuzzy physics is violated physics. That is, one loses the
constraints of the physical model under fuzzy logic formulations. The only
advice offered by that author is that one must impose one’s physical intuition
to properly understand the results. This is not scalable as a problem solving
strategy for large problems.

Fuzzy logic has been used successfully in a number of industrial control
system designs that are, in fact, in commercial consumer products today.
What is the difference? In fuzzy controllers [14, 15, 20, 21 and 25], for
example, it is clear that fuzzy logic designed control systems for nonlinear
control problems is highly effective. The difference is that these systems take
crisp input, operate on the input using fuzzy-logic constructed if-then rules,
and output crisp results. The advantage of fuzzy controllers appears to be the
power and flexibility of building the knowledge base of if-then rules and in
the superior “smoothness” one gets from such a controller.

Reference [22] applies fuzzy logic to classical reliability engineering. The
authors contend that this is the right approach to problems where the input is
estimated from engineering experience and judgment. They also contend that
this is the right way to represent degraded states of operation, given that the
word “degraded” is subjective. However, work at the Los Alamos National
Lab [1], has shown that one can take fuzzy input such as these authors refer
to and convert that input into probabilistic distributions so that one can
perform robust probabilistic calculations on these fuzzy-derived
distributions. The analysts at LANL concur with the Consultant that one
must use robust non-deterministic algorithms rather than fuzzy algorithms if
one is to have any confidence and utility from the results. The fact is that the
whole motivation of the fuzzy logic reliability design community to address
fuzzy input and output can be addressed in the manner so effectively
deployed by LANL in their joint PREDICT system work with Delphi
Automotive.
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In all the literature reviewed for this program only one remark by an author
gives on a reason to ponder a bit more about fuzzy logic [16]: The author
cites sources that argue both sides of this issue and concludes that “there is
some truth to both sides ...” However, he argues effectively that FL “is a tool
of enrichment and not replacement ...” Bezdek and Pal [6] are quoted as
saying that “fuzzy models belong wherever they can provide collateral or
competitively better information about a physical process.” Bezdek and Pal
give an example case wherein two bottles of water are lying in the desert and
are found there by a very thirsty wanderer. The first bottle has a membership
in the set of potable waters of 0.91 while the other has a probability of being
potable that is 0.91. In the first case the water shares a high degree of
characteristics in common with potable water while the second has a 9%
chance of being totally non-potable (poison!). Which do you drink?

Conclusion: Fuzzy input is recognized as real based on the Consultant’s
experience managing risk-based fleet airworthiness programs for commercial
aircraft engines and based on the LANL/Delphi joint reliability-based design
program. However, probabilistic algorithms offer the only useful processing
element for de-fuzzified input data to support complex aerospace system
design. Fuzzy logic might be deployed in program management decision and
risk prediction tools.

3.4.3 Chaos Theory

A limited review of this subject focused on potential applications to non-
deterministic design [57]. None were found. Chaos theory has a very narrow
physical interpretation and while chaotic output appears random, it is not.
The reference indicated is to a thesis that complexity can lead to chaos.

Conclusion: Chaos theory does not offer critical capabilities to include in
any recommended NDNTM effort.

3.4.4 Interval Arithmetic
References that were reviewed are [35, 36, 37, 38].

This topic appears to be much more interesting to non-deterministic design.
Interval arithmetic operates under some very precise algebraic rules and does
not lead to systems that violate physics. In fact, interval arithmetic was
developed as a way of representing floating point arithmetic errors. As cited
in [35], interval arithmetic is now released as a new variable type in the Sun
Microsystems Fortran compiler.

Elishakoff and his co-workers have applied interval methods to some
structural analysis problems. Ref. [7] combines interval analysis with
stochastic finite element methods (second-moment method) to structural
frames. Elishakoff applied strict interval analysis methods to computing the
range of structural natural frequencies in [8].

In a related technology to interval methods, Elishakoff and his co-workers
have utilized what they refer to as convex modeling [9] to compute one-sided
bounds on structural behaviors such as natural frequencies and buckling
loads [10]. The method is based on defining bounds on uncertain parameters
as convex sets bounded by ellipsoids. For such cases, convex methods may
be used to compute a corresponding convex set of results, or upper bounds.
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Conclusion: Interval methods provide a formal mathematical treatment for
problems where (1) no input information can be defined beyond upper and
lower bounds for design variables and/or where (2) response ranges are
desired for preliminary design purposes. Such methods may be worth
considering as part of the required error bounds work proposed herein.

Interval arithmetic may offer, especially as a data type, the opportunity to do
rapid analysis of the output range for design problems. It appears to be
worthwhile to take some research codes and to convert them to the new type
of variable to assess how effective this tool would be in defining design
output range for interval inputs. The approach appears to be one that could be
applied to error analysis in parts of the non-deterministic design analysis
process.

3.4.5 Response Surfaces

There appears to be some confusion here over terminology as applied to
probabilistic design. Probabilistic designers have used Taylor series
expansions of the physical response of systems in terms of the design
variables to construct locally linear (first-order) and locally quadratic
(second-order) polynomial fits to model results. Such representations are
updated as the “design point” moves through the design space (so-called
advanced mean value — AMV — algorithm). This approach might best be
called the local-RS approach.

A second approach, and one currently favored by GEAE and PWA, derives
from classical statistics [11, 12]. These RS methods have been developed as
part of experimental statistics wherein the experiment is designed with
varying patterns of high-low values for each identified parameter that can be
changed. Mathematical methods are used then to define the RS that is most
likely that defined by the experiment and the statistics of variance regarding
that fit. One also determines the independence or coupling of the variables in
the modeled physical response. The use of certain experimental designs leads
to first order surfaces (with interactions) or second and higher order surfaces.

While the use of RS’s at GEAE and PWA is a fitting to deterministic and not
random system responses, both companies define their approach as a RS
approach consistent with statistical derivations. The reason they use this
terminology is that they use a variety of experimental designs (DOE) to
select the points in the design space that are used to evaluate the response
and from which the first or second order surface (with all interaction terms)
is fitted. Such a RS method might best be called the DOE-RS method.

The key in all cases is that the RS is a representation of what is probably a
model of the physical system. The specific fitting algorithm and probability
algorithm define the errors in the non-deterministic results. The two RS
approaches have different characteristics in terms of accuracy (local and
global) and efficiency. In spite of what GEAE and PWA have taken as
positions on RS technology theirs is not the last word.

Conclusion: There are critical technical questions to be resolved regarding
RS strategies. Most of the questions should be addressed in appropriate
technical meetings and symposia. There are some technical issues that are
appropriate for the NDNTM effort.
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3.4.6 Non-Deterministic Optimization

Articles reviewed for this subject include [31, 43, 47, 48, 49, 50, 51, 52, 53,
and 54].

All optimization algorithms can and should be non-deterministically applied.
The two references to the new GEAE design environment [53, 54] clearly
indicate this combination is the future for GE. Non-probabilistic elements in
optimization can be in the objective function or in the constraints. The issues
related to the use of non-traditional optimization strategies (non-gradient for
example) such as genetic algorithms and simulated annealing have nothing to
do with non-deterministic issues. They have a lot to do with the size,
complexity, and nature of the design environment [50, 51].

3.4.7 Taguchi
References [13, 24] are cited.

There are two elements to Taguchi methods. One is a set of experimental
designs (patterns of high-lows) as applied in standard DOE methods. DOE
strategies seek to define a RS by selecting a sub-set of a full factorial design
procedure in order to reduce the experimental cost. The actual patterns are
particular to Taguchi and to other developers. The second element is the
separation of variables into controlled variables and noise or uncontrolled
variables. When trying to target manufacturing processes using Taguchi
strategies one seeks to minimize process variability caused by noise factors.

Conclusion: The use of Taguchi or other, newer strategies is limited for the
current study to defining RS’s while separating controlled and uncontrolled
variables. There is no significant research need for work here under the
NDNTM banner.

3.4.8 Design of Experiments

DOE applicability to NDNTM and RS strategies are discussed in the bullets
above.

3.49 Dedicated Expert Systems

Conclusion: Expert systems are at the heart of an increasing number of
applications including the fuzzy logic control systems, as previously
discussed. Dedicated expert systems will be important parts of NDNTM
deployed to support future design environments and system health
monitoring [59, 60].

3.4.10 Possibilistic
See fuzzy logic and interval arithmetic.
3.4.11 Probabilistics

Conclusion: Any risk critical design application requires probabilistic
algorithms for robust and reliable results. The consensus of those interviewed
as well as the opinion of the Consultant is that there are no pressing research
issues other than error analysis related to the issue of probabilistic
algorithms.
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3.4.12 Complexity Theory
Reviewed articles or web sites are given in [57, 58].

From the writer’s perspective, advanced aerospace systems may not involve
complexity in the terms used in [57, 58] even though system modeling is
highly complicated. Complexity theory arose in thinking about biological
processes where evolution is involved. Genetic algorithms (GA) for
optimization appear to use evolution to arrive at an answer — but is that
related to complexity? This writer contends that it is not related because
biological evolution leads to time-changes of species indicating that today’s
answer is not tomorrow’s answer. Properly run GA’s will produce the same
global optimum for large, complicated problems.

However, if we view the design process over time from requirements to
system operation, we often speak in terms of the “evolving design.” We
make binary choices of configurations, there is no uniqueness but there is a
strong dependence on the path taken. GA’s cannot model this process as a
whole because they do not have the full set of options generally available to
them. A system design problem for which we cannot find a “feasible
solution” may not have one — or the process may be lacking in robustness to
the extent that “chaos” is occurring.

Is there a link between complexity/chaos and probabilistic modeling? This
writer contends the answer is “no.” We may find it easier to configure
feasible designs if we allow variability for all of the design variables in the
sense that the design envelope is fuzzified. We may then find ways to target
the random design variables to arrive at real, feasible designs. However,
complexity theory appears to say that it is the shear number of options that
we are dealing with that is the issue, not the crispness of the parameters used
for each of the modular options that might be considered.

Conclusion: The area of complexity theory as applied to the overall design
process may yield some interesting work. However, it does not seem an
appropriate area for NDNTM effort.

