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ABSTRACT 
Under microgravity conditions, the shear lift force 
acting on bubbles, droplets or solid particles in 
multiphase flows becomes important because under 
normal gravity, this hydrodynamic force is masked 
by buoyancy. This force plays an important role in 
furnishing the detachment process of bubbles in a 
setting where a bubble suspension is needed in 
microgravity. In this work, measurements of the 
shear lift force acting on a bubble in channel flow 
are performed. The shear lift force is deduced from 
the bubble kinematics using scaling and then 
compared with predictions from models in 
literature that address different asymptotic and 
numerical solutions. Basic trajectory calculations 
are then performed and the results are compared 
with experimental data of position of the bubble in 
the channel. A direct comparison of the lateral 
velocity of the bubbles is also made with the lateral 
velocity prediction from Vasseur and Cox (1976) 
whose work addressed the shear lift on a sphere in 
different two-dimensional shear flows including 
Poiseuille flow.  
 

INTRODUCTION AND  
LITERATURE REVIEW 

Understanding of the shear lift force acting on a 
bubble, droplet or solid sphere is crucial to 
understanding the behavior of bubbly flows; 
bubble segregation in bubble suspensions; droplet 
coalescence and segregation; and particle 
sedimentation. Lateral motion of bubbles/particles 
due to shear flow could result in bubble 
segregation, which in turn results in impacts on the 
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efficiency of heat and mass transfer processes such 
as liquid-gas phase separation and phase contacting 
in bioreactors. An understanding of the shear lift 
force results in a more accurate closure law  
to incorporate in two-phase flow modeling as 
applicable to nuclear space power. 
 
Literature Review 
Several investigators have addressed the shear lift 
force analytically under different flow regimes. 
Rubinow and Keller (1961) addressed the problem 
of a sphere that translates and rotates in a still fluid 
and solved for the flow field using an asymptotic 
matching techniques of the near and far (inner and 
outer) regions. They calculated the shear lift to be 
dependent on the sphere radius, the liquid density 
and the translation and angular velocities,  
i.e. FL = πa3ρΩ×V(1 + O(Rep)). Saffman (1965) 
calculated the shear lift force acting on a sphere in 
a simple shear flow using asymptotic matching. 
His assumptions were that the Reynolds numbers 
based on the liquid velocity, the shear rate, and the 
angular velocity were small, and the shear rates 
were high. McLaughlin (1991, 1993) revisited the 
calculation by Saffman and relaxed the condition 
on the high shear rates. Vasseur and Cox (1976) 
solved the inner region problem by assuming that 
the wall falls within the influence of the inner 
region, and by that the sphere diameter is very 
small such that the disturbance by the flow can be 
taken as caused by a point force. They calculated 
the migration velocity due to shear lift for a 
neutrally buoyant and non-buoyant sphere in a still 
liquid, simple shear and Poiseuille like flow. 
Leighton and Acrivos (1985) calculated the shear 
lift on a particle tangent to the wall in a shear flow. 
The aforementioned contributions were for a low 
Reynolds number that is based on the characteristic 
velocity and particle diameter. For flows of high 
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Reynolds numbers, Auton (1987) calculated the 
shear lift by solving the inviscid vorticity problem 
with low shear rate and calculating the longitudinal 
component of velocity perturbation. Using 
Bernouilli’s equation, the pressure distribution and 
thereafter the shear lift were calculated. For 
intermediate Reynolds numbers, two contributions 
are cited. Dandy and Dwyer, (1990) performed a  
3-D numerical calculation for steady linear shear 
flow past a heated spherical particle over a wide 
range of Re, 0.1 < Re < 100 and dimensionless 
shear rate Sr, 0.005 < Sr < 0.4. They found that the 
lift coefficient CL~Re–1/2 at low Re and constant CL 
over a wide range of Re at a fixed Sr. Lift 
contribution from pressure and viscous forces were 
calculated. Legendre and Magnaudet (1998) 
performed a 3-D numerical calculation for a bubble 
fixed in a simple shear flow field. They solved the 
full Navier-Stokes and continuity equations for  
0.1 < Re < 500 and Sr < 1. They studied the 
tangential velocity on the bubble surface, and the 
effect of Re on streamwise vorticity. They found 
that at low Re, CL depended on Sr and Re, and for 
moderate to high Re such a dependence was found 
to be very weak.  
 