4.0 Appendices
4.1 NDNT Panel Meeting — see CD/ROM files

The following are comments based on a review of the material presented but not
on the presentations themselves. Comments will be made on the highlights of the
presentation based on the other material reviewed and reported herein. Only
some of the presentations are discussed. The selection is based on those
presentations that went beyond the use of today’s probabilistic methods or made
key points related to the purpose of this study.

e Prof. Ahmad Noor
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A major focus of his review is on the need for non-deterministic methods in the
design cycle. The basic rationale is the lack of specificity early in the design

Bounding Uncertainties in Simulation Models

* Experimental data
and its'uncertain

» Data reduction’
incorporatingt
uncertainti

process. The PREDICT program [1] was developed with such a contingency and
offers a rational approach to this problem area. An illustration is given in his
report for performing interval analysis for a composite shell structure. Again, this
problem is properly handled using today’s probabilistic methods with simplified
inputs based on the range information. The only possible alternative method to
consider is interval mathematics. The elements of selection, parameter
identification, updating, and validation are fully addressed in today’s technology
based on probabilistic design. Again, reference is given to a real design process
employed in industry [1].

Professor Noor confirmed in private discussions that the use of fuzzy methods for
computational algorithms is not recommended due to their inherent limitations.
Probabilistic and interval methods are recommended instead. He also makes the
strong point that existing deterministic analysis methods should serve as the core
of future NDNTM for the detailed modeling. That view is shared by industry and
this consultant.

e Professor Robert Mullin

Professor Mullin presents an excellent introduction to interval mathematics for
the finite element method. He also addresses the need for probabilistic
mesomechanics. The presentation is valuable.

e Dr. David Robinson
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The conclusion charts from his presentation are valuable to include here.

oTechnical Issues {2-5 years)

»new SNL unique algorithms being developed and tested

»SNL Corrosion Initiative - system level impact of microscale evolution of
corrosion by-products

»aging analyses

=national power grid vulnerability

»system level reliability vs component reliability

»Educational issues

oTechnical Issues (Beyond 5 years)
increased use of NDA methods by engineers

improved communication between software components
time dependent behavior
multiple failure modes

sEducational Issues

Continued lack of support from educational institutions for qualified
graduates

The interesting elements contained here that agree with those recommended in
this report are improved communication between software elements, multiple
failure modes (system analysis), probabilistic mesochanics (as seen in his whole
talk) for complex damage modes, and educational issues. The use of probabilistic
experts in future software efforts will help here.

e Professor Efstratios Nikolaidis

The presentation is an interesting one favoring fuzzy methods. The earlier review
conclusion on fuzzy methods in this report address his conclusions.

¢ Dr. Gene Rogers

This is an excellent case for effective probabilistic design analysis of space
vehicles.

¢ Dr. Norman Kuchar
This presentation ties ND methods to GE’s six sigma program
¢ Dr. Rob Sues
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Barriers and Solutions to
Enable the Potential

Requires specialized expertise > Need for more
academic and professional training

Too difficult to implement - better integration with
existing CAE tools

Too time consuming to model = standardized
procedures, more demonstration problems
Too time consuming to compute - numerical
methods R&D, parallel processing hardware
Immature technology prone to numerical and
accuracy problems = numerical methods R&D,
guidelines for application

E 2 April 2000, Sues, 4740 4999, page 9

The above chart is selected from this presentation. The presentation shows
effective use of probabilistics, especially in the area of optimization. The above
barriers and solutions appear to be consistent with many of the themes in this
report.

4.2 Non-Deterministic Approaches Forum
Chairmen: Dr. Chris Chamis and Dr. Surin Singhal
AIAA SDM Conference, April 2000
Panelists: Paul Roth, Bob Kurth, Rob Sues, Eric Fox, Mircea Grigoriu
e Neural Networks:

(EF) Used with thousands of data points with relatively few outputs. Used where
there is no “structural” model of the system. Can be very difficult to interpret the
parameters.

(RS) Used anywhere you can use a response surface. The method is one of
generalized curve fitting. Can be used to replace a complex model (many degrees
of freedom) with a simple model (few degrees of output freedom).

(BK) Battelle has made effective use of neural networks in the area of avionics
displays in heads-up systems.

(PR) Cautioned on the improper use of neural networks for extrapolation instead
of interpolation.

e Fuzzy Theory:
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(RS) Fuzzy theory is for those not comfortable with probabilistic theory. Same
goals as probabilistic methods — to bring uncertainty into the design — but not as
robust.

(BK) Method is trying to quantify the users lack of knowledge. Battelle does not
use fuzzy theory in any applications.

(PR) Have not seen any application of fuzzy theory that could not have been
converted to probabilistic theory.

(EF) Fuzzy theory is probabilistic methods using triangular input (for
distributions).

(Audience: SS Rao) Fuzzy theory is effective where the input is linguistic and
not mathematical.

(Audience: Ahmad Noor) Used where the input data is ambiguous — again a
linguistic form of input implied. Believes that there are relationships between
probabilistic methods and fuzzy theory but the latter is not a subset of the former.

(Audience: Boeing) Fuzzy theory used to emulate human thinking. Employed in
building self-teaching expert systems.

(Audience: Dan Ghiocel) Cannot use fuzzy theory when the inputs are correlated.
Cannot quantify risk. Can be used where qualitative output is desired or
acceptable.

(Question raised) Is there a rational transition from fuzzy theory to
probabilistics?

e Chaos Theory:

(BK) Battelle has found applications in mixing theory, navigation problems, and
—in a probabilistic form — stability problems.

(PR) Believes that chaos theory will have a significant impact in the future. Two
areas of GEAC application are air-fuel mixing in combustion and in engine
control.

(EF) Stock market projections and like problems where there is a lot of noise on
top of what is otherwise a moderately well controlled process.

(Audience: Ghiocel) Chaos theory is a deterministic method where non-periodic
and non-closed output occurs with periodic input. Chaos theory cannot handle
non-deterministic input. Only the output looks random.

(Audience: Mullen) Applicable to highly nonlinear problems. The method is far
away from design applicability.

(Leader: Chamis) Chaos theory is probabilistic simulation where the outcomes
have equal probability.

o Interval Arithmetic:

(PR) No one at GEAC is working in the area of interval arithmetic. The method
is used to map input bounds into output bounds. Could be used to help the
probabilistic designer in this way. MC simulation is more effective here than the
formalisms of interval arithmetic.
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(EF) If you can use Monte Carlo simulation, you can get all you need from
interval arithmetic from probability theory.

(RS) ARA is using the method in developing user manuals to give users expected
bounds on output. Have made use of it for various simpler problems. For
complex problems, he recommends using design of experiments with 2 to 5
factors per interval over the arithmetic.

(BK) Battelle was very excited about interval arithmetic when first looking at
developing a fuzzy finite element analysis system. They stopped development of
the system when they could not overcome the zero-divide problem. They were
looking for a quantified fuzzy logic system. Some potential for the method.

(MG) Method is not useful for design problems for which failure is caused by
extreme events, for example, design for time-dependent loads.

(Audience: SS Rao) Used effectively in tolerance analysis. Automatic operations
are fast. Output range is so wide that results can be meaningless. Have to use
physical insight to fine-tune the method.

(Audience: Mullen) Have to incorporate physics into the method. He has a
working interval arithmetic FEA code. Has overcome cost problems using Monte
Carlo. Can reduce large problems to a single FEA run.

e Response Surfaces:

(MG) RSs are very useful when the system response is undestood. Can give
totally wrong results for dynamic problems involving resonance.

(EF) Response surfaces are best for modestly well-behaved problems. Can test
the accuracy of models.

(RS) Use anywhere you don't have a physical model, i.e., can build an empirical
model, same as curve fitting of observed outputs to inputs. Extrapolations with
response surfaces can be a problem. Can also be a good surrogate for complex

computational models as long as you have a strategy for local accuracy near the
final design point.

(BK) Response surfaces are very successful for complex physical problems that
are well behaved.

(PR) One must pick and choose problems for response surfaces. Rotor mistuning
with attendant energy localization is not a good problem. Response surfaces can
capture material variability but not nonlinear physics.

(Audience: Millwater) Response surface methods appear not to work with large
numbers of variables, on the order of 20 to 50, that occur in some problems.
Above 10 design variables, DOE breaks down as there are too many design
points. Can’t just throw out design variables using sensitivity measures as they
may become important through interactions or at the final design point.

(Response: RS) Can use multiple response surfaces with system reliability for
some of these larger problems.

¢ Non-deterministic Optimization:

(EF) Believes that it is important to use a DOE-based approach.
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(RS) Believes we should use this method whenever doing optimal design.
Conditions for optimal design are always probabilistic. Can get “robust design.”
Can include cost factors.

(BK) Safety prediction benefits by changing the control limits on the input
variables.

(MG) Optimization with reliability constraints is a very promising area for both
research and applications. Developments are needed to reduce some
shortcomings, for example, the convergence of the solution to local minima.

(Audience: Mahadevan) Stated that reliability estimates themselves are random.
Need to combine non-deterministic optimization with robust design methods to
minimize output uncertainty.

e Taguchi:
(RS) Use DOE for process problems. Very similar to probabilistic optimization.
(BK) Used in optimization problems with DOE.
(PR) GE no longer talks about Taguchi, which is a subset of DOE.

(EF) PW does a lot of training in Taguchi/DOE to show how badly the Taguchi
designs do in comparison to classical DOE. Non-isomorphic graph designs are
better. The original use of Taguchi methods in dealing with uncontrolled
variables has been replaced by more recent methods.

(MG) A version of experimental design.

(Audience: Mahadevan) They have combined Taguchi with non-deterministic
optimization. The method gives qualitative information on which variables to
use.

(Reply: EF) Taguchi array can give bad results. His arrays minimize variable
interactions.

¢ Design of Experiments:

(BK) This is the most important item on the list. The method is used up front in
any multivariate problem. Reliability problems benefit greatly.

(PR) DOE is a clever way to minimize variance in estimators. Have to be careful
though when it comes to interactions.

(MG) One needs to have some idea of output. Method is useful for variable
screening.

(EF) Fractional factorial is very powerful along with Box-Behnken that is best
for nonlinear problems.

(RS) DOE is used for building surrogates for complex models. For lots of
variables, one should probably use Monte Carlo. ARA uses DOE imbedded in
their code.

(Question: Mahadevan) DOE is used for non-repeatable data. The response
surface (as used in probabilistic design; also known as the surrogate model)
corresponds to repeatable data. Does this change the DOE approach to use?