Investigators measured the shear lift force on 
spheres and bubbles as well under normal gravity 
conditions. Kariyasaki (1987) measured the shear 
lift on bubbles, spheres and droplets in a simple 
shear flow and compared his results with 
predictions from Rubinow and Keller’s (R-B) and 
Saffman’s models. A shear lift expression was also 
derived in his work that reflected the significant 
deformation of bubble shape in the shear flow. 
With this shear model at hand, Kariyasaki 
calculated the bubble trajectories and compared 
with his experimental data. Cherukat and 
McLaughlin (1990) studied the lateral migration of 
rigid spheres sedimenting near a large flat wall in a 
quiescent Newtonian fluid for 0.1 < Re < 10. 
Comparison of experimental results with prediction 
showed that the expression derived by Vasseur and 
Cox (1977) predicted fairly well the migration 
velocity up to Re ~ 3. Cherukat, McLaughlin, and 
Graham (1994) studied the shear induced inertial 
migration of rigid spheres experimentally in a 
simple shear flow established by a shear flow 
apparatus. They measured the migration velocity, 
which compared well with Saffman’s and 
McLaughlin’s predictions for 0.1 < Re < 2.5. 
Takemura et al. (2002) determined experimentally 
the two components of drag and lift acting on a 
clean almost spherical bubble rising near a plane 
vertical wall in a quiescent liquid up to Re ~ 40. 
They found the existence of two regimes according 

to the dimensionless separation L* defined as the 
ratio between the distance from the bubble center 
to the wall d and the viscous length ν/U, i.e. L* = 
d/(ν/U). For L* ~ O(1) or more and for Re < 1, 
results were found to be in good agreement with an 
analytical solution obtained in the Oseen 
approximation by adapting the calculation of 
Vasseur and Cox (1977) to the case of an inviscid 
bubble. When L*~o(1), measurements have shown 
that the bubble deformation was significant when 
the viscosity of the surrounding liquid is large 
enough. This deformation may be attributed to the 
fact that higher order effects, not taken into 
consideration in the aforementioned calculation 
became important.  
 
The interest of this work lies in the measurement of 
the shear lift force based on the bubble kinematics 
under microgravity conditions. The microgravity 
environment eliminates the buoyancy force and 
thereby the possibility of bubble deformation, 
which if present, introduces another source for lift 
that is associated with the bubble shape. This 
presents a technical difficulty in separating the two 
sources of lift.  
 
Measurement of the shear lift force on a bubble of 
intermediate diameter range (2 to 5 mm) under 
normal gravity conditions and using bubble 
kinematics is rather difficult because of the 
inherent deformation experienced by the bubble. 
Generation of spherical bubbles (2 to 5 mm) under 
normal gravity is rather difficult. The range of 
bubble Reynolds number is governed under normal 
gravity by the bubble terminal velocity Ut~20 to  
30 cm/s. Therefore, the interest in making 
microgravity measurements of the shear lift force 
acting on a bubble in a shear flow motivated this 
study.  
 

ORIGIN OF SHEAR LIFT 
The shear lift force on a bubble is attributed as 
described by Legendre and Magnaudet (1998) to 
the secondary velocity field at the surface of the 
bubble. Vφ is a crucial quantity since the lift comes 
from the fact that the pressure and normal viscous 
stresses have a non-constant azimuthal distribution. 
Here Vφ, following a spherical coordinate system, 
is defined as Vφ (θ,φ) = V(r = R, θ,φ)•eφ lying in 
the plane θ = constant normal to the unperturbed 
flow. Since UL•eφ = 0 far away from the bubble, 
this Vφ component is a secondary velocity that does 
not directly result from the unperturbed flow. At 
low Reynolds numbers and due to the shear rate, 
Vθ(θ,φ = 0) [bubble top] > Vθ(θ,φ = π) [bubble 
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Figure 1. Set up of the shear lift force in a channel flow experiment. 

bottom]. The term ∂Vθ/∂φ is non-zero and the 
balance between the various terms induces a non-
zero value of Vφ and ∂P/∂φ, contrary to creeping 
flow where the terms balance properly such that 
the azimuthal component is zero. At high Re, Vφ is 
sought from the pressure field. Taking the 
divergence of the potential equation of motion,  
i.e., –1/ρ∇2P = ∇• (V•∇V), and since the r.h.s 
involves terms like Vθ(θ,φ) and ∂Vθ/∂φ, the 
pressure field is necessarily non-uniform along the 
azimuthal direction, i.e. the pressure gradient 
∂P/∂φ appears. Then Vθ results from the balance 
between the advective terms and the pressure 
gradient. 