(Reply: EF) Box-Behnken or composite designs are best to use if the response
surface is nonlinear. Lots of process problems have linearities.
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(Reply: RS) Use fractional factorial also. Switch to simpler DOE arrays near the
critical region for efficiency.

e Dedicated Expert Systems:

Panel did not have anything favorable to say here. Professor Rao discussed
evidence-based models that translate input into belief functions.

e Possibilistic:

(MG) Used the example of a coin toss — it is possible for the coin to land on an
edge but is there any real probability of that event? Possibilistic methods include
results with very low probabilities.

(RS) ARA has looked at the method as a way to handle fuzzy logic problems.
The mathematics are not robust. With the same input one can handle problem
with more realistic tools.

e Probabilistics:
No panel response recorded here except for:
(EF) Probabilistics can be used with lots or little data or with expert opinions.

(RS) Use where we have engineered systems and need to do risk assessment,
predict product reliability, design for reliability, need sensitivity information, in
new design situations where there is no experience base, and to reduce testing.

(MG) Probability theory is the most efficient and reliable tool for propagating
uncertainty through a system. It can be applied when the system and/or the input
are uncertain. Recent work on fatigue and fracture mechanics shows
probabilistic tools beyond random variables and random vectors need to be
considered. For example, random fields are needed to represent the material
microstructure. Gaussian and non-Gaussian processes are essential for modeling
various actions on aircrafts.

o Complexity Theory:

The panel had little knowledge of this and invited clarification. Chris indicated
that it is in the ISE plan coming out of NASA/Langley.

(Audience: Noor) Complexity theory deals with problem modeling where there is
a large system with a heavy amount of interactions within the system.

(Audience: Sandia person) Method developed out of work by Los Alamos
retirees. They have been working in complexity theory since 1988. Are there
equations that describe common elements of the system? “Self organization” can
be a part of it. There is a Center for Nonlinear Systems at Los Alamos. Held a
workshop on predictability of complex systems. They are involved in the
problem of “swarms” where a large group of autonomous robots interact with
each other to achieve a defined goal.
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4.4 White Papers

White Papers were received in response to the Consultant’s invitation. The following
pages are cited in terms of the person(s) submitting the White Papers.

4.4.1 Rockwell Science Center

See attached, proprietary file - RSC_white_paper.doc

This file has restrictions on its cover page.

4.4.2 Los Alamos National Lab
4.4.2.1 Information Integration — Dr. Jane Booker
Integrating Information for the Analysis of Simulations

When dealing with the large scale computer simulation codes, it is desirable to
gain the most information about the code, its imbedded models, and the affect of
inputs on outputs without running all possible combinations of values. Statistical
experimental design principles and sensitivity analysis methods can be utilized
for this purpose: to learn the most from the fewest number of simulation runs.

When dealing with the analysis of simulation codes, at least two different kinds
of uncertainty can arise: uncertainties in inputs resulting in uncertainties in
outputs and modeling uncertainty. The former we call sensitivity analysis, the
latter is simply "I don't know what my model should be". There are many useful
methods (e.g., Latin Hypercube Sampling) that provide solutions for judiciously
sampling the input space to learn its effects on the output space. There are also
many good experimental design techniques to design the runs for the different
values that the inputs can take on, so that fewer runs are required. The modeling
uncertainty issue is much less known or studied and is very case/application
dependent. It is very difficult to design sampling techniques that search through
and study an infinite number of potentially correct models.

While these methods provide ways of minimizing the number of runs, they
cannot produce results from only one or two runs. Carefully designed choices of
model parameter values and input values can result in understanding how these
affect the output in sensitivity analysis. The number of these choices can be far
less than the full number required for complete enumeration of all possible
combinations. Statistical tools using experimental design and sampling
principles provide ways for making judicious choices. This number could be
further reduced by taking advantage of other existing knowledge and information
about the code, the model, the parameters, and their relationships. The principle
of information integration states that uncertainty can be reduced and better
estimates obtained by utilizing and combining all available information. A major
source of information is the knowledge and experiences of the experts in the
subject matter reflected in the code. There could be other sources as well such as
results from similar models or codes. We propose to investigate the use of
information integration methods in conjunction with sampling and design
methods to utilize all knowledge for reducing the number of required runs for
sensitivity analysis.

Likewise, all available information about the model could be used to judiciously
design code runs for understanding modeling uncertainty. There are many kinds
of uncertainty that could contribute to the choice and use of models, and these
would be investigated to provide focus for studying this difficult problem.
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Model uncertainty is a wide open research area, and we anticipate development
and modification of information integration methods to understand modeling
uncertainty and to develop tools for analyzing its effects.

Jane Booker, Ph.D.

Statistical Sciences Group, MS F600
Los Alamos National Laboratory
Los Alamos, NM 87545

(505) 667-1479

jmb@lanl. gov

4.4.2.2 Statistical Methods and Experiments — Dr. Michael McKay

Important Research Areas in
Statistical Theory and Methods for Computer Experiments

Many critical scientific predictions come from the integration of experimental
data with calculations from numerical simulation models. Valid methods for
quantifying uncertainty in scientific predictions require understanding of how
uncertainties in data and model predictions combine. Three facets of uncertainty
quantification are (1) experimental error, (2) model prediction uncertainty, and
(3) combining information. While experimental error is dealt with well by
existing statistical methodology, methods for analysis of model prediction
uncertainty as well as methods for combining model predictions with
experimental data are still in early stages of development. The following
paragraphs direct attention to the second point, model prediction uncertainty.

As a setting for model prediction uncertainty, suppose that the prediction y from
a model m is determined by a vector of input variables x. The input variables
might define initial conditions of a system being modeled as well as parameter
values in the rules determining y from the initial conditions. The term input
uncertainty is associated with a lack of knowledge about appropriate precise
input values from which to calculate y. Therefore, x is treated as a random
variable with a probability density function which quantifies input uncertainty.
The prediction distribution is the corresponding probability distribution induced
on y by way of the model m, and characterizes prediction uncertainty. The
objective of uncertainty analysis is to investigate the relationship between the
input variables x and the prediction distribution. One part of the investigation is
to identify (small) subsets of inputs that are important in the sense that they that
“drive” prediction uncertainty.

Two common approaches to measuring input importance are differential
sensitivity analysis and methods based on (linear) regression and correlation
coefficients. Generally, these approaches are only valid in the neighborhood of a
“nominal value” or they require that y be approximately linear in x. Furthermore,
validity of associated importance measures usually requires that the components
of x be statistically independent. Alternatively, variance-based analysis methods
provide effective importance indicators (McKay, 1997). The indicators are used
to evaluate individual inputs as well as subsets of inputs. However, efficient
algorithms for identifying dominant input subsets of size 1, 2, and so forth are
needed. Two important research topics follow.
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Experimental designs for estimation of variance components. Variance
decompositions require efficient experimental designs for estimation of the
components of variance for the methods to be feasible. It is proposed to
investigate traditional variance component estimation in light of sampling
methods for computer experiments, such as, orthogonal array sampling (Owen,
1992) and LHS (McKay, 1979, 1995).

Smart variable selection procedures. When essentially unlimited computer
runs are feasible, brute-force sequential selection procedures may be adequate to
select dominant input subsets. However, the shear number possible subsets of
inputs for models with more than a few inputs can make complete enumeration
infeasible. It is proposed that smart variable selection procedures which take
advantage of particulars of the variance decomposition and experimental design
be developed. It is proposed to try to parallel optimal procedures for subset
selection in regression, beginning with Hocking (1967).

Michael D. McKay
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4.4.2.3 Tools for Elicitation — Dr. Mary Meyer
Integrated Tool for Eliciting and Representing Knowledge

One of the most challenging aspects of PREDICT, and indeed any multi-
disciplinary enterprise, is representing the knowledge that the technical experts
employ in their problem solving. The proposed tool will accelerate this process
by guiding the experts, the practitioners, in self eliciting and representing their
problem-solving knowledge. The tool is comprised of three integrated parts: 1) a
set of questions that walk the practitioners through defining their technical
problem and problem-solving processes; 2) a software application that enables
them to diagram the structure of their problem-solving processes; and 3) a
customized software application that allows them to input this structure as the
framework for a prototype knowledge system. We define knowledge systems as
web-based electronic repositories that have been customized to their users to
bring together their data, knowledge, and methods in structured, quantitative
ways to facilitate their problem solving and/or decision making.

The proposed integrated tool is needed for several reasons. First, self elicitation
is more efficient than elicitation by another party because it obtains the
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knowledge from those who possess it and who are most qualified to update it, the
practitioners themselves. Yet, the techniques for guiding individuals in
extracting their own knowledge are largely undeveloped. Second, practitioners
need a graphical tool for representing the structure of their problem solving
knowledge that is intuitive, transcends their disciplines, and has the capability of
being transformed to mathematically richer diagrams (e.g., conceptual graphs,
factor complexes). Third, the rapid pace of R&D demands that practitioners be
able to design the organization of their own knowledge systems, ideally in a day,
and to upload their files into it structural units.

Work on portions of the integrated tool has begun. For instance, we have made
preliminary progress in designing a customizable, self-elicitation process which
leverages on the PREDICT elicitation methods (Meyer and Booker, 1991;
Meyer, Booker, Bement,1999). This latest work is being done in collaboration
with Dr. Ray Paton, University of Liverpool, U.K. (Meyer and Paton, 2000). We
have also progressed on the graphical tool for diagramming. Dr. Paton has
identified the type of diagram, scratch nets, which will be used for eliciting and
representing. Dr. Paton’s experience and a body of literature document the ease
of use of this diagram—all users need to identify are the parts of a whole (nodes)
and how they relate to each other (labeled arcs). In addition, we have
successfully pilot tested practitioners’ abilities to input the structure for a
prototype knowledge base and to upload their files into the created structure.

To continue this work with the aim of creating a prototype integrated tool, we
anticipate the next steps as:

1. Develop, test, and refine the set of self-elicitation questions on pilot
applications.

2. Develop the graphic tool by adapting off-the-shelf software, such as
Visio, to enable users to diagram the nodes and their arcs in scratch net
form, edit these diagrams, create a data base of the nodes and arcs, and
transform the scratch nets to more specialized types of diagrams, such as
hierarchical trees (e.g., factor complexes) and or to intermediate forms
from which conceptual graphs could be created,

3. Expand the capability of the knowledge system groupware, such as Lotus
Notes Domino, for accepting user’s complex representations.