NEED FOR LOW GRAVITY 
Measurement of the shear lift force on a bubble 
under normal gravity conditions presents several 
difficulties. First, the bubble motion is buoyancy 
driven, and thereby the bubble is constrained  
by the terminal velocity. Arguments related to 
counterbalancing the buoyancy force can be made; 
however, significant deformation of the bubble 
diameter is expected. Moreover, deformation can 
cause additional lift because the deformed bubble 
shape can resemble a hydrodynamic foil, and thus 
creates the additional lift. This makes the problem 
more difficult to analyze because the two lifting 
effects must be separated. The buoyancy force is 
dominant under normal gravity and masks the other 
hydrodynamic forces. Low gravity furnishes the 
proper environment for the other forces to 
reappear. 
 

EXPERIMENT DESCRIPTION 
The experiment consisted of establishing a shear 
flow in a channel, introducing the bubbles into the 
flow and dropping the test rig in a 2.2 s drop tower 
to furnish the microgravity environment. Each of 
these steps and the associated hardware will be 
briefly described in this section.  
 
The Flow Channel 
The flow channel (2×8×40 cm) was constructed 
from polycarbonate and fitted with a port for 
injection of air bubbles into the flow which was 
established by the Multiphase Flow Rig (MFR) 
water tank supply. The flow rate of water was 
measured using a flow meter. The flow was 
established for 10 to 40 seconds before the air flow 
was initiated. As bubbles were injected into the 
channel, the rig was released into the NASA GRC 
2.2 drop tower. Observation of the bubble growth 
and path as it is forming and after detachment was 
accomplished using a high-speed digital camera 
running at 500 frames/s. Several diameter injectors 
were utilized to enable bubble diameter variations. 
A backlighting approach was used in order to 
accomplish a high contrast in the high-speed 
imaging and, in turn, enable the analysis of the 
bubble motion and the measurement of its 
diameter. During the drop, the digital imaging data 
is stored into the camera memory and then 
downloaded after the drop. Figure 1 shows a 
schematic of the flow channel geometry and the 
experimental set up that was integrated into the 
MFR. 
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Experimental Parameters 
An air-water system was used in these 
experiments. Table 1 shows the range of 
experimental parameters that were varied in the 
low gravity experiments. 
 

Table 1. Summary of the experimental parameters  
varied in the low gravity experiment. 

Parameter [Unit] Range 
Injector DN [cm] 0.015 < DN < 0.158 cm 

Liquid Velocity UL 
[cm/s] 

5 < UL < 9 cm/s 

Gas Flow Rate Qg 
[cm3/s] 

0.1 < Qg < 0.4 cm3/s 

Bubble Diameter DB 
[cm] 

0.2 < DB < 0.7 cm 
 

Bubble ReB Prior to 
Detachment  
ReB = DBUL/ν 

170 < ReB < 650 

 
EXPERIMENTAL MEASUREMENTS  

AND UNCERTAINTIES 
For each drop, the flow velocity was at first 
obtained from the liquid flow rate. Using motion 
analysis software, the bubble diameter, position, 
velocity and acceleration were measured. The 
estimated uncertainties in these quantities were 
used in an error propagation analysis in order to 
determine the overall uncertainty in the shear lift 
force. Such an uncertainty was calculated to range 
between 15 to 29 % of the Shear lift force value, 
i.e. 0.15 < ∆FL/FL < 0.29. 
 

RESULTS 
Shear vs. Buoyancy Driven Lift 
Figure 2 qualitatively shows the difference 
between the shear (Figure 2(a)) and buoyancy 
(Figure 2(b)) driven lift acting on a bubble. The 
frame rate in these two figures is 500 frames/s. It is 
very clear from the series of images the relative 
magnitude of the lift on the bubble shape 
deformation. In the buoyancy driven lift, it can be 
seen that the bubble is significantly deformed 
whereas, under microgravity, the bubble retains its 
spherical shape under shear lift because this force 
is slight.  
 