References:

M.A. Meyer, J.M. Booker, T.R. Bement, developers of "PREDICT—A New
Approach to Product Development," 1999 R&D 100 Award winner, R&D
Magazine, Vol. 41, p 161, September, 1999. Also: Los Alamos National
Laboratory document, LALP-99-184, August, 1999. And: AMSTAT News, vol
267 Aug/Sept, 1999, p26.

M.A. Meyer, J.M. Booker, Eliciting and Analyzing Expert Judgment: A Practical
Guide, Academic Press: London, 1991. (Reprint forthcoming from SIAM).

M. A. Meyer, K. B. Butterfield, W. S. Murray, R. E. Smith and J. M. Booker,
“Guidelines For Eliciting Expert Judgment As Probabilities or Fuzzy Logic”
appearing in Fuzzy Logic and Probability Applications, T.J. Ross, J.M. Booker,
and W.J. Parkinson, (editors), American Statistical Society SIAM Series, 2000.
Forthcoming.
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M.A. Meyer, M.A. and R.C. Paton, “Interpreting, Representing and Integrating
Scientific Knowledge from Interdisciplinary Projects,” (Los Alamos National
Laboratory report LA-UR-00-1448) Theoria et Historia Scientiarum:
International Journal of Interdisciplinary Studies. Forthcoming.

Mary Meyer, Ph.D. Ethnology

Project Leader for Information Integration
Statistical Sciences Group

Los Alamos National Laboratory, MS F600
Los Alamos, New Mexico 87545

Tel: 505 667-2331

Fax: 505 667-4470

4.4.2.4 Bayesian Optimal Design — Dr. Jane Booker
Bayesian Optimal Design of Integrated Physical and Computer Experiments

Both high cost and significant time investment are limiting factors in any
experimental endeavor. Traditional physical experiments are extremely
expensive in today's world of highly complex systems. Computational
experiments are also expensive, but mostly due to the time required to develop
the computer models upon which they are based.

Research can be made more inexpensive if a combined experiment, using both
computational experiments and physical experiments, can be designed. Of
necessity is determining the relative worth of each type of experimental result so
that resources can be allocated so as to maximize the amount of information
gained in an experiment subject to a minimal cost restriction.

Bayesian experimental design is concerned with the problem of maximizing the
amount of information gained, taking into account all the uncertainties in
unknown quantities. Performing the maximization subject to cost and/or time
budgetary constraint can be accomplished using evolutionary programming
techniques such as genetic algorithms. This optimization problem is made
possible by more powerful hardware and innovative algorithms of today's
computing environments.

We have developed Bayesian experimental design calculations for the case where
only one source of data is present. Further, we have performed a combined
analysis of several different data sources, accounting for possible differences
(biases) in the data sources which determine relative worth. We have also
developed genetic algorithms to assess process design prior to production, thus
eliminating costly mistakes before production begins. Our proposal is to further
develop Bayesian experimental design for combined experiments under a cost
and/or time budgetary constraint.

Jane Booker, Ph.D.

Statistical Sciences Group, MS F600
Los Alamos National Laboratory
Los Alamos, NM 87545

(505) 667-1479

jmb@]lanl.gov
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443 Impact Technologies Inc. — Dr. Michael Roemer

The file is available as a separate document — Impact_white paper.doc

4.4.4 Wright State University — Dr. Ramana V. Grandhi

The file containing three white papers is available as a separate document —
nasa_wp_grandhi.doc

4.4.5 Literature Review for ND/NT Methods

The following summarizes the literature review made as a part of the contract effort.

1. Reference [14]: Third thoughts on fuzzy logic.

The author is an ardent skeptic of fuzzy logic. The context of the article is control systems.
He was invited to assess the use of fuzzy logic (FL) and he finds its applications to be limited.
He observes, “when an FL system claims to show great advantages over a conventional
system, the advantages arise because the conventional system was badly done, or because it
was highly nonlinear. The use of fuzzy logic in controllers is to provide smoother operations,
for example. However, Pease argues that the use of proportional, integral, derivative (PID)
controllers can do the same thing. He also cites an authoritative (un-referenced) source as
saying fuzzy rules grow at a rate of the rules raised to the system dimension.

The niche in controllers for FL appears to be moderately to highly nonlinear control
problems. He cites an example problem of supporting a ping-pong ball on a column of air.
There were some problems with the system though and he observed that optimizing an FL
system is non-trivial. There is not much supporting data for his comments, which were
offered to stimulate discussion.

2. Reference [15] is an introductory statement for a special issue of the IEEE Proceedings
entitled Special Issue on FL with Engineering Applications.

In their introductory sentence, the authors state that “fuzzy logic is a method for representing
information in a way that resembles natural human communication, and for manipulating that
information in a way that resembles how humans reason with this information.” Thus we
have two FL issues to consider:

e Natural language communication of information.
e Natural reasoning mode for manipulating the information.

The authors claim that design-to-market processes may be speeded by the use of FL.
Application areas have moved beyond controllers to pattern recognition, forecasting,
reliability engineering, signal processing, monitoring, and diagnosis.

3. Reference [16] provides a tutorial type of introduction to fuzzy logic systems (FLS).

An FLS is “able to simultaneously handle numerical data and linguistic knowledge.” FL is a
nonlinear mapping of input data into scalar output; FL and fuzzy set theory provide the
mathematical basis for the nonlinear mapping. The use covered in this paper is for “causal”
systems such as found in engineering, This use is a narrow subset of the methodology.

An FLS is “a linear combination of fuzzy basis functions and is a nonlinear universal function
approximator.” The author states that this latter property is one that FL shares with
feedforward neural networks. The important attribute of the fuzzy basis function is that it can
be derived from numerical or linguistic knowledge, cast in the form of “if-then” rules. The
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author states that FL is, to date, “the only approximation method that is able to incorporate
both types of knowledge in a unified mathematical manner.”

The author defines two approaches in FL: The first is the model-based approach and the
second is the model-free approach. In the former, linguistic statements that are converted to
rules, which are then quantified using FL, represent subjective information. In the latter case,
the rules are extracted from numerical data and are then combined with linguistic information
collected from experts, both using FL. The author considers only the second class of
problems as they can be applied to feedforward neural nets (FFNN) and he compares the two
methods. The author is concerned about mapping numbers into numbers with front-end
fuzzifiers and rear-end de-fuzzifiers.

The Principle of Incompatibility [17] is given by the “founder” of FL: “As the complexity of
a system increases, our ability to make precise and yet significant statements about its
behavior diminishes until a threshold is reached beyond which precision or significance (or
relevance) become almost mutually exclusive characteristics” — or, “The closer one looks at a
real world problem, the fuzzier becomes its solution.”

A FLS system can be described as taking crisp input and producing crisp output. In between
those two is a fuzzifiers of the input data, if-then rules, and a de-fuzzifier output. The rules
are derived from experts. The rules are written in terms of linguistic variables. An inference
engine is used to process the if-then rules and produces fuzzy output.

The membership function for crisp sets is 0 or 1. For FL, the membership function takes on
values of from 0 to 1. The membership function in FL “provides a measure of the degree of
similarity of an element in U [the set of allowable values] to the fuzzy subset.” An example is
car manufacturing if one asks the question of whether the car is domestic or foreign made. In
crisp logic a rule can fire only if the conditions for the rule are exactly met; in FZ, the rule
fires “so long as there is a nonzero degree of similarity between the first premise and the
antecedent of the rule.” The result of the rule firing “is a consequent that has a non-zero
degree of similarity to the rule’s consequent.”

Fuzzy logic vs. probabilistic models: The author cites sources that argue both sides of this
issue and concludes that “there is some truth to both sides ...” However, he argues effectively
that FL “is a tool of enrichment and not replacement ... ” Bezdek and Pal [18] are quoted as
saying that “fuzzy models belong wherever they can provide collateral or competitively better
information about a physical process.” Bezdek and Pal give an example case wherein two
bottles of water are lying in the desert and are found there by a very thirsty wanderer. The
first bottle has a membership in the set of potable waters of 0.91 while the other has a
probability of being potable that is 0.91. In the first case the water shares a high degree of
characteristics in common with potable water while the second has a 9% chance of being
totally non-potable (poison!). Which do you drink?

Fuzzy logic systems are universal approximators: The question of how well an FLS
approximates an unknown function is an important question in feedforward neural networks.
The FFNN is a universal approximator, “which means that a FFNN can uniformly
approximate any real continuous nonlinear function to an arbitrary degree of accuracy.” The
same thing has been proved for FLS if that FLS uses “product inference, product implication,
Gaussian membership functions and height fuzzification.” Other types of FLSs have been
shown to be universal approximators but not all FLSs fall into this class. Such proofs cover
existence but they do not say how the FLS is to be constructed. The same is true for FFNNs.
The existence theorem for FFNN does not tell how many layers of neurons should be used or
how many neurons should be used in each layer or how interconnected the neurons should be.
In the case of FLSs the author indicates that one should “design the FLS using representative
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data that is collected for a specific application.” In fact, one “trains” an FLS in much the
same way as a neural net is trained by the data. The author does conclude that ‘whatever ...
different training algorithm that is used for a neural network can also be used by the FLS.
Success of any neural network training algorithm depends on the initial values chosen for the
weight. These weights have no physical meaning for the neural network; hence, they usually
must be chosen randomly. The parameters of a FLS are associated with membership
functions for physically meaningful quantities; hence, it is possible o obtain very good initial
values for them.” The author concludes further “the fuzzification subsystem within the FLS
lets us handle uncertainty in a very natural way, totally within the framework of the FLSs. To
date there does not seem to be a comparable way to handle uncertainty in a FFNN.”

4. Reference [19] describes the unifying framework of adaptive networks. These are said to
have certain advantages over neural networks.

Emphasis is given to the use of the “back-propagation” learning rule for artificial neural
networks. This “universal learning paradigm for any smooth parameterized model” can now
not only take crisp data but can take linguistic information. It can also adapt itself using
numerical data to achieve better performance. Neural networks are not able to take linguistic
information directly.

Adaptive networks are a “superset of all kinds of neural network paradigms with supervised
learning capability.” The adaptive network consists of nodes and links arranged in layers. Ina
feedforward network each layer links to the next layer whereas in a recurrent network, there
can be some feedback links. There are no links between nodes in the same layer in a layered
adaptive network. There can also be a topological network in which nodes only feed those
nodes with higher numbers in the defined sequence.

“Usually an adaptive network’s performance is measured as the discrepancy between the
desired output and the network’s output under the same input conditions. This discrepancy is
called the error measure and it can assume different forms for different applications.
Generally peaking, a learning rule is derived by applying a specific optimization technique to
a given error measure.” The backward learning algorithm is based on computing the error
using a gradient vector whose components involve the parameter at each node. The basic
concept is to pass a form of the derivative information from the output layer to the input
layer.

Special cases of adaptive networks are discussed that have been widely used in the neural
network literature: the back-propagating neural network and the radial basis function neural
network. The former is widely used in such areas as pattern recognition signal processing,
and automatic control while the latter are used to model physiological-like systems where all
nodes communicate with all nodes. The adaptive network-based fuzzy inference system
(ANFIS) reported in this paper is similar to the radial basis function network. ANFIS is used
for nonlinear function modeling, time series prediction, on line parameter identification for
control systems, and fuzzy controller design.

Other learning systems can be used. These include gradient free methods such as genetic
algorithms, simulated annealing, downhill Simplex, and random. Applications have favored
genetic algorithms. The technology development focus is on “structure determination”
wherein the network structure, the fuzzy rule sets, etc. can be defined. Speeding up the
learning algorithm is still needed.

5. Reference [20]: Fuzzy logic control.
This is not reviewed due to its narrow focus. The conclusions indicate that the benefits of
FLC over standard control systems are focused on those control system “policies which
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combine maximization or constraint enforcement with regulation. Many of the control
policies implemented are dynamic.”

6. Reference [21]: Hardware solutions for fuzzy control.

The point of this article is that one can implement fuzzy control logic in processors that range
from supportive to dedicated. “As a general taxonomy, we can identify four classes among
the different implementation alternatives:

e Software and hardware solutions with general purpose components.

e General-purpose processors with instructions for specialized computations.
e Dedicated fuzzy coprocessors.

e Fuzzy ASICs capable of stand-alone operations.

The first alternative is the most widely used and software tools to aid in the development of
fuzzy controllers have been developed. Special purpose coprocessors have been developed
and “usually adopt triangular membership functions, flexible rule format (number of
antecedents and consequents), max-min inference method, 8-b precision and centroid
defuzzification method. Application specific ASICs have also been developed.

7. Reference [22]: Application of fuzzy logic to reliability engineering.

The paper makes the usual statement that system design involves uncertainties and that these
can be captured using linguistic input. The authors “apply the main concepts of fuzzy logic,
fuzzy arithmetic and linguistic variables to the analysis of system structures, fault trees, event
trees, the reliability of degradable systems, and the assessment of system criticality based on
the severity of a failure and it probability of occurrence.”

One of the features of the design process that the authors seek to address is “the item whose
probability of failure is needed often does not exist and it must be “estimated” based on
“engineering judgment” or “experience” from “similar” items. The use of fuzzy analysis
methods including imprecision and approximations, fuzzy set theory, possibility theory, and
their combination referred to as fuzzy logic, the authors seek to “help restore integrity to
reliability analyses by allowing uncertainty and not forcing precision where it is not
possible.”

The methodology used for system reliability in parallel and series systems is the usual
membership function approach with assigned mappings of linguistic characterizations such as
remote, likely, etc. to numerical probability ranges. The output is numerical (translated to
linguistic) with an assigned “degree of possibility.” The resulting output is like getting a
probability and a confidence interval in a fuzzy sense. The output needs to be defuzzified.

An alternative method for computing system reliability for parallel and series systems is that
of Misra and Onisawa [23]. There method is consistent with the max-min operations of

possibility theory but their results do not provide the correct value when the inputs become
crisp.

The authors address the issue of degraded state in their discussion of fuzzy reliability. They
state that fuzzy sets provides a natural way to represent systems with degradation in that there
may be many states between fully working and fully not-working. This is achieved by
defining the memberships in both the working state and the failed state sets. In general, one
set is the complement of the other. They further state that one can interpret the membership
functions in “possibilistic” terms as “given that the system is working, the possibility that i
components are working is” defined mathematically. They draw a weak tie to the Taguchi
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Loss Function [24] in that the membership function for linear degradation is quadratic. The
Loss Function evaluates costs associated with component deviations from their nominal
values as a quadratic function.

The authors state, “Fuzzy logic provides a more flexible and meaningful way of assessing
risk. The analysis uses linguistic variables to describe the severity and frequency of
occurrence of the failure. These parameters are ‘fuzzified’ to determine their degree of
membership in each input class using membership functions” they provide. “The resulting
“fuzzy inputs’ are evaluated using a linguistic rule base and fuzzy logic operations to yield a
classification of the ‘riskiness’ of the failure and an associated degree of membership in each
risk class. This ‘fuzzy conclusion’ is then ‘defuzzified’ to give a single risk priority for the
failure.”

8. Reference [25]: Industrial applications at GE.

Fuzzy logic control (FLC) is the principal area of applications. The authors state that FLC
“has drastically reduced the development time and deployment cost for the synthesis of
nonlinear controllers for dynamics systems.” FLC has been deployed at GE to turboshaft
aircraft engine control, steam turbine startup, steam turbine cycling optimization, resonant
converter power supply control, and data-induced modeling of the nonlinear relationship
between process variables in a rolling mill stand.” The keys for GE is that they have been
able to drastically reduce “the development time and deployment cost for the synthesis of
nonlinear controllers for dynamic systems.”

The basis for FLC application is the difficulty in synthesizing nonlinear controllers. FLCs are
“knowledge-based controllers usually derived from a knowledge acquisition process or
automatically synthesized from self-organizing control architectures [26]. The FLC
represents the nonlinear control surface with a knowledge base that is executed by an
interpreter or is compiled. GE has reduced the design cycle time during the development
phase “by using an interactive computing environment based on a high level language with it
local semantics, interpreter, and compiler.”

“A hierarchical control scheme permits the decomposition of complex problems into a series
of smaller and simpler ones. As these simpler problems are solved, typically be using low
level controllers, the can be recombined to address the larger problem This recombination is
governed by a fuzzy logic supervisory controller that performs soft switching between
different modes of operation.” Software maintenance is simplified by being able to switch
rule bases for different applications, such as changing from a combat environment to a
training environment.

The paper goes into some detail on the range of their deployed applications. One of these is a
neuro-fuzzy system for a critical part of a steel rolling process that cannot be analytically
modeled. The problem is worked in the forward direction by acquiring operational data, each
one of which is very expensive. The neuro part of the system is deployed to learn what rules
govern the data, a reverse engineering problem. The fuzzy part of the system is based on
generalizing the rules so that table-lookup is not used. This results in a much simpler system.
The rules can be refined with additional knowledge extracted from the system.

The major research focus at GE is “aimed at extending adaptation techniques developed in
other fields to provide automatic tuning of FLCs.” The adaptation techniques they review
include reinforcement learning, supervised learning, steepest descent, genetic algorithms, and
reverse engineering/rule clustering, They believe that including other emerging technologies
such as neural network and genetic algorithms will improve the cost/benefit ratio of FLCs
when applied to a wide range of complex control problems.
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9. Reference [27]: Joint Delphi/L ANL project on reliability in product and process design
assurance.

The report summarizes a joint effort between Delphi Automotive and the Los Alamos
National Laboratory to develop a software-based mechanical product design system that
predicts product reliability from conceptual design to product use in the field. Thus, the
developed “PREDICT” product is a life cycle reliability prediction system that captures
quantitative and qualitative information about the product during the full design cycle. The
PREDICT system also computes an uncertainty range on the product reliability, ties the
reliability and its uncertainty to each of the sub-assemblies, and guides the process for
reliability improvement.

A key element of the PREDICT system is the systematic use of expert opinions while
stripping out bias to the extent possible. A second key element is the use of Bayesian or other
suitable updating methods for updating the product reliability and its uncertainty based on
acquired data and usage experience. While specifically designed for use in Delphi products,
the PREDICT system defines a generic methodology for product design and development
based on a rational (i.e., not experiential) reliability growth process.

The PREDICT system makes use of fuzzy input data. Domain experts are used to make point
estimates of component, subsystem, and system performance in terms familiar to each. Each
expert is also asked for a brief summary of their rational for selecting their estimates. They
were also asked to provide ranges on their estimates. Such expert input is then transformed
into distributional values for the analysis.

10. Reference [28]: Soft Computing and Fuzzy Logic

The author states that the elements of soft computing include fuzzy logic, neurocomputing,
and probabilistic reasoning. “The dominant aim of soft computing is to exploit the tolerance
for imprecision and uncertainty to achieve tractability, robustness, and low solution cost.
Probabilistic reasoning subsumes genetic algorithms, belief networks, chaotic systems, and
parts of learning theory. Neuro-computing concerns learning and curve fitting. The concepts
within fuzzy logic are the use of linguistic variables and the use of fuzzy if-then rules that use
linguistic variables. Fuzzy logic is logic with fuzzy set theory.

A central problem in fuzzy logic is how to infer rules from observations. Recent work has
made important advances toward partial solutions of the problem by applying neural net
methods with learning based on dynamic [29] and gradient programming [30]. By
representing a fuzzy system in a defined multilayered structure and some learning network
with backward iteration, one converges on the weights and thereby induces the rules from
observations.

11. Reference [31]: Using fuzzy logic to drive optimization algorithm

If one examines optimization algorithms one finds that the algorithms behave as closed-loop
control algorithms. Rao seeks to use the same benefits of fuzzy logic to build non-linear
optimizers, in this case the SLP algorithm,

12. Reference [32]: Probabilistic vs. fuzzy set methods for designing under uncertainty

The basic hypothesis is that the design data is not well known and therefore we do not have
perfect “assurance” in the use of probabilistic methods. The desire is to have a conservative
estimate of the output reliability. The authors state that “if there is sufficient information to
build accurate probabilistic models of uncertainties, probabilistic methods are better than
fuzzy set methods.” They go on to assert that fuzzy set methods are better “if little
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information is available.” The authors use the terms “fuzzy set methods” and “possibility-
based methods interchangeably.”