Scaling 
In order to calculate the shear lift force from the 
kinematics of the bubble, a force scaling approach 
was used. As shown in Figure 3, from a simple 
force balance on the bubble after detachment and 
before it catches on to the moving fluid velocity, 
one obtains 
 
 ( )~L Dy g M L BF F C V yρ ρ ′′− +  (1) 

 
where FL is the shear lift force, FDy represents the 
drag, CM is the added mass coefficient, VB is the 
bubble volume, y″ is the acceleration in the y 
direction and ρg and ρL are the gas and liquid 
densities respectively. The drag force acting on the 
bubble was determined by 
 

 ( )
2

2 2 2 B
Dy L D L

D1
F C U x y y

2 4
ρ π′ ′ ′= − +  (2) 

 
 
 

 
(a) 
 

 
(b) 

Figure 2. (a). Shear Lift during the 2.2 s drop. Frames are separated by 80 ms and time moves  
from left to right. (b). Buoyant lift at the end on the drop. Frames are separated by 40 ms and  

time moves from left to right. 
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Figure 3. Coordinate system followed in the 
scaling and trajectory calculation. 

 
In Equation (2), the drag coefficient CD was 
derived from the work of Legendre and Magnaudet 
(1998) who performed a 3-D numerical calculation 
on the hydrodynamic force on a bubble with a free 
surface in a shear flow 
 

 D 0.6
B B

15.34 2.16
C

Re Re
= +  (3) 

 
Here ReB is the Reynolds number based on the 
bubble diameter. The bubble volume is calculated 
from the measured bubble diameter and the bubble 
acceleration estimated from the rate of change of 
the velocity with time. The motion analysis 
 

software provided the capability of velocity and 
acceleration measurements. The combination of the 
above three equations yields the shear lift force. 
Comparison of the experimentally and theoretically 
derived lift force is presented in Figure 4, which 
shows the calculated shear lift force from two 
models. The first is the Rubinow and Keller, R-K 
(1961), and the second is Legendre and 
Magnaudet, L-M (1999). The comparison shows 
that the agreement is better with the R-K model 
because the relative velocity is utilized in such a 
model. In the computation of the shear lift force 
based on the L-M calculation, the liquid velocity 
was used instead of the relative velocity. The L-M 
model is suited for stationary bubble in a shear 
flow. The bubbles that are under consideration in 
this study were moving with the fluid and the 
relative velocity of these bubbles with respect to 
the fluid is smaller than the fluid velocity. 
 
Trajectory Calculations 
Trajectory calculations were performed in order to 
compare with the trajectories followed by the 
bubble after detachment. The equations of motion 
for a bubble moving in a Poiseuille flow were 
solved for the x and y coordinates as a function of 
time. The equations of motion for a bubble based 
on the coordinate system in Figure 3, is given by 
 

 ( )
2

B g M L B 2

d S
F C V

dt
ρ ρ= +∑  (4) 

FL 

FDy 

y 

S 

Figure 4. Comparison of the measured and predicted shear lift force. Predictions were based on the 
Rubinow and Keller and Legendre and Magnaudet’s models. 
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In Equation (4), ∑FB represents the forces acting 
on the bubble and the vector S represents the 
position vector as shown in Figure 3. The x 
coordinate of Equation (4) results in 
 

 
( ) ( )( )

( )( )
4

D
yxyu

xyuC
2
1

xVC

2
B22

L

LDLBLMg

π

ρρρ

′+′−

×′−−=′′+  
(5) 

 
The y direction of Equation (4) results in 
 

 
( )

( )( ) L

2
B22

L

DLBLMg

F
4

D
yxyu

yC
2
1

yVC

+′+′−

×′−=′′+

π

ρρρ
 (6) 

 
In Equation (5) and (6), DB is the bubble diameter, 
x', y', x″, and y″ are the bubble velocity and 
acceleration in the x and y direction respectively. 
The initial condition for Equations (5) and (6) are 
 

 
( ) ( )
( ) ( ) 00

00

v0y,u0x

y0y,x0x

=′=′
==

 (7) 

 
The initial conditions were obtained experimentally 
and used in Equation (7). The liquid velocity 
profile was taken as 
 
  ( ) ( )2 2

L Lu y 3 2U 1 y b= −  (8) 

 
The shear rate of the profile in Equation (8) was 
calculated accordingly. UL in Equation (8) is the 
average flow velocity, which is obtained from the 
liquid flow rate and the channel cross sectional 
area. 
 
Figures 5, 6, and 7 show the results of the 
trajectory calculations. Figure 5 shows the 
comparison between the measured and calculated 
bubble trajectory using the Rubinow and Keller 
model for the shear lift force calculation. The 
Saffman and Legendre and Magnaudet’s models 
were used for the results presented in Figures 6 and 
7 respectively. Table 2 presents a summary of these 
derived models where the L-M model was derived 
from the numerical calculation performed by 
Legendre and Magnaudet (1998).  
 

Table 2. Summary of the shear lift models  
used in the trajectory calculation. 