The authors draw several observations and comparisons of fuzzy set and probabilistic
theories for large parallel and series systems with crisp failure scenarios. They draw two
conclusions based on these observations. In the first, “a fuzzy set method is likely to
underestimate the chance of failure of a system with a large number of independent failure
modes. On the other hand, it can be too conservative in systems for which the failure region is
small compared to the range of uncertain variables.” They liken the first to the case of having
a lot of information on independent failure modes where probabilistic methods are favored.
The second is likened to the case of having limited information on the distributions of the
independent failure modes. They then draw the next conclusion that “it is easier to determine
the most conservative fuzzy set model than it is to determine the most conservative
probabilistic model that is consistent with given information about a problem.”

Frankly, I find the logic to this discussion pretty shaky. For example, while I agree that it is
easier to define the most conservative possibilistic model, by their own statement it is clear
that this result may not be more conservative than a probabilistic model of the system! They
seem to be hanging the justification of the fuzzy set model solely on the non-rigorous
contention of “lacking data.” Further, the approach they use is tied to optimizing a design
using probabilistic or possibilistic input. They contend that the first optimal design may be
non-conservative — which it certainly could be if optimized to a required safety level and the
distributions are not absolutely correct.

The authors “define” uncertainty in the distributions in a soft way by testing the sensitivity of
the result to changes in the assumed distribution parameters. They further state, “probabilistic
design ... cannot estimate the sensitivities of the probability of failure with respect to the
design variables.” This is patently wrong. The simulations used by the authors in their
demonstrations makes use of a MC loop outside the reliability loop. This is the same way
others have modeled assurance intervals [33].

The results of their simulations show that both methods can give unsafe estimates. On
average, they get more conservative results for the simulations using designs optimized to
fuzzy set models. However, in neither case do they get any level of assurance nor do they tie
the results to the most important variable controlling assurance.

13. Reference [34]: Convex modeling,

This is a very short note and acts now as a place-holder. The contention is that interval
arithmetic is a form of convex modeling.

14. Reference [35]: Interval arithmetic.

The idea for interval math arose out of error analysis. “Error analyses of large scientific,
engineering, and commercial algorithms are sufficiently complex and labor intensive that
they are often not conducted. The result is that machine computing with floating-point
arithmetic is not tightly linked to mathematics, science, commerce or engineering,”

The interval paradigm is said to have the following characteristics that are considered to be
valuable. '

o Fallible data can be represented using intervals

e Any arithmetic computation can be performed using interval arithmetic to obtain
guaranteed bounds on the set of all possible results.

e Interval arithmetic can be used to provide bounds on errors from all sources...
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e A valuable link is http://cs.utep.edu/interval-comp/main.html. The interval arithmetic
journal is called Reliable Computing, an International Journal devoted to reliable
mathematical computations based on finite representations and guaranteed accuracy;
since 1997, published by Kluwer Academic Publishers.

o There is also a Journal of Convex Analysis (JCA); intervals are special case of
convex bodies (compact convex sets); there is a strong interrelation between interval
analysis and convex analysis.

e Set-Valued Analysis; interval analyis is an important particular case of set-valued
analysis.

e Bulletin of ACM SIGSAM (Special Interest Group on Symbolic and Alegbraic
Manipulations)

e A Special Issue of "Fuzzy Sets and Systems": Interfaces Between Fuzzy Sets and
Interval Analysis

o Special Issue of "Journal of Symbolic Computations"

e International Journal of Uncertainty, Fuzziness, and Knowledge-Based Reasoning
(IJUFKS). This journal: '

o regularly publishes a special section with abstracts of recent papers on
applications of interval methods in knowledge representation, and

o published a special issue on interval methods in representing and processing
uncertainty.

The following quote is taken from the “Special Issue ...~ cited above. “Fuzzy set theory when
restricted to sets of real numbers can be approached via intervals and interval analysis. The
intimate relationship between interval analysis and fuzzy set theory is especially apparent in
fuzzy arithmetic, fuzzy optimization and some areas of fuzzy mathematical analysis. A
unimodal fuzzy membership function can be formed from a continuum of intervals
corresponding to alpha-levels or a continuum of disconnected intervals for multi-modal fuzzy
membership functions. Intervals are one type of fuzzy set possessing a rectangular
membership function. This being the case, the issues and mathematical analysis associated
with fuzzy set theory and interval analysis are mutually relevant.”

It should be noted that the latest version of the Sun Microsystems Fortran compiler includes
interval variables.

15. Reference [36]: Interval arithmetic.

The article gives a short introduction to interval analysis and its possible applications. It also
gives an overview of existing programming languages for interval arithmetic. The authors
state, “the XSC (extended scientific computation) library provides powerful tools necessary
for achieving high accuracy and reliability. It provides a large number of predefined
numerical data types and operations to deal with uncertain data.”

16. Reference [37]: Interval arithmetic (IA) for floating-point computations.

“Interval analysis concerns the discovery of interval algorithms to produce bounds on the
accuracy of numerical results that are guaranteed to be both valid and sharp.” The author
states that 1A has been used to develop entirely new algorithms to solve fundamental
problems that appear to have no other solution. Principal among these are: solving nonlinear
systems of equations; and nonlinear global optimization (both constrained and
unconstrained).” [38]
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While interval analysis has a reduced computational speed, the author says that the
algorithms are very susceptible to parallel computing.

17. Reference [39]: Artificial neural networks

The paper is concerned with the solution of ill-posed problems using neural nets to model
experimental systems. Size is a big issue as well as noise in the experimental data. “The
increased interest in these models is motivated mainly by their enormous potential for the
parallel data processing of multidimensional problems...” The approach taken herein for the
network is a feedforward multilayer neural network with nonlinear processing elements in the
network hidden and output layers. A backpropagation supervised learning algorithm is used
to determine the network’s connection weights and neuron biases. This is supposed to be
robust and accurate in dealing with noise. The problem is that the number of learning sets
“increases sharply with the number of cells in the computation grid.” A method like
simulated annealing is used to determine the weights.

18. Reference [40]: Integration of reliability and testing

The approach here is probabilistic design that accounts for uncertainties in the analytical
model and in the distributions used for the physical variables. Integration of modeling and
testing is seen as the way to define a “confidence” interval — or what we are not trying to call
an “assurance interval.” Unfortunately, here the authors are using statistical confidences
based on the amount of testing. Physical uncertainty, model uncertainty, and statistic
parameter uncertainties are included. A Bayesian methodology is used for updating with the
acquisition of failure test data. Both reliability and assurance interval updates are derived.

19. Reference [41]: Data mining and neural networks

This is an overview of some strategies used for data mining in five main types of analyses:
classification, prediction, clustering, association and sequence analyses. Classification,
prediction, and clustering are closely related while association and sequencing are related.
Each has different methods for different situations including Bayesian modeling, self-
organizing maps, decision trees, multivariate linear regression, neural nets, and genetic
algorithms.

20. Reference [42]: Accurate tail probability prediction

The paper presents an efficient method for estimating tails as used in Bayesian networks
when very large confidence intervals are required as in reliability or risk assessment. A
comparison is made to a fast probability method, which the authors state is the only
competing method.

21. Reference [43]: Genetic algorithm search

The main point made in this paper is that with the use of a GA search with probabilistic
transition rules such that local minima are avoided. GA works directly with the objective
function and not with derivatives of it. The authors do point out the enormous computational
power required to use GAs, a problem only intensified for large systems.

22. Reference [44]: Combined use of neural networks and response surfaces for airfoil design

The paper reports on the aerodynamic design of an airfoil using multiple simple response
surfaces and neural networks to obtain the “advantages of both.” The authors begin with a
review of the growing literature reporting uses of neural nets for various aerodynamic design
and modeling applications. A principal concept behind some of the important work'is to
represent the design space using a neural network. This can be seen as a “training derived”
response surface in design space. Such response surfaces are seen by the various authors as
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having great utility in multidisciplinary design optimization (MDO), but it is also obvious
such surfaces may have utility in reliability-based design.

The authors state “because most design problems in aerodynamics involve a multitude of
parameters and datasets that often lack structure, neural nets provide a level of flexibility not
attainable by other methods.” They also state that design rules can be incorporated along with
high fidelity CFD solutions. A feed-forward, gradient-based learning algorithm is used along
with perturbation data about the starting design point to train the neural network.

In the current paper, the authors build a “parameter-based partitioning of the design space”
using neural nets to link variables of interest to key design parameters and simple
polynomials for the remainder of the design parameters. This approach significantly reduces
the factorial design space problem, according to the authors. There is no mention of a more
efficient DOE approach.

The authors also address the problem of a final design that is a large distance from the initial
design point. They do this by constructing a series of response surfaces in the design space.
The neural net advantage would appear to be in providing an efficient means for solving the
inverse problem of a response surface definition (as opposed to a matrix inversion requiring a
square system) for large data sets. Their methodology would also appear to provide weights
that are physically based so that the response surface can be linked directly to the design
variables for the reliability problems.

23. Reference [45]: Feature saliency in neural networks

The authors develop a formal means for assessing the importance of design features in trained
neural nets in terms both of the physical sensitivity and the error sensitivities. It would be
interesting to contrast this with the DOE and ANOVA methods.

24. Reference [46]: Bayesian network in a reliability problem

In the words of the authors “A Bayesian network is a directed acyclic graph in which nodes
represent random variables and links represent direct probabilistic influences. The variables
depicted in the BN represent key parameters characterizing the system being modeled.” The
network links define conditional probability relations between causes and effects based on the
network topology. The total network then represents the system reliability in a direct,
physical manner. The topology of the BN is constructed using intermediate variables so that
the conditional probabilities are kept simple, using only two parent nodes for each child node.

As in standard reliability modeling, the number of independent variables is kept small by
neglecting those with small likelihoods. The BN provides an easy mechanism to perform
“what-if” analyses on the system. Conditional sensitivities are obtained. The what-if analysis
can involve changing the prior distributions to see the effect of individual element changes on
the posterior distribution.

The paper gives an example for a power system and shows that the constructed BN gives the
same answer as “other methods” which I take to be a simulation based method. However, the
authors state that the ability to have a direct computation of the posterior distribution is
unique to the BN method. BNs also provide a direct evaluation of conditional probabilities.
Commercial software was used to propagate the conditional distributions through to the top
event.

25. Reference [47]: Globally convergent optimization with neural nets

The authors have devised a particular way of constructing NNs such that the constructed net
is guaranteed to be globally convergent to solutions of problems with bounded or unbounded
solution sets. The authors review the literature on the use of NNs for gradient and non-
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gradient optimization algorithms that are widely used. The computational advantage to NNs
is their inherent parallel structure. The proposed algorithm includes all proposed gradient and
non-gradient methods as special cases.

Unfortunately, the authors make the statement that the derived NN is NOT unique for the
same optimization problem. How then have we found a global optimal design? Apparently
we have not done so. All that is assured is that the algorithm is convergent to A solution, not
the solution. There does not appear to be a special capability here for use in reliability
problems.

26. Reference [48]: Conceptual design using genetic algorithm for trade selection

The principal hypothesis behind the paper is that preliminary design for complex systems is
often focused on feasibility rather than optimality, given the problem size and methods used.
This certainly corresponds to my own design experience on the PW2037 engine where the
preliminary design did not consider the downstream impact of early decisions on non-
optimality at the sub-system level. As a result, the high-pressure turbine was very non-
optimal, but it is flying today. To resolve the problem from the authors” perspective, they
address the issue of generating a wide range of alternatives at the conceptual design step.

The focus in this paper is on combinatorial design where many discrete configurations are to
be considered. Classical, continuous variable methods do not work for such design
optimization problems. The general field espoused in this article is that of meta-heuristics and
includes genetic algorithms, neural nets, simulated annealing, tabu search, and hybrids of
these. Genetic algorithms work with a population of possible designs rather than evaluating
an ordered sequence of designs and are therefore highly parallel in structure.

The key element in this paper is the use of a spreadsheet environment to represent each of the
subsystems as performance. models. The GA then is able to select from the multiple design
concepts by accessing the spreadsheet.

My question is whether or not one can be effective for reliability-based design using a GA
and a system integration model.

27. Reference [49]: Optimizing to fuzzy, possibilistic constraints

Instead of usual reliability-based optimization where the reliability constraints are crisp, this
application is one in which the constraints are treated as possibilistic ranges. Is there an
application for us?

28. Reference [S50]: Nonstandard methods for optimization

This paper gives a reasoned discussion of the limits of standard, gradient-based methods vs.
the non-traditional methods such as simulated annealing, genetic algorithms, Tabu search,
and rule-based expert systems. For the many variants of random methods, the author says
“the computational requirements associated with the use of these methods in problems with
increasing dimensionality continues to be excessive, necessitating their use in conjunction
with function approximations. The author reviews the combination of algorithmic and rule-
based system used by iSIGHT (Engineous Software).

29. Reference [51]: Exploring large design spaces

A critical element in the ISE picture for the future is the intrinsic element of large scale
design problems. This paper reports on an innovative and certainly non-traditional method for
exploring these large design spaces. The goal is not optimization, but exploration of multiple
configurations (non-continuous design space) with some hope that good designs will not be
overlooked. A key question to me is whether or not and/or how to bring reliability into this
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process. Traditional design optimization is performed in the design parameter space. In his
case all design variants are continuously coupled. Conceptual design may include both
parameter space design and configuration changes through analogy brainstorming. Such a
design process is discontinuous.

Furthermore, the authors state “hill climbing [traditional optimization] techniques, by
requiring that a single evaluation function be defined, preclude explicit, local reasoning about
tradeoffs among multiple performance criteria. The essential element of the approach is the
use of a device library with characteristics for each device, a set of domain critics that assess
the devices as they are selected, a design-seeker algorithm, and constraints. The library has
extensive performance modeling, the critics are expert systems, and the seeker is a high level
filtering process. Much of the paper is concerned with the filtering algorithm but all elements
are addressed and demonstrated on an example conceptual design study.

It would appear that a “telescoping” design simulation method is required to assure the
systems interfaces of the elements taken from the device library as well as the physical
plausibility of the devices. Reliability attributes need to be developed and linked through this
process.

30. Reference [52]: Review of computational intelligence

The article is the editorial overview of a special edition and touches on fuzzy, neural, and
evolutionary computation, and on hybrid computational intelligence systems that combine
some of these. Useful set of references is provided.

31. Reference [53]: Integrated design systems
32. Reference [54]: More integrated design systems

These two closely couple reports concern the effort at GE to develop a highly integrated
design system for gas turbine engine design. The basis of that system is what they call the
Intelligent Master Model (IMM) environment and it supports highly concurrent engine
design. Optimality, robustness, and quality are key objectives for the design environment
attributes.

Elements in IMM include the following:
e CAD systems based on features
¢ High- and low-fidelity analysis modules
e Multidisciplinary design optimization (MDO)
¢ Robust design
e Reliability prediction

The IMM is “a fusion of knowledge-based engineering with top-down product control,
conventional master modeling, and the linked product model environment.” “The IMM can
contain part dependencies, geometric and non-geometric attributes, manufacturing
producibility, and cost constraints, as well as access to external databases, and be integrated
with proprietary codes, through the linked model environment.”

The Master Model (MM), at the lowest geometric level, consists of basic features used in
solid modeling — holes, fillets, etc. that can be extruded and combined with the usual Boolean
operations. The software is highly modular with interoperable tools with data-wrappers
providing interfaces. Knowledge-based engineering provides the ability to define, develop
and use design rules at any level.
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The system supports both the inclusion of quality metrics derived from the GE six-sigma
effort as well as probabilistic modeling using Monte Carlo, response surfaces from design of
experiments (DOE), and fast probability integration. Robustness seeks to reduce the
sensitivity of the design to uncontrolled variables, in a Tuguchi-like sense.

A highly developed part of the environment is the geometric modeling using “feature-based”
design tools. The features can then be linked according to rules and design practices captured
in simple spreadsheet models. The system integrates CFD, heat transfer, and structural
modeling modules.

The written material demonstrates a close affinity with the goals set for the ISE. Non-
traditional and non-deterministic elements are significant parts of the developing product.

33. Reference [55]: Possibilistic reliability

The authors have created an algorithm that derives from fuzzy logic but closely mimics
probabilistic reliability methods. By converting all variables into standard normal form and
treating possibilistic input with Gaussian participation functions, the authors are able to find a
most possible point by a simple and rapid algebraic operation. Cumulative possibility plots
and possibility density plots are derived.

The authors cite speed as a great advantage for their algorithm.
34. Reference [56]: Bayesian updates

The paper reviews the various Bayesian approaches that might be used in structural reliability
analysis when performing quantitative risk assessments. It is a reasonable review of Bayesian
methodology. They conclude that “it is often difficult to use the classical Bayesian approach
in decision-making as the resulting uncertainty intervals are so large.” However, they further
say that “if the fully Bayesian approach is adopted, the output results are expressing the
analysis group’s total uncertainty related to observable quantities, and it possible to present a
clear message.” The fully Bayesian approach “will provide the probabilities of the uncertain
events that are relevant in the specific situation of decision-making. The probabilities are total
in the sense that they incorporate all types of uncertainty.”

35. Reference [57]: War and Chaos

This article was read to gain insight into the area of complexity. In the words of this author
complexity theory “allows scientists to make mathematical models of events in which the
inputs do not necessarily have a direct, or linear, relation to the outcome.” He further equates
unpredictability with chaos. The author, a physicist, hoped to use complexity theory to
predict the point of instability — in the social context of chaos leading to war.

“Complexity may be defined as the set of deterministic theories that do not necessarily lead to
long-term prediction. Such theories are still mathematical and deterministic. ... but the
structure of the mathematics is such that we cannot obtain the future values implied by the
theory just as a result of a compact, well-defined manipulation of the present values. The
calculation requires the acrual computational stepping through all the intermediate values of
the system variables between ‘now’ and ‘then.” Complexity theories thus depend on the
complete ‘path’ taken by the system between its beginning and end points. As such, they are
sensitive to all perturbations that may have an impact on the system as it evolves in time.”

To support this, I further quote from the author. The example he is citing concerns planetary
motions. The universe might be thought of as having a complicated structure. “The solution
of the differential equations [of planetary motion] in closed form gives the structural variables
— position and velocity — at any time, in terms of well-determined trigonometric functions.
Plug in the time you want, and out come the desired structural variables. There is no need to
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compute them at intermediate times. Modify the initial conditions slightly and the output
variables come out slightly differently. Thus the entire future of the system, to any specified
accuracy, is completely contained in, and obtainable from, the initial parameters and the
theory via finite explicitly specified numerical procedures. The closed continuous
mathematical form of the solutions to the theory’s equations means that output is
continuously related to input — there can be no surprises, no disorder and no complexity.”

36. Reference [58]: A web site on complexity theory

The author of this web site defines “Complexity is the property of a real world system that is
manifest in the inability of any one formalism being adequate to capture all its properties. It
requires that we find distinctly different ways of interacting with systems. Distinctly different
in the sense that when we make successful models, the formal systems needed to describe
each distinct aspect are NOT derivable from each other.”

37. Reference [59]: Gas turbine health monitoring, diagnosis, and prognostics

This PWA paper reports on a comprehensive system based on statistical inference, artificial
neural networks (ANNS), Bayesian updating, and expert systems. The system does not use
probabilistics to set ranges on variables but instead uses exponential averaging of engine data.
ANNSs are built on a sub-system basis to enforce physical behavior to the nodes and training
processes rather than the usual ANN condition where the nodal weights have no physical
interpretation. This approach aids in fault root-cause identification. “A Bayesian type [of]
statistical evidence approach is used to reflect the uncertainties in the rule based system.” The
knowledge based expert system provides the interpreter for making prognostic inferences
based on the information derived from the ANN.

38. Reference [60]: Advanced diagnostics and prognostics for risk assessment

The elements of the approach are “Statistical-based anomaly detection algorithms, fault
pattern recognition techniques and advanced probabilistic models for diagnosing structural,
performance and vibration related faults and degradation.” The prognostic modules use
probabilistic, physics-based models of system behavior to get the expected range of failure
lives for risk-based decisions. The probabilistic physics-based models can also be used in
making probabilistic anomaly decisions. Fuzzy logic is used to perform real-time sensor
validity analysis.