Model Expression 
Rubinow-
Keller 

3
L L B

P

F R V ;
Re 1

πρ= Ω×
<<

 

Saffman 

( )

2
L L B

L L L

P

F 6.46 R

du dy u x ;

Re 1

ρ

ν

=

′−

<<

 

Legendre-
Magnaudet ( )

B

2 2
L L L r L B

High Re B
L

B

B

F 1 2 C U u x R ;

1 16 Re1
C ;

2 1 29 Re

5 Re 500

ρ π′= −

+ =   + 
< <

 

 
In Table 2, RB is the bubble radius, Ω is the particle 
angular velocity given by the flow vorticity or  
Ω = 1/2∇×u, V is the bubble relative velocity, ReB 
and ReP are the bubble and particle Reynolds 
numbers based on the liquid velocity and the 
bubble diameter, Ur is the magnitude of a relative 
velocity, Ur = [(uL – x')2 + y'2]1/2. The ReB in the CL 
equation is expressed as a function of time as well 
as the shear rate resulting from the velocity profile 
derivative. The agreement between experiment and 
trajectories predicted by the R-B and Saffman’s 
model is rather good for the y coordinate in 
contrary to the trajectory predicted by the L-M 
model. It is noted that the deviation from 
experiment occurs at later times in the trajectory 
predicted with the L-M shear lift. This is because 
the L-M model is based on a fixed bubble in the 
shear flow whereas the bubble is moving and the 
relative velocity of the bubble with respect to the 
fluid is less than what the model uses. Moreover, as 
the bubble lifts in the y direction, the shear rate 
changes, whereas the L-M model used for the 
calculation of the lift coefficient is independent of 
the shear rate in the range of Reynolds number 
shown in Table 2. The reason for the better 
agreement with the Saffman and R-B models is 
because the models are suited for low Reynolds 
numbers, which is the case in the real problem 
where the bubble quickly catches on the fluid and 
assumes the liquid velocity. In the L-M numerical 
computation, the bubble is assumed stationary with 
respect to the liquid. Therefore, such a model can 
be applied to the problem of measuring the shear 
lift on a bubble attached to the injection orifice 
where the full velocity of the fluid is considered.  
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It is worth mentioning that the asymptotic solutions 
and the L-M predictions were based on simple 
shear, whereas in his work we used Poseuille flow.  
 
The calculation of the low ReB shear lift 
coefficient, CL

Low Re was described in the numerical 
study performed by Legendre and Magnaudet 
(1998). For low ReB, their derived CL

Low Re was 
given as 
 

 
( )

BLow Re
L B2 3 22

6 2.255
C Re Sr

1 0.2π ε −
=

+
 (9) 

 
In Equation (9), Sr is the dimensionless shear rate 
given by Sr = DBγ/UL, and ε as ε = (Sr/ReB)1/2.  
 

For an arbitrary ReB where 0.1 < ReB < 500, they 
proposed the empirical correlation given by 
 

 ( ) ( )Re ReB B
2 2Low High

L L LC C C= +  (10) 

 
Adoption of this relation into this trajectory 
calculation results in Figure 8, which shows that 
the deviation from experimentally measured 
trajectory is eliminated. The discrepancy in the x 
coordinate of the bubble trajectory may be due to 
the uncertainty in knowing the liquid velocity. 
Measurement of the liquid velocity for various 
drops/runs using image analysis showed some 
discrepancy in the velocity as measured from the 
flow rate and from the software. More 
investigation of this issue is needed.  
 

 
 
 
 
 
 

 
 

Figure 5.  Predicted and experimentally measured bubble trajectory with a shear lift force  
based on Rubinow and Keller model.  x0 = 0.12, y0 = 0.43, u0 = 2.8, y0 = 2.0. 
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Figure 6.  Predicted and experimentally measured bubble trajectory with a shear lift force  
based on Saffman’s model.  x0 = 0.12, y0 = 0.43, u0 = 2.8, y0 = 2.0. 

 
 
 
 

 
 

Figure 7.  Predicted and experimentally measured bubble trajectory with a shear lift force  
based on Legendre and Magnaudet’s model.  x0 = 0.12, y0 = 0.43, u0 = 2.8, y0 = 2.0. 
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Figure 8.  Predicted and experimentally measured bubble trajectory with a shear lift force  
based on Legendre and Magnaudet’s model for the lift coefficient for any Reynolds number.   

x0 = 0.12, y0 = 0.43, u0 = 2.8, y0 = 2.0. 
 