4.5 Application Projects for NDM sponsored at Vanderbilt University by the
NASA/MSFC (cf. Prof. S. Mahadevan)

The on-going probabilistic methods research at Vanderbilt University is sponsored by NASA
Marshall Space Flight Center through two GSRP (Graduate Student Research Program)
fellowships (Joshua Hall and Andrew Stoebner). The two GSRP fellowships fit into the overall
objective of the MSFC Structural Dynamics Laboratory (technical lead: Dr. John Townsend) to
familiarize its engineers with probabilistic analysis and design methods and to develop
demonstration problems of interest to MSFC engineers. Three tasks accomplished under this
funding are described below. In addition to these three tasks, MSFC organized two three-day
short courses on probabilistic methods, taught by Prof. Mahadevan. The first course covered basic
probabilistic techniques -- first-order reliability methods, Monte Carlo simulation, response
surface methods, and system reliability analysis. The second course covered advanced techniques
in probabilistic finite element analysis, space and time variability problems, advanced Monte
Carlo methods, and detailed demonstration problems. The three tasks are as follows:

1. Probabilistic Response Surface Analysis of Solid Rocket Booster Aft-Skirt
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NASA engineers at Marshall Space Flight Center (MSFC) have applied probabilistic methods to
assess the reliability of the aft-skirt of the Solid Rocket Booster (SRB). The objective of the
response surface analysis in this task is to develop a closed form solution for the stresses in the
aft-skirt. This solution can then be used as a performance function for further component level
reliability analyses on the aft-skirt, or as a simplified model of the skirt to be used in a system
level analysis of the entire Space Shuttle. The response surface model is validated with the
previous solutions obtained by the engineers at MSFC.

The aft-skirt structure is the mechanism by which the SRB’s, and the rest of the Space Shuttle
assembly are attached to the Mobile Launch Platform (MLP). The skirt is constructed of 2219-
T87 aluminum. Each skirt has four hold-down post forgings, which are butt-welded onto the skin
panels. The failure of the skirt is known to occur at a point at the bottom of the weld region
between the forged post and the skin of the skirt. The primary contributor to the failure of the
skirt is the bending load caused by the Space Shuttle Main Engines (SSME) at start-up. Just prior
to launch the SSME’s are test fired. This thrust load is eccentric with respect to the aft-skirt, and
thus induces a forward sway of the Space Shuttle Assembly. The maximum load to the skirt
occurs at the maximum point of deflection due to the SSME thrust.

The engineers at MSFC used a NASTRAN finite element model of the aft-skirt assembly to
calculate the state of stress at the critical weld region. An improved design using brackets was
also investigated. A large amount of strain gauge data was gathered from the shuttle flights
following the Challenger accident. This data was used to characterize the statistics of the loading
variables to be used in the probabilistic analysis. The NESSUS/NASTRAN interface was utilized
to perform the probabilistic analysis. The results of the prior analyses are compared with those
obtained using the proposed response surface methodology, and it is shown that the response
surface method provides excellent savings in computational effort for this problem.

2. Probabilistic Analysis of Solar Concentrator

This task presents the consideration of uncertainties and the application of probabilistic
computational methods to the dynamic analysis of polyimide inflatable cylinders used in solar
thermal propulsion. The basic concept behind solar thermal propulsion is to utilize solar energy as
a means of heating a propellant to provide thrust at increased specific impulse. Thrust is produced
by expanding the heated propellant through a nozzle. No combustion occurs, and the thrust level
is low. For this reason, solar thermal propulsion systems are mainly applicable for orbital transfer
vehicles.

A prototype inflatable solar concentrator consists of a torus/lens assembly supported by three
struts. This concentrator is constructed of Kapton polyimide film, with epoxy as the primary
adhesive for joints. The Fresnel lens of such a concentrator assembly would focus sunlight into a
collector near the fixed ends of the struts. Solar energy stored in the collector could be utilized to
heat the propellant.

The inflatable cylindrical struts are critical components of this assembly. Therefore, their
dynamic and static behavior has been investigated both experimentally and analytically by
engineers at NASA Marshall Space Flight Center. The polyimide film material used for
construction of the struts is highly nonlinear. Its elastic modulus varies as a function of frequency,
temperature, and the level of excitation. It has been already observed that the elastic modulus
decreases with increasing frequency, in free-free as well as cantilevered configurations.

The purpose of this task is to apply probabilistic computational methods to this problem. There
are several types of uncertainties in these structures, such as material properties, boundary
conditions, loading conditions, ambient temperature, damping etc. This task develops statistical
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information about these uncertain variables using the test data already compiled at Marshall
Space Flight Center, and demonstrates the use of this information in the dynamic analysis of the
inflatable struts. Two types of NASTRAN finite element models are used, with (1) beam
elements that incorporate the frequency dependent nature of the elastic modulus, and (2) shell
elements. Two types of probabilistic analyses are performed. The first one is to compute the
statistics of the natural frequencies and the load response. The second one is to compute the
reliability of the structure under various performance criteria such as strengh, stability, stiffness
etc.

3. Reliability-Based Robust Design

This task combines two major concepts of reliability-based design and robust design. Reliability-
based design attempts to maximize the reliability of a system. Robust design tries to minimize
the performance variation when the operating conditions change. An ideal design will be robust
and reliable. The method proposed in this study investigates reliability design and robust design
methods and combines both types of techniques into a single objective function. In this study,
robustness is defined as variation in the reliability estimate. This technique will allow the
designer to satisfy reliability and robustness requirements with one function, rather than looking
at them separately. Also, it is shown how to measure each factor’s influence on the reliability and
robustness of the system.

Three types of design are used to demonstrate the proposed method. Parameter design uses the
mean values of the random variables in the design. Tolerance design uses the standard deviations
of the variables in the design. Combined design uses both means and standard deviations in the
design. These three designs are applied to four demonstration problems: truss design, automotive
leaf spring design, weld design, and throttle design.

4.6 Original Statement of Work

Purpose of the Study: To prepare a report to NASA on Non-Deterministic (i.e., non-
traditional) Methods for Design. The report will include a review of the methods in terms of
basic methodology, an identification of who is doing the work or making applications of the
methodology, and how the methodology is being used. The report will also identify
application opportunities for NDM in advanced aerospace applications and will define future
development needs. The report is to include an executive summary, review of methodologies,
applications, future needs and opportunities, bibliography, and an Appendix with site visit
interview summaries.

Proposed Statement of Work: The proposed effort will begin by developing a list of sites
and/or persons that spans a wide range of the leading work and topics. An initial proposed list
is appended to this proposed statement of work. The PI will then contact each site or person
to define for them the nature of the NASA-directed study. The PI will obtain written versions
of the work being pursued in terms of papers and reports for early review of the methodology
and/or applications. Following this review the PI will call each selected site or person to
arrange on-site visit with key investigators and/or application engineers. The PI will develop
interview notes that summarize the work being done by the methodology developers and
application engineers.

The written material and the interviews will form the basis for a written final report to NASA.
The work will begin as soon as authorized. The proposed schedule for the interviews and the
final report is as follows:

Project initiation: Review final proposed list of contacts and visits.
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Phase I Make contacts and solicit participation in the study; request

relevant written material. [2 weeks]

Phase II: Review written material and develop regional travel plans; notify

NASA Program Manager of each planned trip and proposed
contacts. [Estimated schedule based on 2 weeks to prepare for
and complete each regional visit: 10 weeks]

Phase III: Prepare final report draft for NASA approval [2 weeks]

Initial proposed regional travel: Potential travel sites that are initially proposed are given
below. The proposed effort is to make five multisite visits to maximize the information return
per trip. The PI will arrange the schedule for each multisite visit to maximize the number of
specific/individual company/tab/university sites per trip. The proposed travel also includes up
to two trips to Cleveland to add to the knowledge base for the report and to present an oral
review of the report. An overview of the study is to be used as the basis for a keynote lecture
to be given to the AIAA SDM conference in Atlanta GA during the first week in April.

Visit to the Northeast via NYC:

GE Corporate R&D in Schenectady NY: fuzzy control, uncertainty modeling and
analysis.

Impact-Technology (Dr. Mike Roemer) in Rochester NY; fuzzy neural nets for
system health monitoring and prognostication.

STI (Dr. Dan Ghiocel) in Rochester NY; probabilistic fields and response surface
technology.

UTRC in East Hartford CT (Dr. Wally Orisamolu): fuzzy systems, applications of
reliability-based design to non-aerospace systems.

Cornell in Ithaca NY (Prof. Grigoriu): advanced probabilistic methods.

Visit to central US via Cincinnati:

UDRI in Dayton OH (Drs. Pete Hovey and Al Berens); random processes;,
probabilistics for applied NDE.

Wright State University in Dayton (Dr. Ramana Grandhi); fast probability
methods.

AFRL/PR (Ted Fecke); AF applications and development plans for non-
deterministic design.

GEAC, Cincinnati OH (Drs. Paul Roth and Dennis Corbly): probabilistic design
methods for gas turbine engines.

VPISU, Blacksburg VA (Prof. E. Nikolaidis): fuzzy sets; potentialistic methods.
ANSYS, Pittsburgh PA (Dr. Stefan Reh): non-deterministic design via CAE.

Visit to Florida:
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e  PWA (Eric Fox and Chuck Annis): probabilistic design methods for gas turbine
and rocket engines.

e U. So. Florida (Prof. S. Rao): fuzzy sets, interval math.

¢ Florida Atlantic University (Prof. 1. Elishakoff): Convex methods.
Visit to L.os Angeles:

e Unipass Inc. in LA (Dr. M. Khalessi): probabilistic design technology

e Boeing/Rocketdyne in Canoga Park (Drs. S. Mehta, and Rajagopal, and others):
non-deterministic design methodology for engineering systems; DARPA program
review

¢ AlphaStar Inc.: Probabilistic design methods for advanced composites

e UC Berkeley (Prof. Der Kiureghian); advanced probabilistic methods in CE
Visits to Southwest and South-central:

e Honeywell Systems (Dr. Michael Gorelik): applications of probabilistic methods in
certified gas turbine engine design, advanced methods.

e Sandia Natl. Lab in Albuquerque: advanced non-deterministic design methods.

e Southwest Research Institute (Dr. Justin Wu): advanced probabilistic design
methods and applications.

If a particular site visit is not possible, the PI will follow up with extended phone calls to
answer specific technology questions for the report.
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