 
 
 
Comparison with Vasseur and Cox Asymptotic 
Solution 
Cox and Brenner (1968) have obtained a first order 
expansion in Rep = aV/ν of the Navier-Stokes and 
the continuity equations subject to different 
boundary conditions on spherical particles, walls, 
and infinity, from which they obtained the 
migration velocity. Given the case where a particle 
of radius a and a distance d from one wall exists 
between two parallel walls separated by a  
distance l, their analysis assumed that Rep << 1 and 
κ = a/l << 1, and have shown that if Rep/κ << 1, 
that is, if the walls are assumed to be located within 
the inner region of expansion, one need to consider 
the inner expansion in order to calculate the first 
term in the expansion of the migration velocity. It 
was further shown that if the parameter κ is small, 
the flow might be calculated by neglecting the size 
of the particle and assuming that the particle acts as 
a point force (represented by the delta function) on 
the flow. Vasseur and Cox (1976) calculated the 
migration velocity using the expressions derived by 
Cox and Brenner (1968) for falling particles (non-
buoyant and neutrally buoyant) in still fluid near a 
wall, particles in simple shear and particles in 
Poiseuille flow. For a neutrally buoyant particle in 
a parabolic steady flow between two parallel 
planes, Vasseur and Cox (1976) derived the 
following expression for the lateral velocity 
 

 
  

( )
( )

( ) ( ) ( )
( )( )

( )
3 1 2

3l 256
322

m

1
2

3 3 3 5
1 2 3

3 4 6
r 0 k k

v
1 2

aU a l

r r 4J J
dk dk dr

1 2r 4J J

f

π β
ν

β β

β

∞ ∞

= =−∞ =−∞

′
= −

  − − − + +   
− +  

=

∫ ∫ ∫

 

for the case where 







>>

mU

V2κ   

  (11) 
 
Here β is defined as the ratio of the particle 
distance to the channel width, d/l, v'l is the lateral 
velocity normalized by Um the velocity that 
characterizes the flow, V is the particle velocity as 
caused by the influence of gravity, J3, J5, J4, and J6 
are complicated functions of the k1 and k2 in the 
Fourier Transform domain, and r3 is the direction 
of the lateral motion. The integrated result given 
graphically in the work of Vasseur and Cox was 
fitted into a polynomial for the ease of evaluation, 
and used to calculate the theoretical lateral 
velocity. Several occurrences of smaller bubbles 
analyzed near the wall were used to compare with 
the above theoretical results and such a comparison 
is depicted in Figure 9. The agreement seems 
reasonable between predicted and measured lateral 
velocity for these cases of smaller bubbles.  
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CONCLUDING REMARKS AND  
FUTURE WORK 

Measurement of the shear lift force acting on a 
bubble in a Poiseuille flow was performed in low 
gravity using the NASA GRC 2.2 s drop tower. 
The measurements were compared with the shear 
lift force predicted from various models. Moreover, 
basic trajectory calculations were performed in 
order to indirectly compare model prediction with 
experiment. The low Reynolds number shear lift 
formulations (R-B and Saffman models) compared 
more favorably than high Reynolds numbers-based 
L-M model reported in Table 2. This was because 
the real problem at hand reflected the assumptions 
of the R-B and Saffman models more than the 
assumptions of the L-M model. However, when the 
full lift coefficient, which is applicable to any 
Reynolds number was considered, the agreement 
between the predicted and measured bubble  
y coordinate became far better and resembled  
the agreement with the low Reynolds 
 

number models of R-B and Saffman. A comparison 
of the measured lateral velocity of some smaller 
bubble analyzed near the wall with the prediction 
of Vasseur and Cox (1976) was performed as well 
and showed a reasonable agreement.  
 
Future work is planned to investigate the problem 
in more controlled experimental settings. Due to 
the limitation of the liquid reservoir on the MFR, 
the difficulty of establishing steady flow in the 
channel, and the more complicated velocity profile 
within the channel, a couette flow will be used to 
establish the simple shear. This will be 
accomplished (as depicted in Figure 10) using a 
motor-driven belt embedded in a fluid volume. The 
belt will establish the simple shear flow. Similar 
experiments will be conducted in simple shear flow 
and bubble trajectories will be measured in order to 
calculate the shear lift force. More direct 
measurements of this lift force are also planned.  
 
 

 
 

 
Figure 9. Measured versus predicted lateral velocity of smaller bubbles near the wall. 
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Figure 10. Simple shear flow apparatus integrated in the Multiphase Flow Rig (MFR). 
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